Aggiornamenti del copyright all'anno nuovo, e risistemazione delle
[gapil.git] / system.tex
index d9b86d27071e46c7fce9e150949b347c8db4bd6b..f2569bf90a08beaedfe5654b421cbfe5fd784a78 100644 (file)
@@ -1,6 +1,6 @@
 %% system.tex
 %%
-%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -8,6 +8,7 @@
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
 %%
+
 \chapter{La gestione del sistema, del tempo e degli errori}
 \label{cha:system}
 
@@ -149,7 +150,7 @@ sez.~\ref{sec:sys_file_limits}.
 
 Purtroppo la sezione dello standard che tratta questi argomenti è una delle
 meno chiare\footnote{tanto che Stevens, in \cite{APUE}, la porta come esempio
-  di ``standardese''.}. Lo standard prevede che ci siano 13 macro che
+  di ``\textsl{standardese}''.}. Lo standard prevede che ci siano 13 macro che
 descrivono le caratteristiche del sistema (7 per le caratteristiche generiche,
 riportate in tab.~\ref{tab:sys_generic_macro}, e 6 per le caratteristiche dei
 file, riportate in tab.~\ref{tab:sys_file_macro}).
@@ -218,7 +219,7 @@ riportati in tab.~\ref{tab:sys_posix1_general}.
     \const{\_POSIX\_STREAM\_MAX} &    8& massimo numero di stream aperti per
                                          processo in contemporanea.\\
     \const{\_POSIX\_TZNAME\_MAX} &     & dimensione massima del nome di una
-                                         \texttt{timezone} (vedi
+                                         \textit{timezone} (vedi
                                          sez.~\ref{sec:sys_date}). \\ 
     \const{\_POSIX\_NGROUPS\_MAX}&    0& numero di gruppi supplementari per
                                          processo (vedi 
@@ -316,40 +317,52 @@ relative spiegazioni, si pu
       \textbf{Parametro}&\textbf{Macro sostituita} &\textbf{Significato}\\
       \hline
       \hline
-      \texttt{\_SC\_ARG\_MAX} &\const{ARG\_MAX}&
-      La dimensione massima degli argomenti passati ad una funzione
-      della famiglia \func{exec}.\\
-      \texttt{\_SC\_CHILD\_MAX}&\const{\_CHILD\_MAX}&
-      Il numero massimo di processi contemporanei che un utente può
-      eseguire.\\
-      \texttt{\_SC\_OPEN\_MAX}&\const{\_OPEN\_MAX}&
-      Il numero massimo di file che un processo può mantenere aperti in
-      contemporanea.\\
+      \texttt{\_SC\_ARG\_MAX}   & \const{ARG\_MAX}&
+                                  La dimensione massima degli argomenti passati
+                                  ad una funzione della famiglia \func{exec}.\\
+      \texttt{\_SC\_CHILD\_MAX} & \const{\_CHILD\_MAX}&
+                                  Il numero massimo di processi contemporanei
+                                  che un utente può eseguire.\\
+      \texttt{\_SC\_OPEN\_MAX}  & \const{\_OPEN\_MAX}&
+                                  Il numero massimo di file che un processo può
+                                  mantenere aperti in contemporanea.\\
       \texttt{\_SC\_STREAM\_MAX}& \const{STREAM\_MAX}&
-      Il massimo numero di stream che un processo può mantenere aperti in
-      contemporanea. Questo limite previsto anche dallo standard ANSI C, che
-      specifica la macro {FOPEN\_MAX}.\\
-      \texttt{\_SC\_TZNAME\_MAX}&\const{TZNAME\_MAX}&
-      La dimensione massima di un nome di una \texttt{timezone} (vedi
-      sez.~\ref{sec:sys_date}).\\ 
+                                  Il massimo numero di stream che un processo
+                                  può mantenere aperti in contemporanea. Questo
+                                  limite previsto anche dallo standard ANSI C,
+                                  che specifica la macro {FOPEN\_MAX}.\\
+      \texttt{\_SC\_TZNAME\_MAX}& \const{TZNAME\_MAX}&
+                                  La dimensione massima di un nome di una
+                                  \texttt{timezone} (vedi
+                                  sez.~\ref{sec:sys_date}).\\
       \texttt{\_SC\_NGROUPS\_MAX}&\const{NGROUP\_MAX}&
-      Massimo numero di gruppi supplementari che può avere un processo (vedi
-      sez.~\ref{sec:proc_access_id}).\\ 
-      \texttt{\_SC\_SSIZE\_MAX}&\const{SSIZE\_MAX}& 
-      valore massimo del tipo di dato \type{ssize\_t}.\\
-      \texttt{\_SC\_CLK\_TCK}& \const{CLK\_TCK} &
-      Il numero di \textit{clock tick} al secondo, cioè l'unità di misura del
-      \textit{process time} (vedi sez.~\ref{sec:sys_unix_time}).\\
+                                  Massimo numero di gruppi supplementari che
+                                  può avere un processo (vedi
+                                  sez.~\ref{sec:proc_access_id}).\\
+      \texttt{\_SC\_SSIZE\_MAX} & \const{SSIZE\_MAX}& 
+                                  Valore massimo del tipo di dato
+                                  \type{ssize\_t}.\\ 
+      \texttt{\_SC\_CLK\_TCK}   & \const{CLK\_TCK} &
+                                  Il numero di \textit{clock tick} al secondo,
+                                  cioè l'unità di misura del
+                                  \itindex{process~time} \textit{process
+                                    time} (vedi
+                                  sez.~\ref{sec:sys_unix_time}).\\  
       \texttt{\_SC\_JOB\_CONTROL}&\macro{\_POSIX\_JOB\_CONTROL}&
-      Indica se è supportato il \textit{job control} (vedi
-      sez.~\ref{sec:sess_job_control}) in stile POSIX.\\
-      \texttt{\_SC\_SAVED\_IDS}&\macro{\_POSIX\_SAVED\_IDS}&
-      Indica se il sistema supporta i \textit{saved id} (vedi
-      sez.~\ref{sec:proc_access_id}).\\ 
-      \texttt{\_SC\_VERSION}& \const{\_POSIX\_VERSION} &
-      Indica il mese e l'anno di approvazione della revisione dello standard
-      POSIX.1 a cui il sistema fa riferimento, nel formato YYYYMML, la
-      revisione più recente è 199009L, che indica il Settembre 1990.\\
+                                  Indica se è supportato il \textit{job
+                                    control} (vedi
+                                  sez.~\ref{sec:sess_job_control}) in stile
+                                  POSIX.\\ 
+      \texttt{\_SC\_SAVED\_IDS} & \macro{\_POSIX\_SAVED\_IDS}&
+                                  Indica se il sistema supporta i
+                                  \textit{saved id} (vedi
+                                  sez.~\ref{sec:proc_access_id}).\\  
+      \texttt{\_SC\_VERSION}    & \const{\_POSIX\_VERSION} &
+                                  Indica il mese e l'anno di approvazione
+                                  della revisione dello standard POSIX.1 a cui
+                                  il sistema fa riferimento, nel formato
+                                  YYYYMML, la revisione più recente è 199009L,
+                                  che indica il Settembre 1990.\\ 
      \hline
     \end{tabular}
   \caption{Parametri del sistema leggibili dalla funzione \func{sysconf}.}
@@ -391,7 +404,7 @@ riportate in tab.~\ref{tab:sys_file_macro}.
     \const{LINK\_MAX}   &8  & numero massimo di link a un file\\
     \const{NAME\_MAX}&  14  & lunghezza in byte di un nome di file. \\
     \const{PATH\_MAX}& 256  & lunghezza in byte di un
-                              \itindex{pathname}\textit{pathname}.\\
+                              \itindex{pathname} \textit{pathname}.\\
     \const{PIPE\_BUF}&4096  & byte scrivibili atomicamente in una pipe
                               (vedi sez.~\ref{sec:ipc_pipes}).\\
     \const{MAX\_CANON}&255  & dimensione di una riga di terminale in modo 
@@ -422,7 +435,7 @@ le analoghe di tab.~\ref{tab:sys_posix1_general}.
     \const{\_POSIX\_LINK\_MAX}   &8  & numero massimo di link a un file.\\
     \const{\_POSIX\_NAME\_MAX}&  14  & lunghezza in byte di un nome di file. \\
     \const{\_POSIX\_PATH\_MAX}& 256  & lunghezza in byte di un 
-                                  \itindex{pathname}\textit{pathname}.\\
+                                  \itindex{pathname} \textit{pathname}.\\
     \const{\_POSIX\_PIPE\_BUF}& 512  & byte scrivibili atomicamente in una
     pipe.\\
     \const{\_POSIX\_MAX\_CANON}&255  & dimensione di una riga di
@@ -465,12 +478,12 @@ E si noti come la funzione in questo caso richieda un argomento che specifichi
 a quale file si fa riferimento, dato che il valore del limite cercato può
 variare a seconda del filesystem. Una seconda versione della funzione,
 \funcd{fpathconf}, opera su un file descriptor invece che su un
-\itindex{pathname}\textit{pathname}. Il suo prototipo è:
+\itindex{pathname} \textit{pathname}. Il suo prototipo è:
 \begin{prototype}{unistd.h}{long fpathconf(int fd, int name)}
   Restituisce il valore del parametro \param{name} per il file \param{fd}.
   
   \bodydesc{È identica a \func{pathconf} solo che utilizza un file descriptor
-    invece di un \itindex{pathname}\textit{pathname}; pertanto gli errori
+    invece di un \itindex{pathname} \textit{pathname}; pertanto gli errori
     restituiti cambiano di conseguenza.}
 \end{prototype}
 \noindent ed il suo comportamento è identico a quello di \func{pathconf}.
@@ -589,7 +602,7 @@ maniera gerarchica all'interno di un albero;\footnote{si tenga presente che
   occorrerà includere anche i file \file{linux/unistd.h} e
   \file{linux/sysctl.h}.} per accedere ad uno di essi occorre specificare un
 cammino attraverso i vari nodi dell'albero, in maniera analoga a come avviene
-per la risoluzione di un \itindex{pathname}\textit{pathname} (da cui l'uso
+per la risoluzione di un \itindex{pathname} \textit{pathname} (da cui l'uso
 alternativo del filesystem \file{/proc}, che vedremo dopo).
 
 Ciascun nodo dell'albero è identificato da un valore intero, ed il cammino che
@@ -633,7 +646,7 @@ forma di file alcune delle strutture interne del kernel stesso.
 
 In particolare l'albero dei valori di \func{sysctl} viene presentato in forma
 di file nella directory \file{/proc/sys}, cosicché è possibile accedervi
-specificando un \itindex{pathname}\textit{pathname} e leggendo e scrivendo sul
+specificando un \itindex{pathname} \textit{pathname} e leggendo e scrivendo sul
 file corrispondente al parametro scelto.  Il kernel si occupa di generare al
 volo il contenuto ed i nomi dei file corrispondenti, e questo ha il grande
 vantaggio di rendere accessibili i vari parametri a qualunque comando di shell
@@ -689,7 +702,7 @@ sulla directory \param{target}.
     \textit{mount point} o di spostarlo quando \param{target} non è un
     \textit{mount point} o è \file{/}.
   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
-    componenti del \itindex{pathname}\textit{pathname}, o si è cercato
+    componenti del \itindex{pathname} \textit{pathname}, o si è cercato
     di montare un filesystem disponibile in sola lettura senza averlo
     specificato o il device \param{source} è su un filesystem montato con
     l'opzione \const{MS\_NODEV}.
@@ -753,24 +766,27 @@ valori riportati in tab.~\ref{tab:sys_mount_flags}.
     \textbf{Parametro} & \textbf{Valore}&\textbf{Significato}\\
     \hline
     \hline
-    \const{MS\_RDONLY}     &  1 & monta in sola lettura\\
-    \const{MS\_NOSUID}     &  2 & ignora i bit \acr{suid} e \acr{sgid}\\
-    \const{MS\_NODEV}      &  4 & impedisce l'accesso ai file di dispositivo\\
-    \const{MS\_NOEXEC}     &  8 & impedisce di eseguire programmi \\
-    \const{MS\_SYNCHRONOUS}& 16 & abilita la scrittura sincrona \\
-    \const{MS\_REMOUNT}    & 32 & rimonta il filesystem cambiando i flag\\
-    \const{MS\_MANDLOCK}   & 64 & consente il \textit{mandatory locking} (vedi
-                                  sez.~\ref{sec:file_mand_locking})\\
-    \const{S\_WRITE}      & 128 & scrive normalmente \\
-    \const{S\_APPEND}     & 256 & consente la scrittura solo in \textit{append
-                                  mode} (vedi sez.~\ref{sec:file_sharing})\\
-    \const{S\_IMMUTABLE}  & 512 & impedisce che si possano modificare i file \\
+    \const{MS\_RDONLY}     &  1 & monta in sola lettura.\\
+    \const{MS\_NOSUID}     &  2 & ignora i bit \itindex{suid~bit} \acr{suid} e
+                                  \itindex{sgid~bit} \acr{sgid}.\\ 
+    \const{MS\_NODEV}      &  4 & impedisce l'accesso ai file di dispositivo.\\
+    \const{MS\_NOEXEC}     &  8 & impedisce di eseguire programmi.\\
+    \const{MS\_SYNCHRONOUS}& 16 & abilita la scrittura sincrona.\\
+    \const{MS\_REMOUNT}    & 32 & rimonta il filesystem cambiando le opzioni.\\
+    \const{MS\_MANDLOCK}   & 64 & consente il \textit{mandatory locking} 
+                                  \itindex{mandatory~locking} (vedi
+                                  sez.~\ref{sec:file_mand_locking}).\\
+    \const{S\_WRITE}      & 128 & scrive normalmente.\\
+    \const{S\_APPEND}     & 256 & consente la scrittura solo in
+                                  \itindex{append~mode} \textit{append mode} 
+                                  (vedi sez.~\ref{sec:file_sharing}).\\
+    \const{S\_IMMUTABLE}  & 512 & impedisce che si possano modificare i file.\\
     \const{MS\_NOATIME}   &1024 & non aggiorna gli \textit{access time} (vedi
-                                  sez.~\ref{sec:file_file_times})\\
+                                  sez.~\ref{sec:file_file_times}).\\
     \const{MS\_NODIRATIME}&2048 & non aggiorna gli \textit{access time} delle
-                                  directory\\
-    \const{MS\_BIND}      &4096 & monta il filesystem altrove\\
-    \const{MS\_MOVE}      &8192 & sposta atomicamente il punto di montaggio \\
+                                  directory.\\
+    \const{MS\_BIND}      &4096 & monta il filesystem altrove.\\
+    \const{MS\_MOVE}      &8192 & sposta atomicamente il punto di montaggio.\\
     \hline
   \end{tabular}
   \caption{Tabella dei codici dei flag di montaggio di un filesystem.}
@@ -897,12 +913,13 @@ semplice invocare direttamente il programma \cmd{mount}, per cui ne
 tralasceremo la trattazione, rimandando al manuale delle \acr{glibc}
 \cite{glibc} per la documentazione completa.
 
+% TODO scrivere relativamente alle varie funzioni (getfsent e getmntent &C)
 
 \subsection{La gestione delle informazioni su utenti e gruppi}
 \label{sec:sys_user_group}
 
 Tradizionalmente le informazioni utilizzate nella gestione di utenti e gruppi
-(password, corripondenze fra nomi simbolici e user-id, home directory, ecc.)
+(password, corrispondenze fra nomi simbolici e user-id, home directory, ecc.)
 venivano registrate all'interno dei due file di testo \file{/etc/passwd} ed
 \file{/etc/group},\footnote{in realtà oltre a questi nelle distribuzioni più
   recenti è stato introdotto il sistema delle \textit{shadow password} che
@@ -933,11 +950,11 @@ dall'altra con il diffondersi delle reti la necessit
 informazioni degli utenti e dei gruppi per insiemi di macchine, in modo da
 mantenere coerenti i dati, ha portato anche alla necessità di poter recuperare
 e memorizzare dette informazioni su supporti diversi, introducendo il sistema
-del \itindex{Name~Service~Switch}\textit{Name Service Switch} che tratteremo
+del \itindex{Name~Service~Switch} \textit{Name Service Switch} che tratteremo
 brevemente più avanti (in sez.~\ref{sec:sock_resolver}) dato che la maggior
 parte delle sua applicazioni sono relative alla risoluzioni di nomi di rete.
 
-In questo paragrafo ci limiteremo comunque a trattere le funzioni classiche
+In questo paragrafo ci limiteremo comunque a trattare le funzioni classiche
 per la lettura delle informazioni relative a utenti e gruppi tralasciando
 completamente quelle relative all'autenticazione. 
 %  Per questo non tratteremo
@@ -1067,7 +1084,7 @@ fig.~\ref{fig:sys_group_struct}.
 
 Le funzioni viste finora sono in grado di leggere le informazioni sia
 direttamente dal file delle password in \file{/etc/passwd} che tramite il
-sistema del \itindex{Name~Service~Switch}\textit{Name Service Switch} e
+sistema del \itindex{Name~Service~Switch} \textit{Name Service Switch} e
 sono completamente generiche. Si noti però che non c'è una funzione che
 permetta di impostare direttamente una password.\footnote{in realtà questo può
   essere fatto ricorrendo a PAM, ma questo è un altro discorso.} Dato che
@@ -1319,7 +1336,7 @@ argomenti \param{line}, \param{name} e \param{host} per costruire la voce che
 poi aggiunge chiamando \func{updwtmp}.
 
 
-\section{Limitazione ed uso delle risorse}
+\section{Il controllo dell'uso delle risorse}
 \label{sec:sys_res_limits}
 
 
@@ -1352,19 +1369,20 @@ di tipo \struct{rusage}, la cui definizione (che si trova in
 \end{figure}
 
 La definizione della struttura in fig.~\ref{fig:sys_rusage_struct} è ripresa
-da BSD 4.3,\footnote{questo non ha a nulla a che fare con il \textit{BSD
-    accounting} che si trova nelle opzioni di compilazione del kernel (e di
-  norma è disabilitato) che serve per mantenere una contabilità delle risorse
-  usate da ciascun processo in maniera molto più dettagliata.} ma attualmente
-(con i kernel della serie 2.4.x e 2.6.x) i soli campi che sono mantenuti sono:
-\var{ru\_utime}, \var{ru\_stime}, \var{ru\_minflt}, \var{ru\_majflt}, e
-\var{ru\_nswap}. I primi due indicano rispettivamente il tempo impiegato dal
-processo nell'eseguire le istruzioni in user space, e quello impiegato dal
-kernel nelle system call eseguite per conto del processo.
+da BSD 4.3,\footnote{questo non ha a nulla a che fare con il cosiddetto
+  \textit{BSD accounting} (vedi sez. \ref{sec:sys_bsd_accounting}) che si trova
+  nelle opzioni di compilazione del kernel (e di norma è disabilitato) che
+  serve per mantenere una contabilità delle risorse usate da ciascun processo
+  in maniera molto più dettagliata.} ma attualmente (con i kernel della serie
+2.4.x e 2.6.x) i soli campi che sono mantenuti sono: \var{ru\_utime},
+\var{ru\_stime}, \var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}. I
+primi due indicano rispettivamente il tempo impiegato dal processo
+nell'eseguire le istruzioni in user space, e quello impiegato dal kernel nelle
+system call eseguite per conto del processo.
 
 Gli altri tre campi servono a quantificare l'uso della memoria
 virtuale\index{memoria~virtuale} e corrispondono rispettivamente al numero di
-\textit{page fault}\itindex{page~fault} (vedi sez.~\ref{sec:proc_mem_gen})
+\itindex{page~fault} \textit{page fault} (vedi sez.~\ref{sec:proc_mem_gen})
 avvenuti senza richiedere I/O su disco (i cosiddetti \textit{minor page
   fault}), a quelli che invece han richiesto I/O su disco (detti invece
 \textit{major page fault}) ed al numero di volte che il processo è stato
@@ -1404,42 +1422,137 @@ ricevuto lo stato di terminazione.
 \subsection{Limiti sulle risorse}
 \label{sec:sys_resource_limit}
 
-Come accennato nell'introduzione oltre a mantenere i dati relativi all'uso
-delle risorse da parte dei vari processi, il kernel mette anche a disposizione
-delle funzioni con cui si possono imporre dei limiti sulle risorse che essi
-possono utilizzare.  In generale ad ogni processo vengono associati due
-diversi limiti per ogni risorsa; questi sono detti il \textsl{limite corrente}
-(o \textit{current limit}) che esprime il valore massimo che attualmente il
-processo non può superare, ed il \textsl{limite massimo} (o \textit{maximum
-  limit}) che esprime il valore massimo che può assumere il \textsl{limite
-  corrente}.
+Come accennato nell'introduzione il kernel mette a disposizione delle
+funzionalità che permettono non solo di mantenere dati statistici relativi
+all'uso delle risorse, ma anche di imporre dei limiti precisi sul loro
+utilizzo da parte dei vari processi o degli utenti.
+
+Per far questo esistono una serie di risorse e ad ogni processo vengono
+associati due diversi limiti per ciascuna di esse; questi sono il
+\textsl{limite corrente} (o \textit{current limit}) che esprime un valore
+massimo che il processo non può superare ad un certo momento, ed il
+\textsl{limite massimo} (o \textit{maximum limit}) che invece esprime il
+valore massimo che può assumere il \textsl{limite corrente}. In generale il
+primo viene chiamato anche \textit{soft limit} dato che il suo valore può
+essere aumentato dal processo stesso durante l'esecuzione, ciò può però essere
+fatto solo fino al valore del secondo, che per questo viene detto \textit{hard
+  limit}.
 
-\begin{figure}[!htb]
+\begin{table}[htb]
   \footnotesize
   \centering
-  \begin{minipage}[c]{15cm}
-    \includestruct{listati/rlimit.h}
-  \end{minipage} 
-  \normalsize 
-  \caption{La struttura \structd{rlimit} per impostare i limiti di utilizzo 
-    delle risorse usate da un processo.}
-  \label{fig:sys_rlimit_struct}
-\end{figure}
-
-In generale il primo viene chiamato anche \textsl{limite soffice} (o
-\textit{soft limit}) dato che il suo valore può essere aumentato fino al
-valore del secondo, mentre il secondo è detto \textsl{limite duro} (o
-\textit{hard limit}), in quanto un processo normale può solo diminuirne il
-valore. Il valore di questi due limiti è mantenuto in una struttura
-\struct{rlimit}, la cui definizione è riportata in
-fig.~\ref{fig:sys_rlimit_struct}, ed i cui campi corrispondono appunto a
-limite corrente e limite massimo.
+  \begin{tabular}[c]{|l|p{12cm}|}
+    \hline
+    \textbf{Valore} & \textbf{Significato}\\
+    \hline
+    \hline
+    \const{RLIMIT\_AS}     &  La dimensione massima della memoria virtuale di
+                              un processo, il cosiddetto \textit{Address
+                                Space}, (vedi sez.~\ref{sec:proc_mem_gen}). Se
+                              il limite viene superato dall'uso di funzioni
+                              come \func{brk}, \func{mremap} o \func{mmap}
+                              esse falliranno con un errore di
+                              \errcode{ENOMEM}, mentre se il superamento viene
+                              causato dalla crescita dello \itindex{stack}
+                              stack il processo riceverà un segnale di
+                              \const{SIGSEGV}. \\  
+    \const{RLIMIT\_CORE}   &  La massima dimensione per di un file di
+                              \itindex{core~dump} \textit{core dump} (vedi
+                              sez.~\ref{sec:sig_prog_error}) creato nella
+                              terminazione di un processo; file di dimensioni 
+                              maggiori verranno troncati a questo valore,
+                              mentre con un valore si bloccherà la creazione
+                              dei \itindex{core~dump} \textit{core dump}.\\ 
+    \const{RLIMIT\_CPU}    &  Il massimo tempo di CPU (vedi
+                              sez.~\ref{sec:sys_cpu_times}) che il processo può
+                              usare. Il superamento del limite corrente
+                              comporta l'emissione di un segnale di
+                              \const{SIGXCPU} la cui azione predefinita (vedi
+                              sez.~\ref{sec:sig_classification}) è terminare
+                              il processo. Il superamento del limite massimo
+                              comporta l'emissione di un segnale di
+                              \const{SIGKILL}.\footnotemark\\
+    \const{RLIMIT\_DATA}   &  La massima dimensione del \index{segmento!dati}
+                              segmento dati di un 
+                              processo (vedi sez.~\ref{sec:proc_mem_layout}).
+                              Il tentativo di allocare più memoria di quanto
+                              indicato dal limite corrente causa il fallimento
+                              della funzione di allocazione (\func{brk} o
+                              \func{sbrk}) con un errore di \errcode{ENOMEM}.\\
+    \const{RLIMIT\_FSIZE}  &  La massima dimensione di un file che un processo
+                              può creare. Se il processo cerca di scrivere
+                              oltre questa dimensione riceverà un segnale di
+                              \const{SIGXFSZ}, che di norma termina il
+                              processo; se questo viene intercettato la
+                              system call che ha causato l'errore fallirà con
+                              un errore di \errcode{EFBIG}.\\
+    \const{RLIMIT\_LOCKS}&    È un limite presente solo nelle prime versioni
+                              del kernel 2.4 sul numero massimo di
+                              \index{file!locking} \textit{file lock} (vedi
+                              sez.~\ref{sec:file_locking}) che un
+                              processo poteva effettuare.\\ 
+    \const{RLIMIT\_MEMLOCK}&  L'ammontare massimo di memoria che può essere
+                              bloccata in RAM da un processo (vedi
+                              sez.~\ref{sec:proc_mem_lock}). Dal kernel 2.6.9
+                              questo limite comprende anche la memoria che può
+                              essere bloccata da ciascun utente nell'uso della
+                              memoria condivisa (vedi
+                              sez.~\ref{sec:ipc_sysv_shm}) che viene
+                              contabilizzata separatamente ma sulla quale
+                              viene applicato questo stesso limite.\\ 
+    \const{RLIMIT\_NOFILE} &  Il numero massimo di file che il processo può
+                              aprire. L'apertura di un ulteriore file farà
+                              fallire la funzione (\func{open}, \func{dup} o
+                              \func{pipe}) con un errore \errcode{EMFILE}.\\
+    \const{RLIMIT\_NPROC}  &  Il numero massimo di processi che possono essere
+                              creati sullo stesso user id real. Se il limite
+                              viene raggiunto \func{fork} fallirà con un
+                              \errcode{EAGAIN}.\\
+    \const{RLIMIT\_SIGPENDING}& Il numero massimo di segnali che possono
+                              essere mantenuti in coda per ciascun utente,
+                              considerando sia i segnali normali che real-time
+                              (vedi sez.~\ref{sec:sig_real_time}). Il limite è
+                              attivo solo per \func{sigqueue}, con \func{kill}
+                              si potrà sempre inviare un segnale che non sia
+                              già presente su una coda.\footnotemark\\
+    \const{RLIMIT\_STACK}  &  La massima dimensione dello \itindex{stack}
+                              stack del 
+                              processo. Se il processo esegue operazioni che
+                              estendano lo stack oltre questa dimensione
+                              riceverà un segnale di \const{SIGSEGV}.\\
+    \const{RLIMIT\_RSS}    &  L'ammontare massimo di pagine di memoria dato al
+                              \index{segmento!testo} testo del processo. Il
+                              limite è solo una indicazione per il kernel,
+                              qualora ci fosse un surplus di memoria questa
+                              verrebbe assegnata.\\ 
+% TODO integrare con la roba di madvise
+    \hline
+  \end{tabular}
+  \caption{Valori possibili dell'argomento \param{resource} delle funzioni
+    \func{getrlimit} e \func{setrlimit}.} 
+  \label{tab:sys_rlimit_values}
+\end{table}
 
-In genere il superamento di un limite comporta o l'emissione di un segnale o
-il fallimento della system call che lo ha provocato; per permettere di leggere
-e di impostare i limiti di utilizzo delle risorse da parte di un processo
-Linux prevede due funzioni, \funcd{getrlimit} e \funcd{setrlimit}, i cui
-prototipi sono:
+\footnotetext[18]{questo è quanto avviene per i kernel dalla serie 2.2 fino ad
+  oggi (la 2.6.x); altri kernel possono avere comportamenti diversi per quanto
+  avviene quando viene superato il \textit{soft limit}; perciò per avere
+  operazioni portabili è sempre opportuno intercettare \const{SIGXCPU} e
+  terminare in maniera ordinata il processo.}
+
+\footnotetext{il limite su questa risorsa è stato introdotto con il kernel
+  2.6.8.}
+
+In generale il superamento di un limite corrente\footnote{di norma quanto
+  riportato in tab.~\ref{tab:sys_rlimit_values} fa riferimento a quanto
+  avviene al superamento del limite corrente, con l'eccezione
+  \const{RLIMIT\_CPU} in cui si ha in comportamento diverso per il superamento
+  dei due limiti.}  comporta o l'emissione di un segnale o il fallimento della
+system call che lo ha provocato;\footnote{si nuovo c'è una eccezione per
+  \const{RLIMIT\_CORE} che influenza soltanto la dimensione (o l'eventuale
+  creazione) dei file di \itindex{core~dump} \textit{core dump}.} per
+permettere di leggere e di impostare i limiti di utilizzo delle risorse da
+parte di un processo sono previste due funzioni, \funcd{getrlimit} e
+\funcd{setrlimit}, i cui prototipi sono:
 \begin{functions}
   \headdecl{sys/time.h} 
   \headdecl{sys/resource.h} 
@@ -1469,73 +1582,34 @@ Entrambe le funzioni permettono di specificare, attraverso l'argomento
 questo argomento sono elencati in tab.~\ref{tab:sys_rlimit_values}. L'acceso
 (rispettivamente in lettura e scrittura) ai valori effettivi dei limiti viene
 poi effettuato attraverso la struttura \struct{rlimit} puntata da
-\param{rlim}.
+\param{rlim}, la cui definizione è riportata in
+fig.~\ref{fig:sys_rlimit_struct}, ed i cui campi corrispondono appunto a
+limite corrente e limite massimo.
 
-\begin{table}[htb]
+
+\begin{figure}[!htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|l|p{12cm}|}
-    \hline
-    \textbf{Valore} & \textbf{Significato}\\
-    \hline
-    \hline
-    \const{RLIMIT\_CPU}    &  Il massimo tempo di CPU che il processo può
-                              usare. Il superamento del limite comporta
-                              l'emissione di un segnale di \const{SIGXCPU}.\\
-    \const{RLIMIT\_FSIZE}  &  La massima dimensione di un file che un processo
-                              può usare. Se il processo cerca di scrivere
-                              oltre questa dimensione riceverà un segnale di
-                              \const{SIGXFSZ}.\\
-    \const{RLIMIT\_DATA}   &  La massima dimensione della memoria dati di un
-                              processo. Il tentativo di allocare più memoria
-                              causa il fallimento della funzione di
-                              allocazione. \\
-    \const{RLIMIT\_STACK}  &  La massima dimensione dello stack del
-                              processo. Se il processo esegue operazioni che
-                              estendano lo stack oltre questa dimensione
-                              riceverà un segnale di \const{SIGSEGV}.\\
-    \const{RLIMIT\_CORE}   &  La massima dimensione di un file di \textit{core
-                              dump} creato da un processo. Nel caso le 
-                              dimensioni dovessero essere maggiori il file non
-                              verrebbe generato.\footnotemark\\
-    \const{RLIMIT\_RSS}    &  L'ammontare massimo di memoria fisica dato al
-                              processo. Il limite è solo una indicazione per
-                              il kernel, qualora ci fosse un surplus di
-                              memoria questa verrebbe assegnata.\\
-    \const{RLIMIT\_NPROC}  &  Il numero massimo di processi che possono essere
-                              creati sullo stesso user id. Se il limite viene
-                              raggiunto \func{fork} fallirà con un
-                              \errcode{EAGAIN}.\\
-    \const{RLIMIT\_NOFILE} &  Il numero massimo di file che il processo può
-                              aprire. L'apertura di un ulteriore file fallirà
-                              con un errore \errcode{EMFILE}.\\
-    \const{RLIMIT\_MEMLOCK}&  L'ammontare massimo di memoria che può essere
-                              bloccata in RAM senza
-                              paginazione\index{paginazione} (vedi
-                              sez.~\ref{sec:proc_mem_lock}).\\ 
-    \const{RLIMIT\_AS}     &  La dimensione massima di tutta la memoria che il
-                              processo può ottenere. Se il processo tenta di
-                              allocarne di più  funzioni come \func{brk},
-                              \func{malloc} o \func{mmap} falliranno. \\
-    \hline
-  \end{tabular}
-  \caption{Valori possibili dell'argomento \param{resource} delle funzioni
-    \func{getrlimit} e \func{setrlimit}.} 
-  \label{tab:sys_rlimit_values}
-\end{table}
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/rlimit.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{rlimit} per impostare i limiti di utilizzo 
+    delle risorse usate da un processo.}
+  \label{fig:sys_rlimit_struct}
+\end{figure}
 
-\footnotetext{Impostare questo limite a zero è la maniera più semplice per
-  evitare la creazione di \file{core} file (al proposito si veda
-  sez.~\ref{sec:sig_prog_error}).}
 
 Nello specificare un limite, oltre a fornire dei valori specifici, si può
 anche usare la costante \const{RLIM\_INFINITY} che permette di sbloccare l'uso
 di una risorsa; ma si ricordi che solo un processo con i privilegi di
-amministratore può innalzare un limite al di sopra del valore corrente del
-limite massimo. Si tenga conto infine che tutti i limiti vengono ereditati dal
-processo padre attraverso una \func{fork} (vedi sez.~\ref{sec:proc_fork}) e
-mantenuti per gli altri programmi eseguiti attraverso una \func{exec} (vedi
-sez.~\ref{sec:proc_exec}).
+amministratore\footnote{per essere precisi in questo caso quello che serve è
+  la \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_RESOURCE}.}
+può innalzare un limite al di sopra del valore corrente del limite massimo ed
+usare un valore qualsiasi per entrambi i limiti. Si tenga conto infine che
+tutti i limiti vengono ereditati dal processo padre attraverso una \func{fork}
+(vedi sez.~\ref{sec:proc_fork}) e mantenuti per gli altri programmi eseguiti
+attraverso una \func{exec} (vedi sez.~\ref{sec:proc_exec}).
 
 
 \subsection{Le risorse di memoria e processore}
@@ -1543,7 +1617,7 @@ sez.~\ref{sec:proc_exec}).
 
 La gestione della memoria è già stata affrontata in dettaglio in
 sez.~\ref{sec:proc_memory}; abbiamo visto allora che il kernel provvede il
-meccanismo della memoria virtuale\index{memoria~virtuale} attraverso la
+meccanismo della \index{memoria~virtuale} memoria virtuale attraverso la
 divisione della memoria fisica in pagine.
 
 In genere tutto ciò è del tutto trasparente al singolo processo, ma in certi
@@ -1551,7 +1625,7 @@ casi, come per l'I/O mappato in memoria (vedi sez.~\ref{sec:file_memory_map})
 che usa lo stesso meccanismo per accedere ai file, è necessario conoscere le
 dimensioni delle pagine usate dal kernel. Lo stesso vale quando si vuole
 gestire in maniera ottimale l'interazione della memoria che si sta allocando
-con il meccanismo della paginazione\index{paginazione}.
+con il meccanismo della \index{paginazione} paginazione.
 
 Di solito la dimensione delle pagine di memoria è fissata dall'architettura
 hardware, per cui il suo valore di norma veniva mantenuto in una costante che
@@ -1562,9 +1636,10 @@ scelta di dimensioni, 
 
 Dato che si tratta di una caratteristica generale del sistema, questa
 dimensione può essere ottenuta come tutte le altre attraverso una chiamata a
-\func{sysconf} (nel caso \code{sysconf(\_SC\_PAGESIZE)}, ma in BSD 4.2 è stata
-introdotta una apposita funzione, \funcd{getpagesize}, che restituisce la
-dimensione delle pagine di memoria; il suo prototipo è:
+\func{sysconf}, \footnote{nel caso specifico si dovrebbe utilizzare il
+  parametro \const{\_SC\_PAGESIZE}.}  ma in BSD 4.2 è stata introdotta una
+apposita funzione, \funcd{getpagesize}, che restituisce la dimensione delle
+pagine di memoria; il suo prototipo è:
 \begin{prototype}{unistd.h}{int getpagesize(void)}
   Legge le dimensioni delle pagine di memoria.
   
@@ -1576,13 +1651,15 @@ La funzione 
 standard la etichetta come obsoleta, mentre lo standard POSIX 1003.1-2001 la
 ha eliminata. In Linux è implementata come una system call nelle architetture
 in cui essa è necessaria, ed in genere restituisce il valore del simbolo
-\const{PAGE\_SIZE} del kernel, anche se le versioni delle librerie del C
-precedenti le \acr{glibc} 2.1 implementavano questa funzione restituendo
-sempre un valore statico.
+\const{PAGE\_SIZE} del kernel, che dipende dalla architettura hardware, anche
+se le versioni delle librerie del C precedenti le \acr{glibc} 2.1
+implementavano questa funzione restituendo sempre un valore statico.
+
+% TODO verificare meglio la faccenda di const{PAGE\_SIZE} 
 
-Le \acr{glibc} forniscono, come specifica estensione GNU, altre due funzioni,
-\funcd{get\_phys\_pages} e \funcd{get\_avphys\_pages} che permettono di
-ottenere informazioni riguardo la memoria; i loro prototipi sono:
+Le \textsl{glibc} forniscono, come specifica estensione GNU, altre due
+funzioni, \funcd{get\_phys\_pages} e \funcd{get\_avphys\_pages} che permettono
+di ottenere informazioni riguardo la memoria; i loro prototipi sono:
 \begin{functions}
   \headdecl{sys/sysinfo.h} 
   
@@ -1621,13 +1698,75 @@ Il suo prototipo 
 \end{prototype}
 
 La funzione restituisce in ciascun elemento di \param{loadavg} il numero medio
-di processi attivi sulla coda dello scheduler\itindex{scheduler}, calcolato su
-un diverso intervalli di tempo.  Il numero di intervalli che si vogliono
+di processi attivi sulla coda dello \itindex{scheduler} scheduler, calcolato
+su diversi intervalli di tempo.  Il numero di intervalli che si vogliono
 leggere è specificato da \param{nelem}, dato che nel caso di Linux il carico
 viene valutato solo su tre intervalli (corrispondenti a 1, 5 e 15 minuti),
 questo è anche il massimo valore che può essere assegnato a questo argomento.
 
 
+\subsection{La \textsl{contabilità} in stile BSD}
+\label{sec:sys_bsd_accounting}
+
+Una ultima modalità per monitorare l'uso delle risorse è, se si è compilato il
+kernel con il relativo supporto,\footnote{se cioè si è abilitata l'opzione di
+  compilazione \texttt{CONFIG\_BSD\_PROCESS\_ACCT}.} quella di attivare il
+cosiddetto \textit{BSD accounting}, che consente di registrare su file una
+serie di informazioni\footnote{contenute nella struttura \texttt{acct}
+  definita nel file \texttt{include/linux/acct.h} dei sorgenti del kernel.}
+riguardo alla \textsl{contabilità} delle risorse utilizzate da ogni processo
+che viene terminato.
+
+Linux consente di salvare la contabilità delle informazioni relative alle
+risorse utilizzate dai processi grazie alla funzione \funcd{acct}, il cui
+prototipo è:
+\begin{prototype}{unistd.h}{int acct(const char *filename)}
+  Abilita il \textit{BSD accounting}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo o $-1$ in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EACCESS}] non si hanno i permessi per accedere a
+      \param{pathname}.
+    \item[\errcode{EPERM}] Il processo non ha privilegi sufficienti ad
+      abilitare il \textit{BSD accounting}.
+    \item[\errcode{ENOSYS}] il kernel non supporta il \textit{BSD accounting}.
+    \item[\errcode{EUSER}] non sono disponibili nel kernel strutture per il
+      file o si è finita la memoria.
+    \end{errlist}
+    ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
+    \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOENT}, \errval{ENOMEM},
+    \errval{ENOTDIR}, \errval{EROFS}.}
+\end{prototype}
+
+La funzione attiva il salvataggio dei dati sul file indicato dal pathname
+contenuti nella stringa puntata da \param{filename}; la funzione richiede che
+il processo abbia i privilegi di amministratore (è necessaria la
+\itindex{capabilities} capability \const{CAP\_SYS\_PACCT}, vedi
+sez.~\ref{sec:proc_capabilities}). Se si specifica il valore \const{NULL} per
+\param{filename} il \textit{BSD accounting} viene invece disabilitato. Un
+semplice esempio per l'uso di questa funzione è riportato nel programma
+\texttt{AcctCtrl.c} dei sorgenti allegati alla guida.
+
+Quando si attiva la contabilità, il file che si indica deve esistere; esso
+verrà aperto in sola scrittura;\footnote{si applicano al pathname indicato da
+  \param{filename} tutte le restrizioni viste in cap.~\ref{cha:file_intro}.}
+le informazioni verranno registrate in \itindex{append~mode} \textit{append}
+in coda al file tutte le volte che un processo termina. Le informazioni
+vengono salvate in formato binario, e corrispondono al contenuto della
+apposita struttura dati definita all'interno del kernel.
+
+Il funzionamento di \func{acct} viene inoltre modificato da uno specifico
+parametro di sistema, modificabile attraverso \file{/proc/sys/kernel/acct} (o
+tramite la corrispondente \func{sysctl}). Esso contiene tre valori interi, il
+primo indica la percentuale di spazio disco libero sopra il quale viene
+ripresa una registrazione che era stata sospesa per essere scesi sotto il
+minimo indicato dal secondo valore (sempre in percentuale di spazio disco
+libero). Infine l'ultimo valore indica la frequenza in secondi con cui deve
+essere controllata detta percentuale.
+
+
+
 
 \section{La gestione dei tempi del sistema}
 \label{sec:sys_time}
@@ -1645,25 +1784,25 @@ gestione di data e ora.
 
 Storicamente i sistemi unix-like hanno sempre mantenuto due distinti tipi di
 dati per la misure dei tempi all'interno del sistema: essi sono
-rispettivamente chiamati \textit{calendar time} e \textit{process time},
-secondo le definizioni:
+rispettivamente chiamati \itindend{calendar~time} \textit{calendar time} e
+\itindex{process~time} \textit{process time}, secondo le definizioni:
 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
-\item[\textit{calendar time}] detto anche \textsl{tempo di calendario}. È il
-  numero di secondi dalla mezzanotte del primo gennaio 1970, in tempo
-  universale coordinato (o UTC), data che viene usualmente indicata con
-  00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the Epoch}. Questo tempo viene
-  anche chiamato anche GMT (Greenwich Mean Time) dato che l'UTC corrisponde
-  all'ora locale di Greenwich.  È il tempo su cui viene mantenuto l'orologio
-  del kernel, e viene usato ad esempio per indicare le date di modifica dei
-  file o quelle di avvio dei processi. Per memorizzare questo tempo è stato
-  riservato il tipo primitivo \type{time\_t}.
-\item[\textit{process time}] detto talvolta \textsl{tempo di processore}.
-  Viene misurato in \textit{clock tick}. Un tempo questo corrispondeva al
-  numero di interruzioni effettuate dal timer di sistema, adesso lo standard
-  POSIX richiede che esso sia pari al valore della costante
-  \const{CLOCKS\_PER\_SEC}, che deve essere definita come 1000000, qualunque
-  sia la risoluzione reale dell'orologio di sistema e la frequenza delle
-  interruzioni del timer.\footnote{quest'ultima, come accennato in
+\item[\textit{calendar time}] \itindend{calendar~time} detto anche
+  \textsl{tempo di calendario}. È il numero di secondi dalla mezzanotte del
+  primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
+  usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
+    Epoch}. Questo tempo viene anche chiamato anche GMT (Greenwich Mean Time)
+  dato che l'UTC corrisponde all'ora locale di Greenwich.  È il tempo su cui
+  viene mantenuto l'orologio del kernel, e viene usato ad esempio per indicare
+  le date di modifica dei file o quelle di avvio dei processi. Per memorizzare
+  questo tempo è stato riservato il tipo primitivo \type{time\_t}.
+\item[\textit{process time}] \itindex{process~time} detto talvolta
+  \textsl{tempo di processore}.  Viene misurato in \textit{clock tick}. Un
+  tempo questo corrispondeva al numero di interruzioni effettuate dal timer di
+  sistema, adesso lo standard POSIX richiede che esso sia pari al valore della
+  costante \const{CLOCKS\_PER\_SEC}, che deve essere definita come 1000000,
+  qualunque sia la risoluzione reale dell'orologio di sistema e la frequenza
+  delle interruzioni del timer.\footnote{quest'ultima, come accennato in
     sez.~\ref{sec:proc_hierarchy}, è invece data dalla costante \const{HZ}.}
   Il dato primitivo usato per questo tempo è \type{clock\_t}, che ha quindi
   una risoluzione del microsecondo. Il numero di tick al secondo può essere
@@ -1672,10 +1811,10 @@ secondo le definizioni:
   considerato obsoleto.
 \end{basedescript}
 
-In genere si usa il \textit{calendar time} per esprimere le date dei file e le
-informazioni analoghe che riguardano i cosiddetti \textsl{tempi di orologio},
-che vengono usati ad esempio per i demoni che compiono lavori amministrativi
-ad ore definite, come \cmd{cron}. 
+In genere si usa il \itindend{calendar~time} \textit{calendar time} per
+esprimere le date dei file e le informazioni analoghe che riguardano i
+cosiddetti \textsl{tempi di orologio}, che vengono usati ad esempio per i
+demoni che compiono lavori amministrativi ad ore definite, come \cmd{cron}.
 
 Di solito questo tempo viene convertito automaticamente dal valore in UTC al
 tempo locale, utilizzando le opportune informazioni di localizzazione
@@ -1683,11 +1822,11 @@ tempo locale, utilizzando le opportune informazioni di localizzazione
 mantenuto dal sistema e non è detto che corrisponda al tempo tenuto
 dall'orologio hardware del calcolatore.
 
-Anche il \textit{process time} di solito si esprime in secondi, ma provvede
-una precisione ovviamente superiore al \textit{calendar time} (che è mantenuto
-dal sistema con una granularità di un secondo) e viene usato per tenere conto
-dei tempi di esecuzione dei processi. Per ciascun processo il kernel calcola
-tre tempi diversi:
+Anche il \itindex{process~time} \textit{process time} di solito si esprime in
+secondi, ma fornisce una precisione ovviamente superiore al \textit{calendar
+  time} (che è mantenuto dal sistema con una granularità di un secondo) e
+viene usato per tenere conto dei tempi di esecuzione dei processi. Per ciascun
+processo il kernel calcola tre tempi diversi:
 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
 \item[\textit{clock time}] il tempo \textsl{reale} (viene chiamato anche
   \textit{wall clock time} o \textit{elapsed time}) passato dall'avvio del
@@ -1717,13 +1856,15 @@ del comando \cmd{time}.
 \subsection{La gestione del \textit{process time}}
 \label{sec:sys_cpu_times}
 
+\itindbeg{process~time}
+
 Di norma tutte le operazioni del sistema fanno sempre riferimento al
-\textit{calendar time}, l'uso del \textit{process time} è riservato a quei
-casi in cui serve conoscere i tempi di esecuzione di un processo (ad esempio
-per valutarne l'efficienza). In tal caso infatti fare ricorso al
-\textit{calendar time} è inutile in quanto il tempo può essere trascorso mentre
-un altro processo era in esecuzione o in attesa del risultato di una
-operazione di I/O. 
+\itindend{calendar~time} \textit{calendar time}, l'uso del \textit{process
+  time} è riservato a quei casi in cui serve conoscere i tempi di esecuzione
+di un processo (ad esempio per valutarne l'efficienza). In tal caso infatti
+fare ricorso al \textit{calendar time} è inutile in quanto il tempo può essere
+trascorso mentre un altro processo era in esecuzione o in attesa del risultato
+di una operazione di I/O.
 
 La funzione più semplice per leggere il \textit{process time} di un processo è
 \funcd{clock}, che da una valutazione approssimativa del tempo di CPU
@@ -1755,10 +1896,10 @@ possono essere letti attraverso la funzione \funcd{times}, il cui prototipo 
     in caso di successo e -1 in caso di errore.}
 \end{prototype}
 
-La funzione restituisce i valori di process time del processo corrente in una
-struttura di tipo \struct{tms}, la cui definizione è riportata in
-fig.~\ref{fig:sys_tms_struct}. La struttura prevede quattro campi; i primi due,
-\var{tms\_utime} e \var{tms\_stime}, sono l'\textit{user time} ed il
+La funzione restituisce i valori di \textit{process time} del processo
+corrente in una struttura di tipo \struct{tms}, la cui definizione è riportata
+in fig.~\ref{fig:sys_tms_struct}. La struttura prevede quattro campi; i primi
+due, \var{tms\_utime} e \var{tms\_stime}, sono l'\textit{user time} ed il
 \textit{system time} del processo, così come definiti in
 sez.~\ref{sec:sys_unix_time}.
 
@@ -1783,13 +1924,17 @@ ricevuto lo stato di terminazione, e lo stesso vale per \var{tms\_cstime}.
 Si tenga conto che l'aggiornamento di \var{tms\_cutime} e \var{tms\_cstime}
 viene eseguito solo quando una chiamata a \func{wait} o \func{waitpid} è
 ritornata. Per questo motivo se un processo figlio termina prima di ricevere
-lo stato di terminazione di tutti i suoi figli, questi processi ``nipoti'' non
-verranno considerati nel calcolo di questi tempi.
+lo stato di terminazione di tutti i suoi figli, questi processi
+``\textsl{nipoti}'' non verranno considerati nel calcolo di questi tempi.
+
+\itindend{process~time}
 
 
 \subsection{Le funzioni per il \textit{calendar time}}
 \label{sec:sys_time_base}
 
+\itindbeg{calendar~time}
+
 Come anticipato in sez.~\ref{sec:sys_unix_time} il \textit{calendar time} è
 mantenuto dal kernel in una variabile di tipo \type{time\_t}, che usualmente
 corrisponde ad un tipo elementare (in Linux è definito come \ctyp{long int},
@@ -1953,22 +2098,22 @@ a descrivere in tab.~\ref{tab:sys_timex_mode} i principali valori utilizzabili
 per il campo \var{mode}, un elenco più dettagliato del significato dei vari
 campi della struttura \struct{timex} può essere ritrovato in \cite{glibc}.
 
-\begin{table}[htb]
+\begin{table}[!htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|l|c|p{7cm}|}
+  \begin{tabular}[c]{|l|c|p{8.5cm}|}
     \hline
     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
     \hline
     \hline
     \const{ADJ\_OFFSET}         & 0x0001 & Imposta la differenza fra il tempo
-                                           reale e l'orologio di sistema, che 
+                                           reale e l'orologio di sistema: 
                                            deve essere indicata in microsecondi
                                            nel campo \var{offset} di
                                            \struct{timex}.\\ 
     \const{ADJ\_FREQUENCY}      & 0x0002 & Imposta la differenze in frequenza
                                            fra il tempo reale e l'orologio di
-                                           sistema, che deve essere indicata
+                                           sistema: deve essere indicata
                                            in parti per milione nel campo
                                            \var{frequency} di \struct{timex}.\\
     \const{ADJ\_MAXERROR}       & 0x0004 & Imposta il valore massimo 
@@ -2036,6 +2181,7 @@ un errore; al solito se si cercher
 amministratore si otterrà un errore di \errcode{EPERM}.
 
 
+
 \subsection{La gestione delle date.}
 \label{sec:sys_date}
 
@@ -2109,7 +2255,7 @@ e impostano anche la variabile \var{tzname} con l'informazione della
 \textit{time zone} corrente; \func{ctime} è banalmente definita in termini di
 \func{asctime} come \code{asctime(localtime(t)}. Dato che l'uso di una stringa
 statica rende le funzioni non rientranti POSIX.1c e SUSv2 prevedono due
-sostitute rientranti, il cui nome è al solito ottenuto appendendo un
+sostitute rientranti, il cui nome è al solito ottenuto aggiungendo un
 \code{\_r}, che prendono un secondo argomento \code{char *buf}, in cui
 l'utente deve specificare il buffer su cui la stringa deve essere copiata
 (deve essere di almeno 26 caratteri).
@@ -2238,6 +2384,7 @@ viene utilizzato come modificatore; alcuni\footnote{per la precisione quelli
 in tab.~\ref{tab:sys_strftime_format}. La funzione tiene conto anche della
 presenza di una localizzazione per stampare in maniera adeguata i vari nomi.
 
+\itindend{calendar~time}
 
 
 \section{La gestione degli errori}
@@ -2332,7 +2479,7 @@ La funzione utilizza una stringa statica che non deve essere modificata dal
 programma; essa è utilizzabile solo fino ad una chiamata successiva a
 \func{strerror} o \func{perror}, nessun'altra funzione di libreria tocca
 questa stringa. In ogni caso l'uso di una stringa statica rende la funzione
-non rientrante, per cui nel caso nel caso si usino i thread le librerie
+non rientrante, per cui nel caso si usino i thread le librerie
 forniscono\footnote{questa funzione è la versione prevista dalle \acr{glibc},
   ed effettivamente definita in \file{string.h}, ne esiste una analoga nello
   standard SUSv3 (quella riportata dalla pagina di manuale), che restituisce
@@ -2490,3 +2637,51 @@ che errori relativi alla stessa linea non vengano ripetuti.
 %%% mode: latex
 %%% TeX-master: "gapil"
 %%% End: 
+
+% LocalWords:  filesystem like kernel saved header limits sysconf sez tab float
+% LocalWords:  FOPEN stdio MB LEN CHAR char UCHAR unsigned SCHAR MIN signed INT
+% LocalWords:  SHRT short USHRT int UINT LONG long ULONG LLONG ULLONG POSIX ARG
+% LocalWords:  Stevens exec CHILD STREAM stream TZNAME timezone NGROUPS SSIZE
+% LocalWords:  ssize LISTIO JOB CONTROL job control IDS VERSION YYYYMML bits bc
+% LocalWords:  dall'header posix lim nell'header glibc run unistd name errno SC
+% LocalWords:  NGROUP CLK TCK clock tick process PATH pathname BUF CANON path
+% LocalWords:  pathconf fpathconf descriptor fd uname sys struct utsname info
+% LocalWords:  EFAULT fig SOURCE NUL LENGTH DOMAIN NMLN UTSLEN system call proc
+% LocalWords:  domainname sysctl BSD nlen void oldval size oldlenp newval EPERM
+% LocalWords:  newlen ENOTDIR EINVAL ENOMEM linux l'array oldvalue paging stack
+% LocalWords:  TCP shell Documentation ostype hostname osrelease version mount
+% LocalWords:  const source filesystemtype mountflags ENODEV ENOTBLK block read
+% LocalWords:  device EBUSY only superblock point EACCES NODEV ENXIO major xC
+% LocalWords:  number EMFILE dummy ENAMETOOLONG ENOENT ELOOP virtual devfs MGC
+% LocalWords:  magic MSK RDONLY NOSUID suid sgid NOEXEC SYNCHRONOUS REMOUNT MNT
+% LocalWords:  MANDLOCK mandatory locking WRITE APPEND append IMMUTABLE NOATIME
+% LocalWords:  access NODIRATIME BIND MOVE umount flags FORCE statfs fstatfs ut
+% LocalWords:  buf ENOSYS EIO EBADF type fstab mntent home shadow username uid
+% LocalWords:  passwd PAM Pluggable Authentication Method Service Switch pwd ru
+% LocalWords:  getpwuid getpwnam NULL buflen result ERANGE getgrnam getgrgid AS
+% LocalWords:  grp group gid SVID fgetpwent putpwent getpwent setpwent endpwent
+% LocalWords:  fgetgrent putgrent getgrent setgrent endgrent accounting init HZ
+% LocalWords:  runlevel Hierarchy logout setutent endutent utmpname utmp paths
+% LocalWords:  WTMP getutent getutid getutline pututline LVL OLD DEAD EMPTY dev
+% LocalWords:  line libc XPG utmpx getutxent getutxid getutxline pututxline who
+% LocalWords:  setutxent endutxent wmtp updwtmp logwtmp wtmp host rusage utime
+% LocalWords:  minflt majflt nswap fault swap timeval wait getrusage usage SELF
+% LocalWords:  CHILDREN current limit soft RLIMIT Address brk mremap mmap dump
+% LocalWords:  SIGSEGV SIGXCPU SIGKILL sbrk FSIZE SIGXFSZ EFBIG LOCKS lock dup
+% LocalWords:  MEMLOCK NOFILE NPROC fork EAGAIN SIGPENDING sigqueue kill RSS tv
+% LocalWords:  resource getrlimit setrlimit rlimit rlim INFINITY capabilities
+% LocalWords:  capability CAP l'I Sun Sparc PAGESIZE getpagesize SVr SUSv get
+% LocalWords:  phys pages avphys NPROCESSORS CONF ONLN getloadavg stdlib double
+% LocalWords:  loadavg nelem scheduler CONFIG ACCT acct filename EACCESS EUSER
+% LocalWords:  ENFILE EROFS PACCT AcctCtrl cap calendar UTC Jan the Epoch GMT
+% LocalWords:  Greenwich Mean l'UTC timer CLOCKS SEC cron wall elapsed times tz
+% LocalWords:  tms dell' cutime cstime waitpid gettimeofday settimeofday timex
+% LocalWords:  timespec adjtime olddelta adjtimex David Mills nell' RFC NTP ntp
+% LocalWords:  nell'RFC ADJ FREQUENCY frequency MAXERROR maxerror ESTERROR PLL
+% LocalWords:  esterror TIMECONST constant SINGLESHOT MOD INS insert leap OOP
+% LocalWords:  second delete progress has occurred BAD broken tm gmtoff asctime
+% LocalWords:  ctime timep gmtime localtime mktime tzname tzset daylight format
+% LocalWords:  strftime thread EOF modifiable lvalue app errcode strerror LC at
+% LocalWords:  perror string errnum MESSAGES error message ErrCode strtol log
+% LocalWords:  program invocation argv printf print progname exit count fname
+% LocalWords:  lineno one  standardese Di