Passaggio a UTF-8 dei sorgenti
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index 24ec8f4685d898ded65d4675bc4cc6c6020a62e5..bb9e0b06cece8f401be8ca380b54c8c570ef5960 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
+%% ipc.tex
+%%
+%% Copyright (C) 2000-2011 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
+
 \chapter{La comunicazione fra processi}
 \label{cha:IPC}
 
 
-Uno degli aspetti fondamentali della programmazione in un sistema unix-like è
+Uno degli aspetti fondamentali della programmazione in un sistema unix-like è
 la comunicazione fra processi. In questo capitolo affronteremo solo i
-meccanismi più elementari che permettono di mettere in comunicazione processi
+meccanismi più elementari che permettono di mettere in comunicazione processi
 diversi, come quelli tradizionali che coinvolgono \textit{pipe} e
-\textit{fifo} e i meccanismi di intercomunicazione di System V.
+\textit{fifo} e i meccanismi di intercomunicazione di System V e quelli POSIX.
 
 Tralasceremo invece tutte le problematiche relative alla comunicazione
-attraverso la rete (e le relative interfacce) che saranno affrontate in gran
-dettaglio in un secondo tempo.  Non affronteremo invece meccanismi più
+attraverso la rete (e le relative interfacce) che saranno affrontate in
+dettaglio in un secondo tempo.  Non affronteremo neanche meccanismi più
 complessi ed evoluti come le RPC (\textit{Remote Procedure Calls}) e CORBA
 (\textit{Common Object Request Brocker Architecture}) che in genere sono
 implementati con un ulteriore livello sopra i meccanismi elementari.
 
 
-
 \section{La comunicazione fra processi tradizionale}
 \label{sec:ipc_unix}
 
-Il primo meccanismo di comunicazione fra processi usato dai sistemi unix-like
-è quello delle \textit{pipe}, in questa sezione descriveremo le sue basi, le
-funzioni che ne gestiscono l'uso e le varie forme in cui si è evoluto.
+Il primo meccanismo di comunicazione fra processi introdotto nei sistemi Unix,
+è quello delle cosiddette \textit{pipe}; esse costituiscono una delle
+caratteristiche peculiari del sistema, in particolar modo dell'interfaccia a
+linea di comando. In questa sezione descriveremo le sue basi, le funzioni che
+ne gestiscono l'uso e le varie forme in cui si è evoluto.
 
 
 \subsection{Le \textit{pipe} standard}
 \label{sec:ipc_pipes}
 
-Le \textit{pipe} nascono sostanzialmente con Unix, e sono il primo, ed uno dei
-più usati, meccanismi di comunicazione fra processi. Si tratta in sostanza uno
-speciale tipo di file\footnote{più precisamente un file descriptor; le pipe
-  sono create dal kernel e non risiedono su disco.} in cui un processo scrive
-ed un altro legge. Si viene così a costituire un canale di comunicazione fra i
-due processi, nella forma di un \textsl{tubo} (da cui il nome) in cui uno dei
-processi immette dati che poi arriveranno all'altro.
-
-Perché questo accada però, e questo è il principale\footnote{Stevens riporta
-  in APUE come limite anche il fatto che la comunicazione è unidirezionale, in
-  realtà questo è un limite facilemente risolvibile usando una coppia di
-  \textit{pipe}.} e limite nell'uso delle \textit{pipe}, è necessario che
-questi processi possano condividere il file descriptor della \textit{pipe};
-per questo essi devono comunque derivare da uno stesso processo padre, o, più
-comunemente, essere nella relazione padre/figlio.
-
-La funzione che permette di creare una \textit{pipe} è appunto \func{pipe}; il
-suo prototipo è:
+Le \textit{pipe} nascono sostanzialmente con Unix, e sono il primo, e tuttora
+uno dei più usati, meccanismi di comunicazione fra processi. Si tratta in
+sostanza di una coppia di file descriptor\footnote{si tenga presente che
+  le pipe sono oggetti creati dal kernel e non risiedono su disco.} connessi
+fra di loro in modo che se quanto scrive su di uno si può rileggere
+dall'altro. Si viene così a costituire un canale di comunicazione tramite i
+due file descriptor, nella forma di un \textsl{tubo} (da cui il nome)
+attraverso cui fluiscono i dati.
+
+La funzione che permette di creare questa speciale coppia di file descriptor
+associati ad una \textit{pipe} è appunto \funcd{pipe}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}
 {int pipe(int filedes[2])} 
   
 Crea una coppia di file descriptor associati ad una \textit{pipe}.
   
   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
-    errore, nel qual caso \var{errno} potrà assumere i valori \macro{EMFILE},
-    \macro{ENFILE} e \macro{EFAULT}.}
+    errore, nel qual caso \var{errno} potrà assumere i valori \errval{EMFILE},
+    \errval{ENFILE} e \errval{EFAULT}.}
+\end{prototype}
+
+La funzione restituisce la coppia di file descriptor nel vettore
+\param{filedes}; il primo è aperto in lettura ed il secondo in scrittura. Come
+accennato concetto di funzionamento di una pipe è semplice: quello che si
+scrive nel file descriptor aperto in scrittura viene ripresentato tale e quale
+nel file descriptor aperto in lettura. I file descriptor infatti non sono
+connessi a nessun file reale, ma, come accennato in
+sez.~\ref{sec:file_sendfile_splice}, ad un buffer nel kernel, la cui
+dimensione è specificata dal parametro di sistema \const{PIPE\_BUF}, (vedi
+sez.~\ref{sec:sys_file_limits}). Lo schema di funzionamento di una pipe è
+illustrato in fig.~\ref{fig:ipc_pipe_singular}, in cui sono illustrati i due
+capi della pipe, associati a ciascun file descriptor, con le frecce che
+indicano la direzione del flusso dei dati.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=5cm]{img/pipe}
+  \caption{Schema della struttura di una pipe.}
+  \label{fig:ipc_pipe_singular}
+\end{figure}
+
+Chiaramente creare una pipe all'interno di un singolo processo non serve a
+niente; se però ricordiamo quanto esposto in sez.~\ref{sec:file_sharing}
+riguardo al comportamento dei file descriptor nei processi figli, è immediato
+capire come una pipe possa diventare un meccanismo di intercomunicazione. Un
+processo figlio infatti condivide gli stessi file descriptor del padre,
+compresi quelli associati ad una pipe (secondo la situazione illustrata in
+fig.~\ref{fig:ipc_pipe_fork}). In questo modo se uno dei processi scrive su un
+capo della pipe, l'altro può leggere.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=5cm]{img/pipefork}
+  \caption{Schema dei collegamenti ad una pipe, condivisi fra processo padre e
+    figlio dopo l'esecuzione \func{fork}.}
+  \label{fig:ipc_pipe_fork}
+\end{figure}
+
+Tutto ciò ci mostra come sia immediato realizzare un meccanismo di
+comunicazione fra processi attraverso una pipe, utilizzando le proprietà
+ordinarie dei file, ma ci mostra anche qual è il principale\footnote{Stevens
+  in \cite{APUE} riporta come limite anche il fatto che la comunicazione è
+  unidirezionale, ma in realtà questo è un limite facilmente superabile usando
+  una coppia di pipe.} limite nell'uso delle pipe. È necessario infatti che i
+processi possano condividere i file descriptor della pipe, e per questo essi
+devono comunque essere \textsl{parenti} (dall'inglese \textit{siblings}), cioè
+o derivare da uno stesso processo padre in cui è avvenuta la creazione della
+pipe, o, più comunemente, essere nella relazione padre/figlio.
+
+A differenza di quanto avviene con i file normali, la lettura da una pipe può
+essere bloccante (qualora non siano presenti dati), inoltre se si legge da una
+pipe il cui capo in scrittura è stato chiuso, si avrà la ricezione di un EOF
+(vale a dire che la funzione \func{read} ritornerà restituendo 0).  Se invece
+si esegue una scrittura su una pipe il cui capo in lettura non è aperto il
+processo riceverà il segnale \const{SIGPIPE}, e la funzione di scrittura
+restituirà un errore di \errcode{EPIPE} (al ritorno del gestore, o qualora il
+segnale sia ignorato o bloccato).
+
+La dimensione del buffer della pipe (\const{PIPE\_BUF}) ci dà inoltre un'altra
+importante informazione riguardo il comportamento delle operazioni di lettura
+e scrittura su di una pipe; esse infatti sono atomiche fintanto che la
+quantità di dati da scrivere non supera questa dimensione. Qualora ad esempio
+si effettui una scrittura di una quantità di dati superiore l'operazione verrà
+effettuata in più riprese, consentendo l'intromissione di scritture effettuate
+da altri processi.
+
+
+\subsection{Un esempio dell'uso delle pipe}
+\label{sec:ipc_pipe_use}
+
+Per capire meglio il funzionamento delle pipe faremo un esempio di quello che
+è il loro uso più comune, analogo a quello effettuato della shell, e che
+consiste nell'inviare l'output di un processo (lo standard output) sull'input
+di un altro. Realizzeremo il programma di esempio nella forma di un
+\textit{CGI}\footnote{un CGI (\textit{Common Gateway Interface}) è un
+  programma che permette la creazione dinamica di un oggetto da inserire
+  all'interno di una pagina HTML.}  per Apache, che genera una immagine JPEG
+di un codice a barre, specificato come argomento in ingresso.
+
+Un programma che deve essere eseguito come \textit{CGI} deve rispondere a
+delle caratteristiche specifiche, esso infatti non viene lanciato da una
+shell, ma dallo stesso web server, alla richiesta di una specifica URL, che di
+solito ha la forma:
+\begin{verbatim}
+    http://www.sito.it/cgi-bin/programma?argomento
+\end{verbatim}
+ed il risultato dell'elaborazione deve essere presentato (con una intestazione
+che ne descrive il mime-type) sullo standard output, in modo che il web-server
+possa reinviarlo al browser che ha effettuato la richiesta, che in questo modo
+è in grado di visualizzarlo opportunamente.
+
+Per realizzare quanto voluto useremo in sequenza i programmi \cmd{barcode} e
+\cmd{gs}, il primo infatti è in grado di generare immagini PostScript di
+codici a barre corrispondenti ad una qualunque stringa, mentre il secondo
+serve per poter effettuare la conversione della stessa immagine in formato
+JPEG. Usando una pipe potremo inviare l'output del primo sull'input del
+secondo, secondo lo schema mostrato in fig.~\ref{fig:ipc_pipe_use}, in cui la
+direzione del flusso dei dati è data dalle frecce continue.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=5cm]{img/pipeuse}
+  \caption{Schema dell'uso di una pipe come mezzo di comunicazione fra
+    due processi attraverso l'esecuzione una \func{fork} e la chiusura dei
+    capi non utilizzati.}
+  \label{fig:ipc_pipe_use}
+\end{figure}
+
+Si potrebbe obiettare che sarebbe molto più semplice salvare il risultato
+intermedio su un file temporaneo. Questo però non tiene conto del fatto che un
+\textit{CGI} deve poter gestire più richieste in concorrenza, e si avrebbe una
+evidente \itindex{race~condition} \textit{race condition} in caso di accesso
+simultaneo a detto file.\footnote{il problema potrebbe essere superato
+  determinando in anticipo un nome appropriato per il file temporaneo, che
+  verrebbe utilizzato dai vari sotto-processi, e cancellato alla fine della
+  loro esecuzione; ma a questo punto le cose non sarebbero più tanto
+  semplici.}  L'uso di una pipe invece permette di risolvere il problema in
+maniera semplice ed elegante, oltre ad essere molto più efficiente, dato che
+non si deve scrivere su disco.
+
+Il programma ci servirà anche come esempio dell'uso delle funzioni di
+duplicazione dei file descriptor che abbiamo trattato in
+sez.~\ref{sec:file_dup}, in particolare di \func{dup2}. È attraverso queste
+funzioni infatti che è possibile dirottare gli stream standard dei processi
+(che abbiamo visto in sez.~\ref{sec:file_std_descr} e
+sez.~\ref{sec:file_std_stream}) sulla pipe. In
+fig.~\ref{fig:ipc_barcodepage_code} abbiamo riportato il corpo del programma,
+il cui codice completo è disponibile nel file \file{BarCodePage.c} che si
+trova nella directory dei sorgenti.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/BarCodePage.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del \textit{CGI} 
+    \file{BarCodePage.c}.}
+  \label{fig:ipc_barcodepage_code}
+\end{figure}
+
+La prima operazione del programma (\texttt{\small 4--12}) è quella di creare
+le due pipe che serviranno per la comunicazione fra i due comandi utilizzati
+per produrre il codice a barre; si ha cura di controllare la riuscita della
+chiamata, inviando in caso di errore un messaggio invece dell'immagine
+richiesta.\footnote{la funzione \func{WriteMess} non è riportata in
+  fig.~\ref{fig:ipc_barcodepage_code}; essa si incarica semplicemente di
+  formattare l'uscita alla maniera dei CGI, aggiungendo l'opportuno
+  \textit{mime type}, e formattando il messaggio in HTML, in modo che
+  quest'ultimo possa essere visualizzato correttamente da un browser.}
+
+Una volta create le pipe, il programma può creare (\texttt{\small 13-17}) il
+primo processo figlio, che si incaricherà (\texttt{\small 19--25}) di eseguire
+\cmd{barcode}. Quest'ultimo legge dallo standard input una stringa di
+caratteri, la converte nell'immagine PostScript del codice a barre ad essa
+corrispondente, e poi scrive il risultato direttamente sullo standard output.
+
+Per poter utilizzare queste caratteristiche prima di eseguire \cmd{barcode} si
+chiude (\texttt{\small 20}) il capo aperto in scrittura della prima pipe, e se
+ne collega (\texttt{\small 21}) il capo in lettura allo standard input, usando
+\func{dup2}. Si ricordi che invocando \func{dup2} il secondo file, qualora
+risulti aperto, viene, come nel caso corrente, chiuso prima di effettuare la
+duplicazione. Allo stesso modo, dato che \cmd{barcode} scrive l'immagine
+PostScript del codice a barre sullo standard output, per poter effettuare una
+ulteriore redirezione il capo in lettura della seconda pipe viene chiuso
+(\texttt{\small 22}) mentre il capo in scrittura viene collegato allo standard
+output (\texttt{\small 23}).
+
+In questo modo all'esecuzione (\texttt{\small 25}) di \cmd{barcode} (cui si
+passa in \var{size} la dimensione della pagina per l'immagine) quest'ultimo
+leggerà dalla prima pipe la stringa da codificare che gli sarà inviata dal
+padre, e scriverà l'immagine PostScript del codice a barre sulla seconda.
+
+Al contempo una volta lanciato il primo figlio, il processo padre prima chiude
+(\texttt{\small 26}) il capo inutilizzato della prima pipe (quello in input) e
+poi scrive (\texttt{\small 27}) la stringa da convertire sul capo in output,
+così che \cmd{barcode} possa riceverla dallo standard input. A questo punto
+l'uso della prima pipe da parte del padre è finito ed essa può essere
+definitivamente chiusa (\texttt{\small 28}), si attende poi (\texttt{\small
+  29}) che l'esecuzione di \cmd{barcode} sia completata.
+
+Alla conclusione della sua esecuzione \cmd{barcode} avrà inviato l'immagine
+PostScript del codice a barre sul capo in scrittura della seconda pipe; a
+questo punto si può eseguire la seconda conversione, da PS a JPEG, usando il
+programma \cmd{gs}. Per questo si crea (\texttt{\small 30--34}) un secondo
+processo figlio, che poi (\texttt{\small 35--42}) eseguirà questo programma
+leggendo l'immagine PostScript creata da \cmd{barcode} dallo standard input,
+per convertirla in JPEG.
+
+Per fare tutto ciò anzitutto si chiude (\texttt{\small 37}) il capo in
+scrittura della seconda pipe, e se ne collega (\texttt{\small 38}) il capo in
+lettura allo standard input. Per poter formattare l'output del programma in
+maniera utilizzabile da un browser, si provvede anche \texttt{\small 40}) alla
+scrittura dell'apposita stringa di identificazione del mime-type in testa allo
+standard output. A questo punto si può invocare \texttt{\small 41}) \cmd{gs},
+provvedendo gli appositi switch che consentono di leggere il file da
+convertire dallo standard input e di inviare la conversione sullo standard
+output.
+
+Per completare le operazioni il processo padre chiude (\texttt{\small 44}) il
+capo in scrittura della seconda pipe, e attende la conclusione del figlio
+(\texttt{\small 45}); a questo punto può (\texttt{\small 46}) uscire. Si tenga
+conto che l'operazione di chiudere il capo in scrittura della seconda pipe è
+necessaria, infatti, se non venisse chiusa, \cmd{gs}, che legge il suo
+standard input da detta pipe, resterebbe bloccato in attesa di ulteriori dati
+in ingresso (l'unico modo che un programma ha per sapere che l'input è
+terminato è rilevare che lo standard input è stato chiuso), e la \func{wait}
+non ritornerebbe.
+
+
+\subsection{Le funzioni \func{popen} e \func{pclose}}
+\label{sec:ipc_popen}
+
+Come si è visto la modalità più comune di utilizzo di una pipe è quella di
+utilizzarla per fare da tramite fra output ed input di due programmi invocati
+in sequenza; per questo motivo lo standard POSIX.2 ha introdotto due funzioni
+che permettono di sintetizzare queste operazioni. La prima di esse si chiama
+\funcd{popen} ed il suo prototipo è:
+\begin{prototype}{stdio.h}
+{FILE *popen(const char *command, const char *type)}
+
+Esegue il programma \param{command}, di cui, a seconda di \param{type},
+restituisce, lo standard input o lo standard output nella pipe collegata allo
+stream restituito come valore di ritorno.
+  
+\bodydesc{La funzione restituisce l'indirizzo dello stream associato alla pipe
+  in caso di successo e \val{NULL} per un errore, nel qual caso \var{errno}
+  potrà assumere i valori relativi alle sottostanti invocazioni di \func{pipe}
+  e \func{fork} o \errcode{EINVAL} se \param{type} non è valido.}
+\end{prototype}
+
+La funzione crea una pipe, esegue una \func{fork}, ed invoca il programma
+\param{command} attraverso la shell (in sostanza esegue \file{/bin/sh} con il
+flag \code{-c}); l'argomento \param{type} deve essere una delle due stringhe
+\verb|"w"| o \verb|"r"|, per indicare se la pipe sarà collegata allo standard
+input o allo standard output del comando invocato.
+
+La funzione restituisce il puntatore allo stream associato alla pipe creata,
+che sarà aperto in sola lettura (e quindi associato allo standard output del
+programma indicato) in caso si sia indicato \code{"r"}, o in sola scrittura (e
+quindi associato allo standard input) in caso di \code{"w"}.
+
+Lo stream restituito da \func{popen} è identico a tutti gli effetti ai file
+stream visti in cap.~\ref{cha:files_std_interface}, anche se è collegato ad
+una pipe e non ad un file, e viene sempre aperto in modalità
+\textit{fully-buffered} (vedi sez.~\ref{sec:file_buffering}); l'unica
+differenza con gli usuali stream è che dovrà essere chiuso dalla seconda delle
+due nuove funzioni, \funcd{pclose}, il cui prototipo è:
+\begin{prototype}{stdio.h}
+{int pclose(FILE *stream)}
+
+Chiude il file \param{stream}, restituito da una precedente \func{popen}
+attendendo la terminazione del processo ad essa associato.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore; nel quel caso il valore di \var{errno} deriva dalle sottostanti
+  chiamate.}
 \end{prototype}
+\noindent che oltre alla chiusura dello stream si incarica anche di attendere
+(tramite \func{wait4}) la conclusione del processo creato dalla precedente
+\func{popen}.
+
+Per illustrare l'uso di queste due funzioni riprendiamo il problema
+precedente: il programma mostrato in fig.~\ref{fig:ipc_barcodepage_code} per
+quanto funzionante, è (volutamente) codificato in maniera piuttosto complessa,
+inoltre nella pratica sconta un problema di \cmd{gs} che non è in
+grado\footnote{nella versione GNU Ghostscript 6.53 (2002-02-13).} di
+riconoscere correttamente l'Encapsulated PostScript, per cui deve essere usato
+il PostScript e tutte le volte viene generata una pagina intera, invece che
+una immagine delle dimensioni corrispondenti al codice a barre.
+
+Se si vuole generare una immagine di dimensioni appropriate si deve usare un
+approccio diverso. Una possibilità sarebbe quella di ricorrere ad ulteriore
+programma, \cmd{epstopsf}, per convertire in PDF un file EPS (che può essere
+generato da \cmd{barcode} utilizzando lo switch \cmd{-E}).  Utilizzando un PDF
+al posto di un EPS \cmd{gs} esegue la conversione rispettando le dimensioni
+originarie del codice a barre e produce un JPEG di dimensioni corrette.
+
+Questo approccio però non funziona, per via di una delle caratteristiche
+principali delle pipe. Per poter effettuare la conversione di un PDF infatti è
+necessario, per la struttura del formato, potersi spostare (con \func{lseek})
+all'interno del file da convertire; se si esegue la conversione con \cmd{gs}
+su un file regolare non ci sono problemi, una pipe però è rigidamente
+sequenziale, e l'uso di \func{lseek} su di essa fallisce sempre con un errore
+di \errcode{ESPIPE}, rendendo impossibile la conversione.  Questo ci dice che
+in generale la concatenazione di vari programmi funzionerà soltanto quando
+tutti prevedono una lettura sequenziale del loro input.
+
+Per questo motivo si è dovuto utilizzare un procedimento diverso, eseguendo
+prima la conversione (sempre con \cmd{gs}) del PS in un altro formato
+intermedio, il PPM,\footnote{il \textit{Portable PixMap file format} è un
+  formato usato spesso come formato intermedio per effettuare conversioni, è
+  infatti molto facile da manipolare, dato che usa caratteri ASCII per
+  memorizzare le immagini, anche se per questo è estremamente inefficiente.}
+dal quale poi si può ottenere un'immagine di dimensioni corrette attraverso
+vari programmi di manipolazione (\cmd{pnmcrop}, \cmd{pnmmargin}) che può
+essere infine trasformata in PNG (con \cmd{pnm2png}).
+
+In questo caso però occorre eseguire in sequenza ben quattro comandi diversi,
+inviando l'output di ciascuno all'input del successivo, per poi ottenere il
+risultato finale sullo standard output: un caso classico di utilizzazione
+delle pipe, in cui l'uso di \func{popen} e \func{pclose} permette di
+semplificare notevolmente la stesura del codice.
+
+Nel nostro caso, dato che ciascun processo deve scrivere il suo output sullo
+standard input del successivo, occorrerà usare \func{popen} aprendo la pipe in
+scrittura. Il codice del nuovo programma è riportato in
+fig.~\ref{fig:ipc_barcode_code}.  Come si può notare l'ordine di invocazione
+dei programmi è l'inverso di quello in cui ci si aspetta che vengano
+effettivamente eseguiti. Questo non comporta nessun problema dato che la
+lettura su una pipe è bloccante, per cui ciascun processo, per quanto lanciato
+per primo, si bloccherà in attesa di ricevere sullo standard input il
+risultato dell'elaborazione del precedente, benché quest'ultimo venga invocato
+dopo.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/BarCode.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Codice completo del \textit{CGI} \file{BarCode.c}.}
+  \label{fig:ipc_barcode_code}
+\end{figure}
+
+Nel nostro caso il primo passo (\texttt{\small 14}) è scrivere il mime-type
+sullo standard output; a questo punto il processo padre non necessita più di
+eseguire ulteriori operazioni sullo standard output e può tranquillamente
+provvedere alla redirezione.
+
+Dato che i vari programmi devono essere lanciati in successione, si è
+approntato un ciclo (\texttt{\small 15--19}) che esegue le operazioni in
+sequenza: prima crea una pipe (\texttt{\small 17}) per la scrittura eseguendo
+il programma con \func{popen}, in modo che essa sia collegata allo standard
+input, e poi redirige (\texttt{\small 18}) lo standard output su detta pipe.
 
-La funzione restituisce una coppia di file descriptor nell'array
-\param{filedes}; il primo aperto in lettura ed il secondo in scrittura
+In questo modo il primo processo ad essere invocato (che è l'ultimo della
+catena) scriverà ancora sullo standard output del processo padre, ma i
+successivi, a causa di questa redirezione, scriveranno sulla pipe associata
+allo standard input del processo invocato nel ciclo precedente.
 
+Alla fine tutto quello che resta da fare è lanciare (\texttt{\small 21}) il
+primo processo della catena, che nel caso è \cmd{barcode}, e scrivere
+(\texttt{\small 23}) la stringa del codice a barre sulla pipe, che è collegata
+al suo standard input, infine si può eseguire (\texttt{\small 24--27}) un
+ciclo che chiuda, nell'ordine inverso rispetto a quello in cui le si sono
+create, tutte le pipe create con \func{pclose}.
 
 
 \subsection{Le \textit{pipe} con nome, o \textit{fifo}}
 \label{sec:ipc_named_pipe}
 
-Per poter superare il problema delle \textit{pipe} originali, che consentono
-la comunicazione solo fra processi correlati, passando attraverso strutture
-interne del kernel, sono stati introdotti dei nuovi oggetti, le \textit{fifo},
-che invece possono risiedere sul filesystem, e che i processi possono usare
-per le comunicazioni senza dovere per forza essere in relazione diretta. 
+Come accennato in sez.~\ref{sec:ipc_pipes} il problema delle \textit{pipe} è
+che esse possono essere utilizzate solo da processi con un progenitore comune
+o nella relazione padre/figlio; per superare questo problema lo standard
+POSIX.1 ha definito dei nuovi oggetti, le \textit{fifo}, che hanno le stesse
+caratteristiche delle pipe, ma che invece di essere strutture interne del
+kernel, visibili solo attraverso un file descriptor, sono accessibili
+attraverso un \index{inode} inode che risiede sul filesystem, così che i
+processi le possono usare senza dovere per forza essere in una relazione di
+\textsl{parentela}.
+
+Utilizzando una \textit{fifo} tutti i dati passeranno, come per le pipe,
+attraverso un apposito buffer nel kernel, senza transitare dal filesystem;
+\index{inode} l'inode allocato sul filesystem serve infatti solo a fornire un
+punto di riferimento per i processi, che permetta loro di accedere alla stessa
+fifo; il comportamento delle funzioni di lettura e scrittura è identico a
+quello illustrato per le pipe in sez.~\ref{sec:ipc_pipes}.
+
+Abbiamo già visto in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
+\func{mkfifo} che permettono di creare una fifo; per utilizzarne una un
+processo non avrà che da aprire il relativo file speciale o in lettura o
+scrittura; nel primo caso sarà collegato al capo di uscita della fifo, e dovrà
+leggere, nel secondo al capo di ingresso, e dovrà scrivere.
+
+Il kernel crea una singola pipe per ciascuna fifo che sia stata aperta, che può
+essere acceduta contemporaneamente da più processi, sia in lettura che in
+scrittura. Dato che per funzionare deve essere aperta in entrambe le
+direzioni, per una fifo di norma la funzione \func{open} si blocca se viene
+eseguita quando l'altro capo non è aperto.
+
+Le fifo però possono essere anche aperte in modalità \textsl{non-bloccante},
+nel qual caso l'apertura del capo in lettura avrà successo solo quando anche
+l'altro capo è aperto, mentre l'apertura del capo in scrittura restituirà
+l'errore di \errcode{ENXIO} fintanto che non verrà aperto il capo in lettura.
+
+In Linux è possibile aprire le fifo anche in lettura/scrittura,\footnote{lo
+  standard POSIX lascia indefinito il comportamento in questo caso.}
+operazione che avrà sempre successo immediato qualunque sia la modalità di
+apertura (bloccante e non bloccante); questo può essere utilizzato per aprire
+comunque una fifo in scrittura anche se non ci sono ancora processi il
+lettura; è possibile anche usare la fifo all'interno di un solo processo, nel
+qual caso però occorre stare molto attenti alla possibili situazioni di
+stallo.\footnote{se si cerca di leggere da una fifo che non contiene dati si
+  avrà un \itindex{deadlock} deadlock immediato, dato che il processo si
+  blocca e non potrà quindi mai eseguire le funzioni di scrittura.}
+
+Per la loro caratteristica di essere accessibili attraverso il filesystem, è
+piuttosto frequente l'utilizzo di una fifo come canale di comunicazione nelle
+situazioni un processo deve ricevere informazioni da altri. In questo caso è
+fondamentale che le operazioni di scrittura siano atomiche; per questo si deve
+sempre tenere presente che questo è vero soltanto fintanto che non si supera
+il limite delle dimensioni di \const{PIPE\_BUF} (si ricordi quanto detto in
+sez.~\ref{sec:ipc_pipes}).
+
+A parte il caso precedente, che resta probabilmente il più comune, Stevens
+riporta in \cite{APUE} altre due casistiche principali per l'uso delle fifo:
+\begin{itemize}
+\item Da parte dei comandi di shell, per evitare la creazione di file
+  temporanei quando si devono inviare i dati di uscita di un processo
+  sull'input di parecchi altri (attraverso l'uso del comando \cmd{tee}).
+  
+\item Come canale di comunicazione fra client ed server (il modello
+  \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}).
+\end{itemize}
+
+Nel primo caso quello che si fa è creare tante fifo, da usare come standard
+input, quanti sono i processi a cui i vogliono inviare i dati, questi ultimi
+saranno stati posti in esecuzione ridirigendo lo standard input dalle fifo, si
+potrà poi eseguire il processo che fornisce l'output replicando quest'ultimo,
+con il comando \cmd{tee}, sulle varie fifo.
+
+Il secondo caso è relativamente semplice qualora si debba comunicare con un
+processo alla volta (nel qual caso basta usare due fifo, una per leggere ed
+una per scrivere), le cose diventano invece molto più complesse quando si
+vuole effettuare una comunicazione fra il server ed un numero imprecisato di
+client; se il primo infatti può ricevere le richieste attraverso una fifo
+``\textsl{nota}'', per le risposte non si può fare altrettanto, dato che, per
+la struttura sequenziale delle fifo, i client dovrebbero sapere, prima di
+leggerli, quando i dati inviati sono destinati a loro.
+
+Per risolvere questo problema, si può usare un'architettura come quella
+illustrata in fig.~\ref{fig:ipc_fifo_server_arch} in cui i client inviano le
+richieste al server su una fifo nota mentre le risposte vengono reinviate dal
+server a ciascuno di essi su una fifo temporanea creata per l'occasione.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=9cm]{img/fifoserver}
+  \caption{Schema dell'utilizzo delle fifo nella realizzazione di una
+  architettura di comunicazione client/server.}
+  \label{fig:ipc_fifo_server_arch}
+\end{figure}
+
+Come esempio di uso questa architettura e dell'uso delle fifo, abbiamo scritto
+un server di \textit{fortunes}, che restituisce, alle richieste di un client,
+un detto a caso estratto da un insieme di frasi; sia il numero delle frasi
+dell'insieme, che i file da cui esse vengono lette all'avvio, sono importabili
+da riga di comando. Il corpo principale del server è riportato in
+fig.~\ref{fig:ipc_fifo_server}, dove si è tralasciata la parte che tratta la
+gestione delle opzioni a riga di comando, che effettua il settaggio delle
+variabili \var{fortunefilename}, che indica il file da cui leggere le frasi,
+ed \var{n}, che indica il numero di frasi tenute in memoria, ad un valore
+diverso da quelli preimpostati. Il codice completo è nel file
+\file{FortuneServer.c}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/FortuneServer.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del server di \textit{fortunes}
+    basato sulle fifo.}
+  \label{fig:ipc_fifo_server}
+\end{figure}
+
+Il server richiede (\texttt{\small 12}) che sia stata impostata una dimensione
+dell'insieme delle frasi non nulla, dato che l'inizializzazione del vettore
+\var{fortune} avviene solo quando questa dimensione viene specificata, la
+presenza di un valore nullo provoca l'uscita dal programma attraverso la
+funzione (non riportata) che ne stampa le modalità d'uso.  Dopo di che
+installa (\texttt{\small 13--15}) la funzione che gestisce i segnali di
+interruzione (anche questa non è riportata in fig.~\ref{fig:ipc_fifo_server})
+che si limita a rimuovere dal filesystem la fifo usata dal server per
+comunicare.
+
+Terminata l'inizializzazione (\texttt{\small 16}) si effettua la chiamata alla
+funzione \code{FortuneParse} che legge dal file specificato in
+\var{fortunefilename} le prime \var{n} frasi e le memorizza (allocando
+dinamicamente la memoria necessaria) nel vettore di puntatori \var{fortune}.
+Anche il codice della funzione non è riportato, in quanto non direttamente
+attinente allo scopo dell'esempio.
 
+Il passo successivo (\texttt{\small 17--22}) è quello di creare con
+\func{mkfifo} la fifo nota sulla quale il server ascolterà le richieste,
+qualora si riscontri un errore il server uscirà (escludendo ovviamente il caso
+in cui la funzione \func{mkfifo} fallisce per la precedente esistenza della
+fifo).
 
+Una volta che si è certi che la fifo di ascolto esiste la procedura di
+inizializzazione è completata. A questo punto si può chiamare (\texttt{\small
+  23}) la funzione \func{daemon} per far proseguire l'esecuzione del programma
+in background come demone.  Si può quindi procedere (\texttt{\small 24--33})
+alla apertura della fifo: si noti che questo viene fatto due volte, prima in
+lettura e poi in scrittura, per evitare di dover gestire all'interno del ciclo
+principale il caso in cui il server è in ascolto ma non ci sono client che
+effettuano richieste.  Si ricordi infatti che quando una fifo è aperta solo
+dal capo in lettura, l'esecuzione di \func{read} ritorna con zero byte (si ha
+cioè una condizione di end-of-file).
 
+Nel nostro caso la prima apertura si bloccherà fintanto che un qualunque
+client non apre a sua volta la fifo nota in scrittura per effettuare la sua
+richiesta. Pertanto all'inizio non ci sono problemi, il client però, una volta
+ricevuta la risposta, uscirà, chiudendo tutti i file aperti, compresa la fifo.
+A questo punto il server resta (se non ci sono altri client che stanno
+effettuando richieste) con la fifo chiusa sul lato in lettura, ed in questo
+stato la funzione \func{read} non si bloccherà in attesa di input, ma
+ritornerà in continuazione, restituendo un end-of-file.\footnote{si è usata
+  questa tecnica per compatibilità, Linux infatti supporta l'apertura delle
+  fifo in lettura/scrittura, per cui si sarebbe potuto effettuare una singola
+  apertura con \const{O\_RDWR}, la doppia apertura comunque ha il vantaggio
+  che non si può scrivere per errore sul capo aperto in sola lettura.}
 
-\section{La comunicazione fra processi di System V}
+Per questo motivo, dopo aver eseguito l'apertura in lettura (\texttt{\small
+  24--28}),\footnote{di solito si effettua l'apertura del capo in lettura di
+  una fifo in modalità non bloccante, per evitare il rischio di uno stallo: se
+  infatti nessuno apre la fifo in scrittura il processo non ritornerà mai
+  dalla \func{open}. Nel nostro caso questo rischio non esiste, mentre è
+  necessario potersi bloccare in lettura in attesa di una richiesta.} si
+esegue una seconda apertura in scrittura (\texttt{\small 29--32}), scartando
+il relativo file descriptor, che non sarà mai usato, in questo modo però la
+fifo resta comunque aperta anche in scrittura, cosicché le successive chiamate
+a \func{read} possono bloccarsi.
+
+A questo punto si può entrare nel ciclo principale del programma che fornisce
+le risposte ai client (\texttt{\small 34--50}); questo viene eseguito
+indefinitamente (l'uscita del server viene effettuata inviando un segnale, in
+modo da passare attraverso la funzione di chiusura che cancella la fifo).
+
+Il server è progettato per accettare come richieste dai client delle stringhe
+che contengono il nome della fifo sulla quale deve essere inviata la risposta.
+Per cui prima (\texttt{\small 35--39}) si esegue la lettura dalla stringa di
+richiesta dalla fifo nota (che a questo punto si bloccherà tutte le volte che
+non ci sono richieste). Dopo di che, una volta terminata la stringa
+(\texttt{\small 40}) e selezionato (\texttt{\small 41}) un numero casuale per
+ricavare la frase da inviare, si procederà (\texttt{\small 42--46})
+all'apertura della fifo per la risposta, che poi \texttt{\small 47--48}) vi
+sarà scritta. Infine (\texttt{\small 49}) si chiude la fifo di risposta che
+non serve più.
+
+Il codice del client è invece riportato in fig.~\ref{fig:ipc_fifo_client},
+anche in questo caso si è omessa la gestione delle opzioni e la funzione che
+stampa a video le informazioni di utilizzo ed esce, riportando solo la sezione
+principale del programma e le definizioni delle variabili. Il codice completo
+è nel file \file{FortuneClient.c} dei sorgenti allegati.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/FortuneClient.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del client di \textit{fortunes}
+    basato sulle fifo.}
+  \label{fig:ipc_fifo_client}
+\end{figure}
+
+La prima istruzione (\texttt{\small 12}) compone il nome della fifo che dovrà
+essere utilizzata per ricevere la risposta dal server.  Si usa il \acr{pid}
+del processo per essere sicuri di avere un nome univoco; dopo di che
+(\texttt{\small 13-18}) si procede alla creazione del relativo file, uscendo
+in caso di errore (a meno che il file non sia già presente sul filesystem).
+
+A questo punto il client può effettuare l'interrogazione del server, per
+questo prima si apre la fifo nota (\texttt{\small 19--23}), e poi ci si scrive
+(\texttt{\small 24}) la stringa composta in precedenza, che contiene il nome
+della fifo da utilizzare per la risposta. Infine si richiude la fifo del
+server che a questo punto non serve più (\texttt{\small 25}).
+
+Inoltrata la richiesta si può passare alla lettura della risposta; anzitutto
+si apre (\texttt{\small 26--30}) la fifo appena creata, da cui si deve
+riceverla, dopo di che si effettua una lettura (\texttt{\small 31})
+nell'apposito buffer; si è supposto, come è ragionevole, che le frasi inviate
+dal server siano sempre di dimensioni inferiori a \const{PIPE\_BUF},
+tralasciamo la gestione del caso in cui questo non è vero. Infine si stampa
+(\texttt{\small 32}) a video la risposta, si chiude (\texttt{\small 33}) la
+fifo e si cancella (\texttt{\small 34}) il relativo file.
+Si noti come la fifo per la risposta sia stata aperta solo dopo aver inviato
+la richiesta, se non si fosse fatto così si avrebbe avuto uno stallo, in
+quanto senza la richiesta, il server non avrebbe potuto aprirne il capo in
+scrittura e l'apertura si sarebbe bloccata indefinitamente.
+
+Verifichiamo allora il comportamento dei nostri programmi, in questo, come in
+altri esempi precedenti, si fa uso delle varie funzioni di servizio, che sono
+state raccolte nella libreria \file{libgapil.so}, per poter usare quest'ultima
+occorrerà definire la speciale variabile di ambiente \code{LD\_LIBRARY\_PATH}
+in modo che il linker dinamico possa accedervi.
+
+In generale questa variabile indica il \itindex{pathname} \textit{pathname}
+della directory contenente la libreria. Nell'ipotesi (che daremo sempre per
+verificata) che si facciano le prove direttamente nella directory dei sorgenti
+(dove di norma vengono creati sia i programmi che la libreria), il comando da
+dare sarà \code{export LD\_LIBRARY\_PATH=./}; a questo punto potremo lanciare
+il server, facendogli leggere una decina di frasi, con:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./fortuned -n10
+\end{Verbatim}
+%$
+
+Avendo usato \func{daemon} per eseguire il server in background il comando
+ritornerà immediatamente, ma potremo verificare con \cmd{ps} che in effetti il
+programma resta un esecuzione in background, e senza avere associato un
+terminale di controllo (si ricordi quanto detto in sez.~\ref{sec:sess_daemon}):
+\begin{Verbatim}
+[piccardi@gont sources]$ ps aux
+...
+piccardi 27489  0.0  0.0  1204  356 ?        S    01:06   0:00 ./fortuned -n10
+piccardi 27492  3.0  0.1  2492  764 pts/2    R    01:08   0:00 ps aux
+\end{Verbatim}
+%$
+e si potrà verificare anche che in \file{/tmp} è stata creata la fifo di
+ascolto \file{fortune.fifo}. A questo punto potremo interrogare il server con
+il programma client; otterremo così:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./fortune
+Linux ext2fs has been stable for a long time, now it's time to break it
+        -- Linuxkongreß '95 in Berlin
+[piccardi@gont sources]$ ./fortune
+Let's call it an accidental feature.
+        --Larry Wall
+[piccardi@gont sources]$ ./fortune
+.........    Escape the 'Gates' of Hell
+  `:::'                  .......  ......
+   :::  *                  `::.    ::'
+   ::: .::  .:.::.  .:: .::  `::. :'
+   :::  ::   ::  ::  ::  ::    :::.
+   ::: .::. .::  ::.  `::::. .:'  ::.
+...:::.....................::'   .::::..
+        -- William E. Roadcap
+[piccardi@gont sources]$ ./fortune
+Linux ext2fs has been stable for a long time, now it's time to break it
+        -- Linuxkongreß '95 in Berlin
+\end{Verbatim}
+%$
+e ripetendo varie volte il comando otterremo, in ordine casuale, le dieci
+frasi tenute in memoria dal server.
+
+Infine per chiudere il server basterà inviare un segnale di terminazione con
+\code{killall fortuned} e potremo verificare che il gestore del segnale ha
+anche correttamente cancellato la fifo di ascolto da \file{/tmp}.
+
+Benché il nostro sistema client-server funzioni, la sua struttura è piuttosto
+complessa e continua ad avere vari inconvenienti\footnote{lo stesso Stevens,
+  che esamina questa architettura in \cite{APUE}, nota come sia impossibile
+  per il server sapere se un client è andato in crash, con la possibilità di
+  far restare le fifo temporanee sul filesystem, di come sia necessario
+  intercettare \const{SIGPIPE} dato che un client può terminare dopo aver
+  fatto una richiesta, ma prima che la risposta sia inviata (cosa che nel
+  nostro esempio non è stata fatta).}; in generale infatti l'interfaccia delle
+fifo non è adatta a risolvere questo tipo di problemi, che possono essere
+affrontati in maniera più semplice ed efficace o usando i socket (che
+tratteremo in dettaglio a partire da cap.~\ref{cha:socket_intro}) o ricorrendo
+a meccanismi di comunicazione diversi, come quelli che esamineremo in seguito.
+
+
+
+\subsection{La funzione \func{socketpair}}
+\label{sec:ipc_socketpair}
+
+Un meccanismo di comunicazione molto simile alle pipe, ma che non presenta il
+problema della unidirezionalità del flusso dei dati, è quello dei cosiddetti
+\textsl{socket locali} (o \textit{Unix domain socket}). Tratteremo l'argomento
+dei socket in cap.~\ref{cha:socket_intro},\footnote{si tratta comunque di
+  oggetti di comunicazione che, come le pipe, sono utilizzati attraverso dei
+  file descriptor.} nell'ambito dell'interfaccia generale che essi forniscono
+per la programmazione di rete; e vedremo anche
+(in~sez.~\ref{sec:sock_sa_local}) come si possono definire dei file speciali
+(di tipo socket, analoghi a quello associati alle fifo) cui si accede però
+attraverso quella medesima interfaccia; vale però la pena esaminare qui una
+modalità di uso dei socket locali\footnote{la funzione \func{socketpair} è
+  stata introdotta in BSD4.4, ma è supportata in genere da qualunque sistema
+  che fornisca l'interfaccia dei socket.} che li rende sostanzialmente
+identici ad una pipe bidirezionale.
+
+La funzione \funcd{socketpair} infatti consente di creare una coppia di file
+descriptor connessi fra di loro (tramite un socket, appunto), senza dover
+ricorrere ad un file speciale sul filesystem, i descrittori sono del tutto
+analoghi a quelli che si avrebbero con una chiamata a \func{pipe}, con la sola
+differenza è che in questo caso il flusso dei dati può essere effettuato in
+entrambe le direzioni. Il prototipo della funzione è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/socket.h} 
+  
+  \funcdecl{int socketpair(int domain, int type, int protocol, int sv[2])}
+  
+  Crea una coppia di socket connessi fra loro.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EAFNOSUPPORT}] i socket locali non sono supportati.
+  \item[\errcode{EPROTONOSUPPORT}] il protocollo specificato non è supportato.
+  \item[\errcode{EOPNOTSUPP}] il protocollo specificato non supporta la
+  creazione di coppie di socket.
+  \end{errlist}
+  ed inoltre \errval{EMFILE},  \errval{EFAULT}.
+}
+\end{functions}
+
+La funzione restituisce in \param{sv} la coppia di descrittori connessi fra di
+loro: quello che si scrive su uno di essi sarà ripresentato in input
+sull'altro e viceversa. Gli argomenti \param{domain}, \param{type} e
+\param{protocol} derivano dall'interfaccia dei socket (vedi
+sez.~\ref{sec:sock_creation}) che è quella che fornisce il substrato per
+connettere i due descrittori, ma in questo caso i soli valori validi che
+possono essere specificati sono rispettivamente \const{AF\_UNIX},
+\const{SOCK\_STREAM} e \val{0}.
+
+L'utilità di chiamare questa funzione per evitare due chiamate a \func{pipe}
+può sembrare limitata; in realtà l'utilizzo di questa funzione (e dei socket
+locali in generale) permette di trasmettere attraverso le linea non solo dei
+dati, ma anche dei file descriptor: si può cioè passare da un processo ad un
+altro un file descriptor, con una sorta di duplicazione dello stesso non
+all'interno di uno stesso processo, ma fra processi distinti (torneremo su
+questa funzionalità in sez.~\ref{sec:sock_fd_passing}).
+
+
+\section{Il sistema di comunicazione fra processi di System V}
 \label{sec:ipc_sysv}
 
-Per ovviare ai vari limiti dei meccanismo tradizionale di comunicazione fra
-processi visto in \secref{sec:ipc_unix}, nello sviluppo di System V vennero
-introdotti una serie di nuovi oggetti e relative interdacce che garantissero
-una maggiore flessibilità; in questa sezione esamineremo quello che viene
-ormai chiamato il \textit{System V Inter-Process Comunication System}, più
-comunemente noto come \textit{SystemV IPC}.
+Benché le pipe e le fifo siano ancora ampiamente usate, esse scontano il
+limite fondamentale che il meccanismo di comunicazione che forniscono è
+rigidamente sequenziale: una situazione in cui un processo scrive qualcosa che
+molti altri devono poter leggere non può essere implementata con una pipe.
+
+Per questo nello sviluppo di System V vennero introdotti una serie di nuovi
+oggetti per la comunicazione fra processi ed una nuova interfaccia di
+programmazione, che fossero in grado di garantire una maggiore flessibilità.
+In questa sezione esamineremo come Linux supporta quello che viene chiamato il
+\textsl{Sistema di comunicazione fra processi} di System V, cui da qui in
+avanti faremo riferimento come \textit{SysV IPC} (dove IPC è la sigla di
+\textit{Inter-Process Comunication}).
+
+
+
+\subsection{Considerazioni generali}
+\label{sec:ipc_sysv_generic}
+
+La principale caratteristica del \textit{SysV IPC} è quella di essere basato
+su oggetti permanenti che risiedono nel kernel. Questi, a differenza di quanto
+avviene per i file descriptor, non mantengono un contatore dei riferimenti, e
+non vengono cancellati dal sistema una volta che non sono più in uso.
+
+Questo comporta due problemi: il primo è che, al contrario di quanto avviene
+per pipe e fifo, la memoria allocata per questi oggetti non viene rilasciata
+automaticamente quando non c'è più nessuno che li utilizzi, ed essi devono
+essere cancellati esplicitamente, se non si vuole che restino attivi fino al
+riavvio del sistema. Il secondo problema è che, dato che non c'è, come per i
+file, un contatore del numero di riferimenti che ne indichi l'essere in uso,
+essi possono essere cancellati anche se ci sono dei processi che li stanno
+utilizzando, con tutte le conseguenze (negative) del caso.
+
+Un'ulteriore caratteristica negativa è che gli oggetti usati nel \textit{SysV
+  IPC} vengono creati direttamente dal kernel, e sono accessibili solo
+specificando il relativo \textsl{identificatore}. Questo è un numero
+progressivo (un po' come il \acr{pid} dei processi) che il kernel assegna a
+ciascuno di essi quanto vengono creati (sul procedimento di assegnazione
+torneremo in sez.~\ref{sec:ipc_sysv_id_use}). L'identificatore viene restituito
+dalle funzioni che creano l'oggetto, ed è quindi locale al processo che le ha
+eseguite. Dato che l'identificatore viene assegnato dinamicamente dal kernel
+non è possibile prevedere quale sarà, né utilizzare un qualche valore statico,
+si pone perciò il problema di come processi diversi possono accedere allo
+stesso oggetto.
+
+Per risolvere il problema nella struttura \struct{ipc\_perm} che il kernel
+associa a ciascun oggetto, viene mantenuto anche un campo apposito che
+contiene anche una \textsl{chiave}, identificata da una variabile del tipo
+primitivo \type{key\_t}, da specificare in fase di creazione dell'oggetto, e
+tramite la quale è possibile ricavare l'identificatore.\footnote{in sostanza
+  si sposta il problema dell'accesso dalla classificazione in base
+  all'identificatore alla classificazione in base alla chiave, una delle tante
+  complicazioni inutili presenti nel \textit{SysV IPC}.} Oltre la chiave, la
+struttura, la cui definizione è riportata in fig.~\ref{fig:ipc_ipc_perm},
+mantiene varie proprietà ed informazioni associate all'oggetto.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/ipc_perm.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{ipc\_perm}, come definita in
+    \file{sys/ipc.h}.}
+  \label{fig:ipc_ipc_perm}
+\end{figure}
+
+Usando la stessa chiave due processi diversi possono ricavare l'identificatore
+associato ad un oggetto ed accedervi. Il problema che sorge a questo punto è
+come devono fare per accordarsi sull'uso di una stessa chiave. Se i processi
+sono \textsl{imparentati} la soluzione è relativamente semplice, in tal caso
+infatti si può usare il valore speciale \texttt{IPC\_PRIVATE} per creare un
+nuovo oggetto nel processo padre, l'identificatore così ottenuto sarà
+disponibile in tutti i figli, e potrà essere passato come argomento attraverso
+una \func{exec}.
+
+Però quando i processi non sono \textsl{imparentati} (come capita tutte le
+volte che si ha a che fare con un sistema client-server) tutto questo non è
+possibile; si potrebbe comunque salvare l'identificatore su un file noto, ma
+questo ovviamente comporta lo svantaggio di doverselo andare a rileggere.  Una
+alternativa più efficace è quella che i programmi usino un valore comune per
+la chiave (che ad esempio può essere dichiarato in un header comune), ma c'è
+sempre il rischio che questa chiave possa essere stata già utilizzata da
+qualcun altro.  Dato che non esiste una convenzione su come assegnare queste
+chiavi in maniera univoca l'interfaccia mette a disposizione una funzione
+apposita, \funcd{ftok}, che permette di ottenere una chiave specificando il
+nome di un file ed un numero di versione; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  
+  \funcdecl{key\_t ftok(const char *pathname, int proj\_id)}
+  
+  Restituisce una chiave per identificare un oggetto del \textit{SysV IPC}.
+  
+  \bodydesc{La funzione restituisce la chiave in caso di successo e -1
+    altrimenti, nel qual caso \var{errno} sarà uno dei possibili codici di
+    errore di \func{stat}.}
+\end{functions}
+
+La funzione determina un valore della chiave sulla base di \param{pathname},
+che deve specificare il \itindex{pathname} \textit{pathname} di un file
+effettivamente esistente e di un numero di progetto \param{proj\_id)}, che di
+norma viene specificato come carattere, dato che ne vengono utilizzati solo
+gli 8 bit meno significativi.\footnote{nelle libc4 e libc5, come avviene in
+  SunOS, l'argomento \param{proj\_id} è dichiarato tipo \ctyp{char}, le
+  \acr{glibc} usano il prototipo specificato da XPG4, ma vengono lo stesso
+  utilizzati gli 8 bit meno significativi.}
+
+Il problema è che anche così non c'è la sicurezza che il valore della chiave
+sia univoco, infatti esso è costruito combinando il byte di \param{proj\_id)}
+con i 16 bit meno significativi \index{inode} dell'inode del file
+\param{pathname} (che vengono ottenuti attraverso \func{stat}, da cui derivano
+i possibili errori), e gli 8 bit meno significativi del numero del dispositivo
+su cui è il file.  Diventa perciò relativamente facile ottenere delle
+collisioni, specie se i file sono su dispositivi con lo stesso
+\itindex{minor~number} \textit{minor number}, come \file{/dev/hda1} e
+\file{/dev/sda1}.
+
+In genere quello che si fa è utilizzare un file comune usato dai programmi che
+devono comunicare (ad esempio un header comune, o uno dei programmi che devono
+usare l'oggetto in questione), utilizzando il numero di progetto per ottenere
+le chiavi che interessano. In ogni caso occorre sempre controllare, prima di
+creare un oggetto, che la chiave non sia già stata utilizzata. Se questo va
+bene in fase di creazione, le cose possono complicarsi per i programmi che
+devono solo accedere, in quanto, a parte gli eventuali controlli sugli altri
+attributi di \struct{ipc\_perm}, non esiste una modalità semplice per essere
+sicuri che l'oggetto associato ad una certa chiave sia stato effettivamente
+creato da chi ci si aspetta.
+
+Questo è, insieme al fatto che gli oggetti sono permanenti e non mantengono un
+contatore di riferimenti per la cancellazione automatica, il principale
+problema del \textit{SysV IPC}. Non esiste infatti una modalità chiara per
+identificare un oggetto, come sarebbe stato se lo si fosse associato ad in
+file, e tutta l'interfaccia è inutilmente complessa.  Per questo ne è stata
+effettuata una revisione completa nello standard POSIX.1b, che tratteremo in
+sez.~\ref{sec:ipc_posix}.
+
+
+\subsection{Il controllo di accesso}
+\label{sec:ipc_sysv_access_control}
+
+Oltre alle chiavi, abbiamo visto che ad ogni oggetto sono associate in
+\struct{ipc\_perm} ulteriori informazioni, come gli identificatori del creatore
+(nei campi \var{cuid} e \var{cgid}) e del proprietario (nei campi \var{uid} e
+\var{gid}) dello stesso, e un insieme di permessi (nel campo \var{mode}). In
+questo modo è possibile definire un controllo di accesso sugli oggetti di IPC,
+simile a quello che si ha per i file (vedi sez.~\ref{sec:file_perm_overview}).
+
+Benché questo controllo di accesso sia molto simile a quello dei file, restano
+delle importanti differenze. La prima è che il permesso di esecuzione non
+esiste (e se specificato viene ignorato), per cui si può parlare solo di
+permessi di lettura e scrittura (nel caso dei semafori poi quest'ultimo è più
+propriamente un permesso di modifica). I valori di \var{mode} sono gli stessi
+ed hanno lo stesso significato di quelli riportati in
+tab.~\ref{tab:file_mode_flags}\footnote{se però si vogliono usare le costanti
+  simboliche ivi definite occorrerà includere il file \file{sys/stat.h},
+  alcuni sistemi definiscono le costanti \const{MSG\_R} (\texttt{0400}) e
+  \const{MSG\_W} (\texttt{0200}) per indicare i permessi base di lettura e
+  scrittura per il proprietario, da utilizzare, con gli opportuni shift, pure
+  per il gruppo e gli altri, in Linux, visto la loro scarsa utilità, queste
+  costanti non sono definite.} e come per i file definiscono gli accessi per
+il proprietario, il suo gruppo e tutti gli altri.
+
+Quando l'oggetto viene creato i campi \var{cuid} e \var{uid} di
+\struct{ipc\_perm} ed i campi \var{cgid} e \var{gid} vengono impostati
+rispettivamente al valore dell'user-ID e del group-ID effettivo del processo
+che ha chiamato la funzione, ma, mentre i campi \var{uid} e \var{gid} possono
+essere cambiati, i campi \var{cuid} e \var{cgid} restano sempre gli stessi.
+
+Il controllo di accesso è effettuato a due livelli. Il primo livello è nelle
+funzioni che richiedono l'identificatore di un oggetto data la chiave. Queste
+specificano tutte un argomento \param{flag}, in tal caso quando viene
+effettuata la ricerca di una chiave, qualora \param{flag} specifichi dei
+permessi, questi vengono controllati e l'identificatore viene restituito solo
+se corrispondono a quelli dell'oggetto. Se ci sono dei permessi non presenti
+in \var{mode} l'accesso sarà negato. Questo controllo però è di utilità
+indicativa, dato che è sempre possibile specificare per \param{flag} un valore
+nullo, nel qual caso l'identificatore sarà restituito comunque.
+
+Il secondo livello di controllo è quello delle varie funzioni che accedono
+direttamente (in lettura o scrittura) all'oggetto. In tal caso lo schema dei
+controlli è simile a quello dei file, ed avviene secondo questa sequenza:
+\begin{itemize*}
+\item se il processo ha i privilegi di amministratore l'accesso è sempre
+  consentito. 
+\item se l'user-ID effettivo del processo corrisponde o al valore del campo
+  \var{cuid} o a quello del campo \var{uid} ed il permesso per il proprietario
+  in \var{mode} è appropriato\footnote{per appropriato si intende che è
+    impostato il permesso di scrittura per le operazioni di scrittura e quello
+    di lettura per le operazioni di lettura.} l'accesso è consentito.
+\item se il group-ID effettivo del processo corrisponde o al
+  valore del campo \var{cgid} o a quello del campo \var{gid} ed il permesso
+  per il gruppo in \var{mode} è appropriato l'accesso è consentito.
+\item se il permesso per gli altri è appropriato l'accesso è consentito.
+\end{itemize*}
+solo se tutti i controlli elencati falliscono l'accesso è negato. Si noti che
+a differenza di quanto avviene per i permessi dei file, fallire in uno dei
+passi elencati non comporta il fallimento dell'accesso. Un'ulteriore
+differenza rispetto a quanto avviene per i file è che per gli oggetti di IPC
+il valore di \itindex{umask} \textit{umask} (si ricordi quanto esposto in
+sez.~\ref{sec:file_perm_management}) non ha alcun significato.
+
+
+\subsection{Gli identificatori ed il loro utilizzo}
+\label{sec:ipc_sysv_id_use}
+
+L'unico campo di \struct{ipc\_perm} del quale non abbiamo ancora parlato è
+\var{seq}, che in fig.~\ref{fig:ipc_ipc_perm} è qualificato con un criptico
+``\textsl{numero di sequenza}'', ne parliamo adesso dato che esso è
+strettamente attinente alle modalità con cui il kernel assegna gli
+identificatori degli oggetti del sistema di IPC.
+
+Quando il sistema si avvia, alla creazione di ogni nuovo oggetto di IPC viene
+assegnato un numero progressivo, pari al numero di oggetti di quel tipo
+esistenti. Se il comportamento fosse sempre questo sarebbe identico a quello
+usato nell'assegnazione dei file descriptor nei processi, ed i valori degli
+identificatori tenderebbero ad essere riutilizzati spesso e restare di piccole
+dimensioni (inferiori al numero massimo di oggetti disponibili).
+
+Questo va benissimo nel caso dei file descriptor, che sono locali ad un
+processo, ma qui il comportamento varrebbe per tutto il sistema, e per
+processi del tutto scorrelati fra loro. Così si potrebbero avere situazioni
+come quella in cui un server esce e cancella le sue code di messaggi, ed il
+relativo identificatore viene immediatamente assegnato a quelle di un altro
+server partito subito dopo, con la possibilità che i client del primo non
+facciano in tempo ad accorgersi dell'avvenuto, e finiscano con l'interagire
+con gli oggetti del secondo, con conseguenze imprevedibili.
+
+Proprio per evitare questo tipo di situazioni il sistema usa il valore di
+\var{seq} per provvedere un meccanismo che porti gli identificatori ad
+assumere tutti i valori possibili, rendendo molto più lungo il periodo in cui
+un identificatore può venire riutilizzato.
+
+Il sistema dispone sempre di un numero fisso di oggetti di IPC,\footnote{fino
+  al kernel 2.2.x questi valori, definiti dalle costanti \const{MSGMNI},
+  \const{SEMMNI} e \const{SHMMNI}, potevano essere cambiati (come tutti gli
+  altri limiti relativi al \textit{SysV IPC}) solo con una ricompilazione del
+  kernel, andando a modificarne la definizione nei relativi header file.  A
+  partire dal kernel 2.4.x è possibile cambiare questi valori a sistema attivo
+  scrivendo sui file \procrelfile{/proc/sys/kernel}{shmmni},
+  \procrelfile{/proc/sys/kernel}{msgmni} e \procrelfile{/proc/sys/kernel}{sem}
+  di \file{/proc/sys/kernel} o con l'uso di \func{sysctl}.} e per ciascuno di
+essi viene mantenuto in \var{seq} un numero di sequenza progressivo che viene
+incrementato di uno ogni volta che l'oggetto viene cancellato. Quando
+l'oggetto viene creato usando uno spazio che era già stato utilizzato in
+precedenza per restituire l'identificatore al numero di oggetti presenti viene
+sommato il valore di \var{seq} moltiplicato per il numero massimo di oggetti
+di quel tipo,\footnote{questo vale fino ai kernel della serie 2.2.x, dalla
+  serie 2.4.x viene usato lo stesso fattore per tutti gli oggetti, esso è dato
+  dalla costante \const{IPCMNI}, definita in \file{include/linux/ipc.h}, che
+  indica il limite massimo per il numero di tutti oggetti di IPC, ed il cui
+  valore è 32768.}  si evita così il riutilizzo degli stessi numeri, e si fa
+sì che l'identificatore assuma tutti i valori possibili.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/IPCTestId.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del programma di test per l'assegnazione degli
+    identificatori degli oggetti di IPC \file{IPCTestId.c}.}
+  \label{fig:ipc_sysv_idtest}
+\end{figure}
+
+In fig.~\ref{fig:ipc_sysv_idtest} è riportato il codice di un semplice
+programma di test che si limita a creare un oggetto (specificato a riga di
+comando), stamparne il numero di identificatore e cancellarlo per un numero
+specificato di volte. Al solito non si è riportato il codice della gestione
+delle opzioni a riga di comando, che permette di specificare quante volte
+effettuare il ciclo \var{n}, e su quale tipo di oggetto eseguirlo.
+
+La figura non riporta il codice di selezione delle opzioni, che permette di
+inizializzare i valori delle variabili \var{type} al tipo di oggetto voluto, e
+\var{n} al numero di volte che si vuole effettuare il ciclo di creazione,
+stampa, cancellazione. I valori di default sono per l'uso delle code di
+messaggi e un ciclo di 5 volte. Se si lancia il comando si otterrà qualcosa
+del tipo:
+\begin{Verbatim}
+piccardi@gont sources]$ ./ipctestid
+Identifier Value 0 
+Identifier Value 32768 
+Identifier Value 65536 
+Identifier Value 98304 
+Identifier Value 131072 
+\end{Verbatim}
+%$
+il che ci mostra che abbiamo un kernel della serie 2.4.x nel quale non avevamo
+ancora usato nessuna coda di messaggi. Se ripetiamo il comando otterremo
+ancora:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./ipctestid
+Identifier Value 163840 
+Identifier Value 196608 
+Identifier Value 229376 
+Identifier Value 262144 
+Identifier Value 294912 
+\end{Verbatim}
+%$
+che ci mostra come il valore di \var{seq} sia in effetti una quantità
+mantenuta staticamente all'interno del sistema.
+
 
 \subsection{Code di messaggi}
-\label{sec:ipc_messque}
+\label{sec:ipc_sysv_mq}
+
+Il primo oggetto introdotto dal \textit{SysV IPC} è quello delle code di
+messaggi.  Le code di messaggi sono oggetti analoghi alle pipe o alle fifo,
+anche se la loro struttura è diversa, ed il loro scopo principale è appunto
+quello di permettere a processi diversi di scambiarsi dei dati.
+
+La funzione che permette di richiedere al sistema l'identificatore di una coda
+di messaggi esistente (o di crearne una se questa non esiste) è
+\funcd{msgget}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+  
+  \funcdecl{int msgget(key\_t key, int flag)}
+  
+  Restituisce l'identificatore di una coda di messaggi.
+  
+  \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
+    in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EACCES}] il processo chiamante non ha i privilegi per accedere
+  alla coda richiesta.  
+  \item[\errcode{EEXIST}] si è richiesta la creazione di una coda che già
+  esiste, ma erano specificati sia \const{IPC\_CREAT} che \const{IPC\_EXCL}. 
+  \item[\errcode{EIDRM}] la coda richiesta è marcata per essere cancellata.
+  \item[\errcode{ENOENT}] si è cercato di ottenere l'identificatore di una coda
+    di messaggi specificando una chiave che non esiste e \const{IPC\_CREAT}
+    non era specificato.
+  \item[\errcode{ENOSPC}] si è cercato di creare una coda di messaggi quando è
+    stato superato il limite massimo di code (\const{MSGMNI}).
+  \end{errlist}
+  ed inoltre \errval{ENOMEM}.
+}
+\end{functions}
+
+Le funzione (come le analoghe che si usano per gli altri oggetti) serve sia a
+ottenere l'identificatore di una coda di messaggi esistente, che a crearne una
+nuova. L'argomento \param{key} specifica la chiave che è associata
+all'oggetto, eccetto il caso in cui si specifichi il valore
+\const{IPC\_PRIVATE}, nel qual caso la coda è creata ex-novo e non vi è
+associata alcuna chiave, il processo (ed i suoi eventuali figli) potranno
+farvi riferimento solo attraverso l'identificatore.
+
+Se invece si specifica un valore diverso da \const{IPC\_PRIVATE}\footnote{in
+  Linux questo significa un valore diverso da zero.} l'effetto della funzione
+dipende dal valore di \param{flag}, se questo è nullo la funzione si limita ad
+effettuare una ricerca sugli oggetti esistenti, restituendo l'identificatore
+se trova una corrispondenza, o fallendo con un errore di \errcode{ENOENT} se
+non esiste o di \errcode{EACCES} se si sono specificati dei permessi non
+validi.
+
+Se invece si vuole creare una nuova coda di messaggi \param{flag} non può
+essere nullo e deve essere fornito come maschera binaria, impostando il bit
+corrispondente al valore \const{IPC\_CREAT}. In questo caso i nove bit meno
+significativi di \param{flag} saranno usati come permessi per il nuovo
+oggetto, secondo quanto illustrato in sez.~\ref{sec:ipc_sysv_access_control}.
+Se si imposta anche il bit corrispondente a \const{IPC\_EXCL} la funzione avrà
+successo solo se l'oggetto non esiste già, fallendo con un errore di
+\errcode{EEXIST} altrimenti.
+
+Si tenga conto che l'uso di \const{IPC\_PRIVATE} non impedisce ad altri
+processi di accedere alla coda (se hanno privilegi sufficienti) una volta che
+questi possano indovinare o ricavare (ad esempio per tentativi)
+l'identificatore ad essa associato. Per come sono implementati gli oggetti di
+IPC infatti non esiste una maniera che  garantisca l'accesso esclusivo ad una
+coda di messaggi.  Usare \const{IPC\_PRIVATE} o const{IPC\_CREAT} e
+\const{IPC\_EXCL} per \param{flag} comporta solo la creazione di una nuova
+coda.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|r|l|l|}
+    \hline
+    \textbf{Costante} & \textbf{Valore} & \textbf{File in \texttt{proc}}
+    & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{MSGMNI}&   16& \file{msgmni} & Numero massimo di code di
+                                          messaggi.\\
+    \const{MSGMAX}& 8192& \file{msgmax} & Dimensione massima di un singolo
+                                          messaggio.\\
+    \const{MSGMNB}&16384& \file{msgmnb} & Dimensione massima del contenuto di 
+                                          una coda.\\
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti associate ai limiti delle code di messaggi.}
+  \label{tab:ipc_msg_limits}
+\end{table}
+
+Le code di messaggi sono caratterizzate da tre limiti fondamentali, definiti
+negli header e corrispondenti alle prime tre costanti riportate in
+tab.~\ref{tab:ipc_msg_limits}, come accennato però in Linux è possibile
+modificare questi limiti attraverso l'uso di \func{sysctl} o scrivendo nei
+file \procrelfile{/proc/sys/kernel}{msgmax},
+\procrelfile{/proc/sys/kernel}{msgmnb} e
+\procrelfile{/proc/sys/kernel}{msgmni} di \file{/proc/sys/kernel/}.
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=13cm]{img/mqstruct}
+  \caption{Schema della struttura di una coda messaggi.}
+  \label{fig:ipc_mq_schema}
+\end{figure}
+
+
+Una coda di messaggi è costituita da una \itindex{linked~list} \textit{linked
+  list};\footnote{una \itindex{linked~list} \textit{linked list} è una tipica
+  struttura di dati, organizzati in una lista in cui ciascun elemento contiene
+  un puntatore al successivo. In questo modo la struttura è veloce
+  nell'estrazione ed immissione dei dati dalle estremità dalla lista (basta
+  aggiungere un elemento in testa o in coda ed aggiornare un puntatore), e
+  relativamente veloce da attraversare in ordine sequenziale (seguendo i
+  puntatori), è invece relativamente lenta nell'accesso casuale e nella
+  ricerca.}  i nuovi messaggi vengono inseriti in coda alla lista e vengono
+letti dalla cima, in fig.~\ref{fig:ipc_mq_schema} si è riportato lo schema con
+cui queste strutture vengono mantenute dal kernel.\footnote{lo schema
+  illustrato in fig.~\ref{fig:ipc_mq_schema} è in realtà una semplificazione
+  di quello usato effettivamente fino ai kernel della serie 2.2.x, nei kernel
+  della serie 2.4.x la gestione delle code di messaggi è stata modificata ed è
+  effettuata in maniera diversa; abbiamo mantenuto lo schema precedente in
+  quanto illustra comunque in maniera più che adeguata i principi di
+  funzionamento delle code di messaggi.}
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/msqid_ds.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{msqid\_ds}, associata a ciascuna coda di
+    messaggi.}
+  \label{fig:ipc_msqid_ds}
+\end{figure}
+
+A ciascuna coda è associata una struttura \struct{msgid\_ds}, la cui
+definizione, è riportata in fig.~\ref{fig:ipc_msqid_ds}. In questa struttura il
+kernel mantiene le principali informazioni riguardo lo stato corrente della
+coda.\footnote{come accennato questo vale fino ai kernel della serie 2.2.x,
+  essa viene usata nei kernel della serie 2.4.x solo per compatibilità in
+  quanto è quella restituita dalle funzioni dell'interfaccia.  Si noti come ci
+  sia una differenza con i campi mostrati nello schema di
+  fig.~\ref{fig:ipc_mq_schema} che sono presi dalla definizione di
+  \file{linux/msg.h}, e fanno riferimento alla definizione della omonima
+  struttura usata nel kernel.} In fig.~\ref{fig:ipc_msqid_ds} sono elencati i
+campi significativi definiti in \file{sys/msg.h}, a cui si sono aggiunti gli
+ultimi tre campi che sono previsti dalla implementazione originale di System
+V, ma non dallo standard Unix98.
+
+Quando si crea una nuova coda con \func{msgget} questa struttura viene
+inizializzata, in particolare il campo \var{msg\_perm} viene inizializzato
+come illustrato in sez.~\ref{sec:ipc_sysv_access_control}, per quanto riguarda
+gli altri campi invece:
+\begin{itemize*}
+\item il campo \var{msg\_qnum}, che esprime il numero di messaggi presenti
+  sulla coda, viene inizializzato a 0.
+\item i campi \var{msg\_lspid} e \var{msg\_lrpid}, che esprimono
+  rispettivamente il \acr{pid} dell'ultimo processo che ha inviato o ricevuto
+  un messaggio sulla coda, sono inizializzati a 0.
+\item i campi \var{msg\_stime} e \var{msg\_rtime}, che esprimono
+  rispettivamente il tempo in cui è stato inviato o ricevuto l'ultimo
+  messaggio sulla coda, sono inizializzati a 0.
+\item il campo \var{msg\_ctime}, che esprime il tempo di creazione della coda,
+  viene inizializzato al tempo corrente.
+\item il campo \var{msg\_qbytes} che esprime la dimensione massima del
+  contenuto della coda (in byte) viene inizializzato al valore preimpostato
+  del sistema (\const{MSGMNB}).
+\item i campi \var{msg\_first} e \var{msg\_last} che esprimono l'indirizzo del
+  primo e ultimo messaggio sono inizializzati a \val{NULL} e
+  \var{msg\_cbytes}, che esprime la dimensione in byte dei messaggi presenti è
+  inizializzato a zero. Questi campi sono ad uso interno dell'implementazione
+  e non devono essere utilizzati da programmi in user space).
+\end{itemize*}
+
+Una volta creata una coda di messaggi le operazioni di controllo vengono
+effettuate con la funzione \funcd{msgctl}, che (come le analoghe \func{semctl}
+e \func{shmctl}) fa le veci di quello che \func{ioctl} è per i file; il suo
+prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+  
+  \funcdecl{int msgctl(int msqid, int cmd, struct msqid\_ds *buf)}
+  
+  Esegue l'operazione specificata da \param{cmd} sulla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo o $-1$ in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EACCES}] si è richiesto \const{IPC\_STAT} ma processo
+    chiamante non ha i privilegi di lettura sulla coda.
+  \item[\errcode{EIDRM}] la coda richiesta è stata cancellata.
+  \item[\errcode{EPERM}] si è richiesto \const{IPC\_SET} o \const{IPC\_RMID} ma
+    il processo non ha i privilegi, o si è richiesto di aumentare il valore di
+    \var{msg\_qbytes} oltre il limite \const{MSGMNB} senza essere
+    amministratore.
+  \end{errlist}
+  ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
+}
+\end{functions}
+
+La funzione permette di accedere ai valori della struttura \struct{msqid\_ds},
+mantenuta all'indirizzo \param{buf}, per la coda specificata
+dall'identificatore \param{msqid}. Il comportamento della funzione dipende dal
+valore dell'argomento \param{cmd}, che specifica il tipo di azione da
+eseguire; i valori possibili sono:
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\const{IPC\_STAT}] Legge le informazioni riguardo la coda nella
+  struttura indicata da \param{buf}. Occorre avere il permesso di lettura
+  sulla coda.
+\item[\const{IPC\_RMID}] Rimuove la coda, cancellando tutti i dati, con
+  effetto immediato. Tutti i processi che cercheranno di accedere alla coda
+  riceveranno un errore di \errcode{EIDRM}, e tutti processi in attesa su
+  funzioni di lettura o di scrittura sulla coda saranno svegliati ricevendo
+  il medesimo errore. Questo comando può essere eseguito solo da un processo
+  con user-ID effettivo corrispondente al creatore o al proprietario della
+  coda, o all'amministratore.
+\item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
+  della coda, ed il limite massimo sulle dimensioni del totale dei messaggi in
+  essa contenuti (\var{msg\_qbytes}). I valori devono essere passati in una
+  struttura \struct{msqid\_ds} puntata da \param{buf}.  Per modificare i valori
+  di \var{msg\_perm.mode}, \var{msg\_perm.uid} e \var{msg\_perm.gid} occorre
+  essere il proprietario o il creatore della coda, oppure l'amministratore; lo
+  stesso vale per \var{msg\_qbytes}, ma l'amministratore ha la facoltà di
+  incrementarne il valore a limiti superiori a \const{MSGMNB}.
+\end{basedescript}
+
+
+Una volta che si abbia a disposizione l'identificatore, per inviare un
+messaggio su una coda si utilizza la funzione \funcd{msgsnd}; il suo prototipo
+è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+  
+  \funcdecl{int msgsnd(int msqid, struct msgbuf *msgp, size\_t msgsz, int
+    msgflg)} 
+
+  Invia un messaggio sulla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce 0, e $-1$ in caso di errore, nel qual caso
+    \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EACCES}] non si hanno i privilegi di accesso sulla coda.
+  \item[\errcode{EIDRM}] la coda è stata cancellata.
+  \item[\errcode{EAGAIN}] il messaggio non può essere inviato perché si è
+  superato il limite \var{msg\_qbytes} sul numero massimo di byte presenti
+  sulla coda, e si è richiesto \const{IPC\_NOWAIT} in \param{flag}.
+  \item[\errcode{EINVAL}] si è specificato un \param{msgid} invalido, o un
+    valore non positivo per \param{mtype}, o un valore di \param{msgsz}
+    maggiore di \const{MSGMAX}.
+  \end{errlist}
+  ed inoltre \errval{EFAULT}, \errval{EINTR} ed \errval{ENOMEM}.  }
+\end{functions}
+
+La funzione inserisce il messaggio sulla coda specificata da \param{msqid}; il
+messaggio ha lunghezza specificata da \param{msgsz} ed è passato attraverso il
+l'argomento \param{msgp}.  Quest'ultimo deve venire passato sempre come
+puntatore ad una struttura \struct{msgbuf} analoga a quella riportata in
+fig.~\ref{fig:ipc_msbuf} che è quella che deve contenere effettivamente il
+messaggio.  La dimensione massima per il testo di un messaggio non può
+comunque superare il limite \const{MSGMAX}.
+
+La struttura di fig.~\ref{fig:ipc_msbuf} è comunque solo un modello, tanto che
+la definizione contenuta in \file{sys/msg.h} usa esplicitamente per il secondo
+campo il valore \code{mtext[1]}, che non è di nessuna utilità ai fini pratici.
+La sola cosa che conta è che la struttura abbia come primo membro un campo
+\var{mtype} come nell'esempio; esso infatti serve ad identificare il tipo di
+messaggio e deve essere sempre specificato come intero positivo di tipo
+\ctyp{long}.  Il campo \var{mtext} invece può essere di qualsiasi tipo e
+dimensione, e serve a contenere il testo del messaggio.
+
+In generale pertanto per inviare un messaggio con \func{msgsnd} si usa
+ridefinire una struttura simile a quella di fig.~\ref{fig:ipc_msbuf}, adattando
+alle proprie esigenze il campo \var{mtype}, (o ridefinendo come si vuole il
+corpo del messaggio, anche con più campi o con strutture più complesse) avendo
+però la cura di mantenere nel primo campo un valore di tipo \ctyp{long} che ne
+indica il tipo.
+
+Si tenga presente che la lunghezza che deve essere indicata in questo
+argomento è solo quella del messaggio, non quella di tutta la struttura, se
+cioè \var{message} è una propria struttura che si passa alla funzione,
+\param{msgsz} dovrà essere uguale a \code{sizeof(message)-sizeof(long)}, (se
+consideriamo il caso dell'esempio in fig.~\ref{fig:ipc_msbuf}, \param{msgsz}
+dovrà essere pari a \const{LENGTH}).
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/msgbuf.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{Schema della struttura \structd{msgbuf}, da utilizzare come
+    argomento per inviare/ricevere messaggi.}
+  \label{fig:ipc_msbuf}
+\end{figure}
+
+Per capire meglio il funzionamento della funzione riprendiamo in
+considerazione la struttura della coda illustrata in
+fig.~\ref{fig:ipc_mq_schema}. Alla chiamata di \func{msgsnd} il nuovo messaggio
+sarà aggiunto in fondo alla lista inserendo una nuova struttura \struct{msg},
+il puntatore \var{msg\_last} di \struct{msqid\_ds} verrà aggiornato, come pure
+il puntatore al messaggio successivo per quello che era il precedente ultimo
+messaggio; il valore di \var{mtype} verrà mantenuto in \var{msg\_type} ed il
+valore di \param{msgsz} in \var{msg\_ts}; il testo del messaggio sarà copiato
+all'indirizzo specificato da \var{msg\_spot}.
+
+Il valore dell'argomento \param{flag} permette di specificare il comportamento
+della funzione. Di norma, quando si specifica un valore nullo, la funzione
+ritorna immediatamente a meno che si sia ecceduto il valore di
+\var{msg\_qbytes}, o il limite di sistema sul numero di messaggi, nel qual
+caso si blocca mandando il processo in stato di \textit{sleep}.  Se si
+specifica per \param{flag} il valore \const{IPC\_NOWAIT} la funzione opera in
+modalità non bloccante, ed in questi casi ritorna immediatamente con un errore
+di \errcode{EAGAIN}.
+
+Se non si specifica \const{IPC\_NOWAIT} la funzione resterà bloccata fintanto
+che non si liberano risorse sufficienti per poter inserire nella coda il
+messaggio, nel qual caso ritornerà normalmente. La funzione può ritornare, con
+una condizione di errore anche in due altri casi: quando la coda viene rimossa
+(nel qual caso si ha un errore di \errcode{EIDRM}) o quando la funzione viene
+interrotta da un segnale (nel qual caso si ha un errore di \errcode{EINTR}).
+
+Una volta completato con successo l'invio del messaggio sulla coda, la
+funzione aggiorna i dati mantenuti in \struct{msqid\_ds}, in particolare
+vengono modificati:
+\begin{itemize*}
+\item Il valore di \var{msg\_lspid}, che viene impostato al \acr{pid} del
+  processo chiamante.
+\item Il valore di \var{msg\_qnum}, che viene incrementato di uno.
+\item Il valore \var{msg\_stime}, che viene impostato al tempo corrente.
+\end{itemize*}
+
+La funzione che viene utilizzata per estrarre un messaggio da una coda è
+\funcd{msgrcv}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+
+  \funcdecl{ssize\_t msgrcv(int msqid, struct msgbuf *msgp, size\_t msgsz,
+    long msgtyp, int msgflg)}
+  
+  Legge un messaggio dalla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce il numero di byte letti in caso di
+    successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà uno
+    dei valori:
+  \begin{errlist}
+  \item[\errcode{EACCES}] non si hanno i privilegi di accesso sulla coda.
+  \item[\errcode{EIDRM}] la coda è stata cancellata.
+  \item[\errcode{E2BIG}] il testo del messaggio è più lungo di \param{msgsz} e
+    non si è specificato \const{MSG\_NOERROR} in \param{msgflg}.
+  \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale mentre
+    era in attesa di ricevere un messaggio.
+  \item[\errcode{EINVAL}] si è specificato un \param{msgid} invalido o un
+    valore di \param{msgsz} negativo.
+  \end{errlist}
+  ed inoltre \errval{EFAULT}.
+}
+\end{functions}
+
+La funzione legge un messaggio dalla coda specificata, scrivendolo sulla
+struttura puntata da \param{msgp}, che dovrà avere un formato analogo a quello
+di fig.~\ref{fig:ipc_msbuf}.  Una volta estratto, il messaggio sarà rimosso
+dalla coda.  L'argomento \param{msgsz} indica la lunghezza massima del testo
+del messaggio (equivalente al valore del parametro \const{LENGTH} nell'esempio
+di fig.~\ref{fig:ipc_msbuf}).
+
+Se il testo del messaggio ha lunghezza inferiore a \param{msgsz} esso viene
+rimosso dalla coda; in caso contrario, se \param{msgflg} è impostato a
+\const{MSG\_NOERROR}, il messaggio viene troncato e la parte in eccesso viene
+perduta, altrimenti il messaggio non viene estratto e la funzione ritorna con
+un errore di \errcode{E2BIG}.
+
+L'argomento \param{msgtyp} permette di restringere la ricerca ad un
+sottoinsieme dei messaggi presenti sulla coda; la ricerca infatti è fatta con
+una scansione della struttura mostrata in fig.~\ref{fig:ipc_mq_schema},
+restituendo il primo messaggio incontrato che corrisponde ai criteri
+specificati (che quindi, visto come i messaggi vengono sempre inseriti dalla
+coda, è quello meno recente); in particolare:
+\begin{itemize}
+\item se \param{msgtyp} è 0 viene estratto il messaggio in cima alla coda, cioè
+  quello fra i presenti che è stato inserito per primo. 
+\item se \param{msgtyp} è positivo viene estratto il primo messaggio il cui
+  tipo (il valore del campo \var{mtype}) corrisponde al valore di
+  \param{msgtyp}.
+\item se \param{msgtyp} è negativo viene estratto il primo fra i messaggi con
+  il valore più basso del tipo, fra tutti quelli il cui tipo ha un valore
+  inferiore al valore assoluto di \param{msgtyp}.
+\end{itemize}
+
+Il valore di \param{msgflg} permette di controllare il comportamento della
+funzione, esso può essere nullo o una maschera binaria composta da uno o più
+valori.  Oltre al precedente \const{MSG\_NOERROR}, sono possibili altri due
+valori: \const{MSG\_EXCEPT}, che permette, quando \param{msgtyp} è positivo,
+di leggere il primo messaggio nella coda con tipo diverso da \param{msgtyp}, e
+\const{IPC\_NOWAIT} che causa il ritorno immediato della funzione quando non
+ci sono messaggi sulla coda.
+
+Il comportamento usuale della funzione infatti, se non ci sono messaggi
+disponibili per la lettura, è di bloccare il processo in stato di
+\textit{sleep}. Nel caso però si sia specificato \const{IPC\_NOWAIT} la
+funzione ritorna immediatamente con un errore \errcode{ENOMSG}. Altrimenti la
+funzione ritorna normalmente non appena viene inserito un messaggio del tipo
+desiderato, oppure ritorna con errore qualora la coda sia rimossa (con
+\var{errno} impostata a \errcode{EIDRM}) o se il processo viene interrotto da
+un segnale (con \var{errno} impostata a \errcode{EINTR}).
+
+Una volta completata con successo l'estrazione del messaggio dalla coda, la
+funzione aggiorna i dati mantenuti in \struct{msqid\_ds}, in particolare
+vengono modificati:
+\begin{itemize*}
+\item Il valore di \var{msg\_lrpid}, che viene impostato al \acr{pid} del
+  processo chiamante.
+\item Il valore di \var{msg\_qnum}, che viene decrementato di uno.
+\item Il valore \var{msg\_rtime}, che viene impostato al tempo corrente.
+\end{itemize*}
+
+Le code di messaggi presentano il solito problema di tutti gli oggetti del
+SysV IPC; essendo questi permanenti restano nel sistema occupando risorse
+anche quando un processo è terminato, al contrario delle pipe per le quali
+tutte le risorse occupate vengono rilasciate quanto l'ultimo processo che le
+utilizzava termina. Questo comporta che in caso di errori si può saturare il
+sistema, e che devono comunque essere esplicitamente previste delle funzioni
+di rimozione in caso di interruzioni o uscite dal programma (come vedremo in
+fig.~\ref{fig:ipc_mq_fortune_server}).
+
+L'altro problema è non facendo uso di file descriptor le tecniche di
+\textit{I/O multiplexing} descritte in sez.~\ref{sec:file_multiplexing} non
+possono essere utilizzate, e non si ha a disposizione niente di analogo alle
+funzioni \func{select} e \func{poll}. Questo rende molto scomodo usare più di
+una di queste strutture alla volta; ad esempio non si può scrivere un server
+che aspetti un messaggio su più di una coda senza fare ricorso ad una tecnica
+di \itindex{polling} \textit{polling} che esegua un ciclo di attesa su
+ciascuna di esse.
+
+Come esempio dell'uso delle code di messaggi possiamo riscrivere il nostro
+server di \textit{fortunes} usando queste al posto delle fifo. In questo caso
+useremo una sola coda di messaggi, usando il tipo di messaggio per comunicare
+in maniera indipendente con client diversi.
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/MQFortuneServer.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del server di \textit{fortunes}
+    basato sulle \textit{message queue}.}
+  \label{fig:ipc_mq_fortune_server}
+\end{figure}
+
+In fig.~\ref{fig:ipc_mq_fortune_server} si è riportato un estratto delle parti
+principali del codice del nuovo server (il codice completo è nel file
+\file{MQFortuneServer.c} nei sorgenti allegati). Il programma è basato su un
+uso accorto della caratteristica di poter associate un ``tipo'' ai messaggi
+per permettere una comunicazione indipendente fra il server ed i vari client,
+usando il \acr{pid} di questi ultimi come identificativo. Questo è possibile
+in quanto, al contrario di una fifo, la lettura di una coda di messaggi può
+non essere sequenziale, proprio grazie alla classificazione dei messaggi sulla
+base del loro tipo.
+
+Il programma, oltre alle solite variabili per il nome del file da cui leggere
+le \textit{fortunes} e per il vettore di stringhe che contiene le frasi,
+definisce due strutture appositamente per la comunicazione; con
+\var{msgbuf\_read} (\texttt{\small 8--11}) vengono passate le richieste mentre
+con \var{msgbuf\_write} (\texttt{\small 12--15}) vengono restituite le frasi.
+
+La gestione delle opzioni si è al solito omessa, essa si curerà di impostare
+in \var{n} il numero di frasi da leggere specificato a linea di comando ed in
+\var{fortunefilename} il file da cui leggerle; dopo aver installato
+(\texttt{\small 19--21}) i gestori dei segnali per trattare l'uscita dal
+server, viene prima controllato (\texttt{\small 22}) il numero di frasi
+richieste abbia senso (cioè sia maggiore di zero), le quali poi
+(\texttt{\small 23}) vengono lette nel vettore in memoria con la stessa
+funzione \code{FortuneParse} usata anche per il server basato sulle fifo.
+
+Una volta inizializzato il vettore di stringhe coi messaggi presi dal file
+delle \textit{fortune} si procede (\texttt{\small 25}) con la generazione di
+una chiave per identificare la coda di messaggi (si usa il nome del file dei
+sorgenti del server) con la quale poi si esegue (\texttt{\small 26}) la
+creazione della stessa (si noti come si sia chiamata \func{msgget} con un
+valore opportuno per l'argomento \param{flag}), avendo cura di abortire il
+programma (\texttt{\small 27--29}) in caso di errore.
+
+Finita la fase di inizializzazione il server prima (\texttt{\small 32}) chiama
+la funzione \func{daemon} per andare in background e poi esegue in permanenza
+il ciclo principale (\texttt{\small 33--40}). Questo inizia (\texttt{\small
+  34}) con il porsi in attesa di un messaggio di richiesta da parte di un
+client; si noti infatti come \func{msgrcv} richieda un messaggio con
+\var{mtype} uguale a 1: questo è il valore usato per le richieste dato che
+corrisponde al \acr{pid} di \cmd{init}, che non può essere un client. L'uso
+del flag \const{MSG\_NOERROR} è solo per sicurezza, dato che i messaggi di
+richiesta sono di dimensione fissa (e contengono solo il \acr{pid} del
+client).
+
+Se non sono presenti messaggi di richiesta \func{msgrcv} si bloccherà,
+ritornando soltanto in corrispondenza dell'arrivo sulla coda di un messaggio
+di richiesta da parte di un client, in tal caso il ciclo prosegue
+(\texttt{\small 35}) selezionando una frase a caso, copiandola (\texttt{\small
+  36}) nella struttura \var{msgbuf\_write} usata per la risposta e
+calcolandone (\texttt{\small 37}) la dimensione.
+
+Per poter permettere a ciascun client di ricevere solo la risposta indirizzata
+a lui il tipo del messaggio in uscita viene inizializzato (\texttt{\small 38})
+al valore del \acr{pid} del client ricevuto nel messaggio di richiesta.
+L'ultimo passo del ciclo (\texttt{\small 39}) è inviare sulla coda il
+messaggio di risposta. Si tenga conto che se la coda è piena anche questa
+funzione potrà bloccarsi fintanto che non venga liberato dello spazio.
+
+Si noti che il programma può terminare solo grazie ad una interruzione da
+parte di un segnale; in tal caso verrà eseguito (\texttt{\small 45--48}) il
+gestore \code{HandSIGTERM}, che semplicemente si limita a cancellare la coda
+(\texttt{\small 46}) ed ad uscire (\texttt{\small 47}).
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/MQFortuneClient.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del client di \textit{fortunes}
+    basato sulle \textit{message queue}.}
+  \label{fig:ipc_mq_fortune_client}
+\end{figure}
+
+In fig.~\ref{fig:ipc_mq_fortune_client} si è riportato un estratto il codice
+del programma client.  Al solito il codice completo è con i sorgenti allegati,
+nel file \file{MQFortuneClient.c}.  Come sempre si sono rimosse le parti
+relative alla gestione delle opzioni, ed in questo caso, anche la
+dichiarazione delle variabili, che, per la parte relative alle strutture usate
+per la comunicazione tramite le code, sono le stesse viste in
+fig.~\ref{fig:ipc_mq_fortune_server}.
+
+Il client in questo caso è molto semplice; la prima parte del programma
+(\texttt{\small 4--9}) si occupa di accedere alla coda di messaggi, ed è
+identica a quanto visto per il server, solo che in questo caso \func{msgget}
+non viene chiamata con il flag di creazione in quanto la coda deve essere
+preesistente. In caso di errore (ad esempio se il server non è stato avviato)
+il programma termina immediatamente. 
+
+Una volta acquisito l'identificatore della coda il client compone il
+messaggio di richiesta (\texttt{\small 12--13}) in \var{msg\_read}, usando 1
+per il tipo ed inserendo il proprio \acr{pid} come dato da passare al server.
+Calcolata (\texttt{\small 14}) la dimensione, provvede (\texttt{\small 15}) ad
+immettere la richiesta sulla coda. 
+
+A questo punto non resta che (\texttt{\small 16}) rileggere dalla coda la
+risposta del server richiedendo a \func{msgrcv} di selezionare i messaggi di
+tipo corrispondente al valore del \acr{pid} inviato nella richiesta. L'ultimo
+passo (\texttt{\small 17}) prima di uscire è quello di stampare a video il
+messaggio ricevuto.
+Proviamo allora il nostro nuovo sistema, al solito occorre definire
+\code{LD\_LIBRARY\_PATH} per accedere alla libreria \file{libgapil.so}, dopo di
+che, in maniera del tutto analoga a quanto fatto con il programma che usa le
+fifo, potremo far partire il server con:
+\begin{verbatim}
+[piccardi@gont sources]$ ./mqfortuned -n10
+\end{verbatim}%$
+come nel caso precedente, avendo eseguito il server in background, il comando
+ritornerà immediatamente; potremo però verificare con \cmd{ps} che il
+programma è effettivamente in esecuzione, e che ha creato una coda di
+messaggi:
+\begin{verbatim}
+[piccardi@gont sources]$ ipcs
+
+------ Shared Memory Segments --------
+key        shmid      owner      perms      bytes      nattch     status      
+
+------ Semaphore Arrays --------
+key        semid      owner      perms      nsems     
+
+------ Message Queues --------
+key        msqid      owner      perms      used-bytes   messages    
+0x0102dc6a 0          piccardi   666        0            0           
+\end{verbatim}
+a questo punto potremo usare il client per ottenere le nostre frasi:
+\begin{verbatim}
+[piccardi@gont sources]$ ./mqfortune
+Linux ext2fs has been stable for a long time, now it's time to break it
+        -- Linuxkongreß '95 in Berlin
+[piccardi@gont sources]$ ./mqfortune
+Let's call it an accidental feature.
+        --Larry Wall
+\end{verbatim}
+con un risultato del tutto equivalente al precedente. Infine potremo chiudere
+il server inviando il segnale di terminazione con il comando \code{killall
+  mqfortuned} verificando che effettivamente la coda di messaggi viene rimossa.
+
+Benché funzionante questa architettura risente dello stesso inconveniente
+visto anche nel caso del precedente server basato sulle fifo; se il client
+viene interrotto dopo l'invio del messaggio di richiesta e prima della lettura
+della risposta, quest'ultima resta nella coda (così come per le fifo si aveva
+il problema delle fifo che restavano nel filesystem). In questo caso però il
+problemi sono maggiori, sia perché è molto più facile esaurire la memoria
+dedicata ad una coda di messaggi che gli \index{inode} inode di un filesystem,
+sia perché, con il riutilizzo dei \acr{pid} da parte dei processi, un client
+eseguito in un momento successivo potrebbe ricevere un messaggio non
+indirizzato a lui.
+
 
-Il primo oggetto introdotto dal \textit{SystemV IPC} è quello delle code di
-messaggi.
 
 \subsection{Semafori}
-\label{sec:ipc_semaph}
+\label{sec:ipc_sysv_sem}
+
+I semafori non sono meccanismi di intercomunicazione diretta come quelli
+(pipe, fifo e code di messaggi) visti finora, e non consentono di scambiare
+dati fra processi, ma servono piuttosto come meccanismi di sincronizzazione o
+di protezione per le \index{sezione~critica} \textsl{sezioni critiche} del
+codice (si ricordi quanto detto in sez.~\ref{sec:proc_race_cond}).
+
+Un semaforo è uno speciale contatore, mantenuto nel kernel, che permette, a
+seconda del suo valore, di consentire o meno la prosecuzione dell'esecuzione
+di un programma. In questo modo l'accesso ad una risorsa condivisa da più
+processi può essere controllato, associando ad essa un semaforo che consente
+di assicurare che non più di un processo alla volta possa usarla.
+
+Il concetto di semaforo è uno dei concetti base nella programmazione ed è
+assolutamente generico, così come del tutto generali sono modalità con cui lo
+si utilizza. Un processo che deve accedere ad una risorsa eseguirà un
+controllo del semaforo: se questo è positivo il suo valore sarà decrementato,
+indicando che si è consumato una unità della risorsa, ed il processo potrà
+proseguire nell'utilizzo di quest'ultima, provvedendo a rilasciarla, una volta
+completate le operazioni volute, reincrementando il semaforo.
+
+Se al momento del controllo il valore del semaforo è nullo, siamo invece in
+una situazione in cui la risorsa non è disponibile, ed il processo si
+bloccherà in stato di \textit{sleep} fin quando chi la sta utilizzando non la
+rilascerà, incrementando il valore del semaforo. Non appena il semaforo torna
+positivo, indicando che la risorsa è disponibile, il processo sarà svegliato,
+e si potrà operare come nel caso precedente (decremento del semaforo, accesso
+alla risorsa, incremento del semaforo).
+
+Per poter implementare questo tipo di logica le operazioni di controllo e
+decremento del contatore associato al semaforo devono essere atomiche,
+pertanto una realizzazione di un oggetto di questo tipo è necessariamente
+demandata al kernel. La forma più semplice di semaforo è quella del
+\textsl{semaforo binario}, o \textit{mutex}, in cui un valore diverso da zero
+(normalmente 1) indica la libertà di accesso, e un valore nullo l'occupazione
+della risorsa. In generale però si possono usare semafori con valori interi,
+utilizzando il valore del contatore come indicatore del ``numero di risorse''
+ancora disponibili.
+
+Il sistema di comunicazione inter-processo di \textit{SysV IPC} prevede anche i
+semafori, ma gli oggetti utilizzati non sono semafori singoli, ma gruppi di
+semafori detti \textsl{insiemi} (o \textit{semaphore set}); la funzione che
+permette di creare o ottenere l'identificatore di un insieme di semafori è
+\funcd{semget}, ed il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/sem.h} 
+  
+  \funcdecl{int semget(key\_t key, int nsems, int flag)}
+  
+  Restituisce l'identificatore di un insieme di semafori.
+  
+  \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
+    in caso di errore, nel qual caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{ENOSPC}] si è cercato di creare una insieme di semafori
+      quando è stato superato o il limite per il numero totale di semafori
+      (\const{SEMMNS}) o quello per il numero totale degli insiemi
+      (\const{SEMMNI}) nel sistema.
+    \item[\errcode{EINVAL}] l'argomento \param{nsems} è minore di zero o
+      maggiore del limite sul numero di semafori per ciascun insieme
+      (\const{SEMMSL}), o se l'insieme già esiste, maggiore del numero di
+      semafori che contiene.
+    \item[\errcode{ENOMEM}] il sistema non ha abbastanza memoria per poter
+      contenere le strutture per un nuovo insieme di semafori.
+    \end{errlist}
+    ed inoltre \errval{EACCES}, \errval{ENOENT}, \errval{EEXIST},
+    \errval{EIDRM}, con lo stesso significato che hanno per \func{msgget}.}
+\end{functions}
+
+La funzione è del tutto analoga a \func{msgget}, solo che in questo caso
+restituisce l'identificatore di un insieme di semafori, in particolare è
+identico l'uso degli argomenti \param{key} e \param{flag}, per cui non
+ripeteremo quanto detto al proposito in sez.~\ref{sec:ipc_sysv_mq}. L'argomento
+\param{nsems} permette di specificare quanti semafori deve contenere l'insieme
+quando se ne richieda la creazione, e deve essere nullo quando si effettua una
+richiesta dell'identificatore di un insieme già esistente.
+
+Purtroppo questa implementazione complica inutilmente lo schema elementare che
+abbiamo descritto, dato che non è possibile definire un singolo semaforo, ma
+se ne deve creare per forza un insieme.  Ma questa in definitiva è solo una
+complicazione inutile, il problema è che i semafori del \textit{SysV IPC}
+soffrono di altri due, ben più gravi, difetti.
+
+Il primo difetto è che non esiste una funzione che permetta di creare ed
+inizializzare un semaforo in un'unica chiamata; occorre prima creare l'insieme
+dei semafori con \func{semget} e poi inizializzarlo con \func{semctl}, si
+perde così ogni possibilità di eseguire l'operazione atomicamente.
+
+Il secondo difetto deriva dalla caratteristica generale degli oggetti del
+\textit{SysV IPC} di essere risorse globali di sistema, che non vengono
+cancellate quando nessuno le usa più; ci si così a trova a dover affrontare
+esplicitamente il caso in cui un processo termina per un qualche errore,
+lasciando un semaforo occupato, che resterà tale fino al successivo riavvio
+del sistema. Come vedremo esistono delle modalità per evitare tutto ciò, ma
+diventa necessario indicare esplicitamente che si vuole il ripristino del
+semaforo all'uscita del processo.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/semid_ds.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{semid\_ds}, associata a ciascun insieme di
+    semafori.}
+  \label{fig:ipc_semid_ds}
+\end{figure}
+
+A ciascun insieme di semafori è associata una struttura \struct{semid\_ds},
+riportata in fig.~\ref{fig:ipc_semid_ds}.\footnote{non si sono riportati i
+  campi ad uso interno del kernel, che vedremo in
+  fig.~\ref{fig:ipc_sem_schema}, che dipendono dall'implementazione.} Come nel
+caso delle code di messaggi quando si crea un nuovo insieme di semafori con
+\func{semget} questa struttura viene inizializzata, in particolare il campo
+\var{sem\_perm} viene inizializzato come illustrato in
+sez.~\ref{sec:ipc_sysv_access_control} (si ricordi che in questo caso il
+permesso di scrittura è in realtà permesso di alterare il semaforo), per
+quanto riguarda gli altri campi invece:
+\begin{itemize*}
+\item il campo \var{sem\_nsems}, che esprime il numero di semafori
+  nell'insieme, viene inizializzato al valore di \param{nsems}.
+\item il campo \var{sem\_ctime}, che esprime il tempo di creazione
+  dell'insieme, viene inizializzato al tempo corrente.
+\item il campo \var{sem\_otime}, che esprime il tempo dell'ultima operazione
+  effettuata, viene inizializzato a zero.
+\end{itemize*}
+
+Ciascun semaforo dell'insieme è realizzato come una struttura di tipo
+\struct{sem} che ne contiene i dati essenziali, la sua definizione\footnote{si
+  è riportata la definizione originaria del kernel 1.0, che contiene la prima
+  realizzazione del \textit{SysV IPC} in Linux. In realtà questa struttura
+  ormai è ridotta ai soli due primi membri, e gli altri vengono calcolati
+  dinamicamente. La si è utilizzata a scopo di esempio, perché indica tutti i
+  valori associati ad un semaforo, restituiti dalle funzioni di controllo, e
+  citati dalle pagine di manuale.} è riportata in fig.~\ref{fig:ipc_sem}.
+Questa struttura, non è accessibile in user space, ma i valori in essa
+specificati possono essere letti in maniera indiretta, attraverso l'uso delle
+funzioni di controllo.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/sem.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{sem}, che contiene i dati di un singolo
+    semaforo.} 
+  \label{fig:ipc_sem}
+\end{figure}
+
+I dati mantenuti nella struttura, ed elencati in fig.~\ref{fig:ipc_sem},
+indicano rispettivamente:
+\begin{description*}
+\item[\var{semval}] il valore numerico del semaforo.
+\item[\var{sempid}] il \acr{pid} dell'ultimo processo che ha eseguito una
+  operazione sul semaforo.
+\item[\var{semncnt}] il numero di processi in attesa che esso venga
+  incrementato.
+\item[\var{semzcnt}] il numero di processi in attesa che esso si annulli.
+\end{description*}
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|r|p{8cm}|}
+    \hline
+    \textbf{Costante} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{SEMMNI}&          128 & Numero massimo di insiemi di semafori.\\
+    \const{SEMMSL}&          250 & Numero massimo di semafori per insieme.\\
+    \const{SEMMNS}&\const{SEMMNI}*\const{SEMMSL}& Numero massimo di semafori
+                                   nel sistema.\\
+    \const{SEMVMX}&        32767 & Massimo valore per un semaforo.\\
+    \const{SEMOPM}&           32 & Massimo numero di operazioni per chiamata a
+                                   \func{semop}. \\
+    \const{SEMMNU}&\const{SEMMNS}& Massimo numero di strutture di ripristino.\\
+    \const{SEMUME}&\const{SEMOPM}& Massimo numero di voci di ripristino.\\
+    \const{SEMAEM}&\const{SEMVMX}& Valore massimo per l'aggiustamento
+                                   all'uscita. \\
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti associate ai limiti degli insiemi di
+    semafori, definite in \file{linux/sem.h}.} 
+  \label{tab:ipc_sem_limits}
+\end{table}
+
+Come per le code di messaggi anche per gli insiemi di semafori esistono una
+serie di limiti, i cui valori sono associati ad altrettante costanti, che si
+sono riportate in tab.~\ref{tab:ipc_sem_limits}. Alcuni di questi limiti sono
+al solito accessibili e modificabili attraverso \func{sysctl} o scrivendo
+direttamente nel file \procfile{/proc/sys/kernel/sem}.
+
+La funzione che permette di effettuare le varie operazioni di controllo sui
+semafori (fra le quali, come accennato, è impropriamente compresa anche la
+loro inizializzazione) è \funcd{semctl}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/sem.h} 
+  
+  \funcdecl{int semctl(int semid, int semnum, int cmd)}
+  \funcdecl{int semctl(int semid, int semnum, int cmd, union semun arg)}
+  
+  Esegue le operazioni di controllo su un semaforo o un insieme di semafori.
+  
+  \bodydesc{La funzione restituisce in caso di successo un valore positivo
+    quanto usata con tre argomenti ed un valore nullo quando usata con
+    quattro. In caso di errore restituisce -1, ed \var{errno} assumerà uno dei
+    valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] il processo non ha i privilegi per eseguire
+      l'operazione richiesta.
+    \item[\errcode{EIDRM}] l'insieme di semafori è stato cancellato.
+    \item[\errcode{EPERM}] si è richiesto \const{IPC\_SET} o \const{IPC\_RMID}
+      ma il processo non ha privilegi sufficienti ad eseguire l'operazione.
+    \item[\errcode{ERANGE}] si è richiesto \const{SETALL} \const{SETVAL} ma il
+      valore a cui si vuole impostare il semaforo è minore di zero o maggiore
+      di \const{SEMVMX}.
+  \end{errlist}
+  ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
+}
+\end{functions}
+
+La funzione può avere tre o quattro argomenti, a seconda dell'operazione
+specificata con \param{cmd}, ed opera o sull'intero insieme specificato da
+\param{semid} o sul singolo semaforo di un insieme, specificato da
+\param{semnum}. 
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/semun.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La definizione dei possibili valori di una \direct{union}
+    \structd{semun}, usata come quarto argomento della funzione
+    \func{semctl}.}
+  \label{fig:ipc_semun}
+\end{figure}
+
+Qualora la funzione operi con quattro argomenti \param{arg} è un argomento
+generico, che conterrà un dato diverso a seconda dell'azione richiesta; per
+unificare l'argomento esso deve essere passato come una \struct{semun}, la cui
+definizione, con i possibili valori che può assumere, è riportata in
+fig.~\ref{fig:ipc_semun}.
+
+Come già accennato sia il comportamento della funzione che il numero di
+argomenti con cui deve essere invocata dipendono dal valore dell'argomento
+\param{cmd}, che specifica l'azione da intraprendere; i valori validi (che
+cioè non causano un errore di \errcode{EINVAL}) per questo argomento sono i
+seguenti:
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\const{IPC\_STAT}] Legge i dati dell'insieme di semafori, copiando il
+  contenuto della relativa struttura \struct{semid\_ds} all'indirizzo
+  specificato con \var{arg.buf}. Occorre avere il permesso di lettura.
+  L'argomento \param{semnum} viene ignorato.
+\item[\const{IPC\_RMID}] Rimuove l'insieme di semafori e le relative strutture
+  dati, con effetto immediato. Tutti i processi che erano stato di
+  \textit{sleep} vengono svegliati, ritornando con un errore di
+  \errcode{EIDRM}.  L'user-ID effettivo del processo deve corrispondere o al
+  creatore o al proprietario dell'insieme, o all'amministratore. L'argomento
+  \param{semnum} viene ignorato.
+\item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
+  dell'insieme. I valori devono essere passati in una struttura
+  \struct{semid\_ds} puntata da \param{arg.buf} di cui saranno usati soltanto i
+  campi \var{sem\_perm.uid}, \var{sem\_perm.gid} e i nove bit meno
+  significativi di \var{sem\_perm.mode}. L'user-ID effettivo del processo deve
+  corrispondere o al creatore o al proprietario dell'insieme, o
+  all'amministratore.  L'argomento \param{semnum} viene ignorato.
+\item[\const{GETALL}] Restituisce il valore corrente di ciascun semaforo
+  dell'insieme (corrispondente al campo \var{semval} di \struct{sem}) nel
+  vettore indicato da \param{arg.array}. Occorre avere il permesso di lettura.
+  L'argomento \param{semnum} viene ignorato.
+\item[\const{GETNCNT}] Restituisce come valore di ritorno della funzione il
+  numero di processi in attesa che il semaforo \param{semnum} dell'insieme
+  \param{semid} venga incrementato (corrispondente al campo \var{semncnt} di
+  \struct{sem}); va invocata con tre argomenti.  Occorre avere il permesso di
+  lettura.
+\item[\const{GETPID}] Restituisce come valore di ritorno della funzione il
+  \acr{pid} dell'ultimo processo che ha compiuto una operazione sul semaforo
+  \param{semnum} dell'insieme \param{semid} (corrispondente al campo
+  \var{sempid} di \struct{sem}); va invocata con tre argomenti.  Occorre avere
+  il permesso di lettura.
+\item[\const{GETVAL}] Restituisce come valore di ritorno della funzione il il
+  valore corrente del semaforo \param{semnum} dell'insieme \param{semid}
+  (corrispondente al campo \var{semval} di \struct{sem}); va invocata con tre
+  argomenti.  Occorre avere il permesso di lettura.
+\item[\const{GETZCNT}] Restituisce come valore di ritorno della funzione il
+  numero di processi in attesa che il valore del semaforo \param{semnum}
+  dell'insieme \param{semid} diventi nullo (corrispondente al campo
+  \var{semncnt} di \struct{sem}); va invocata con tre argomenti.  Occorre avere
+  il permesso di lettura.
+\item[\const{SETALL}] Inizializza il valore di tutti i semafori dell'insieme,
+  aggiornando il campo \var{sem\_ctime} di \struct{semid\_ds}. I valori devono
+  essere passati nel vettore indicato da \param{arg.array}.  Si devono avere i
+  privilegi di scrittura sul semaforo.  L'argomento \param{semnum} viene
+  ignorato.
+\item[\const{SETVAL}] Inizializza il semaforo \param{semnum} al valore passato
+  dall'argomento \param{arg.val}, aggiornando il campo \var{sem\_ctime} di
+  \struct{semid\_ds}.  Si devono avere i privilegi di scrittura sul semaforo.
+\end{basedescript}
+
+Quando si imposta il valore di un semaforo (sia che lo si faccia per tutto
+l'insieme con \const{SETALL}, che per un solo semaforo con \const{SETVAL}), i
+processi in attesa su di esso reagiscono di conseguenza al cambiamento di
+valore.  Inoltre la coda delle operazioni di ripristino viene cancellata per
+tutti i semafori il cui valore viene modificato.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Operazione}  & \textbf{Valore restituito} \\
+    \hline
+    \hline
+    \const{GETNCNT}& Valore di \var{semncnt}.\\
+    \const{GETPID} & Valore di \var{sempid}.\\
+    \const{GETVAL} & Valore di \var{semval}.\\
+    \const{GETZCNT}& Valore di \var{semzcnt}.\\
+    \hline
+  \end{tabular}
+  \caption{Valori di ritorno della funzione \func{semctl}.} 
+  \label{tab:ipc_semctl_returns}
+\end{table}
 
-Il secondo oggetto introdotto dal \textit{SystemV IPC} è quello dei semafori.
+Il valore di ritorno della funzione in caso di successo dipende
+dall'operazione richiesta; per tutte le operazioni che richiedono quattro
+argomenti esso è sempre nullo, per le altre operazioni, elencate in
+tab.~\ref{tab:ipc_semctl_returns} viene invece restituito il valore richiesto,
+corrispondente al campo della struttura \struct{sem} indicato nella seconda
+colonna della tabella.
+
+Le operazioni ordinarie sui semafori, come l'acquisizione o il rilascio degli
+stessi (in sostanza tutte quelle non comprese nell'uso di \func{semctl})
+vengono effettuate con la funzione \funcd{semop}, il cui prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/sem.h} 
+  
+  \funcdecl{int semop(int semid, struct sembuf *sops, unsigned nsops)}
+  
+  Esegue le operazioni ordinarie su un semaforo o un insieme di semafori.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] il processo non ha i privilegi per eseguire
+      l'operazione richiesta.
+    \item[\errcode{EIDRM}] l'insieme di semafori è stato cancellato.
+    \item[\errcode{ENOMEM}] si è richiesto un \const{SEM\_UNDO} ma il sistema
+      non ha le risorse per allocare la struttura di ripristino.
+    \item[\errcode{EAGAIN}] un'operazione comporterebbe il blocco del processo,
+      ma si è specificato \const{IPC\_NOWAIT} in \var{sem\_flg}.
+    \item[\errcode{EINTR}] la funzione, bloccata in attesa dell'esecuzione
+      dell'operazione, viene interrotta da un segnale.
+    \item[\errcode{E2BIG}] l'argomento \param{nsops} è maggiore del numero
+      massimo di operazioni \const{SEMOPM}.
+    \item[\errcode{ERANGE}] per alcune operazioni il valore risultante del
+      semaforo viene a superare il limite massimo \const{SEMVMX}.
+  \end{errlist}
+  ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
+}
+\end{functions}
+
+La funzione permette di eseguire operazioni multiple sui singoli semafori di
+un insieme. La funzione richiede come primo argomento l'identificatore
+\param{semid} dell'insieme su cui si vuole operare. Il numero di operazioni da
+effettuare viene specificato con l'argomento \param{nsop}, mentre il loro
+contenuto viene passato con un puntatore ad un vettore di strutture
+\struct{sembuf} nell'argomento \param{sops}. Le operazioni richieste vengono
+effettivamente eseguite se e soltanto se è possibile effettuarle tutte quante.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/sembuf.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{sembuf}, usata per le operazioni sui
+    semafori.}
+  \label{fig:ipc_sembuf}
+\end{figure}
+
+Il contenuto di ciascuna operazione deve essere specificato attraverso una
+opportuna struttura \struct{sembuf} (la cui definizione è riportata in
+fig.~\ref{fig:ipc_sembuf}) che il programma chiamante deve avere cura di
+allocare in un opportuno vettore. La struttura permette di indicare il
+semaforo su cui operare, il tipo di operazione, ed un flag di controllo.
+Il campo \var{sem\_num} serve per indicare a quale semaforo dell'insieme fa
+riferimento l'operazione; si ricordi che i semafori sono numerati come in un
+vettore, per cui il primo semaforo corrisponde ad un valore nullo di
+\var{sem\_num}.
+
+Il campo \var{sem\_flg} è un flag, mantenuto come maschera binaria, per il
+quale possono essere impostati i due valori \const{IPC\_NOWAIT} e
+\const{SEM\_UNDO}.  Impostando \const{IPC\_NOWAIT} si fa si che, invece di
+bloccarsi (in tutti quei casi in cui l'esecuzione di una operazione richiede
+che il processo vada in stato di \textit{sleep}), \func{semop} ritorni
+immediatamente con un errore di \errcode{EAGAIN}.  Impostando \const{SEM\_UNDO}
+si richiede invece che l'operazione venga registrata in modo che il valore del
+semaforo possa essere ripristinato all'uscita del processo.
+
+Infine \var{sem\_op} è il campo che controlla l'operazione che viene eseguita
+e determina il comportamento della chiamata a \func{semop}; tre sono i casi
+possibili:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\var{sem\_op}$>0$] In questo caso il valore di \var{sem\_op} viene
+  aggiunto al valore corrente di \var{semval}. La funzione ritorna
+  immediatamente (con un errore di \errcode{ERANGE} qualora si sia superato il
+  limite \const{SEMVMX}) ed il processo non viene bloccato in nessun caso.
+  Specificando \const{SEM\_UNDO} si aggiorna il contatore per il ripristino
+  del valore del semaforo. Al processo chiamante è richiesto il privilegio di
+  alterazione (scrittura) sull'insieme di semafori.
+  
+\item[\var{sem\_op}$=0$] Nel caso \var{semval} sia zero l'esecuzione procede
+  immediatamente. Se \var{semval} è diverso da zero il comportamento è
+  controllato da \var{sem\_flg}, se è stato impostato \const{IPC\_NOWAIT} la
+  funzione ritorna con un errore di \errcode{EAGAIN}, altrimenti viene
+  incrementato \var{semzcnt} di uno ed il processo resta in stato di
+  \textit{sleep} fintanto che non si ha una delle condizioni seguenti:
+  \begin{itemize*}
+  \item \var{semval} diventa zero, nel qual caso \var{semzcnt} viene
+    decrementato di uno.
+  \item l'insieme di semafori viene rimosso, nel qual caso \func{semop} ritorna
+    un errore di \errcode{EIDRM}.
+  \item il processo chiamante riceve un segnale, nel qual caso \var{semzcnt}
+    viene decrementato di uno e \func{semop} ritorna un errore di
+    \errcode{EINTR}.
+  \end{itemize*}
+  Al processo chiamante è richiesto il privilegio di lettura dell'insieme dei
+  semafori.
+  
+\item[\var{sem\_op}$<0$] Nel caso in cui \var{semval} è maggiore o uguale del
+  valore assoluto di \var{sem\_op} (se cioè la somma dei due valori resta
+  positiva o nulla) i valori vengono sommati e la funzione ritorna
+  immediatamente; qualora si sia impostato \const{SEM\_UNDO} viene anche
+  aggiornato il contatore per il ripristino del valore del semaforo. In caso
+  contrario (quando cioè la somma darebbe luogo ad un valore di \var{semval}
+  negativo) se si è impostato \const{IPC\_NOWAIT} la funzione ritorna con un
+  errore di \errcode{EAGAIN}, altrimenti viene incrementato di uno
+  \var{semncnt} ed il processo resta in stato di \textit{sleep} fintanto che
+  non si ha una delle condizioni seguenti:
+  \begin{itemize*}
+  \item \var{semval} diventa maggiore o uguale del valore assoluto di
+    \var{sem\_op}, nel qual caso \var{semncnt} viene decrementato di uno, il
+    valore di \var{sem\_op} viene sommato a \var{semval}, e se era stato
+    impostato \const{SEM\_UNDO} viene aggiornato il contatore per il
+    ripristino del valore del semaforo.
+  \item l'insieme di semafori viene rimosso, nel qual caso \func{semop}
+    ritorna un errore di \errcode{EIDRM}.
+  \item il processo chiamante riceve un segnale, nel qual caso \var{semncnt}
+    viene decrementato di uno e \func{semop} ritorna un errore di
+    \errcode{EINTR}.
+  \end{itemize*}    
+  Al processo chiamante è richiesto il privilegio di alterazione (scrittura)
+  sull'insieme di semafori.
+\end{basedescript}
+
+In caso di successo della funzione viene aggiornato il campo \var{sempid} per
+ogni semaforo modificato al valore del \acr{pid} del processo chiamante;
+inoltre vengono pure aggiornati al tempo corrente i campi \var{sem\_otime} e
+\var{sem\_ctime}.
+
+Dato che, come già accennato in precedenza, in caso di uscita inaspettata i
+semafori possono restare occupati, abbiamo visto come \func{semop} permetta di
+attivare un meccanismo di ripristino attraverso l'uso del flag
+\const{SEM\_UNDO}. Il meccanismo è implementato tramite una apposita struttura
+\struct{sem\_undo}, associata ad ogni processo per ciascun semaforo che esso
+ha modificato; all'uscita i semafori modificati vengono ripristinati, e le
+strutture disallocate.  Per mantenere coerente il comportamento queste
+strutture non vengono ereditate attraverso una \func{fork} (altrimenti si
+avrebbe un doppio ripristino), mentre passano inalterate nell'esecuzione di
+una \func{exec} (altrimenti non si avrebbe ripristino).
+
+Tutto questo però ha un problema di fondo. Per capire di cosa si tratta
+occorre fare riferimento all'implementazione usata in Linux, che è riportata
+in maniera semplificata nello schema di fig.~\ref{fig:ipc_sem_schema}.  Si è
+presa come riferimento l'architettura usata fino al kernel 2.2.x che è più
+semplice (ed illustrata in dettaglio in \cite{tlk}); nel kernel 2.4.x la
+struttura del \textit{SysV IPC} è stata modificata, ma le definizioni relative
+a queste strutture restano per compatibilità.\footnote{in particolare con le
+  vecchie versioni delle librerie del C, come le libc5.}
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=13cm]{img/semtruct}
+  \caption{Schema della struttura di un insieme di semafori.}
+  \label{fig:ipc_sem_schema}
+\end{figure}
+
+Alla creazione di un nuovo insieme viene allocata una nuova strutture
+\struct{semid\_ds} ed il relativo vettore di strutture \struct{sem}. Quando si
+richiede una operazione viene anzitutto verificato che tutte le operazioni
+possono avere successo; se una di esse comporta il blocco del processo il
+kernel crea una struttura \struct{sem\_queue} che viene aggiunta in fondo alla
+coda di attesa associata a ciascun insieme di semafori\footnote{che viene
+  referenziata tramite i campi \var{sem\_pending} e \var{sem\_pending\_last}
+  di \struct{semid\_ds}.}. 
+
+Nella struttura viene memorizzato il riferimento alle operazioni richieste
+(nel campo \var{sops}, che è un puntatore ad una struttura \struct{sembuf}) e
+al processo corrente (nel campo \var{sleeper}) poi quest'ultimo viene messo
+stato di attesa e viene invocato lo \itindex{scheduler} scheduler per passare
+all'esecuzione di un altro processo.
+
+Se invece tutte le operazioni possono avere successo queste vengono eseguite
+immediatamente, dopo di che il kernel esegue una scansione della coda di
+attesa (a partire da \var{sem\_pending}) per verificare se qualcuna delle
+operazioni sospese in precedenza può essere eseguita, nel qual caso la
+struttura \struct{sem\_queue} viene rimossa e lo stato del processo associato
+all'operazione (\var{sleeper}) viene riportato a \textit{running}; il tutto
+viene ripetuto fin quando non ci sono più operazioni eseguibili o si è
+svuotata la coda.  Per gestire il meccanismo del ripristino tutte le volte che
+per un'operazione si è specificato il flag \const{SEM\_UNDO} viene mantenuta
+per ciascun insieme di semafori una apposita struttura \struct{sem\_undo} che
+contiene (nel vettore puntato dal campo \var{semadj}) un valore di
+aggiustamento per ogni semaforo cui viene sommato l'opposto del valore usato
+per l'operazione.
+
+Queste strutture sono mantenute in due liste,\footnote{rispettivamente
+  attraverso i due campi \var{id\_next} e \var{proc\_next}.} una associata
+all'insieme di cui fa parte il semaforo, che viene usata per invalidare le
+strutture se questo viene cancellato o per azzerarle se si è eseguita una
+operazione con \func{semctl}; l'altra associata al processo che ha eseguito
+l'operazione;\footnote{attraverso il campo \var{semundo} di
+  \struct{task\_struct}, come mostrato in \ref{fig:ipc_sem_schema}.} quando un
+processo termina, la lista ad esso associata viene scandita e le operazioni
+applicate al semaforo.  Siccome un processo può accumulare delle richieste di
+ripristino per semafori differenti chiamate attraverso diverse chiamate a
+\func{semop}, si pone il problema di come eseguire il ripristino dei semafori
+all'uscita del processo, ed in particolare se questo può essere fatto
+atomicamente.
+
+Il punto è cosa succede quando una delle operazioni previste per il ripristino
+non può essere eseguita immediatamente perché ad esempio il semaforo è
+occupato; in tal caso infatti, se si pone il processo in stato di
+\textit{sleep} aspettando la disponibilità del semaforo (come faceva
+l'implementazione originaria) si perde l'atomicità dell'operazione. La scelta
+fatta dal kernel è pertanto quella di effettuare subito le operazioni che non
+prevedono un blocco del processo e di ignorare silenziosamente le altre;
+questo però comporta il fatto che il ripristino non è comunque garantito in
+tutte le occasioni.
+
+Come esempio di uso dell'interfaccia dei semafori vediamo come implementare
+con essa dei semplici \textit{mutex} (cioè semafori binari), tutto il codice
+in questione, contenuto nel file \file{Mutex.c} allegato ai sorgenti, è
+riportato in fig.~\ref{fig:ipc_mutex_create}. Utilizzeremo l'interfaccia per
+creare un insieme contenente un singolo semaforo, per il quale poi useremo un
+valore unitario per segnalare la disponibilità della risorsa, ed un valore
+nullo per segnalarne l'indisponibilità. 
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/Mutex.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Il codice delle funzioni che permettono di creare o recuperare
+    l'identificatore di un semaforo da utilizzare come \textit{mutex}.}
+  \label{fig:ipc_mutex_create}
+\end{figure}
+
+La prima funzione (\texttt{\small 2--15}) è \func{MutexCreate} che data una
+chiave crea il semaforo usato per il mutex e lo inizializza, restituendone
+l'identificatore. Il primo passo (\texttt{\small 6}) è chiamare \func{semget}
+con \const{IPC\_CREATE} per creare il semaforo qualora non esista,
+assegnandogli i privilegi di lettura e scrittura per tutti. In caso di errore
+(\texttt{\small 7--9}) si ritorna subito il risultato di \func{semget},
+altrimenti (\texttt{\small 10}) si inizializza il semaforo chiamando
+\func{semctl} con il comando \const{SETVAL}, utilizzando l'unione
+\struct{semunion} dichiarata ed avvalorata in precedenza (\texttt{\small 4})
+ad 1 per significare che risorsa è libera. In caso di errore (\texttt{\small
+  11--13}) si restituisce il valore di ritorno di \func{semctl}, altrimenti
+(\texttt{\small 14}) si ritorna l'identificatore del semaforo.
+
+La seconda funzione (\texttt{\small 17--20}) è \func{MutexFind}, che, data una
+chiave, restituisce l'identificatore del semaforo ad essa associato. La
+comprensione del suo funzionamento è immediata in quanto essa è soltanto un
+\textit{wrapper}\footnote{si chiama così una funzione usata per fare da
+  \textsl{involucro} alla chiamata di un altra, usata in genere per
+  semplificare un'interfaccia (come in questo caso) o per utilizzare con la
+  stessa funzione diversi substrati (librerie, ecc.)  che possono fornire le
+  stesse funzionalità.} di una chiamata a \func{semget} per cercare
+l'identificatore associato alla chiave, il valore di ritorno di quest'ultima
+viene passato all'indietro al chiamante.
+
+La terza funzione (\texttt{\small 22--25}) è \func{MutexRead} che, dato un
+identificatore, restituisce il valore del semaforo associato al mutex. Anche
+in questo caso la funzione è un \textit{wrapper} per una chiamata a
+\func{semctl} con il comando \const{GETVAL}, che permette di restituire il
+valore del semaforo.
+
+La quarta e la quinta funzione (\texttt{\small 36--44}) sono \func{MutexLock},
+e \func{MutexUnlock}, che permettono rispettivamente di bloccare e sbloccare
+il mutex. Entrambe fanno da wrapper per \func{semop}, utilizzando le due
+strutture \var{sem\_lock} e \var{sem\_unlock} definite in precedenza
+(\texttt{\small 27--34}). Si noti come per queste ultime si sia fatto uso
+dell'opzione \const{SEM\_UNDO} per evitare che il semaforo resti bloccato in
+caso di terminazione imprevista del processo.
+
+L'ultima funzione (\texttt{\small 46--49}) della serie, è \func{MutexRemove},
+che rimuove il mutex. Anche in questo caso si ha un wrapper per una chiamata a
+\func{semctl} con il comando \const{IPC\_RMID}, che permette di cancellare il
+semaforo; il valore di ritorno di quest'ultima viene passato all'indietro.
+
+Chiamare \func{MutexLock} decrementa il valore del semaforo: se questo è
+libero (ha già valore 1) sarà bloccato (valore nullo), se è bloccato la
+chiamata a \func{semop} si bloccherà fintanto che la risorsa non venga
+rilasciata. Chiamando \func{MutexUnlock} il valore del semaforo sarà
+incrementato di uno, sbloccandolo qualora fosse bloccato.  
+
+Si noti che occorre eseguire sempre prima \func{MutexLock} e poi
+\func{MutexUnlock}, perché se per un qualche errore si esegue più volte
+quest'ultima il valore del semaforo crescerebbe oltre 1, e \func{MutexLock}
+non avrebbe più l'effetto aspettato (bloccare la risorsa quando questa è
+considerata libera).  Infine si tenga presente che usare \func{MutexRead} per
+controllare il valore dei mutex prima di proseguire in una operazione di
+sblocco non servirebbe comunque, dato che l'operazione non sarebbe atomica.
+Vedremo in sez.~\ref{sec:ipc_lock_file} come sia possibile ottenere
+un'interfaccia analoga a quella appena illustrata, senza incorrere in questi
+problemi, usando il \index{file!locking} \textit{file locking}.
 
 
 \subsection{Memoria condivisa}
-\label{sec:ipc_shar_mem}
+\label{sec:ipc_sysv_shm}
+
+Il terzo oggetto introdotto dal \textit{SysV IPC} è quello dei segmenti di
+memoria condivisa. La funzione che permette di ottenerne uno è \funcd{shmget},
+ed il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/shm.h}
+  
+  \funcdecl{int shmget(key\_t key, int size, int flag)}
+  
+  Restituisce l'identificatore di una memoria condivisa.
+  
+  \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
+    in caso di errore, nel qual caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{ENOSPC}] si è superato il limite (\const{SHMMNI}) sul numero
+      di segmenti di memoria nel sistema, o cercato di allocare un segmento le
+      cui dimensioni fanno superare il limite di sistema (\const{SHMALL}) per
+      la memoria ad essi riservata.
+    \item[\errcode{EINVAL}] si è richiesta una dimensione per un nuovo segmento
+      maggiore di \const{SHMMAX} o minore di \const{SHMMIN}, o se il segmento
+      già esiste \param{size} è maggiore delle sue dimensioni.
+    \item[\errcode{ENOMEM}] il sistema non ha abbastanza memoria per poter
+      contenere le strutture per un nuovo segmento di memoria condivisa.
+    \end{errlist}
+    ed inoltre \errval{EACCES}, \errval{ENOENT}, \errval{EEXIST},
+    \errval{EIDRM}, con lo stesso significato che hanno per \func{msgget}.}
+\end{functions}
+
+La funzione, come \func{semget}, è del tutto analoga a \func{msgget}, ed
+identico è l'uso degli argomenti \param{key} e \param{flag} per cui non
+ripeteremo quanto detto al proposito in sez.~\ref{sec:ipc_sysv_mq}. L'argomento
+\param{size} specifica invece la dimensione, in byte, del segmento, che viene
+comunque arrotondata al multiplo superiore di \const{PAGE\_SIZE}.
+
+La memoria condivisa è la forma più veloce di comunicazione fra due processi,
+in quanto permette agli stessi di vedere nel loro spazio di indirizzi una
+stessa sezione di memoria.  Pertanto non è necessaria nessuna operazione di
+copia per trasmettere i dati da un processo all'altro, in quanto ciascuno può
+accedervi direttamente con le normali operazioni di lettura e scrittura dei
+dati in memoria.
+
+Ovviamente tutto questo ha un prezzo, ed il problema fondamentale della
+memoria condivisa è la sincronizzazione degli accessi. È evidente infatti che
+se un processo deve scambiare dei dati con un altro, si deve essere sicuri che
+quest'ultimo non acceda al segmento di memoria condivisa prima che il primo
+non abbia completato le operazioni di scrittura, inoltre nel corso di una
+lettura si deve essere sicuri che i dati restano coerenti e non vengono
+sovrascritti da un accesso in scrittura sullo stesso segmento da parte di un
+altro processo. Per questo in genere la memoria condivisa viene sempre
+utilizzata in abbinamento ad un meccanismo di sincronizzazione, il che, di
+norma, significa insieme a dei semafori.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/shmid_ds.h}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \structd{shmid\_ds}, associata a ciascun segmento di
+    memoria condivisa.}
+  \label{fig:ipc_shmid_ds}
+\end{figure}
+
+A ciascun segmento di memoria condivisa è associata una struttura
+\struct{shmid\_ds}, riportata in fig.~\ref{fig:ipc_shmid_ds}.  Come nel caso
+delle code di messaggi quando si crea un nuovo segmento di memoria condivisa
+con \func{shmget} questa struttura viene inizializzata, in particolare il
+campo \var{shm\_perm} viene inizializzato come illustrato in
+sez.~\ref{sec:ipc_sysv_access_control}, e valgono le considerazioni ivi fatte
+relativamente ai permessi di accesso; per quanto riguarda gli altri campi
+invece:
+\begin{itemize}
+\item il campo \var{shm\_segsz}, che esprime la dimensione del segmento, viene
+  inizializzato al valore di \param{size}.
+\item il campo \var{shm\_ctime}, che esprime il tempo di creazione del
+  segmento, viene inizializzato al tempo corrente.
+\item i campi \var{shm\_atime} e \var{shm\_dtime}, che esprimono
+  rispettivamente il tempo dell'ultima volta che il segmento è stato
+  agganciato o sganciato da un processo, vengono inizializzati a zero.
+\item il campo \var{shm\_lpid}, che esprime il \acr{pid} del processo che ha
+  eseguito l'ultima operazione, viene inizializzato a zero.
+\item il campo \var{shm\_cpid}, che esprime il \acr{pid} del processo che ha
+  creato il segmento, viene inizializzato al \acr{pid} del processo chiamante.
+\item il campo \var{shm\_nattac}, che esprime il numero di processi agganciati
+  al segmento viene inizializzato a zero.
+\end{itemize}
+
+Come per le code di messaggi e gli insiemi di semafori, anche per i segmenti
+di memoria condivisa esistono una serie di limiti imposti dal sistema.  Alcuni
+di questi limiti sono al solito accessibili e modificabili attraverso
+\func{sysctl} o scrivendo direttamente nei rispettivi file di
+\file{/proc/sys/kernel/}. 
+
+In tab.~\ref{tab:ipc_shm_limits} si sono riportate le
+costanti simboliche associate a ciascuno di essi, il loro significato, i
+valori preimpostati, e, quando presente, il file in \file{/proc/sys/kernel/}
+che permettono di cambiarne il valore. 
+
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|r|c|p{7cm}|}
+    \hline
+    \textbf{Costante} & \textbf{Valore} & \textbf{File in \texttt{proc}}
+    & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{SHMALL}& 0x200000&\procrelfile{/proc/sys/kernel}{shmall}
+                            & Numero massimo di pagine che 
+                              possono essere usate per i segmenti di
+                              memoria condivisa.\\
+    \const{SHMMAX}&0x2000000&\procrelfile{/proc/sys/kernel}{shmmax} 
+                            & Dimensione massima di un segmento di memoria
+                              condivisa.\\ 
+    \const{SHMMNI}&     4096&\procrelfile{/proc/sys/kernel}{msgmni}
+                            & Numero massimo di segmenti di memoria condivisa
+                              presenti nel kernel.\\ 
+    \const{SHMMIN}&        1& ---         & Dimensione minima di un segmento di
+                                            memoria condivisa.\\
+    \const{SHMLBA}&\const{PAGE\_SIZE}&--- & Limite inferiore per le dimensioni
+                                            minime di un segmento (deve essere
+                                            allineato alle dimensioni di una
+                                            pagina di memoria).\\
+    \const{SHMSEG}&   ---   &     ---     & Numero massimo di segmenti di
+                                            memoria condivisa per ciascun
+                                            processo.\\
+
+
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti associate ai limiti dei segmenti di memoria
+    condivisa, insieme al relativo file in \file{/proc/sys/kernel/} ed al
+    valore preimpostato presente nel sistema.} 
+  \label{tab:ipc_shm_limits}
+\end{table}
+
+Al solito la funzione che permette di effettuare le operazioni di controllo su
+un segmento di memoria condivisa è \funcd{shmctl}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/shm.h}
+  
+  \funcdecl{int shmctl(int shmid, int cmd, struct shmid\_ds *buf)}
+  
+  Esegue le operazioni di controllo su un segmento di memoria condivisa.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] si è richiesto \const{IPC\_STAT} ma i permessi non
+      consentono l'accesso in lettura al segmento.
+    \item[\errcode{EINVAL}] o \param{shmid} non è un identificatore valido o
+      \param{cmd} non è un comando valido.
+    \item[\errcode{EIDRM}] l'argomento \param{shmid} fa riferimento ad un
+      segmento che è stato cancellato.
+    \item[\errcode{EPERM}] si è specificato un comando con \const{IPC\_SET} o
+      \const{IPC\_RMID} senza i permessi necessari.
+    \item[\errcode{EOVERFLOW}] si è tentato il comando \const{IPC\_STAT} ma il
+      valore del group-ID o dell'user-ID è troppo grande per essere
+      memorizzato nella struttura puntata da \param{buf}.
+    \item[\errcode{EFAULT}] l'indirizzo specificato con \param{buf} non è
+      valido.
+    \end{errlist}
+}
+\end{functions}
+
+Il comando specificato attraverso l'argomento \param{cmd} determina i diversi
+effetti della funzione; i possibili valori che esso può assumere, ed il
+corrispondente comportamento della funzione, sono i seguenti:
+
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\const{IPC\_STAT}] Legge le informazioni riguardo il segmento di memoria
+  condivisa nella struttura \struct{shmid\_ds} puntata da \param{buf}. Occorre
+  che il processo chiamante abbia il permesso di lettura sulla segmento.
+\item[\const{IPC\_RMID}] Marca il segmento di memoria condivisa per la
+  rimozione, questo verrà cancellato effettivamente solo quando l'ultimo
+  processo ad esso agganciato si sarà staccato. Questo comando può essere
+  eseguito solo da un processo con user-ID effettivo corrispondente o al
+  creatore del segmento, o al proprietario del segmento, o all'amministratore.
+\item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
+  del segmento.  Per modificare i valori di \var{shm\_perm.mode},
+  \var{shm\_perm.uid} e \var{shm\_perm.gid} occorre essere il proprietario o
+  il creatore del segmento, oppure l'amministratore. Compiuta l'operazione
+  aggiorna anche il valore del campo \var{shm\_ctime}.
+\item[\const{SHM\_LOCK}] Abilita il \itindex{memory~locking} \textit{memory
+    locking}\footnote{impedisce cioè che la memoria usata per il segmento
+    venga salvata su disco dal meccanismo della \index{memoria~virtuale}
+    memoria virtuale; si ricordi quanto trattato in
+    sez.~\ref{sec:proc_mem_lock}.} sul segmento di memoria condivisa. Solo
+  l'amministratore può utilizzare questo comando.
+\item[\const{SHM\_UNLOCK}] Disabilita il \itindex{memory~locking}
+  \textit{memory locking} sul segmento di memoria condivisa.  Solo
+  l'amministratore può utilizzare questo comando.
+\end{basedescript}
+i primi tre comandi sono gli stessi già visti anche per le code di messaggi e
+gli insiemi di semafori, gli ultimi due sono delle estensioni specifiche
+previste da Linux, che permettono di abilitare e disabilitare il meccanismo
+della \index{memoria~virtuale} memoria virtuale per il segmento.
+
+L'argomento \param{buf} viene utilizzato solo con i comandi \const{IPC\_STAT}
+e \const{IPC\_SET} nel qual caso esso dovrà puntare ad una struttura
+\struct{shmid\_ds} precedentemente allocata, in cui nel primo caso saranno
+scritti i dati del segmento di memoria restituiti dalla funzione e da cui, nel
+secondo caso, verranno letti i dati da impostare sul segmento.
+
+Una volta che lo si è creato, per utilizzare un segmento di memoria condivisa
+l'interfaccia prevede due funzioni, \funcd{shmat} e \func{shmdt}. La prima di
+queste serve ad agganciare un segmento al processo chiamante, in modo che
+quest'ultimo possa inserirlo nel suo spazio di indirizzi per potervi accedere;
+il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/shm.h}
+  
+  \funcdecl{void *shmat(int shmid, const void *shmaddr, int shmflg)}
+  Aggancia al processo un segmento di memoria condivisa.
+  
+  \bodydesc{La funzione restituisce l'indirizzo del segmento in caso di
+    successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà i
+    valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] il processo non ha i privilegi per accedere al
+      segmento nella modalità richiesta.
+    \item[\errcode{EINVAL}] si è specificato un identificatore invalido per
+      \param{shmid}, o un indirizzo non allineato sul confine di una pagina
+      per \param{shmaddr}.
+    \end{errlist}
+    ed inoltre \errval{ENOMEM}.}
+\end{functions}
+
+La funzione inserisce un segmento di memoria condivisa all'interno dello
+spazio di indirizzi del processo, in modo che questo possa accedervi
+direttamente, la situazione dopo l'esecuzione di \func{shmat} è illustrata in
+fig.~\ref{fig:ipc_shmem_layout} (per la comprensione del resto dello schema si
+ricordi quanto illustrato al proposito in sez.~\ref{sec:proc_mem_layout}). In
+particolare l'indirizzo finale del segmento dati (quello impostato da
+\func{brk}, vedi sez.~\ref{sec:proc_mem_alloc}) non viene influenzato.
+Si tenga presente infine che la funzione ha successo anche se il segmento è
+stato marcato per la cancellazione.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=10cm]{img/sh_memory_layout}
+  \caption{Disposizione dei segmenti di memoria di un processo quando si è
+    agganciato un segmento di memoria condivisa.}
+  \label{fig:ipc_shmem_layout}
+\end{figure}
+
+L'argomento \param{shmaddr} specifica a quale indirizzo\footnote{lo standard
+  SVID prevede che l'argomento \param{shmaddr} sia di tipo \ctyp{char *}, così
+  come il valore di ritorno della funzione; in Linux è stato così con le
+  \acr{libc4} e le \acr{libc5}, con il passaggio alle \acr{glibc} il tipo di
+  \param{shmaddr} è divenuto un \ctyp{const void *} e quello del valore di
+  ritorno un \ctyp{void *}.} deve essere associato il segmento, se il valore
+specificato è \val{NULL} è il sistema a scegliere opportunamente un'area di
+memoria libera (questo è il modo più portabile e sicuro di usare la funzione).
+Altrimenti il kernel aggancia il segmento all'indirizzo specificato da
+\param{shmaddr}; questo però può avvenire solo se l'indirizzo coincide con il
+limite di una pagina, cioè se è un multiplo esatto del parametro di sistema
+\const{SHMLBA}, che in Linux è sempre uguale \const{PAGE\_SIZE}. 
+
+Si tenga presente però che quando si usa \val{NULL} come valore di
+\param{shmaddr}, l'indirizzo restituito da \func{shmat} può cambiare da
+processo a processo; pertanto se nell'area di memoria condivisa si salvano
+anche degli indirizzi, si deve avere cura di usare valori relativi (in genere
+riferiti all'indirizzo di partenza del segmento).
+
+L'argomento \param{shmflg} permette di cambiare il comportamento della
+funzione; esso va specificato come maschera binaria, i bit utilizzati sono
+solo due e sono identificati dalle costanti \const{SHM\_RND} e
+\const{SHM\_RDONLY}, che vanno combinate con un OR aritmetico.  Specificando
+\const{SHM\_RND} si evita che \func{shmat} ritorni un errore quando
+\param{shmaddr} non è allineato ai confini di una pagina. Si può quindi usare
+un valore qualunque per \param{shmaddr}, e il segmento verrà comunque
+agganciato, ma al più vicino multiplo di \const{SHMLBA} (il nome della
+costante sta infatti per \textit{rounded}, e serve per specificare un
+indirizzo come arrotondamento, in Linux è equivalente a \const{PAGE\_SIZE}).
+
+L'uso di \const{SHM\_RDONLY} permette di agganciare il segmento in sola
+lettura (si ricordi che anche le pagine di memoria hanno dei permessi), in tal
+caso un tentativo di scrivere sul segmento comporterà una
+\itindex{segment~violation} violazione di accesso con l'emissione di un
+segnale di \const{SIGSEGV}. Il comportamento usuale di \func{shmat} è quello
+di agganciare il segmento con l'accesso in lettura e scrittura (ed il processo
+deve aver questi permessi in \var{shm\_perm}), non è prevista la possibilità
+di agganciare un segmento in sola scrittura.
+
+In caso di successo la funzione aggiorna anche i seguenti campi di
+\struct{shmid\_ds}:
+\begin{itemize*}
+\item il tempo \var{shm\_atime} dell'ultima operazione di aggancio viene
+  impostato al tempo corrente.
+\item il \acr{pid} \var{shm\_lpid} dell'ultimo processo che ha operato sul
+  segmento viene impostato a quello del processo corrente.
+\item il numero \var{shm\_nattch} di processi agganciati al segmento viene
+  aumentato di uno.
+\end{itemize*} 
+
+Come accennato in sez.~\ref{sec:proc_fork} un segmento di memoria condivisa
+agganciato ad un processo viene ereditato da un figlio attraverso una
+\func{fork}, dato che quest'ultimo riceve una copia dello spazio degli
+indirizzi del padre. Invece, dato che attraverso una \func{exec} viene
+eseguito un diverso programma con uno spazio di indirizzi completamente
+diverso, tutti i segmenti agganciati al processo originario vengono
+automaticamente sganciati. Lo stesso avviene all'uscita del processo
+attraverso una \func{exit}.
+
+Una volta che un segmento di memoria condivisa non serve più, si può
+sganciarlo esplicitamente dal processo usando l'altra funzione
+dell'interfaccia, \funcd{shmdt}, il cui prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/shm.h}
+
+  \funcdecl{int shmdt(const void *shmaddr)}
+  Sgancia dal processo un segmento di memoria condivisa.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore, la funzione fallisce solo quando non c'è un segmento agganciato
+    all'indirizzo \param{shmaddr}, con \var{errno} che assume il valore
+    \errval{EINVAL}.}
+\end{functions}
+
+La funzione sgancia dallo spazio degli indirizzi del processo un segmento di
+memoria condivisa; questo viene identificato con l'indirizzo \param{shmaddr}
+restituito dalla precedente chiamata a \func{shmat} con il quale era stato
+agganciato al processo.
+
+In caso di successo la funzione aggiorna anche i seguenti campi di
+\struct{shmid\_ds}:
+\begin{itemize*}
+\item il tempo \var{shm\_dtime} dell'ultima operazione di sganciamento viene
+  impostato al tempo corrente.
+\item il \acr{pid} \var{shm\_lpid} dell'ultimo processo che ha operato sul
+  segmento viene impostato a quello del processo corrente.
+\item il numero \var{shm\_nattch} di processi agganciati al segmento viene
+  decrementato di uno.
+\end{itemize*} 
+inoltre la regione di indirizzi usata per il segmento di memoria condivisa
+viene tolta dallo spazio di indirizzi del processo.
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/SharedMem.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Il codice delle funzioni che permettono di creare, trovare e
+    rimuovere un segmento di memoria condivisa.}
+  \label{fig:ipc_sysv_shm_func}
+\end{figure}
+
+Come esempio di uso di queste funzioni vediamo come implementare una serie di
+funzioni di libreria che ne semplifichino l'uso, automatizzando le operazioni
+più comuni; il codice, contenuto nel file \file{SharedMem.c}, è riportato in
+fig.~\ref{fig:ipc_sysv_shm_func}.
+
+La prima funzione (\texttt{\small 3--16}) è \func{ShmCreate} che, data una
+chiave, crea il segmento di memoria condivisa restituendo il puntatore allo
+stesso. La funzione comincia (\texttt{\small 6}) con il chiamare
+\func{shmget}, usando il flag \const{IPC\_CREATE} per creare il segmento
+qualora non esista, ed assegnandogli i privilegi specificati dall'argomento
+\var{perm} e la dimensione specificata dall'argomento \var{shm\_size}.  In
+caso di errore (\texttt{\small 7--9}) si ritorna immediatamente un puntatore
+nullo, altrimenti (\texttt{\small 10}) si prosegue agganciando il segmento di
+memoria condivisa al processo con \func{shmat}. In caso di errore
+(\texttt{\small 11--13}) si restituisce di nuovo un puntatore nullo, infine
+(\texttt{\small 14}) si inizializza con \func{memset} il contenuto del
+segmento al valore costante specificato dall'argomento \var{fill}, e poi si
+ritorna il puntatore al segmento stesso.
+
+La seconda funzione (\texttt{\small 17--31}) è \func{ShmFind}, che, data una
+chiave, restituisce l'indirizzo del segmento ad essa associato. Anzitutto
+(\texttt{\small 22}) si richiede l'identificatore del segmento con
+\func{shmget}, ritornando (\texttt{\small 23--25}) un puntatore nullo in caso
+di errore. Poi si prosegue (\texttt{\small 26}) agganciando il segmento al
+processo con \func{shmat}, restituendo (\texttt{\small 27--29}) di nuovo un
+puntatore nullo in caso di errore, se invece non ci sono errori si restituisce
+il puntatore ottenuto da \func{shmat}.
+
+La terza funzione (\texttt{\small 32--51}) è \func{ShmRemove} che, data la
+chiave ed il puntatore associati al segmento di memoria condivisa, prima lo
+sgancia dal processo e poi lo rimuove. Il primo passo (\texttt{\small 37}) è
+la chiamata a \func{shmdt} per sganciare il segmento, restituendo
+(\texttt{\small 38--39}) un valore -1 in caso di errore. Il passo successivo
+(\texttt{\small 41}) è utilizzare \func{shmget} per ottenere l'identificatore
+associato al segmento data la chiave \var{key}. Al solito si restituisce un
+valore di -1 (\texttt{\small 42--45}) in caso di errore, mentre se tutto va
+bene si conclude restituendo un valore nullo.
+
+Benché la memoria condivisa costituisca il meccanismo di intercomunicazione
+fra processi più veloce, essa non è sempre il più appropriato, dato che, come
+abbiamo visto, si avrà comunque la necessità di una sincronizzazione degli
+accessi.  Per questo motivo, quando la comunicazione fra processi è
+sequenziale, altri meccanismi come le pipe, le fifo o i socket, che non
+necessitano di sincronizzazione esplicita, sono da preferire. Essa diventa
+l'unico meccanismo possibile quando la comunicazione non è
+sequenziale\footnote{come accennato in sez.~\ref{sec:ipc_sysv_mq} per la
+  comunicazione non sequenziale si possono usare le code di messaggi,
+  attraverso l'uso del campo \var{mtype}, ma solo se quest'ultima può essere
+  effettuata in forma di messaggio.} o quando non può avvenire secondo una
+modalità predefinita.
+
+Un esempio classico di uso della memoria condivisa è quello del
+``\textit{monitor}'', in cui viene per scambiare informazioni fra un processo
+server, che vi scrive dei dati di interesse generale che ha ottenuto, e i
+processi client interessati agli stessi dati che così possono leggerli in
+maniera completamente asincrona.  Con questo schema di funzionamento da una
+parte si evita che ciascun processo client debba compiere l'operazione,
+potenzialmente onerosa, di ricavare e trattare i dati, e dall'altra si evita
+al processo server di dover gestire l'invio a tutti i client di tutti i dati
+(non potendo il server sapere quali di essi servono effettivamente al singolo
+client).
+
+Nel nostro caso implementeremo un ``\textsl{monitor}'' di una directory: un
+processo si incaricherà di tenere sotto controllo alcuni parametri relativi ad
+una directory (il numero dei file contenuti, la dimensione totale, quante
+directory, link simbolici, file normali, ecc.) che saranno salvati in un
+segmento di memoria condivisa cui altri processi potranno accedere per
+ricavare la parte di informazione che interessa.
+
+In fig.~\ref{fig:ipc_dirmonitor_main} si è riportata la sezione principale del
+corpo del programma server, insieme alle definizioni delle altre funzioni
+usate nel programma e delle variabili globali, omettendo tutto quello che
+riguarda la gestione delle opzioni e la stampa delle istruzioni di uso a
+video; al solito il codice completo si trova con i sorgenti allegati nel file
+\file{DirMonitor.c}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/DirMonitor.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Codice della funzione principale del programma \file{DirMonitor.c}.}
+  \label{fig:ipc_dirmonitor_main}
+\end{figure}
+
+Il programma usa delle variabili globali (\texttt{\small 2--14}) per mantenere
+i valori relativi agli oggetti usati per la comunicazione inter-processo; si è
+definita inoltre una apposita struttura \struct{DirProp} che contiene i dati
+relativi alle proprietà che si vogliono mantenere nella memoria condivisa, per
+l'accesso da parte dei client.
+
+Il programma, dopo la sezione, omessa, relativa alla gestione delle opzioni da
+riga di comando (che si limitano alla eventuale stampa di un messaggio di
+aiuto a video ed all'impostazione della durata dell'intervallo con cui viene
+ripetuto il calcolo delle proprietà della directory) controlla (\texttt{\small
+  20--23}) che sia stato specificato l'argomento necessario contenente il nome
+della directory da tenere sotto controllo, senza il quale esce immediatamente
+con un messaggio di errore.
+
+Poi, per verificare che l'argomento specifichi effettivamente una directory,
+si esegue (\texttt{\small 24--26}) su di esso una \func{chdir}, uscendo
+immediatamente in caso di errore.  Questa funzione serve anche per impostare
+la directory di lavoro del programma nella directory da tenere sotto
+controllo, in vista del successivo uso della funzione
+\func{daemon}.\footnote{si noti come si è potuta fare questa scelta,
+  nonostante le indicazioni illustrate in sez.~\ref{sec:sess_daemon}, per il
+  particolare scopo del programma, che necessita comunque di restare
+  all'interno di una directory.} Infine (\texttt{\small 27--29}) si installano
+i gestori per i vari segnali di terminazione che, avendo a che fare con un
+programma che deve essere eseguito come server, sono il solo strumento
+disponibile per concluderne l'esecuzione.
+
+Il passo successivo (\texttt{\small 30--39}) è quello di creare gli oggetti di
+intercomunicazione necessari. Si inizia costruendo (\texttt{\small 30}) la
+chiave da usare come riferimento con il nome del programma,\footnote{si è
+  usato un riferimento relativo alla home dell'utente, supposto che i sorgenti
+  di GaPiL siano stati installati direttamente in essa. Qualora si effettui
+  una installazione diversa si dovrà correggere il programma.} dopo di che si
+richiede (\texttt{\small 31}) la creazione di un segmento di memoria condivisa
+con usando la funzione \func{ShmCreate} illustrata in precedenza (una pagina
+di memoria è sufficiente per i dati che useremo), uscendo (\texttt{\small
+  32--35}) qualora la creazione ed il successivo agganciamento al processo non
+abbia successo. Con l'indirizzo \var{shmptr} così ottenuto potremo poi
+accedere alla memoria condivisa, che, per come abbiamo lo abbiamo definito,
+sarà vista nella forma data da \struct{DirProp}. Infine (\texttt{\small
+  36--39}) utilizzando sempre la stessa chiave, si crea, tramite le funzioni
+di interfaccia già descritte in sez.~\ref{sec:ipc_sysv_sem}, anche un mutex,
+che utilizzeremo per regolare l'accesso alla memoria condivisa.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/ComputeValues.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Codice delle funzioni ausiliarie usate da \file{DirMonitor.c}.}
+  \label{fig:ipc_dirmonitor_sub}
+\end{figure}
+
+Completata l'inizializzazione e la creazione degli oggetti di
+intercomunicazione il programma entra nel ciclo principale (\texttt{\small
+  40--49}) dove vengono eseguite indefinitamente le attività di monitoraggio.
+Il primo passo (\texttt{\small 41}) è eseguire \func{daemon} per proseguire
+con l'esecuzione in background come si conviene ad un programma demone; si
+noti che si è mantenuta, usando un valore non nullo del primo argomento, la
+directory di lavoro corrente.  Una volta che il programma è andato in
+background l'esecuzione prosegue (\texttt{\small 42--48}) all'interno di un
+ciclo infinito: si inizia (\texttt{\small 43}) bloccando il mutex con
+\func{MutexLock} per poter accedere alla memoria condivisa (la funzione si
+bloccherà automaticamente se qualche client sta leggendo), poi (\texttt{\small
+  44}) si cancellano i valori precedentemente immagazzinati nella memoria
+condivisa con \func{memset}, e si esegue (\texttt{\small 45}) un nuovo calcolo
+degli stessi utilizzando la funzione \func{DirScan}; infine (\texttt{\small
+  46}) si sblocca il mutex con \func{MutexUnlock}, e si attende
+(\texttt{\small 47}) per il periodo di tempo specificato a riga di comando con
+l'opzione \code{-p} con una \func{sleep}.
+
+Si noti come per il calcolo dei valori da mantenere nella memoria condivisa si
+sia usata ancora una volta la funzione \func{DirScan}, già utilizzata (e
+descritta in dettaglio) in sez.~\ref{sec:file_dir_read}, che ci permette di
+effettuare la scansione delle voci della directory, chiamando per ciascuna di
+esse la funzione \func{ComputeValues}, che esegue tutti i calcoli necessari.
+
+Il codice di quest'ultima è riportato in fig.~\ref{fig:ipc_dirmonitor_sub}.
+Come si vede la funzione (\texttt{\small 2--16}) è molto semplice e si limita
+a chiamare (\texttt{\small 5}) la funzione \func{stat} sul file indicato da
+ciascuna voce, per ottenerne i dati, che poi utilizza per incrementare i vari
+contatori nella memoria condivisa, cui accede grazie alla variabile globale
+\var{shmptr}.
+
+Dato che la funzione è chiamata da \func{DirScan}, si è all'interno del ciclo
+principale del programma, con un mutex acquisito, perciò non è necessario
+effettuare nessun controllo e si può accedere direttamente alla memoria
+condivisa usando \var{shmptr} per riempire i campi della struttura
+\struct{DirProp}; così prima (\texttt{\small 6--7}) si sommano le dimensioni
+dei file ed il loro numero, poi, utilizzando le macro di
+tab.~\ref{tab:file_type_macro}, si contano (\texttt{\small 8--14}) quanti ce
+ne sono per ciascun tipo.
+
+In fig.~\ref{fig:ipc_dirmonitor_sub} è riportato anche il codice
+(\texttt{\small 17--23}) del gestore dei segnali di terminazione, usato per
+chiudere il programma. Esso, oltre a provocare l'uscita del programma, si
+incarica anche di cancellare tutti gli oggetti di intercomunicazione non più
+necessari.  Per questo anzitutto (\texttt{\small 19}) acquisisce il mutex con
+\func{MutexLock}, per evitare di operare mentre un client sta ancora leggendo
+i dati, dopo di che (\texttt{\small 20}) distacca e rimuove il segmento di
+memoria condivisa usando \func{ShmRemove}.  Infine (\texttt{\small 21})
+rimuove il mutex con \func{MutexRemove} ed esce (\texttt{\small 22}).
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6 cm}
+    \includecodesample{listati/ReadMonitor.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Codice del programma client del monitor delle proprietà di una
+    directory, \file{ReadMonitor.c}.}
+  \label{fig:ipc_dirmonitor_client}
+\end{figure}
+
+Il codice del client usato per leggere le informazioni mantenute nella memoria
+condivisa è riportato in fig.~\ref{fig:ipc_dirmonitor_client}. Al solito si è
+omessa la sezione di gestione delle opzioni e la funzione che stampa a video
+le istruzioni; il codice completo è nei sorgenti allegati, nel file
+\file{ReadMonitor.c}.
+
+Una volta conclusa la gestione delle opzioni a riga di comando il programma
+rigenera (\texttt{\small 7}) con \func{ftok} la stessa chiave usata dal server
+per identificare il segmento di memoria condivisa ed il mutex, poi
+(\texttt{\small 8}) richiede con \func{ShmFind} l'indirizzo della memoria
+condivisa agganciando al contempo il segmento al processo, Infine
+(\texttt{\small 17--20}) con \func{MutexFind} si richiede l'identificatore del
+mutex.  Completata l'inizializzazione ed ottenuti i riferimenti agli oggetti
+di intercomunicazione necessari viene eseguito il corpo principale del
+programma (\texttt{\small 21--33}); si comincia (\texttt{\small 22})
+acquisendo il mutex con \func{MutexLock}; qui avviene il blocco del processo
+se la memoria condivisa non è disponibile.  Poi (\texttt{\small 23--31}) si
+stampano i vari valori mantenuti nella memoria condivisa attraverso l'uso di
+\var{shmptr}.  Infine (\texttt{\small 41}) con \func{MutexUnlock} si rilascia
+il mutex, prima di uscire.
+
+Verifichiamo allora il funzionamento dei nostri programmi; al solito, usando
+le funzioni di libreria occorre definire opportunamente
+\code{LD\_LIBRARY\_PATH}; poi si potrà lanciare il server con:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./dirmonitor ./
+\end{Verbatim}
+%$
+ed avendo usato \func{daemon} il comando ritornerà immediatamente. Una volta
+che il server è in esecuzione, possiamo passare ad invocare il client per
+verificarne i risultati, in tal caso otterremo:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./readmon 
+Ci sono 68 file dati
+Ci sono 3 directory
+Ci sono 0 link
+Ci sono 0 fifo
+Ci sono 0 socket
+Ci sono 0 device a caratteri
+Ci sono 0 device a blocchi
+Totale  71 file, per 489831 byte
+\end{Verbatim}
+%$
+ed un rapido calcolo (ad esempio con \code{ls -a | wc} per contare i file) ci
+permette di verificare che il totale dei file è giusto. Un controllo con
+\cmd{ipcs} ci permette inoltre di verificare la presenza di un segmento di
+memoria condivisa e di un semaforo:
+\begin{Verbatim}
+[piccardi@gont sources]$ ipcs
+------ Shared Memory Segments --------
+key        shmid      owner      perms      bytes      nattch     status      
+0xffffffff 54067205   piccardi  666        4096       1                       
+
+------ Semaphore Arrays --------
+key        semid      owner      perms      nsems     
+0xffffffff 229376     piccardi  666        1         
+
+------ Message Queues --------
+key        msqid      owner      perms      used-bytes   messages    
+\end{Verbatim}
+%$
+
+Se a questo punto aggiungiamo un file, ad esempio con \code{touch prova},
+potremo verificare che, passati nel peggiore dei casi almeno 10 secondi (o
+l'eventuale altro intervallo impostato per la rilettura dei dati) avremo:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./readmon 
+Ci sono 69 file dati
+Ci sono 3 directory
+Ci sono 0 link
+Ci sono 0 fifo
+Ci sono 0 socket
+Ci sono 0 device a caratteri
+Ci sono 0 device a blocchi
+Totale  72 file, per 489887 byte
+\end{Verbatim}
+%$
+
+A questo punto possiamo far uscire il server inviandogli un segnale di
+\const{SIGTERM} con il comando \code{killall dirmonitor}, a questo punto
+ripetendo la lettura, otterremo un errore:
+\begin{Verbatim}
+[piccardi@gont sources]$ ./readmon 
+Cannot find shared memory: No such file or directory
+\end{Verbatim}
+%$
+e inoltre potremo anche verificare che anche gli oggetti di intercomunicazione
+visti in precedenza sono stati regolarmente  cancellati:
+\begin{Verbatim}
+[piccardi@gont sources]$ ipcs
+------ Shared Memory Segments --------
+key        shmid      owner      perms      bytes      nattch     status      
+
+------ Semaphore Arrays --------
+key        semid      owner      perms      nsems     
+
+------ Message Queues --------
+key        msqid      owner      perms      used-bytes   messages    
+\end{Verbatim}
+%$
+
+
+%% Per capire meglio il funzionamento delle funzioni facciamo ancora una volta
+%% riferimento alle strutture con cui il kernel implementa i segmenti di memoria
+%% condivisa; uno schema semplificato della struttura è illustrato in
+%% fig.~\ref{fig:ipc_shm_struct}. 
+
+%% \begin{figure}[htb]
+%%   \centering
+%%   \includegraphics[width=10cm]{img/shmstruct}
+%%    \caption{Schema dell'implementazione dei segmenti di memoria condivisa in
+%%     Linux.}
+%%   \label{fig:ipc_shm_struct}
+%% \end{figure}
+
+
+
+
+\section{Tecniche alternative}
+\label{sec:ipc_alternatives}
+
+Come abbiamo detto in sez.~\ref{sec:ipc_sysv_generic}, e ripreso nella
+descrizione dei singoli oggetti che ne fan parte, il \textit{SysV IPC}
+presenta numerosi problemi; in \cite{APUE}\footnote{in particolare nel
+  capitolo 14.}  Stevens ne effettua una accurata analisi (alcuni dei concetti
+sono già stati accennati in precedenza) ed elenca alcune possibili tecniche
+alternative, che vogliamo riprendere in questa sezione.
+
+
+\subsection{Alternative alle code di messaggi}
+\label{sec:ipc_mq_alternative}
+Le code di messaggi sono probabilmente il meno usato degli oggetti del
+\textit{SysV IPC}; esse infatti nacquero principalmente come meccanismo di
+comunicazione bidirezionale quando ancora le pipe erano unidirezionali; con la
+disponibilità di \func{socketpair} (vedi sez.~\ref{sec:ipc_socketpair}) o
+utilizzando una coppia di pipe, si può ottenere questo risultato senza
+incorrere nelle complicazioni introdotte dal \textit{SysV IPC}.
+
+In realtà, grazie alla presenza del campo \var{mtype}, le code di messaggi
+hanno delle caratteristiche ulteriori, consentendo una classificazione dei
+messaggi ed un accesso non rigidamente sequenziale; due caratteristiche che
+sono impossibili da ottenere con le pipe e i socket di \func{socketpair}.  A
+queste esigenze però si può comunque ovviare in maniera diversa con un uso
+combinato della memoria condivisa e dei meccanismi di sincronizzazione, per
+cui alla fine l'uso delle code di messaggi classiche è relativamente poco
+diffuso.
+
+\subsection{I \textsl{file di lock}}
+\label{sec:ipc_file_lock}
+
+\index{file!di lock|(}
+
+Come illustrato in sez.~\ref{sec:ipc_sysv_sem} i semafori del \textit{SysV IPC}
+presentano una interfaccia inutilmente complessa e con alcuni difetti
+strutturali, per questo quando si ha una semplice esigenza di sincronizzazione
+per la quale basterebbe un semaforo binario (quello che abbiamo definito come
+\textit{mutex}), per indicare la disponibilità o meno di una risorsa, senza la
+necessità di un contatore come i semafori, si possono utilizzare metodi
+alternativi.
+
+La prima possibilità, utilizzata fin dalle origini di Unix, è quella di usare
+dei \textsl{file di lock} (per i quali esiste anche una opportuna directory,
+\file{/var/lock}, nel filesystem standard). Per questo si usa la
+caratteristica della funzione \func{open} (illustrata in
+sez.~\ref{sec:file_open}) che prevede\footnote{questo è quanto dettato dallo
+  standard POSIX.1, ciò non toglie che in alcune implementazioni questa
+  tecnica possa non funzionare; in particolare per Linux, nel caso di NFS, si
+  è comunque soggetti alla possibilità di una \itindex{race~condition}
+  \textit{race condition}.} che essa ritorni un errore quando usata con i
+flag di \const{O\_CREAT} e \const{O\_EXCL}. In tal modo la creazione di un
+\textsl{file di lock} può essere eseguita atomicamente, il processo che crea
+il file con successo si può considerare come titolare del lock (e della
+risorsa ad esso associata) mentre il rilascio si può eseguire con una chiamata
+ad \func{unlink}.
+
+Un esempio dell'uso di questa funzione è mostrato dalle funzioni
+\func{LockFile} ed \func{UnlockFile} riportate in fig.~\ref{fig:ipc_file_lock}
+(sono contenute in \file{LockFile.c}, un altro dei sorgenti allegati alla
+guida) che permettono rispettivamente di creare e rimuovere un \textsl{file di
+  lock}. Come si può notare entrambe le funzioni sono elementari; la prima
+(\texttt{\small 4--10}) si limita ad aprire il file di lock (\texttt{\small
+  9}) nella modalità descritta, mentre la seconda (\texttt{\small 11--17}) lo
+cancella con \func{unlink}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/LockFile.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Il codice delle funzioni \func{LockFile} e \func{UnlockFile} che
+    permettono di creare e rimuovere un \textsl{file di lock}.}
+  \label{fig:ipc_file_lock}
+\end{figure}
+
+Uno dei limiti di questa tecnica è che, come abbiamo già accennato in
+sez.~\ref{sec:file_open}, questo comportamento di \func{open} può non
+funzionare (la funzione viene eseguita, ma non è garantita l'atomicità
+dell'operazione) se il filesystem su cui si va ad operare è su NFS; in tal
+caso si può adottare una tecnica alternativa che prevede l'uso della
+\func{link} per creare come \textsl{file di lock} un hard link ad un file
+esistente; se il link esiste già e la funzione fallisce, significa che la
+risorsa è bloccata e potrà essere sbloccata solo con un \func{unlink},
+altrimenti il link è creato ed il lock acquisito; il controllo e l'eventuale
+acquisizione sono atomici; la soluzione funziona anche su NFS, ma ha un altro
+difetto è che è quello di poterla usare solo se si opera all'interno di uno
+stesso filesystem.
+
+In generale comunque l'uso di un \textsl{file di lock} presenta parecchi
+problemi che non lo rendono una alternativa praticabile per la
+sincronizzazione: anzitutto in caso di terminazione imprevista del processo,
+si lascia allocata la risorsa (il \textsl{file di lock}) e questa deve essere
+sempre cancellata esplicitamente.  Inoltre il controllo della disponibilità
+può essere eseguito solo con una tecnica di \itindex{polling}
+\textit{polling}, ed è quindi molto inefficiente.
+
+La tecnica dei file di lock ha comunque una sua utilità, e può essere usata
+con successo quando l'esigenza è solo quella di segnalare l'occupazione di una
+risorsa, senza necessità di attendere che questa si liberi; ad esempio la si
+usa spesso per evitare interferenze sull'uso delle porte seriali da parte di
+più programmi: qualora si trovi un file di lock il programma che cerca di
+accedere alla seriale si limita a segnalare che la risorsa non è disponibile.
+
+\index{file!di lock|)}
+
+
+\subsection{La sincronizzazione con il \textit{file locking}}
+\label{sec:ipc_lock_file}
+
+Dato che i \index{file!di lock} file di lock presentano gli inconvenienti
+illustrati in precedenza, la tecnica alternativa di sincronizzazione più
+comune è quella di fare ricorso al \index{file!locking} \textit{file locking}
+(trattato in sez.~\ref{sec:file_locking}) usando \func{fcntl} su un file
+creato per l'occasione per ottenere un write lock. In questo modo potremo
+usare il lock come un \textit{mutex}: per bloccare la risorsa basterà
+acquisire il lock, per sbloccarla basterà rilasciare il lock. Una richiesta
+fatta con un write lock metterà automaticamente il processo in stato di
+attesa, senza necessità di ricorrere al \itindex{polling} \textit{polling} per
+determinare la disponibilità della risorsa, e al rilascio della stessa da
+parte del processo che la occupava si otterrà il nuovo lock atomicamente.
+
+Questo approccio presenta il notevole vantaggio che alla terminazione di un
+processo tutti i lock acquisiti vengono rilasciati automaticamente (alla
+chiusura dei relativi file) e non ci si deve preoccupare di niente; inoltre
+non consuma risorse permanentemente allocate nel sistema. Lo svantaggio è che,
+dovendo fare ricorso a delle operazioni sul filesystem, esso è in genere
+leggermente più lento.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/MutexLocking.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Il codice delle funzioni che permettono per la gestione dei 
+    \textit{mutex} con il \index{file!locking} \textit{file locking}.}
+  \label{fig:ipc_flock_mutex}
+\end{figure}
+
+Il codice delle varie funzioni usate per implementare un mutex utilizzando il
+\textit{file locking} \index{file!locking} è riportato in
+fig.~\ref{fig:ipc_flock_mutex}; si è mantenuta volutamente una struttura
+analoga alle precedenti funzioni che usano i semafori, anche se le due
+interfacce non possono essere completamente equivalenti, specie per quanto
+riguarda la rimozione del mutex.
+
+La prima funzione (\texttt{\small 1--5}) è \func{CreateMutex}, e serve a
+creare il mutex; la funzione è estremamente semplice, e si limita
+(\texttt{\small 4}) a creare, con una opportuna chiamata ad \func{open}, il
+file che sarà usato per il successivo \textit{file locking}, assicurandosi che
+non esista già (nel qual caso segnala un errore); poi restituisce il file
+descriptor che sarà usato dalle altre funzioni per acquisire e rilasciare il
+mutex.
+
+La seconda funzione (\texttt{\small 6--10}) è \func{FindMutex}, che, come la
+precedente, è stata definita per mantenere una analogia con la corrispondente
+funzione basata sui semafori. Anch'essa si limita (\texttt{\small 9}) ad
+aprire il file da usare per il \index{file!locking} \textit{file locking},
+solo che in questo caso le opzioni di \func{open} sono tali che il file in
+questione deve esistere di già.
+
+La terza funzione (\texttt{\small 11--22}) è \func{LockMutex} e serve per
+acquisire il mutex. La funzione definisce (\texttt{\small 14}) e inizializza
+(\texttt{\small 16--19}) la struttura \var{lock} da usare per acquisire un
+write lock sul file, che poi (\texttt{\small 21}) viene richiesto con
+\func{fcntl}, restituendo il valore di ritorno di quest'ultima. Se il file è
+libero il lock viene acquisito e la funzione ritorna immediatamente;
+altrimenti \func{fcntl} si bloccherà (si noti che la si è chiamata con
+\const{F\_SETLKW}) fino al rilascio del lock.
+
+La quarta funzione (\texttt{\small 24--34}) è \func{UnlockMutex} e serve a
+rilasciare il mutex. La funzione è analoga alla precedente, solo che in questo
+caso si inizializza (\texttt{\small 28--31}) la struttura \var{lock} per il
+rilascio del lock, che viene effettuato (\texttt{\small 33}) con la opportuna
+chiamata a \func{fcntl}. Avendo usato il \index{file!locking} \textit{file
+  locking} in semantica POSIX (si riveda quanto detto
+sez.~\ref{sec:file_posix_lock}) solo il processo che ha precedentemente
+eseguito il lock può sbloccare il mutex.
+
+La quinta funzione (\texttt{\small 36--39}) è \func{RemoveMutex} e serve a
+cancellare il mutex. Anche questa funzione è stata definita per mantenere una
+analogia con le funzioni basate sui semafori, e si limita a cancellare
+(\texttt{\small 38}) il file con una chiamata ad \func{unlink}. Si noti che in
+questo caso la funzione non ha effetto sui mutex già ottenuti con precedenti
+chiamate a \func{FindMutex} o \func{CreateMutex}, che continueranno ad essere
+disponibili fintanto che i relativi file descriptor restano aperti. Pertanto
+per rilasciare un mutex occorrerà prima chiamare \func{UnlockMutex} oppure
+chiudere il file usato per il lock.
+
+La sesta funzione (\texttt{\small 41--55}) è \func{ReadMutex} e serve a
+leggere lo stato del mutex. In questo caso si prepara (\texttt{\small 46--49})
+la solita struttura \var{lock} come l'acquisizione del lock, ma si effettua
+(\texttt{\small 51}) la chiamata a \func{fcntl} usando il comando
+\const{F\_GETLK} per ottenere lo stato del lock, e si restituisce
+(\texttt{\small 52}) il valore di ritorno in caso di errore, ed il valore del
+campo \var{l\_type} (che descrive lo stato del lock) altrimenti
+(\texttt{\small 54}). Per questo motivo la funzione restituirà -1 in caso di
+errore e uno dei due valori \const{F\_UNLCK} o \const{F\_WRLCK}\footnote{non
+  si dovrebbe mai avere il terzo valore possibile, \const{F\_RDLCK}, dato che
+  la nostra interfaccia usa solo i write lock. Però è sempre possibile che
+  siano richiesti altri lock sul file al di fuori dell'interfaccia, nel qual
+  caso si potranno avere, ovviamente, interferenze indesiderate.} in caso di
+successo, ad indicare che il mutex è, rispettivamente, libero o occupato.
+
+Basandosi sulla semantica dei file lock POSIX valgono tutte le considerazioni
+relative al comportamento di questi ultimi fatte in
+sez.~\ref{sec:file_posix_lock}; questo significa ad esempio che, al contrario
+di quanto avveniva con l'interfaccia basata sui semafori, chiamate multiple a
+\func{UnlockMutex} o \func{LockMutex} non si cumulano e non danno perciò
+nessun inconveniente.
+
+
+\subsection{Il \textit{memory mapping} anonimo}
+\label{sec:ipc_mmap_anonymous}
+
+\itindbeg{memory~mapping}
+Abbiamo già visto che quando i processi sono \textsl{correlati}\footnote{se
+  cioè hanno almeno un progenitore comune.} l'uso delle pipe può costituire
+una valida alternativa alle code di messaggi; nella stessa situazione si può
+evitare l'uso di una memoria condivisa facendo ricorso al cosiddetto
+\textit{memory mapping} anonimo.
+
+In sez.~\ref{sec:file_memory_map} abbiamo visto come sia possibile mappare il
+contenuto di un file nella memoria di un processo, e che, quando viene usato
+il flag \const{MAP\_SHARED}, le modifiche effettuate al contenuto del file
+vengono viste da tutti i processi che lo hanno mappato. Utilizzare questa
+tecnica per creare una memoria condivisa fra processi diversi è estremamente
+inefficiente, in quanto occorre passare attraverso il disco. Però abbiamo
+visto anche che se si esegue la mappatura con il flag \const{MAP\_ANONYMOUS}
+la regione mappata non viene associata a nessun file, anche se quanto scritto
+rimane in memoria e può essere riletto; allora, dato che un processo figlio
+mantiene nel suo spazio degli indirizzi anche le regioni mappate, esso sarà
+anche in grado di accedere a quanto in esse è contenuto.
+
+In questo modo diventa possibile creare una memoria condivisa fra processi
+diversi, purché questi abbiano almeno un progenitore comune che ha effettuato
+il \textit{memory mapping} anonimo.\footnote{nei sistemi derivati da SysV una
+  funzionalità simile a questa viene implementata mappando il file speciale
+  \file{/dev/zero}. In tal caso i valori scritti nella regione mappata non
+  vengono ignorati (come accade qualora si scriva direttamente sul file), ma
+  restano in memoria e possono essere riletti secondo le stesse modalità usate
+  nel \textit{memory mapping} anonimo.} Vedremo come utilizzare questa tecnica
+più avanti, quando realizzeremo una nuova versione del monitor visto in
+sez.~\ref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
+\itindend{memory~mapping}
+
+% TODO fare esempio di mmap anonima
+
+\section{Il sistema di comunicazione fra processi di POSIX}
+\label{sec:ipc_posix}
+
+Per superare i numerosi problemi del \textit{SysV IPC}, evidenziati per i suoi
+aspetti generali in coda a sez.~\ref{sec:ipc_sysv_generic} e per i singoli
+oggetti nei paragrafi successivi, lo standard POSIX.1b ha introdotto dei nuovi
+meccanismi di comunicazione, che vanno sotto il nome di POSIX IPC, definendo
+una interfaccia completamente nuova, che tratteremo in questa sezione.
+
+
+\subsection{Considerazioni generali}
+\label{sec:ipc_posix_generic}
+
+Oggi Linux supporta tutti gli oggetti definito nello standard POSIX per l'IPC,
+ma a lungo non è stato così; la memoria condivisa è presente a partire dal
+kernel 2.4.x, i semafori sono forniti dalle \acr{glibc} nella sezione che
+implementa i \itindex{thread} \textit{thread} POSIX di nuova generazione che
+richiedono il kernel 2.6, le code di messaggi sono supportate a partire dal
+kernel 2.6.6.
+
+La caratteristica fondamentale dell'interfaccia POSIX è l'abbandono dell'uso
+degli identificatori e delle chiavi visti nel SysV IPC, per passare ai
+\itindex{POSIX~IPC~names} \textit{POSIX IPC names}, che sono sostanzialmente
+equivalenti ai nomi dei file. Tutte le funzioni che creano un oggetto di IPC
+POSIX prendono come primo argomento una stringa che indica uno di questi nomi;
+lo standard è molto generico riguardo l'implementazione, ed i nomi stessi
+possono avere o meno una corrispondenza sul filesystem; tutto quello che è
+richiesto è che:
+\begin{itemize*}
+\item i nomi devono essere conformi alle regole che caratterizzano i
+  \itindex{pathname} \textit{pathname}, in particolare non essere più lunghi di
+  \const{PATH\_MAX} byte e terminati da un carattere nullo.
+\item se il nome inizia per una \texttt{/} chiamate differenti allo stesso
+  nome fanno riferimento allo stesso oggetto, altrimenti l'interpretazione del
+  nome dipende dall'implementazione.
+\item l'interpretazione di ulteriori \texttt{/} presenti nel nome dipende
+  dall'implementazione.
+\end{itemize*}
+
+Data la assoluta genericità delle specifiche, il comportamento delle funzioni
+è subordinato in maniera quasi completa alla relativa
+implementazione.\footnote{tanto che Stevens in \cite{UNP2} cita questo caso
+  come un esempio della maniera standard usata dallo standard POSIX per
+  consentire implementazioni non standardizzabili.} Nel caso di Linux, sia per
+quanto riguarda la memoria condivisa ed i semafori, che per quanto riguarda le
+code di messaggi, tutto viene creato usando come radici delle opportune
+directory (rispettivamente \file{/dev/shm} e \file{/dev/mqueue}, per i
+dettagli si faccia riferimento a sez.~\ref{sec:ipc_posix_shm},
+sez.~\ref{sec:ipc_posix_sem} e sez.~\ref{sec:ipc_posix_mq}) ed i nomi
+specificati nelle relative funzioni sono considerati come un
+\itindsub{pathname}{assoluto} \textit{pathname} assoluto (comprendente
+eventuali sottodirectory) rispetto a queste radici.
+
+Il vantaggio degli oggetti di IPC POSIX è comunque che essi vengono inseriti
+nell'albero dei file, e possono essere maneggiati con le usuali funzioni e
+comandi di accesso ai file,\footnote{questo è vero nel caso di Linux, che usa
+  una implementazione che lo consente, non è detto che altrettanto valga per
+  altri kernel; in particolare, come si può facilmente verificare con uno
+  \cmd{strace}, sia per la memoria condivisa che per le code di messaggi le
+  system call utilizzate da Linux sono le stesse di quelle dei file, essendo
+  detti oggetti realizzati come tali in appositi filesystem.}  che funzionano
+come su dei file normali.
+
+In particolare i permessi associati agli oggetti di IPC POSIX sono identici ai
+permessi dei file, ed il controllo di accesso segue esattamente la stessa
+semantica (quella illustrata in sez.~\ref{sec:file_access_control}), e non
+quella particolare (si ricordi quanto visto in
+sez.~\ref{sec:ipc_sysv_access_control}) che viene usata per gli oggetti del
+SysV IPC.  Per quanto riguarda l'attribuzione dell'utente e del gruppo
+proprietari dell'oggetto alla creazione di quest'ultimo essa viene effettuata
+secondo la semantica SysV: corrispondono cioè a user-ID e group-ID effettivi
+del processo che esegue la creazione.
+
+
+\subsection{Code di messaggi}
+\label{sec:ipc_posix_mq}
+
+Le code di messaggi POSIX sono supportate da Linux a partire dalla versione
+2.6.6-rc1 del kernel,\footnote{l'implementazione è dovuta a Michal Wronski e
+  Krzysztof Benedyczak, e le relative informazioni si possono trovare su
+  \href{http://www.geocities.com/wronski12/posix_ipc/index.html}
+  {\textsf{http://www.geocities.com/wronski12/posix\_ipc/index.html}}.} In
+generale, come le corrispettive del SysV IPC, le code di messaggi sono poco
+usate, dato che i socket, nei casi in cui sono sufficienti, sono più comodi, e
+che in casi più complessi la comunicazione può essere gestita direttamente con
+mutex (o semafori) e memoria condivisa con tutta la flessibilità che occorre.
+
+Per poter utilizzare le code di messaggi, oltre ad utilizzare un kernel
+superiore al 2.6.6 (o precedente, se sono stati opportunamente applicati i
+relativi patch) occorre utilizzare la libreria \file{libmqueue}\footnote{i
+  programmi che usano le code di messaggi cioè devono essere compilati
+  aggiungendo l'opzione \code{-lmqueue} al comando \cmd{gcc}; in
+  corrispondenza all'inclusione del supporto nel kernel ufficiale anche
+  \file{libmqueue} è stata inserita nelle \acr{glibc}, a partire dalla
+  versione 2.3.4 delle medesime.} che contiene le funzioni dell'interfaccia
+POSIX.\footnote{in realtà l'implementazione è realizzata tramite delle
+  opportune chiamate ad \func{ioctl} sui file del filesystem speciale su cui
+  vengono mantenuti questi oggetti di IPC.}
+
+La libreria inoltre richiede la presenza dell'apposito filesystem di tipo
+\texttt{mqueue} montato su \file{/dev/mqueue}; questo può essere fatto
+aggiungendo ad \conffile{/etc/fstab} una riga come:
+\begin{verbatim}
+mqueue   /dev/mqueue       mqueue    defaults        0      0
+\end{verbatim}
+ed esso sarà utilizzato come radice sulla quale vengono risolti i nomi delle
+code di messaggi che iniziano con una ``\texttt{/}''. Le opzioni di mount
+accettate sono \texttt{uid}, \texttt{gid} e \texttt{mode} che permettono
+rispettivamente di impostare l'utente, il gruppo ed i permessi associati al
+filesystem.
+
+
+La funzione che permette di aprire (e crearla se non esiste ancora) una coda
+di messaggi POSIX è \funcd{mq\_open}, ed il suo prototipo è:
+\begin{functions}
+  \headdecl{mqueue.h} 
+  
+  \funcdecl{mqd\_t mq\_open(const char *name, int oflag)}
+  
+  \funcdecl{mqd\_t mq\_open(const char *name, int oflag, unsigned long mode,
+    struct mq\_attr *attr)}
+  
+  Apre una coda di messaggi POSIX impostandone le caratteristiche.
+  
+  \bodydesc{La funzione restituisce il descrittore associato alla coda in caso
+    di successo e -1 per un errore; nel quel caso \var{errno} assumerà i
+    valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] il processo non ha i privilegi per accedere al
+      alla memoria secondo quanto specificato da \param{oflag}.
+    \item[\errcode{EEXIST}] si è specificato \const{O\_CREAT} e
+      \const{O\_EXCL} ma la coda già esiste.
+    \item[\errcode{EINVAL}] il file non supporta la funzione, o si è
+      specificato \const{O\_CREAT} con una valore non nullo di \param{attr} e
+      valori non validi di \var{mq\_maxmsg} e \var{mq\_msgsize}.
+    \item[\errcode{ENOENT}] non si è specificato \const{O\_CREAT} ma la coda
+      non esiste.
+    \end{errlist}
+    ed inoltre \errval{ENOMEM}, \errval{ENOSPC}, \errval{EFAULT},
+    \errval{EMFILE}, \errval{EINTR} ed \errval{ENFILE}.
+}
+\end{functions}
+
+La funzione apre la coda di messaggi identificata dall'argomento \param{name}
+restituendo il descrittore ad essa associato, del tutto analogo ad un file
+descriptor, con l'unica differenza che lo standard prevede un apposito tipo
+\type{mqd\_t}.\footnote{nel caso di Linux si tratta in effetti proprio di un
+  normale file descriptor; pertanto, anche se questo comportamento non è
+  portabile, lo si può tenere sotto osservazione con le funzioni dell'I/O
+  multiplexing (vedi sez.~\ref{sec:file_multiplexing}) come possibile
+  alternativa all'uso dell'interfaccia di notifica di \func{mq\_notify} (che
+  vedremo a breve).} Se la coda esiste già il descrittore farà riferimento
+allo stesso oggetto, consentendo così la comunicazione fra due processi
+diversi.
+
+La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
+possono essere specificati per \param{oflag}, che deve essere specificato come
+maschera binaria; i valori possibili per i vari bit sono quelli visti in
+tab.~\ref{tab:file_open_flags} dei quali però \func{mq\_open} riconosce solo i
+seguenti:
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\const{O\_RDONLY}] Apre la coda solo per la ricezione di messaggi. Il
+  processo potrà usare il descrittore con \func{mq\_receive} ma non con
+  \func{mq\_send}.
+\item[\const{O\_WRONLY}] Apre la coda solo per la trasmissione di messaggi. Il
+  processo potrà usare il descrittore con \func{mq\_send} ma non con
+  \func{mq\_receive}.
+\item[\const{O\_RDWR}] Apre la coda solo sia per la trasmissione che per la
+  ricezione. 
+\item[\const{O\_CREAT}] Necessario qualora si debba creare la coda; la
+  presenza di questo bit richiede la presenza degli ulteriori argomenti
+  \param{mode} e \param{attr}.
+\item[\const{O\_EXCL}] Se usato insieme a \const{O\_CREAT} fa fallire la
+  chiamata se la coda esiste già, altrimenti esegue la creazione atomicamente.
+\item[\const{O\_NONBLOCK}] Imposta la coda in modalità non bloccante, le
+  funzioni di ricezione e trasmissione non si bloccano quando non ci sono le
+  risorse richieste, ma ritornano immediatamente con un errore di
+  \errcode{EAGAIN}.
+\end{basedescript}
+
+I primi tre bit specificano la modalità di apertura della coda, e sono fra
+loro esclusivi. Ma qualunque sia la modalità in cui si è aperta una coda,
+questa potrà essere riaperta più volte in una modalità diversa, e vi si potrà
+sempre accedere attraverso descrittori diversi, esattamente come si può fare
+per i file normali.
+
+Se la coda non esiste e la si vuole creare si deve specificare
+\const{O\_CREAT}, in tal caso occorre anche specificare i permessi di
+creazione con l'argomento \param{mode};\footnote{fino al 2.6.14 per un bug i
+  valori della \textit{umask} del processo non venivano applicati a questi
+  permessi.} i valori di quest'ultimo sono identici a quelli usati per
+\func{open}, anche se per le code di messaggi han senso solo i permessi di
+lettura e scrittura. Oltre ai permessi di creazione possono essere specificati
+anche gli attributi specifici della coda tramite l'argomento \param{attr};
+quest'ultimo è un puntatore ad una apposita struttura \struct{mq\_attr}, la
+cui definizione è riportata in fig.~\ref{fig:ipc_mq_attr}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includestruct{listati/mq_attr.h}
+  \end{minipage} 
+  \normalsize
+  \caption{La struttura \structd{mq\_attr}, contenente gli attributi di una
+    coda di messaggi POSIX.}
+  \label{fig:ipc_mq_attr}
+\end{figure}
+
+Per la creazione della coda i campi della struttura che devono essere
+specificati sono \var{mq\_maxmsg} e \var{mq\_msgsize}, che indicano
+rispettivamente il numero massimo di messaggi che può contenere e la
+dimensione massima di un messaggio. Il valore dovrà essere positivo e minore
+dei rispettivi limiti di sistema \const{MQ\_MAXMSG} e \const{MQ\_MSGSIZE},
+altrimenti la funzione fallirà con un errore di \errcode{EINVAL}.
+Se \param{attr} è un puntatore nullo gli attributi della coda saranno
+impostati ai valori predefiniti.
+
+Quando l'accesso alla coda non è più necessario si può chiudere il relativo
+descrittore con la funzione \funcd{mq\_close}, il cui prototipo è:
+\begin{prototype}{mqueue.h}
+{int mq\_close(mqd\_t mqdes)}
+
+Chiude la coda \param{mqdes}.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore;
+  nel quel caso \var{errno} assumerà i valori \errval{EBADF} o
+  \errval{EINTR}.}
+\end{prototype}
+
+La funzione è analoga a \func{close},\footnote{in Linux, dove le code sono
+  implementate come file su un filesystem dedicato, è esattamente la stessa
+  funzione.} dopo la sua esecuzione il processo non sarà più in grado di usare
+il descrittore della coda, ma quest'ultima continuerà ad esistere nel sistema
+e potrà essere acceduta con un'altra chiamata a \func{mq\_open}. All'uscita di
+un processo tutte le code aperte, così come i file, vengono chiuse
+automaticamente. Inoltre se il processo aveva agganciato una richiesta di
+notifica sul descrittore che viene chiuso, questa sarà rilasciata e potrà
+essere richiesta da qualche altro processo.
+
+
+Quando si vuole effettivamente rimuovere una coda dal sistema occorre usare la
+funzione \funcd{mq\_unlink}, il cui prototipo è:
+\begin{prototype}{mqueue.h}
+{int mq\_unlink(const char *name)}
+
+Rimuove una coda di messaggi.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore; nel quel caso \var{errno} assumerà gli stessi valori riportati da
+  \func{unlink}.}
+\end{prototype}
+
+Anche in questo caso il comportamento della funzione è analogo a quello di
+\func{unlink} per i file,\footnote{di nuovo l'implementazione di Linux usa
+  direttamente \func{unlink}.} la funzione rimuove la coda \param{name}, così
+che una successiva chiamata a \func{mq\_open} fallisce o crea una coda
+diversa. 
+
+Come per i file ogni coda di messaggi ha un contatore di riferimenti, per cui
+la coda non viene effettivamente rimossa dal sistema fin quando questo non si
+annulla. Pertanto anche dopo aver eseguito con successo \func{mq\_unlink} la
+coda resterà accessibile a tutti i processi che hanno un descrittore aperto su
+di essa.  Allo stesso modo una coda ed i suoi contenuti resteranno disponibili
+all'interno del sistema anche quando quest'ultima non è aperta da nessun
+processo (questa è una delle differenze più rilevanti nei confronti di pipe e
+fifo).  La sola differenza fra code di messaggi POSIX e file normali è che,
+essendo il filesystem delle code di messaggi virtuale e basato su oggetti
+interni al kernel, il suo contenuto viene perduto con il riavvio del sistema.
+
+Come accennato ad ogni coda di messaggi è associata una struttura
+\struct{mq\_attr}, che può essere letta e modificata attraverso le due
+funzioni \funcd{mq\_getattr} e \funcd{mq\_setattr}, i cui prototipi sono:
+\begin{functions}
+  \headdecl{mqueue.h} 
+  
+  \funcdecl{int mq\_getattr(mqd\_t mqdes, struct mq\_attr *mqstat)}
+  Legge gli attributi di una coda di messaggi POSIX.
+  
+  \funcdecl{int mq\_setattr(mqd\_t mqdes, const struct mq\_attr *mqstat,
+    struct mq\_attr *omqstat)}
+  Modifica gli attributi di una coda di messaggi POSIX.
+  
+  \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
+    caso di errore; nel quel caso \var{errno} assumerà i valori \errval{EBADF}
+    o \errval{EINVAL}.}
+\end{functions}
+
+La funzione \func{mq\_getattr} legge i valori correnti degli attributi della
+coda nella struttura puntata da \param{mqstat}; di questi l'unico relativo
+allo stato corrente della coda è \var{mq\_curmsgs} che indica il numero di
+messaggi da essa contenuti, gli altri indicano le caratteristiche generali
+della stessa.
+
+La funzione \func{mq\_setattr} permette di modificare gli attributi di una
+coda tramite i valori contenuti nella struttura puntata da \param{mqstat}, ma
+può essere modificato solo il campo \var{mq\_flags}, gli altri campi vengono
+ignorati. In particolare i valori di \var{mq\_maxmsg} e \var{mq\_msgsize}
+possono essere specificati solo in fase ci creazione della coda.  Inoltre i
+soli valori possibili per \var{mq\_flags} sono 0 e \const{O\_NONBLOCK}, per
+cui alla fine la funzione può essere utilizzata solo per abilitare o
+disabilitare la modalità non bloccante. L'argomento \param{omqstat} viene
+usato, quando diverso da \val{NULL}, per specificare l'indirizzo di una
+struttura su cui salvare i valori degli attributi precedenti alla chiamata
+della funzione.
+
+Per inserire messaggi su di una coda sono previste due funzioni,
+\funcd{mq\_send} e \funcd{mq\_timedsend}, i cui prototipi sono:
+\begin{functions}
+  \headdecl{mqueue.h} 
+  
+  \funcdecl{int mq\_send(mqd\_t mqdes, const char *msg\_ptr, size\_t msg\_len,
+    unsigned int msg\_prio)} 
+  Esegue l'inserimento di un messaggio su una coda.
+  
+  \funcdecl{int mq\_timedsend(mqd\_t mqdes, const char *msg\_ptr, size\_t
+    msg\_len, unsigned msg\_prio, const struct timespec *abs\_timeout)}   
+  Esegue l'inserimento di un messaggio su una coda entro il tempo
+  \param{abs\_timeout}.
+
+  
+  \bodydesc{Le funzioni restituiscono 0 in caso di successo e $-1$ per un
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EAGAIN}] si è aperta la coda con \const{O\_NONBLOCK}, e la
+      coda è piena.
+    \item[\errcode{EMSGSIZE}] la lunghezza del messaggio \param{msg\_len}
+      eccede il limite impostato per la coda.
+    \item[\errcode{EINVAL}] si è specificato un valore nullo per
+      \param{msg\_len}, o un valore di \param{msg\_prio} fuori dai limiti, o
+      un valore non valido per \param{abs\_timeout}.
+    \item[\errcode{ETIMEDOUT}] l'inserimento del messaggio non è stato
+      effettuato entro il tempo stabilito.
+    \end{errlist}    
+    ed inoltre \errval{EBADF}, \errval{ENOMEM} ed \errval{EINTR}.}
+\end{functions}
+
+Entrambe le funzioni richiedono un puntatore al testo del messaggio
+nell'argomento \param{msg\_ptr} e la relativa lunghezza in \param{msg\_len}.
+Se quest'ultima eccede la dimensione massima specificata da \var{mq\_msgsize}
+le funzioni ritornano immediatamente con un errore di \errcode{EMSGSIZE}.
+
+L'argomento \param{msg\_prio} indica la priorità dell'argomento; i messaggi di
+priorità maggiore vengono inseriti davanti a quelli di priorità inferiore (e
+quindi saranno riletti per primi). A parità del valore della priorità il
+messaggio sarà inserito in coda a tutti quelli con la stessa priorità. Il
+valore della priorità non può eccedere il limite di sistema
+\const{MQ\_PRIO\_MAX}, che nel caso è pari a 32768.
+
+Qualora la coda sia piena, entrambe le funzioni si bloccano, a meno che non
+sia stata selezionata in fase di apertura la modalità non
+bloccante,\footnote{o si sia impostato il flag \const{O\_NONBLOCK} sul file
+  descriptor della coda.} nel qual caso entrambe ritornano \errcode{EAGAIN}.
+La sola differenza fra le due funzioni è che la seconda, passato il tempo
+massimo impostato con l'argomento \param{abs\_timeout},\footnote{deve essere
+  specificato un tempo assoluto tramite una struttura \struct{timespec} (vedi
+  fig.~\ref{fig:sys_timespec_struct}) indicato in numero di secondi e
+  nanosecondi a partire dal 1 gennaio 1970.} ritorna comunque con un errore di
+\errcode{ETIMEDOUT}, se invece il tempo è già scaduto al momento della
+chiamata e la coda è vuota la funzione ritorna immediatamente.
+
+Come per l'inserimento, anche per l'estrazione dei messaggi da una coda sono
+previste due funzioni, \funcd{mq\_receive} e \funcd{mq\_timedreceive}, i cui
+prototipi sono:
+\begin{functions}
+  \headdecl{mqueue.h} 
+  
+  \funcdecl{ssize\_t mq\_receive(mqd\_t mqdes, char *msg\_ptr, size\_t
+    msg\_len, unsigned int *msg\_prio)}   
+  Effettua la ricezione di un messaggio da una coda.
+  
+  \funcdecl{ssize\_t mq\_timedreceive(mqd\_t mqdes, char *msg\_ptr, size\_t
+    msg\_len, unsigned int *msg\_prio, const struct timespec *abs\_timeout)}
+  Effettua la ricezione di un messaggio da una coda entro il tempo
+  \param{abs\_timeout}.
+  
+  \bodydesc{Le funzioni restituiscono il numero di byte del messaggio in caso
+    di successo e -1 in caso di errore; nel quel caso \var{errno} assumerà i
+    valori:
+    \begin{errlist}
+    \item[\errcode{EAGAIN}] si è aperta la coda con \const{O\_NONBLOCK}, e la
+      coda è vuota.
+    \item[\errcode{EMSGSIZE}] la lunghezza del messaggio sulla coda eccede il
+      valore \param{msg\_len} specificato per la ricezione.
+    \item[\errcode{EINVAL}] si è specificato un valore nullo per
+      \param{msg\_ptr}, o un valore non valido per \param{abs\_timeout}.
+    \item[\errcode{ETIMEDOUT}] la ricezione del messaggio non è stata
+      effettuata entro il tempo stabilito.
+    \end{errlist}    
+    ed inoltre \errval{EBADF}, \errval{EINTR}, \errval{ENOMEM}, o
+    \errval{EINVAL}.}
+\end{functions}
+
+La funzione estrae dalla coda il messaggio a priorità più alta, o il più
+vecchio fra quelli della stessa priorità. Una volta ricevuto il messaggio
+viene tolto dalla coda e la sua dimensione viene restituita come valore di
+ritorno.\footnote{si tenga presente che 0 è una dimensione valida e che la
+  condizione di errore è restituita dal valore -1; Stevens in \cite{UNP2} fa
+  notare che questo è uno dei casi in cui vale ciò che lo standard
+  \textsl{non} dice, una dimensione nulla infatti, pur non essendo citata, non
+  viene proibita.}
+
+Se la dimensione specificata da \param{msg\_len} non è sufficiente a contenere
+il messaggio, entrambe le funzioni, al contrario di quanto avveniva nelle code
+di messaggi di SysV, ritornano un errore di \errcode{EMSGSIZE} senza estrarre
+il messaggio.  È pertanto opportuno eseguire sempre una chiamata a
+\func{mq\_getaddr} prima di eseguire una ricezione, in modo da ottenere la
+dimensione massima dei messaggi sulla coda, per poter essere in grado di
+allocare dei buffer sufficientemente ampi per la lettura.
+
+Se si specifica un puntatore per l'argomento \param{msg\_prio} il valore della
+priorità del messaggio viene memorizzato all'indirizzo da esso indicato.
+Qualora non interessi usare la priorità dei messaggi si può specificare
+\var{NULL}, ed usare un valore nullo della priorità nelle chiamate a
+\func{mq\_send}.
+
+Si noti che con le code di messaggi POSIX non si ha la possibilità di
+selezionare quale messaggio estrarre con delle condizioni sulla priorità, a
+differenza di quanto avveniva con le code di messaggi di SysV che permettono
+invece la selezione in base al valore del campo \var{mtype}. 
+
+% TODO inserire i dati di /proc/sys/fs/mqueue 
+
+Qualora la coda sia vuota entrambe le funzioni si bloccano, a meno che non si
+sia selezionata la modalità non bloccante; in tal caso entrambe ritornano
+immediatamente con l'errore \errcode{EAGAIN}. Anche in questo caso la sola
+differenza fra le due funzioni è che la seconda non attende indefinitamente e
+passato il tempo massimo \param{abs\_timeout} ritorna comunque con un errore
+di \errcode{ETIMEDOUT}.
+
+Uno dei problemi sottolineati da Stevens in \cite{UNP2}, comuni ad entrambe le
+tipologie di code messaggi, è che non è possibile per chi riceve identificare
+chi è che ha inviato il messaggio, in particolare non è possibile sapere da
+quale utente esso provenga. Infatti, in mancanza di un meccanismo interno al
+kernel, anche se si possono inserire delle informazioni nel messaggio, queste
+non possono essere credute, essendo completamente dipendenti da chi lo invia.
+Vedremo però come, attraverso l'uso del meccanismo di notifica, sia possibile
+superare in parte questo problema.
+
+Una caratteristica specifica delle code di messaggi POSIX è la possibilità di
+usufruire di un meccanismo di notifica asincrono; questo può essere attivato
+usando la funzione \funcd{mq\_notify}, il cui prototipo è:
+\begin{prototype}{mqueue.h}
+{int mq\_notify(mqd\_t mqdes, const struct sigevent *notification)}
+
+Attiva il meccanismo di notifica per la coda \param{mqdes}.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore; nel quel caso \var{errno} assumerà i valori: 
+    \begin{errlist}
+    \item[\errcode{EBUSY}] c'è già un processo registrato per la notifica.
+    \item[\errcode{EBADF}] il descrittore non fa riferimento ad una coda di
+      messaggi.
+    \end{errlist}}
+\end{prototype}
+
+Il meccanismo di notifica permette di segnalare in maniera asincrona ad un
+processo la presenza di dati sulla coda, in modo da evitare la necessità di
+bloccarsi nell'attesa. Per far questo un processo deve registrarsi con la
+funzione \func{mq\_notify}, ed il meccanismo è disponibile per un solo
+processo alla volta per ciascuna coda.
+
+Il comportamento di \func{mq\_notify} dipende dal valore dell'argomento
+\param{notification}, che è un puntatore ad una apposita struttura
+\struct{sigevent}, (definita in fig.~\ref{fig:struct_sigevent}) introdotta
+dallo standard POSIX.1b per gestire la notifica di eventi; per altri dettagli
+si può vedere quanto detto in sez.~\ref{sec:sig_timer_adv} a proposito
+dell'uso della stessa struttura per la notifica delle scadenze dei
+\textit{timer}.
+
+Attraverso questa struttura si possono impostare le modalità con cui viene
+effettuata la notifica nel campo \var{sigev\_notify}, che può assumere i
+valori di tab.~\ref{tab:sigevent_sigev_notify}.\footnote{la pagina di manuale
+  riporta soltanto i primi tre (inizialmente era possibile solo
+  \const{SIGEV\_SIGNAL}).} Il metodo consigliato è quello di usare
+\const{SIGEV\_SIGNAL} usando il campo \var{sigev\_signo} per indicare il quale
+segnale deve essere inviato al processo. Inoltre il campo \var{sigev\_value} è
+un puntatore ad una struttura \struct{sigval\_t} (definita in
+fig.~\ref{fig:sig_sigval}) che permette di restituire al gestore del segnale
+un valore numerico o un indirizzo,\footnote{per il suo uso si riveda la
+  trattazione fatta in sez.~\ref{sec:sig_real_time} a proposito dei segnali
+  \textit{real-time}.} posto che questo sia installato nella forma estesa
+vista in sez.~\ref{sec:sig_sigaction}.
+
+La funzione registra il processo chiamante per la notifica se
+\param{notification} punta ad una struttura \struct{sigevent} opportunamente
+inizializzata, o cancella una precedente registrazione se è \val{NULL}. Dato
+che un solo processo alla volta può essere registrato, la funzione fallisce
+con \errcode{EBUSY} se c'è un altro processo già registrato.\footnote{questo
+  significa anche che se si registra una notifica con \const{SIGEV\_NONE} il
+  processo non la riceverà, ma impedirà anche che altri possano registrarsi
+  per poterlo fare.}  Si tenga presente inoltre che alla chiusura del
+descrittore associato alla coda (e quindi anche all'uscita del processo) ogni
+eventuale registrazione di notifica presente viene cancellata.
+
+La notifica del segnale avviene all'arrivo di un messaggio in una coda vuota
+(cioè solo se sulla coda non ci sono messaggi) e se non c'è nessun processo
+bloccato in una chiamata a \func{mq\_receive}, in questo caso infatti il
+processo bloccato ha la precedenza ed il messaggio gli viene immediatamente
+inviato, mentre per il meccanismo di notifica tutto funziona come se la coda
+fosse rimasta vuota.
+
+Quando un messaggio arriva su una coda vuota al processo che si era registrato
+viene inviato il segnale specificato da \code{notification->sigev\_signo}, e
+la coda diventa disponibile per una ulteriore registrazione.  Questo comporta
+che se si vuole mantenere il meccanismo di notifica occorre ripetere la
+registrazione chiamando nuovamente \func{mq\_notify} all'interno del gestore
+del segnale di notifica. A differenza della situazione simile che si aveva con
+i segnali non affidabili,\footnote{l'argomento è stato affrontato in
+  \ref{sec:sig_semantics}.} questa caratteristica non configura una
+\itindex{race~condition} \textit{race condition} perché l'invio di un segnale
+avviene solo se la coda è vuota; pertanto se si vuole evitare di correre il
+rischio di perdere eventuali ulteriori segnali inviati nel lasso di tempo che
+occorre per ripetere la richiesta di notifica basta avere cura di eseguire
+questa operazione prima di estrarre i messaggi presenti dalla coda.
+
+L'invio del segnale di notifica avvalora alcuni campi di informazione
+restituiti al gestore attraverso la struttura \struct{siginfo\_t} (definita in
+fig.~\ref{fig:sig_siginfo_t}). In particolare \var{si\_pid} viene impostato al
+valore del \acr{pid} del processo che ha emesso il segnale, \var{si\_uid}
+all'userid effettivo, \var{si\_code} a \const{SI\_MESGQ}, e \var{si\_errno} a
+0. Questo ci dice che, se si effettua la ricezione dei messaggi usando
+esclusivamente il meccanismo di notifica, è possibile ottenere le informazioni
+sul processo che ha inserito un messaggio usando un gestore per il segnale in
+forma estesa.\footnote{di nuovo si faccia riferimento a quanto detto al
+  proposito in sez.~\ref{sec:sig_sigaction} e sez.~\ref{sec:sig_real_time}.}
+
+
+
+\subsection{Memoria condivisa}
+\label{sec:ipc_posix_shm}
+
+La memoria condivisa è stato il primo degli oggetti di IPC POSIX inserito nel
+kernel ufficiale; il supporto a questo tipo di oggetti è realizzato attraverso
+il filesystem \texttt{tmpfs}, uno speciale filesystem che mantiene tutti i
+suoi contenuti in memoria, che viene attivato abilitando l'opzione
+\texttt{CONFIG\_TMPFS} in fase di compilazione del kernel.
+
+Per potere utilizzare l'interfaccia POSIX per la memoria condivisa le
+\acr{glibc}\footnote{le funzioni sono state introdotte con le glibc-2.2.}
+richiedono di compilare i programmi con l'opzione \code{-lrt}; inoltre è
+necessario che in \file{/dev/shm} sia montato un filesystem \texttt{tmpfs};
+questo di norma viene fatto aggiungendo una riga del tipo di:
+\begin{verbatim}
+tmpfs   /dev/shm        tmpfs   defaults        0      0
+\end{verbatim}
+ad \conffile{/etc/fstab}. In realtà si può montare un filesystem \texttt{tmpfs}
+dove si vuole, per usarlo come RAM disk, con un comando del tipo:
+\begin{verbatim}
+mount -t tmpfs -o size=128M,nr_inodes=10k,mode=700 tmpfs /mytmpfs
+\end{verbatim}
+
+Il filesystem riconosce, oltre quelle mostrate, le opzioni \texttt{uid} e
+\texttt{gid} che identificano rispettivamente utente e gruppo cui assegnarne
+la titolarità, e \texttt{nr\_blocks} che permette di specificarne la
+dimensione in blocchi, cioè in multipli di \const{PAGECACHE\_SIZE} che in
+questo caso è l'unità di allocazione elementare.
+
+La funzione che permette di aprire un segmento di memoria condivisa POSIX, ed
+eventualmente di crearlo se non esiste ancora, è \funcd{shm\_open}; il suo
+prototipo è:
+\begin{functions}
+  \headdecl{sys/mman.h} 
+  \headdecl{sys/stat.h} 
+  \headdecl{fcntl.h} 
+
+  \funcdecl{int shm\_open(const char *name, int oflag, mode\_t mode)} 
+
+  Apre un segmento di memoria condivisa.
+  
+  \bodydesc{La funzione restituisce un file descriptor positivo in caso di
+    successo e -1 in caso di errore; nel quel caso \var{errno} assumerà gli
+    stessi valori riportati da \func{open}.}
+\end{functions}
+
+La funzione apre un segmento di memoria condivisa identificato dal nome
+\param{name}. Come già spiegato in sez.~\ref{sec:ipc_posix_generic} questo
+nome può essere specificato in forma standard solo facendolo iniziare per
+``\file{/}'' e senza ulteriori ``\file{/}''. Linux supporta comunque nomi
+generici, che verranno interpretati prendendo come radice
+\file{/dev/shm}.\footnote{occorre pertanto evitare di specificare qualcosa del
+  tipo \file{/dev/shm/nome} all'interno di \param{name}, perché questo
+  comporta, da parte delle funzioni di libreria, il tentativo di accedere a
+  \file{/dev/shm/dev/shm/nome}.}
+
+La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
+possono essere specificati per \param{oflag}, che deve essere specificato come
+maschera binaria comprendente almeno uno dei due valori \const{O\_RDONLY} e
+\const{O\_RDWR}; i valori possibili per i vari bit sono quelli visti in
+tab.~\ref{tab:file_open_flags} dei quali però \func{shm\_open} riconosce solo
+i seguenti:
+\begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
+\item[\const{O\_RDONLY}] Apre il file descriptor associato al segmento di
+  memoria condivisa per l'accesso in sola lettura.
+\item[\const{O\_RDWR}] Apre il file descriptor associato al segmento di
+  memoria condivisa per l'accesso in lettura e scrittura.
+\item[\const{O\_CREAT}] Necessario qualora si debba creare il segmento di
+  memoria condivisa se esso non esiste; in questo caso viene usato il valore
+  di \param{mode} per impostare i permessi, che devono essere compatibili con
+  le modalità con cui si è aperto il file.
+\item[\const{O\_EXCL}] Se usato insieme a \const{O\_CREAT} fa fallire la
+  chiamata a \func{shm\_open} se il segmento esiste già, altrimenti esegue la
+  creazione atomicamente.
+\item[\const{O\_TRUNC}] Se il segmento di memoria condivisa esiste già, ne
+  tronca le dimensioni a 0 byte.
+\end{basedescript}
+
+In caso di successo la funzione restituisce un file descriptor associato al
+segmento di memoria condiviso con le stesse modalità di
+\func{open}\footnote{in realtà, come accennato, \func{shm\_open} è un semplice
+  wrapper per \func{open}, usare direttamente quest'ultima avrebbe lo stesso
+  effetto.}  viste in sez.~\ref{sec:file_open}; in particolare viene impostato
+il flag \const{FD\_CLOEXEC}.  Chiamate effettuate da diversi processi usando
+lo stesso nome, restituiranno file descriptor associati allo stesso segmento
+(così come, nel caso di file di dati, essi sono associati allo stesso
+\index{inode} inode).  In questo modo è possibile effettuare una chiamata ad
+\func{mmap} sul file descriptor restituito da \func{shm\_open} ed i processi
+vedranno lo stesso segmento di memoria condivisa.
+
+Quando il nome non esiste il segmento può essere creato specificando
+\const{O\_CREAT}; in tal caso il segmento avrà (così come i nuovi file)
+lunghezza nulla. Dato che un segmento di lunghezza nulla è di scarsa utilità,
+per impostarne la dimensione si deve usare \func{ftruncate} (vedi
+sez.~\ref{sec:file_file_size}), prima di mapparlo in memoria con \func{mmap}.
+Si tenga presente che una volta chiamata \func{mmap} si può chiudere il file
+descriptor (con \func{close}), senza che la mappatura ne risenta.
+
+Come per i file, quando si vuole effettivamente rimuovere segmento di memoria
+condivisa, occorre usare la funzione \funcd{shm\_unlink}, il cui prototipo è:
+\begin{prototype}{sys/mman.h}
+{int shm\_unlink(const char *name)}
+
+Rimuove un segmento di memoria condivisa.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore; nel quel caso \var{errno} assumerà gli stessi valori riportati da
+  \func{unlink}.}
+\end{prototype}
+
+La funzione è del tutto analoga ad \func{unlink}, e si limita a cancellare il
+nome del segmento da \file{/dev/shm}, senza nessun effetto né sui file
+descriptor precedentemente aperti con \func{shm\_open}, né sui segmenti già
+mappati in memoria; questi verranno cancellati automaticamente dal sistema
+solo con le rispettive chiamate a \func{close} e \func{munmap}.  Una volta
+eseguita questa funzione però, qualora si richieda l'apertura di un segmento
+con lo stesso nome, la chiamata a \func{shm\_open} fallirà, a meno di non aver
+usato \const{O\_CREAT}, in quest'ultimo caso comunque si otterrà un file
+descriptor che fa riferimento ad un segmento distinto da eventuali precedenti.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+    \includecodesample{listati/MemShared.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Il codice delle funzioni di gestione dei segmenti di memoria
+    condivisa POSIX.}
+  \label{fig:ipc_posix_shmmem}
+\end{figure}
+
+Come esempio per l'uso di queste funzioni vediamo come è possibile riscrivere
+una interfaccia semplificata analoga a quella vista in
+fig.~\ref{fig:ipc_sysv_shm_func} per la memoria condivisa in stile SysV. Il
+codice, riportato in fig.~\ref{fig:ipc_posix_shmmem}, è sempre contenuto nel
+file \file{SharedMem.c} dei sorgenti allegati.
+
+La prima funzione (\texttt{\small 1--24}) è \func{CreateShm} che, dato un nome
+nell'argomento \var{name} crea un nuovo segmento di memoria condivisa,
+accessibile in lettura e scrittura, e ne restituisce l'indirizzo. Anzitutto si
+definiscono (\texttt{\small 8}) i flag per la successiva (\texttt{\small 9})
+chiamata a \func{shm\_open}, che apre il segmento in lettura e scrittura
+(creandolo se non esiste, ed uscendo in caso contrario) assegnandogli sul
+filesystem i permessi specificati dall'argomento \var{perm}. In caso di errore
+(\texttt{\small 10--12}) si restituisce un puntatore nullo, altrimenti si
+prosegue impostando (\texttt{\small 14}) la dimensione del segmento con
+\func{ftruncate}. Di nuovo (\texttt{\small 15--16}) si esce immediatamente
+restituendo un puntatore nullo in caso di errore. Poi si passa (\texttt{\small
+  18}) a mappare in memoria il segmento con \func{mmap} specificando dei
+diritti di accesso corrispondenti alla modalità di apertura.  Di nuovo si
+restituisce (\texttt{\small 19--21}) un puntatore nullo in caso di errore,
+altrimenti si inizializza (\texttt{\small 22}) il contenuto del segmento al
+valore specificato dall'argomento \var{fill} con \func{memset}, e se ne
+restituisce (\texttt{\small 23}) l'indirizzo.
+
+La seconda funzione (\texttt{\small 25--40}) è \func{FindShm} che trova un
+segmento di memoria condiviso già esistente, restituendone l'indirizzo. In
+questo caso si apre (\texttt{\small 31}) il segmento con \func{shm\_open}
+richiedendo che il segmento sia già esistente, in caso di errore
+(\texttt{\small 31--33}) si ritorna immediatamente un puntatore nullo.
+Ottenuto il file descriptor del segmento lo si mappa (\texttt{\small 35}) in
+memoria con \func{mmap}, restituendo (\texttt{\small 36--38}) un puntatore
+nullo in caso di errore, o l'indirizzo (\texttt{\small 39}) dello stesso in
+caso di successo.
+
+La terza funzione (\texttt{\small 40--45}) è \func{RemoveShm}, e serve a
+cancellare un segmento di memoria condivisa. Dato che al contrario di quanto
+avveniva con i segmenti del SysV IPC gli oggetti allocati nel kernel vengono
+rilasciati automaticamente quando nessuna li usa più, tutto quello che c'è da
+fare (\texttt{\small 44}) in questo caso è chiamare \func{shm\_unlink},
+restituendo al chiamante il valore di ritorno.
+
+
+
+
+\subsection{Semafori}
+\label{sec:ipc_posix_sem}
+
+Fino alla serie 2.4.x del kernel esisteva solo una implementazione parziale
+dei semafori POSIX che li realizzava solo a livello di \itindex{thread}
+\textit{thread} e non di processi,\footnote{questo significava che i semafori
+  erano visibili solo all'interno dei \itindex{thread} \textit{thread} creati
+  da un singolo processo, e non potevano essere usati come meccanismo di
+  sincronizzazione fra processi diversi.} fornita attraverso la sezione delle
+estensioni \textit{real-time} delle \acr{glibc}.\footnote{quelle che si
+  accedono collegandosi alla libreria \texttt{librt}.} Esisteva inoltre una
+libreria che realizzava (parzialmente) l'interfaccia POSIX usando le funzioni
+dei semafori di SysV IPC (mantenendo così tutti i problemi sottolineati in
+sez.~\ref{sec:ipc_sysv_sem}).
+
+A partire dal kernel 2.5.7 è stato introdotto un meccanismo di
+sincronizzazione completamente nuovo, basato sui cosiddetti
+\textit{futex},\footnote{la sigla sta per \textit{fast user mode mutex}.} con
+il quale è stato possibile implementare una versione nativa dei semafori
+POSIX.  Grazie a questo con i kernel della serie 2.6 e le nuove versioni delle
+\acr{glibc} che usano questa nuova infrastruttura per quella che viene quella
+che viene chiamata \textit{New Posix Thread Library}, sono state implementate
+anche tutte le funzioni dell'interfaccia dei semafori POSIX.
+
+Anche in questo caso è necessario appoggiarsi alla libreria per le estensioni
+\textit{real-time} \texttt{librt}, questo significa che se si vuole utilizzare
+questa interfaccia, oltre ad utilizzare gli opportuni file di definizione,
+occorrerà compilare i programmi con l'opzione \texttt{-lrt}. 
+
+La funzione che permette di creare un nuovo semaforo POSIX, creando il
+relativo file, o di accedere ad uno esistente, è \funcd{sem\_open}, questa
+prevede due forme diverse a seconda che sia utilizzata per aprire un semaforo
+esistente o per crearne uno nuovi, i relativi prototipi sono:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{sem\_t *sem\_open(const char *name, int oflag)}
+  
+  \funcdecl{sem\_t *sem\_open(const char *name, int oflag, mode\_t mode,
+    unsigned int value)} 
+
+  Crea un semaforo o ne apre uno esistente.
+  
+  \bodydesc{La funzione restituisce l'indirizzo del semaforo in caso di
+    successo e \const{SEM\_FAILED} in caso di errore; nel quel caso
+    \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EACCESS}] il semaforo esiste ma non si hanno permessi
+      sufficienti per accedervi.
+    \item[\errcode{EEXIST}] si sono specificati \const{O\_CREAT} e
+      \const{O\_EXCL} ma il semaforo esiste.
+    \item[\errcode{EINVAL}] il valore di \param{value} eccede
+      \const{SEM\_VALUE\_MAX}.
+    \item[\errcode{ENAMETOOLONG}] si è utilizzato un nome troppo lungo.
+    \item[\errcode{ENOENT}] non si è usato \const{O\_CREAT} ed il nome
+      specificato non esiste.
+    \end{errlist}    
+    ed inoltre \errval{ENFILE} ed \errval{ENOMEM}.}
+\end{functions}
+
+L'argomento \param{name} definisce il nome del semaforo che si vuole
+utilizzare, ed è quello che permette a processi diversi di accedere allo
+stesso semaforo. Questo deve essere specificato con un pathname nella forma
+\texttt{/qualchenome}, che non ha una corrispondenza diretta con un pathname
+reale; con Linux infatti i file associati ai semafori sono mantenuti nel
+filesystem virtuale \texttt{/dev/shm}, e gli viene assegnato automaticamente
+un nome nella forma \texttt{sem.qualchenome}.\footnote{si ha cioè una
+  corrispondenza per cui \texttt{/qualchenome} viene rimappato, nella
+  creazione tramite \func{sem\_open}, su \texttt{/dev/shm/sem.qualchenome}.}
+
+L'argomento \param{oflag} è quello che controlla le modalità con cui opera la
+funzione, ed è passato come maschera binaria; i bit corrispondono a quelli
+utilizzati per l'analogo argomento di \func{open}, anche se dei possibili
+valori visti in sez.~\ref{sec:file_open} sono utilizzati soltanto
+\const{O\_CREAT} e \const{O\_EXCL}.
+
+Se si usa \const{O\_CREAT} si richiede la creazione del semaforo qualora
+questo non esista, ed in tal caso occorre utilizzare la seconda forma della
+funzione, in cui si devono specificare sia un valore iniziale con l'argomento
+\param{value},\footnote{e si noti come così diventa possibile, differenza di
+  quanto avviene per i semafori del \textit{SysV IPC}, effettuare in maniera
+  atomica creazione ed inizializzazione di un semaforo usando una unica
+  funzione.} che una maschera dei permessi con l'argomento
+\param{mode};\footnote{anche questo argomento prende gli stessi valori
+  utilizzati per l'analogo di \func{open}, che si sono illustrati in dettaglio
+  sez.~\ref{sec:file_perm_overview}.} questi verranno assegnati al semaforo
+appena creato. Se il semaforo esiste già i suddetti valori saranno invece
+ignorati. Usando il flag \const{O\_EXCL} si richiede invece la verifica che il
+semaforo non esiste, usandolo insieme ad \const{O\_CREAT} la funzione fallisce
+qualora un semaforo con lo stesso nome sia già presente.
+
+La funzione restituisce in caso di successo un puntatore all'indirizzo del
+semaforo con un valore di tipo \ctyp{sem\_t *}, è questo valore che dovrà
+essere passato alle altre funzioni per operare sul semaforo stesso. Si tenga
+presente che, come accennato in sez.~\ref{sec:ipc_posix_generic}, i semafori
+usano la semantica standard dei file per quanto riguarda i controlli di
+accesso. 
+
+Questo significa che un nuovo semaforo viene sempre creato con l'user-ID ed il
+group-ID effettivo del processo chiamante, e che i permessi indicati con
+\param{mode} vengono filtrati dal valore della \itindex{umask} \textit{umask}
+del processo.  Inoltre per poter aprire un semaforo è necessario avere su di
+esso sia il permesso di lettura che quello di scrittura.
+
+Una volta che si sia ottenuto l'indirizzo di un semaforo, sarà possibile
+utilizzarlo; se si ricorda quanto detto all'inizio di
+sez.~\ref{sec:ipc_sysv_sem}, dove si sono introdotti i concetti generali
+relativi ai semafori, le operazioni principali sono due, quella che richiede
+l'uso di una risorsa bloccando il semaforo e quella che rilascia la risorsa
+liberando il semaforo. La prima operazione è effettuata dalla funzione
+\funcd{sem\_wait}, il cui prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_wait(sem\_t *sem)}
+  
+  Blocca il semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione cerca di decrementare il valore del semaforo indicato dal
+puntatore \param{sem}, se questo ha un valore positivo, cosa che significa che
+la risorsa è disponibile, la funzione ha successo, il valore del semaforo
+viene diminuito di 1 ed essa ritorna immediatamente; se il valore è nullo la
+funzione si blocca fintanto che il valore del semaforo non torni
+positivo\footnote{ovviamente per opera di altro processo che lo rilascia
+  chiamando \func{sem\_post}.} così che poi essa possa decrementarlo con
+successo e proseguire. 
+
+Si tenga presente che la funzione può sempre essere interrotta da un segnale
+(nel qual caso si avrà un errore di \const{EINTR}) e che questo avverrà
+comunque, anche se si è richiesta la semantica BSD installando il relativo
+gestore con \const{SA\_RESTART} (vedi sez.~\ref{sec:sig_sigaction}) per
+riavviare le system call interrotte.
+
+Della funzione \func{sem\_wait} esistono due varianti che consentono di
+gestire diversamente le modalità di attesa in caso di risorsa occupata, la
+prima di queste è \funcd{sem\_trywait}, che serve ad effettuare un tentativo
+di acquisizione senza bloccarsi; il suo prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_trywait(sem\_t *sem)}
+  
+  Tenta di bloccare il semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà gli stessi valori:
+    \begin{errlist}
+    \item[\errcode{EAGAIN}] il semaforo non può essere acquisito senza
+      bloccarsi. 
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione è identica a \func{sem\_wait} ed se la risorsa è libera ha lo
+stesso effetto, vale a dire che in caso di semaforo diverso da zero la
+funzione lo decrementa e ritorna immediatamente; la differenza è che nel caso
+in cui il semaforo è occupato essa non si blocca e di nuovo ritorna
+immediatamente, restituendo però un errore di \errval{EAGAIN}, così che il
+programma possa proseguire.
+
+La seconda variante di \func{sem\_wait} è una estensione specifica che può
+essere utilizzata soltanto se viene definita la macro \macro{\_XOPEN\_SOURCE}
+ad un valore di 600 prima di includere \texttt{semaphore.h}, la funzione è
+\func{sem\_timedwait}, ed il suo prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+
+  \funcdecl{int sem\_timedwait(sem\_t *sem, const struct timespec
+    *abs\_timeout)}
+  
+  Blocca il semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà gli stessi valori:
+    \begin{errlist}
+    \item[\errcode{ETIMEDOUT}] è scaduto il tempo massimo di attesa. 
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
+    \end{errlist}    
+}
+\end{functions}
+
+Anche in questo caso il comportamento della funzione è identico a quello di
+\func{sem\_wait}, la sola differenza consiste nel fatto che con questa
+funzione è possibile impostare tramite l'argomento \param{abs\_timeout} un
+tempo limite per l'attesa, scaduto il quale la funzione ritorna comunque,
+anche se non è possibile acquisire il semaforo. In tal caso la funzione
+fallirà, riportando un errore di \errval{ETIMEDOUT}.
+
+La seconda funzione principale utilizzata per l'uso dei semafori è
+\funcd{sem\_post}, che viene usata per rilasciare un semaforo occupato o, in
+generale, per aumentare di una unità il valore dello stesso anche qualora non
+fosse occupato;\footnote{si ricordi che in generale un semaforo viene usato
+  come indicatore di un numero di risorse disponibili.} il suo prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_post(sem\_t *sem)}
+  
+  Rilascia il semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione incrementa di uno il valore corrente del semaforo indicato
+dall'argomento \param{sem}, se questo era nullo la relativa risorsa risulterà
+sbloccata, cosicché un altro processo (o \itindex{thread} \textit{thread})
+eventualmente bloccato in una \func{sem\_wait} sul semaforo potrà essere
+svegliato e rimesso in esecuzione.  Si tenga presente che la funzione è sicura
+\index{funzioni!sicure} per l'uso all'interno di un gestore di segnali (si
+ricordi quanto detto in sez.~\ref{sec:sig_signal_handler}).
+
+Se invece di operare su un semaforo se ne vuole solamente leggere il valore,
+si può usare la funzione \funcd{sem\_getvalue}, il cui prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_getvalue(sem\_t *sem, int *sval)}
+  
+  Richiede il valore del semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione legge il valore del semaforo indicato dall'argomento \param{sem} e
+lo restituisce nella variabile intera puntata dall'argomento
+\param{sval}. Qualora ci siano uno o più processi bloccati in attesa sul
+semaforo lo standard prevede che la funzione possa restituire un valore nullo
+oppure il numero di processi bloccati in una \func{sem\_wait} sul suddetto
+semaforo; nel caso di Linux vale la prima opzione.
+
+Questa funzione può essere utilizzata per avere un suggerimento sullo stato di
+un semaforo, ovviamente non si può prendere il risultato riportato in
+\param{sval} che come indicazione, il valore del semaforo infatti potrebbe
+essere già stato modificato al ritorno della funzione.
+
+% TODO verificare comportamento sem_getvalue
+
+Una volta che non ci sia più la necessità di operare su un semaforo se ne può
+terminare l'uso con la funzione \funcd{sem\_close}, il cui prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_close(sem\_t *sem)}
+  
+  Chiude il semaforo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione chiude il semaforo indicato dall'argomento \param{sem}; questo
+comporta che tutte le risorse che il sistema può avere assegnato al processo
+nell'uso dello stesso vengono rilasciate. Questo significa che un altro
+processo bloccato sul semaforo a causa della acquisizione da parte del
+processo che chiama \func{sem\_close} potrà essere riavviato.
+
+Si tenga presente poi che come per i file all'uscita di un processo tutti i
+semafori che questo aveva aperto vengono automaticamente chiusi; questo
+comportamento risolve il problema che si aveva con i semafori del \textit{SysV
+  IPC} (di cui si è parlato in sez.~\ref{sec:ipc_sysv_sem}) per i quali le
+risorse possono restare bloccate. Si tenga poi presente che, a differenza di
+quanto avviene per i file, in caso di una chiamata ad \func{execve} tutti i
+semafori vengono chiusi automaticamente.
+
+Come per i semafori del \textit{SysV IPC} anche quelli POSIX hanno una
+persistenza di sistema; questo significa che una volta che si è creato un
+semaforo con \func{sem\_open} questo continuerà ad esistere fintanto che il
+kernel resta attivo (vale a dire fino ad un successivo riavvio) a meno che non
+lo si cancelli esplicitamente. Per far questo si può utilizzare la funzione
+\funcd{sem\_unlink}, il cui prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_unlink(const char *name)}
+  
+  Rimuove il semaforo \param{name}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EACCESS}] non si hanno i permessi necessari a cancellare il
+      semaforo.
+    \item[\errcode{ENAMETOOLONG}] il nome indicato è troppo lungo.
+    \item[\errcode{ENOENT}] il semaforo \param{name} non esiste.
+    \end{errlist}    
+}
+\end{functions}
+
+La funzione rimuove il semaforo indicato dall'argomento \param{name}, che
+prende un valore identico a quello usato per creare il semaforo stesso con
+\func{sem\_open}. Il semaforo viene rimosso dal filesystem immediatamente; ma
+il semaforo viene effettivamente cancellato dal sistema soltanto quando tutti
+i processi che lo avevano aperto lo chiudono. Si segue cioè la stessa
+semantica usata con \func{unlink} per i file, trattata in dettaglio in
+sez.~\ref{sec:file_link}.
+
+Una delle caratteristiche peculiari dei semafori POSIX è che questi possono
+anche essere utilizzati anche in forma anonima, senza necessità di fare
+ricorso ad un nome sul filesystem o ad altri indicativi.  In questo caso si
+dovrà porre la variabile che contiene l'indirizzo del semaforo in un tratto di
+memoria che sia accessibile a tutti i processi in gioco.  La funzione che
+consente di inizializzare un semaforo anonimo è \funcd{sem\_init}, il cui
+prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_init(sem\_t *sem, int pshared, unsigned int value)}
+
+  Inizializza il semaforo anonimo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il valore di \param{value} eccede
+      \const{SEM\_VALUE\_MAX}.
+    \item[\errcode{ENOSYS}] il valore di \param{pshared} non è nullo ed il
+      sistema non supporta i semafori per i processi.
+    \end{errlist}
+}
+\end{functions}
+
+La funzione inizializza un semaforo all'indirizzo puntato dall'argomento
+\param{sem}, e come per \func{sem\_open} consente di impostare un valore
+iniziale con \param{value}. L'argomento \param{pshared} serve ad indicare se
+il semaforo deve essere utilizzato dai \itindex{thread} \textit{thread} di uno
+stesso processo (con un valore nullo) o condiviso fra processi diversi (con un
+valore non nullo).
+
+Qualora il semaforo debba essere condiviso dai \itindex{thread}
+\textit{thread} di uno stesso processo (nel qual caso si parla di
+\textit{thread-shared semaphore}), occorrerà che \param{sem} sia l'indirizzo
+di una variabile visibile da tutti i \itindex{thread} \textit{thread}, si
+dovrà usare cioè una variabile globale o una variabile allocata dinamicamente
+nello \itindex{heap} \textit{heap}.
+
+Qualora il semaforo debba essere condiviso fra più processi (nel qual caso si
+parla di \textit{process-shared semaphore}) la sola scelta possibile per
+renderlo visibile a tutti è di porlo in un tratto di memoria condivisa. Questo
+potrà essere ottenuto direttamente sia con \func{shmget} (vedi
+sez.~\ref{sec:ipc_sysv_shm}) che con \func{shm\_open} (vedi
+sez.~\ref{sec:ipc_posix_shm}), oppure, nel caso che tutti i processi in gioco
+abbiano un genitore comune, con una mappatura anonima con \func{mmap} (vedi
+sez.~\ref{sec:file_memory_map}),\footnote{si ricordi che i tratti di memoria
+  condivisa vengono mantenuti nei processi figli attraverso la funzione
+  \func{fork}.} a cui essi poi potranno accedere.
+
+Una volta inizializzato il semaforo anonimo con \func{sem\_init} lo si potrà
+utilizzare nello stesso modo dei semafori normali con \func{sem\_wait} e
+\func{sem\_post}. Si tenga presente però che inizializzare due volte lo stesso
+semaforo può dar luogo ad un comportamento indefinito. 
+
+Una volta che non si intenda più utilizzare un semaforo anonimo questo può
+essere eliminato dal sistema; per far questo di deve utilizzare una apposita
+funzione, \funcd{sem\_destroy}, il cui prototipo è:
+\begin{functions}
+  \headdecl{semaphore.h} 
+  
+  \funcdecl{int sem\_destroy(sem\_t *sem)}
+
+  Elimina il semaforo anonimo \param{sem}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
+    errore; nel quel caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il valore di \param{value} eccede
+      \const{SEM\_VALUE\_MAX}.
+    \end{errlist}
+}
+\end{functions}
+
+La funzione prende come unico argomento l'indirizzo di un semaforo che deve
+essere stato inizializzato con \func{sem\_init}; non deve quindi essere
+applicata a semafori creati con \func{sem\_open}. Inoltre si deve essere
+sicuri che il semaforo sia effettivamente inutilizzato, la distruzione di un
+semaforo su cui sono presenti processi (o \itindex{thread} \textit{thread}) in
+attesa (cioè bloccati in una \func{sem\_wait}) provoca un comportamento
+indefinito.
+
+Si tenga presente infine che utilizzare un semaforo che è stato distrutto con
+\func{sem\_destroy} di nuovo può dare esito a comportamenti indefiniti.  Nel
+caso ci si trovi in una tale evenienza occorre reinizializzare il semaforo una
+seconda volta con \func{sem\_init}.
+
+Come esempio di uso sia della memoria condivisa che dei semafori POSIX si sono
+scritti due semplici programmi con i quali è possibile rispettivamente
+monitorare il contenuto di un segmento di memoria condivisa e modificarne il
+contenuto. 
+
+\begin{figure}[!h]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/message_getter.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del programma
+    \file{message\_getter.c}.}
+  \label{fig:ipc_posix_sem_shm_message_server}
+\end{figure}
+
+Il corpo principale del primo dei due, il cui codice completo è nel file
+\file{message\_getter.c} dei sorgenti allegati, è riportato in
+fig.~\ref{fig:ipc_posix_sem_shm_message_server}; si è tralasciata la parte che
+tratta la gestione delle opzioni a riga di comando (che consentono di
+impostare un nome diverso per il semaforo e il segmento di memoria condivisa)
+ed il controllo che al programma venga fornito almeno un argomento, contenente
+la stringa iniziale da inserire nel segmento di memoria condivisa.
+
+Lo scopo del programma è quello di creare un segmento di memoria condivisa su
+cui registrare una stringa, e tenerlo sotto osservazione stampando la stessa
+una volta al secondo. Si utilizzerà un semaforo per proteggere l'accesso in
+lettura alla stringa, in modo che questa non possa essere modificata
+dall'altro programma prima di averla finita di stampare.
+
+La parte iniziale del programma contiene le definizioni (\texttt{\small 1--8})
+del gestore del segnale usato per liberare le risorse utilizzate, delle
+variabili globali contenenti i nomi di default del segmento di memoria
+condivisa e del semaforo (il default scelto è \texttt{messages}), e delle
+altre variabili utilizzate dal programma.
+
+Come prima istruzione (\texttt{\small 10}) si è provveduto ad installare un
+gestore di segnale che consentirà di effettuare le operazioni di pulizia
+(usando la funzione \func{Signal} illustrata in
+fig.~\ref{fig:sig_Signal_code}), dopo di che (\texttt{\small 10--16}) si è
+creato il segmento di memoria condivisa con la funzione \func{CreateShm} che
+abbiamo appena trattato in sez.~\ref{sec:ipc_posix_shm}, uscendo con un
+messaggio in caso di errore. 
+
+Si tenga presente che la funzione \func{CreateShm} richiede che il segmento
+non sia già presente e fallirà qualora un'altra istanza, o un altro programma
+abbia già allocato un segmento con quello stesso nome. Per semplicità di
+gestione si è usata una dimensione fissa pari a 256 byte, definita tramite la
+costante \texttt{MSGMAXSIZE}.
+
+Il passo successivo (\texttt{\small 17--21}) è quello della creazione del
+semaforo che regola l'accesso al segmento di memoria condivisa con
+\func{sem\_open}; anche in questo caso si gestisce l'uscita con stampa di un
+messaggio in caso di errore. Anche per il semaforo, avendo specificato la
+combinazione di flag \code{O\_CREAT|O\_EXCL} come secondo argomento, si esce
+qualora fosse già esistente; altrimenti esso verrà creato con gli opportuni
+permessi specificati dal terzo argomento, (indicante lettura e scrittura in
+notazione ottale). Infine il semaforo verrà inizializzato ad un valore nullo
+(il quarto argomento), corrispondete allo stato in cui risulta bloccato.
+
+A questo punto (\texttt{\small 23}) si potrà inizializzare il messaggio posto
+nel segmento di memoria condivisa usando la stringa passata come argomento al
+programma. Essendo il semaforo stato creato già bloccato non ci si dovrà
+preoccupare di eventuali \itindex{race~condition} \textit{race condition}
+qualora il programma di modifica del messaggio venisse lanciato proprio in
+questo momento.  Una volta inizializzato il messaggio occorrerà però
+rilasciare il semaforo (\texttt{\small 25--28}) per consentirne l'uso; in
+tutte queste operazioni si provvederà ad uscire dal programma con un opportuno
+messaggio in caso di errore.
+
+Una volta completate le inizializzazioni il ciclo principale del programma
+(\texttt{\small 29--47}) viene ripetuto indefinitamente (\texttt{\small 29})
+per stampare sia il contenuto del messaggio che una serie di informazioni di
+controllo. Il primo passo (\texttt{\small 30--34}) è quello di acquisire (con
+\func{sem\_getvalue}, con uscita in caso di errore) e stampare il valore del
+semaforo ad inizio del ciclo; seguito (\texttt{\small 35--36}) dal tempo
+corrente.
+
+\begin{figure}[!h]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/HandSigInt.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Codice del gestore di segnale del programma
+    \file{message\_getter.c}.}
+  \label{fig:ipc_posix_sem_shm_message_server_handler}
+\end{figure}
+
+Prima della stampa del messaggio invece si deve acquisire il semaforo
+(\texttt{\small 31--34}) per evitare accessi concorrenti alla stringa da parte
+del programma di modifica. Una volta eseguita la stampa (\texttt{\small 41})
+il semaforo dovrà essere rilasciato (\texttt{\small 42--45}). Il passo finale
+(\texttt{\small 46}) è attendere per un secondo prima di eseguire da capo il
+ciclo. 
+
+Per uscire in maniera corretta dal programma sarà necessario interromperlo con
+il break da tastiera (\texttt{C-c}), che corrisponde all'invio del segnale
+\const{SIGINT}, per il quale si è installato (\texttt{\small 10}) una
+opportuna funzione di gestione, riportata in
+fig.~\ref{fig:ipc_posix_sem_shm_message_server_handler}. La funzione è molto
+semplice e richiama le funzioni di rimozione sia per il segmento di memoria
+condivisa che per il semaforo, garantendo così che possa essere riaperto
+ex-novo senza errori in un futuro riutilizzo del comando.
+
+\begin{figure}[!h]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/message_setter.c}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del programma
+    \file{message\_setter.c}.}
+  \label{fig:ipc_posix_sem_shm_message_setter}
+\end{figure}
+
+Il secondo programma di esempio è \file{message\_setter.c}, di cui si è
+riportato il corpo principale in
+fig.~\ref{fig:ipc_posix_sem_shm_message_setter},\footnote{al solito il codice
+  completo è nel file dei sorgenti allegati.} dove si è tralasciata, non
+essendo significativa per quanto si sta trattando, la parte relativa alla
+gestione delle opzioni a riga di comando e degli argomenti, che sono identici
+a quelli usati da \file{message\_getter}, con l'unica aggiunta di un'opzione
+``\texttt{-t}'' che consente di indicare un tempo di attesa (in secondi) in
+cui il programma si ferma tenendo bloccato il semaforo.
+
+Una volta completata la gestione delle opzioni e degli argomenti (ne deve
+essere presente uno solo, contenente la nuova stringa da usare come
+messaggio), il programma procede (\texttt{\small 10--14}) con l'acquisizione
+del segmento di memoria condivisa usando la funzione \func{FindShm} (trattata
+in sez.~\ref{sec:ipc_posix_shm}) che stavolta deve già esistere.  Il passo
+successivo (\texttt{\small 16--19}) è quello di aprire il semaforo, e a
+differenza di \file{message\_getter}, in questo caso si richiede a
+\func{sem\_open} che questo esista, passando uno zero come secondo ed unico
+argomento.
+
+Una volta completate con successo le precedenti inizializzazioni, il passo
+seguente (\texttt{\small 21--24}) è quello di acquisire il semaforo, dopo di
+che sarà possibile eseguire la sostituzione del messaggio (\texttt{\small 25})
+senza incorrere in possibili \itindex{race~condition} \textit{race condition}
+con la stampa dello stesso da parte di \file{message\_getter}.
+
+Una volta effettuata la modifica viene stampato (\texttt{\small 26}) il tempo
+di attesa impostato con l'opzione ``\texttt{-t}'' dopo di che (\texttt{\small
+  27}) viene eseguita la stessa, senza rilasciare il semaforo che resterà
+quindi bloccato (causando a questo punto una interruzione delle stampe
+eseguite da \file{message\_getter}). Terminato il tempo di attesa si rilascerà
+(\texttt{\small 29--32}) il semaforo per poi uscire.
+
+Per verificare il funzionamento dei programmi occorrerà lanciare per primo
+\file{message\_getter}\footnote{lanciare per primo \file{message\_setter} darà
+  luogo ad un errore, non essendo stati creati il semaforo ed il segmento di
+  memoria condivisa.} che inizierà a stampare una volta al secondo il
+contenuto del messaggio ed i suoi dati, con qualcosa del tipo:
+\begin{Verbatim}
+piccardi@hain:~/gapil/sources$  ./message_getter messaggio
+sem=1, Fri Dec 31 14:12:41 2010
+message: messaggio
+sem=1, Fri Dec 31 14:12:42 2010
+message: messaggio
+...
+\end{Verbatim}
+%$
+proseguendo indefinitamente fintanto che non si prema \texttt{C-c} per farlo
+uscire. Si noti come il valore del semaforo risulti sempre pari ad 1 (in
+quanto al momento esso sarà sempre libero). 
+
+A questo punto si potrà lanciare \file{message\_setter} per cambiare il
+messaggio, nel nostro caso per rendere evidente il funzionamento del blocco
+richiederemo anche una attesa di 3 secondi, ed otterremo qualcosa del tipo:
+\begin{Verbatim}
+piccardi@hain:~/gapil/sources$ ./message_setter -t 3 ciao
+Sleeping for 3 seconds
+\end{Verbatim}
+%$
+dove il programma si fermerà per 3 secondi prima di rilasciare il semaforo e
+terminare. 
+
+L'effetto di questo programma si potrà però apprezzare meglio nell'uscita di
+\file{message\_getter}, che verrà interrotta per questo stesso tempo, prima di
+ricominciare con il nuovo testo:
+\begin{Verbatim}
+...
+sem=1, Fri Dec 31 14:16:27 2010
+message: messaggio
+sem=1, Fri Dec 31 14:16:28 2010
+message: messaggio
+sem=0, Fri Dec 31 14:16:29 2010
+message: ciao
+sem=1, Fri Dec 31 14:16:32 2010
+message: ciao
+sem=1, Fri Dec 31 14:16:33 2010
+message: ciao
+...
+\end{Verbatim}
+%$
+
+E si noterà come nel momento in cui si è lanciato \file{message\_setter} le
+stampe di \file{message\_getter} si bloccheranno, come corretto, dopo aver
+registrato un valore nullo per il semaforo.  Il programma infatti resterà
+bloccato nella \func{sem\_wait} (quella di riga (\texttt{\small 37}) in
+fig.~\ref{fig:ipc_posix_sem_shm_message_server}) fino alla scadenza
+dell'attesa di \file{message\_setter} (con l'esecuzione della \func{sem\_post}
+della riga (\texttt{\small 29}) di
+fig.~\ref{fig:ipc_posix_sem_shm_message_setter}), e riprenderanno con il nuovo
+testo alla terminazione di quest'ultimo.
+
+
+% LocalWords:  like fifo System POSIX RPC Calls Common Object Request Brocker
+% LocalWords:  Architecture descriptor kernel unistd int filedes errno EMFILE
+% LocalWords:  ENFILE EFAULT BUF sez fig fork Stevens siblings EOF read SIGPIPE
+% LocalWords:  EPIPE shell CGI Gateway Interface HTML JPEG URL mime type gs dup
+% LocalWords:  barcode PostScript race condition stream BarCodePage WriteMess
+% LocalWords:  size PS switch wait popen pclose stdio const char command NULL
+% LocalWords:  EINVAL cap fully buffered Ghostscript l'Encapsulated epstopsf of
+% LocalWords:  PDF EPS lseek ESPIPE PPM Portable PixMap format pnmcrop PNG pnm
+% LocalWords:  pnmmargin png BarCode inode filesystem l'inode mknod mkfifo RDWR
+% LocalWords:  ENXIO deadlock client reinviate fortunes fortunefilename daemon
+% LocalWords:  FortuneServer FortuneParse FortuneClient pid libgapil  LD librt
+% LocalWords:  PATH linker pathname ps tmp killall fortuned crash socket domain
+% LocalWords:  socketpair BSD sys protocol sv EAFNOSUPPORT EPROTONOSUPPORT AF
+% LocalWords:  EOPNOTSUPP SOCK SysV IPC Process Comunication ipc perm key exec
+% LocalWords:  header ftok proj stat libc SunOS glibc XPG dell'inode number uid
+% LocalWords:  cuid cgid gid tab MSG shift group umask seq MSGMNI SEMMNI SHMMNI
+% LocalWords:  shmmni msgmni sem sysctl IPCMNI IPCTestId msgget EACCES EEXIST
+% LocalWords:  CREAT EXCL EIDRM ENOENT ENOSPC ENOMEM novo proc MSGMAX msgmax ds
+% LocalWords:  MSGMNB msgmnb linked list msqid msgid linux msg qnum lspid lrpid
+% LocalWords:  rtime ctime qbytes first last cbytes msgctl semctl shmctl ioctl
+% LocalWords:  cmd struct buf EPERM RMID msgsnd msgbuf msgp msgsz msgflg EAGAIN
+% LocalWords:  NOWAIT EINTR mtype mtext long message sizeof LENGTH ts sleep BIG
+% LocalWords:  msgrcv ssize msgtyp NOERROR EXCEPT ENOMSG multiplexing select ls
+% LocalWords:  poll polling queue MQFortuneServer write init HandSIGTERM  l'IPC
+% LocalWords:  MQFortuneClient mqfortuned mutex risorse' inter semaphore semget
+% LocalWords:  nsems SEMMNS SEMMSL semid otime semval sempid semncnt semzcnt nr
+% LocalWords:  SEMVMX SEMOPM semop SEMMNU SEMUME SEMAEM semnum union semun arg
+% LocalWords:  ERANGE SETALL SETVAL GETALL array GETNCNT GETPID GETVAL GETZCNT
+% LocalWords:  sembuf sops unsigned nsops UNDO flg nsop num undo pending semadj
+% LocalWords:  sleeper scheduler running next semundo MutexCreate semunion lock
+% LocalWords:  MutexFind wrapper MutexRead MutexLock MutexUnlock unlock locking
+% LocalWords:  MutexRemove shmget SHMALL SHMMAX SHMMIN shmid shm segsz atime FD
+% LocalWords:  dtime lpid cpid nattac shmall shmmax SHMLBA SHMSEG EOVERFLOW brk
+% LocalWords:  memory shmat shmdt void shmaddr shmflg SVID RND RDONLY rounded
+% LocalWords:  SIGSEGV nattch exit SharedMem ShmCreate memset fill ShmFind home
+% LocalWords:  ShmRemove DirMonitor DirProp chdir GaPiL shmptr DirScan ipcs NFS
+% LocalWords:  ComputeValues ReadMonitor touch SIGTERM dirmonitor unlink fcntl
+% LocalWords:  LockFile UnlockFile CreateMutex FindMutex LockMutex SETLKW GETLK
+% LocalWords:  UnlockMutex RemoveMutex ReadMutex UNLCK WRLCK RDLCK mapping MAP
+% LocalWords:  SHARED ANONYMOUS thread patch names strace system call userid Di
+% LocalWords:  groupid Michal Wronski Krzysztof Benedyczak wrona posix mqueue
+% LocalWords:  lmqueue gcc mount mqd name oflag attr maxmsg msgsize receive ptr
+% LocalWords:  send WRONLY NONBLOCK close mqdes EBADF getattr setattr mqstat to
+% LocalWords:  omqstat curmsgs flags timedsend len prio timespec abs EMSGSIZE
+% LocalWords:  ETIMEDOUT timedreceive getaddr notify sigevent notification l'I
+% LocalWords:  EBUSY sigev SIGNAL signo value sigval siginfo all'userid MESGQ
+% LocalWords:  Konstantin Knizhnik futex tmpfs ramfs cache shared swap CONFIG
+% LocalWords:  lrt blocks PAGECACHE TRUNC CLOEXEC mmap ftruncate munmap FindShm
+% LocalWords:  CreateShm RemoveShm LIBRARY Library libmqueue FAILED EACCESS has
+% LocalWords:  ENAMETOOLONG qualchenome RESTART trywait XOPEN SOURCE timedwait
+% LocalWords:  process getvalue sval execve pshared ENOSYS heap PAGE destroy it
+% LocalWords:  xffffffff Arrays owner perms Queues used bytes messages device
+% LocalWords:  Cannot find such Segments getter Signal MSGMAXSIZE been stable
+% LocalWords:  for now it's break Berlin sources Let's an accidental feature
+% LocalWords:  Larry Wall Escape the Hell William ipctestid Identifier segment
+% LocalWords:  violation dell'I SIGINT setter Fri Dec Sleeping seconds
 
-Il terzo oggetto introdotto dal \textit{SystemV IPC} è quello della memoria
-condivisa.
 
 %%% Local Variables: 
 %%% mode: latex