Descritto meglio il perché originario dello sticky bit.
[gapil.git] / sockctrl.tex
1 %% sockctrl.tex
2 %%
3 %% Copyright (C) 2004-2005 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione dei socket}
12 \label{cha:sock_generic_management}
13
14 Esamineremo in questo capitolo una serie di funzionalità aggiuntive relative
15 alla gestione dei socket, come la gestione della risoluzione di nomi e
16 indirizzi, le impostazioni delle varie proprietà ed opzioni relative ai
17 socket, e le funzioni di controllo che permettono di modificarne il
18 comportamento.
19
20
21 \section{La risoluzione dei nomi}
22 \label{sec:sock_name_resolution}
23
24 Negli esempi dei capitoli precedenti abbiamo sempre identificato le singole
25 macchine attraverso indirizzi numerici, sfruttando al più le funzioni di
26 conversione elementare illustrate in sez.~\ref{sec:sock_addr_func} che
27 permettono di passare da un indirizzo espresso in forma \textit{dotted
28   decimal} ad un numero. Vedremo in questa sezione le funzioni utilizzate per
29 poter utilizzare dei nomi simbolici al posto dei valori numerici, e viceversa
30 quelle che permettono di ottenere i nomi simbolici associati ad indirizzi,
31 porte o altre proprietà del sistema.
32
33
34 \subsection{La struttura del \textit{resolver}}
35 \label{sec:sock_resolver}
36
37 \itindbeg{resolver}
38 La risoluzione dei nomi è associata tradizionalmente al servizio del
39 \textit{Domain Name Service} che permette di identificare le macchine su
40 internet invece che per numero IP attraverso il relativo \textsl{nome a
41   dominio}.\footnote{non staremo ad entrare nei dettagli della definizione di
42   cosa è un nome a dominio, dandolo per noto, una introduzione alla
43   problematica si trova in \cite{AGL} (cap.~9) mentre per una trattazione
44   approfondita di tutte le problematiche relative al DNS si può fare
45   riferimento a \cite{DNSbind}.} In realtà per DNS si intendono spesso i
46 server che forniscono su internet questo servizio, mentre nel nostro caso
47 affronteremo la problematica dal lato client, di un qualunque programma che
48 necessita di compiere questa operazione.
49
50 \begin{figure}[htb]
51   \centering
52   \includegraphics[width=9cm]{img/resolver}
53   \caption{Schema di funzionamento delle routine del \textit{resolver}.}
54   \label{fig:sock_resolver_schema}
55 \end{figure}
56
57 Inoltre quella fra nomi a dominio e indirizzi IP non è l'unica corrispondenza
58 possibile fra nomi simbolici e valori numerici, come abbiamo visto anche in
59 sez.~\ref{sec:sys_user_group} per le corrispondenze fra nomi di utenti e
60 gruppi e relativi identificatori numerici; per quanto riguarda però tutti i
61 nomi associati a identificativi o servizi relativi alla rete il servizio di
62 risoluzione è gestito in maniera unificata da un insieme di routine fornite
63 con le librerie del C, detto appunto \textit{resolver}.
64
65 Lo schema di funzionamento del \textit{resolver} è illustrato in
66 fig.~\ref{fig:sock_resolver_schema}; in sostanza i programmi hanno a
67 disposizione un insieme di funzioni di libreria con cui chiamano il
68 \textit{resolver}, indicate con le frecce nere. Ricevuta la richiesta è
69 quest'ultimo che, sulla base della sua configurazione, esegue le operazioni
70 necessarie a fornire la risposta, che possono essere la lettura delle
71 informazioni mantenute nei relativi dei file statici presenti sulla macchina,
72 una interrogazione ad un DNS (che a sua volta, per il funzionamento del
73 protocollo, può interrogarne altri) o la richiesta ad altri server per i quali
74 sia fornito il supporto, come LDAP.\footnote{la sigla LDAP fa riferimento ad
75   un protocollo, il \textit{Lightweight Directory Access Protocol}, che
76   prevede un meccanismo per la gestione di \textsl{elenchi} di informazioni
77   via rete; il contenuto di un elenco può essere assolutamente generico, e
78   questo permette il mantenimento dei più vari tipi di informazioni su una
79   infrastruttura di questo tipo.}
80
81 La configurazione del \textit{resolver} attiene più alla amministrazione di
82 sistema che alla programmazione, ciò non di meno, prima di trattare le varie
83 funzioni di librerie utilizzate dai programmi, vale la pena fare una
84 panoramica generale.  Originariamente la configurazione del \textit{resolver}
85 riguardava esclusivamente le questioni relative alla gestione dei nomi a
86 dominio, e prevedeva solo l'utilizzo del DNS e del file statico
87 \file{/etc/hosts}.
88
89 Per questo aspetto il file di configurazione principale del sistema è
90 \file{/etc/resolv.conf} che contiene in sostanza l'elenco degli indirizzi IP
91 dei server DNS da contattare; a questo si affianca il file
92 \file{/etc/host.conf} il cui scopo principale è indicare l'ordine in cui
93 eseguire la risoluzione dei nomi (se usare prima i valori di \file{/etc/hosts}
94 o quelli del DNS). Tralasciamo i dettagli relativi alle varie direttive che
95 possono essere usate in questi file, che si trovano nelle rispettive pagine di
96 manuale.
97
98 Con il tempo però è divenuto possibile fornire diversi sostituti per
99 l'utilizzo delle associazione statiche in \file{/etc/hosts}, inoltre oltre
100 alla risoluzione dei nomi a dominio ci sono anche altri nomi da risolvere,
101 come quelli che possono essere associati ad una rete (invece che ad una
102 singola macchina) o ai gruppi di macchine definiti dal servizio
103 NIS,\footnote{il \textit{Network Information Service} è un servizio, creato da
104   Sun, e poi diffuso su tutte le piattaforme unix-like, che permette di
105   raggruppare all'interno di una rete (in quelli che appunto vengono chiamati
106   \textit{netgroup}) varie macchine, centralizzando i servizi di definizione
107   di utenti e gruppi e di autenticazione, oggi è sempre più spesso sostituito
108   da LDAP.} o come quelli dei protocolli e dei servizi che sono mantenuti nei
109 file statici \file{/etc/protocols} e \file{/etc/services}.  Molte di queste
110 informazioni non si trovano su un DNS, ma in una rete locale può essere molto
111 utile centralizzare il mantenimento di alcune di esse su opportuni server.
112 Inoltre l'uso di diversi supporti possibili per le stesse informazioni (ad
113 esempio il nome delle macchine può essere mantenuto sia tramite
114 \file{/etc/hosts}, che con il DNS, che con NIS) comporta il problema
115 dell'ordine in cui questi vengono interrogati.\footnote{con le implementazioni
116   classiche i vari supporti erano introdotti modificando direttamente le
117   funzioni di libreria, prevedendo un ordine di interrogazione predefinito e
118   non modificabile (a meno di una ricompilazione delle librerie stesse).}
119
120 \itindbeg{Name~Service~Switch}
121 Per risolvere questa serie di problemi la risoluzione dei nomi a dominio
122 eseguirà dal \textit{resolver} è stata inclusa all'interno di un meccanismo
123 generico per la risoluzione di corrispondenze fra nomi ed informazioni ad essi
124 associate chiamato \textit{Name Service Switch}\footnote{il sistema è stato
125   introdotto la prima volta nelle librerie standard di Solaris, le \acr{glibc}
126   hanno ripreso lo stesso schema, si tenga presente che questo sistema non
127   esiste per altre librerie standard come le \acr{libc5} o le \acr{uclib}.}
128 cui abbiamo accennato anche in sez.~\ref{sec:sys_user_group} per quanto
129 riguarda la gestione dei dati associati a utenti e gruppi.  Il \textit{Name
130   Service Switch} (cui spesso si fa riferimento con l'acronimo NSS) è un
131 sistema di librerie dinamiche che permette di definire in maniera generica sia
132 i supporti su cui mantenere i dati di corrispondenza fra nomi e valori
133 numerici, sia l'ordine in cui effettuare le ricerche sui vari supporti
134 disponibili. Il sistema prevede una serie di possibili classi di
135 corrispondenza, quelle attualmente definite sono riportate in
136 tab.~\ref{tab:sys_NSS_classes}.
137
138 \begin{table}[htb]
139   \footnotesize
140   \centering
141   \begin{tabular}[c]{|l|p{8cm}|}
142     \hline
143     \textbf{Classe} & \textbf{Tipo di corrispondenza}\\
144     \hline
145     \hline
146     \texttt{shadow}   & corrispondenze fra username e proprietà dell'utente
147                        (\acr{uid}, ecc.).\\  
148     \texttt{group}    & corrispondenze fra nome del gruppo e proprietà dello 
149                         stesso.\\  
150     \texttt{aliases}  & alias per la posta elettronica.\\ 
151     \texttt{ethers}   & corrispondenze fra numero IP e MAC address della
152                         scheda di rete.\\ 
153     \texttt{hosts}    & corrispondenze fra nome a dominio e numero IP.\\ 
154     \texttt{netgroup} & corrispondenze gruppo di rete e macchine che lo
155                         compongono.\\  
156     \texttt{networks} & corrispondenze fra nome di una rete e suo indirizzo
157                         IP.\\  
158     \texttt{protocols}& corrispondenze fra nome di un protocollo e relativo
159                         numero identificativo.\\ 
160     \texttt{rpc}      & corrispondenze fra nome di un servizio RPC e relativo 
161                         numero identificativo.\\ 
162     \texttt{services} & corrispondenze fra nome di un servizio e numero di
163                         porta. \\ 
164     \hline
165   \end{tabular}
166   \caption{Le diverse classi di corrispondenze definite
167     all'interno del \textit{Name Service Switch}.} 
168   \label{tab:sys_NSS_classes}
169 \end{table}
170
171 Il sistema  del \textit{Name Service Switch} è controllato dal  contenuto del
172 file \file{/etc/nsswitch.conf}; questo contiene una riga\footnote{seguendo una
173   convezione  comune per  i  file  di configurazione  le  righe vuote  vengono
174   ignorate  e  tutto  quello  che  segue un  carattere  ``\texttt{\#}''  viene
175   considerato un  commento.} di configurazione per ciascuna  di queste classi,
176 che  viene inizia  col nome  di tab.~\ref{tab:sys_NSS_classes}  seguito  da un
177 carattere ``\texttt{:}'' e  prosegue con la lista dei  \textsl{servizi} su cui
178 le  relative informazioni sono  raggiungibili, scritti  nell'ordine in  cui si
179 vuole siano interrogati.
180
181 Ogni  servizio è  specificato  a sua  volta  da un  nome, come  \texttt{file},
182 \texttt{dns},  \texttt{db},  ecc.  che  identifica la  libreria  dinamica  che
183 realizza l'interfaccia  con esso. Per  ciascun servizio se \texttt{NAME}  è il
184 nome  utilizzato  dentro   \file{/etc/nsswitch.conf},  dovrà  essere  presente
185 (usualmente  in   \file{/lib})  una  libreria   \texttt{libnss\_NAME}  che  ne
186 implementa le funzioni.
187
188 In ogni caso, qualunque sia la modalità con cui ricevono i dati o il supporto
189 su cui vengono mantenuti, e che si usino o meno funzionalità aggiuntive
190 fornire dal sistema del \textit{Name Service Switch}, dal punto di vista di un
191 programma che deve effettuare la risoluzione di un nome a dominio, tutto
192 quello che conta sono le funzioni classiche che il \textit{resolver} mette a
193 disposizione,\footnote{è cura della implementazione fattane nelle \acr{glibc}
194   tenere conto della presenza del \textit{Name Service Switch}.} e sono queste
195 quelle che tratteremo nelle sezioni successive.
196 \itindend{Name~Service~Switch}
197
198
199 \subsection{Le funzioni di interrogazione del \textit{resolver}}
200 \label{sec:sock_resolver_functions}
201
202 Prima di trattare le funzioni usate normalmente nella risoluzione dei nomi a
203 dominio conviene trattare in maniera più dettagliata il meccanismo principale
204 da esse utilizzato e cioè quello del servizio DNS. Come accennato questo,
205 benché in teoria sia solo uno dei possibili supporti su cui mantenere le
206 informazioni, in pratica costituisce il meccanismo principale con cui vengono
207 risolti i nomi a dominio.  Per questo motivo esistono una serie di funzioni di
208 libreria che servono specificamente ad eseguire delle interrogazioni verso un
209 server DNS, funzioni che poi vengono utilizzate per realizzare le funzioni
210 generiche di libreria usate anche dal sistema del \textit{resolver}.
211
212 Il sistema del DNS è in sostanza di un database distribuito organizzato in
213 maniera gerarchica, i dati vengono mantenuti in tanti server distinti ciascuno
214 dei quali si occupa della risoluzione del proprio \textsl{dominio}; i nomi a
215 dominio sono organizzati in una struttura ad albero analoga a quella
216 dell'albero dei file, con domini di primo livello (come i \texttt{.org}),
217 secondo livello (come \texttt{.truelite.it}), ecc.  In questo caso le
218 separazioni sono fra i vari livelli sono definite dal carattere ``\texttt{.}''
219 ed i nomi devono essere risolti da destra verso sinistra.\footnote{per chi si
220   stia chiedendo quale sia la radice di questo albero, cioè l'equivalente di
221   ``\texttt{/}'', la risposta è il dominio speciale ``\texttt{.}'', che in
222   genere non viene mai scritto esplicitamente, ma che, come chiunque abbia
223   configurato un server DNS sa bene, esiste ed è gestito dai cosiddetti
224   \textit{root DNS} che risolvono i domini di primo livello.} Il meccanismo
225 funziona con il criterio della \textsl{delegazione}, un server responsabile
226 per un dominio di primo livello può delegare la risoluzione degli indirizzi
227 per un suo dominio di secondo livello ad un altro server, il quale a sua volta
228 potrà delegare la risoluzione di un eventuale sottodominio di terzo livello ad
229 un altro server ancora.
230
231 In realtà un server DNS è in grado di fare altro rispetto alla risoluzione di
232 un nome a dominio in un indirizzo IP; ciascuna voce nel database viene
233 chiamata \textit{resource record}, e può contenere diverse informazioni. In
234 genere i \textit{resource record} vengono classificati per la \textsl{classe
235   di indirizzi} cui i dati contenuti fanno riferimento, e per il \textsl{tipo}
236 di questi ultimi.\footnote{ritroveremo classi di indirizzi e tipi di record
237   più avanti in tab.~\ref{tab:DNS_address_class} e
238   tab.~\ref{tab:DNS_record_type}.}  Oggigiorno i dati mantenuti nei server DNS
239 sono quasi esclusivamente relativi ad indirizzi internet, per cui in pratica
240 viene utilizzata soltanto una classe di indirizzi; invece le corrispondenze
241 fra un nome a dominio ed un indirizzo IP sono solo uno fra i vari tipi di
242 informazione che un server DNS fornisce normalmente.
243
244 L'esistenza di vari tipi di informazioni è un altro dei motivi per cui il
245 \textit{resolver} prevede, rispetto a quelle relative alla semplice
246 risoluzione dei nomi, un insieme di funzioni specifiche dedicate
247 all'interrogazione di un server DNS; la prima di queste funzioni è
248 \funcd{res\_init}, il cui prototipo è:
249 \begin{functions}
250   \headdecl{netinet/in.h} \headdecl{arpa/nameser.h} \headdecl{resolv.h}
251   \funcdecl{int res\_init(void)}
252
253 Inizializza il sistema del \textit{resolver}.
254
255 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
256   errore.}
257 \end{functions}
258
259 La funzione legge il contenuto dei file di configurazione (i già citati
260 \file{resolv.conf} e \file{host.conf}) per impostare il dominio di default,
261 gli indirizzi dei server DNS da contattare e l'ordine delle ricerche; se non
262 sono specificati server verrà utilizzato l'indirizzo locale, e se non è
263 definito un dominio di default sarà usato quello associato con l'indirizzo
264 locale (ma questo può essere sovrascritto con l'uso della variabile di
265 ambiente \texttt{LOCALDOMAIN}). In genere non è necessario eseguire questa
266 funzione direttamente in quanto viene automaticamente chiamata la prima volta
267 che si esegue una delle altre.
268
269 Le impostazioni e lo stato del \textit{resolver} vengono mantenuti in una
270 serie di variabili raggruppate nei campi di una apposita struttura \var{\_res}
271 usata da tutte queste funzioni. Essa viene definita in \file{resolv.h} ed è
272 utilizzata internamente alle funzioni essendo definita come variabile globale;
273 questo consente anche di accedervi direttamente all'interno di un qualunque
274 programma, una volta che la sia opportunamente dichiarata come:
275 \includecodesnip{listati/resolv_option.c}
276
277 Tutti i campi della struttura sono ad uso interno, e vengono usualmente
278 inizializzati da \func{res\_init} in base al contenuto dei file di
279 configurazione e ad una serie di valori di default. L'unico campo che può
280 essere utile modificare è \var{\_res.options}, una maschera binaria che
281 contiene una serie di bit di opzione che permettono di controllare il
282 comportamento del \textit{resolver}. 
283
284 \begin{table}[htb]
285   \centering
286   \footnotesize
287   \begin{tabular}[c]{|l|p{8cm}|}
288     \hline
289     \textbf{Costante} & \textbf{Significato} \\
290     \hline
291     \hline
292     \const{RES\_INIT}       & viene attivato se è stata chiamata
293                               \func{res\_init}. \\
294     \const{RES\_DEBUG}      & stampa dei messaggi di debug.\\
295     \const{RES\_AAONLY}     & accetta solo risposte autoritative.\\
296     \const{RES\_USEVC}      & usa connessioni TCP per contattare i server 
297                               invece che l'usuale UDP.\\
298     \const{RES\_PRIMARY}    & interroga soltanto server DNS primari.
299                               \\
300     \const{RES\_IGNTC}      & ignora gli errori di troncamento, non ritenta la
301                               richiesta con una connessione TCP.\\
302     \const{RES\_RECURSE}    & imposta il bit che indica che si desidera
303                               eseguire una interrogazione ricorsiva.\\
304     \const{RES\_DEFNAMES}   & se attivo \func{res\_search} aggiunge il nome
305                               del dominio di default ai nomi singoli (che non
306                               contengono cioè un ``\texttt{.}'').\\
307     \const{RES\_STAYOPEN}   & usato con \const{RES\_USEVC} per mantenere
308                               aperte le connessioni TCP fra interrogazioni
309                               diverse. \\
310     \const{RES\_DNSRCH}     & se attivo \func{res\_search} esegue le ricerche
311                               di nomi di macchine nel dominio corrente o nei
312                               domini ad esso sovrastanti.\\
313     \const{RES\_INSECURE1}  & blocca i controlli di sicurezza di tipo 1.\\
314     \const{RES\_INSECURE2}  & blocca i controlli di sicurezza di tipo 2.\\
315     \const{RES\_NOALIASES}  & blocca l'uso della variabile di ambiente
316                               \texttt{HOSTALIASES}.\\ 
317     \const{RES\_USE\_INET6} & restituisce indirizzi IPv6 con
318                               \func{gethostbyname}. \\
319     \const{RES\_ROTATE}     & ruota la lista dei server DNS dopo ogni
320                               interrogazione.\\
321     \const{RES\_NOCHECKNAME}& non controlla i nomi per verificarne la
322                               correttezza sintattica. \\
323     \const{RES\_KEEPTSIG}   & non elimina i record di tipo \texttt{TSIG}.\\
324     \const{RES\_BLAST}      & \\
325     \const{RES\_DEFAULT}    & è l'insieme di \const{RES\_RECURSE},
326                               \const{RES\_DEFNAMES} e \const{RES\_DNSRCH}.\\
327     \hline
328   \end{tabular}
329   \caption{Costanti utilizzabili come valori per \var{\_res.options}.}
330   \label{tab:resolver_option}
331 \end{table}
332
333 Per utilizzare questa funzionalità per modificare le impostazioni direttamente
334 da programma occorrerà impostare un opportuno valore per questo campo ed
335 invocare esplicitamente \func{res\_init}, dopo di che le altre funzioni
336 prenderanno le nuove impostazioni. Le costanti che definiscono i vari bit di
337 questo campo, ed il relativo significato sono illustrate in
338 tab.~\ref{tab:resolver_option}; trattandosi di una maschera binaria un valore
339 deve essere espresso con un opportuno OR aritmetico di dette costanti; ad
340 esempio il valore di default delle opzioni, espresso dalla costante
341 \const{RES\_DEFAULT}, è definito come:
342 \includecodesnip{listati/resolv_option_def.c}
343
344 Non tratteremo il significato degli altri campi non essendovi necessità di
345 modificarli direttamente; gran parte di essi sono infatti impostati dal
346 contenuto dei file di configurazione, mentre le funzionalità controllate da
347 alcuni di esse possono essere modificate con l'uso delle opportune variabili
348 di ambiente come abbiamo visto per \texttt{LOCALDOMAIN}. In particolare con
349 \texttt{RES\_RETRY} si soprassiede il valore del campo \var{retry} che
350 controlla quante volte viene ripetuto il tentativo di connettersi ad un server
351 DNS prima di dichiarare fallimento; il valore di default è 4, un valore nullo
352 significa bloccare l'uso del DNS. Infine con \texttt{RES\_TIMEOUT} si
353 soprassiede il valore del campo \var{retrans},\footnote{preimpostato al valore
354   della omonima costante \const{RES\_TIMEOUT} di \file{resolv.h}.} che è il
355 valore preso come base (in numero di secondi) per definire la scadenza di una
356 richiesta, ciascun tentativo di richiesta fallito viene ripetuto raddoppiando
357 il tempo di scadenza per il numero massimo di volte stabilito da
358 \texttt{RES\_RETRY}.
359
360 La funzione di interrogazione principale è \funcd{res\_query}, che serve ad
361 eseguire una richiesta ad un server DNS per un nome a dominio
362 \textsl{completamente specificato} (quello che si chiama FQDN, \textit{Fully
363   Qualified Domain Name}); il suo prototipo è:
364
365 \begin{functions}
366 \headdecl{netinet/in.h}
367 \headdecl{arpa/nameser.h}
368 \headdecl{resolv.h}
369 \funcdecl{int res\_query(const char *dname, int class, int type,
370               unsigned char *answer, int anslen)}
371
372   Esegue una interrogazione al DNS.
373
374 \bodydesc{La funzione restituisce un valore positivo pari alla lunghezza dei
375     dati scritti nel buffer \param{answer} in caso di successo e -1 in caso di
376     errore.}
377 \end{functions}
378
379 La funzione esegue una interrogazione ad un server DNS relativa al nome da
380 risolvere passato nella stringa indirizzata da \param{dname}, inoltre deve
381 essere specificata la classe di indirizzi in cui eseguire la ricerca con
382 \param{class}, ed il tipo di \textit{resource record} che si vuole ottenere
383 con \param{type}. Il risultato della ricerca verrà scritto nel buffer di
384 lunghezza \param{anslen} puntato da \param{answer} che si sarà opportunamente
385 allocato in precedenza.
386
387
388 Una seconda funzione di ricerca, analoga a \func{res\_query}, che prende gli
389 stessi argomenti, ma che esegue l'interrogazione con le funzionalità
390 addizionali previste dalle due opzioni \const{RES\_DEFNAMES} e
391 \const{RES\_DNSRCH}, è \funcd{res\_search}, il cui prototipo è:
392 \begin{functions}
393 \headdecl{netinet/in.h}
394 \headdecl{arpa/nameser.h}
395 \headdecl{resolv.h}
396 \funcdecl{int res\_search(const char *dname, int class, int type,
397               unsigned char *answer, int anslen)}
398
399   Esegue una interrogazione al DNS.
400   
401   \bodydesc{La funzione restituisce un valore positivo pari alla lunghezza dei
402     dati scritti nel buffer \param{answer} in caso di successo e -1 in caso di
403     errore.}
404 \end{functions}
405
406 In sostanza la funzione ripete una serie di chiamate a \func{res\_query}
407 aggiungendo al nome contenuto nella stringa \param{dname} il dominio di
408 default da cercare, fermandosi non appena trova un risultato.  Il risultato di
409 entrambe le funzioni viene scritto nel formato opportuno (che sarà diverso a
410 seconda del tipo di record richiesto) nel buffer di ritorno; sarà compito del
411 programma (o di altre funzioni) estrarre i relativi dati, esistono una serie
412 di funzioni interne usate per la scansione di questi dati, per chi fosse
413 interessato una trattazione dettagliata è riportata nel quattordicesimo
414 capitolo di \cite{DNSbind}.
415
416 Le classi di indirizzi supportate da un server DNS sono tre, ma di queste in
417 pratica oggi viene utilizzata soltanto quella degli indirizzi internet; le
418 costanti che identificano dette classi, da usare come valore per l'argomento
419 \param{class} delle precedenti funzioni, sono riportate in
420 tab.~\ref{tab:DNS_address_class}.\footnote{esisteva in realtà anche una classe
421   \const{C\_CSNET} per la omonima rete, ma è stata dichiarata obsoleta.}
422
423 \begin{table}[htb]
424   \centering
425   \footnotesize
426   \begin{tabular}[c]{|l|p{8cm}|}
427     \hline
428     \textbf{Costante} & \textbf{Significato} \\
429     \hline
430     \hline
431     \const{C\_IN}   & indirizzi internet, in pratica i soli utilizzati oggi.\\
432     \const{C\_HS}   & indirizzi \textit{Hesiod}, utilizzati solo al MIT, oggi
433                       completamente estinti. \\
434     \const{C\_CHAOS}& indirizzi per la rete \textit{Chaosnet}, un'altra rete
435                       sperimentale nata al MIT. \\
436     \const{C\_ANY}  & indica un indirizzo di classe qualunque.\\
437     \hline
438   \end{tabular}
439   \caption{Costanti identificative delle classi di indirizzi per l'argomento
440     \param{class} di \func{res\_query}.}
441   \label{tab:DNS_address_class}
442 \end{table}
443
444 Come accennato le tipologie di dati che sono mantenibili su un server DNS sono
445 diverse, ed a ciascuna di essa corrisponde un diverso tipo di \textit{resource
446   record}. L'elenco delle costanti\footnote{ripreso dai file di dichiarazione
447   \file{arpa/nameser.h} e \file{arpa/nameser\_compat.h}.} che definiscono i
448 valori che si possono usare per l'argomento \param{type} per specificare il
449 tipo di \textit{resource record} da richiedere è riportato in
450 tab.~\ref{tab:DNS_record_type}; le costanti (tolto il \texttt{T\_} iniziale)
451 hanno gli stessi nomi usati per identificare i record nei file di zona di
452 BIND,\footnote{BIND, acronimo di \textit{Berkley Internet Name Domain}, è una
453   implementazione di un server DNS, ed, essendo utilizzata nella stragrande
454   maggioranza dei casi, fa da riferimento; i dati relativi ad un certo
455   dominio (cioè i suoi \textit{resource record} vengono mantenuti in quelli
456   che sono usualmente chiamati \textsl{file di zona}, e in essi ciascun tipo
457   di dominio è identificato da un nome che è appunto identico a quello delle
458   costanti di tab.~\ref{tab:DNS_record_type} senza il \texttt{T\_} iniziale.}
459 e che normalmente sono anche usati come nomi per indicare i record.
460
461 \begin{table}[!htb]
462   \centering
463   \footnotesize
464   \begin{tabular}[c]{|l|l|}
465     \hline
466     \textbf{Costante} & \textbf{Significato} \\
467     \hline
468     \hline
469     \const{T\_A}     & indirizzo di una stazione.\\
470     \const{T\_NS}    & server DNS autoritativo per il dominio richiesto.\\
471     \const{T\_MD}    & destinazione per la posta elettronica.\\
472     \const{T\_MF}    & redistributore per la posta elettronica.\\
473     \const{T\_CNAME} & nome canonico.\\
474     \const{T\_SOA}   & inizio di una zona di autorità.\\
475     \const{T\_MB}    & nome a dominio di una casella di posta.\\
476     \const{T\_MG}    & nome di un membro di un gruppo di posta.\\
477     \const{T\_MR}    & nome di un cambiamento di nome per la posta.\\
478     \const{T\_NULL}  & record nullo.\\
479     \const{T\_WKS}   & servizio noto.\\
480     \const{T\_PTR}   & risoluzione inversa di un indirizzo numerico.\\
481     \const{T\_HINFO} & informazione sulla stazione.\\
482     \const{T\_MINFO} & informazione sulla casella di posta.\\
483     \const{T\_MX}    & server cui instradare la posta per il dominio.\\
484     \const{T\_TXT}   & stringhe di testo (libere).\\
485     \const{T\_RP}    & nome di un responsabile (\textit{responsible person}).\\
486     \const{T\_AFSDB} & database per una cella AFS.\\
487     \const{T\_X25}   & indirizzo di chiamata per X.25.\\
488     \const{T\_ISDN}  & indirizzo di chiamata per ISDN.\\
489     \const{T\_RT}    & router.\\
490     \const{T\_NSAP}  & indirizzo NSAP.\\
491     \const{T\_NSAP\_PTR}& risoluzione inversa per NSAP (deprecato).\\
492     \const{T\_SIG}   & firma digitale di sicurezza.\\
493     \const{T\_KEY}   & chiave per firma.\\
494     \const{T\_PX}    & corrispondenza per la posta X.400.\\
495     \const{T\_GPOS}  & posizione geografica.\\
496     \const{T\_AAAA}  & indirizzo IPv6.\\
497     \const{T\_LOC}   & informazione di collocazione.\\
498     \const{T\_NXT}   & dominio successivo.\\
499     \const{T\_EID}   & identificatore di punto conclusivo.\\
500     \const{T\_NIMLOC}& posizionatore \textit{nimrod}.\\
501     \const{T\_SRV}   & servizio.\\
502     \const{T\_ATMA}  & indirizzo ATM.\\
503     \const{T\_NAPTR} & puntatore ad una \textit{naming authority} .\\
504     \const{T\_TSIG}  & firma di transazione.\\
505     \const{T\_IXFR}  & trasferimento di zona incrementale.\\
506     \const{T\_AXFR}  & trasferimento di zona di autorità.\\
507     \const{T\_MAILB} & trasferimento di record di caselle di posta.\\
508     \const{T\_MAILA} & trasferimento di record di server di posta.\\
509     \const{T\_ANY}   & valore generico.\\
510     \hline
511   \end{tabular}
512   \caption{Costanti identificative del tipo di record per l'argomento
513     \param{type} di \func{res\_query}.}
514   \label{tab:DNS_record_type}
515 \end{table}
516
517
518 L'elenco di tab.~\ref{tab:DNS_record_type} è quello di \textsl{tutti} i
519 \textit{resource record} definiti, con una breve descrizione del relativo
520 significato.  Di tutti questi però viene impiegato correntemente solo un
521 piccolo sottoinsieme, alcuni sono obsoleti ed altri fanno riferimento a dati
522 applicativi che non ci interessano non avendo nulla a che fare con la
523 risoluzione degli indirizzi IP, pertanto non entreremo nei dettagli del
524 significato di tutti i \textit{resource record}, ma solo di quelli usati dalle
525 funzioni del \textit{resolver}. Questi sono sostanzialmente i seguenti (per
526 indicarli si è usata la notazione dei file di zona di BIND):
527 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
528 \item[\texttt{A}] viene usato per indicare la corrispondenza fra un nome a
529   dominio ed un indirizzo IPv4; ad esempio la corrispondenza fra
530   \texttt{dodds.truelite.it} e l'indirizzo IP \texttt{62.48.34.25}.
531 \item[\texttt{AAAA}] viene usato per indicare la corrispondenza fra un nome a
532   dominio ed un indirizzo IPv6; è chiamato in questo modo dato che la
533   dimensione di un indirizzo IPv6 è quattro volte quella di un indirizzo IPv4.
534 \item[\texttt{PTR}] per fornire la corrispondenza inversa fra un indirizzo IP
535   ed un nome a dominio ad esso associato si utilizza questo tipo di record (il
536   cui nome sta per \textit{pointer}).
537 \item[\texttt{CNAME}] qualora si abbiamo più nomi che corrispondono allo
538   stesso indirizzo (come ad esempio \texttt{www.truelite.it}, o
539   \texttt{sources.truelite.it}, che fanno sempre riferimento a
540   \texttt{dodds.truelite.it}) si può usare questo tipo di record per creare
541   degli \textit{alias} in modo da associare un qualunque altro nome al
542   \textsl{nome canonico} della macchina (si chiama così quello associato al
543   record \texttt{A}).
544 \end{basedescript}
545
546 Come accennato in caso di successo le due funzioni di richiesta restituiscono
547 il risultato della interrogazione al server, in caso di insuccesso l'errore
548 invece viene segnalato da un valore di ritorno pari a -1, ma in questo caso,
549 non può essere utilizzata la variabile \var{errno} per riportare un codice di
550 errore, in quanto questo viene impostato per ciascuna delle chiamate al
551 sistema utilizzate dalle funzioni del \textit{resolver}, non avrà alcun
552 significato nell'indicare quale parte del procedimento di risoluzione è
553 fallita.
554
555 Per questo motivo è stata definita una variabile di errore separata,
556 \var{h\_errno}, che viene utilizzata dalle funzioni del \textit{resolver} per
557 indicare quale problema ha causato il fallimento della risoluzione del nome.
558 Ad essa si può accedere una volta che la si dichiara con:
559 \includecodesnip{listati/herrno.c} 
560 ed i valori che può assumere, con il relativo significato, sono riportati in
561 tab.~\ref{tab:h_errno_values}.
562
563 \begin{table}[!htb]
564   \centering
565   \footnotesize
566   \begin{tabular}[c]{|l|p{10cm}|}
567     \hline
568     \textbf{Costante} & \textbf{Significato} \\
569     \hline
570     \hline
571     \const{HOST\_NOT\_FOUND} & l'indirizzo richiesto non è valido e la
572                                macchina indicata è sconosciuta. \\
573     \const{NO\_ADDRESS}      & il nome a dominio richiesto è valido, ma non ha
574                                un indirizzo associato ad esso
575                                (alternativamente può essere indicato come 
576                                \const{NO\_DATA}). \\
577     \const{NO\_RECOVERY}     & si è avuto un errore non recuperabile
578                                nell'interrogazione di un server DNS. \\
579     \const{TRY\_AGAIN}       & si è avuto un errore temporaneo
580                                nell'interrogazione di un server DNS, si può
581                                ritentare l'interrogazione in un secondo
582                                tempo. \\
583     \hline
584   \end{tabular}
585   \caption{Valori possibili della variabile \var{h\_errno}.}
586   \label{tab:h_errno_values}
587 \end{table}
588
589 Insieme alla nuova variabile vengono definite anche due nuove funzioni per
590 stampare l'errore a video, analoghe a quelle di sez.~\ref{sec:sys_strerror}
591 per \var{errno}, ma che usano il valore di \var{h\_errno}; la prima è
592 \funcd{herror} ed il suo prototipo è:
593 \begin{functions}
594 \headdecl{netdb.h}
595 \funcdecl{void herror(const char *string)}
596
597 Stampa un errore di risoluzione.
598 \end{functions}
599
600 La funzione è l'analoga di \func{perror} e stampa sullo standard error un
601 messaggio di errore corrispondente al valore corrente di \var{h\_errno}, a cui
602 viene anteposta la stringa \param{string} passata come argomento.  La seconda
603 funzione è \funcd{hstrerror} ed il suo prototipo è:
604 \begin{functions}
605 \headdecl{netdb.h}
606 \funcdecl{const char *hstrerror(int err)}
607
608 Restituisce una stringa corrispondente ad un errore di risoluzione.
609 \end{functions}
610 \noindent che, come  l'analoga \func{strerror}, restituisce una stringa con un
611 messaggio di errore già formattato, corrispondente al codice passato come
612 argomento (che si presume sia dato da \var{h\_errno}).
613
614 \itindend{resolver}
615
616
617 \subsection{La risoluzione dei nomi a dominio}
618 \label{sec:sock_name_services}
619
620 La principale funzionalità del \itindex{resolver}\textit{resolver} resta
621 quella di risolvere i nomi a dominio in indirizzi IP, per cui non ci
622 dedicheremo oltre alle funzioni di richiesta generica ed esamineremo invece le
623 funzioni a questo dedicate. La prima funzione è \funcd{gethostbyname} il cui
624 scopo è ottenere l'indirizzo di una stazione noto il suo nome a dominio, il
625 suo prototipo è:
626 \begin{prototype}{netdb.h}
627 {struct hostent *gethostbyname(const char *name)}
628
629 Determina l'indirizzo associato al nome a dominio \param{name}.
630
631 \bodydesc{La funzione restituisce in caso di successo il puntatore ad una
632   struttura di tipo \struct{hostent} contenente i dati associati al nome a
633   dominio, o un puntatore nullo in caso di errore.}
634 \end{prototype}
635
636 La funzione prende come argomento una stringa \param{name} contenente il nome
637 a dominio che si vuole risolvere, in caso di successo i dati ad esso relativi
638 vengono memorizzati in una opportuna struttura \struct{hostent} la cui
639 definizione è riportata in fig.~\ref{fig:sock_hostent_struct}. 
640
641 \begin{figure}[!htb]
642   \footnotesize \centering
643   \begin{minipage}[c]{15cm}
644     \includestruct{listati/hostent.h}
645   \end{minipage}
646   \caption{La struttura \structd{hostent} per la risoluzione dei nomi a
647     dominio e degli indirizzi IP.}
648   \label{fig:sock_hostent_struct}
649 \end{figure}
650
651 Quando un programma chiama \func{gethostbyname} e questa usa il DNS per
652 effettuare la risoluzione del nome, è con i valori contenuti nei relativi
653 record che vengono riempite le varie parti della struttura \struct{hostent}.
654 Il primo campo della struttura, \var{h\_name} contiene sempre il \textsl{nome
655   canonico}, che nel caso del DNS è appunto il nome associato ad un record
656 \texttt{A}. Il secondo campo della struttura, \var{h\_aliases}, invece è un
657 puntatore ad vettore di puntatori, terminato da un puntatore nullo. Ciascun
658 puntatore del vettore punta ad una stringa contenente uno degli altri
659 possibili nomi associati allo stesso \textsl{nome canonico} (quelli che nel
660 DNS vengono inseriti come record di tipo \texttt{CNAME}).
661
662 Il terzo campo della struttura, \var{h\_addrtype}, indica il tipo di indirizzo
663 che è stato restituito, e può assumere soltanto i valori \const{AF\_INET} o
664 \const{AF\_INET6}, mentre il quarto campo, \var{h\_length}, indica la
665 lunghezza dell'indirizzo stesso in byte. 
666
667 Infine il campo \var{h\_addr\_list} è il puntatore ad un vettore di puntatori
668 ai singoli indirizzi; il vettore è terminato da un puntatore nullo.  Inoltre,
669 come illustrato in fig.~\ref{fig:sock_hostent_struct}, viene definito il campo
670 \var{h\_addr} come sinonimo di \code{h\_addr\_list[0]}, cioè un riferimento
671 diretto al primo indirizzo della lista.
672
673 Oltre ai normali nomi a dominio la funzione accetta come argomento
674 \param{name} anche indirizzi numerici, in formato dotted decimal per IPv4 o
675 con la notazione illustrata in sez.~\ref{sec:IP_ipv6_notation} per IPv6. In
676 tal caso \func{gethostbyname} non eseguirà nessuna interrogazione remota, ma
677 si limiterà a copiare la stringa nel campo \var{h\_name} ed a creare la
678 corrispondente struttura \var{in\_addr} da indirizzare con
679 \code{h\_addr\_list[0]}.
680
681 Con l'uso di \func{gethostbyname} normalmente si ottengono solo gli indirizzi
682 IPv4, se si vogliono ottenere degli indirizzi IPv6 occorrerà prima impostare
683 l'opzione \const{RES\_USE\_INET6} nel campo \texttt{\_res.options} e poi
684 chiamare \func{res\_init} (vedi sez.~\ref{sec:sock_resolver_functions}) per
685 modificare le opzioni del \itindex{resolver}\textit{resolver}; dato che
686 questo non è molto comodo è stata definita\footnote{questa è una estensione
687   fornita dalle \acr{glibc}, disponibile anche in altri sistemi unix-like.}
688 un'altra funzione, \funcd{gethostbyname2}, il cui prototipo è:
689 \begin{functions}
690   \headdecl{netdb.h} 
691   \headdecl{sys/socket.h}
692   \funcdecl{struct hostent *gethostbyname2(const char *name, int af)}
693
694 Determina l'indirizzo di tipo \param{af} associato al nome a dominio
695 \param{name}.
696
697 \bodydesc{La funzione restituisce in caso di successo il puntatore ad una
698   struttura di tipo \struct{hostent} contenente i dati associati al nome a
699   dominio, o un puntatore nullo in caso di errore.}
700 \end{functions}
701
702 In questo caso la funzione prende un secondo argomento \param{af} che indica
703 (i soli valori consentiti sono \const{AF\_INET} o \const{AF\_INET6}, per
704 questo è necessario l'uso di \texttt{sys/socket.h}) la famiglia di indirizzi
705 che dovrà essere utilizzata nei risultati restituiti dalla funzione. Per tutto
706 il resto la funzione è identica a \func{gethostbyname}, ed identici sono i
707 suoi risultati.
708
709 \begin{figure}[!htb]
710   \footnotesize \centering
711   \begin{minipage}[c]{15cm}
712     \includecodesample{listati/mygethost.c}
713   \end{minipage}
714   \normalsize
715   \caption{Esempio di codice per la risoluzione di un indirizzo.}
716   \label{fig:mygethost_example}
717 \end{figure}
718
719 Vediamo allora un primo esempio dell'uso delle funzioni di risoluzione, in
720 fig.~\ref{fig:mygethost_example} è riportato un estratto del codice di un
721 programma che esegue una semplice interrogazione al
722 \itindex{resolver}\textit{resolver} usando \func{gethostbyname} e poi ne
723 stampa a video i risultati. Al solito il sorgente completo, che comprende il
724 trattamento delle opzioni ed una funzione per stampare un messaggio di aiuto,
725 è nel file \texttt{mygethost.c} dei sorgenti allegati alla guida.
726
727 Il programma richiede un solo argomento che specifichi il nome da cercare,
728 senza il quale (\texttt{\small 12--15}) esce con un errore. Dopo di che
729 (\texttt{\small 16}) si limita a chiamare \func{gethostbyname}, ricevendo il
730 risultato nel puntatore \var{data}. Questo (\texttt{\small 17--20}) viene
731 controllato per rilevare eventuali errori, nel qual caso il programma esce
732 dopo aver stampato un messaggio con \func{herror}. 
733
734 Se invece la risoluzione è andata a buon fine si inizia (\texttt{\small 21})
735 con lo stampare il nome canonico, dopo di che (\texttt{\small 22--26}) si
736 stampano eventuali altri nomi. Per questo prima (\texttt{\small 22}) si prende
737 il puntatore alla cima della lista che contiene i nomi e poi (\texttt{\small
738   23--26}) si esegue un ciclo che sarà ripetuto fin tanto che nella lista si
739 troveranno dei puntatori validi\footnote{si ricordi che la lista viene
740   terminata da un puntatore nullo.} per le stringhe dei nomi; prima
741 (\texttt{\small 24}) si stamperà la stringa e poi (\texttt{\small 25}) si
742 provvederà ad incrementare il puntatore per passare al successivo elemento
743 della lista.
744
745 Una volta stampati i nomi si passerà a stampare gli indirizzi, il primo passo
746 (\texttt{\small 27--34}) è allora quello di riconoscere il tipo di indirizzo
747 sulla base del valore del campo \var{h\_addrtype}, stampandolo a video. Si è
748 anche previsto di stampare un errore nel caso (che non dovrebbe mai accadere)
749 di un indirizzo non valido.
750
751 Infine (\texttt{\small 35--40}) si stamperanno i valori degli indirizzi, di
752 nuovo (\texttt{\small 35}) si inizializzerà un puntatore alla cima della lista
753 e si eseguirà un ciclo fintanto che questo punterà ad indirizzi validi in
754 maniera analoga a quanto fatto in precedenza per i nomi a dominio. Si noti
755 come, essendo il campo \var{h\_addr\_list} un puntatore ad strutture di
756 indirizzi generiche, questo sia ancora di tipo \texttt{char **} e si possa
757 riutilizzare lo stesso puntatore usato per i nomi.
758
759 Per ciascun indirizzo valido si provvederà (\texttt{\small 37}) ad una
760 conversione con la funzione \func{inet\_ntop} (vedi
761 sez.~\ref{sec:sock_addr_func}) passandole gli opportuni argomenti, questa
762 restituirà la stringa da stampare (\texttt{\small 38}) con il valore
763 dell'indirizzo in \var{buffer}, che si è avuto la cura di dichiarare
764 inizialmente (\texttt{\small 10}) con dimensioni adeguate; dato che la
765 funzione è in grado di tenere conto automaticamente del tipo di indirizzo non
766 ci sono precauzioni particolari da prendere.\footnote{volendo essere pignoli
767   si dovrebbe controllarne lo stato di uscita, lo si è tralasciato per non
768   appesantire il codice, dato che in caso di indirizzi non validi si sarebbe
769   avuto un errore con \func{gethostbyname}, ma si ricordi che la sicurezza non
770   è mai troppa.}
771
772 Le funzioni illustrate finora hanno un difetto: utilizzando una area di
773 memoria interna per allocare i contenuti della struttura \struct{hostent} non
774 possono essere rientranti. Questo comporta anche che in due successive
775 chiamate i dati potranno essere sovrascritti. Si tenga presente poi che
776 copiare il contenuto della sola struttura non è sufficiente per salvare tutti
777 i dati, in quanto questa contiene puntatori ad altri dati, che pure possono
778 essere sovrascritti; per questo motivo, se si vuole salvare il risultato di
779 una chiamata, occorrerà eseguire quella che si chiama una
780 \itindex{deep~copy}\textit{deep copy}.\footnote{si chiama così quella tecnica
781   per cui, quando si deve copiare il contenuto di una struttura complessa (con
782   puntatori che puntano ad altri dati, che a loro volta possono essere
783   puntatori ad altri dati) si deve copiare non solo il contenuto della
784   struttura, ma eseguire una scansione per risolvere anche tutti i puntatori
785   contenuti in essa (e così via se vi sono altre sottostrutture con altri
786   puntatori) e copiare anche i dati da questi referenziati.}
787
788 Per ovviare a questi problemi nelle \acr{glibc} sono definite anche delle
789 versioni rientranti delle precedenti funzioni, al solito queste sono
790 caratterizzate dall'avere un suffisso \texttt{\_r}, pertanto avremo le due
791 funzioni \funcd{gethostbyname\_r} e \funcd{gethostbyname2\_r} i cui prototipi
792 sono:
793 \begin{functions}
794   \headdecl{netdb.h} 
795   \headdecl{sys/socket.h}
796   \funcdecl{int gethostbyname\_r(const char *name, struct hostent *ret, 
797     char *buf, size\_t buflen, struct hostent **result, int *h\_errnop)}
798   \funcdecl{int gethostbyname2\_r(const char *name, int af,
799          struct hostent *ret, char *buf, size\_t buflen, 
800          struct hostent **result, int *h\_errnop)}
801   
802   Versioni rientranti delle funzioni \func{gethostbyname} e
803   \func{gethostbyname2}. 
804        
805   \bodydesc{Le funzioni restituiscono 0 in caso di successo ed un valore
806     negativo in caso di errore.}
807 \end{functions}
808
809 Gli argomenti \param{name} (e \param{af} per \func{gethostbyname2\_r}) hanno
810 lo stesso significato visto in precedenza. Tutti gli altri argomenti hanno lo
811 stesso significato per entrambe le funzioni. Per evitare l'uso di variabili
812 globali si dovrà allocare preventivamente una struttura \struct{hostent} in
813 cui ricevere il risultato, passandone l'indirizzo alla funzione nell'argomento
814 \param{ret}.  Inoltre, dato che \struct{hostent} contiene dei puntatori, dovrà
815 essere allocato anche un buffer in cui le funzioni possano scrivere tutti i
816 dati del risultato dell'interrogazione da questi puntati; l'indirizzo e la
817 lunghezza di questo buffer devono essere indicati con gli argomenti
818 \param{buf} e \param{buflen}.
819
820 Gli ultimi due argomenti vengono utilizzati per avere indietro i risultati
821 come \itindex{value~result~argument}\textit{value result argument}, si deve
822 specificare l'indirizzo della variabile su cui la funzione dovrà salvare il
823 codice di errore con \param{h\_errnop} e quello su cui dovrà salvare il
824 puntatore che si userà per accedere i dati con \param{result}.
825
826 In caso di successo entrambe le funzioni restituiscono un valore nullo,
827 altrimenti restituiscono un codice di errore negativo e all'indirizzo puntato
828 da \param{result} sarà salvato un puntatore nullo, mentre a quello puntato da
829 \param{h\_errnop} sarà salvato il valore del codice di errore, dato che per
830 essere rientrante la funzione non può la variabile globale \var{h\_errno}. In
831 questo caso il codice di errore, oltre ai valori di
832 tab.~\ref{tab:h_errno_values}, può avere anche quello di \errcode{ERANGE}
833 qualora il buffer allocato su \param{buf} non sia sufficiente a contenere i
834 dati, in tal caso si dovrà semplicemente ripetere l'esecuzione della funzione
835 con un buffer di dimensione maggiore.
836
837 Una delle caratteristiche delle interrogazioni al servizio DNS è che queste
838 sono normalmente eseguite con il protocollo UDP, ci sono casi in cui si
839 preferisce che vengano usate connessioni permanenti con il protocollo TCP. Per
840 ottenere questo\footnote{si potrebbero impostare direttamente le opzioni di
841   \var{\_\_res.options}, ma queste funzioni permettono di semplificare la
842   procedura.} sono previste delle funzioni apposite; la prima è
843 \funcd{sethostent}, il cui prototipo è:
844 \begin{prototype}{netdb.h}
845 {void sethostent(int stayopen)}
846
847 Richiede l'uso di connessioni per le interrogazioni ad un server DNS.
848
849 \bodydesc{La funzione non restituisce nulla.}
850 \end{prototype}
851
852 La funzione permette di richiedere l'uso di connessioni TCP per la richiesta
853 dei dati, e che queste restino aperte per successive richieste. Il valore
854 dell'argomento \param{stayopen} indica se attivare questa funzionalità, un
855 valore pari a 1 (o diverso da zero), che indica una condizione vera in C,
856 attiva la funzionalità.  Come si attiva l'uso delle connessioni TCP lo si può
857 disattivare con la funzione \funcd{endhostent}; il suo prototipo è:
858 \begin{prototype}{netdb.h}
859 {void endhostent(void)}
860
861 Disattiva l'uso di connessioni per le interrogazioni ad un server DNS.
862
863 \bodydesc{La funzione non restituisce nulla.}
864 \end{prototype}
865 \noindent e come si può vedere la funzione è estremamente semplice, non
866 richiedendo nessun argomento.
867
868
869 Infine si può richiedere la risoluzione inversa di un indirizzo IP od IPv6,
870 per ottenerne il nome a dominio ad esso associato, per fare questo si può
871 usare la funzione \funcd{gethostbyaddr}, il cui prototipo è:
872 \begin{functions}
873   \headdecl{netdb.h} 
874   \headdecl{sys/socket.h} 
875   \funcdecl{struct hostent *gethostbyaddr(const char *addr, int len, int type)}
876
877   Richiede la risoluzione inversa di un indirizzo IP.
878        
879   \bodydesc{La funzione restituisce l'indirizzo ad una struttura
880     \struct{hostent} in caso di successo ed \const{NULL} in caso di errore.}
881 \end{functions}
882
883 In questo caso l'argomento \param{addr} dovrà essere il puntatore ad una
884 appropriata struttura contenente il valore dell'indirizzo IP (o IPv6) che si
885 vuole risolvere. L'uso del tipo \type{char *} per questo argomento è storico,
886 il dato dovrà essere fornito in una struttura \struct{in\_addr}\footnote{si
887   ricordi che, come illustrato in fig.~\ref{fig:sock_sa_ipv4_struct}, questo
888   in realtà corrisponde ad un numero intero, da esprimere comunque in
889   \textit{network order}, non altrettanto avviene però per \var{in6\_addr},
890   pertanto è sempre opportuno inizializzare questi indirizzi con
891   \func{inet\_pton} (vedi sez.~\ref{sec:sock_conv_func_gen}).}  per un
892 indirizzo IPv4 ed una struttura \struct{in6\_addr} per un indirizzo IPv6,
893 mentre in \param{len} se ne dovrà specificare la dimensione (rispettivamente 4
894 o 16), infine l'argomento \param{type} indica il tipo di indirizzo e dovrà
895 essere o \const{AF\_INET} o \const{AF\_INET6}.
896
897 La funzione restituisce, in caso di successo, un puntatore ad una struttura
898 \struct{hostent}, solo che in questo caso la ricerca viene eseguita
899 richiedendo al DNS un record di tipo \texttt{PTR} corrispondente all'indirizzo
900 specificato. In caso di errore al solito viene usata la variabile
901 \var{h\_errno} per restituire un opportuno codice. In questo caso l'unico
902 campo del risultato che interessa è \var{h\_name} che conterrà il nome a
903 dominio, la funziona comunque inizializza anche il primo campo della lista
904 \var{h\_addr\_list} col valore dell'indirizzo passato come argomento.
905
906 Per risolvere il problema dell'uso da parte delle due funzioni
907 \func{gethostbyname} e \func{gethostbyaddr} di memoria statica che può essere
908 sovrascritta fra due chiamate successive, e per avere sempre la possibilità di
909 indicare esplicitamente il tipo di indirizzi voluto (cosa che non è possibile
910 con \func{gethostbyname}), vennero introdotte due nuove funzioni di
911 risoluzione,\footnote{le funzioni sono presenti nelle \acr{glibc} versione
912   2.1.96, ma essendo considerate deprecate (vedi
913   sez.~\ref{sec:sock_advanced_name_services}) sono state rimosse nelle
914   versioni successive.} \funcd{getipnodebyname} e \funcd{getipnodebyaddr}, i
915 cui prototipi sono:
916 \begin{functions}
917   \headdecl{netdb.h} 
918   \headdecl{sys/types.h} 
919   \headdecl{sys/socket.h} 
920
921   \funcdecl{struct hostent *getipnodebyname(const char *name, int af, int
922     flags, int *error\_num)} 
923
924   \funcdecl{struct hostent *getipnodebyaddr(const void *addr, size\_t len,
925     int af, int *error\_num)}
926
927   Richiedono rispettivamente la risoluzione e la risoluzione inversa di un
928   indirizzo IP.
929        
930   \bodydesc{Entrambe le funzioni restituiscono l'indirizzo ad una struttura
931     \struct{hostent} in caso di successo ed \const{NULL} in caso di errore.}
932 \end{functions}
933
934 Entrambe le funzioni supportano esplicitamente la scelta di una famiglia di
935 indirizzi con l'argomento \param{af} (che può assumere i valori
936 \const{AF\_INET} o \const{AF\_INET6}), e restituiscono un codice di errore
937 (con valori identici a quelli precedentemente illustrati in
938 tab.~\ref{tab:h_errno_values}) nella variabile puntata da \param{error\_num}.
939 La funzione \func{getipnodebyaddr} richiede poi che si specifichi l'indirizzo
940 come per \func{gethostbyaddr} passando anche la lunghezza dello stesso
941 nell'argomento \param{len}.
942
943 La funzione \func{getipnodebyname} prende come primo argomento il nome da
944 risolvere, inoltre prevede un apposito argomento \param{flags}, da usare come
945 maschera binaria, che permette di specificarne il comportamento nella
946 risoluzione dei diversi tipi di indirizzi (IPv4 e IPv6); ciascun bit
947 dell'argomento esprime una diversa opzione, e queste possono essere specificate
948 con un OR aritmetico delle costanti riportate in
949 tab.~\ref{tab:sock_getipnodebyname_flags}.
950
951 \begin{table}[!htb]
952   \centering
953   \footnotesize
954   \begin{tabular}[c]{|l|p{10cm}|}
955     \hline
956     \textbf{Costante} & \textbf{Significato} \\
957     \hline
958     \hline
959     \const{AI\_V4MAPPED}  & usato con \const{AF\_INET6} per richiedere una
960                             ricerca su un indirizzo IPv4 invece che IPv6; gli
961                             eventuali risultati saranno rimappati su indirizzi 
962                             IPv6.\\
963     \const{AI\_ALL}       & usato con \const{AI\_V4MAPPED}; richiede sia
964                             indirizzi IPv4 che IPv6, e gli indirizzi IPv4
965                             saranno rimappati in IPv6.\\
966     \const{AI\_ADDRCONFIG}& richiede che una richiesta IPv4 o IPv6 venga
967                             eseguita solo se almeno una interfaccia del
968                             sistema è associata ad un indirizzo di tale tipo.\\
969     \const{AI\_DEFAULT}   & il valore di default, è equivalente alla
970                             combinazione di \const{AI\_ADDRCONFIG} e di
971                             \const{AI\_V4MAPPED}.\\  
972     \hline
973   \end{tabular}
974   \caption{Valori possibili per i bit dell'argomento \param{flags} della
975     funzione \func{getipnodebyname}.}
976   \label{tab:sock_getipnodebyname_flags}
977 \end{table}
978
979 Entrambe le funzioni restituiscono un puntatore ad una struttura \var{hostent}
980 che contiene i risultati della ricerca, che viene allocata dinamicamente
981 insieme a tutto lo spazio necessario a contenere i dati in essa referenziati;
982 per questo motivo queste funzioni non soffrono dei problemi dovuti all'uso di
983 una sezione statica di memoria presenti con le precedenti \func{gethostbyname}
984 e \func{gethostbyaddr}.  L'uso di una allocazione dinamica però comporta anche
985 la necessità di deallocare esplicitamente la memoria occupata dai risultati
986 una volta che questi non siano più necessari; a tale scopo viene fornita la
987 funzione \funcd{freehostent}, il cui prototipo è:
988 \begin{functions}
989   \headdecl{netdb.h} 
990   \headdecl{sys/types.h} 
991   \headdecl{sys/socket.h} 
992
993   \funcdecl{void freehostent(struct hostent *ip)} 
994
995   Disalloca una struttura \var{hostent}.
996        
997   \bodydesc{La funzione non ritorna nulla.}
998 \end{functions}
999
1000 La funzione permette di disallocare una struttura \var{hostent}
1001 precedentemente allocata in una chiamata di \func{getipnodebyname} o
1002 \func{getipnodebyaddr}, e prende come argomento l'indirizzo restituito da una
1003 di queste funzioni.
1004
1005 Infine per concludere la nostra panoramica sulle funzioni di risoluzione dei
1006 nomi dobbiamo citare le funzioni che permettono di interrogare gli altri
1007 servizi di risoluzione dei nomi illustrati in sez.~\ref{sec:sock_resolver}; in
1008 generale infatti ci sono una serie di funzioni nella forma
1009 \texttt{getXXXbyname} e \texttt{getXXXbyaddr} per ciascuna delle informazioni
1010 di rete mantenute dal \textit{Name Service Switch} che permettono
1011 rispettivamente di trovare una corrispondenza cercando per nome o per numero.
1012
1013 L'elenco di queste funzioni è riportato nelle colonne finali di
1014 tab.~\ref{tab:name_resolution_functions}, dove le si sono suddivise rispetto
1015 al tipo di informazione che forniscono (riportato in prima colonna). Nella
1016 tabella si è anche riportato il file su cui vengono ordinariamente mantenute
1017 queste informazioni, che però può essere sostituito da un qualunque supporto
1018 interno al \textit{Name Service Switch} (anche se usualmente questo avviene
1019 solo per la risoluzione degli indirizzi). Ciascuna funzione fa riferimento ad
1020 una sua apposita struttura che contiene i relativi dati, riportata in terza
1021 colonna.
1022
1023 \begin{table}[!htb]
1024   \centering
1025   \footnotesize
1026   \begin{tabular}[c]{|l|l|l|l|l|}
1027     \hline
1028     \textbf{Informazione}&\textbf{File}&\textbf{Struttura}&
1029     \multicolumn{2}{|c|}{\textbf{Funzioni}}\\
1030     \hline
1031     \hline
1032     indirizzo&\file{/etc/hosts}&\struct{hostent}&\func{gethostbyname}&
1033              \func{gethostbyaddr}\\ 
1034     servizio &\file{/etc/services}&\struct{servent}&\func{getservbyname}&
1035              \func{getservbyaddr}\\ 
1036     rete     &\file{/etc/networks}&\struct{netent}&\func{getnetbyname}&
1037              \func{getnetbyaddr}\\ 
1038     protocollo&\file{/etc/protocols}&\struct{protoent}&\func{getprotobyname}&
1039               \func{getprotobyaddr}\\ 
1040     \hline
1041   \end{tabular}
1042   \caption{Funzioni di risoluzione dei nomi per i vari servizi del
1043     \textit{Name Service Switch}.}
1044   \label{tab:name_resolution_functions}
1045 \end{table}
1046
1047 Delle funzioni di tab.~\ref{tab:name_resolution_functions} abbiamo trattato
1048 finora soltanto quelle relative alla risoluzione dei nomi, dato che sono le
1049 più usate, e prevedono praticamente da sempre la necessità di rivolgersi ad
1050 una entità esterna; per le altre invece, estensioni fornite dal NSS a parte,
1051 si fa sempre riferimento ai dati mantenuti nei rispettivi file. 
1052
1053 Dopo la risoluzione dei nomi a dominio una delle ricerche più comuni è quella
1054 sui nomi dei servizi noti (cioè \texttt{http}, \texttt{smtp}, ecc.) da
1055 associare alle rispettive porte, le due funzioni da utilizzare per questo sono
1056 \funcd{getservbyname} e \funcd{getservbyaddr}, che permettono rispettivamente
1057 di ottenere il numero di porta associato ad un servizio dato il nome e
1058 viceversa; i loro prototipi sono:
1059 \begin{functions}
1060   \headdecl{netdb.h} 
1061   \funcdecl{struct servent *getservbyname(const char *name, const char *proto)}
1062   \funcdecl{struct servent *getservbyport(int port, const char *proto)} 
1063
1064   Risolvono il nome di un servizio nel rispettivo numero di porta e viceversa.
1065        
1066   \bodydesc{Ritornano il puntatore ad una struttura \struct{servent} con i
1067     risultati in caso di successo, o \const{NULL} in caso di errore.}
1068 \end{functions}
1069
1070 Entrambe le funzioni prendono come ultimo argomento una stringa \param{proto}
1071 che indica il protocollo per il quale si intende effettuare la
1072 ricerca,\footnote{le informazioni mantenute in \file{/etc/services} infatti
1073   sono relative sia alle porte usate su UDP che su TCP, occorre quindi
1074   specificare a quale dei due protocolli si fa riferimento.} che nel caso si
1075 IP può avere come valori possibili solo \texttt{udp} o
1076 \texttt{tcp};\footnote{in teoria si potrebbe avere un qualunque protocollo fra
1077   quelli citati in \file{/etc/protocols}, posto che lo stesso supporti il
1078   concetto di \textsl{porta}, in pratica questi due sono gli unici presenti.}
1079 se si specifica un puntatore nullo la ricerca sarà eseguita su un protocollo
1080 qualsiasi.
1081
1082 Il primo argomento è il nome del servizio per \func{getservbyname},
1083 specificato tramite la stringa \param{name}, mentre \func{getservbyport}
1084 richiede il numero di porta in \param{port}. Entrambe le funzioni eseguono una
1085 ricerca sul file \file{/etc/services}\footnote{il \textit{Name Service Switch}
1086   astrae il concetto a qualunque supporto su cui si possano mantenere i
1087   suddetti dati. } ed estraggono i dati dalla prima riga che corrisponde agli
1088 argomenti specificati; se la risoluzione ha successo viene restituito un
1089 puntatore ad una apposita struttura \struct{servent} contenente tutti i
1090 risultati), altrimenti viene restituito un puntatore nullo.  Si tenga presente
1091 che anche in questo caso i dati vengono mantenuti in una area di memoria
1092 statica e che quindi la funzione non è rientrante.
1093
1094 \begin{figure}[!htb]
1095   \footnotesize \centering
1096   \begin{minipage}[c]{15cm}
1097     \includestruct{listati/servent.h}
1098   \end{minipage}
1099   \caption{La struttura \structd{servent} per la risoluzione dei nomi dei
1100     servizi e dei numeri di porta.}
1101   \label{fig:sock_servent_struct}
1102 \end{figure}
1103
1104 La definizione della struttura \struct{servent} è riportata in
1105 fig.~\ref{fig:sock_servent_struct}, il primo campo, \var{s\_name} contiene
1106 sempre il nome canonico del servizio, mentre \var{s\_aliases} è un puntatore
1107 ad un vettore di stringhe contenenti gli eventuali nomi alternativi
1108 utilizzabili per identificare lo stesso servizio. Infine \var{s\_port}
1109 contiene il numero di porta e \var{s\_proto} il nome del protocollo.
1110
1111 Come riportato in tab.~\ref{tab:name_resolution_functions} ci sono analoghe
1112 funzioni per la risoluzione del nome dei protocolli e delle reti; non staremo
1113 a descriverle nei dettagli, in quanto il loro uso è molto limitato, esse
1114 comunque hanno una struttura del tutto analoga alle precedenti, e tutti i
1115 dettagli relativi al loro funzionamento possono essere trovati nelle
1116 rispettive pagine di manuale.
1117
1118 Oltre alle funzioni di ricerca esistono delle ulteriori funzioni che prevedono
1119 una lettura sequenziale delle informazioni mantenute nel \textit{Name Service
1120   Switch} (in sostanza permettono di leggere i file contenenti le informazioni
1121 riga per riga), che sono analoghe a quelle elencate in
1122 tab.~\ref{tab:sys_passwd_func} per le informazioni relative ai dati degli
1123 utenti e dei gruppi.  Nel caso specifico dei servizi avremo allora le tre
1124 funzioni \funcd{setservent}, \funcd{getservent} e \funcd{endservent} i cui
1125 prototipi sono:
1126 \begin{functions}
1127   \headdecl{netdb.h} 
1128   \funcdecl{void setservent(int stayopen)} 
1129   Apre il file \file{/etc/services} e si posiziona al suo inizio.
1130
1131   \funcdecl{struct servent *getservent(void)}
1132   Legge la voce successiva nel file \file{/etc/services}.      
1133
1134   \funcdecl{void endservent(void)} 
1135   Chiude il file \file{/etc/services}.
1136
1137   \bodydesc{Le due funzioni \func{setservent} e \func{endservent} non
1138     restituiscono nulla, \func{getservent} restituisce il puntatore ad una
1139     struttura \struct{servent} in caso di successo e \const{NULL} in caso di
1140     errore o fine del file.}
1141 \end{functions}
1142
1143 La prima funzione, \func{getservent}, legge una singola voce a partire dalla
1144 posizione corrente in \file{/etc/services}, pertanto si può eseguire una
1145 lettura sequenziale dello stesso invocandola più volte. Se il file non è
1146 aperto provvede automaticamente ad aprirlo, nel qual caso leggerà la prima
1147 voce. La seconda funzione, \func{setservent}, permette di aprire il file
1148 \file{/etc/services} per una successiva lettura, ma se il file è già stato
1149 aperto riporta la posizione di lettura alla prima voce del file, in questo
1150 modo si può far ricominciare da capo una lettura sequenziale. L'argomento
1151 \param{stayopen}, se diverso da zero, fa sì che il file resti aperto anche fra
1152 diverse chiamate a \func{getservbyname} e \func{getservbyaddr}.\footnote{di
1153   default dopo una chiamata a queste funzioni il file viene chiuso, cosicché
1154   una successiva chiamata a \func{getservent} riparte dall'inizio.}  La terza
1155 funzione, \funcd{endservent}, provvede semplicemente a chiudere il file.
1156
1157 Queste tre funzioni per la lettura sequenziale di nuovo sono presenti per
1158 ciascuno dei vari tipi di informazione relative alle reti di
1159 tab.~\ref{tab:name_resolution_functions}; questo significa che esistono
1160 altrettante funzioni nella forma \texttt{setXXXent}, \texttt{getXXXent} e
1161 \texttt{endXXXent}, analoghe alle precedenti per la risoluzione dei servizi,
1162 che abbiamo riportato in tab.~\ref{tab:name_sequential_read}.  Essendo, a
1163 parte il tipo di informazione che viene trattato, sostanzialmente identiche
1164 nel funzionamento e di scarso utilizzo, non staremo a trattarle una per una,
1165 rimandando alle rispettive pagine di manuale.
1166
1167 \begin{table}[!htb]
1168   \centering
1169   \footnotesize
1170   \begin{tabular}[c]{|l|l|l|l|}
1171     \hline
1172     \textbf{Informazione}&\multicolumn{3}{|c|}{\textbf{Funzioni}}\\
1173     \hline
1174     \hline
1175     indirizzo&\func{sethostent}&\func{gethostent}&\func{endhostent} \\
1176     servizio &cd te\func{setservent}&\func{getservent}&\func{endservent}\\ 
1177     rete     &\func{setnetent}&\func{getnetent}&\func{endnetent}\\ 
1178     protocollo&\func{setprotoent}&\func{getprotoent}&\func{endprotoent}\\ 
1179     \hline
1180   \end{tabular}
1181   \caption{Funzioni lettura sequenziale dei dati del \textit{Name Service
1182       Switch}.} 
1183   \label{tab:name_sequential_read}
1184 \end{table}
1185
1186
1187
1188
1189
1190 \subsection{Le funzioni avanzate per la risoluzione dei nomi}
1191 \label{sec:sock_advanced_name_services}
1192
1193 Quelle illustrate nella sezione precedente sono le funzioni classiche per la
1194 risoluzione di nomi ed indirizzi IP, ma abbiamo già visto come esse soffrano
1195 di vari inconvenienti come il fatto che usano informazioni statiche, e non
1196 prevedono la possibilità di avere diverse classi di indirizzi. Anche se sono
1197 state create delle estensioni o metodi diversi che permettono di risolvere
1198 alcuni di questi inconvenienti,\footnote{rimane ad esempio il problema
1199   generico che si deve sapere in anticipo quale tipo di indirizzi IP (IPv4 o
1200   IPv6) corrispondono ad un certo nome a dominio.}  comunque esse non
1201 forniscono una interfaccia sufficientemente generica.
1202
1203 Inoltre in genere quando si ha a che fare con i socket non esiste soltanto il
1204 problema della risoluzione del nome che identifica la macchina, ma anche
1205 quello del servizio a cui ci si vuole rivolgere.  Per questo motivo con lo
1206 standard POSIX 1003.1-2001 sono state indicate come deprecate le varie
1207 funzioni \func{gethostbyaddr}, \func{gethostbyname}, \var{getipnodebyname} e
1208 \var{getipnodebyaddr} ed è stata introdotta una interfaccia completamente
1209 nuova.
1210
1211 La prima funzione di questa interfaccia è \funcd{getaddrinfo},\footnote{la
1212   funzione è definita, insieme a \func{getnameinfo} che vedremo più avanti,
1213   nell'\href{http://www.ietf.org/rfc/rfc2553.txt} {RFC~2553}.} che combina le
1214 funzionalità delle precedenti \func{getipnodebyname}, \func{getipnodebyaddr},
1215 \func{getservbyname} e \func{getservbyport}, consentendo di ottenere
1216 contemporaneamente sia la risoluzione di un indirizzo simbolico che del nome
1217 di un servizio; il suo prototipo è:
1218 \begin{functions}
1219   \headdecl{netdb.h} 
1220   \headdecl{sys/socket.h} 
1221   \headdecl{netdb.h} 
1222
1223   \funcdecl{int getaddrinfo(const char *node, const char *service, const
1224     struct addrinfo *hints, struct addrinfo **res)}
1225
1226   Esegue una risoluzione di un nome a dominio e di un nome di servizio.
1227
1228   \bodydesc{La funzione restituisce 0 in caso di successo o un codice di
1229     errore diverso da zero in caso di fallimento.}
1230 \end{functions}
1231
1232 La funzione prende come primo argomento il nome della macchina che si vuole
1233 risolvere, specificato tramite la stringa \param{node}. Questo argomento,
1234 oltre ad un comune nome a dominio, può indicare anche un indirizzo numerico in
1235 forma \textit{dotted-decimal} per IPv4 o in formato esadecimale per IPv6.  Si
1236 può anche specificare il nome di una rete invece che di una singola macchina.
1237 Il secondo argomento, \param{service}, specifica invece il nome del servizio
1238 che si intende risolvere. Per uno dei due argomenti si può anche usare il
1239 valore \const{NULL}, nel qual caso la risoluzione verrà effettuata soltanto
1240 sulla base del valore dell'altro.
1241
1242 Il terzo argomento, \param{hints}, deve essere invece un puntatore ad una
1243 struttura \struct{addrinfo} usata per dare dei \textsl{suggerimenti} al
1244 procedimento di risoluzione riguardo al protocollo o del tipo di socket che si
1245 intenderà utilizzare; \func{getaddrinfo} infatti permette di effettuare
1246 ricerche generiche sugli indirizzi, usando sia IPv4 che IPv6, e richiedere
1247 risoluzioni sui nomi dei servizi indipendentemente dal protocollo (ad esempio
1248 TCP o UDP) che questi possono utilizzare.
1249
1250 Come ultimo argomento in \param{res} deve essere passato un puntatore ad una
1251 variabile (di tipo puntatore ad una struttura \struct{addrinfo}) che verrà
1252 utilizzata dalla funzione per riportare (come \itindex{value~result~argument}
1253 \textit{value result argument}) i propri risultati. La funzione infatti è
1254 rientrante, ed alloca autonomamente tutta la memoria necessaria in cui
1255 verranno riportati i risultati della risoluzione.  La funzione scriverà
1256 all'indirizzo puntato da \param{res} il puntatore iniziale ad una
1257 \itindex{linked~list}\textit{linked list} di strutture di tipo
1258 \struct{addrinfo} contenenti tutte le informazioni ottenute.
1259
1260 \begin{figure}[!htb]
1261   \footnotesize \centering
1262   \begin{minipage}[c]{15cm}
1263     \includestruct{listati/addrinfo.h}
1264   \end{minipage}
1265   \caption{La struttura \structd{addrinfo} usata nella nuova interfaccia POSIX
1266     per la risoluzione di nomi a dominio e servizi.}
1267   \label{fig:sock_addrinfo_struct}
1268 \end{figure}
1269
1270 Come illustrato la struttura \struct{addrinfo}, la cui definizione\footnote{la
1271   definizione è ripresa direttamente dal file \texttt{netdb.h} in questa
1272   struttura viene dichiarata, la pagina di manuale riporta \type{size\_t} come
1273   tipo di dato per il campo \var{ai\_addrlen}, qui viene usata quanto previsto
1274   dallo standard POSIX, in cui viene utilizzato \type{socklen\_t}; i due tipi
1275   di dati sono comunque equivalenti.} è riportata in
1276 fig.~\ref{fig:sock_addrinfo_struct}, viene usata sia in ingresso, per passare
1277 dei valori di controllo alla funzione, che in uscita, per ricevere i
1278 risultati. Il primo campo, \var{ai\_flags}, è una maschera binaria di bit che
1279 permettono di controllare le varie modalità di risoluzione degli indirizzi,
1280 che viene usato soltanto in ingresso. I tre campi successivi \var{ai\_family},
1281 \var{ai\_socktype}, e \var{ai\_protocol} contengono rispettivamente la
1282 famiglia di indirizzi, il tipo di socket e il protocollo, in ingresso vengono
1283 usati per impostare una selezione (impostandone il valore nella struttura
1284 puntata da \param{hints}), mentre in uscita indicano il tipo di risultato
1285 contenuto nella struttura.
1286
1287 Tutti i campi seguenti vengono usati soltanto in uscita; il campo
1288 \var{ai\_addrlen} indica la dimensione della struttura degli indirizzi
1289 ottenuta come risultato, il cui contenuto sarà memorizzato nella struttura
1290 \struct{sockaddr} posta all'indirizzo puntato dal campo \var{ai\_addr}. Il
1291 campo \var{ai\_canonname} è un puntatore alla stringa contenente il nome
1292 canonico della macchina, ed infine, quando la funzione restituisce più di un
1293 risultato, \var{ai\_next} è un puntatore alla successiva struttura
1294 \struct{addrinfo} della lista.
1295
1296 Ovviamente non è necessario dare dei suggerimenti in ingresso, ed usando
1297 \const{NULL} come valore per l'argomento \param{hints} si possono compiere
1298 ricerche generiche.  Se però si specifica un valore non nullo questo deve
1299 puntare ad una struttura \struct{addrinfo} precedentemente allocata nella
1300 quale siano stati opportunamente impostati i valori dei campi
1301 \var{ai\_family}, \var{ai\_socktype}, \var{ai\_protocol} ed \var{ai\_flags}.
1302
1303 I due campi \var{ai\_family} e \var{ai\_socktype} prendono gli stessi valori
1304 degli analoghi argomenti della funzione \func{socket}; in particolare per
1305 \var{ai\_family} si possono usare i valori di tab.~\ref{tab:net_pf_names} ma
1306 sono presi in considerazione solo \const{PF\_INET} e \const{PF\_INET6}, mentre
1307 se non si vuole specificare nessuna famiglia di indirizzi si può usare il
1308 valore \const{PF\_UNSPEC}.  Allo stesso modo per \var{ai\_socktype} si possono
1309 usare i valori illustrati in sez.~\ref{sec:sock_type} per indicare per quale
1310 tipo di socket si vuole risolvere il servizio indicato, anche se i soli
1311 significativi sono \const{SOCK\_STREAM} e \const{SOCK\_DGRAM}; in questo caso,
1312 se non si vuole effettuare nessuna risoluzione specifica, si potrà usare un
1313 valore nullo.
1314
1315 Il campo \var{ai\_protocol} permette invece di effettuare la selezione dei
1316 risultati per il nome del servizio usando il numero identificativo del
1317 rispettivo protocollo di trasporto (i cui valori possibili sono riportati in
1318 \file{/etc/protocols}); di nuovo i due soli valori utilizzabili sono quelli
1319 relativi a UDP e TCP, o il valore nullo che indica di ignorare questo campo
1320 nella selezione.
1321
1322 Infine l'ultimo campo è \var{ai\_flags}; che deve essere impostato come una
1323 maschera binaria; i bit di questa variabile infatti vengono usati per dare
1324 delle indicazioni sul tipo di risoluzione voluta, ed hanno valori analoghi a
1325 quelli visti in sez.~\ref{sec:sock_name_services} per \func{getipnodebyname};
1326 il valore di \var{ai\_flags} può essere impostata con un OR aritmetico delle
1327 costanti di tab.~\ref{tab:ai_flags_values}, ciascuna delle quali identifica un
1328 bit della maschera.
1329
1330 \begin{table}[!htb]
1331   \centering
1332   \footnotesize
1333   \begin{tabular}[c]{|l|p{10cm}|}
1334     \hline
1335     \textbf{Costante} & \textbf{Significato} \\
1336     \hline
1337     \hline
1338     \const{AI\_PASSIVE}    & viene utilizzato per ottenere un indirizzo in
1339                              formato adatto per una successiva chiamata a
1340                              \func{bind}. Se specificato quando si è usato 
1341                              \const{NULL} come valore per \param{node} gli
1342                              indirizzi restituiti saranno inizializzati al
1343                              valore generico (\const{INADDR\_ANY} per IPv4 e
1344                              \const{IN6ADDR\_ANY\_INIT} per IPv6), altrimenti
1345                              verrà usato l'indirizzo dell'interfaccia di
1346                              \textit{loopback}. Se invece non è impostato gli
1347                              indirizzi verranno restituiti in formato adatto ad
1348                              una chiamata a \func{connect} o \func{sendto}.\\
1349     \const{AI\_CANONNAME}  & richiede la restituzione del nome canonico della
1350                              macchina, che verrà salvato in una stringa il cui
1351                              indirizzo sarà restituito nel campo
1352                              \var{ai\_canonname} della prima struttura
1353                              \struct{addrinfo} dei risultati. Se il nome
1354                              canonico non è disponibile al suo posto
1355                              viene restituita una copia di \param{node}. \\ 
1356     \const{AI\_NUMERICHOST}& se impostato il nome della macchina specificato
1357                              con \param{node} deve essere espresso in forma
1358                              numerica, altrimenti sarà restituito un errore
1359                              \const{EAI\_NONAME} (vedi
1360                              tab.~\ref{tab:addrinfo_error_code}), in questo
1361                              modo si evita ogni chiamata alle funzioni di
1362                              risoluzione.\\ 
1363     \const{AI\_V4MAPPED}   & stesso significato dell'analoga di
1364                              tab.~\ref{tab:sock_getipnodebyname_flags}.\\  
1365     \const{AI\_ALL}        & stesso significato dell'analoga di
1366                              tab.~\ref{tab:sock_getipnodebyname_flags}.\\ 
1367     \const{AI\_ADDRCONFIG} & stesso significato dell'analoga di
1368                              tab.~\ref{tab:sock_getipnodebyname_flags}.\\ 
1369     \hline
1370   \end{tabular}
1371   \caption{Costanti associate ai bit del campo \var{ai\_flags} della struttura 
1372     \struct{addrinfo}.} 
1373   \label{tab:ai_flags_values}
1374 \end{table}
1375
1376 La funzione restituisce un valore nullo in caso di successo, o un codice in
1377 caso di errore. I valori usati come codice di errore sono riportati in
1378 tab.~\ref{tab:addrinfo_error_code}; dato che la funzione utilizza altre
1379 funzioni e chiamate al sistema per ottenere il suo risultato in generale il
1380 valore di \var{errno} non è significativo, eccetto il caso in cui si sia
1381 ricevuto un errore di \const{EAI\_SYSTEM}, nel qual caso l'errore
1382 corrispondente è riportato tramite \var{errno}.
1383
1384 \begin{table}[!htb]
1385   \centering
1386   \footnotesize
1387   \begin{tabular}[c]{|l|p{10cm}|}
1388     \hline
1389     \textbf{Costante} & \textbf{Significato} \\
1390     \hline
1391     \hline
1392     \const{EAI\_FAMILY}  & la famiglia di indirizzi richiesta non è
1393                            supportata. \\ 
1394     \const{EAI\_SOCKTYPE}& il tipo di socket richiesto non è supportato. \\
1395     \const{EAI\_BADFLAGS}& il campo \var{ai\_flags} contiene dei valori non
1396                            validi. \\
1397     \const{EAI\_NONAME}  & il nome a dominio o il servizio non sono noti,
1398                            viene usato questo errore anche quando si specifica
1399                            il valore \const{NULL} per entrambi gli argomenti
1400                            \param{node} e \param{service}. \\
1401     \const{EAI\_SERVICE} & il servizio richiesto non è disponibile per il tipo
1402                            di socket richiesto, anche se può esistere per
1403                            altri tipi di socket. \\
1404     \const{EAI\_ADDRFAMILY}& la rete richiesta non ha nessun indirizzo di rete
1405                            per la famiglia di indirizzi specificata. \\
1406     \const{EAI\_NODATA}  & la macchina specificata esiste, ma non ha nessun
1407                            indirizzo di rete definito. \\
1408     \const{EAI\_MEMORY}  & è stato impossibile allocare la memoria necessaria
1409                            alle operazioni. \\
1410     \const{EAI\_FAIL}    & il DNS ha restituito un errore di risoluzione  
1411                            permanente. \\
1412     \const{EAI\_AGAIN}   & il DNS ha restituito un errore di risoluzione  
1413                            temporaneo, si può ritentare in seguito. \\
1414     \const{EAI\_SYSTEM}  & c'è stato un errore di sistema, si può controllare
1415                            \var{errno} per i dettagli. \\
1416 %    \hline
1417 % estensioni GNU, trovarne la documentazione
1418 %    \const{EAI\_INPROGRESS}& richiesta in corso. \\
1419 %    \const{EAI\_CANCELED}& la richiesta è stata cancellata.\\
1420 %    \const{EAI\_NOTCANCELED}& la richiesta non è stata cancellata. \\
1421 %    \const{EAI\_ALLDONE} & tutte le richieste sono complete. \\
1422 %    \const{EAI\_INTR}    & richiesta interrotta. \\
1423     \hline
1424   \end{tabular}
1425   \caption{Costanti associate ai valori dei codici di errore della funzione
1426     \func{getaddrinfo}.} 
1427   \label{tab:addrinfo_error_code}
1428 \end{table}
1429
1430 Come per i codici di errore di \func{gethostbyname} anche in questo caso è
1431 fornita una apposita funzione, analoga di \func{strerror}, che consente di
1432 utilizzarli direttamente per stampare a video un messaggio esplicativo; la
1433 funzione è \func{gai\_strerror} ed il suo prototipo è:
1434 \begin{functions}
1435   \headdecl{netdb.h} 
1436
1437   \funcdecl{const char *gai\_strerror(int errcode)}
1438
1439   Fornisce il messaggio corrispondente ad un errore di \func{getaddrinfo}.
1440
1441   \bodydesc{La funzione restituisce il puntatore alla stringa contenente il
1442     messaggio di errore.}
1443 \end{functions}
1444
1445 La funzione restituisce un puntatore alla stringa contenente il messaggio
1446 corrispondente dal codice di errore \param{errcode} ottenuto come valore di
1447 ritorno di \func{getaddrinfo}.  La stringa è allocata staticamente, ma essendo
1448 costante, ed accessibile in sola lettura, questo non comporta nessun problema
1449 di rientranza della funzione.
1450
1451 Dato che ad un certo nome a dominio possono corrispondere più indirizzi IP
1452 (sia IPv4 che IPv6), e che un certo servizio può essere fornito su protocolli
1453 e tipi di socket diversi, in generale, a meno di non aver eseguito una
1454 selezione specifica attraverso l'uso di \param{hints}, si otterrà una diversa
1455 struttura \struct{addrinfo} per ciascuna possibilità.  Ad esempio se si
1456 richiede la risoluzione del servizio \textit{echo} per l'indirizzo
1457 \texttt{www.truelite.it}, e si imposta \const{AI\_CANONNAME} per avere anche
1458 la risoluzione del nome canonico, si avrà come risposta della funzione la
1459 lista illustrata in fig.~\ref{fig:sock_addrinfo_list}.
1460
1461 \begin{figure}[!htb]
1462   \centering
1463   \includegraphics[width=10cm]{img/addrinfo_list}
1464   \caption{La \itindex{linked~list}\textit{linked list} delle strutture
1465     \struct{addrinfo} restituite da \func{getaddrinfo}.}
1466   \label{fig:sock_addrinfo_list}
1467 \end{figure}
1468
1469 Come primo esempio di uso di \func{getaddrinfo} vediamo un programma
1470 elementare di interrogazione del \itindex{resolver}\textit{resolver} basato
1471 questa funzione, il cui corpo principale è riportato in
1472 fig.~\ref{fig:mygetaddr_example}. Il codice completo del programma, compresa
1473 la gestione delle opzioni in cui è gestita l'eventuale inizializzazione
1474 dell'argomento \var{hints} per restringere le ricerche su protocolli, tipi di
1475 socket o famiglie di indirizzi, è disponibile nel file \texttt{mygetaddr.c}
1476 dei sorgenti allegati alla guida.
1477
1478 \begin{figure}[!htb]
1479   \footnotesize \centering
1480   \begin{minipage}[c]{15cm}
1481     \includecodesample{listati/mygetaddr.c}
1482   \end{minipage}
1483   \normalsize
1484   \caption{Esempio di codice per la risoluzione di un indirizzo.}
1485   \label{fig:mygetaddr_example}
1486 \end{figure}
1487
1488 Il corpo principale inizia controllando (\texttt{\small 1--5}) il numero di
1489 argomenti passati, che devono essere sempre due, e corrispondere
1490 rispettivamente all'indirizzo ed al nome del servizio da risolvere. A questo
1491 segue la chiamata (\texttt{\small 7}) alla funzione \func{getaddrinfo}, ed il
1492 successivo controllo (\texttt{\small 8--11}) del suo corretto funzionamento,
1493 senza il quale si esce immediatamente stampando il relativo codice di errore.
1494
1495 Se la funzione ha restituito un valore nullo il programma prosegue
1496 inizializzando (\texttt{\small 12}) il puntatore \var{ptr} che sarà usato nel
1497 successivo ciclo (\texttt{\small 14--35}) di scansione della lista delle
1498 strutture \struct{addrinfo} restituite dalla funzione. Prima di eseguire
1499 questa scansione (\texttt{\small 12}) viene stampato il valore del nome
1500 canonico che è presente solo nella prima struttura.
1501
1502 La scansione viene ripetuta (\texttt{\small 14}) fintanto che si ha un
1503 puntatore valido. La selezione principale è fatta sul campo \var{ai\_family},
1504 che stabilisce a quale famiglia di indirizzi fa riferimento la struttura in
1505 esame. Le possibilità sono due, un indirizzo IPv4 o IPv6, se nessuna delle due
1506 si verifica si provvede (\texttt{\small 27--30}) a stampare un messaggio di
1507 errore ed uscire.\footnote{questa eventualità non dovrebbe mai verificarsi,
1508   almeno fintanto che la funzione \func{getaddrinfo} lavora correttamente.}
1509
1510 Per ciascuno delle due possibili famiglie di indirizzi si estraggono le
1511 informazioni che poi verranno stampate alla fine del ciclo (\texttt{\small
1512   31--34}). Il primo caso esaminato (\texttt{\small 15--21}) è quello degli
1513 indirizzi IPv4, nel qual caso prima se ne stampa l'indentificazione
1514 (\texttt{\small 16}) poi si provvede a ricavare la struttura degli indirizzi
1515 (\texttt{\small 17}) indirizzata dal campo \var{ai\_addr}, eseguendo un
1516 opportuno casting del puntatore per poter estrarre da questa la porta
1517 (\texttt{\small 18}) e poi l'indirizzo (\texttt{\small 19}) che verrà
1518 convertito con una chiamata ad \func{inet\_ntop}.
1519
1520 La stessa operazione (\texttt{\small 21--27}) viene ripetuta per gli indirizzi
1521 IPv6, usando la rispettiva struttura degli indirizzi. Si noti anche come in
1522 entrambi i casi per la chiamata a \func{inet\_ntop} si sia dovuto passare il
1523 puntatore al campo contenente l'indirizzo IP nella struttura puntata dal campo
1524 \var{ai\_addr}.\footnote{il meccanismo è complesso a causa del fatto che al
1525   contrario di IPv4, in cui l'indirizzo IP può essere espresso con un semplice
1526   numero intero, in IPv6 questo deve essere necessariamente fornito come
1527   struttura, e pertanto anche se nella struttura puntata da \var{ai\_addr}
1528   sono presenti direttamente i valori finali, per l'uso con \func{inet\_ntop}
1529   occorre comunque passare un puntatore agli stessi (ed il costrutto
1530   \code{\&addr6->sin6\_addr} è corretto in quanto l'operatore \texttt{->} ha
1531   on questo caso precedenza su \texttt{\&}).}
1532
1533 Una volta estratte dalla struttura \struct{addrinfo} tutte le informazioni
1534 relative alla risoluzione richiesta e stampati i relativi valori, l'ultimo
1535 passo (\texttt{\small 34}) è di estrarre da \var{ai\_next} l'indirizzo della
1536 eventuale successiva struttura presente nella lista e ripetere il ciclo, fin
1537 tanto che, completata la scansione, questo avrà un valore nullo e si potrà
1538 terminare (\texttt{\small 36}) il programma.
1539
1540 Si tenga presente che \func{getaddrinfo} non garantisce nessun particolare
1541 ordinamento della lista delle strutture \struct{addrinfo} restituite, anche se
1542 usualmente i vari indirizzi IP (se ne è presente più di uno) sono forniti
1543 nello stesso ordine in cui vengono inviati dal server DNS. In particolare
1544 nulla garantisce che vengano forniti prima i dati relativi ai servizi di un
1545 determinato protocollo o tipo di socket, se ne sono presenti di diversi.  Se
1546 allora utilizziamo il nostro programma potremo verificare il risultato:
1547 \begin{Verbatim}
1548 [piccardi@gont sources]$ ./mygetaddr -c  gapil.truelite.it echo
1549 Canonical name sources2.truelite.it
1550 IPv4 address:
1551         Indirizzo 62.48.34.25
1552         Protocollo 6
1553         Porta 7
1554 IPv4 address:
1555         Indirizzo 62.48.34.25
1556         Protocollo 17
1557         Porta 7
1558 \end{Verbatim}
1559 %$
1560
1561 Una volta estratti i risultati dalla \itindex{linked~list}\textit{linked list}
1562 puntata da \param{res} se questa non viene più utilizzata si dovrà avere cura
1563 di disallocare opportunamente tutta la memoria, per questo viene fornita
1564 l'apposita funzione \funcd{freeaddrinfo}, il cui prototipo è:
1565 \begin{functions}
1566   \headdecl{netdb.h} 
1567
1568   \funcdecl{void freeaddrinfo(struct addrinfo *res)}
1569
1570   Libera la memoria allocata da una precedente chiamata a \func{getaddrinfo}.
1571
1572   \bodydesc{La funzione non restituisce nessun codice di errore.}
1573 \end{functions}
1574
1575 La funzione prende come unico argomento il puntatore \param{res}, ottenuto da
1576 una precedente chiamata a \func{getaddrinfo}, e scandisce la lista delle
1577 strutture per liberare tutta la memoria allocata. Dato che la funzione non ha
1578 valori di ritorno deve essere posta molta cura nel passare un valore valido
1579 per \param{res}.
1580
1581 Si tenga presente infine che se si copiano i risultati da una delle strutture
1582 \struct{addrinfo} restituite nella lista indicizzata da \param{res}, occorre
1583 avere cura di eseguire una \itindex{deep~copy}\textit{deep copy} in cui
1584 si copiano anche tutti i dati presenti agli indirizzi contenuti nella
1585 struttura \struct{addrinfo}, perché una volta disallocati i dati con
1586 \func{freeaddrinfo} questi non sarebbero più disponibili. 
1587
1588 Anche la nuova intefaccia definita da POSIX prevede una nuova funzione per
1589 eseguire la risoluzione inversa e determinare nomi di servizi e di dominio
1590 dati i rispettivi valori numerici. La funzione che sostituisce le varie
1591 \func{gethostbyname}, \func{geipnodebyname} e \func{getservname} è
1592 \funcd{getnameinfo}, ed il suo prototipo è:
1593 \begin{functions}
1594   \headdecl{sys/socket.h}
1595   \headdecl{netdb.h}
1596
1597   \funcdecl{int getnameinfo(const struct sockaddr *sa, socklen\_t salen, char
1598     *host, size\_t hostlen, char *serv, size\_t servlen, int flags)}
1599
1600   Risolve il contenuto di una struttura degli indirizzi in maniera
1601   indipendente dal protocollo.
1602
1603   \bodydesc{La funzione restituisce 0 in caso di successo e un codice di
1604     errore diverso da zero altrimenti.}
1605 \end{functions}
1606
1607 La principale caratteristica di \func{getnameinfo} è che la funzione è in
1608 grado di eseguire una risoluzione inversa in maniera indipendente dal
1609 protocollo; il suo primo argomento \param{sa} infatti è il puntatore ad una
1610 struttura degli indirizzi generica, che può contenere sia indirizzi IPv4 che
1611 IPv6, la cui dimensione deve comunque essere specificata con l'argomento
1612 \param{salen}. 
1613
1614 I risultati della funzione saranno restituiti nelle due stringhe puntate da
1615 \param{host} e \param{serv}, che dovranno essere state precedentemente
1616 allocate per una lunghezza massima che deve essere specificata con gli altri
1617 due argomenti \param{hostlen} e \param{servlen}. Si può, quando non si è
1618 interessati ad uno dei due, passare il valore \const{NULL} come argomento,
1619 così che la corrispondente informazione non verrà richiesta. Infine l'ultimo
1620 argomento \param{flags} è una maschera binaria i cui bit consentono di
1621 impostare le modalità con cui viene eseguita la ricerca, e deve essere
1622 specificato attraverso l'OR aritmetico dei valori illustrati in
1623 tab.~\ref{tab:getnameinfo_flags}.
1624
1625 \begin{table}[!htb]
1626   \centering
1627   \footnotesize
1628   \begin{tabular}[c]{|l|p{10cm}|}
1629     \hline
1630     \textbf{Costante} & \textbf{Significato} \\
1631     \hline
1632     \hline
1633     \const{NI\_NOFQDN}     & richiede che venga restituita solo il nome della
1634                              macchina all'interno del dominio al posto del
1635                              nome completo (FQDN).\\
1636     \const{NI\_NUMERICHOST}& richiede che venga restituita la forma numerica
1637                              dell'indirizzo (questo succede sempre se il nome
1638                              non può essere ottenuto).\\ 
1639     \const{NI\_NAMEREQD}   & richiede la restituzione di un errore se il nome
1640                              non può essere risolto.\\
1641     \const{NI\_NUMERICSERV}& richiede che il servizio venga restituito in
1642                              forma numerica (attraverso il numero di porta).\\
1643     \const{NI\_DGRAM}      & richiede che venga restituito il nome del
1644                              servizio su UDP invece che quello su TCP per quei
1645                              pichi servizi (porte 512-214) che soni diversi
1646                              nei due protocolli.\\
1647     \hline
1648   \end{tabular}
1649   \caption{Costanti associate ai bit dell'argomento \param{flags} della  
1650     funzione \func{getnameinfo}.} 
1651   \label{tab:getnameinfo_flags}
1652 \end{table}
1653
1654 La funzione ritorna zero in caso di successo, e scrive i propri risultati agli
1655 indirizzi indicati dagli argomenti \param{host} e \param{serv} come stringhe
1656 terminate dal carattere NUL, a meno che queste non debbano essere troncate
1657 qualora la loro dimensione ecceda quelle specificate dagli argomenti
1658 \param{hostlen} e \param{servlen}. Sono comunque definite le due costanti
1659 \const{NI\_MAXHOST} e \const{NI\_MAXSERV}\footnote{in Linux le due costanti
1660   sono definite in \file{netdb.h} ed hanno rispettivamente il valore 1024 e
1661   12.}  che possono essere utilizzate come limiti massimi.  In caso di errore
1662 viene restituito invece un codice che assume gli stessi valori illustrati in
1663 tab.~\ref{tab:addrinfo_error_code}.
1664
1665 A questo punto possiamo fornire degli esempi di utilizzo della nuova
1666 interfaccia, adottandola per le precedenti implementazioni del client e del
1667 server per il servizio \textit{echo}; dato che l'uso delle funzioni appena
1668 illustrate (in particolare di \func{getaddrinfo}) è piuttosto complesso,
1669 essendo necessaria anche una impostazione diretta dei campi dell'argomento
1670 \param{hints}, provvederemo una interfaccia semplificata per i due casi visti
1671 finora, quello in cui si specifica nel client un indirizzo remoto per la
1672 connessione al server, e quello in cui si specifica nel server un indirizzo
1673 locale su cui porsi in ascolto.
1674
1675 La prima funzione della nostra intefaccia semplificata è \func{sockconn} che
1676 permette di ottenere un socket, connesso all'indirizzo ed al servizio
1677 specificati. Il corpo della funzione è riportato in
1678 fig.~\ref{fig:sockconn_code}, il codice completo è nel file \file{SockUtil.c}
1679 dei sorgenti allegati alla guida, che contiene varie funzioni di utilità per
1680 l'uso dei socket.
1681
1682 \begin{figure}[!htb]
1683   \footnotesize \centering
1684   \begin{minipage}[c]{15cm}
1685     \includecodesample{listati/sockconn.c}
1686   \end{minipage}
1687   \normalsize
1688   \caption{Il codice della funzione \func{sockconn}.}
1689   \label{fig:sockconn_code}
1690 \end{figure}
1691
1692 La funzione prende quattro argomenti, i primi due sono le stringhe che
1693 indicano il nome della macchina a cui collegarsi ed il relativo servizio su
1694 cui sarà effettuata la risoluzione; seguono il protocollo da usare (da
1695 specificare con il valore numerico di \file{/etc/protocols}) ed il tipo di
1696 socket (al solito specificato con i valori illustrati in
1697 sez.~\ref{sec:sock_type}).  La funzione ritorna il valore del file descriptor
1698 associato al socket (un numero positivo) in caso di successo, o -1 in caso di
1699 errore; per risolvere il problema di non poter passare indietro i valori di
1700 ritorno di \func{getaddrinfo} contenenti i relativi codici di
1701 errore\footnote{non si può avere nessuna certezza che detti valori siano
1702   negativi, è questo è invece nessario per evitare ogni possibile ambiguità
1703   nei confronti del valore di ritorno in caso di successo.} si sono stampati i
1704 messaggi d'errore direttamente nella funzione.
1705
1706 Una volta definite le variabili necessarie (\texttt{\small 3--5}) la funzione
1707 prima (\texttt{\small 6}) azzera il contenuto della struttura \var{hint} e poi
1708 provvede (\texttt{\small 7--9}) ad inizializzarne i valori necessari per la
1709 chiamata (\texttt{\small 10}) a \func{getaddrinfo}. Di quest'ultima si
1710 controlla (\texttt{\small 12-16}) il codice di ritorno, in modo da stampare un
1711 avviso di errore, azzerare \var{errno} ed uscire in caso di errore.  Dato che
1712 ad una macchina possono corrispondere più indirizzi IP, e di tipo diverso (sia
1713 IPv4 che IPv6), mantre il servizio può essere in ascolto soltanto su uno solo
1714 di questi, si provvede a tentare la connessione per ciascun indirizzo
1715 restituito all'interno di un ciclo (\texttt{\small 18-40}) di scansione della
1716 lista restituita da \func{getaddrinfo}, ma prima (\texttt{\small 17}) si salva
1717 il valore del puntatore per poterlo riutilizzare alla fine per disallocare la
1718 lista.
1719
1720 Il ciclo viene ripetuto (\texttt{\small 18}) fintanto che si hanno indirizzi
1721 validi, ed inizia (\texttt{\small 19}) con l'apertura del socket; se questa
1722 fallisce si controlla (\texttt{\small 20}) se sono disponibili altri
1723 indirizzi, nel qual caso si passa al successivo (\texttt{\small 21}) e si
1724 riprende (\texttt{\small 22}) il ciclo da capo; se non ve ne sono si stampa
1725 l'errore ritornando immediatamente (\texttt{\small 24-27}). Quando la
1726 creazione del socket ha avuto successo si procede (\texttt{\small 29})
1727 direttamente con la connessione, di nuovo in caso di fallimento viene ripetuto
1728 (\texttt{\small 30--38}) il controllo se vi sono o no altri indirizzi da
1729 provare nella stessa modalità fatta in precedenza, aggiungendovi però in
1730 entrambi i casi (\texttt{\small 32} e (\texttt{\small 36}) la chiusura del
1731 socket precedentemente aperto, che non è più utilizzabile.
1732
1733 Se la connessione ha avuto successo invece si termina (\texttt{\small 39})
1734 direttamente il ciclo, e prima di ritornare (\texttt{\small 31}) il valore del
1735 file descriptor del socket si provvede (\texttt{\small 30}) a liberare le
1736 strutture \struct{addrinfo} allocate da \func{getaddrinfo} utilizzando il
1737 valore del relativo puntatore precedentemente (\texttt{\small 17}) salvato.
1738 Si noti come per la funzione sia del tutto irrilevante se la struttura
1739 ritornata contiene indirizzi IPv6 o IPv4, in quanto si fa uso direttamente dei
1740 dati relativi alle strutture degli indirizzi di \struct{addrinfo} che sono
1741 \textsl{opachi} rispetto all'uso della funzione \func{connect}.
1742
1743 \begin{figure}[!htb]
1744   \footnotesize \centering
1745   \begin{minipage}[c]{15cm}
1746     \includecodesample{listati/TCP_echo_fifth.c}
1747   \end{minipage}
1748   \normalsize
1749   \caption{Il nuovo codice per la connessione del client \textit{echo}.}
1750   \label{fig:TCP_echo_fifth}
1751 \end{figure}
1752
1753 Per usare questa funzione possiamo allora modificare ulteriormente il nostro
1754 programma client per il servizio \textit{echo}; in questo caso rispetto al
1755 codice usato finora per collegarsi (vedi fig.~\ref{fig:TCP_echo_client_1})
1756 avremo una semplificazione per cui il corpo principale del nostro client
1757 diventerà quello illustrato in fig.~\ref{fig:TCP_echo_fifth}, in cui le
1758 chiamate a \func{socket}, \func{inet\_pton} e \func{connect} sono sostituite
1759 da una singola chiamata a \func{sockconn}. Inoltre il nuovo client (il cui
1760 codice completo è nel file \file{TCP\_echo\_fifth.c} dei sorgenti allegati)
1761 consente di utilizzare come argomento del programma un nome a dominio al posto
1762 dell'indirizzo numerico, e può utilizzare sia indirizzi IPv4 che IPv6.
1763
1764 \begin{figure}[!htb]
1765   \footnotesize \centering
1766   \begin{minipage}[c]{15cm}
1767     \includecodesample{listati/sockbind.c}
1768   \end{minipage}
1769   \normalsize
1770   \caption{Il codice della funzione \func{sockbind}.}
1771   \label{fig:sockbind_code}
1772 \end{figure}
1773
1774 La seconda funzione di ausilio è \func{sockbind}, il cui corpo principale è
1775 riportato in fig.~\ref{fig:sockbind_code} (al solito il sorgente completo è
1776 nel file \file{sockbind.c} dei sorgenti allegati alla guida). Come si può
1777 notare la funzione è del tutto analoga alla precedente \func{sockconn}, e
1778 prende gli stessi argomenti, però invece di eseguire una connessione con
1779 \func{connect} si limita a chiamare \func{bind} per collegare il socket ad una
1780 porta.
1781
1782 Dato che la funzione è pensata per essere utilizzata da un server ci si può
1783 chiedere a quale scopo mantenere l'argomento \param{host} quando l'indirizzo
1784 di questo è usualmente noto. Si ricordi però quanto detto in
1785 sez.~\ref{sec:TCP_func_bind}, relativamente al significato della scelta di un
1786 indirizzo specifico come argomento di \func{bind}, che consente di porre il
1787 server in ascolto su uno solo dei possibili diversi indirizzi presenti su di
1788 una macchina.  Se non si vuole che la funzione esegua \func{bind} su un
1789 indirizzo specifico, ma utilizzi l'indirizzo generico, occorrerà avere cura di
1790 passare un valore \const{NULL} come valore per l'argomento \var{host}; l'uso
1791 del valore \const{AI\_PASSIVE} serve ad ottenere il valore generico nella
1792 rispettiva struttura degli indirizzi.
1793
1794 Come già detto la funzione è analoga a \func{sockconn} ed inizia azzerando ed
1795 inizializzando (\texttt{\small 6-11}) opportunamente la struttura \var{hint}
1796 con i valori ricevuti come argomenti, soltanto che in questo caso si è usata
1797 (\texttt{\small 8}) una impostazione specifica dei flag di \var{hint} usando
1798 \const{AI\_PASSIVE} per indicare che il socket sarà usato per una apertura
1799 passiva. Per il resto la chiamata (\texttt{\small 12-18}) a \func{getaddrinfo}
1800 e ed il ciclo principale (\texttt{\small 20--42}) sono identici, solo che si è
1801 sostituita (\texttt{\small 31}) la chiamata a \func{connect} con una chiamata
1802 a \func{bind}. Anche la conclusione (\texttt{\small 43--44}) della funzione è
1803 identica. 
1804
1805 Si noti come anche in questo caso si siano inserite le stampe degli errori
1806 sullo standard error, nonostante la funzione possa essere invocata da un
1807 demone. Nel nostro caso questo non è un problema in quanto se la funzione non
1808 ha successo il programma deve uscire immediatamente prima di essere posto in
1809 background, e può quindi scrivere gli errori direttamente sullo standard
1810 error.
1811
1812 \begin{figure}[!htb]
1813   \footnotesize \centering
1814   \begin{minipage}[c]{15cm}
1815     \includecodesample{listati/TCP_echod_third.c}
1816   \end{minipage}
1817   \normalsize
1818   \caption{Nuovo codice per l'apertura passiva del server \textit{echo}.}
1819   \label{fig:TCP_echod_third}
1820 \end{figure}
1821
1822 Con l'uso di questa funzione si può modificare anche il codice del nostro
1823 server \textit{echo}, che rispetto a quanto illustrato nella versione iniziale
1824 di fig.~\ref{fig:TCP_echo_server_first_code} viene modificato nella forma
1825 riportata in fig.~\ref{fig:TCP_echod_third}. In questo caso il socket su cui
1826 porsi in ascolto viene ottenuto (\texttt{\small 15--18}) da \func{sockbind}
1827 che si cura anche della eventuale risoluzione di un indirizzo specifico sul
1828 quale si voglia far ascoltare il server.
1829
1830
1831
1832 \section{Le opzioni dei socket}
1833 \label{sec:sock_options}
1834
1835 Benché dal punto di vista del loro uso come canali di trasmissione di dati i
1836 socket siano trattati allo stesso modo dei file, ed acceduti tramite i file
1837 descriptor, la normale interfaccia usata per la gestione dei file non è
1838 sufficiente a poterne controllare tutte le caratteristiche, che variano tra
1839 l'altro a seconda del loro tipo (e della relativa forma di comunicazione
1840 sottostante). In questa sezione vedremo allora quali sono le funzioni dedicate
1841 alla gestione delle caratteristiche specifiche dei vari tipi di socket, le
1842 cosiddette \textit{socket options}.
1843
1844
1845 \subsection{Le funzioni \func{setsockopt} e \func{getsockopt}}
1846 \label{sec:sock_setsockopt}
1847
1848 Le varie caratteristiche dei socket possono essere gestite attraverso l'uso di
1849 due funzioni generiche che permettono rispettivamente di impostarle e di
1850 recuperarne il valore corrente. La prima di queste due funzioni, quella usata
1851 per impostare le \textit{socket options}, è \funcd{setsockopt}, ed il suo
1852 prototipo è:
1853 \begin{functions}
1854   \headdecl{sys/socket.h}
1855   \headdecl{sys/types.h}
1856
1857   \funcdecl{int setsockopt(int sock, int level, int optname, const void
1858     *optval, socklen\_t optlen)}
1859   Imposta le opzioni di un socket.
1860
1861   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1862     errore, nel qual caso \var{errno} assumerà i valori:
1863   \begin{errlist}
1864   \item[\errcode{EBADF}]  il file descriptor \param{sock} non è valido.
1865   \item[\errcode{EFAULT}] l'indirizzo \param{optval} non è valido.
1866   \item[\errcode{EINVAL}] il valore di \param{optlen} non è valido.
1867   \item[\errcode{ENOPROTOOPT}] l'opzione scelta non esiste per il livello
1868     indicato. 
1869   \item[\errcode{ENOTSOCK}] il file descriptor \param{sock} non corrisponde ad
1870     un socket.
1871   \end{errlist}
1872 }
1873 \end{functions}
1874
1875
1876 Il primo argomento della funzione, \param{sock}, indica il socket su cui si
1877 intende operare; per indicare l'opzione da impostare si devono usare i due
1878 argomenti successivi, \param{level} e \param{optname}.  Come abbiamo visto in
1879 sez.~\ref{sec:net_protocols} i protocolli di rete sono strutturati su vari
1880 livelli, ed l'interfaccia dei socket può usarne più di uno. Si avranno allora
1881 funzionalità e caratteristiche diverse per ciascun protocollo usato da un
1882 socket, e quindi saranno anche diverse le opzioni che si potranno impostare
1883 per ciascun socket, a seconda del \textsl{livello} (trasporto, rete, ecc.) su
1884 cui si vuole andare ad operare.
1885
1886 Il valore di \param{level} seleziona allora il protocollo su cui vuole
1887 intervenire, mentre \param{optname} permette di scegliere su quale delle
1888 opzioni che sono definite per quel protocollo si vuole operare. In sostanza la
1889 selezione di una specifica opzione viene fatta attraverso una coppia di valori
1890 \param{level} e \param{optname} e chiaramente la funzione avrà successo
1891 soltanto se il protocollo in questione prevede quella opzione ed è utilizzato
1892 dal socket.  Infine \param{level} prevede anche il valore speciale
1893 \const{SOL\_SOCKET} usato per le opzioni generiche che sono disponibili per
1894 qualunque tipo di socket.
1895
1896 I valori usati per \param{level}, corrispondenti ad un dato protocollo usato
1897 da un socket, sono quelli corrispondenti al valore numerico che identifica il
1898 suddetto protocollo in \file{/etc/protocols}; dato che la leggibilità di un
1899 programma non trarrebbe certo beneficio dall'uso diretto dei valori numerici,
1900 più comunemente si indica il protocollo tramite le apposite costanti
1901 \texttt{SOL\_*} riportate in tab.~\ref{tab:sock_option_levels}, dove si sono
1902 riassunti i valori che possono essere usati per l'argomento
1903 \param{level}.\footnote{la notazione in questo caso è, purtroppo, abbastanza
1904   confusa: infatti in Linux il valore si può impostare sia usando le costanti
1905   \texttt{SOL\_*}, che le analoghe \texttt{IPPROTO\_*} (citate anche da
1906   Stevens in \cite{UNP1}); entrambe hanno gli stessi valori che sono
1907   equivalenti ai numeri di protocollo di \file{/etc/protocols}, con una
1908   eccesione specifica, che è quella del protocollo ICMP, per la quale non
1909   esista una costante, il che è comprensibile dato che il suo valore, 1, è
1910   quello che viene assegnato a \const{SOL\_SOCKET}.}
1911
1912 \begin{table}[!htb]
1913   \centering
1914   \footnotesize
1915   \begin{tabular}[c]{|l|l|}
1916     \hline
1917     \textbf{Livello} & \textbf{Significato} \\
1918     \hline
1919     \hline
1920     \const{SOL\_SOCKET}& opzioni generiche dei socket.\\
1921     \const{SOL\_IP}    & opzioni specifiche per i socket che usano IPv4.\\
1922     \const{SOL\_TCP}   & opzioni per i socket che usano TCP.\\
1923     \const{SOL\_IPV6}  & opzioni specifiche per i socket che usano IPv6.\\
1924     \const{SOL\_ICMPV6}& opzioni specifiche per i socket che usano ICMPv6.\\
1925     \hline
1926   \end{tabular}
1927   \caption{Possibili valori dell'argomento \param{level} delle 
1928     funzioni \func{setsockopt} e \func{getsockopt}.} 
1929   \label{tab:sock_option_levels}
1930 \end{table}
1931
1932 Il quarto argomento, \param{optval} è un puntatore ad una zona di memoria che
1933 contiene i dati che specificano il valore dell'opzione che si vuole passare al
1934 socket, mentre l'ultimo argomento \param{optlen},\footnote{questo argomento è
1935   in realtà sempre di tipo \ctyp{int}, come era nelle \acr{libc4} e
1936   \acr{libc5}; l'uso di \ctyp{socklen\_t} è stato introdotto da POSIX (valgono
1937   le stesse considerazioni per l'uso di questo tipo di dato fatte in
1938   sez.~\ref{sec:TCP_func_accept}) ed adottato dalle \acr{glibc}.} è la
1939 dimensione in byte dei dati presenti all'indirizzo indicato da \param{optval}.
1940 Dato che il tipo di dati varia a seconda dell'opzione scelta, occorrerà
1941 individuare qual è quello che deve essere usato, ed utilizzare le opportune
1942 variabili.
1943
1944 La gran parte delle opzioni utilizzano per \param{optval} un valore intero, se
1945 poi l'opzione esprime una condizione logica, il valore è sempre un intero, am
1946 si dovrà usare un valore non nullo per abilitarla ed un valore nullo per
1947 disabilitarla.  Se invece l'opzione non prevede di dover ricevere nessun tipo
1948 di valore si deve impostare \param{optval} a \const{NULL}. Un piccolo numero
1949 di opzioni però usano dei tipi di dati peculiari, è questo il motivo per cui
1950 \param{optval} è stato definito come puntatore generico.
1951
1952 La seconda funzione usata per controllare le proprietà dei socket è
1953 \funcd{getsockopt}, che serve a leggere i valori delle opzioni dei socket ed a
1954 farsi restituire i dati relativi al loro funzionamento; il suo prototipo è:
1955 \begin{functions}
1956   \headdecl{sys/socket.h}
1957   \headdecl{sys/types.h}
1958
1959   \funcdecl{int getsockopt(int s, int level, int optname, void *optval,
1960     socklen\_t *optlen)} Legge le opzioni di un socket.
1961
1962   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1963     errore, nel qual caso \var{errno} assumerà i valori:
1964   \begin{errlist}
1965   \item[\errcode{EBADF}] il file descriptor \param{sock} non è valido.
1966   \item[\errcode{EFAULT}] l'indirizzo \param{optval} o quello di
1967     \param{optlen} non è valido.
1968   \item[\errcode{ENOPROTOOPT}] l'opzione scelta non esiste per il livello
1969     indicato. 
1970   \item[\errcode{ENOTSOCK}] il file descriptor \param{sock} non corrisponde ad
1971     un socket.
1972   \end{errlist}
1973 }
1974 \end{functions}
1975
1976 I primi tre argomenti sono identici ed hanno lo stesso significato di quelli
1977 di \func{setsockopt}, anche se non è detto che tutte le opzioni siano definite
1978 per entrambe le funzioni. In questo caso \param{optval} viene usato per
1979 ricevere le informazioni ed indica l'indirizzo a cui andranno scritti i dati
1980 letti dal socket, infine \param{optlen} diventa un puntatore ad una variabile
1981 che viene usata come \itindex{value~result~argument}\textit{value result
1982   argument} per indicare, prima della chiamata della funzione, la lunghezza
1983 del buffer allocato per \param{optval} e per ricevere indietro, dopo la
1984 chiamata della funzione, la dimensione effettiva dei dati scritti su di esso.
1985 Se la dimenzione del buffer allocato per \param{optval} non è sufficiente si
1986 avrà un errore.
1987
1988
1989
1990 \subsection{Le opzioni generiche}
1991 \label{sec:sock_generic_options}
1992
1993 Come accennato esiste un insieme generico di opzioni dei socket che possono
1994 applicarsi a qualunque tipo di socket,\footnote{una descrizione di queste
1995   opzioni è generalmente disponibile nella settima sezione delle pagine di
1996   manuale, nel caso specifico la si può consultare con \texttt{man 7 socket}.}
1997 indipendentemente da quale protocollo venga poi utilizzato. Se si vuole
1998 operare su queste opzioni generiche il livello da utilizzare è
1999 \const{SOL\_SOCKET}; si è riportato un elenco di queste opzioni in
2000 tab.~\ref{tab:sock_opt_socklevel}.
2001
2002
2003 \begin{table}[!htb]
2004   \centering
2005   \footnotesize
2006   \begin{tabular}[c]{|l|c|c|c|l|l|}
2007     \hline
2008     \textbf{Opzione}&\texttt{get}&\texttt{set}&\textbf{flag}&\textbf{Tipo}&
2009                     \textbf{Descrizione}\\
2010     \hline
2011     \hline
2012     \const{SO\_KEEPALIVE}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2013                           controlla l'attività della connessione.\\
2014     \const{SO\_OOBINLINE}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2015                           lascia in linea i dati \textit{out-of-band}.\\
2016     \const{SO\_RCVLOWAT} &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2017                           basso livello sul buffer di ricezione.\\
2018     \const{SO\_SNDLOWAT} &$\bullet$&$\bullet$&         &\texttt{int}&
2019                           basso livello sul buffer di trasmissione.\\
2020     \const{SO\_RCVTIMEO} &$\bullet$&$\bullet$&         &\texttt{timeval}& 
2021                           timeout in ricezione.\\
2022     \const{SO\_SNDTIMEO} &$\bullet$&$\bullet$&         &\texttt{timeval}& 
2023                           timeout in trasmissione.\\
2024     \const{SO\_BSDCOMPAT}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2025                           abilita la compatibilità con BSD.\\
2026     \const{SO\_PASSCRED} &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2027                           abilita la ricezione di credenziali.\\
2028     \const{SO\_PEERCRED} &$\bullet$&         &         &\texttt{ucred}& 
2029                           restituisce le credenziali del processo remoto.\\
2030     \const{SO\_BINDTODEVICE}&$\bullet$&$\bullet$&         &\texttt{char *}& 
2031                           lega il socket ad un dispositivo.\\
2032     \const{SO\_DEBUG}    &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2033                           abilita il debugging sul socket.\\
2034     \const{SO\_REUSEADDR}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2035                           consente il riutilizzo di un indirizzo locale.\\
2036     \const{SO\_TYPE}     &$\bullet$&         &         &\texttt{int}& 
2037                           restituisce il tipo di socket.\\
2038     \const{SO\_ACCEPTCONN}&$\bullet$&        &         &\texttt{int}& 
2039                           indica se il socket è in ascolto.\\
2040     \const{SO\_DONTROUTE}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2041                           non invia attraverso un gateway.\\
2042     \const{SO\_BROADCAST}&$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2043                           attiva o disattiva il \textit{broadcast}.\\
2044     \const{SO\_SNDBUF}   &$\bullet$&$\bullet$&         &\texttt{int}& 
2045                           imposta dimensione del buffer di trasmissione.\\
2046     \const{SO\_RCVBUF}   &$\bullet$&$\bullet$&         &\texttt{int}& 
2047                           imposta dimensione del buffer di ricezione.\\
2048     \const{SO\_LINGER}   &$\bullet$&$\bullet$&         &\texttt{linger}&
2049                           indugia nella chiusura con dati da spedire.\\
2050     \const{SO\_PRIORITY} &$\bullet$&$\bullet$&         &\texttt{int}& 
2051                           imposta la priorità del socket.\\
2052     \const{SO\_ERROR}    &$\bullet$&         &         &\texttt{int}& 
2053                           riceve e cancella gli errori pendenti.\\
2054    \hline
2055   \end{tabular}
2056   \caption{Le opzioni disponibili al livello \const{SOL\_SOCKET}.} 
2057   \label{tab:sock_opt_socklevel}
2058 \end{table}
2059
2060 La tabella elenca le costanti che identificano le singole opzioni da usare
2061 come valore per \param{optname}; le due colonne seguenti indicano per quali
2062 delle due funzioni (\func{getsockopt} o \func{setsockopt}) l'opzione è
2063 disponibile, mentre la colonna successiva indica, quando di ha a che fare con
2064 un valore di \param{optval} intero, se l'opzione è da considerare un numero o
2065 un valore logico. Si è inoltre riportato sulla quinta colonna il tipo di dato
2066 usato per \param{optval} ed una breve descrizione del significato delle
2067 singole opzioni sulla sesta.
2068
2069 Le descrizioni delle opzioni presenti in tab.~\ref{tab:sock_opt_socklevel}
2070 sono estremamente sommarie, è perciò necessario fornire un po' più di
2071 informazioni. Alcune opzioni inoltre hanno una notevole rilevanza nella
2072 gestione dei socket, e pertanto il loro utilizzo sarà approfondito
2073 separatamente in sez.~\ref{sec:sock_options_main}. Quello che segue è quindi
2074 soltanto un elenco più dettagliato della breve descrizione di
2075 tab.~\ref{tab:sock_opt_socklevel} sul significato delle varie opzioni:
2076 \begin{basedescript}{\desclabelwidth{2.5cm}\desclabelstyle{\nextlinelabel}}
2077
2078 \item[\const{SO\_KEEPALIVE}] questa opzione abilita un meccanismo di verifica
2079   della persistenza di una connessione associata al socket (ed è pertanto
2080   effettiva solo sui socket che supportano le connessioni, ed è usata
2081   principalmente con il TCP). L'opzione utilizza per \param{optval} un intero
2082   usato come valore logico. Maggiori dettagli sul suo funzionamento sono
2083   forniti in sez.~\ref{sec:sock_options_main}.
2084
2085 \item[\const{SO\_OOBINLINE}] se questa opzione viene abilitata i dati
2086   \textit{out-of-band} vengono inviati direttamente nel flusso di dati del
2087   socket (e sono quindi letti con una normale \func{read}) invece che restare
2088   disponibili solo per l'accesso con l'uso del flag \const{MSG\_OOB} di
2089   \func{recvmsg}. L'argomento è trattato in dettaglio in
2090   sez.~\ref{sec:TCP_urgent_data}. L'opzione funziona soltanto con socket che
2091   supportino i dati \textit{out-of-band} (non ha senso per socket UDP ad
2092   esempio), ed utilizza per \param{optval} un intero usato come valore logico.
2093
2094 \item[\const{SO\_RCVLOWAT}] questa opzione imposta il valore che indica il
2095   numero minimo di byte che devono essere presenti nel buffer di ricezione
2096   perché il kernel passi i dati all'utente, restituendoli ad una \func{read} o
2097   segnalando ad una \func{select} (vedi sez.~\ref{sec:TCP_sock_select}) che ci
2098   sono dati in ingresso. L'opzione utilizza per \param{optval} un intero che
2099   specifica il numero di byte, ma con Linux questo valore è sempre 1 e non può
2100   essere cambiato; \func{getsockopt} leggerà questo valore mentre
2101   \func{setsockopt} darà un errore di \errcode{ENOPROTOOPT}. 
2102
2103 \item[\const{SO\_SNDLOWAT}] questa opzione imposta il valore che indica il
2104   numero minimo di byte che devono essere presenti nel buffer di scrittura
2105   perché il kernel li invii al protocollo successivo, consentendo ad una
2106   \func{write} di ritornare o segnalando ad una \func{select} (vedi
2107   sez.~\ref{sec:TCP_sock_select}) che è possibile eseguire una scrittura.
2108   L'opzione utilizza per \param{optval} un intero che specifica il numero di
2109   byte, come per la precedente \const{SO\_RCVLOWAT} con Linux questo valore è
2110   sempre 1 e non può essere cambiato; \func{getsockopt} leggerà questo valore
2111   mentre \func{setsockopt} darà un errore di \errcode{ENOPROTOOPT}.
2112
2113 \item[\const{SO\_RCVTIMEO}] l'opzione permette di impostare un tempo massimo
2114   sulle operazioni di lettura da un socket, e prende per \param{optval} una
2115   struttura di tipo \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct})
2116   identica a quella usata con \func{select}. Con \func{getsockopt} si può
2117   leggere il valore attuale, mentre con \func{setsockopt} si imposta il tempo
2118   voluto, usando un valore nullo per \struct{timeval} il timeout viene
2119   rimosso. 
2120
2121   Se l'opzione viene attivata tutte le volte che una delle funzioni di lettura
2122   (\func{read}, \func{readv}, \func{recv}, \func{recvfrom} e \func{recvmsg})
2123   si blocca in attesa di dati per un tempo maggiore di quello impostato, essa
2124   ritornerà un valore -1 e la variabile \var{errno} sarà impostata con un
2125   errore di \errcode{EAGAIN} e \errcode{EWOULDBLOCK}, così come sarebbe
2126   avvenuto se si fosse aperto il socket in modalità non bloccante.\footnote{in
2127     teoria, se il numero di byte presenti nel buffer di ricezione fosse
2128     inferiore a quello specificato da \const{SO\_RCVLOWAT}, l'effetto potrebbe
2129     essere semplicemente quello di provocare l'uscita delle funzioni di
2130     lettura restituendo il numero di byte fino ad allora ricevuti; dato che
2131     con Linux questo valore è sempre 1 questo caso non esiste.}
2132
2133   In genere questa opzione non è molto utilizzata se si ha a che fare con la
2134   lettura dei dati, in quanto è sempre possibile usare una \func{select} che
2135   consente di specificare un \textit{timeout}; l'uso di \func{select} non
2136   consente però di impostare il timout per l'uso di \func{connect}, per avere
2137   il quale si può ricorrere a questa opzione. 
2138
2139 % verificare con un programma di test
2140
2141 \item[\const{SO\_SNDTIMEO}] l'opzione permette di impostare un tempo massimo
2142   sulle operazioni di scrittura su un socket, ed usa gli stessi valori di
2143   \const{SO\_RCVTIMEO}.  In questo caso però si avrà un errore di
2144   \errcode{EAGAIN} o \errcode{EWOULDBLOCK} per le funzioni di scrittura
2145   \func{write}, \func{writev}, \func{send}, \func{sendto} e \func{sendmsg}
2146   qualora queste restino bloccate per un tempo maggiore di quello specificato. 
2147
2148 \item[\const{SO\_BSDCOMPAT}] questa opzione abilita la compatibilità con il
2149   comportamento di BSD (in particolare ne riproduce i bug).  Attualmente è una
2150   opzione usata solo per il protocollo UDP e ne è prevista la rimozione in
2151   futuro.  L'opzione utilizza per \param{optval} un intero usato come valore
2152   logico. 
2153
2154   Quando viene abilitata gli errori riportati da messaggi ICMP per un socket
2155   UDP non vengono passati al programma in user space. Con le versioni 2.0.x
2156   del kernel erano anche abilitate altre opzioni per i socket raw, che sono
2157   state rimosse con il passaggio al 2.2; è consigliato correggere i programmi
2158   piuttosto che usare questa funzione. 
2159
2160 \item[\const{SO\_PASSCRED}] questa opzione abilita sui socket unix-domain
2161   (vedi sez.~\ref{sec:unix_socket}) la ricezione dei messaggi di controllo di
2162   tipo \const{SCM\_CREDENTIALS}. Prende come \param{optval} un intero usato
2163   come valore logico.
2164
2165 \item[\const{SO\_PEERCRED}] questa opzione restituisce le credenziali del
2166   processo remoto connesso al socket; l'opzione è disponibile solo per socket
2167   unix-domain e può essere usata solo con \func{getsockopt}.  Utilizza per
2168   \param{optval} una apposita struttura \struct{ucred} (vedi
2169   sez.~\ref{sec:unix_socket_xxx}). 
2170
2171 \item[\const{SO\_BINDTODEVICE}] questa opzione permette di \textsl{legare} il
2172   socket ad una particolare interfaccia, in modo che esso possa ricevere ed
2173   inviare pacchetti solo su quella. L'opzione richiede per \param{optval} il
2174   puntatore ad una stringa contenente il nome dell'interfaccia (ad esempio
2175   \texttt{eth0}); utilizzando una stringa nulla o un valore nullo per
2176   \param{optlen} si può rimuovere un precedente collegamento.
2177
2178   Il nome della interfaccia deve essere specificato con una stringa terminata
2179   da uno zero e di lunghezza massima pari a \const{IFNAMSIZ}; l'opzione è
2180   effettiva solo per alcuni tipi di socket, ed in particolare per quelli della
2181   famiglia \const{AF\_INET}; non è invece supportata per i \textit{packet
2182     socket} (vedi sez.~\ref{cha:advanced_socket_xxx}). 
2183
2184 \item[\const{SO\_DEBUG}] questa opzione abilita il debugging delle operazioni
2185   dei socket; l'opzione utilizza per \param{optval} un intero usato come
2186   valore logico, e può essere utilizzata solo da un processo con i privilegi
2187   di amministratore (in particolare con la \textit{capability}
2188   \const{CAP\_NET\_ADMIN}).  L'opzione necessita inoltre dell'opportuno
2189   supporto nel kernel;\footnote{deve cioè essere definita la macro di
2190     preprocessore \macro{SOCK\_DEBUGGING} nel file \file{include/net/sock.h}
2191     dei sorgenti del kernel, questo è sempre vero nei kernel delle serie
2192     superiori alla 2.3, per i kernel delle serie precedenti invece è
2193     necessario aggiungere a mano detta definizione; è inoltre possibile
2194     abilitare anche il tracciamento degli stati del TCP definendo la macro
2195     \macro{STATE\_TRACE} in \file{include/net/tcp.h}.}  quando viene
2196   abilitata una serie di messaggi con le informazioni di debug vengono inviati
2197   direttamente al sistema del kernel log.\footnote{si tenga presente che il
2198     comportamento è diverso da quanto avviene con BSD, dove l'opzione opera
2199     solo sui socket TCP, causando la scrittura di tutti i pacchetti inviati
2200     sulla rete su un buffer circolare che viene letto da un apposito
2201     programma, \cmd{trpt}.} 
2202
2203 \item[\const{SO\_REUSEADDR}] questa opzione permette di eseguire la funzione
2204   \func{bind} su indirizzi locali che siano già in uso da altri socket;
2205   l'opzione utilizza per \param{optval} un intero usato come valore logico.
2206   Questa opzione modifica il comportamento normale dell'interfaccia dei socket
2207   che fa fallire l'esecuzione della funzione \func{bind} con un errore di
2208   \errcode{EADDRINUSE} quando l'indirizzo locale\footnote{più propriamente il
2209     controllo viene eseguito sulla porta.} è già in uso da parte di un altro
2210   socket.  Maggiori dettagli sul suo funzionamento sono forniti in
2211   sez.~\ref{sec:sock_options_main}.
2212
2213 \item[\const{SO\_TYPE}] questa opzione permette di leggere il tipo di socket
2214   su cui si opera; funziona solo con \func{getsockopt}, ed utilizza per
2215   \param{optval} un intero in cui verrà restituto il valore numerico che lo
2216   identifica (ad esempio \const{SOCK\_STREAM}). 
2217
2218 \item[\const{SO\_ACCEPTCONN}] questa opzione permette di rilevare se il socket
2219   su cui opera è stato posto in modalità di ricezione di eventuali connessioni
2220   con una chiamata a \func{listen}. L'opzione può essere usata soltanto con
2221   \func{getsockopt} e utilizza per \param{optval} un intero in cui viene
2222   restituito 1 se il socket è in ascolto e 0 altrimenti. 
2223
2224 \item[\const{SO\_DONTROUTE}] questa opzione forza l'invio diretto dei
2225   pacchetti del socket, saltando ogni processo relativo all'uso della tabella
2226   di routing del kernel. Prende per \param{optval} un intero usato come valore
2227   logico.
2228
2229 \item[\const{SO\_BROADCAST}] questa opzione abilita il \textit{broadcast};
2230   quanto abilitata i socket di tipo \const{SOCK\_DGRAM} riceveranno i
2231   pacchetti inviati all'indirizzo di broadcast, e potranno scrivere pacchetti
2232   su tale indirizzo.  Prende per \param{optval} un intero usato come valore
2233   logico. L'opzione non ha effetti su un socket di tipo \const{SOCK\_STREAM}.
2234
2235 \item[\const{SO\_SNDBUF}] questa opzione imposta la dimenzione del buffer di
2236   uscita del socket. Prende per \param{optval} un intero indicante il numero
2237   di byte. Il valore di default ed il valore massimo che si può specificare
2238   come argomento per questa opzione sono impostabili tramiti gli opportuni
2239   valori di \func{sysctl} (vedi sez.~\ref{sec:sock_sysctl}).
2240
2241 \item[\const{SO\_RCVBUF}] questa opzione imposta la dimenzione del buffer di
2242   ingresso del socket. Prende per \param{optval} un intero indicante il numero
2243   di byte. Il valore di default ed il valore massimo che si può specificare
2244   come argomento per questa opzione sono impostabili tramiti gli opportuni
2245   valori di \func{sysctl} (vedi sez.~\ref{sec:sock_sysctl}).
2246
2247 \item[\const{SO\_LINGER}] questa opzione controlla le modalità con cui viene
2248   chiuso un socket quando si utilizza un protocollo che supporta le
2249   connessioni (è pertanto usata con i socket TCP ed ignorata per UDP) e
2250   modifica il comportamento delle funzioni \func{close} e \func{shutdown}.
2251   L'opzione richiede che l'argomento \param{optval} sia una struttura di tipo
2252   \struct{linger}, definita in \texttt{sys/socket.h} ed illustrata in
2253   fig.~\ref{fig:sock_linger_struct}.  Maggiori dettagli sul suo funzionamento
2254   sono forniti in sez.~\ref{sec:sock_options_main}.
2255
2256 \item[\const{SO\_PRIORITY}] questa opzione permette di impostare le priorità
2257   per tutti i pacchetti che sono inviati sul socket, prende per \param{optval}
2258   un valore intero. Con questa opzione il kernel usa il valore per ordinare le
2259   priorità sulle code di rete,\footnote{questo richiede che sia abilitato il
2260     sistema di \textit{Quality of Service} disponibile con le opzioni di
2261     routing avanzato.} i pacchetti con priorità più alta vengono processati
2262   per primi, in modalità che dipendono dalla disciplina di gestione della
2263   coda. Nel caso di protocollo IP questa opzione permette anche di impostare i
2264   valori del campo \textit{type of service} (noto come TOS, vedi
2265   sez.~\ref{sec:IP_header}) per i pacchetti uscenti. Per impostare una
2266   priorità al di fuori dell'intervallo di valori fra 0 e 6 sono richiesti i
2267   privilegi di amministratore con la capability \const{CAP\_NET\_ADMIN}.
2268
2269 \item[\const{SO\_ERROR}] questa opzione riceve un errore presente sul socket;
2270   può essere utilizzata soltanto con \func{getsockopt} e prende per
2271   \param{optval} un valore intero.  
2272 \end{basedescript}
2273
2274
2275 \subsection{L'uso delle principali opzioni dei socket}
2276 \label{sec:sock_options_main}
2277
2278 La descrizione sintetica del significato delle opzioni generiche dei socket,
2279 riportata nell'elenco in sez.~\ref{sec:sock_generic_options}, è
2280 necessariamente sintentica, alcune di queste però possono essere utilizzate
2281 per controllare delle funzionalità che hanno una notevole rilevanza nella
2282 programmazione dei socket.  Per questo motivo faremo in questa sezione un
2283 approfondimento sul significato delle opzioni generiche più importanti.
2284
2285
2286 \index{costante!{\tt SO\_KEEPALIVE}|(} 
2287 \subsubsection{L'opzione \const{SO\_KEEPALIVE}}
2288
2289 La prima opzione da approfondire è \const{SO\_KEEPALIVE} che permette di
2290 tenere sotto controllo lo stato di una connessione. Una connessione infatti
2291 resta attiva anche quando non viene effettuato alcun traffico su di essa,
2292 questo può comportare che un crollo della connessione, qualora avvenisse ad
2293 esempio in conseguenza di una interruzione completa della rete, potrebbe
2294 passare inosservato.
2295
2296 Se si imposta questa opzione, è invece cura del kernel inviare degli appositi
2297 messaggi sulla rete, detti appunto \textit{keep-alive}, per verificare se la
2298 connessione è attiva.  L'opzione funziona soltanto con socket che supportino
2299 le connessioni (non ha senso per socket UDP ad esempio) e si applica
2300 principalmente ai socket TCP.
2301
2302 Con le impostazioni di default (che sono riprese da BSD) Linux emette un
2303 messaggio di \textit{keep-alive}\footnote{in sostanza un segmento ACK vuoto,
2304   cui sarà risposto con un altro segmento ACK vuoto.} verso l'altro capo della
2305 connessione se questa è rimasta senza traffico per più di due ore. Se è tutto
2306 a posto il messaggio viene ricevuto e verrà emesso un segmento ACK di
2307 risposta, alla cui ricezione ripartirà un'altro ciclo di attesa per altre due
2308 ore di inattività; il tutto avviene all'interno del kernel e le applicazioni
2309 non riceveranno nessun dato.
2310
2311 In caso di problemi invece si possono avere i due casi già illustrati in
2312 sez.~\ref{sec:TCP_conn_crash} per il caso di terminazione prococe del server:
2313 il primo è quello in cui la macchina remota è caduta ed è stata riavviata, per
2314 cui dopo il riavvio la connessione non viene più riconosciuta,\footnote{si
2315   ricordi che un normale riavvio non ha questo effetto, in quanto in tal caso
2316   si passa per la chiusura del processo, e questo, come illustrato in
2317   sez.~\ref{sec:file_close}, comporta la chiusura del socket col'invio di un
2318   segmento FIN all'altro capo della connessione, che verrà regolarmente
2319   chiusa.} in questo caso all'invio del messaggio di \textit{keep-alive} si
2320 otterrà come risposta un segmento RST che indica che l'altro capo non
2321 riconosce più l'esistenza della connessione. In tal caso il socket viene
2322 chiuso dopo aver impostato un errore \errcode{ECONNRESET}.
2323
2324 Se invece non viene ricevuta nessuna risposta (indice che la macchina non è
2325 più raggiungibile) l'emissione dei messaggi viene ripetuta ad intervalli di 75
2326 secondi per un massimo di 9 volte\footnote{entrambi questi valori possono
2327   essere opportunamente modificati con gli opportuni parametri illustrati in
2328   sez.~\ref{sec:sock_sysctl}, si tenga presente che però questo vale a livello
2329   di kernel ed i suddetti valori saranno applicati a \textsl{tutti} i socket.}
2330 (per un totale di 11 minuti e 15 secondi) dopo di che, se non si è ricevuta
2331 nessuna risposta, il socket viene chiuso dopo aver impostato un errore di
2332 \errcode{ETIMEDOUT}. Qualora la connessione si sia ristabilita e si riceva un
2333 successivo messaggio di risposta il ciclo riparte come se niente fosse
2334 avvenuto.  Infine se invece si riceve come risposta un pacchetto ICMP di
2335 destinazione irraggiungibile (vedi sez.~\ref{sec:icmp_protocol_xxx}), verrà
2336 restituito l'errore corrispondente.
2337
2338 In generale questa opzione serve per individuare una caduta della connessione
2339 anche quando non si sta facendo traffico su di essa.  Viene usata
2340 principalmente sui server per evitare di mantenere impegnate le risorse che
2341 verrbbero dedicate a trattare delle connessioni che in realtà sono già
2342 terminate (quelle che vengono anche chiamate connessioni
2343 \textsl{semi-aperte}); in tutti quei casi cioè in cui il server si trova in
2344 attesa di dati in ingresso su una connessione che non arriveranno mai perché o
2345 il client sull'altro capo non è più attivo o non è più in grado di comunicare
2346 con il server via rete.
2347
2348 \begin{figure}[!htb]
2349   \footnotesize \centering
2350   \begin{minipage}[c]{15cm}
2351     \includecodesample{listati/TCP_echod_fourth.c}
2352   \end{minipage}
2353   \normalsize
2354   \caption{La sezione della nuova versione del server del servizio
2355     \textit{echo} che prevede l'attivazione del \textit{keepalive} sui
2356     socket.}
2357   \label{fig:echod_keepalive_code}
2358 \end{figure}
2359
2360 Abilitandola dopo un certo tempo le connessioni effettivamente terminate
2361 verrano comunque chiuse per cui, utilizzando ad esempio una \func{select}, se
2362 be potrà rilevare la conclusione e ricevere il relativo errore. Si tenga
2363 presente però che non può avere la certezza assoluta che un errore di
2364 \errcode{ETIMEDOUT} ottenuto dopo aver abilitato questa opzione corrisponda
2365 necessariamente ad una reale conclusione della connessione, il problema
2366 potrebbe anche essere dovuto ad un problema di routing che perduri per un
2367 tempo maggiore di quello impiegato nei vari tentativi di ritrasmissione del
2368 \textit{keep-alive} (anche se questa non è una una condizione molto
2369 probabile).
2370
2371 Come esempio dell'utilizzo di questa opzione introduciamo all'interno del
2372 nostro server per il servizio \textit{echo} la nuova opzione \texttt{-k} che
2373 permette di attivare il \textit{keep-alive} sui socket; tralasciando la parte
2374 relativa alla gestione di detta opzione (che si limita ad assegnare ad 1 la
2375 variabile \var{keepalive}) tutte le modifiche al server sono riportate in
2376 fig.~\ref{fig:echod_keepalive_code}. Al solito il codice completo è contenuto
2377 nel file \texttt{TCP\_echod\_fourth.c} dei sorgenti allegati alla guida.
2378
2379 Come si può notare la variabile \var{keepalive} è preimpostata (\texttt{\small
2380   8}) ad un valore nullo; essa viene utilizzata sia come variabile logica per
2381 la condizione (\texttt{\small 14}) che controlla l'attivazione del
2382 \textit{keep-alive} che come valore dell'argomento \param{optval} della
2383 chiamata a \func{setsockopt} (\texttt{\small 16}).  A seconda del suo valore
2384 tutte le volte che un processo figlio viene eseguito in risposta ad una
2385 connessione verrà pertanto eseguita o meno la sezione (\texttt{\small 14--17})
2386 che esegue l'impostazione di \const{SO\_KEEPALIVE} sul socket connesso,
2387 attivando il relativo comportamento.
2388 \index{costante!{\tt SO\_KEEPALIVE}|)} 
2389
2390
2391 \index{costante!{\tt SO\_REUSEADDR}|(}
2392 \subsubsection{L'opzione \const{SO\_REUSEADDR}}
2393
2394 La seconda opzione da approfondire è \const{SO\_REUSEADDR}, che consente di
2395 eseguire \func{bind} su un socket anche quando la porta specificata è già in
2396 uso da parte di un altro socket. Si ricordi infatti che, come accennato in
2397 sez.~\ref{sec:TCP_func_bind}, normalmente la funzione \func{bind} fallisce con
2398 un errore di \errcode{EADDRINUSE} se la porta scelta è già utilizzata da un
2399 altro socket, proprio per evitare che possano essere lanciati due server sullo
2400 stesso indirizzo e la stessa porta, che verrebbero a contendersi i pacchetti
2401 aventi quella destinazione.
2402
2403 Esistono però situazioni ed esigenze particolari in cui non si vuole che
2404 questo comportamento di salvaguardia accada, ed allora si può fare ricorso a
2405 questa opzione.  La questione è comunque abbastanza complessa in quanto, come
2406 sottolinea Stevens in \cite{UNP1}, si distinguono ben quattro casi diversi in
2407 cui è prevista la possibilità di un utilizzo di questa opzione, il che la
2408 rende una delle più difficili da capire.
2409
2410 Il primo caso, che è anche il più comune, in cui si fa ricorso a
2411 \const{SO\_REUSEADDR} è quello in cui un server è terminato ma esistono ancora
2412 dei processi figli che mantengono attiva almeno una connessione remota che
2413 utilizza l'indirizzo locale, mantenendo occupata la porta. Quando si riesegue
2414 il server allora questo riceve un errore sulla chiamata a \func{bind} dato che
2415 la porta è ancora utilizzata in una connessione esistente.\footnote{questa è
2416   una delle domande più frequenti sui newsgroup dedicati allo sviluppo, in
2417   quanto è piuttosto comune trovarsi in questa situazione quando si sta
2418   sviluppando un server che si ferma e si riavvia in continuazione dopo aver
2419   fatto modifiche.}  Inoltre se si usa il protocollo TCP questo può avvenire
2420 anche dopo tutti i processi figli sono terminati, dato che una connessione può
2421 restare attiva anche dopo la chiusura del socket, mantenendosi nello stato
2422 \texttt{TIME\_WAIT} (vedi sez.~\ref{sec:TCP_time_wait}).
2423
2424 Usando \const{SO\_REUSEADDR} fra la chiamata a \func{socket} e quella a
2425 \func{bind} si consente a quest'ultima di avere comunque successo anche se la
2426 connessione è attiva (o nello stato \texttt{TIME\_WAIT}). È bene però
2427 ricordare (si riveda quanto detto in sez.~\ref{sec:TCP_time_wait}) che la
2428 presenza dello stato \texttt{TIME\_WAIT} ha una ragione, ed infatti se si usa
2429 questa opzione esiste sempre una probabilità, anche se estremamente
2430 remota,\footnote{perché ciò avvenga infatti non solo devono coincidere gli
2431   indirizzi IP e le porte degli estremi della nuova connessione, ma anche i
2432   numeri di sequenza dei pacchetti, e questo è estremamente improbabile.}  che
2433 eventuali pacchetti rimasti intrappolati in una precedente connessione possano
2434 finire fra quelli di una nuova.
2435
2436 Come esempio di uso di questa connessione abbiamo predisposto una nuova
2437 versione della funzione \func{sockbind} (vedi fig.~\ref{fig:sockbind_code})
2438 che consenta l'impostazione di questa opzione. La nuova funzione è
2439 \func{sockbindopt}, e le principali differenze rispetto alla precedente sono
2440 illustrate in fig.~\ref{fig:sockbindopt_code}, dove si sono riportate le
2441 sezioni di codice modificate rispetto alla versione precedente. Il codice
2442 completo della funzione si trova, insieme alle altre funzioni di servizio dei
2443 socket, all'interno del file \texttt{SockUtils.c} dei sorgenti allegati alla
2444 guida.
2445
2446 \begin{figure}[!htb]
2447   \footnotesize \centering
2448   \begin{minipage}[c]{15cm}
2449     \includecodesample{listati/sockbindopt.c}
2450   \end{minipage}
2451   \normalsize
2452   \caption{Le sezioni della funzione \func{sockbindopt} modificate rispetto al
2453     codice della precedente \func{sockbind}.} 
2454   \label{fig:sockbindopt_code}
2455 \end{figure}
2456
2457 In realtà tutto quello che si è fatto è stato introdurre nella nuova funzione
2458 (\texttt{\small 1}) un nuovo argomento intero, \param{reuse}, che conterrà il
2459 valore logico da usare nella successiva chiamata (\texttt{\small 14}) a
2460 \func{setsockopt}. Si è poi aggiunta una sezione (\texttt{\small 13-17}) che
2461 esegue l'impostazione dell'opzione fra la chiamata a \func{socket} e quella a
2462 \func{bind}.
2463
2464
2465 A questo punto basterà modificare il  server per utilizzare la nuova
2466 funzione; in fig.~\ref{fig:TCP_echod_fifth} abbiamo riportato le sezioni
2467 modificate rispetto alla precedente versione di
2468 fig.~\ref{fig:TCP_echod_third}. Al solito il codice completo è coi sorgenti
2469 allegati alla guida, nel file \texttt{TCP\_echod\_fifth.c}.
2470
2471 Anche in questo caso si è introdotta (\texttt{\small 8}) una nuova variabile
2472 \var{reuse} che consente di controllare l'uso dell'opzione e che poi sarà
2473 usata (\texttt{\small 14}) come ultimo argomento di \func{setsockopt}. Il
2474 valore di default di questa variabile è nullo, ma usando l'opzione \texttt{-r}
2475 nell'invocazione del server (al solito la gestione delle opzioni non è
2476 riportata in fig.~\ref{fig:TCP_echod_fifth}) se ne potrà impostare ad 1 il
2477 valore, per cui in tal caso la successiva chiamata (\texttt{\small 13-17}) a
2478 \func{setsockopt} attiverà l'opzione \const{SO\_REUSEADDR}.
2479
2480 \begin{figure}[!htb] 
2481   \footnotesize \centering
2482   \begin{minipage}[c]{15cm}
2483     \includecodesample{listati/TCP_echod_fifth.c}
2484   \end{minipage}
2485   \normalsize
2486   \caption{Il nuovo codice per l'apertura passiva del server \textit{echo} che
2487     usa la nuova funzione \func{sockbindopt}.}
2488   \label{fig:TCP_echod_fifth}
2489 \end{figure}
2490
2491 Il secondo caso in cui viene usata \const{SO\_REUSEADDR} è quando si ha una
2492 macchina cui sono assegnati diversi numeri IP (o come suol dirsi
2493 \textit{multi-homed}) e si vuole porre in ascolto sulla stessa porta un
2494 programma diverso (o una istanza diversa dello stesso programma) per indirizzi
2495 IP diversi. Si ricordi infatti che è sempre possibile indicare a \func{bind}
2496 di collegarsi solo su di un indirizzo specifico; in tal caso se un altro
2497 programma cerca di riutilizzare la stessa porta (anche specificando un
2498 indirizzo diverso) otterrà un errore, a meno di non aver preventivamente
2499 impostato \const{SO\_REUSEADDR}.
2500
2501 Usando questa opzione diventa anche possibile eseguire \func{bind}
2502 sull'indirizzo generico, e questo permetterà il collegamento per tutti gli
2503 indirizzi (di quelli presenti) per i quali la porta non risulti occupata da
2504 una precedente chiamata più specifica. Infine si tenga presente che con il
2505 protocollo TCP non è mai possibile far partire server che eseguano \func{bind}
2506 sullo stesso indirizzo e la stessa porta, cioè ottenere quello che viene
2507 chiamato un \textit{completely duplicate binding}.
2508
2509 Il terzo impiego è simile al precedente e prevede l'uso di \func{bind}
2510 all'interno dello stesso programma per associare indirizzi locali diversi a
2511 socket diversi. In genere questo viene fatto per i socket UDP quando è
2512 necessario ottenere l'indirizzo a cui sono rivolte le richieste del client ed
2513 il sistema non supporta l'opzione \const{IP\_RECVDSTADDR};\footnote{nel caso
2514   di Linux questa opzione è stata supportata per in certo periodo nello
2515   sviluppo del kernel 2.1.x, ma è in seguito stata soppiantata dall'uso di
2516   \const{IP\_PKTINFO} (vedi sez.~\ref{sec:sock_ipv4_options}).} in tale modo
2517 si può sapere a quale socket corrisponde un certo indirizzo.  Non ha senso
2518 fare questa operazione per un socket TCP dato che su di essi si può sempre
2519 invocare \func{getsockname} una volta che si è completata la connessione.
2520
2521 Infine il quarto caso è quello in cui si vuole effettivamente ottenere un
2522 \textit{completely duplicate binding}, quando cioè si vuole eseguire
2523 \func{bind} su un indirizzo ed una porta che sono già \textsl{legati} ad un
2524 altro socket.  Questo ovviamente non ha senso per il normale traffico di rete,
2525 in cui i pacchetti vengono scambiati direttamente fra due applicazioni; ma
2526 quando un sistema supporta il traffico in multicast, in cui una applicazione
2527 invia i pacchetti a molte altre (vedi sez.~\ref{sec:multicast_xxx}), allora ha
2528 senso che su una macchina i pacchetti provenienti dal traffico in multicast
2529 possano essere ricevuti da più applicazioni\footnote{l'esempio classico di
2530   traffico in multicast è quello di uno streaming di dati (audio, video,
2531   ecc.), l'uso del multicast consente in tal caso di trasmettere un solo
2532   pacchetto, che potrà essere ricevuto da tutti i possibili destinatari
2533   (invece di inviarne un duplicato a ciascuno); in questo caso è perfettamente
2534   logico aspettarsi che sulla stessa macchina più utenti possano lanciare un
2535   programma che permetta loro di ricevere gli stessi dati.} o da diverse
2536 istanze della stessa applicazione.
2537
2538 In questo caso utilizzando \const{SO\_REUSEADDR} si consente ad una
2539 applicazione eseguire \func{bind} sulla stessa porta ed indirizzo usata da
2540 un'altra, così che anche essa possa ricevere gli stessi pacchetti (chiaramente
2541 la cosa non ha alcun senso per i socket TCP, ed infatti in questo tipo di
2542 applicazione è normale l'uso del protovollo UDP). La regola è che quando si
2543 hanno più applicazioni che hanno eseguito \func{bind} sulla stessa porta, di
2544 tutti pacchetti destinati ad un indirizzo di broadcast o di multicast viene
2545 inviata una copia a ciascuna applicazione. Non è definito invece cosa accade
2546 qualora il pacchetto sia destinato ad un indirizzo normale (unicast).
2547
2548 Essendo questo un caso particolare in alcuni sistemi (come BSD) è stata
2549 introdotta una opzione ulteriore, \const{SO\_REUSEPORT} che richiede che detta
2550 opzione sia specificata per tutti i socket per i quali si vuole eseguire il
2551 \textit{completely duplicate binding}. Nel caso di Linux questa opzione non
2552 esiste, ma il comportamento di \const{SO\_REUSEADDR} è analogo, sarà cioè
2553 possibile effettuare un \textit{completely duplicate binding} ed ottenere il
2554 successo di \func{bind} su un socket legato allo stesso indirizzo e porta solo
2555 se il programma che ha eseguito per primo \func{bind} su di essi ha impostato
2556 questa opzione.\footnote{Questa restrizione permette di evitare il cosiddetto
2557   \textit{port stealing}, in cui un programma, usando \const{SO\_REUSEADDR},
2558   può collegarsi ad una porta già in uso e ricevere i pacchetti destinati ad
2559   un altro programma; con questa caratteristica ciò è possibile soltanto se il
2560   primo programma a consentirlo, avendo usato fin dall'inizio
2561   \const{SO\_REUSEADDR}.}  
2562
2563 \index{costante!{\tt SO\_REUSEADDR}|)}
2564
2565 \index{costante!{\tt SO\_LINGER}|(}
2566 \subsubsection{L'opzione \const{SO\_LINGER}}
2567
2568 La terza opzione da approfondire è \const{SO\_LINGER}; essa, come il nome
2569 suggerisce, consente di ``\textsl{indugiare}'' nella chiusura di un socket. Il
2570 comportamento standard sia di \func{close} che \func{shutdown} è infatti
2571 quello di terminare immediatamente dopo la chiamata, mentre il procedimento di
2572 chiusura della connessione (o di un lato di essa) ed il rispettivo invio sulla
2573 rete di tutti i dati ancora presenti nei buffer, viene gestito in sottofondo
2574 dal kernel.
2575
2576 \begin{figure}[!htb]
2577   \footnotesize \centering
2578   \begin{minipage}[c]{15cm}
2579     \includestruct{listati/linger.h}
2580   \end{minipage}
2581   \caption{La struttura \structd{linger} richiesta come valore dell'argomento
2582     \param{optval} per l'impostazione dell'opzione dei socket
2583     \const{SO\_LINGER}.}
2584   \label{fig:sock_linger_struct}
2585 \end{figure}
2586
2587 L'uso di \const{SO\_LINGER} con \func{setsockopt} permette di modificare (ed
2588 eventualmente ripristinare) questo comportamento in base ai valori passati nei
2589 campi della stuttura \struct{linger}, illustrata in
2590 fig.~\ref{fig:sock_linger_struct}.  Fintanto che il valore del campo
2591 \var{l\_onoff} di \struct{linger} è nullo la modalità che viene impostata
2592 (qualunque sia il valore di \var{l\_linger}) è quella standard appena
2593 illustrata; questa combinazione viene utilizzata per riportarsi al
2594 comportamento normale qualora esso sia stato cambiato da una precedente
2595 chiamata.
2596
2597 Se si utilizza un valore di \var{l\_onoff} diverso da zero, il comportamento
2598 alla chiusura viene a dipendere dal valore specificato per il campo
2599 \var{l\_linger}; se quest'ultimo è nullo l'uso delle funzioni \func{close} e
2600 \func{shutdown} provoca la terminazione immediata della connessione: nel caso
2601 di TCP cioè non viene eseguito il procedimento di chiusura illustrato in
2602 sez.~\ref{sec:TCP_conn_term}, ma tutti i dati ancora presenti nel buffer
2603 vengono immediatamente scartati e sulla rete viene inviato un segmento di RST
2604 che termina immediatamente la connessione.
2605
2606 Un esempio di questo comportamento si può abilitare nel nostro client del
2607 servizio \textit{echo} utilizzando l'opzione \texttt{-r}; riportiamo in
2608 fig.~\ref{fig:TCP_echo_sixth} la sezione di codice che permette di introdurre
2609 questa funzionalità,; al solito il codice completo è disponibile nei sorgenti
2610 allegati.
2611
2612 \begin{figure}[!htb] 
2613   \footnotesize \centering
2614   \begin{minipage}[c]{15cm}
2615     \includecodesample{listati/TCP_echo_sixth.c}
2616   \end{minipage}
2617   \normalsize
2618   \caption{La sezione del codice del client \textit{echo} che imposta la
2619     terminazione immediata della connessione in caso di chiusura.}
2620   \label{fig:TCP_echo_sixth}
2621 \end{figure}
2622
2623 La sezione indicata viene eseguita dopo aver effettuato la connessione e prima
2624 di chiamare la funzione di gestione, cioè fra le righe (\texttt{\small 12}) e
2625 (\texttt{\small 13}) del precedente esempio di fig.~\ref{fig:TCP_echo_fifth}.
2626 Il codice si limita semplicememente a controllare (\texttt{\small 3}) il
2627 valore della variabile \var{reset} che assegnata nella gestione delle opzioni
2628 in corrispondenza all'uso di \texttt{-r} nella chiamata del client. Nel caso
2629 questa sia diversa da zero vengono impostati (\texttt{\small 5--6}) i valori
2630 della struttura \var{ling} che permettono una terminazione immediata della
2631 connessine. Questa viene poi usata nella successiva (\texttt{\small 7})
2632 chiamata a \func{setsockopt}. Al solito si controlla (\texttt{\small 7--10})
2633 il valore di ritorno e si termina il programma in caso di errore, stampadone
2634 il valore.
2635
2636 Infine l'ultima possibilità, quella in cui si utilizza effettivamente
2637 \const{SO\_LINGER} per \textsl{indugiare} nella chiusura, è quella in cui sia
2638 \var{l\_onoff} che \var{l\_linger} hanno un valore diverso da zero. Se si
2639 esegue l'impostazione con questi valori sia \func{close} che \func{shutdown}
2640 si bloccano, nel frattempo viene eseguita la normale procedura di conclusione
2641 della connessione (quella di sez.~\ref{sec:TCP_conn_term}) ma entrambe le
2642 funzioni non ritornano fintanto che non si sia concluso il procedimento di
2643 chiusura della connessione, o non sia passato un numero di
2644 secondi\footnote{questa è l'unità di misura indicata da POSIX ed adottata da
2645   Linux, altri kernel possono usare unità di misura diverse, oppure usare il
2646   campo \var{l\_linger} come valore logico (ignorandone il valore) per rendere
2647   (quando diverso da zero) \func{close} e \func{shutdown} bloccanti fino al
2648   completamento della trasmissione dei dati sul buffer.}  pari al valore
2649 specificato in \var{l\_linger}.
2650
2651 \index{costante!{\tt SO\_LINGER}|)}
2652
2653
2654
2655
2656
2657 \subsection{Le opzioni per il protocollo IPv4}
2658 \label{sec:sock_ipv4_options}
2659
2660 Il secondo insieme di opzioni dei socket che tratteremo è quello relativo ai
2661 socket che usano il protocollo IPv4.\footnote{come per le precedenti opzioni
2662   generiche una descrizione di esse è disponibile nella settima sezione delle
2663   pagine di manuale, nel caso specifico la documentazione si può consultare
2664   con \texttt{man 7 ip}.}  Se si vuole operare su queste opzioni generiche il
2665 livello da utilizzare è \const{SOL\_IP}; si è riportato un elenco di queste
2666 opzioni in tab.~\ref{tab:sock_opt_iplevel}. Le costanti indicanti le opzioni e
2667 tutte le altre costanti ad esse collegate sono definite in
2668 \file{netinet/ip.h}, ed accessibili includendo detto file.
2669
2670
2671 \begin{table}[!htb]
2672   \centering
2673   \footnotesize
2674   \begin{tabular}[c]{|l|c|c|c|l|l|}
2675     \hline
2676     \textbf{Opzione}&\texttt{get}&\texttt{set}&\textbf{flag}&\textbf{Tipo}&
2677                     \textbf{Descrizione}\\
2678     \hline
2679     \hline
2680     \const{IP\_OPTIONS}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2681       Imposta o riceve le opzioni di IP.\\
2682     \const{IP\_PKTINFO}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2683       Passa un messaggio di informazione.\\
2684     \const{IP\_RECVTOS}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2685       Passa un messaggio col campo TOS.\\
2686     \const{IP\_RECVTTL}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2687       Passa un messaggio col campo TTL.\\
2688     \const{IP\_RECVOPTS}        &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2689       Passa un messaggio con le opzioni IP.\\
2690     \const{IP\_RETOPTS}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2691       Passa un messaggio con le opzioni IP non trattate.\\
2692     \const{IP\_TOS}             &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2693       Imposta il valore del campo TOS.\\
2694     \const{IP\_TTL}             &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2695       Imposta il valore del campo TTL.\\
2696     \const{IP\_HDRINCL}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2697       Passa l'intestazione di IP nei dati.\\
2698     \const{IP\_RECVERR}         &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2699       Abilita la gestione degli errori.\\
2700     \const{IP\_MTU\_DISCOVER}   &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2701       Imposta il Path MTU Discovery.\\
2702     \const{IP\_MTU}             &$\bullet$&       &$\bullet$&\texttt{int}& 
2703       Legge il valore attuale della MTU.\\
2704     \const{IP\_ROUTER\_ALERT}   &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2705       Imposta l'opzione \textit{IP router alert} sui pacchetti.\\
2706     \const{IP\_MULTICAST\_TTL}  &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2707       Imposta il TTL per i pacchetti multicast.\\
2708     \const{IP\_MULTICAST\_LOOP} &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2709       Controlla il reinvio a se stessi dei dati di multicast.\\ 
2710     \const{IP\_ADD\_MEMBERSHIP} &         &$\bullet$&$\bullet$&\texttt{int}& 
2711       Si unisce a un gruppo di multicast.\\
2712     \const{IP\_DROP\_MEMBERSHIP}&        &$\bullet$&$\bullet$&\texttt{int}& 
2713       Si sgancia da un gruppo di multicast.\\
2714     \const{IP\_MULTICAST\_IF}   &$\bullet$&$\bullet$&$\bullet$&\texttt{int}& 
2715       Imposta l'interfaccia locale di un socket multicast.\\ 
2716    \hline
2717   \end{tabular}
2718   \caption{Le opzioni disponibili al livello \const{SOL\_IP}.} 
2719   \label{tab:sock_opt_iplevel}
2720 \end{table}
2721
2722 Le descrizioni di tab.~\ref{tab:sock_opt_iplevel} sono estremamente succinte,
2723 una maggiore quantità di dettagli su queste opzioni è fornito nel seguente
2724 elenco:
2725 \begin{basedescript}{\desclabelwidth{2.5cm}\desclabelstyle{\nextlinelabel}}
2726
2727
2728 \item[\const{IP\_OPTIONS}] l'opzione permette di impostare o leggere le
2729   opzioni del protocollo IP (si veda sez.~\ref{sec:IP_options}). L'opzione
2730   prende come valore dell'argomento \param{optval} un puntatore ad un buffer
2731   dove sono mantenute le opzioni, mentre \param{optlen} indica la dimensione
2732   di quest'ultimo. Quando la si usa con \func{getsockopt} vengono lette le
2733   opzioni IP utilizzate per la spedizione, quando la si usa con
2734   \func{setsockopt} vengono impostate le opzioni specificate. L'uso di questa
2735   opzione richiede una profonda conoscenza del funzionamento del protocollo,
2736   torneremo in parte sull'argomento in sez.~\ref{sec:sock_advanced_xxx}.
2737
2738
2739 \item[\const{IP\_PKTINFO}] Quando abilitata l'opzione permette di ricevere
2740   insieme ai pacchetti un messaggio ancillare (vedi
2741   sez.~\ref{sec:TCP_ancillary_data}) di tipo \const{IP\_PKTINFO} contenente
2742   una struttura \struct{pktinfo} (vedi fig.~\ref{fig:sock_pktinfo_struct}) che
2743   mantiene una serie di informazioni riguardo i pacchetti in arrivo. In
2744   particolare è possibile conoscere l'interfaccia su cui è stato ricevuto un
2745   pacchetto (nel campo \var{ipi\_ifindex}), l'indirizzo locale da esso
2746   utilizzato (nel campo \var{ipi\_spec\_dst}) e l'indirizzo remoto dello
2747   stesso (nel campo \var{ipi\_addr}).
2748
2749 \begin{figure}[!htb]
2750   \footnotesize \centering
2751   \begin{minipage}[c]{15cm}
2752     \includestruct{listati/pktinfo.h}
2753   \end{minipage}
2754   \caption{La struttura \structd{pktinfo} usata dall'opzione
2755     \const{IP\_PKTINFO} per ricavare informazioni sui pacchetti di un socket
2756     di tipo \const{SOCK\_DGRAM}.}
2757   \label{fig:sock_pktinfo_struct}
2758 \end{figure}
2759
2760
2761 L'opzione è utilizzabile solo per socket di tipo \const{SOCK\_DGRAM}. Questa è
2762 una opzione introdotta con i kernel della serie 2.2.x, ed è specifica di
2763 Linux;\footnote{non dovrebbe pertanto essere utilizzata se si ha a cuore la
2764   portabilità.} essa permette di sostituire le opzioni \const{IP\_RECVDSTADDR}
2765 e \const{IP\_RECVIF} presenti in altri Unix (la relativa informazione è quella
2766 ottenibile rispettivamente dai campi \var{ipi\_addr} e \var{ipi\_ifindex} di
2767 \struct{pktinfo}). 
2768
2769
2770 \item[\const{IP\_RECVTOS}] Quando abilitata l'opzione permette di ricevere
2771   insieme ai pacchetti un messaggio ancillare di tipo \const{IP\_TOS}, che
2772   contiene un byte con il valore del campo \textit{Type of Service}
2773   dell'intestazione IP del pacchetto stesso (vedi sez.~\ref{sec:IP_header}).
2774   Prende per \param{optval} un intero usato come valore logico. 
2775
2776 \item[\const{IP\_RECVTTL}] Quando abilitata l'opzione permette di ricevere
2777   insieme ai pacchetti un messaggio ancillare di tipo \const{IP\_RECVTTL},
2778   contenente un byte con il valore del campo \textit{Time to Live}
2779   dell'intestazione IP (vedi sez.~\ref{sec:IP_header}).  L'opzione richiede
2780   per \param{optval} un intero usato come valore logico. L'opzione non è
2781   supportata per socket di tipo \const{SOCK\_STREAM}.
2782
2783 \item[\const{IP\_RECVOPTS}] Quando abilitata l'opzione permette di ricevere
2784   insieme ai pacchetti un messaggio ancillare di tipo \const{IP\_OPTIONS},
2785   contenente le opzioni IP del protocollo (vedi sez.~\ref{sec:IP_options}). Le
2786   intestazioni di instradamento e le altre opzioni sono già riempite con i
2787   dati locali. L'opzione richiede per \param{optval} un intero usato come
2788   valore logico.  L'opzione non è supportata per socket di tipo
2789   \const{SOCK\_STREAM}.
2790
2791 \item[\const{IP\_RETOPTS}] Identica alla precedente \const{IP\_RECVOPTS}, ma
2792   in questo caso restituisce i dati grezzi delle opzioni, senza che siano
2793   riempiti i capi di instradamento e le marche temporali.  L'opzione richiede
2794   per \param{optval} un intero usato come valore logico.  L'opzione non è
2795   supportata per socket di tipo \const{SOCK\_STREAM}.
2796
2797
2798 \item[\const{IP\_TOS}] L'opzione consente di leggere o impostare il campo
2799   \textit{Type of Service} dell'intestazione IP (vedi
2800   sez.~\ref{sec:IP_header}) che permette di indicare le priorità dei
2801   pacchetti.  Il campo TOS è di 8 bit e l'opzione richiede per \param{optval}
2802   un intero che ne contiene il valore. Sono definite anche alcune costanti che
2803   definiscono alcuni valori standardizzati per il \textit{Type of Service},
2804   riportate in tab.~\ref{tab:IP_TOS_values}, il valore di default usato da
2805   Linux è \const{IPTOS\_LOWDELAY}, ma esso può essere modificato con le
2806   funzionalità del cosiddetto \textit{Advanced Routing}. Si ricordi che la
2807   priorità dei pacchetti può essere impostata anche in maniera indipendente
2808   dal protocollo utilizzando l'opzione \const{SO\_PRIORITY} illustrata in
2809   sez.~\ref{sec:sock_generic_options}.
2810
2811
2812 \item[\const{IP\_TTL}] L'opzione consente di leggere o impostare il campo
2813   \textit{Time to Live} dell'intestazione IP (vedi sez.~\ref{sec:IP_header}).
2814   Il campo TTL è di 8 bit e l'opzione richiede che \param{optval} sia un
2815   intero, che ne conterrà il valore.
2816
2817
2818 \item[\const{IP\_HDRINCL}] Se abilitata l'utente deve fornire lui stesso
2819   l'intestazione IP in cima ai propri dati. L'opzione è valida soltanto per
2820   socket di tipo \const{SOCK\_RAW}, e quando utilizzata eventuali valori
2821   impostati con \const{IP\_OPTIONS}, \const{IP\_TOS} o \const{IP\_TTL} sono
2822   ignorati. In ogni caso prima della spedizione alcuni campi
2823   dell'instestazione vengono comunque modificati dal kernel, torneremo
2824   sull'argomento in sez.~\ref{sec:socket_raw_xxx}
2825
2826
2827 \item[\const{IP\_RECVERR}] Questa è una opzione introdotta con i kernel della
2828   serie 2.2.x, ed è specifica di Linux. Essa permette di usufruire di un
2829   meccanismo affidabile per ottenere un maggior numero di informazioni in caso
2830   di errori. Se l'opzione è abilitata tutti gli errori generati su un socket
2831   vengono memorizzati su una coda, dalla quale poi possono essere letti con
2832   \func{recvmsg} (torneremo su questo in sez.~\ref{sec:TCP_ancillary_data}).
2833   L'opzione richiede per \param{optval} un intero usato come valore logico;
2834   l'opzione non è applicabile a socket di tipo \const{SOCK\_STREAM}.
2835
2836 \item[\const{IP\_MTU\_DISCOVER}] Questa è una opzione introdotta con i kernel
2837   della serie 2.2.x, ed è specifica di Linux.  L'opzione permette di scrivere
2838   o leggere le impostazioni usate nella determinazione della \textit{Maximum
2839     Tranfer Unit} (vedi sez.~\ref{sec:net_lim_dim}) per il socket. Il valore
2840   di default è determinato dal parametro \texttt{ip\_no\_pmtu\_disc} di
2841   \func{sysctl}.
2842
2843 \item[\const{IP\_MTU}] Permette di leggere il valore della \textit{Maximum
2844     Tranfer Unit} di percorso del socket.  L'opzione richiede per
2845   \param{optval} un intero che conterrà il valore della MTU in byte.  Questa è
2846   una opzione introdotta con i kernel della serie 2.2.x, ed è specifica di
2847   Linux.
2848
2849 \item[\const{IP\_ROUTER\_ALERT}] Questa è una opzione introdotta con i kernel
2850   della serie 2.2.x, ed è specifica di Linux.
2851
2852 \item[\const{IP\_MULTICAST\_TTL}] L'opzione permette di impostare o leggere il
2853   valore del campo TTL per i pacchetti in uscita associati al socket. È
2854   importante che questo valore sia il più basso possibile, ed il default è 1,
2855   che significa che i pacchetti non potranno uscire dalla rete locale. Questa
2856   opzione consente ai programmi che lo richiedono di superare questo limite.
2857   L'opzione richiede per \param{optval} un intero che conterrà il valore del
2858   TTL.
2859
2860 \item[\const{IP\_MULTICAST\_LOOP}] L'opzione consente di decidere se i dati
2861   che si inviano su un socket usato con il multicast vengano ricevuti anche
2862   sulla stessa macchina da cui li si stanno inviando.  Prende per
2863   \param{optval} un intero usato come valore logico. 
2864
2865   In generale se si vuole che eventuali client possano ricevere i dati che si
2866   inviano occorre che questa funzionalità sia abilitata (come avviene di
2867   default). Qualora però non si voglia generare traffico per dati che già sono
2868   disponibili in locale l'uso di questa opzione permette di disabilitare
2869   questo tipo di traffico.
2870
2871 \item[\const{IP\_ADD\_MEMBERSHIP}] L'opzione consente di unirsi ad gruppo di
2872   multicast, e può essere usata solo con \func{setsockopt}. L'argomento
2873   \param{optval} in questo caso deve essere una struttura di tipo
2874   \struct{ip\_mreqn}, illustrata in fig.~\ref{fig:ip_mreqn_struct}, che
2875   permette di indicare, con il campo \var{imr\_multiaddr} l'indirizzo del
2876   gruppo di multicast a cui ci si vuole unire, con il campo \var{imr\_address}
2877   l'indirizzo dell'interfaccia locale con cui unirsi al gruppo di multicast e
2878   con \var{imr\_ifindex} l'indice dell'interfaccia da utilizzare (un valore
2879   nullo indica una interfaccia qualunque).  
2880
2881   Per compatibilità è possibile utilizzare anche un argomento di tipo
2882   \struct{ip\_mreq}, una precedente versione di \struct{ip\_mreqn}, che
2883   differisce da essa soltanto per l'assenza del campo \var{imr\_ifindex}.
2884
2885 \begin{figure}[!htb]
2886   \footnotesize \centering
2887   \begin{minipage}[c]{15cm}
2888     \includestruct{listati/ip_mreqn.h}
2889   \end{minipage}
2890   \caption{La struttura \structd{ip\_mreqn} utilizzata dalle opzioni dei socket
2891     per le operazioni concernenti l'appartenenza ai gruppi di multicast.}
2892   \label{fig:ip_mreqn_struct}
2893 \end{figure}
2894
2895
2896
2897
2898 \item[\const{IP\_DROP\_MEMBERSHIP}]
2899
2900 \item[\const{IP\_MULTICAST\_IF}] 
2901
2902
2903 \end{basedescript}
2904
2905
2906
2907
2908
2909 \section{Altre funzioni di controllo}
2910 \label{sec:sock_ctrl_func}
2911
2912 Benché la maggior parte delle caratteristiche dei socket sia gestita
2913 attraverso le due funzioni \func{setsockopt} e \func{getsockopt}, alcune
2914 funzionalità possono essere impostate attraverso quelle che sono le funzioni
2915 classiche per il controllo delle proprietà dei file, cioè \func{fcntl} e
2916 \func{ioctl}. 
2917
2918
2919 \subsection{L'uso di \func{fcntl} per i socket}
2920 \label{sec:sock_fcntl}
2921
2922 Abbiamo già trattato l'uso di \func{fcntl} in sez.~\ref{sec:file_fcntl}, dove
2923 però ne abbiamo descritto le funzionalità nell'ambito della sua applicazione a
2924 file descriptor associati a file normali; tratteremo qui invece il suo uso
2925 specifico quando la si impiega su file descriptor associati a dei socket. 
2926
2927
2928 \subsection{L'uso di \func{ioctl} per i socket}
2929 \label{sec:sock_ioctl}
2930
2931 Come per \func{fcntl} abbiamo trattato l'uso di \func{ioctl} in
2932 sez.~\ref{sec:file_ioctl}, dove ne abbiamo descritto le funzionalità
2933 nell'ambito dell'applicazione su file normali; tratteremo qui il suo uso
2934 specifico quando la si impiega su file descriptor associati a dei socket. 
2935
2936
2937 \subsection{L'uso di \func{sysctl} per le proprietà della rete}
2938 \label{sec:sock_sysctl}
2939
2940 Come ultimo argomento di questa sezione tratteremo l'uso della funzione
2941 \func{sysctl} (che è stata introdotta nelle sue funzionalità generiche in
2942 sez.~\ref{sec:sys_sysctl}) per quanto riguarda le sue capacità di effettuare
2943 impostazioni relative alle proprietà dei socket. La differenza nell'uso di
2944 \func{sysctl} rispetto alle funzioni viste finora è che esse consentono di
2945 controllare le proprietà di un singolo socket, mentre con \func{sysctl} si
2946 impostano proprietà (o valori di default) validi a livello dell'intero
2947 sistema.
2948
2949 Le opzioni disponibili per le proprietà della rete sono riportate nella
2950 gerarchia dei valori impostabili con \func{sysctl}, sotto il nodo
2951 \texttt{net}, o, se acceduti tramite l'interfaccia del filesystem
2952 \texttt{/proc}, sotto \texttt{/proc/sys/net}. In genere sotto questa directory
2953 compaiono le sottodirectory (corrispondenti ad altrettanti sottonodi per
2954 \func{sysctl}) relative ai vari protocolli e tipi di interfacce su cui è
2955 possibile intervenire per effettuare impostazioni; un contenuto tipico di
2956 questa directory è il seguente:
2957 \begin{verbatim}
2958 /proc/sys/net/
2959 |-- core
2960 |-- ethernet
2961 |-- ipv4
2962 |-- ipv6
2963 |-- irda
2964 |-- token-ring
2965 `-- unix
2966 \end{verbatim}
2967 e sono presenti varie centinaia di diversi parametri; nel nostro caso ci
2968 limiteremo a vedere quelli più significativi.
2969
2970 Nella directory \texttt{/proc/sys/net/core} sono disponibili i parametri
2971 generici validi per tutti i socket, quelli descritti anche nella rispettiva
2972 pagina di manuale.\footnote{quella accessibile con \texttt{man 7 socket}.}
2973 I principali sono:
2974
2975 \begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
2976 \item[\texttt{rmem\_default}] imposta la dimensione di default del buffer di
2977   lettura (cioè per i dati in ingresso) dei socket.
2978 \item[\texttt{rmem\_max}] imposta la dimensione massima che si può assegnare al
2979   buffer di ingresso dei socket attraverso l'uso dell'opzione
2980   \const{SO\_RCVBUF}.
2981 \item[\texttt{wmem\_default}] imposta la dimensione di default del buffer di
2982   scrittura (cioè per i dati in uscita) dei socket.
2983 \item[\texttt{wmem\_max}] imposta la dimensione massima che si può assegnare al
2984   buffer di uscita dei socket attraverso l'uso dell'opzione
2985   \const{SO\_SNDBUF}.
2986 \item[\texttt{message\_cost}] 
2987 \item[\texttt{message\_burst}] 
2988 \item[\texttt{netdev\_max\_backlog}] 
2989 \item[\texttt{optmem\_max}] 
2990 \end{basedescript}
2991
2992 Nella directory \texttt{/proc/sys/net/ipv4} sono disponibili i parametri per i
2993 socket IPv4, descritti anche nella rispettiva pagina di
2994 manuale.\footnote{quella accessibile con \texttt{man 7 ip}.} I principali
2995 sono:
2996 \begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
2997 \item[\texttt{ip\_no\_pmtu\_disc}] imposta la discliplina di ricerca della
2998   \textit{Path MTU} (vedi sez.~\ref{sec:net_lim_dim} e
2999   sez.~\ref{sec:sock_ipv4_options}).
3000 \end{basedescript}
3001
3002
3003
3004 %%% Local Variables: 
3005 %%% mode: latex
3006 %%% TeX-master: "gapil"
3007 %%% End: