Correzione ortografica
[gapil.git] / signal.tex
1 \chapter{I segnali}
2 \label{cha:signals}
3
4 I segnali sono il primo e più semplice meccanismo di comunicazione nei
5 confronti dei processi. Nella loro versione originale essi portano con sé
6 nessuna informazione che non sia il loro tipo; si tratta in sostanza di
7 un'interruzione software portata ad un processo.
8
9 In genere essi vengono usati dal kernel per riportare ai processi situazioni
10 eccezionali (come errori di accesso, eccezioni aritmetiche, etc.) ma possono
11 anche essere usati come forma elementare di comunicazione fra processi (ad
12 esempio vengono usati per il controllo di sessione), per notificare eventi
13 (come la terminazione di un processo figlio), ecc.
14
15 In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
16 partendo da una introduzione relativa ai concetti base con cui essi vengono
17 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
18 di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
19 gestione avanzate e le estensioni fatte all'interfaccia classica nelle nuovi
20 versioni dello standard POSIX.
21
22
23 \section{Introduzione}
24 \label{sec:sig_intro}
25
26 In questa sezione esamineremo i concetti generali relativi ai segnali, vedremo
27 le loro caratteristiche di base, introdurremo le nozioni di fondo relative
28 all'architettura del funzionamento dei segnali e alle modalità con cui il
29 sistema gestisce l'interazione fra di essi ed i processi.
30
31
32 \subsection{I concetti base}
33 \label{sec:sig_base}
34
35 Come il nome stesso indica i segnali sono usati per notificare ad un processo
36 l'occorrenza di un qualche evento. Gli eventi che possono generare un segnale
37 sono vari; un breve elenco di possibili cause per l'emissione di un segnale è
38 il seguente:
39
40 \begin{itemize*}
41 \item un errore del programma, come una divisione per zero o un tentativo di
42   accesso alla memoria fuori dai limiti validi.
43 \item la terminazione di un processo figlio.
44 \item la scadenza di un timer o di un allarme.
45 \item il tentativo di effettuare un'operazione di input/output che non può
46   essere eseguita.
47 \item una richiesta dell'utente di terminare o fermare il programma. In genere
48   si realizza attraverso un segnale mandato dalla shell in corrispondenza
49   della pressione di tasti del terminale come \code{C-c} o
50   \code{C-z}.\footnote{indichiamo con \code{C-x} la pressione simultanea al
51     tasto \code{x} del tasto control (ctrl in molte tastiere).}
52 \item l'esecuzione di una \func{kill} o di una \func{raise} da parte del
53   processo stesso o di un'altro (solo nel caso della \func{kill}).
54 \end{itemize*}
55
56 Ciascuno di questi eventi (compresi gli ultimi due che pure sono controllati
57 dall'utente o da un altro processo) comporta l'intervento diretto da parte del
58 kernel che causa la generazione un particolare tipo di segnale.
59
60 Quando un processo riceve un segnale, invece del normale corso del programma,
61 viene eseguita una azione predefinita o una apposita routine di gestione
62 (quello che da qui in avanti chiameremo il \textsl{gestore} del segnale,
63 dall'inglese\textit{signal handler}) che può essere stata specificata
64 dall'utente (nel qual caso si dice che si \textsl{intercetta} il segnale).
65
66
67 \subsection{Le \textsl{semantiche} del funzionamento dei segnali}
68 \label{sec:sig_semantics}
69
70 Negli anni il comportamento del sistema in risposta ai segnali è stato
71 modificato in vari modi nelle differenti implementazioni di Unix.  Si possono
72 individuare due tipologie fondamentali di comportamento dei segnali (dette
73 \textsl{semantiche}) che vengono chiamate rispettivamente \textsl{semantica
74   affidabile} (o \textit{reliable}) e \textsl{semantica inaffidabile} (o
75 \textit{unreliable}).
76
77 Nella \textsl{semantica inaffidabile} (quella implementata dalle prime
78 versioni di Unix) la routine di gestione del segnale specificata dall'utente
79 non resta attiva una volta che è stata eseguita; è perciò compito dell'utente
80 stesso ripetere l'installazione all'interno del \textsl{gestore} del segnale,
81 in tutti quei casi in cui si vuole che esso resti attivo.
82
83 In questo caso è possibile una situazione in cui i segnali possono essere
84 perduti. Si consideri il segmento di codice riportato in
85 \secref{fig:sig_old_handler}, nel programma principale viene installato un
86 gestore (\texttt{\small 5}), ed in quest'ultimo la prima operazione
87 (\texttt{\small 11}) è quella di reinstallare se stesso. Se nell'esecuzione
88 del gestore un secondo segnale arriva prima che esso abbia potuto eseguire la
89 reinstallazione, verrà eseguito il comportamento predefinito assegnato al
90 segnale stesso, il che può comportare, a seconda dei casi, che il segnale
91 viene perso (se l'impostazione predefinita era quello di ignorarlo) o la
92 terminazione immediata del processo; in entrambi i casi l'azione prevista non
93 verrà eseguita.
94
95 \begin{figure}[!htb]
96   \footnotesize \centering
97   \begin{minipage}[c]{15cm}
98     \begin{lstlisting}{}
99 int sig_handler();            /* handler function */
100 int main()
101 {
102     ...
103     signal(SIGINT, sig_handler);  /* establish handler */
104     ...
105 }
106
107 int sig_handler() 
108 {
109     signal(SIGINT, sig_handler);  /* restablish handler */
110     ...                           /* process signal */
111 }
112     \end{lstlisting}
113   \end{minipage} 
114   \normalsize 
115   \caption{Esempio di codice di un gestore di segnale per la semantica
116     inaffidabile.} 
117   \label{fig:sig_old_handler}
118 \end{figure}
119
120 Questa è la ragione per cui l'implementazione dei segnali secondo questa
121 semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
122 segnale e la reinstallazione del suo gestore non sono operazioni
123 atomiche, e sono sempre possibili delle race condition\index{race condition}
124 (sull'argomento vedi quanto detto in \secref{sec:proc_multi_prog}).
125
126 Un'altro problema è che in questa semantica non esiste un modo per bloccare i
127 segnali quando non si vuole che arrivino; i processi possono ignorare il
128 segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
129 di un segnale, pur mantenendo memoria del fatto che è avvenuto.
130
131 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
132 moderno) il gestore una volta installato resta attivo e non si hanno
133 tutti i problemi precedenti. In questa semantica i segnali vengono
134 \textsl{generati} dal kernel per un processo all'occorrenza dell'evento che
135 causa il segnale. In genere questo viene fatto dal kernel impostando l'apposito
136 campo della \var{task\_struct} del processo nella process table (si veda
137 \figref{fig:proc_task_struct}).
138
139 Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
140 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
141 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
142 esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
143 procedura viene effettuata dallo scheduler quando, riprendendo l'esecuzione
144 del processo in questione, verifica la presenza del segnale nella
145 \var{task\_struct} e mette in esecuzione il gestore.
146
147 In questa semantica un processo ha la possibilità di bloccare la consegna dei
148 segnali, in questo caso, se l'azione per il suddetto segnale non è quella di
149 ignorarlo, il segnale resta \textsl{pendente} fintanto che il processo non lo
150 sblocca (nel qual caso viene consegnato) o imposta l'azione corrispondente per
151 ignorarlo.
152
153 Si tenga presente che il kernel stabilisce cosa fare con un segnale che è
154 stato bloccato al momento della consegna, non quando viene generato; questo
155 consente di cambiare l'azione per il segnale prima che esso venga consegnato,
156 e si può usare la funzione \func{sigpending} (vedi \secref{sec:sig_sigmask})
157 per determinare quali segnali sono bloccati e quali sono pendenti.
158
159
160 \subsection{Tipi di segnali}
161 \label{sec:sig_types}
162
163 In generale gli eventi che generano segnali si possono dividere in tre
164 categorie principali: errori, eventi esterni e richieste esplicite.
165
166 Un errore significa che un programma ha fatto qualcosa di sbagliato e non può
167 continuare ad essere eseguito. Non tutti gli errori causano dei segnali, in
168 genere la condizione di errore più comune comporta la restituzione di un
169 codice di errore da parte di una funzione di libreria, sono gli errori che
170 possono avvenire ovunque in un programma che causano l'emissione di un
171 segnale, come le divisioni per zero o l'uso di indirizzi di memoria non validi.
172
173 Un evento esterno ha in genere a che fare con l'I/O o con altri processi;
174 esempi di segnali di questo tipo sono quelli legati all'arrivo di dati di
175 input, scadenze di un timer, terminazione di processi figli.
176
177 Una richiesta esplicita significa l'uso di una chiamata di sistema (come
178 \func{kill} o \func{raise}) per la generazione di un segnale, cosa che
179 viene fatta usualmente dalla shell quando l'utente invoca la sequenza di tasti
180 di stop o di suspend, ma può essere pure inserita all'interno di un programma.
181
182 Si dice poi che i segnali possono essere \textsl{asincroni} o
183 \textsl{sincroni}. Un segnale \textsl{sincrono} è legato ad una azione
184 specifica di un programma ed è inviato (a meno che non sia bloccato) durante
185 tale azione; molti errori generano segnali \textsl{sincroni}, così come la
186 richiesta esplicita da parte del processo tramite le chiamate al sistema.
187 Alcuni errori come la divisione per zero non sono completamente sincroni e
188 possono arrivare dopo qualche istruzione.
189
190 I segnali \textsl{asincroni} sono generati da eventi fuori dal controllo del
191 processo che li riceve, e arrivano in tempi impredicibili nel corso
192 dell'esecuzione del programma. Eventi esterni come la terminazione di un
193 processo figlio generano segnali \textsl{asincroni}, così come le richieste di
194 generazione di un segnale effettuate da altri processi.
195
196 In generale un tipo di segnale o è sincrono o è asincrono, salvo il caso in
197 cui esso sia generato attraverso una richiesta esplicita tramite chiamata al
198 sistema, nel qual caso qualunque tipo di segnale (quello scelto nella
199 chiamata) può diventare sincrono o asincrono a seconda che sia generato
200 internamente o esternamente al processo.
201
202
203 \subsection{La notifica dei segnali}
204 \label{sec:sig_notification}
205
206 Come accennato quando un segnale viene generato, se la sua azione predefinita
207 non è quella di essere ignorato, il kernel prende nota del fatto nella
208 \var{task\_struct} del processo; si dice così che il segnale diventa
209 \textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
210 verrà notificato al processo (o verrà specificata come azione quella di
211 ignorarlo).
212
213 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
214 avviene non appena questo viene rimesso in esecuzione dallo scheduler che
215 esegue l'azione specificata. Questo a meno che il segnale in questione non sia
216 stato bloccato prima della notifica, nel qual caso l'invio non avviene ed il
217 segnale resta \textsl{pendente} indefinitamente. Quando lo si sblocca il
218 segnale \textsl{pendente} sarà subito notificato.
219
220 Si ricordi però che se l'azione specificata per un segnale è quella di essere
221 ignorato questo sarà scartato immediatamente al momento della sua generazione,
222 e questo anche se in quel momento il segnale è bloccato (perché ciò che viene
223 bloccata è la notifica). Per questo motivo un segnale, fintanto che viene
224 ignorato, non sarà mai notificato, anche se è stato bloccato ed in seguito si
225 è specificata una azione diversa (nel qual caso solo i segnali successivi alla
226 nuova specificazione saranno notificati).
227
228 Una volta che un segnale viene notificato (che questo avvenga subito o dopo
229 una attesa più o meno lunga) viene eseguita l'azione specificata per il
230 segnale. Per alcuni segnali (\macro{SIGKILL} e \macro{SIGSTOP}) questa azione
231 è fissa e non può essere cambiata, ma per tutti gli altri si può selezionare
232 una  delle tre possibilità seguenti:
233
234 \begin{itemize*}
235 \item ignorare il segnale.
236 \item catturare il segnale, ed utilizzare il gestore specificato.
237 \item accettare l'azione predefinita per quel segnale.
238 \end{itemize*}
239
240 Un programma può specificare queste scelte usando le due funzioni
241 \func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
242 \secref{sec:sig_sigaction}). Se si è installato un gestore sarà
243 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
244 farà si che mentre viene eseguito il gestore di un segnale, quest'ultimo
245 venga automaticamente bloccato (così si possono evitare race
246 condition\index{race condition}).
247
248 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
249 standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
250 segnale; nella maggior parte dei casi essa porta alla terminazione del
251 processo, ma alcuni segnali che rappresentano eventi innocui vengono ignorati.
252
253 Quando un segnale termina un processo, il padre può determinare la causa della
254 terminazione esaminando il codice di stato riportato delle funzioni
255 \func{wait} e \func{waitpid} (vedi \secref{sec:proc_wait}); questo è il modo
256 in cui la shell determina i motivi della terminazione di un programma e scrive
257 un eventuale messaggio di errore.
258
259 I segnali che rappresentano errori del programma (divisione per zero o
260 violazioni di accesso) hanno anche la caratteristica di scrivere un file di
261 \textit{core dump} che registra lo stato del processo (ed in particolare della
262 memoria e dello stack) prima della terminazione.  Questo può essere esaminato
263 in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
264 avviene se i suddetti segnale vengono generati con una \func{kill}.
265
266
267 \section{La classificazione dei segnali}
268 \label{sec:sig_classification}
269
270 Esamineremo in questa sezione quali sono i vari segnali definiti nel sistema,
271 le loro caratteristiche e tipologia, le varie macro e costanti che permettono
272 di identificarli, e le funzioni che ne stampano la descrizione.
273
274
275 \subsection{I segnali standard}
276 \label{sec:sig_standard}
277
278 Ciascun segnale è identificato rispetto al sistema da un numero, ma l'uso
279 diretto di questo numero da parte dei programmi è da evitare, in quanto esso
280 può variare a seconda dell'implementazione del sistema, e nel caso si Linux,
281 anche a seconda dell'architettura hardware. 
282 Per questo motivo ad ogni segnale viene associato un nome, definendo con una
283 macro di preprocessore una costante uguale al suddetto numero. Sono questi
284 nomi, che sono standardizzati e sostanzialmente uniformi rispetto alle varie
285 implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
286 che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
287
288 Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
289 che i numeri dei segnali sono allocati progressivamente, essa corrisponde
290 anche al successivo del valore numerico assegnato all'ultimo segnale definito.
291 In \tabref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
292 definiti in Linux (estratto dalle pagine di manuale), comparati con quelli
293 definiti in vari standard.
294
295 \begin{table}[htb]
296   \footnotesize
297   \centering
298   \begin{tabular}[c]{|c|p{8cm}|}
299     \hline
300     \textbf{Sigla} & \textbf{Significato} \\
301     \hline
302     \hline
303     A & L'azione predefinita è terminare il processo. \\
304     B & L'azione predefinita è ignorare il segnale. \\
305     C & L'azione predefinita è terminare il processo e scrivere un \textit{core
306         dump}. \\
307     D & L'azione predefinita è fermare il processo. \\
308     E & Il segnale non può essere intercettato. \\
309     F & Il segnale non può essere ignorato.\\
310     \hline
311   \end{tabular}
312   \caption{Legenda delle azioni predefinite dei segnali riportate in 
313     \tabref{tab:sig_signal_list}.}
314   \label{tab:sig_action_leg}
315 \end{table}
316
317 In \tabref{tab:sig_signal_list} si sono anche riportate le azioni predefinite
318 di ciascun segnale (riassunte con delle lettere, la cui legenda completa è in
319 \tabref{tab:sig_action_leg}), quando nessun gestore è installato un
320 segnale può essere ignorato o causare la terminazione del processo. Nella
321 colonna standard sono stati indicati anche gli standard in cui ciascun segnale
322 è definito, secondo lo schema di \tabref{tab:sig_standard_leg}.
323
324
325 \begin{table}[htb]
326   \footnotesize
327   \centering
328   \begin{tabular}[c]{|c|l|}
329     \hline
330     \textbf{Sigla} & \textbf{Standard} \\
331     \hline
332     \hline
333     P & POSIX. \\
334     B & BSD. \\
335     L & Linux.\\
336     S & SUSv2.\\
337     \hline
338   \end{tabular}
339   \caption{Legenda dei valori della colonna \textbf{Standard} di 
340     \tabref{tab:sig_signal_list}.}
341   \label{tab:sig_standard_leg}
342 \end{table}
343
344 In alcuni casi alla terminazione del processo è associata la creazione di un
345 file (posto nella directory corrente del processo e chiamato \file{core}) su
346 cui viene salvata un'immagine della memoria del processo (il cosiddetto
347 \textit{core dump}), che può essere usata da un debugger per esaminare lo
348 stato dello stack e delle variabili al momento della ricezione del segnale.
349
350 \begin{table}[htb]
351   \footnotesize
352   \centering
353   \begin{tabular}[c]{|l|c|c|p{8cm}|}
354     \hline
355     \textbf{Segnale} &\textbf{Standard}&\textbf{Azione}&\textbf{Descrizione} \\
356     \hline
357     \hline
358     \macro{SIGHUP}   &PL & A & Hangup o terminazione del processo di 
359                                controllo                                     \\
360     \macro{SIGINT}   &PL & A & Interrupt da tastiera (\cmd{C-c})             \\
361     \macro{SIGQUIT}  &PL & C & Quit da tastiera (\cmd{C-y})                  \\
362     \macro{SIGILL}   &PL & C & Istruzione illecita                           \\
363     \macro{SIGABRT}  &PL & C & Segnale di abort da \func{abort}              \\
364     \macro{SIGFPE}   &PL & C & Errore aritmetico                             \\
365     \macro{SIGKILL}  &PL &AEF& Segnale di terminazione forzata               \\
366     \macro{SIGSEGV}  &PL & C & Errore di accesso in memoria                  \\
367     \macro{SIGPIPE}  &PL & A & Pipe spezzata                                 \\
368     \macro{SIGALRM}  &PL & A & Segnale del timer da \func{alarm}             \\
369     \macro{SIGTERM}  &PL & A & Segnale di terminazione \verb|C-\|            \\
370     \macro{SIGUSR1}  &PL & A & Segnale utente numero 1                       \\
371     \macro{SIGUSR2}  &PL & A & Segnale utente numero 2                       \\
372     \macro{SIGCHLD}  &PL & B & Figlio terminato o fermato                    \\
373     \macro{SIGCONT}  &PL &   & Continua se fermato                           \\
374     \macro{SIGSTOP}  &PL &DEF& Ferma il processo                             \\
375     \macro{SIGTSTP}  &PL & D & Pressione del tasto di stop sul terminale     \\
376     \macro{SIGTTIN}  &PL & D & Input sul terminale per un processo 
377                                in background                                 \\
378     \macro{SIGTTOU}  &PL & D & Output sul terminale per un processo          
379                                in background                                 \\
380     \macro{SIGBUS}   &SL & C & Errore sul bus (bad memory access)            \\
381     \macro{SIGPOLL}  &SL & A & \textit{Pollable event} (Sys V).  
382                                Sinonimo di \macro{SIGIO}                     \\
383     \macro{SIGPROF}  &SL & A & Timer del profiling scaduto                   \\
384     \macro{SIGSYS}   &SL & C & Argomento sbagliato per una subroutine (SVID) \\
385     \macro{SIGTRAP}  &SL & C & Trappole per un Trace/breakpoint              \\
386     \macro{SIGURG}   &SLB& B & Ricezione di una urgent condition su un socket\\
387     \macro{SIGVTALRM}&SLB& A & Virtual alarm clock                           \\
388     \macro{SIGXCPU}  &SLB& C & Ecceduto il limite sul CPU time               \\
389     \macro{SIGXFSZ}  &SLB& C & Ecceduto il limite sulla dimensione dei file  \\
390     \macro{SIGIOT}   &L  & C & IOT trap. Sinonimo di \macro{SIGABRT}         \\
391     \macro{SIGEMT}   &L  &   &                                               \\
392     \macro{SIGSTKFLT}&L  & A & Errore sullo stack del coprocessore           \\
393     \macro{SIGIO}    &LB & A & L'I/O è possibile (4.2 BSD)                   \\
394     \macro{SIGCLD}   &L  &   & Sinonimo di \macro{SIGCHLD}                   \\
395     \macro{SIGPWR}   &L  & A & Fallimento dell'alimentazione                 \\
396     \macro{SIGINFO}  &L  &   & Sinonimo di \macro{SIGPWR}                    \\
397     \macro{SIGLOST}  &L  & A & Perso un lock sul file (per NFS)              \\
398     \macro{SIGWINCH} &LB & B & Finestra ridimensionata (4.3 BSD, Sun)        \\
399     \macro{SIGUNUSED}&L  & A & Segnale inutilizzato (diventerà 
400                                \macro{SIGSYS})                               \\
401     \hline
402   \end{tabular}
403   \caption{Lista dei segnali in Linux.}
404   \label{tab:sig_signal_list}
405 \end{table}
406
407 La descrizione dettagliata del significato dei vari segnali, raggruppati per
408 tipologia, verrà affrontate nei paragrafi successivi.
409
410
411 \subsection{Segnali di errore di programma}
412 \label{sec:sig_prog_error}
413
414 Questi segnali sono generati quando il sistema, o in certi casi direttamente
415 l'hardware (come per i \textit{page fault} non validi) rileva un qualche
416 errore insanabile nel programma in esecuzione. In generale la generazione di
417 questi segnali significa che il programma ha dei gravi problemi (ad esempio ha
418 dereferenziato un puntatore non valido o ha eseguito una operazione aritmetica
419 proibita) e l'esecuzione non può essere proseguita.
420
421 In genere si intercettano questi segnali per permettere al programma di
422 terminare in maniera pulita, ad esempio per ripristinare le impostazioni della
423 console o eliminare i file di lock prima dell'uscita.  In questo caso il
424 gestore deve concludersi ripristinando l'azione predefinita e rialzando il
425 segnale, in questo modo il programma si concluderà senza effetti spiacevoli,
426 ma riportando lo stesso stato di uscita che avrebbe avuto se il gestore non ci
427 fosse stato.
428
429 L'azione predefinita per tutti questi segnali è causare la terminazione del
430 processo che li ha causati. In genere oltre a questo il segnale provoca pure
431 la registrazione su disco di un file di \textit{core dump} che viene scritto
432 in un file \file{core} nella directory corrente del processo al momento
433 dell'errore, che il debugger può usare per ricostruire lo stato del programma
434 al momento della terminazione.
435
436 Questi segnali sono:
437 \begin{basedescript}{\desclabelwidth{2.0cm}}
438 \item[\macro{SIGFPE}] Riporta un errore aritmetico fatale. Benché il nome
439   derivi da \textit{floating point exception} si applica a tutti gli errori
440   aritmetici compresa la divisione per zero e l'overflow. 
441   
442   Se il gestore ritorna il comportamento del processo è indefinito, ed
443   ignorare questo segnale può condurre ad un ciclo infinito.
444
445 %   Per questo segnale le cose sono complicate dal fatto che possono esserci
446 %   molte diverse eccezioni che \texttt{SIGFPE} non distingue, mentre lo
447 %   standard IEEE per le operazioni in virgola mobile definisce varie eccezioni
448 %   aritmetiche e richiede che esse siano notificate.  
449   
450 \item[\macro{SIGILL}] Il nome deriva da \textit{illegal instruction},
451   significa che il programma sta cercando di eseguire una istruzione
452   privilegiata o inesistente, in generale del codice illecito. Poiché il
453   compilatore del C genera del codice valido si ottiene questo segnale se il
454   file eseguibile è corrotto o si stanno cercando di eseguire dei dati.
455   Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
456   posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
457   una variabile locale, andando a corrompere lo stack. Lo stesso segnale viene
458   generato in caso di overflow dello stack o di problemi nell'esecuzione di un
459   gestore. Se il gestore ritorna il comportamento del processo è
460   indefinito.
461 \item[\macro{SIGSEGV}] Il nome deriva da \textit{segment violation}, e
462   significa che il programma sta cercando di leggere o scrivere in una zona di
463   memoria protetta al di fuori di quella che gli è stata riservata dal
464   sistema. In genere è il meccanismo della protezione della memoria che si
465   accorge dell'errore ed il kernel genera il segnale.  Se il gestore
466   ritorna il comportamento del processo è indefinito.
467
468   È tipico ottenere questo segnale dereferenziando un puntatore nullo o non
469   inizializzato leggendo al di la della fine di un vettore. 
470 \item[\macro{SIGBUS}] Il nome deriva da \textit{bus error}. Come
471   \macro{SIGSEGV} questo è un segnale che viene generato di solito quando si
472   dereferenzia un puntatore non inizializzato, la differenza è che
473   \macro{SIGSEGV} indica un accesso non permesso su un indirizzo esistente
474   (tipo fuori dallo heap o dallo stack), mentre \macro{SIGBUS} indica
475   l'accesso ad un indirizzo non valido, come nel caso di un puntatore non
476   allineato.
477 \item[\macro{SIGABRT}] Il nome deriva da \textit{abort}. Il segnale indica che
478   il programma stesso ha rilevato un errore che viene riportato chiamando la
479   funzione \func{abort} che genera questo segnale.
480 \item[\macro{SIGTRAP}] È il segnale generato da un'istruzione di breakpoint o
481   dall'attivazione del tracciamento per il processo. È usato dai programmi per
482   il debugging e se un programma normale non dovrebbe ricevere questo segnale.
483 \item[\macro{SIGSYS}] Sta ad indicare che si è eseguita una istruzione che
484   richiede l'esecuzione di una system call, ma si è fornito un codice
485   sbagliato per quest'ultima.
486 \end{basedescript}
487
488
489 \subsection{I segnali di terminazione}
490 \label{sec:sig_termination}
491
492 Questo tipo di segnali sono usati per terminare un processo; hanno vari nomi a
493 causa del differente uso che se ne può fare, ed i programmi possono
494 trattarli in maniera differente. 
495
496 La ragione per cui può essere necessario trattare questi segnali è che il
497 programma può dover eseguire una serie di azioni di pulizia prima di
498 terminare, come salvare informazioni sullo stato in cui si trova, cancellare
499 file temporanei, o ripristinare delle condizioni alterate durante il
500 funzionamento (come il modo del terminale o le impostazioni di una qualche
501 periferica).
502
503 L'azione predefinita di questi segnali è di terminare il processo, questi
504 segnali sono:
505 \begin{basedescript}{\desclabelwidth{2.0cm}}
506 \item[\macro{SIGTERM}] Il nome sta per \textit{terminate}. È un segnale
507   generico usato per causare la conclusione di un programma. Al contrario di
508   \macro{SIGKILL} può essere intercettato, ignorato, bloccato. In genere lo si
509   usa per chiedere in maniera ``educata'' ad un processo di concludersi.
510 \item[\macro{SIGINT}] Il nome sta per \textit{interrupt}. È il segnale di
511   interruzione per il programma. È quello che viene generato di default dal
512   comando \cmd{kill} o dall'invio sul terminale del carattere di controllo
513   INTR (interrupt, generato dalla sequenza \macro{C-c}).
514 \item[\macro{SIGQUIT}] È analogo a \macro{SIGINT} con la differenze che è
515   controllato da un'altro carattere di controllo, QUIT, corrispondente alla
516   sequenza \verb|C-\|. A differenza del precedente l'azione predefinita, oltre
517   alla terminazione del processo, comporta anche la creazione di un core dump.
518
519   In genere lo si può pensare come corrispondente ad una condizione di
520   errore del programma rilevata dall'utente. Per questo motivo non è opportuno
521   fare eseguire al gestore di questo segnale le operazioni di pulizia
522   normalmente previste (tipo la cancellazione di file temporanei), dato che in
523   certi casi esse possono eliminare informazioni utili nell'esame dei core
524   dump. 
525 \item[\macro{SIGKILL}] Il nome è utilizzato per terminare in maniera immediata
526   qualunque programma. Questo segnale non può essere né intercettato, né
527   ignorato, né bloccato, per cui causa comunque la terminazione del processo.
528   In genere esso viene generato solo per richiesta esplicita dell'utente dal
529   comando (o tramite la funzione) \cmd{kill}. Dato che non lo si può
530   intercettare è sempre meglio usarlo come ultima risorsa quando metodi meno
531   brutali, come \macro{SIGTERM} o \macro{C-c} non funzionano. 
532
533   Se un processo non risponde a nessun altro segnale \macro{SIGKILL} ne causa
534   sempre la terminazione (in effetti il fallimento della terminazione di un
535   processo da parte di \macro{SIGKILL} costituirebbe un malfunzionamento del
536   kernel). Talvolta è il sistema stesso che può generare questo segnale quando
537   per condizioni particolari il processo non può più essere eseguito neanche
538   per eseguire un gestore.
539 \item[\macro{SIGHUP}] Il nome sta per \textit{hang-up}. Segnala che il
540   terminale dell'utente si è disconnesso (ad esempio perché si è interrotta la
541   rete). Viene usato anche per riportare la terminazione del processo di
542   controllo di un terminale a tutti i processi della sessione, in modo che
543   essi possano disconnettersi dal relativo terminale. 
544   
545   Viene inoltre usato in genere per segnalare ai demoni (che non hanno un
546   terminale di controllo) la necessità di reinizializzarsi e rileggere il/i
547   file di configurazione.
548 \end{basedescript}
549
550
551 \subsection{I segnali di allarme}
552 \label{sec:sig_alarm}
553
554 Questi segnali sono generati dalla scadenza di un timer. Il loro comportamento
555 predefinito è quello di causare la terminazione del programma, ma con questi
556 segnali la scelta predefinita è irrilevante, in quanto il loro uso presuppone
557 sempre la necessità di un gestore.  Questi segnali sono:
558 \begin{basedescript}{\desclabelwidth{2.0cm}}
559 \item[\macro{SIGALRM}] Il nome sta per \textit{alarm}. Segnale la scadenza di
560   un timer misurato sul tempo reale o sull'orologio di sistema. È normalmente
561   usato dalla funzione \func{alarm}.
562 \item[\macro{SIGVTALRM}] Il nome sta per \textit{virtual alarm}. È analogo al
563   precedente ma segnala la scadenza di un timer sul tempo di CPU usato dal
564   processo. 
565 \item[\macro{SIGPROF}] Il nome sta per \textit{profiling}. Indica la scadenza
566   di un timer che misura sia il tempo di CPU speso direttamente dal processo
567   che quello che il sistema ha speso per conto di quest'ultimo. In genere
568   viene usato dagli strumenti che servono a fare la profilazione dell'utilizzo
569   del tempo di CPU da parte del processo.
570 \end{basedescript}
571
572
573 \subsection{I segnali di I/O asincrono}
574 \label{sec:sig_asyncio}
575
576 Questi segnali operano in congiunzione con le funzioni di I/O asincrono. Per
577 questo occorre comunque usare \func{fcntl} per abilitare un file descriptor a
578 generare questi segnali. 
579
580 L'azione predefinita è di essere ignorati. Questi segnali sono:
581 \begin{basedescript}{\desclabelwidth{2.0cm}}
582 \item[\macro{SIGIO}] Questo segnale viene inviato quando un file descriptor è
583   pronto per eseguire dell'input/output. In molti sistemi solo i socket e i
584   terminali possono generare questo segnale, in Linux questo può essere usato
585   anche per i file, posto che la \func{fcntl} abbia avuto successo.
586 \item[\macro{SIGURG}] Questo segnale è inviato quando arrivano dei dati
587   urgenti o \textit{out of band} su di un socket; per maggiori dettagli al
588   proposito si veda \secref{sec:xxx_urgent_data}.
589 \item[\macro{SIGPOLL}] Questo segnale è equivalente a \macro{SIGIO}, è
590   definito solo per compatibilità con i sistemi System V.
591 \end{basedescript}
592
593
594 \subsection{I segnali per il controllo di sessione}
595 \label{sec:sig_job_control}
596
597 Questi sono i segnali usati dal controllo delle sessioni e dei processi, il
598 loro uso è specifico e viene trattato in maniera specifica nelle sezioni in
599 cui si trattano gli argomenti relativi.  Questi segnali sono:
600 \begin{basedescript}{\desclabelwidth{2.0cm}}
601 \item[\macro{SIGCHLD}] Questo è il segnale mandato al processo padre quando un
602   figlio termina o viene fermato. L'azione predefinita è di ignorare il
603   segnale, la sua gestione è trattata in \secref{sec:proc_wait}.
604 \item[\macro{SIGCLD}] Per Linux questo è solo un segnale identico al
605   precedente, il nome è obsoleto e andrebbe evitato. 
606 \item[\macro{SIGCONT}] Il nome sta per \textit{continue}. Il segnale viene
607   usato per fare ripartire un programma precedentemente fermato da
608   \macro{SIGSTOP}. Questo segnale ha un comportamento speciale, e fa sempre
609   ripartire il processo prima della sua consegna. Il comportamento predefinito
610   è di fare solo questo; il segnale non può essere bloccato. Si può anche
611   installare un gestore, ma il segnale provoca comunque il riavvio del
612   processo.
613   
614   La maggior pare dei programmi non hanno necessità di intercettare il
615   segnale, in quanto esso è completamente trasparente rispetto all'esecuzione
616   che riparte senza che il programma noti niente. Si possono installare dei
617   gestori per far si che un programma produca una qualche azione speciale
618   se viene fermato e riavviato, come per esempio riscrivere un prompt, o
619   inviare un avviso. 
620 \item[\macro{SIGSTOP}] Il segnale ferma un processo (lo porta cioè in uno
621   stato di sleep, vedi \secref{sec:proc_sched}); il segnale non può essere né
622   intercettato, né ignorato, né bloccato.
623 \item[\macro{SIGTSTP}] Il nome sta per \textit{interactive stop}. Il segnale
624   ferma il processo interattivamente, ed è generato dal carattere SUSP
625   (prodotto dalla combinazione \cmd{C-z}), ed al contrario di
626   \macro{SIGSTOP} può essere intercettato e ignorato. In genere un programma
627   installa un gestore per questo segnale quando vuole lasciare il sistema
628   o il terminale in uno stato definito prima di fermarsi; se per esempio un
629   programma ha disabilitato l'eco sul terminale può installare un gestore
630   per riabilitarlo prima di fermarsi.
631 \item[\macro{SIGTTIN}] Un processo non può leggere dal terminale se esegue una
632   sessione di lavoro in \textit{background}. Quando un processo in background
633   tenta di leggere da un terminale viene inviato questo segnale a tutti i
634   processi della sessione di lavoro. L'azione predefinita è di fermare il
635   processo.  L'argomento è trattato in \secref{sec:sess_job_control_overview}.
636 \item[\macro{SIGTTOU}] Segnale analogo al precedente \macro{SIGTTIN}, ma
637   generato quando si tenta di scrivere o modificare uno dei modi del
638   terminale. L'azione predefinita è di fermare il processo, l'argomento è
639   trattato in \secref{sec:sess_job_control_overview}.
640 \end{basedescript}
641
642
643 \subsection{I segnali di operazioni errate}
644 \label{sec:sig_oper_error}
645
646 Questi segnali sono usati per riportare al programma errori generati da
647 operazioni da lui eseguite; non indicano errori del programma quanto errori
648 che impediscono il completamento dell'esecuzione dovute all'interazione con il
649 resto del sistema.
650
651 L'azione predefinita di questi segnali è di terminare il processo, questi
652 segnali sono:
653 \begin{basedescript}{\desclabelwidth{2.0cm}}
654 \item[\macro{SIGPIPE}] Sta per \textit{Broken pipe}. Se si usano delle pipe o
655   delle FIFO è necessario che, prima che un processo inizi a scrivere su di
656   essa, un'altro abbia aperto la pipe in lettura (si veda
657   \secref{sec:ipc_pipes}). Se il processo in lettura non è partito o è
658   terminato inavvertitamente alla scrittura sulla pipe il kernel genera questo
659   segnale. Se il segnale è bloccato, intercettato o ignorato la chiamata che
660   lo ha causato fallisce restituendo l'errore \macro{EPIPE} 
661 \item[\macro{SIGLOST}] Sta per \textit{Resource lost}. Viene generato quando
662   c'è un advisory lock su un file NFS, ed il server riparte dimenticando la
663   situazione precedente.
664 \item[\macro{SIGXCPU}] Sta per \textit{CPU time limit exceeded}. Questo
665   segnale è generato quando un processo eccede il limite impostato per il
666   tempo di CPU disponibile, vedi \secref{sec:sys_resource_limit}. 
667 \item[\macro{SIGXFSZ}] Sta per \textit{File size limit exceeded}. Questo
668   segnale è generato quando un processo tenta di estendere un file oltre le
669   dimensioni specificate dal limite impostato per le dimensioni massime di un
670   file, vedi \secref{sec:sys_resource_limit}. 
671 \end{basedescript}
672
673
674 \subsection{Ulteriori segnali}
675 \label{sec:sig_misc_sig}
676
677 Raccogliamo qui infine usa serie di segnali che hanno scopi differenti non
678 classificabili in maniera omogenea. Questi segnali sono:
679 \begin{basedescript}{\desclabelwidth{2.0cm}}
680 \item[\macro{SIGUSR1}] Vedi \macro{SIGUSR2}.
681 \item[\macro{SIGUSR2}] Insieme a \macro{SIGUSR1} è un segnale a disposizione
682   dell'utente che li può usare per quello che vuole. Possono essere utili per
683   implementare una comunicazione elementare fra processi diversi, o per
684   eseguire a richiesta una operazione utilizzando un gestore. L'azione
685   predefinita è di terminare il processo.
686 \item[\macro{SIGWINCH}] Il nome sta per \textit{window (size) change} e viene
687   generato in molti sistemi (GNU/Linux compreso) quando le dimensioni (in
688   righe e colonne) di un terminale vengono cambiate. Viene usato da alcuni
689   programmi testuali per riformattare l'uscita su schermo quando si cambia
690   dimensione a quest'ultimo. L'azione predefinita è di essere ignorato.
691 \item[\macro{SIGINFO}] Il segnale indica una richiesta di informazioni. È
692   usato con il controllo di sessione, causa la stampa di informazioni da parte
693   del processo leader del gruppo associato al terminale di controllo, gli
694   altri processi lo ignorano.
695 \end{basedescript}
696
697
698 \subsection{Le funzioni \func{strsignal} e \func{psignal}}
699 \label{sec:sig_strsignal}
700
701 Per la descrizione dei segnali il sistema mette a disposizione due funzioni,
702 \func{strsignal} e \func{psignal}, che stampano un messaggio di descrizione
703 dato il numero. In genere si usano quando si vuole notificare all'utente il
704 segnale avvenuto (nel caso di terminazione di un processo figlio o di un
705 gestore che gestisce più segnali); la prima funzione è una estensione
706 GNU, accessibile avendo definito \macro{\_GNU\_SOURCE}, ed è analoga alla
707 funzione \func{strerror} (si veda \secref{sec:sys_strerror}) per gli errori:
708 \begin{prototype}{string.h}{char *strsignal(int signum)} 
709   Ritorna il puntatore ad una stringa che contiene la descrizione del segnale
710   \var{signum}.
711 \end{prototype}
712 \noindent dato che la stringa è allocata staticamente non se ne deve
713 modificare il contenuto, che resta valido solo fino alla successiva chiamata
714 di \func{strsignal}. Nel caso si debba mantenere traccia del messaggio sarà
715 necessario copiarlo.
716
717 La seconda funzione deriva da BSD ed è analoga alla funzione \func{perror}
718 descritta sempre in \secref{sec:sys_strerror}; il suo prototipo è:
719 \begin{prototype}{signal.h}{void psignal(int sig, const char *s)} 
720   Stampa sullo standard error un messaggio costituito dalla stringa \param{s},
721   seguita da due punti ed una descrizione del segnale indicato da \param{sig}.
722 \end{prototype}
723
724 Una modalità alternativa per utilizzare le descrizioni restituite da
725 \func{strsignal} e \func{psignal} è quello di fare usare la variabile
726 \var{sys\_siglist}, che è definita in \file{signal.h} e può essere acceduta
727 con la dichiarazione:
728 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
729     extern const char *const sys_siglist[]
730 \end{lstlisting}
731 l'array \var{sys\_siglist} contiene i puntatori alle stringhe di descrizione,
732 indicizzate per numero di segnale, per cui una chiamata del tipo di \code{char
733   *decr = strsignal(SIGINT)} può essere sostituita dall'equivalente \code{char
734   *decr = sys\_siglist[SIGINT]}.
735
736
737
738 \section{La gestione dei segnali}
739 \label{sec:sig_management}
740
741 I segnali sono il primo e più classico esempio di eventi asincroni, cioè di
742 eventi che possono accadere in un qualunque momento durante l'esecuzione di un
743 programma. Per questa loro caratteristica la loro gestione non può essere
744 effettuata all'interno del normale flusso di esecuzione dello stesso, ma è
745 delegata appunto agli eventuali gestori che si sono installati.
746
747 In questa sezione vedremo come si effettua gestione dei segnali, a partire
748 dalla loro interazione con le system call, passando per le varie funzioni che
749 permettono di installare i gestori e controllare le reazioni di un
750 processo alla loro occorrenza.
751
752
753 \subsection{Il comportamento generale del sistema.}
754 \label{sec:sig_gen_beha}
755
756 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
757 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
758 comportamento delle system call; in particolare due di esse, \func{fork} ed
759 \func{exec}, dovranno essere prese esplicitamente in considerazione, data la
760 loro stretta relazione con la creazione di nuovi processi.
761
762 Come accennato in \secref{sec:proc_fork} quando viene creato un nuovo processo
763 esso eredita dal padre sia le azioni che sono state impostate per i singoli
764 segnali, che la maschera dei segnali bloccati (vedi \secref{sec:sig_sigmask}).
765 Invece tutti i segnali pendenti e gli allarmi vengono cancellati; essi infatti
766 devono essere recapitati solo al padre, al figlio dovranno arrivare solo i
767 segnali dovuti alle sue azioni.
768
769 Quando si mette in esecuzione un nuovo programma con \func{exec} (si ricordi
770 quanto detto in \secref{sec:proc_exec}) tutti i segnali per i quali è stato
771 installato un gestore vengono reimpostati a \macro{SIG\_DFL}. Non ha più
772 senso infatti fare riferimento a funzioni definite nel programma originario,
773 che non sono presenti nello spazio di indirizzi del nuovo programma.
774
775 Si noti che questo vale solo per le azioni per le quali è stato installato un
776 gestore; viene mantenuto invece ogni eventuale impostazione dell'azione a
777 \macro{SIG\_IGN}. Questo permette ad esempio alla shell di impostare ad
778 \macro{SIG\_IGN} le risposte per \macro{SIGINT} e \macro{SIGQUIT} per i
779 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
780 successiva pressione di \texttt{C-c} o \texttt{C-y}.
781
782 Per quanto riguarda il comportamento di tutte le altre system call si danno
783 sostanzialmente due casi, a seconda che esse siano \textsl{lente}
784 (\textit{slow}) o \textsl{veloci} (\textit{fast}). La gran parte di esse
785 appartiene a quest'ultima categoria, che non è influenzata dall'arrivo di un
786 segnale. Esse sono dette \textsl{veloci} in quanto la loro esecuzione è
787 sostanzialmente immediata; la risposta al segnale viene sempre data dopo che
788 la system call è stata completata, in quanto attendere per eseguire un
789 gestore non comporta nessun inconveniente.
790
791 In alcuni casi però alcune system call (che per questo motivo vengono chiamate
792 \textsl{lente}) possono bloccarsi indefinitamente. In questo caso non si può
793 attendere la conclusione della sistem call, perché questo renderebbe
794 impossibile una risposta pronta al segnale, per cui il gestore viene
795 eseguito prima che la system call sia ritornata.  Un elenco dei casi in cui si
796 presenta questa situazione è il seguente:
797 \begin{itemize}
798 \item la lettura da file che possono bloccarsi in attesa di dati non ancora
799   presenti (come per certi file di dispositivo, i socket o le pipe).
800 \item la scrittura sugli stessi file, nel caso in cui dati non possano essere
801   accettati immediatamente.
802 \item l'apertura di un file di dispositivo che richiede operazioni non
803   immediate per una una risposta.
804 \item le operazioni eseguite con \func{ioctl} che non è detto possano essere
805   eseguite immediatamente.
806 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
807   da altri processi.
808 \item la funzione \func{pause} (usata appunto per attendere l'arrivo di un
809   segnale).
810 \item la funzione \func{wait} (se nessun processo figlio è ancora terminato).
811 \end{itemize}
812
813 In questo caso si pone il problema di cosa fare una volta che il gestore
814 sia ritornato. La scelta originaria dei primi Unix era quella di far ritornare
815 anche la system call restituendo l'errore di \macro{EINTR}. Questa è a
816 tutt'oggi una scelta corrente, ma comporta che i programmi che usano dei
817 gestori controllino lo stato di uscita delle funzioni per ripeterne la
818 chiamata qualora l'errore fosse questo.
819
820 Dimenticarsi di richiamare una system call interrotta da un segnale è un
821 errore comune, tanto che le \acr{glibc} provvedono una macro
822 \code{TEMP\_FAILURE\_RETRY(expr)} che esegue l'operazione automaticamente,
823 ripetendo l'esecuzione dell'espressione \var{expr} fintanto che il risultato
824 non è diverso dall'uscita con un errore \macro{EINTR}.
825
826 La soluzione è comunque poco elegante e BSD ha scelto un approccio molto
827 diverso, che è quello di fare ripartire automaticamente la system call invece
828 di farla fallire. In questo caso ovviamente non c'è da preoccuparsi di
829 controllare il codice di errore; si perde però la possibilità di eseguire
830 azioni specifiche all'occorrenza di questa particolare condizione. 
831
832 Linux e le \acr{glibc} consentono di utilizzare entrambi gli approcci,
833 attraverso una opportuna opzione di \func{sigaction} (vedi
834 \secref{sec:sig_sigaction}). È da chiarire comunque che nel caso di
835 interruzione nel mezzo di un trasferimento parziale di dati, le system call
836 ritornano sempre indicando i byte trasferiti.
837
838
839 \subsection{La funzione \func{signal}}
840 \label{sec:sig_signal}
841
842 L'interfaccia più semplice per la gestione dei segnali è costituita dalla
843 funzione \func{signal} che è definita fin dallo standard ANSI C.  Quest'ultimo
844 però non considera sistemi multitasking, per cui la definizione è tanto vaga
845 da essere del tutto inutile in un sistema Unix; è questo il motivo per cui
846 ogni implementazione successiva ne ha modificato e ridefinito il
847 comportamento, pur mantenendone immutato il prototipo\footnote{in realtà in
848   alcune vecchie implementazioni (SVr4 e 4.3+BSD in particolare) vengono usati
849   alcuni parametri aggiuntivi per definire il comportamento della funzione,
850   vedremo in \secref{sec:sig_sigaction} che questo è possibile usando la
851   funzione \func{sigaction}.}  che è:
852 \begin{prototype}{signal.h}
853   {sighandler\_t signal(int signum, sighandler\_t handler)} 
854   
855   Installa la funzione di gestione \param{handler} (il gestore) per il
856   segnale \param{signum}.
857   
858   \bodydesc{La funzione ritorna il precedente gestore in caso di successo
859     o \macro{SIG\_ERR} in caso di errore.}
860 \end{prototype}
861
862 In questa definizione si è usato un tipo di dato, \type{sighandler\_t}, che è
863 una estensione GNU, definita dalle \acr{glibc}, esso permette di riscrivere il
864 prototipo di \func{signal} nella forma appena vista, che risulta molto più
865 leggibile di quanto non sia la versione originaria che di norma è definita
866 come:
867 \begin{verbatim}
868     void (*signal(int signum, void (*handler)(int)))int)
869 \end{verbatim}
870 questa infatti, per la poca chiarezza della sintassi del C quando si vanno a
871 trattare puntatori a funzioni, è molto meno comprensibile.  Da un confronto
872 con il precedente prototipo si può dedurre la definizione di
873 \type{sighandler\_t} che è:
874 \begin{verbatim}
875     typedef void (* sighandler_t)(int) 
876 \end{verbatim}
877 e cioè un puntatore ad una funzione \ctyp{void} (cioè senza valore di ritorno)
878 e che prende un argomento di tipo \ctyp{int}.\footnote{si devono usare le
879   parentesi intorno al nome della funzione per via delle precedenze degli
880   operatori del C, senza di esse si sarebbe definita una funzione che ritorna
881   un puntatore a \ctyp{void} e non un puntatore ad una funzione \ctyp{void}.}
882 La funzione \func{signal} quindi restituisce e prende come secondo argomento
883 un puntatore a una funzione di questo tipo, che è appunto il gestore del
884 segnale.
885
886 Il numero di segnale passato in \param{signum} può essere indicato
887 direttamente con una delle costanti definite in \secref{sec:sig_standard}. Il
888 gestore \param{handler} invece, oltre all'indirizzo della funzione da chiamare
889 all'occorrenza del segnale, può assumere anche i due valori costanti
890 \macro{SIG\_IGN} con cui si dice ignorare il segnale e \macro{SIG\_DFL} per
891 reinstallare l'azione predefinita.\footnote{si ricordi però che i due segnali
892   \macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
893   intercettati.}
894
895 La funzione restituisce l'indirizzo dell'azione precedente, che può essere
896 salvato per poterlo ripristinare (con un'altra chiamata a \func{signal}) in un
897 secondo tempo. Si ricordi che se si imposta come azione \macro{SIG\_IGN} (o si
898 imposta un \macro{SIG\_DFL} per un segnale la cui azione predefinita è di
899 essere ignorato), tutti i segnali pendenti saranno scartati, e non verranno
900 mai notificati.
901
902 L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
903 si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
904 questi ultimi infatti la funzione è conforme al comportamento originale dei
905 primi Unix in cui il gestore viene disinstallato alla sua chiamata,
906 secondo la semantica inaffidabile; Linux seguiva questa convenzione fino alle
907 \acr{libc5}. Al contrario BSD segue la semantica affidabile, non
908 disinstallando il gestore e bloccando il segnale durante l'esecuzione
909 dello stesso. Con l'utilizzo delle \acr{glibc} dalla versione 2 anche Linux è
910 passato a questo comportamento; quello della versione originale della
911 funzione, il cui uso è deprecato per i motivi visti in
912 \secref{sec:sig_semantics}, può essere ottenuto chiamando \func{sysv\_signal}.
913 In generale, per evitare questi problemi, tutti i nuovi programmi dovrebbero
914 usare \func{sigaction}.
915
916 È da tenere presente che, seguendo lo standard POSIX, il comportamento di un
917 processo che ignora i segnali \macro{SIGFPE}, \macro{SIGILL}, o
918 \macro{SIGSEGV} (qualora non originino da una \func{kill} o una \func{raise})
919 è indefinito. Un gestore che ritorna da questi segnali può dare luogo ad
920 un ciclo infinito.
921
922
923 \subsection{Le funzioni \func{kill} e \func{raise}}
924 \label{sec:sig_kill_raise}
925
926 Come accennato in \secref{sec:sig_types}, un segnale può essere generato
927 direttamente da un processo. L'invio di un segnale generico può essere
928 effettuato attraverso delle funzioni \func{kill} e \func{raise}. La prima
929 serve per inviare un segnale al processo corrente, ed il suo prototipo è:
930 \begin{prototype}{signal.h}{int raise(int sig)}
931   Invia il segnale \param{sig} al processo corrente.
932   
933   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
934     errore, il solo errore restituito è \macro{EINVAL} qualora si sia
935     specificato un numero di segnale invalido.}
936 \end{prototype}
937
938 Il valore di \param{sig} specifica il segnale che si vuole inviare e può
939 essere specificato con una delle macro definite in
940 \secref{sec:sig_classification}.  In genere questa funzione viene usata per
941 riprodurre il comportamento predefinito di un segnale che sia stato
942 intercettato. In questo caso, una volta eseguite le operazioni volute, il
943 gestore potrà reinstallare l'azione predefinita, e attivarla con \func{raise}.
944
945 Se invece si vuole inviare un segnale ad un altro processo occorre utilizzare
946 la funzione \func{kill}; il cui prototipo è:
947 \begin{functions}
948   \headdecl{sys/types.h}
949   \headdecl{signal.h}
950   \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
951   processo specificato con \param{pid}.
952   
953   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
954     errore nel qual caso \var{errno} può assumere i valori:
955     \begin{errlist}
956     \item[\macro{EINVAL}] Il segnale specificato non esiste.
957     \item[\macro{ESRCH}] Il processo selezionato non esiste.
958     \item[\macro{EPERM}] Non si hanno privilegi sufficienti ad inviare il
959       segnale.
960     \end{errlist}}
961 \end{functions}
962
963 Lo standard POSIX prevede che il valore 0 per \param{sig} sia usato per
964 specificare il segnale nullo.  Se le funzioni vengono chiamate con questo
965 valore non viene inviato nessun segnale, ma viene eseguito il controllo degli
966 errori, in tal caso si otterrà un errore \macro{EPERM} se non si hanno i
967 permessi necessari ed un errore \macro{ESRCH} se il processo specificato non
968 esiste. Si tenga conto però che il sistema ricicla i \acr{pid} (come accennato
969 in \secref{sec:proc_pid}) per cui l'esistenza di un processo non significa che
970 esso sia realmente quello a cui si intendeva mandare il segnale.
971
972 Il valore dell'argomento \param{pid} specifica il processo (o i processi) di
973 destinazione a cui il segnale deve essere inviato e può assumere i valori
974 riportati in \tabref{tab:sig_kill_values}.
975 \begin{table}[htb]
976   \footnotesize
977   \centering
978   \begin{tabular}[c]{|r|l|}
979     \hline
980     \textbf{Valore} & \textbf{Significato} \\
981     \hline
982     \hline
983     $>0$ & il segnale è mandato al processo con il \acr{pid} indicato.\\
984     0    & il segnale è mandato ad ogni processo del \textit{process group}
985     del chiamante.\\ 
986     $-1$ & il segnale è mandato ad ogni processo (eccetto \cmd{init}).\\
987     $<-1$ & il segnale è mandato ad ogni processo del process group 
988     $|\code{pid}|$.\\
989     \hline
990   \end{tabular}
991   \caption{Valori dell'argomento \param{pid} per la funzione
992     \func{kill}.}
993   \label{tab:sig_kill_values}
994 \end{table}
995
996 Si noti pertanto che la funzione \code{raise(sig)} può essere definita in
997 termini di \func{kill}, ed è sostanzialmente equivalente ad una
998 \code{kill(getpid(), sig)}. Siccome \func{raise}, che è definita nello
999 standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
1000 l'uso di \func{kill} finisce per essere più portabile.
1001
1002 Una seconda funzione che può essere definita in termini di \func{kill} è
1003 \func{killpg}, che è sostanzialmente equivalente a
1004 \code{kill(-pidgrp, signal)}; il suo prototipo è:
1005 \begin{prototype}{signal.h}{int killpg(pid\_t pidgrp, int signal)} 
1006   
1007   Invia il segnale \param{signal} al process group \param{pidgrp}.
1008   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1009     errore, gli errori sono gli stessi di \func{kill}.}
1010 \end{prototype}
1011 e che permette di inviare un segnale a tutto un \textit{process group} (vedi
1012 \secref{sec:sess_xxx}).
1013
1014 Solo l'amministratore può inviare un segnale ad un processo qualunque, in
1015 tutti gli altri casi l'userid reale o l'userid effettivo del processo
1016 chiamante devono corrispondere all'userid reale o all'userid salvato della
1017 destinazione. Fa eccezione il caso in cui il segnale inviato sia
1018 \macro{SIGCONT}, nel quale occorre che entrambi i processi appartengano alla
1019 stessa sessione. Inoltre, dato il ruolo fondamentale che riveste nel sistema
1020 (si ricordi quanto visto in \secref{sec:sig_termination}), non è possibile
1021 inviare al processo 1 (cioè a \cmd{init}) segnali per i quali esso non abbia
1022 un gestore installato.
1023
1024 Infine, seguendo le specifiche POSIX 1003.1-2001, l'uso della chiamata
1025 \code{kill(-1, sig)} comporta che il segnale sia inviato (con la solita
1026 eccezione di \cmd{init}) a tutti i processi per i quali i permessi lo
1027 consentano. Lo standard permette comunque alle varie implementazione di
1028 escludere alcuni processi specifici: nel caso in questione Linux non invia il
1029 segnale al processo che ha effettuato la chiamata.
1030
1031
1032 \subsection{Le funzioni \func{alarm} e \func{abort}}
1033 \label{sec:sig_alarm_abort}
1034
1035 Un caso particolare di segnali generati a richiesta è quello che riguarda i
1036 vari segnali di temporizzazione e \macro{SIGABRT}, per ciascuno di questi
1037 segnali sono previste funzioni specifiche che ne effettuino l'invio. La più
1038 comune delle funzioni usate per la temporizzazione è \func{alarm} il cui
1039 prototipo è:
1040 \begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
1041   Predispone l'invio di \macro{SIGALRM} dopo \param{seconds} secondi.
1042   
1043   \bodydesc{La funzione restituisce il numero di secondi rimanenti ad un
1044     precedente allarme, o zero se non c'erano allarmi pendenti.}
1045 \end{prototype}
1046
1047 La funzione fornisce un meccanismo che consente ad un processo di predisporre
1048 un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
1049 dopo un certo periodo di tempo), programmando l'emissione di un segnale (nel
1050 caso in questione \macro{SIGALRM}) dopo il numero di secondi specificato da
1051 \param{seconds}.
1052
1053 Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
1054 segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
1055 questo può essere usato per cancellare una programmazione precedente. 
1056
1057 La funzione inoltre ritorna il numero di secondi rimanenti all'invio
1058 dell'allarme precedentemente programmato, in modo che sia possibile
1059 controllare se non si cancella un precedente allarme ed eventualmente
1060 predisporre le opportune misure per gestire il caso di necessità di più
1061 interruzioni.
1062
1063 In \secref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
1064 associati tre tempi diversi: il \textit{clock time}, l'\textit{user time} ed
1065 il \textit{system time}.  Per poterli calcolare il kernel mantiene per ciascun
1066 processo tre diversi timer:
1067 \begin{itemize}
1068 \item un \textit{real-time timer} che calcola il tempo reale trascorso (che
1069   corrisponde al \textit{clock time}). La scadenza di questo timer provoca
1070   l'emissione di \macro{SIGALRM}.
1071 \item un \textit{virtual timer} che calcola il tempo di processore usato dal
1072   processo in user space (che corrisponde all'\textit{user time}). La scadenza
1073   di questo timer provoca l'emissione di \macro{SIGVTALRM}.
1074 \item un \textit{profiling timer} che calcola la somma dei tempi di processore
1075   utilizzati direttamente dal processo in user space, e dal kernel nelle
1076   system call ad esso relative (che corrisponde a quello che in
1077   \secref{sec:sys_unix_time} abbiamo chiamato \textit{CPU time}). La scadenza
1078   di questo timer provoca l'emissione di \macro{SIGPROF}.
1079 \end{itemize}
1080
1081 Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
1082 tempo reale. La funzione come abbiamo visto è molto semplice, ma proprio per
1083 questo presenta numerosi limiti: non consente di usare gli altri timer, non
1084 può specificare intervalli di tempo con precisione maggiore del secondo e
1085 genera il segnale una sola volta.
1086
1087 Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
1088 che permette di usare un timer qualunque e l'invio di segnali periodici, al
1089 costo però di una maggiore complessità d'uso e di una minore portabilità. Il
1090 suo prototipo è:
1091 \begin{prototype}{sys/time.h}{int setitimer(int which, const struct
1092     itimerval *value, struct itimerval *ovalue)} 
1093   
1094   Predispone l'invio di un segnale di allarme alla scadenza dell'intervallo
1095   \param{value} sul timer specificato da \func{which}.
1096   
1097   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1098     errore, nel qual caso \var{errno} può assumere i valori \macro{EINVAL} e
1099     \macro{EFAULT}.}
1100 \end{prototype}
1101
1102 Il valore di \param{which} permette di specificare quale dei tre timer
1103 illustrati in precedenza usare; i possibili valori sono riportati in
1104 \tabref{tab:sig_setitimer_values}.
1105 \begin{table}[htb]
1106   \footnotesize
1107   \centering
1108   \begin{tabular}[c]{|l|l|}
1109     \hline
1110     \textbf{Valore} & \textbf{Timer} \\
1111     \hline
1112     \hline
1113     \macro{ITIMER\_REAL}    & \textit{real-time timer}\\
1114     \macro{ITIMER\_VIRTUAL} & \textit{virtual timer}\\
1115     \macro{ITIMER\_PROF}    & \textit{profiling timer}\\
1116     \hline
1117   \end{tabular}
1118   \caption{Valori dell'argomento \param{which} per la funzione
1119     \func{setitimer}.}
1120   \label{tab:sig_setitimer_values}
1121 \end{table}
1122
1123 Il valore della struttura specificata \param{value} viene usato per impostare il
1124 timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
1125 salvato qui. I valori dei timer devono essere indicati attraverso una
1126 struttura \type{itimerval}, definita in \figref{fig:file_stat_struct}.
1127
1128 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
1129 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
1130 scadenza. Entrambi esprimono i tempi tramite una struttura \var{timeval} che
1131 permette una precisione fino al microsecondo.
1132
1133 Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
1134 il segnale e reimposta \var{it\_value} al valore di \var{it\_interval}, in
1135 questo modo il ciclo verrà ripetuto; se invece il valore di \var{it\_interval}
1136 è nullo il timer si ferma.
1137
1138 \begin{figure}[!htb]
1139   \footnotesize \centering
1140   \begin{minipage}[c]{15cm}
1141     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
1142 struct itimerval 
1143 {
1144     struct timeval it_interval; /* next value */
1145     struct timeval it_value;    /* current value */
1146 };
1147     \end{lstlisting}
1148   \end{minipage} 
1149   \normalsize 
1150   \caption{La struttura \type{itimerval}, che definisce i valori dei timer di
1151     sistema.} 
1152   \label{fig:sig_itimerval}
1153 \end{figure}
1154
1155 L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
1156 caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
1157 definita direttamente nello standard POSIX.1, può a sua volta essere espressa
1158 in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
1159 \cite{glibc} che ne riporta la definizione mostrata in
1160 \figref{fig:sig_alarm_def}.
1161
1162 \begin{figure}[!htb]
1163   \footnotesize \centering
1164   \begin{minipage}[c]{15cm}
1165     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
1166 unsigned int alarm(unsigned int seconds)
1167 {
1168     struct itimerval old, new;
1169     new.it_interval.tv_usec = 0;
1170     new.it_interval.tv_sec = 0;
1171     new.it_value.tv_usec = 0;
1172     new.it_value.tv_sec = (long int) seconds;
1173     if (setitimer(ITIMER_REAL, &new, &old) < 0) {
1174         return 0;
1175     }
1176     else {
1177         return old.it_value.tv_sec;
1178     }
1179 }
1180     \end{lstlisting}
1181   \end{minipage} 
1182   \normalsize 
1183   \caption{Definizione di \func{alarm} in termini di \func{setitimer}.} 
1184   \label{fig:sig_alarm_def}
1185 \end{figure}
1186
1187 Si deve comunque tenere presente che la precisione di queste funzioni è
1188 limitata da quella della frequenza del timer di sistema (che nel caso dei PC
1189 significa circa 10~ms). Il sistema assicura comunque che il segnale non sarà
1190 mai generato prima della scadenza programmata (l'arrotondamento cioè è sempre
1191 effettuato per eccesso).  
1192
1193 Una seconda causa di potenziali ritardi è che il segnale viene generato alla
1194 scadenza del timer, ma poi deve essere consegnato al processo; se quest'ultimo
1195 è attivo (questo è sempre vero per \macro{ITIMER\_VIRT}) la consegna è
1196 immediata, altrimenti può esserci un ulteriore ritardo che può variare a
1197 seconda del carico del sistema.
1198
1199 Questo ha una conseguenza che può indurre ad errori molto subdoli, si tenga
1200 conto poi che in caso di sistema molto carico, si può avere il caso patologico
1201 in cui un timer scade prima che il segnale di una precedente scadenza sia
1202 stato consegnato; in questo caso, per il comportamento dei segnali descritto
1203 in \secref{sec:sig_sigchld}, un solo segnale sarà consegnato.
1204
1205
1206 Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
1207 valore corrente di un timer senza modificarlo, è possibile usare la funzione
1208 \func{getitimer}, il cui prototipo è:
1209 \begin{prototype}{sys/time.h}{int getitimer(int which, struct
1210     itimerval *value)}
1211   
1212   Legge in \param{value} il valore del timer specificato da \func{which}.
1213   
1214   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1215     errore e restituisce gli stessi errori di \func{getitimer}}
1216 \end{prototype}
1217 \noindent i cui parametri hanno lo stesso significato e formato di quelli di
1218 \func{setitimer}. 
1219
1220
1221 L'ultima funzione che permette l'invio diretto di un segnale è \func{abort};
1222 che, come accennato in \ref{sec:proc_termination}, permette di abortire
1223 l'esecuzione di un programma tramite l'invio di \macro{SIGABRT}. Il suo
1224 prototipo è:
1225 \begin{prototype}{stdlib.h}{void abort(void)}
1226   
1227   Abortisce il processo corrente.
1228   
1229   \bodydesc{La funzione non ritorna, il processo è terminato inviando il
1230   segnale di \macro{SIGABRT}.}
1231 \end{prototype}
1232
1233 La differenza fra questa funzione e l'uso di \func{raise} è che anche se il
1234 segnale è bloccato o ignorato, la funzione ha effetto lo stesso. Il segnale
1235 può però essere intercettato per effettuare eventuali operazioni di chiusura
1236 prima della terminazione del processo.
1237
1238 Lo standard ANSI C richiede inoltre che anche se il gestore ritorna, la
1239 funzione non ritorni comunque. Lo standard POSIX.1 va oltre e richiede che se
1240 il processo non viene terminato direttamente dal gestore sia la stessa
1241 \func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
1242 standard POSIX, prima della terminazione tutti i file aperti e gli stream
1243 saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
1244 eventuali funzioni registrate con \func{at\_exit} e \func{on\_exit}.
1245
1246
1247 \subsection{Le funzioni \func{pause} e \func{sleep}}
1248 \label{sec:sig_pause_sleep}
1249
1250 Il metodo tradizionale per fare attendere\footnote{cioè di porre
1251   temporaneamente il processo in stato di \textit{sleep}, vedi
1252   \ref{sec:proc_sched}.}  ad un processo fino all'arrivo di un segnale è
1253 quello di usare la funzione \func{pause}, il cui prototipo è:
1254 \begin{prototype}{unistd.h}{int pause(void)}
1255   
1256   Pone il processo in stato di sleep fino al ritorno di un gestore.
1257   
1258   \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
1259     il relativo gestore è ritornato, nel qual caso restituisce -1 e imposta
1260     \var{errno} a \macro{EINTR}.}
1261 \end{prototype}
1262
1263 La funzione segnala sempre una condizione di errore (il successo sarebbe
1264 quello di aspettare indefinitamente). In genere si usa questa funzione quando
1265 si vuole mettere un processo in attesa di un qualche evento specifico che non
1266 è sotto il suo diretto controllo (ad esempio la si può usare per far reagire
1267 il processo ad un segnale inviato da un altro processo).
1268
1269 Se invece si vuole fare attendere un processo per un determinato intervallo di
1270 tempo nello standard POSIX.1 viene definita la funzione \func{sleep}, il cui
1271 prototipo è:
1272 \begin{prototype}{unistd.h}{unsigned int sleep(unsigned int seconds)}
1273   
1274   Pone il processo in stato di sleep per \param{seconds} secondi.
1275   
1276   \bodydesc{La funzione restituisce zero se l'attesa viene completata, o il
1277   numero di secondi restanti se viene interrotta da un segnale.}
1278 \end{prototype}
1279
1280 La funzione attende per il tempo specificato, a meno di non essere interrotta
1281 da un segnale. In questo caso non è una buona idea ripetere la chiamata per il
1282 tempo rimanente, in quanto la riattivazione del processo può avvenire in un
1283 qualunque momento, ma il valore restituito sarà sempre arrotondato al secondo,
1284 con la conseguenza che, se la successione dei segnali è particolarmente
1285 sfortunata e le differenze si accumulano, si potranno avere ritardi anche di
1286 parecchi secondi. In genere la scelta più sicura è quella di stabilire un
1287 termine per l'attesa, e ricalcolare tutte le volte il numero di secondi da
1288 aspettare.
1289
1290 In alcune implementazioni inoltre l'uso di \func{sleep} può avere conflitti
1291 con quello di \macro{SIGALRM}, dato che la funzione può essere realizzata con
1292 l'uso di \func{pause} e \func{alarm} (in maniera analoga all'esempio che
1293 vedremo in \secref{sec:sig_example}). In tal caso mescolare chiamata di
1294 \func{alarm} e \func{sleep} o modificare l'azione di \macro{SIGALRM}, può
1295 causare risultati indefiniti. Nel caso delle \acr{glibc} è stata usata una
1296 implementazione completamente indipendente e questi problemi non ci sono.
1297
1298 La granularità di \func{sleep} permette di specificare attese in secondi, per
1299 questo sia sotto BSD4.3 che in SUSv2 è stata definita la funzione
1300 \func{usleep} (dove la \texttt{u} è intesa come sostituzione di $\mu$); i due
1301 standard hanno delle definizioni diverse, ma le \acr{glibc}
1302 seguono\footnote{secondo la pagina di manuale almeno dalla versione 2.2.2.}
1303 seguono quella di SUSv2 che prevede il seguente prototipo:
1304 \begin{prototype}{unistd.h}{int usleep(unsigned long usec)}
1305   
1306   Pone il processo in stato di sleep per \param{usec} microsecondi.
1307   
1308   \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
1309     caso di errore, nel qual caso \var{errno} è impostata a \macro{EINTR}.}
1310
1311 \end{prototype}
1312
1313 Anche questa funzione, a seconda delle implementazioni, può presentare
1314 problemi nell'interazione con \func{alarm} e \macro{SIGALRM}. È pertanto
1315 deprecata in favore della funzione \func{nanosleep}, definita dallo standard
1316 POSIX1.b, il cui prototipo è:
1317 \begin{prototype}{unistd.h}{int nanosleep(const struct timespec *req, struct
1318     timespec *rem)}
1319   
1320   Pone il processo in stato di sleep per il tempo specificato da \param{req}.
1321   In caso di interruzione restituisce il tempo restante in \param{rem}.
1322   
1323   \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
1324     caso di errore, nel qual caso \var{errno} è impostata a 
1325     \begin{errlist}
1326     \item[\macro{EINVAL}] si è specificato un numero di secondi negativo o un
1327       numero di nanosecondi maggiore di 999.999.999.
1328     \item[\macro{EINTR}] la funzione è stata interrotta da un segnale.
1329     \end{errlist}}
1330 \end{prototype}
1331
1332 Lo standard richiede che la funzione sia implementata in maniera del tutto
1333 indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
1334   utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
1335 interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
1336 delle strutture di tipo \var{timespec}, la cui definizione è riportata in
1337 \figref{fig:sys_timeval_struct}, che permettono di specificare un tempo con
1338 una precisione (teorica) fino al nanosecondo.
1339
1340 La funzione risolve anche il problema di proseguire l'attesa dopo
1341 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
1342 restituito il tempo rimanente rispetto a quanto richiesto inizialmente, e
1343 basta richiamare la funzione per completare l'attesa. 
1344
1345 Chiaramente, anche se il tempo può essere specificato con risoluzioni fino al
1346 nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
1347 temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
1348 specificato, ma prima che il processo possa tornare ad essere eseguito
1349 occorrerà almeno attendere il successivo giro di scheduler e cioè un tempo che
1350 a seconda dei casi può arrivare fino a 1/\macro{HZ}, (sempre che il sistema
1351 sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
1352 questo motivo il valore restituito in \param{rem} è sempre arrotondato al
1353 multiplo successivo di 1/\macro{HZ}.
1354
1355 In realtà è possibile ottenere anche pause più precise del centesimo di
1356 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
1357 \macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
1358 viene evitato, e si raggiungono pause fino ai 2~ms con precisioni del $\mu$s.
1359
1360
1361
1362 \subsection{Un esempio elementare}
1363 \label{sec:sig_sigchld}
1364
1365 Un semplice esempio per illustrare il funzionamento di un gestore di segnale è
1366 quello della gestione di \macro{SIGCHLD}. Abbiamo visto in
1367 \secref{sec:proc_termination} che una delle azioni eseguite dal kernel alla
1368 conclusione di un processo è quella di inviare questo segnale al
1369 padre.\footnote{in realtà in SVr4 eredita la semantica di System V, in cui il
1370   segnale si chiama \macro{SIGCLD} e viene trattato in maniera speciale; in
1371   System V infatti se si imposta esplicitamente l'azione a \macro{SIG\_IGN} il
1372   segnale non viene generato ed il sistema non genera zombie (lo stato di
1373   terminazione viene scartato senza dover chiamare una \func{wait}). L'azione
1374   predefinita è sempre quella di ignorare il segnale, ma non attiva questo
1375   comportamento. Linux, come BSD e POSIX, non supporta questa semantica ed usa
1376   il nome di \macro{SIGCLD} come sinonimo di \macro{SIGCHLD}.} In generale
1377 dunque, quando non interessa elaborare lo stato di uscita di un processo, si
1378 può completare la gestione della terminazione installando un gestore per
1379 \macro{SIGCHLD} il cui unico compito sia quello chiamare \func{waitpid} per
1380 completare la procedura di terminazione in modo da evitare la formazione di
1381 zombie.
1382
1383 In \figref{fig:sig_sigchld_handl} è mostrato il codice contenente una
1384 implementazione generica di una routine di gestione per \macro{SIGCHLD}, (che
1385 si trova nei sorgenti allegati nel file \file{HandSIGCHLD.c}); se ripetiamo i
1386 test di \secref{sec:proc_termination}, invocando \cmd{forktest} con l'opzione
1387 \cmd{-s} (che si limita ad effettuare l'installazione di questa funzione come
1388 gestore di \macro{SIGCHLD}) potremo verificare che non si ha più la creazione
1389 di zombie.
1390
1391 %  è pertanto
1392 % naturale usare un esempio che ci permette di concludere la trattazione della
1393 % terminazione dei processi.
1394 % In questo caso si è tratterà di illustrare un esempio relativo ad un
1395 % gestore per che è previsto ritornare,
1396
1397
1398 \begin{figure}[!htb]
1399   \footnotesize \centering
1400   \begin{minipage}[c]{15cm}
1401     \begin{lstlisting}{}
1402 #include <errno.h>       /* error symbol definitions */
1403 #include <signal.h>      /* signal handling declarations */
1404 #include <sys/types.h>
1405 #include <sys/wait.h>
1406 #include "macro.h"
1407
1408 void HandSIGCHLD(int sig)
1409 {
1410     int errno_save;
1411     int status;
1412     pid_t pid;
1413     /* save errno current value */
1414     errno_save = errno;
1415     /* loop until no */
1416     do {
1417         errno = 0;
1418         pid = waitpid(WAIT_ANY, &status, WNOHANG);
1419         if (pid > 0) {
1420             debug("child %d terminated with status %x\n", pid, status);
1421         }
1422     } while ((pid > 0) && (errno == EINTR));
1423     /* restore errno value */
1424     errno = errno_save;
1425     /* return */
1426     return;
1427 }
1428     \end{lstlisting}
1429   \end{minipage} 
1430   \normalsize 
1431   \caption{Codice di una funzione generica di gestione per il segnale
1432     \texttt{SIGCHLD}.}  
1433   \label{fig:sig_sigchld_handl}
1434 \end{figure}
1435
1436 Il codice del gestore è di lettura immediata; come buona norma di
1437 programmazione (si ricordi quanto accennato \secref{sec:sys_errno}) si
1438 comincia (\texttt{\small 12-13}) con il salvare lo stato corrente di
1439 \var{errno}, in modo da poterlo ripristinare prima del ritorno del gestore
1440 (\texttt{\small 22-23}). In questo modo si preserva il valore della variabile
1441 visto dal corso di esecuzione principale del processo, che sarebbe altrimenti
1442 sarebbe sovrascritto dal valore restituito nella successiva chiamata di
1443 \func{wait}.
1444
1445 Il compito principale del gestore è quello di ricevere lo stato di
1446 terminazione del processo, cosa che viene eseguita nel ciclo in
1447 (\texttt{\small 15-21}).  Il ciclo è necessario a causa di una caratteristica
1448 fondamentale della gestione dei segnali: abbiamo già accennato come fra la
1449 generazione di un segnale e l'esecuzione del gestore possa passare un
1450 certo lasso di tempo e niente ci assicura che il gestore venga eseguito
1451 prima della generazione di ulteriori segnali dello stesso tipo. In questo caso
1452 normalmente i segnali segnali successivi vengono ``fusi'' col primo ed al
1453 processo ne viene recapitato soltanto uno.
1454
1455 Questo può essere un caso comune proprio con \macro{SIGCHLD}, qualora capiti
1456 che molti processi figli terminino in rapida successione. Esso inoltre si
1457 presenta tutte le volte che un segnale viene bloccato: per quanti siano i
1458 segnali emessi durante il periodo di blocco, una volta che quest'ultimo sarà
1459 rimosso sarà recapitato un solo segnale.
1460
1461 Allora, nel caso della terminazione dei processi figli, se si chiamasse
1462 \func{waitpid} una sola volta, essa leggerebbe lo stato di terminazione per un
1463 solo processo, anche se i processi terminati sono più di uno, e gli altri
1464 resterebbero in stato di zombie per un tempo indefinito.
1465
1466 Per questo occorre ripetere la chiamata di \func{waitpid} fino a che essa non
1467 ritorni un valore nullo, segno che non resta nessun processo di cui si debba
1468 ancora ricevere lo stato di terminazione (si veda \secref{sec:proc_wait} per
1469 la sintassi della funzione). Si noti anche come la funzione venga invocata con
1470 il parametro \macro{WNOHANG} che permette di evitare il suo blocco quando
1471 tutti gli stati di terminazione sono stati ricevuti.
1472
1473
1474
1475 \section{Gestione avanzata}
1476 \label{sec:sig_control}
1477
1478 Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
1479 della gestione dei segnali; non si sono pertanto ancora prese in
1480 considerazione le tematiche più complesse, collegate alle varie race
1481 condition\index{race condition} che i segnali possono generare e alla natura
1482 asincrona degli stessi.
1483
1484 Affronteremo queste problematiche in questa sezione, partendo da un esempio
1485 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
1486 risolvere i problemi più complessi connessi alla programmazione con i segnali,
1487 fino a trattare le caratteristiche generali della gestione dei medesimi nella
1488 casistica ordinaria.
1489
1490
1491 \subsection{Alcune problematiche aperte}
1492 \label{sec:sig_example}
1493
1494 Come accennato in \secref{sec:sig_pause_sleep} è possibile implementare
1495 \func{sleep} a partire dall'uso di \func{pause} e \func{alarm}. A prima vista
1496 questo può sembrare di implementazione immediata; ad esempio una semplice
1497 versione di \func{sleep} potrebbe essere quella illustrata in
1498 \figref{fig:sig_sleep_wrong}.
1499
1500 Dato che è nostra intenzione utilizzare \macro{SIGALRM} il primo passo della
1501 nostra implementazione di sarà quello di installare il relativo gestore
1502 salvando il precedente (\texttt{\small 14-17}).  Si effettuerà poi una
1503 chiamata ad \func{alarm} per specificare il tempo d'attesa per l'invio del
1504 segnale a cui segue la chiamata a \func{pause} per fermare il programma
1505 (\texttt{\small 17-19}) fino alla sua ricezione.  Al ritorno di \func{pause},
1506 causato dal ritorno del gestore (\texttt{\small 1-9}), si ripristina il
1507 gestore originario (\texttt{\small 20-21}) restituendo l'eventuale tempo
1508 rimanente (\texttt{\small 22-23}) che potrà essere diverso da zero qualora
1509 l'interruzione di \func{pause} venisse causata da un altro segnale.
1510
1511 \begin{figure}[!htb]
1512   \footnotesize \centering
1513   \begin{minipage}[c]{15cm}
1514     \begin{lstlisting}{}
1515 void alarm_hand(int sig) {
1516     /* check if the signal is the right one */
1517     if (sig != SIGALRM) { /* if not exit with error */
1518         printf("Something wrong, handler for SIGALRM\n");
1519         exit(1);
1520     } else {    /* do nothing, just interrupt pause */
1521         return;
1522     }
1523 }
1524 unsigned int sleep(unsigned int seconds)
1525 {
1526     sighandler_t prev_handler;
1527     /* install and check new handler */
1528     if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
1529         printf("Cannot set handler for alarm\n"); 
1530         exit(-1);
1531     }
1532     /* set alarm and go to sleep */
1533     alarm(seconds); 
1534     pause(); 
1535     /* restore previous signal handler */
1536     signal(SIGALRM, prev_handler);
1537     /* return remaining time */
1538     return alarm(0);
1539 }
1540     \end{lstlisting}
1541   \end{minipage} 
1542   \normalsize 
1543   \caption{Una implementazione pericolosa di \func{sleep}.} 
1544   \label{fig:sig_sleep_wrong}
1545 \end{figure}
1546
1547 Questo codice però, a parte il non gestire il caso in cui si è avuta una
1548 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
1549 presenta una pericolosa race condition\index{race condition}.  Infatti se il
1550 processo viene interrotto fra la chiamata di \func{alarm} e \func{pause} può
1551 capitare (ad esempio se il sistema è molto carico) che il tempo di attesa
1552 scada prima dell'esecuzione quest'ultima, cosicché essa sarebbe eseguita dopo
1553 l'arrivo di \macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un
1554 deadlock, in quanto \func{pause} non verrebbe mai più interrotta (se non in
1555 caso di un altro segnale).
1556
1557 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
1558 SVr2) usando la funzione \func{longjmp} (vedi \secref{sec:proc_longjmp}) per
1559 uscire dal gestore; in questo modo, con una condizione sullo stato di
1560 uscita di quest'ultima, si può evitare la chiamata a \func{pause}, usando un
1561 codice del tipo di quello riportato in \figref{fig:sig_sleep_incomplete}.
1562
1563 \begin{figure}[!htb]
1564   \footnotesize \centering
1565   \begin{minipage}[c]{15cm}
1566     \begin{lstlisting}{}
1567 static jmp_buff alarm_return;
1568 unsigned int sleep(unsigned int seconds)
1569 {
1570     signandler_t prev_handler;
1571     if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
1572         printf("Cannot set handler for alarm\n");
1573         exit(1);
1574     }
1575     if (setjmp(alarm_return) == 0) { /* if not returning from handler */
1576         alarm(second);      /* call alarm */
1577         pause();            /* then wait */
1578     }
1579     /* restore previous signal handler */
1580     signal(SIGALRM, prev_handler);
1581     /* remove alarm, return remaining time */
1582     return alarm(0);
1583 }
1584 void alarm_hand(int sig) 
1585 {
1586     /* check if the signal is the right one */
1587     if (sig != SIGALRM) { /* if not exit with error */
1588         printf("Something wrong, handler for SIGALRM\n");
1589         exit(1);
1590     } else {    /* return in main after the call to pause */
1591         longjump(alarm_return, 1);
1592     }
1593 }      
1594     \end{lstlisting}
1595   \end{minipage} 
1596   \normalsize 
1597   \caption{Una implementazione ancora malfunzionante di \func{sleep}.} 
1598   \label{fig:sig_sleep_incomplete}
1599 \end{figure}
1600
1601 In questo caso il gestore (\texttt{\small 18-26}) non ritorna come in
1602 \figref{fig:sig_sleep_wrong}, ma usa \func{longjmp} (\texttt{\small 24}) per
1603 rientrare nel corpo principale del programma; dato che in questo caso il
1604 valore di uscita di \func{setjmp} è 1, grazie alla condizione in
1605 (\texttt{\small 9-12}) si evita comunque che \func{pause} sia chiamata a
1606 vuoto.
1607
1608 Ma anche questa implementazione comporta dei problemi; in questo caso infatti
1609 non viene gestita correttamente l'interazione con gli altri segnali; se
1610 infatti il segnale di allarme interrompe un altro gestore, in questo caso
1611 l'esecuzione non riprenderà nel gestore in questione, ma nel ciclo
1612 principale, interrompendone inopportunamente l'esecuzione.  Lo stesso tipo di
1613 problemi si presenterebbero se si volesse usare \func{alarm} per stabilire un
1614 timeout su una qualunque system call bloccante.
1615
1616 Un secondo esempio è quello in cui si usa il segnale per notificare una
1617 qualche forma di evento; in genere quello che si fa in questo caso è impostare
1618 nel gestore un opportuno flag da controllare nel corpo principale del
1619 programma (con un codice del tipo di quello riportato in
1620 \figref{fig:sig_event_wrong}).
1621
1622 \begin{figure}[!htb]
1623   \footnotesize \centering
1624   \begin{minipage}[c]{15cm}
1625     \begin{lstlisting}{}
1626 sig_atomic_t flag;
1627 int main()
1628 {
1629     flag = 0;
1630     ...
1631     if (flag) {         /* test if signal occurred */
1632         flag = 0;       /* reset flag */ 
1633         do_response();  /* do things */
1634     } else {
1635         do_other();     /* do other things */
1636     }
1637     ...
1638 }
1639 void alarm_hand(int sig) 
1640 {
1641     /* set the flag 
1642     flag = 1;
1643     return;
1644 }      
1645     \end{lstlisting}
1646   \end{minipage} 
1647   \normalsize 
1648   \caption{Un esempio non funzionante del codice per il controllo di un
1649     evento generato da un segnale.}
1650   \label{fig:sig_event_wrong}
1651 \end{figure}
1652
1653 La logica è quella di far impostare al gestore (\texttt{\small 14-19}) una
1654 variabile globale preventivamente inizializzata nel programma principale, il
1655 quale potrà determinare, osservandone il contenuto, l'occorrenza o meno del
1656 segnale, e prendere le relative azioni conseguenti (\texttt{\small 6-11}).
1657
1658 Questo è il tipico esempio di caso, già citato in \secref{sec:proc_race_cond},
1659 in cui si genera una race condition\index{race condition}; se infatti il
1660 segnale arriva immediatamente dopo l'esecuzione del controllo (\texttt{\small
1661   6}) ma prima della cancellazione del flag (\texttt{\small 7}), la sua
1662 occorrenza sarà perduta.
1663
1664 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
1665 funzioni più sofisticate di quelle illustrate finora, che hanno origine dalla
1666 interfaccia semplice, ma poco sofisticata, dei primi sistemi Unix, in modo da
1667 consentire la gestione di tutti i possibili aspetti con cui un processo deve
1668 reagire alla ricezione di un segnale.
1669
1670
1671
1672 \subsection{Gli \textsl{insiemi di segnali} o \textit{signal set}}
1673 \label{sec:sig_sigset}
1674
1675 Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
1676 dei primi Unix, nate con la semantica inaffidabile, hanno dei limiti non
1677 superabili; in particolare non è prevista nessuna funzione che permetta di
1678 gestire gestire il blocco dei segnali o di verificare lo stato dei segnali
1679 pendenti.
1680
1681 Per questo motivo lo standard POSIX.1, insieme alla nuova semantica dei
1682 segnali ha introdotto una interfaccia di gestione completamente nuova, che
1683 permette di ottenete un controllo molto più dettagliato. In particolare lo
1684 standard ha introdotto un nuovo tipo di dato \type{sigset\_t}, che permette di
1685 rappresentare un \textsl{insieme di segnali} (un \textit{signal set}, come
1686 viene usualmente chiamato), che è il tipo di dato che viene usato per gestire
1687 il blocco dei segnali.
1688
1689 In genere un \textsl{insieme di segnali} è rappresentato da un intero di
1690 dimensione opportuna, di solito si pari al numero di bit dell'architettura
1691 della macchina\footnote{nel caso dei PC questo comporta un massimo di 32
1692   segnali distinti, dato che in Linux questi sono sufficienti non c'è
1693   necessità di nessuna struttura più complicata.}, ciascun bit del quale è
1694 associato ad uno specifico segnale; in questo modo è di solito possibile
1695 implementare le operazioni direttamente con istruzioni elementari del
1696 processore; lo standard POSIX.1 definisce cinque funzioni per la manipolazione
1697 degli insiemi di segnali: \func{sigemptyset}, \func{sigfillset},
1698 \func{sigaddset}, \func{sigdelset} e \func{sigismember}, i cui prototipi sono:
1699 \begin{functions}
1700   \headdecl{signal.h} 
1701   
1702   \funcdecl{int sigemptyset(sigset\_t *set)} Inizializza un insieme di segnali
1703   vuoto (in cui non c'è nessun segnale).
1704  
1705   \funcdecl{int sigfillset(sigset\_t *set)} Inizializza un insieme di segnali
1706   pieno (in cui ci sono tutti i segnali).
1707   
1708   \funcdecl{int sigaddset(sigset\_t *set, int signum)} Aggiunge il segnale
1709   \param{signum} all'insieme di segnali \param{set}.
1710
1711   \funcdecl{int sigdelset(sigset\_t *set, int signum)} Toglie il segnale
1712   \param{signum} dall'insieme di segnali \param{set}.
1713   
1714   \funcdecl{int sigismember(const sigset\_t *set, int signum)} Controlla se il
1715   segnale \param{signum} è nell'insieme di segnali \param{set}.
1716   
1717   \bodydesc{Le prime quattro funzioni ritornano 0 in caso di successo, mentre
1718     \func{sigismember} ritorna 1 se \param{signum} è in \param{set} e 0
1719     altrimenti. In caso di errore tutte ritornano -1, con \var{errno} impostata a
1720     \macro{EINVAL} (il solo errore possibile è che \param{signum} non sia un
1721     segnale valido).}
1722 \end{functions}
1723
1724 Dato che in generale non si può fare conto sulle caratteristiche di una
1725 implementazione (non è detto che si disponga di un numero di bit sufficienti
1726 per mettere tutti i segnali in un intero, o in \type{sigset\_t} possono essere
1727 immagazzinate ulteriori informazioni) tutte le operazioni devono essere
1728 comunque eseguite attraverso queste funzioni.
1729
1730 In genere si usa un insieme di segnali per specificare quali segnali si vuole
1731 bloccare, o per riottenere dalle varie funzioni di gestione la maschera dei
1732 segnali attivi (vedi \secref{sec:sig_sigmask}). Essi possono essere definiti
1733 in due diverse maniere, aggiungendo i segnali voluti ad un insieme vuoto
1734 ottenuto con \func{sigemptyset} o togliendo quelli che non servono da un
1735 insieme completo ottenuto con \func{sigfillset}. Infine \func{sigismember}
1736 permette di verificare la presenza di uno specifico segnale in un
1737 insieme.
1738
1739
1740 \subsection{La funzione \func{sigaction}}
1741 \label{sec:sig_sigaction}
1742
1743 La funzione principale dell'interfaccia standard POSIX.1 per i segnali è
1744 \func{sigaction}, essa ha sostanzialemente lo stesso uso di \func{signal},
1745 permette cioè di specificare le modalità con cui un segnale può essere gestito
1746 da un processo. Il suo prototipo è:
1747 \begin{prototype}{signal.h}{int sigaction(int signum, const struct sigaction
1748     *act, struct sigaction *oldact)} 
1749   
1750   Installa una nuova azione per il segnale \param{signum}.
1751   
1752   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
1753     errore, nel qual caso \var{errno} assumerà i valori:
1754   \begin{errlist}
1755   \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido o si è
1756     cercato di installare il gestore per \macro{SIGKILL} o
1757     \macro{SIGSTOP}.
1758   \item[\macro{EFAULT}] Si sono specificati indirizzi non validi.
1759   \end{errlist}}
1760 \end{prototype}
1761
1762 La funzione serve ad installare una nuova \textsl{azione} per il segnale
1763 \param{signum}; si parla di \textsl{azione} e non di \textsl{gestore}
1764 come nel caso di \func{signal}, in quanto la funzione consente di specificare
1765 le varie caratteristiche della risposta al segnale, non solo la funzione che
1766 verrà eseguita alla sua occorrenza.  Per questo lo standard raccomanda di
1767 usare sempre questa funzione al posto di \func{signal} (che in genere viene
1768 definita tramite essa), in quanto permette un controllo completo su tutti gli
1769 aspetti della gestione di un segnale, sia pure al prezzo di una maggiore
1770 complessità d'uso.
1771
1772 Se il puntatore \param{act} non è nullo, la funzione installa la nuova azione
1773 da esso specificata, se \param{oldact} non è nullo il valore dell'azione
1774 corrente viene restituito indietro.  Questo permette (specificando \param{act}
1775 nullo e \param{oldact} non nullo) di superare uno dei limiti di \func{signal},
1776 che non consente di ottenere l'azione corrente senza installarne una nuova.
1777
1778 Entrambi i puntatori fanno riferimento alla struttura \var{sigaction}, tramite
1779 la quale si specificano tutte le caratteristiche dell'azione associata ad un
1780 segnale.  Anch'essa è descritta dallo standard POSIX.1 ed in Linux è definita
1781 secondo quanto riportato in \figref{fig:sig_sigaction}. Il campo
1782 \var{sa\_restorer}, non previsto dallo standard, è obsoleto e non deve essere
1783 più usato.
1784
1785 \begin{figure}[!htb]
1786   \footnotesize \centering
1787   \begin{minipage}[c]{15cm}
1788     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
1789 struct sigaction 
1790 {
1791     void (*sa_handler)(int);
1792     void (*sa_sigaction)(int, siginfo_t *, void *);
1793     sigset_t sa_mask;
1794     int sa_flags;
1795     void (*sa_restorer)(void);
1796 }
1797     \end{lstlisting}
1798   \end{minipage} 
1799   \normalsize 
1800   \caption{La struttura \var{sigaction}.} 
1801   \label{fig:sig_sigaction}
1802 \end{figure}
1803
1804 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
1805 essere bloccati durante l'esecuzione del gestore, ad essi viene comunque
1806 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
1807 sia specificato con \var{sa\_flag} un comportamento diverso. Quando il
1808 gestore ritorna comunque la maschera dei segnali bloccati (vedi
1809 \secref{sec:sig_sigmask}) viene ripristinata al valore precedente
1810 l'invocazione.
1811
1812 L'uso di questo campo permette ad esempio di risolvere il problema residuo
1813 dell'implementazione di \code{sleep} mostrata in
1814 \secref{fig:sig_sleep_incomplete}. In quel caso infatti se il segnale di
1815 allarme avesse interrotto un altro gestore questo non sarebbe stato
1816 eseguito correttamente; la cosa poteva essere prevenuta installando gli altri
1817 gestori usando \var{sa\_mask} per bloccare \macro{SIGALRM} durante la
1818 loro esecuzione.  Il valore di \var{sa\_flag} permette di specificare vari
1819 aspetti del comportamento di \func{sigaction}, e della reazione del processo
1820 ai vari segnali; i valori possibili ed il relativo significato sono riportati
1821 in \tabref{tab:sig_sa_flag}.
1822
1823 \begin{table}[htb]
1824   \footnotesize
1825   \centering
1826   \begin{tabular}[c]{|l|p{8cm}|}
1827     \hline
1828     \textbf{Valore} & \textbf{Significato} \\
1829     \hline
1830     \hline
1831     \macro{SA\_NOCLDSTOP}& Se il segnale è \macro{SIGCHLD} allora non deve
1832                            essere notificato quando il processo figlio viene
1833                            fermato da uno dei segnali \macro{SIGSTOP},
1834                            \macro{SIGTSTP}, \macro{SIGTTIN} o 
1835                            \macro{SIGTTOU}.\\
1836     \macro{SA\_ONESHOT}  & Ristabilisce l'azione per il segnale al valore 
1837                            predefinito una volta che il gestore è stato
1838                            lanciato, riproduce cioè il comportamento della
1839                            semantica inaffidabile.\\  
1840     \macro{SA\_RESETHAND}& Sinonimo di \macro{SA\_ONESHOT}. \\
1841     \macro{SA\_RESTART}  & Riavvia automaticamente le \textit{slow system
1842                            call} quando vengono interrotte dal suddetto
1843                            segnale; riproduce cioè il comportamento standard
1844                            di BSD.\\ 
1845     \macro{SA\_NOMASK}   & Evita che il segnale corrente sia bloccato durante
1846                            l'esecuzione del gestore.\\
1847     \macro{SA\_NODEFER}  & Sinonimo di \macro{SA\_NOMASK}.\\
1848     \macro{SA\_SIGINFO}  & Deve essere specificato quando si vuole usare un
1849                            gestore in forma estesa usando
1850                            \var{sa\_sigaction} al posto di \var{sa\_handler}.\\
1851     \macro{SA\_ONSTACK}  & Stabilisce l'uso di uno stack alternativo per
1852                            l'esecuzione del gestore (vedi
1853                            \secref{sec:sig_specific_features}).\\ 
1854     \hline
1855   \end{tabular}
1856   \caption{Valori del campo \var{sa\_flag} della struttura \var{sigaction}.}
1857   \label{tab:sig_sa_flag}
1858 \end{table}
1859
1860 Come si può notare in \figref{fig:sig_sigaction} \func{sigaction}
1861 permette\footnote{La possibilità è prevista dallo standard POSIX.1b, ed è
1862   stata aggiunta nei kernel della serie 2.1.x con l'introduzione dei segnali
1863   real-time (vedi \secref{sec:sig_real_time}). In precedenza era possibile
1864   ottenere alcune informazioni addizionali usando \var{sa\_handler} con un
1865   secondo parametro addizionale di tipo \var{struct sigcontext}, che adesso è
1866   deprecato.}  di utilizzare due forme diverse di gestore, da
1867 specificare, a seconda dell'uso o meno del flag \macro{SA\_SIGINFO},
1868 rispettivamente attraverso i campi \var{sa\_sigaction} o \var{sa\_handler},
1869 (che devono essere usati in maniera alternativa, in certe implementazioni
1870 questi vengono addirittura definiti come \ctyp{union}): la prima è quella
1871 classica usata anche con \func{signal}, la seconda permette invece di usare un
1872 gestore in grado di ricevere informazioni più dettagliate dal sistema,
1873 attraverso la struttura \type{siginfo\_t}, riportata in
1874 \figref{fig:sig_siginfo_t}.
1875
1876 \begin{figure}[!htb]
1877   \footnotesize \centering
1878   \begin{minipage}[c]{15cm}
1879     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
1880 siginfo_t {
1881     int      si_signo;  /* Signal number */
1882     int      si_errno;  /* An errno value */
1883     int      si_code;   /* Signal code */
1884     pid_t    si_pid;    /* Sending process ID */
1885     uid_t    si_uid;    /* Real user ID of sending process */
1886     int      si_status; /* Exit value or signal */
1887     clock_t  si_utime;  /* User time consumed */
1888     clock_t  si_stime;  /* System time consumed */
1889     sigval_t si_value;  /* Signal value */
1890     int      si_int;    /* POSIX.1b signal */
1891     void *   si_ptr;    /* POSIX.1b signal */
1892     void *   si_addr;   /* Memory location which caused fault */
1893     int      si_band;   /* Band event */
1894     int      si_fd;     /* File descriptor */
1895 }
1896     \end{lstlisting}
1897   \end{minipage} 
1898   \normalsize 
1899   \caption{La struttura \type{siginfo\_t}.} 
1900   \label{fig:sig_siginfo_t}
1901 \end{figure}
1902  
1903 Installando un gestore di tipo \var{sa\_sigaction} diventa allora
1904 possibile accedere alle informazioni restituite attraverso il puntatore a
1905 questa struttura. Tutti i segnali impostano i campi \var{si\_signo}, che riporta
1906 il numero del segnale ricevuto, \var{si\_errno}, che riporta, quando diverso
1907 da zero, il codice dell'errore associato al segnale, e \var{si\_code}, che
1908 viene usato dal kernel per specificare maggiori dettagli riguardo l'evento che
1909 ha causato l'emissione del segnale.
1910
1911 In generale \var{si\_code} contiene, per i segnali generici, per quelli
1912 real-time e per tutti quelli inviati tramite \func{kill}, informazioni circa
1913 l'origine del segnale (se generato dal kernel, da un timer, da \func{kill},
1914 ecc.). Alcuni segnali però usano \var{si\_code} per fornire una informazione
1915 specifica: ad esempio i vari segnali di errore (\macro{SIGFPE},
1916 \macro{SIGILL}, \macro{SIGBUS} e \macro{SIGSEGV}) lo usano per fornire
1917 maggiori dettagli riguardo l'errore (come il tipo di errore aritmetico, di
1918 istruzione illecita o di violazione di memoria) mentre alcuni segnali di
1919 controllo (\macro{SIGCHLD}, \macro{SIGTRAP} e \macro{SIGPOLL}) forniscono
1920 altre informazioni speecifiche.  In tutti i casi il valore del campo è
1921 riportato attraverso delle costanti (le cui definizioni si trovano
1922 \file{bits/siginfo.h}) il cui elenco dettagliato è disponibile nella pagina di
1923 manuale di di \func{sigaction}.
1924
1925 Il resto della struttura è definito come \ctyp{union} ed i valori
1926 eventualmente presenti dipendono dal segnale, così \macro{SIGCHLD} ed i
1927 segnali real-time (vedi \secref{sec:sig_real_time}) inviati tramite
1928 \func{kill} avvalorano \var{si\_pid} e \var{si\_uid} coi valori corrispondenti
1929 al processo che ha emesso il segnale, \macro{SIGILL}, \macro{SIGFPE},
1930 \macro{SIGSEGV} e \macro{SIGBUS} avvalorano \var{si\_addr} con l'indirizzo cui
1931 è avvenuto l'errore, \macro{SIGIO} (vedi \secref{sec:file_asyncronous_io})
1932 avvalora \var{si\_fd} con il numero del file descriptor e \var{si\_band} per i
1933 dati urgenti su un socket.
1934
1935 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
1936 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
1937 interagire in maniera anomala. Infatti l'azione specificata con
1938 \var{sigaction} contiene un maggior numero di informazioni rispetto al
1939 semplice indirizzo del gestore restituito da \func{signal}.  Per questo
1940 motivo se si usa quest'ultima per installare un gestore sostituendone uno
1941 precedentemente installato con \func{sigaction}, non sarà possibile effettuare
1942 un ripristino corretto dello stesso.
1943
1944 Per questo è sempre opportuno usare \func{sigaction}, che è in grado di
1945 ripristinare correttamente un gestore precedente, anche se questo è stato
1946 installato con \func{signal}. In generale poi non è il caso di usare il valore
1947 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
1948 che in certi sistemi questi possono essere diversi. In definitiva dunque, a
1949 meno che non si sia vincolati all'aderenza stretta allo standard ISO C, è
1950 sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
1951
1952 \begin{figure}[!htb]
1953   \footnotesize \centering
1954   \begin{minipage}[c]{15cm}
1955     \begin{lstlisting}{}
1956 typedef void SigFunc(int);
1957 inline SigFunc * Signal(int signo, SigFunc *func) 
1958 {
1959     struct sigaction new_handl, old_handl;
1960     new_handl.sa_handler=func;
1961     /* clear signal mask: no signal blocked during execution of func */
1962     if (sigemptyset(&new_handl.sa_mask)!=0){  /* initialize signal set */
1963         perror("cannot initializes the signal set to empty"); /* see mess. */
1964         exit(1);
1965     }
1966     new_handl.sa_flags=0;                  /* init to 0 all flags */
1967     /* change action for signo signal */
1968     if (sigaction(signo,&new_handl,&old_handl)){ 
1969         perror("sigaction failed on signal action setting");
1970         exit(1);
1971     }
1972     return (old_handl.sa_handler);
1973 }
1974     \end{lstlisting}
1975   \end{minipage} 
1976   \normalsize 
1977   \caption{Una funzione equivalente a \func{signal} definita attraverso
1978     \func{sigaction}.} 
1979   \label{fig:sig_Signal_code}
1980 \end{figure}
1981
1982 Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
1983 che abbia le stesse caratteristiche di \func{signal}, a definire una funzione
1984 equivalente attraverso \func{sigaction}; la funzione è \code{Signal}, e si
1985 trova definita come \code{inline} nel file \file{wrapper.h} (nei sorgenti
1986 allegati), riportata in \figref{fig:sig_Signal_code}. La riutilizzeremo spesso
1987 in seguito. 
1988
1989 \subsection{La gestione della \textsl{maschera dei segnali} o 
1990   \textit{signal mask}}
1991 \label{sec:sig_sigmask}
1992
1993 Come spiegato in \secref{sec:sig_semantics} tutti i moderni sistemi unix-like
1994 permettono si bloccare temporaneamente (o di eliminare completamente, impostando
1995 \macro{SIG\_IGN} come azione) la consegna dei segnali ad un processo. Questo è
1996 fatto specificando la cosiddetta \textsl{maschera dei segnali} (o
1997 \textit{signal mask}) del processo\footnote{nel caso di Linux essa è mantenuta
1998   dal campo \var{blocked} della \var{task\_struct} del processo.} cioè
1999 l'insieme dei segnali la cui consegna è bloccata. Abbiamo accennato in
2000 \secref{sec:proc_fork} che la \textit{signal mask} viene ereditata dal padre
2001 alla creazione di un processo figlio, e abbiamo visto al paragrafo precedente
2002 che essa può essere modificata, durante l'esecuzione di un gestore,
2003 attraverso l'uso dal campo \var{sa\_mask} di \var{sigaction}.
2004
2005 Uno dei problemi evidenziatisi con l'esempio di \secref{fig:sig_event_wrong} è
2006 che in molti casi è necessario proteggere delle sezioni di codice (nel caso in
2007 questione la sezione fra il controllo e la eventuale cancellazione del flag
2008 che testimoniava l'avvenuta occorrenza del segnale) in modo da essere sicuri
2009 che essi siano eseguiti senza interruzioni.
2010
2011 Le operazioni più semplici, come l'assegnazione o il controllo di una
2012 variabile (per essere sicuri si può usare il tipo \type{sig\_atomic\_t}) di
2013 norma sono atomiche, quando occorrono operazioni più complesse si può invece
2014 usare la funzione \func{sigprocmask} che permette di bloccare uno o più
2015 segnali; il suo prototipo è:
2016 \begin{prototype}{signal.h}
2017 {int sigprocmask(int how, const sigset\_t *set, sigset\_t *oldset)} 
2018   
2019   Cambia la \textsl{maschera dei segnali} del processo corrente.
2020   
2021   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
2022     errore, nel qual caso \var{errno} assumerà i valori:
2023   \begin{errlist}
2024   \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido.
2025   \item[\macro{EFAULT}] Si sono specificati indirizzi non validi.
2026   \end{errlist}}
2027 \end{prototype}
2028
2029 La funzione usa l'insieme di segnali dato all'indirizzo \param{set} per
2030 modificare la maschera dei segnali del processo corrente. La modifica viene
2031 effettuata a seconda del valore dell'argomento \param{how}, secondo le modalità
2032 specificate in \tabref{tab:sig_procmask_how}. Qualora si specifichi un valore
2033 non nullo per \param{oldset} la maschera dei segnali corrente viene salvata a
2034 quell'indirizzo.
2035
2036 \begin{table}[htb]
2037   \footnotesize
2038   \centering
2039   \begin{tabular}[c]{|l|p{8cm}|}
2040     \hline
2041     \textbf{Valore} & \textbf{Significato} \\
2042     \hline
2043     \hline
2044     \macro{SIG\_BLOCK}   & L'insieme dei segnali bloccati è l'unione fra
2045                            quello specificato e quello corrente.\\
2046     \macro{SIG\_UNBLOCK} & I segnali specificati in \param{set} sono rimossi
2047                            dalla maschera dei segnali, specificare la
2048                            cancellazione di un segnale non bloccato è legale.\\
2049     \macro{SIG\_SETMASK} & La maschera dei segnali è impostata al valore
2050                            specificato da \param{set}.\\
2051     \hline
2052   \end{tabular}
2053   \caption{Valori e significato dell'argomento \param{how} della funzione
2054     \func{sigprocmask}.}
2055   \label{tab:sig_procmask_how}
2056 \end{table}
2057
2058 In questo modo diventa possibile proteggere delle sezioni di codice bloccando
2059 l'insieme di segnali voluto per poi riabilitarli alla fine della sezione
2060 critica. La funzione permette di risolvere problemi come quelli mostrati in
2061 \secref{fig:sig_event_wrong}, proteggendo la sezione fra il controllo del flag
2062 e la sua cancellazione. 
2063
2064 La funzione può essere usata anche all'interno di un gestore, ad esempio
2065 per riabilitare la consegna del segnale che l'ha invocato, in questo caso però
2066 occorre ricordare che qualunque modifica alla maschera dei segnali viene
2067 perduta alla conclusione del terminatore. 
2068
2069 Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
2070 dei casi di race condition\index{race condition} restano aperte alcune
2071 possibilità legate all'uso di \func{pause}; il caso è simile a quello del
2072 problema illustrato nell'esempio di \secref{fig:sig_sleep_incomplete}, e cioè
2073 la possibilità che il processo riceva il segnale che si intende usare per
2074 uscire dallo stato di attesa invocato con \func{pause} immediatamente prima
2075 dell'esecuzione di quest'ultima. Per poter effettuare atomicamente la modifica
2076 della maschera dei segnali (di solito attivandone uno specifico) insieme alla
2077 sospensione del processo lo standard POSIX ha previsto la funzione
2078 \func{sigsuspend}, il cui prototipo è:
2079 \begin{prototype}{signal.h}
2080 {int sigsuspend(const sigset\_t *mask)} 
2081   
2082   Imposta la \textit{signal mask} specificata, mettendo in attesa il processo.
2083   
2084   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
2085     errore, nel qual caso \var{errno} assumerà i valori:
2086   \begin{errlist}
2087   \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido.
2088   \item[\macro{EFAULT}] Si sono specificati indirizzi non validi.
2089   \end{errlist}}
2090 \end{prototype}
2091
2092 Come esempio dell'uso di queste funzioni proviamo a riscrivere un'altra volta
2093 l'esempio di implementazione di \code{sleep}. Abbiamo accennato in
2094 \secref{sec:sig_sigaction} come con \func{sigaction} sia possibile bloccare
2095 \macro{SIGALRM} nell'installazione dei gestori degli altri segnali, per
2096 poter usare l'implementazione vista in \secref{fig:sig_sleep_incomplete} senza
2097 interferenze.  Questo però comporta una precauzione ulteriore al semplice uso
2098 della funzione, vediamo allora come usando la nuova interfaccia è possibile
2099 ottenere un'implementazione, riportata in \figref{fig:sig_sleep_ok} che non
2100 presenta neanche questa necessità.
2101
2102 \begin{figure}[!htb]
2103   \footnotesize \centering
2104   \begin{minipage}[c]{15cm}
2105     \begin{lstlisting}{}
2106 void alarm_hand(int);
2107 unsigned int sleep(unsigned int seconds)
2108 {
2109     struct sigaction new_action, old_action;
2110     sigset_t old_mask, stop_mask, sleep_mask;
2111     /* set the signal handler */
2112     sigemptyset(&new_action.sa_mask);              /* no signal blocked */
2113     new_action.sa_handler = alarm_hand;            /* set handler */
2114     new_action.sa_flags = 0;                       /* no flags */
2115     sigaction(SIGALRM, &new_action, &old_action);  /* install action */
2116     /* block SIGALRM to avoid race conditions */
2117     sigemptyset(&stop_mask);                       /* init mask to empty */
2118     sigaddset(&stop_mask, SIGALRM);                /* add SIGALRM */
2119     sigprocmask(SIG_BLOCK, &stop_mask, &old_mask); /* add SIGALRM to blocked */
2120     /* send the alarm */
2121     alarm(seconds); 
2122     /* going to sleep enabling SIGALRM */
2123     sleep_mask = old_mask;                         /* take mask */
2124     sigdelset(&sleep_mask, SIGALRM);               /* remove SIGALRM */
2125     sigsuspend(&sleep_mask);                       /* go to sleep */
2126     /* restore previous settings */
2127     sigprocmask(SIG_SETMASK, &old_mask, NULL);     /* reset signal mask */    
2128     sigaction(SIGALRM, &old_action, NULL);         /* reset signal action */
2129     /* return remaining time */
2130     return alarm(0);
2131 }
2132 void alarm_hand(int sig) 
2133 {
2134     return;     /* just return to interrupt sigsuspend */
2135 }
2136     \end{lstlisting}
2137   \end{minipage} 
2138   \normalsize 
2139   \caption{Una implementazione completa di \func{sleep}.} 
2140   \label{fig:sig_sleep_ok}
2141 \end{figure}
2142
2143 Per evitare i problemi di interferenza con gli altri segnali in questo caso
2144 non si è usato l'approccio di \figref{fig:sig_sleep_incomplete} evitando l'uso
2145 di \func{longjmp}. Come in precedenza il gestore (\texttt{\small 35-37})
2146 non esegue nessuna operazione, limitandosi a ritornare per interrompere il
2147 programma messo in attesa.
2148
2149 La prima parte della funzione (\texttt{\small 11-15}) provvede ad installare
2150 l'opportuno gestore per \macro{SIGALRM}, salvando quello originario, che
2151 sarà ripristinato alla conclusione della stessa (\texttt{\small 28}); il passo
2152 successivo è quello di bloccare \macro{SIGALRM} (\texttt{\small 17-19}) per
2153 evitare che esso possa essere ricevuto dal processo fra l'esecuzione di
2154 \func{alarm} (\texttt{\small 21}) e la sospensione dello stesso. Nel fare
2155 questo si salva la maschera corrente dei segnali, che sarà ripristinata alla
2156 fine (\texttt{\small 27}), e al contempo si prepara la maschera dei segnali
2157 \var{sleep\_mask} per riattivare \macro{SIGALRM} all'esecuzione di
2158 \func{sigsuspend}.  
2159
2160 In questo modo non sono più possibili race condition\index{race condition}
2161 dato che \macro{SIGALRM} viene disabilitato con \func{sigprocmask} fino alla
2162 chiamata di \func{sigsuspend}. Questo metodo è assolutamente generale e può
2163 essere applicato a qualunque altra situazione in cui si deve attendere per un
2164 segnale, i passi sono sempre i seguenti:
2165 \begin{enumerate*}
2166 \item Leggere la maschera dei segnali corrente e bloccare il segnale voluto
2167   con \func{sigprocmask}. 
2168 \item Mandare il processo in attesa con \func{sigsuspend} abilitando la
2169   ricezione del segnale voluto.
2170 \item Ripristinare la maschera dei segnali originaria.
2171 \end{enumerate*}
2172 Per quanto possa sembrare strano bloccare la ricezione di un segnale per poi
2173 riabilitarla immediatamente dopo, in questo modo si evita il deadlock dovuto
2174 all'arrivo del segnale prima dell'esecuzione di \func{sigsuspend}.
2175
2176
2177 \subsection{Ulteriori funzioni di gestione}
2178 \label{sec:sig_specific_features}
2179
2180 In questa ultimo paragrafo esamineremo varie funzioni di gestione dei segnali
2181 non descritte finora, relative agli aspetti meno utilizzati. La prima di esse
2182 è \func{sigpending},  anch'essa introdotta dallo standard POSIX.1; il suo
2183 prototipo è:
2184 \begin{prototype}{signal.h}
2185 {int sigpending(sigset\_t *set)} 
2186   
2187 Scrive in \param{set} l'insieme dei segnali pendenti.
2188   
2189   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
2190     errore.}
2191 \end{prototype}
2192
2193 La funzione permette di ricavare quali sono i segnali pendenti per il processo
2194 in corso, cioè i segnali che sono stato inviati dal kernel ma non sono stati
2195 ancora ricevuti dal processo in quanto bloccati. Non esiste una funzione
2196 equivalente nella vecchia interfaccia, ma essa è tutto sommato poco utile,
2197 dato che essa può solo assicurare che un segnale è stato inviato, dato che
2198 escluderne l'avvenuto invio al momento della chiamata non significa nulla
2199 rispetto a quanto potrebbe essere in un qualunque momento successivo.
2200
2201 Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
2202 di usare uno stack alternativo per i segnali; è cioè possibile fare usare al
2203 sistema un altro stack (invece di quello relativo al processo, vedi
2204 \secref{sec:proc_mem_layout}) solo durante l'esecuzione di un
2205 gestore. L'uso di uno stack alternativo è del tutto trasparente ai
2206 gestori, occorre però seguire una certa procedura:
2207 \begin{enumerate*}
2208 \item Allocare un'area di memoria di dimensione sufficiente da usare come
2209   stack alternativo.
2210 \item Usare la funzione \func{sigaltstack} per rendere noto al sistema
2211   l'esistenza e la locazione dello stack alternativo.
2212 \item Quando si installa un gestore occorre usare \func{sigaction}
2213   specificando il flag \macro{SA\_ONSTACK} (vedi \tabref{tab:sig_sa_flag}) per
2214   dire al sistema di usare lo stack alternativo durante l'esecuzione del
2215   gestore. 
2216 \end{enumerate*}
2217
2218 In genere il primo passo viene effettuato allocando un'opportuna area di
2219 memoria con \code{malloc}; in \file{signal.h} sono definite due costanti,
2220 \macro{SIGSTKSZ} e \macro{MINSIGSTKSZ}, che possono essere utilizzate per
2221 allocare una quantità di spazio opportuna, in modo da evitare overflow. La
2222 prima delle due è la dimensione canonica per uno stack di segnali e di norma è
2223 sufficiente per tutti gli usi normali. La seconda è lo spazio che occorre al
2224 sistema per essere in grado di lanciare il gestore e la dimensione di uno
2225 stack alternativo deve essere sempre maggiore di questo valore. Quando si
2226 conosce esattamente quanto è lo spazio necessario al gestore gli si può
2227 aggiungere questo valore per allocare uno stack di dimensione sufficiente.
2228
2229 Come accennato per poter essere usato lo stack per i segnali deve essere
2230 indicato al sistema attraverso la funzione \func{sigaltstack}; il suo
2231 prototipo è:
2232 \begin{prototype}{signal.h}
2233 {int sigaltstack(const stack\_t *ss, stack\_t *oss)}
2234   
2235 Installa un nuovo stack per i segnali.
2236   
2237   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
2238     errore, nel qual caso \var{errno} assumerà i valori:
2239
2240   \begin{errlist}
2241   \item[\macro{ENOMEM}] La dimensione specificata per il nuovo stack è minore
2242   di \macro{MINSIGSTKSZ}.
2243   \item[\macro{EPERM}] Uno degli indirizzi non è valido.
2244   \item[\macro{EFAULT}] Si è cercato di cambiare lo stack alternativo mentre
2245   questo è attivo (cioè il processo è in esecuzione su di esso).
2246   \item[\macro{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
2247   valore diverso da zero che non è \macro{SS\_DISABLE}.
2248   \end{errlist}}
2249 \end{prototype}
2250
2251 La funzione prende come argomenti puntatori ad una struttura di tipo
2252 \var{stack\_t}, definita in \figref{fig:sig_stack_t}. I due valori \param{ss}
2253 e \param{oss}, se non nulli, indicano rispettivamente il nuovo stack da
2254 installare e quello corrente (che viene restituito dalla funzione per un
2255 successivo ripristino).
2256
2257 \begin{figure}[!htb]
2258   \footnotesize \centering
2259   \begin{minipage}[c]{15cm}
2260     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
2261 typedef struct {
2262     void  *ss_sp;     /* Base address of stack */
2263     int    ss_flags;  /* Flags */
2264     size_t ss_size;   /* Number of bytes in stack */
2265 } stack_t;
2266     \end{lstlisting}
2267   \end{minipage} 
2268   \normalsize 
2269   \caption{La struttura \var{stack\_t}.} 
2270   \label{fig:sig_stack_t}
2271 \end{figure}
2272
2273 Il campo \var{ss\_sp} di \var{stack\_t} indica l'indirizzo base dello stack,
2274 mentre \var{ss\_size} ne indica la dimensione; il campo \var{ss\_flags} invece
2275 indica lo stato dello stack. Nell'indicare un nuovo stack occorre
2276 inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al puntatore e
2277 alla dimensione della memoria allocata, mentre \var{ss\_flags} deve essere
2278 nullo.  Se invece si vuole disabilitare uno stack occorre indicare
2279 \macro{SS\_DISABLE} come valore di \var{ss\_flags} e gli altri valori saranno
2280 ignorati.
2281
2282 Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
2283 dimensione dello stack corrente nei relativi campi, mentre \var{ss\_flags}
2284 potrà assumere il valore \macro{SS\_ONSTACK} se il processo è in esecuzione
2285 sullo stack alternativo (nel qual caso non è possibile cambiarlo) e
2286 \macro{SS\_DISABLE} se questo non è abilitato.
2287
2288 In genere si installa uno stack alternativo per i segnali quando si teme di
2289 avere problemi di esaurimento dello stack standard o di superamento di un
2290 limite imposto con chiamata de tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.
2291 In tal caso infatti si avrebbe un segnale di \macro{SIGSEGV}, che potrebbe
2292 essere gestito soltanto avendo abilitato uno stack alternativo. 
2293
2294 Si tenga presente che le funzioni chiamate durante l'esecuzione sullo stack
2295 alternativo continueranno ad usare quest'ultimo, che, al contrario di quanto
2296 avviene per lo stack ordinario dei processi, non si accresce automaticamente
2297 (ed infatti eccederne le dimensioni può portare a conseguenze imprevedibili).
2298 Si ricordi infine che una chiamata ad una funzione della famiglia
2299 \func{exec} cancella ogni stack alternativo.
2300
2301 Abbiamo visto in \secref{fig:sig_sleep_incomplete} come si possa usare
2302 \func{longjmp} per uscire da un gestore rientrando direttamente nel corpo
2303 del programma; sappiamo però che nell'esecuzione di un gestore il segnale
2304 che l'ha invocato viene bloccato, e abbiamo detto che possiamo ulteriormente
2305 modificarlo con \func{sigprocmask}. 
2306
2307 Resta quindi il problema di cosa succede alla maschera dei segnali quando si
2308 esce da un gestore usando questa funzione. Il comportamento dipende
2309 dall'implementazione; in particolare BSD ripristina la maschera dei segnali
2310 precedente l'invocazione, come per un normale ritorno, mentre System V no. Lo
2311 standard POSIX.1 non specifica questo comportamento per \func{setjmp} e
2312 \func{longjmp}, ed il comportamento delle \acr{glibc} dipende da quale delle
2313 caratteristiche si sono abilitate con le macro viste in
2314 \secref{sec:intro_gcc_glibc_std}.
2315
2316 Lo standard POSIX però prevede anche la presenza di altre due funzioni
2317 \func{sigsetjmp} e \func{siglongjmp}, che permettono di decidere quale dei due
2318 comportamenti il programma deve assumere; i loro prototipi sono:
2319 \begin{functions}
2320   \headdecl{setjmp.h} 
2321   
2322   \funcdecl{int sigsetjmp(sigjmp\_buf env, int savesigs)} Salva il contesto
2323   dello stack per un salto non locale.
2324  
2325   \funcdecl{void siglongjmp(sigjmp\_buf env, int val)} Esegue un salto non
2326   locale su un precedente contesto.
2327
2328   \bodydesc{Le due funzioni sono identiche alle analoghe \func{setjmp} e
2329     \func{longjmp} di \secref{sec:proc_longjmp}, ma consentono di specificare
2330     il comportamento sul ripristino o meno della maschera dei segnali.}
2331 \end{functions}
2332
2333 Le due funzioni prendono come primo argomento la variabile su cui viene
2334 salvato il contesto dello stack per permettere il salto non locale; nel caso
2335 specifico essa è di tipo \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le
2336 analoghe di \secref{sec:proc_longjmp} in quanto in questo caso viene salvata
2337 anche la maschera dei segnali.
2338
2339 Nel caso di \func{sigsetjmp} se si specifica un valore di \param{savesigs}
2340 diverso da zero la maschera dei valori sarà salvata in \param{env} e
2341 ripristinata in un successivo \func{siglongjmp}; quest'ultima funzione, a
2342 parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
2343 \func{longjmp}.
2344
2345
2346
2347 \subsection{I segnali real-time}
2348 \label{sec:sig_real_time}
2349
2350
2351 Lo standard POSIX.1b, nel definire una serie di nuove interfacce per i servizi
2352 real-time, ha introdotto una estensione del modello classico dei segnali che
2353 presenta dei significativi miglioramenti,\footnote{questa estensione è stata
2354   introdotta in Linux a partire dal kernel 2.1.43(?), e dalle \acr{glibc}
2355   2.1(?).} in particolare sono stati superati tre limiti fondamentali dei
2356 segnali classici:
2357 \begin{description}
2358 \item[I segnali non sono accumulati] 
2359   
2360   se più segnali vengono generati prima dell'esecuzione di un gestore
2361   questo sarà eseguito una sola volta, ed il processo non sarà in grado di
2362   accorgersi di quante volte l'evento che ha generato il segnale è accaduto.
2363 \item[I segnali non trasportano informazione] 
2364   
2365   i segnali classici non prevedono prevedono altra informazione sull'evento
2366   che li ha generati se non il fatto che sono stati emessi (tutta
2367   l'informazione che il kernel associa ad un segnale è il suo numero).
2368 \item[I segnali non hanno un ordine di consegna] 
2369
2370   l'ordine in cui diversi segnali vengono consegnati è casuale e non
2371   prevedibile. Non è possibile stabilire una priorità per cui la reazione a
2372   certi segnali ha la precedenza rispetto ad altri.
2373 \end{description}
2374
2375
2376 Per poter superare queste limitazioni lo standard ha introdotto delle nuove
2377 caratteristiche, che sono state associate ad una nuova classe di segnali, che
2378 vengono chiamati \textsl{segnali real-time}, in particolare:
2379
2380 \begin{itemize*}
2381 \item i segnali sono inseriti in una coda che permette di consegnare istanze
2382   multiple dello stesso segnale qualora esso venga inviato più volte prima
2383   dell'esecuzione del gestore; si assicura così che il processo riceva un
2384   segnale per ogni occorrenza dell'evento che lo genera.
2385 \item è stata introdotta una priorità nella consegna dei segnali: i segnali
2386   vengono consegnati in ordine a seconda del loro valore, partendo da quelli
2387   con un numero minore, che pertanto hanno una priorità maggiore.
2388 \item è stata introdotta la possibilità di restituire dei dati al
2389   gestore, attraverso l'uso di un campo apposito nella struttura
2390   \type{siginfo\_t} accessibile tramite gestori di tipo
2391   \var{sa\_sigaction}.
2392 \end{itemize*}
2393
2394 Queste nuove caratteristiche (eccetto l'ultima, che, come visto in
2395 \secref{sec:sig_sigaction}, è parzialmente disponibile anche con i segnali
2396 ordinari) si applicano solo ai nuovi segnali real-time; questi ultimi sono
2397 accessibili in un range di valori specificati dalle due macro \macro{SIGRTMIN}
2398 e \macro{SIGRTMAX},\footnote{in Linux di solito il primo valore è 32, ed il
2399   secondo \code{\_NSIG-1}, che di norma è 63, per un totale di 32 segnali
2400   disponibili, contro gli almeno 8 richiesti da POSIX.1b.} che specificano il
2401 numero minimo e massimo associato ad un segnale real-time.
2402
2403 I segnali con un numero più basso hanno una priorità maggiore e vengono
2404 consegnati per primi, inoltre i segnali real-time non possono interrompere
2405 l'esecuzione di un gestore di un segnale a priorità più alta; la loro azione
2406 predefinita è quella di terminare il programma.  I segnali ordinari hanno
2407 tutti la stessa priorità, che è più alta di quella di qualunque segnale
2408 real-time.
2409
2410 Si tenga presente che questi nuovi segnali non sono associati a nessun evento
2411 sepcifico (a meno di non utilizzarli, come vedremo in
2412 \secref{sec:file_asyncronous_io}, per l'I/O asincrono) e devono essere inviati
2413 esplicitamente. Tutti i segnali real-time restituiscono al gestore, oltre
2414 ai campi \var{si\_pid} e \var{si\_uid} di \type{siginfo\_t} una struttura
2415 \type{sigval} (riportata in \figref{fig:sig_sigval}) in cui può essere
2416 restituito al processo un valore o un indirizzo, che costituisce il meccanismo
2417 con cui il segnale è in grado di inviare una ulteriore informazione al
2418 processo.
2419
2420 \begin{figure}[!htb]
2421   \footnotesize \centering
2422   \begin{minipage}[c]{15cm}
2423     \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
2424 union sigval {
2425         int sival_int;
2426         void *sival_ptr;
2427 }
2428           \end{lstlisting}
2429   \end{minipage} 
2430   \normalsize 
2431   \caption{La struttura \type{sigval}, usata dai segnali real time per
2432     restituire dati al gestore.}
2433   \label{fig:sig_sigval}
2434 \end{figure}
2435
2436 A causa di queste loro caratteristiche, la funzione \func{kill} non è adatta
2437 ad inviare un segnale real time, in quanto non è in grado di fornire alcun
2438 valore per \var{sigval}; per questo motivo lo standard ha previsto una nuova
2439 funzione, \func{sigqueue}, il cui prototipo è:
2440 \begin{prototype}{signal.h}
2441   {int sigqueue(pid\_t pid, int signo, const union sigval value)}
2442   
2443   Invia il segnale \param{signo} al processo \param{pid}, restituendo al
2444   gestore il valore \param{value}.
2445   
2446   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2447     errore, nel qual caso \var{errno} viene impostata ai valori:
2448   \begin{errlist}
2449   \item[\macro{EAGAIN}] La coda è esarita, ci sono già \macro{SIGQUEUE\_MAX}
2450     segnali in attesa si consegna.
2451   \item[\macro{EPERM}] Non si hanno privilegi appropriati per inviare il
2452     segnale al processo specificato.
2453   \item[\macro{ESRCH}] Il processo \param{pid} non esiste.
2454   \item[\macro{EINVAL}] Si è specificato un valore non valido per
2455     \param{signo}.
2456   \end{errlist}
2457   ed inoltre \macro{ENOMEM}.}
2458 \end{prototype}
2459
2460 Il comportamento della funzione è analogo a quello di \func{kill}, ed i
2461 privilegi occorrenti ad inviare il segnale ad un determinato processo sono gli
2462 stessi; un valore nullo di \func{signo} permette di verificare le condizioni
2463 di errore senza inviare nessun segnale.
2464
2465 Se il segnale è bloccato la funzione ritorna immediatamente, se si è
2466 installato un gestore con \macro{SA\_SIGINFO} e ci sono risorse
2467 disponibili, vale a dire che c'è posto nella coda\footnote{la profondità della
2468   coda è indicata dalla costante \macro{SIGQUEUE\_MAX}, una della tante
2469   costanti di sistema definite dallo standard POSIX, che non abbiamo riportato
2470   esplicitamente in \secref{sec:sys_limits}. Il suo valore minimo secondo lo
2471   standard, \macro{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32.}, esso viene inserito
2472 e diventa pendente; una volta consegnato riporterà nel campo \var{si\_code} di
2473 \var{siginfo} il valore \macro{SI\_QUEUE} e il campo \var{si\_value} riceverà
2474 quanto inviato con \param{value}. Se invece si è installato un gestore
2475 nella forma classica il segnale sarà generato, ma tutte le caratteristiche
2476 tipiche dei segnali real-time (priorità e coda) saranno perse.
2477
2478 Lo standard POSIX.1b definisce inoltre delle nuove funzioni che permettono di
2479 gestire l'attesa di segnali specifici su una coda, esse servono in particolar
2480 modo nel caso dei thread, in cui si possono usare i segnali real-time come
2481 meccanismi di comunicazione elementare; la prima di queste funzioni è
2482 \func{sigwait}, il cui prototipo è:
2483 \begin{prototype}{signal.h}
2484   {int sigwait(const sigset\_t *set, int *sig)}
2485   
2486   Attende che uno dei segnali specificati in \param{set} sia pendente.
2487   
2488   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2489     errore, nel qual caso \var{errno} viene impostata ai valori:
2490   \begin{errlist}
2491   \item[\macro{EINTR}] La funzione è stata interrotta.
2492   \item[\macro{EINVAL}] Si è specificato un valore non valido per
2493     \param{set}.
2494   \end{errlist}
2495   ed inoltre \macro{EFAULT}.}
2496 \end{prototype}
2497
2498 La funzione estrae dall'insieme dei segnali pendenti uno qualunque dei segnali
2499 specificati da \param{set}, il cui valore viene restituito in \param{sig}.  Se
2500 sono pendenti più segnali, viene estratto quello a priorità più alta (cioè con
2501 il numero più basso). Se, nel caso di segnali real-time, c'è più di un segnale
2502 pendente, ne verrà estratto solo uno. Una volta estratto il segnale non verrà
2503 più consegnato, e se era in una coda il suo posto sarà liberato.  Se non c'è
2504 nessun segnale pendente il processo viene bloccato fintanto che non ne arriva
2505 uno.
2506
2507 Per un funzionamento corretto la funzione richiede che alla sua chiamata i
2508 segnali di \param{set} siano bloccati. In caso contrario si avrebbe un
2509 conflitto con gli eventuali gestori: pertanto non si deve utilizzare per
2510 lo stesso segnale questa funzione e \func{sigaction}. Se questo non avviene il
2511 comportamento del sistema è indeterminato: il segnale può sia essere
2512 consegnato che essere ricevuto da \func{sigwait}, il tutto in maniera non
2513 prevedibile.
2514
2515 Lo standard POSIX.1b definisce altre due funzioni, anch'esse usate
2516 prevalentemente con i thread; \func{sigwaitinfo} e \func{sigtimedwait}, i
2517 relativi prototipi sono:
2518 \begin{functions}
2519   \headdecl{signal.h}   
2520
2521   \funcdecl{int sigwaitinfo(const sigset\_t *set, siginfo\_t *info)}  
2522   
2523   Analoga a \func{sigwait}, ma riceve anche le informazioni associate al
2524   segnale in \param{info}.
2525   
2526   \funcdecl{int sigtimedwait(const sigset\_t *set, siginfo\_t *value, const
2527     struct timespec *info)}
2528   
2529   Analoga a \func{sigwaitinfo}, con un la possibilità di specificare un
2530   timeout in \param{timeout}.
2531
2532   
2533   \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso di
2534     errore, nel qual caso \var{errno} viene impostata ai valori già visti per
2535     \func{sigwait}, ai quali se aggiunge, per \func{sigtimedwait}:
2536   \begin{errlist}
2537   \item[\macro{EAGAIN}] Si è superato il timeout senza che un segnale atteso
2538     fosse emmesso.
2539   \end{errlist}
2540 }
2541 \end{functions}
2542
2543 Entrambe le funzioni sono estensioni di \func{sigwait}. La prima permette di
2544 ricevere, oltre al numero del segnale, anche le informazioni ad esso associate
2545 tramite \param{info}; in particolare viene restituito il numero del segnale
2546 nel campo \var{si\_signo}, la sua causa in \var{si\_code}, e se il segnale è
2547 stato immesso sulla coda con \func{sigqueue}, il valore di ritorno ad esso
2548 associato viene riportato in \var{si\_value}, che altrimenti è indefinito. 
2549
2550 La seconda è identica alla prima ma in più permette di specificare un timeout,
2551 scaduto il quale ritornerà con un errore. Se si specifica un puntatore nullo
2552 il comportamento sarà identico a \func{sigwaitinfo}, se si specifica un tempo
2553 di timeout nullo, e non ci sono sengali pendenti la funzione ritornerà
2554 immediatamente; in questo modo si può eliminare un segnale dalla coda senza
2555 dover essere bloccati qualora esso non sia presente.
2556
2557
2558 L'uso di queste funzioni è principalmente associato alla gestione dei segnali
2559 com i thread. In genere esse vengono chiamate dal thread incaricato della
2560 gestione, che al ritorno della funzione esegue il codice che usualmente
2561 sarebbe messo nel gestore, per poi ripetere la chiamata per mettersi in attesa
2562 del segnale successivo. Questo ovviamente comporta che non devono essere
2563 installati gestori, che solo il thread di gestione deve usare \func{sigwait} e
2564 che, per evitare che venga eseguita l'azione predefinita, i segnali gestiti in
2565 questa maniera devono essere mascherati per tutti i thread, compreso quello
2566 dedicato alla gestione, che potrebbe riceverlo fra due chiamate successive.
2567
2568 %%% Local Variables: 
2569 %%% mode: latex
2570 %%% TeX-master: "gapil"
2571 %%% End: