Varie correzioni da Fabio Rossi, e relative aggiunte nei ringrazimenti per
[gapil.git] / fileintro.tex
index 7d58c31ce8345942e4b0371fb3d86f48e04d1443..78c2a714e4f652c00dfc270aec4234535ee9474a 100644 (file)
@@ -1,6 +1,6 @@
-% fileintro.tex
+%% fileintro.tex
 %%
 %%
-%% Copyright (C) 2000-2003 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
@@ -19,7 +19,7 @@ file di dati.
 
 Questo significa che si può accedere a qualunque periferica del computer,
 dalla seriale, alla parallela, alla console, e agli stessi dischi attraverso i
 
 Questo significa che si può accedere a qualunque periferica del computer,
 dalla seriale, alla parallela, alla console, e agli stessi dischi attraverso i
-cosiddetti file di dispositivo\index{file!di dispositivo} (i \textit{device
+cosiddetti file di dispositivo\index{file!di~dispositivo} (i \textit{device
   file}). Questi sono dei file speciali agendo sui quali i programmi possono
 leggere, scrivere e compiere operazioni direttamente sulle periferiche, usando
 le stesse funzioni che si usano per i normali file di dati.
   file}). Questi sono dei file speciali agendo sui quali i programmi possono
 leggere, scrivere e compiere operazioni direttamente sulle periferiche, usando
 le stesse funzioni che si usano per i normali file di dati.
@@ -53,20 +53,21 @@ file ed introducendo le interfacce disponibili e le loro caratteristiche.
 \subsection{L'organizzazione di file e directory}
 \label{sec:file_organization}
 
 \subsection{L'organizzazione di file e directory}
 \label{sec:file_organization}
 
+\index{\textit{pathname}|(} 
 In Unix, a differenza di quanto avviene in altri sistemi operativi, tutti i
 file vengono tenuti all'interno di un unico albero la cui radice (quella che
 viene chiamata \textit{root directory}) viene montata all'avvio.  Un file
 viene identificato dall'utente usando quello che viene chiamato
 In Unix, a differenza di quanto avviene in altri sistemi operativi, tutti i
 file vengono tenuti all'interno di un unico albero la cui radice (quella che
 viene chiamata \textit{root directory}) viene montata all'avvio.  Un file
 viene identificato dall'utente usando quello che viene chiamato
-\textit{pathname}\index{pathname}\footnote{il manuale della \acr{glibc}
-  depreca questa nomenclatura, che genererebbe confusione poiché \textit{path}
-  indica anche un insieme di directory su cui effettuare una ricerca (come
-  quello in cui si cercano i comandi). Al suo posto viene proposto l'uso di
-  \textit{filename} e di componente per il nome del file all'interno della
-  directory. Non seguiremo questa scelta dato che l'uso della parola
-  \textit{pathname} è ormai così comune che mantenerne l'uso è senz'altro più
-  chiaro dell'alternativa proposta.}, cioè il percorso che si deve fare per
-accedere al file a partire dalla \textit{root directory}, che è composto da
-una serie di nomi separati da una \file{/}.
+\textit{pathname}\footnote{il manuale della \acr{glibc} depreca questa
+  nomenclatura, che genererebbe confusione poiché \textit{path} indica anche
+  un insieme di directory su cui effettuare una ricerca (come quello in cui si
+  cercano i comandi). Al suo posto viene proposto l'uso di \textit{filename} e
+  di componente per il nome del file all'interno della directory. Non
+  seguiremo questa scelta dato che l'uso della parola \textit{pathname} è
+  ormai così comune che mantenerne l'uso è senz'altro più chiaro
+  dell'alternativa proposta.}, cioè il percorso che si deve fare per accedere
+al file a partire dalla \textit{root directory}, che è composto da una serie
+di nomi separati da una \file{/}.
 
 All'avvio del sistema, completata la fase di inizializzazione, il kernel
 riceve dal bootloader l'indicazione di quale dispositivo contiene il
 
 All'avvio del sistema, completata la fase di inizializzazione, il kernel
 riceve dal bootloader l'indicazione di quale dispositivo contiene il
@@ -86,38 +87,38 @@ particolare che il kernel riconosce come tale. Il suo scopo 
 contenere una lista di nomi di file e le informazioni che associano ciascun
 nome al contenuto. Dato che questi nomi possono corrispondere ad un qualunque
 oggetto del filesystem, compresa un'altra directory, si ottiene naturalmente
 contenere una lista di nomi di file e le informazioni che associano ciascun
 nome al contenuto. Dato che questi nomi possono corrispondere ad un qualunque
 oggetto del filesystem, compresa un'altra directory, si ottiene naturalmente
-un'organizzazione ad albero inserendo directory in altre directory.
+un'organizzazione ad albero inserendo nomi di directory in altre directory.
 
 Un file può essere indicato rispetto alla directory corrente semplicemente
 specificandone il nome\footnote{Il manuale delle \acr{glibc} chiama i nomi
 
 Un file può essere indicato rispetto alla directory corrente semplicemente
 specificandone il nome\footnote{Il manuale delle \acr{glibc} chiama i nomi
-  contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
-    components}), noi li chiameremo più semplicemente \textit{nomi}.} da essa
-contenuto.  All'interno dello stesso albero si potranno poi inserire anche
-tutti gli altri oggetti visti attraverso l'interfaccia che manipola i file
-come le fifo, i link, i socket\index{socket} e gli stessi file di dispositivo
-\index{file!di dispositivo} (questi
-ultimi, per convenzione, sono inseriti nella directory \file{/dev}).
+contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
+components}), noi li chiameremo più semplicemente \textsl{nomi} o
+\textsl{voci}.}  da essa contenuto.  All'interno dello stesso albero si
+potranno poi inserire anche tutti gli altri oggetti visti attraverso
+l'interfaccia che manipola i file come le fifo, i link, i socket\index{socket}
+e gli stessi file di dispositivo \index{file!di~dispositivo} (questi ultimi,
+per convenzione, sono inseriti nella directory \file{/dev}).
 
 Il nome completo di un file viene chiamato \textit{pathname} ed il
 procedimento con cui si individua il file a cui esso fa riferimento è chiamato
 
 Il nome completo di un file viene chiamato \textit{pathname} ed il
 procedimento con cui si individua il file a cui esso fa riferimento è chiamato
-risoluzione del nome (\textit{file name resolution} o \textit{pathname
-  resolution}).  La risoluzione viene fatta esaminando il \textit{pathname} da
+risoluzione del nome (\textit{filename resolution} o \textit{pathname
+resolution}).  La risoluzione viene fatta esaminando il \textit{pathname} da
 sinistra a destra e localizzando ogni nome nella directory indicata dal nome
 sinistra a destra e localizzando ogni nome nella directory indicata dal nome
-precedente usando \file{/} come separatore\footnote{nel caso di nome vuoto, il
-  costrutto \file{//} viene considerato equivalente a \file{/}.}: ovviamente,
+precedente usando \texttt{/} come separatore\footnote{nel caso di nome vuoto,
+il costrutto \file{//} viene considerato equivalente a \file{/}.}: ovviamente,
 perché il procedimento funzioni, occorre che i nomi indicati come directory
 esistano e siano effettivamente directory, inoltre i permessi (si veda
 sez.~\ref{sec:file_access_control}) devono consentire l'accesso all'intero
 \textit{pathname}.
 
 perché il procedimento funzioni, occorre che i nomi indicati come directory
 esistano e siano effettivamente directory, inoltre i permessi (si veda
 sez.~\ref{sec:file_access_control}) devono consentire l'accesso all'intero
 \textit{pathname}.
 
-Se il \textit{pathname}\index{pathname} comincia per \file{/} la ricerca parte
-dalla directory radice del processo; questa, a meno di un \func{chroot} (su
-cui torneremo in sez.~\ref{sec:file_chroot}) è la stessa per tutti i processi
-ed equivale alla directory radice dell'albero dei file: in questo caso si
-parla di un \textsl{pathname assoluto}\index{pathname!assoluto}. Altrimenti la
-ricerca parte dalla directory corrente (su cui torneremo in
+Se il \textit{pathname} comincia per \texttt{/} la ricerca parte dalla
+directory radice del processo; questa, a meno di un \func{chroot} (su cui
+torneremo in sez.~\ref{sec:file_chroot}) è la stessa per tutti i processi ed
+equivale alla directory radice dell'albero dei file: in questo caso si parla
+di un \textsl{pathname assoluto}\index{\textit{pathname}!assoluto}. Altrimenti
+la ricerca parte dalla directory corrente (su cui torneremo in
 sez.~\ref{sec:file_work_dir}) ed il pathname è detto \textsl{pathname
 sez.~\ref{sec:file_work_dir}) ed il pathname è detto \textsl{pathname
-  relativo}\index{pathname!relativo}.
+relativo}\index{\textit{pathname}!relativo}.
 
 I nomi \file{.} e \file{..} hanno un significato speciale e vengono inseriti
 in ogni directory: il primo fa riferimento alla directory corrente e il
 
 I nomi \file{.} e \file{..} hanno un significato speciale e vengono inseriti
 in ogni directory: il primo fa riferimento alla directory corrente e il
@@ -134,7 +135,7 @@ Come detto in precedenza, in Unix esistono vari tipi di file; in Linux questi
 sono implementati come oggetti del \textit{Virtual File System} (vedi
 sez.~\ref{sec:file_vfs_work}) e sono presenti in tutti i filesystem unix-like
 utilizzabili con Linux. L'elenco dei vari tipi di file definiti dal
 sono implementati come oggetti del \textit{Virtual File System} (vedi
 sez.~\ref{sec:file_vfs_work}) e sono presenti in tutti i filesystem unix-like
 utilizzabili con Linux. L'elenco dei vari tipi di file definiti dal
-\textit{Virtual File System}\index{Virtual File System} è riportato in
+\textit{Virtual File System}\index{\textit{Virtual~File~System}} è riportato in
 tab.~\ref{tab:file_file_types}.
 
 Si tenga ben presente che questa classificazione non ha nulla a che fare con
 tab.~\ref{tab:file_file_types}.
 
 Si tenga ben presente che questa classificazione non ha nulla a che fare con
@@ -145,7 +146,7 @@ Alcuni di essi, come le \textit{fifo} (che tratteremo in
 sez.~\ref{sec:ipc_named_pipe}) ed i \textit{socket}\index{socket} (che
 tratteremo in cap.~\ref{cha:socket_intro}) non sono altro che dei riferimenti
 per utilizzare delle funzionalità di comunicazione fornite dal kernel. Gli
 sez.~\ref{sec:ipc_named_pipe}) ed i \textit{socket}\index{socket} (che
 tratteremo in cap.~\ref{cha:socket_intro}) non sono altro che dei riferimenti
 per utilizzare delle funzionalità di comunicazione fornite dal kernel. Gli
-altri sono i \textsl{file di dispositivo}\index{file!di dispositivo} (o
+altri sono i \textsl{file di dispositivo}\index{file!di~dispositivo} (o
 \textit{device file}) che costituiscono una interfaccia diretta per leggere e
 scrivere sui dispositivi fisici; essi vengono suddivisi in due grandi
 categorie, \textsl{a blocchi} e \textsl{a caratteri} a seconda delle modalità
 \textit{device file}) che costituiscono una interfaccia diretta per leggere e
 scrivere sui dispositivi fisici; essi vengono suddivisi in due grandi
 categorie, \textsl{a blocchi} e \textsl{a caratteri} a seconda delle modalità
@@ -198,7 +199,7 @@ VMS.\footnote{questo vale anche per i dispositivi a blocchi: la strutturazione
   ed è completamente trasparente all'utente. Inoltre talvolta si parla di
   \textsl{accesso diretto} riferendosi alla capacità, che non ha niente a che
   fare con tutto ciò, di effettuare, attraverso degli appositi file di
   ed è completamente trasparente all'utente. Inoltre talvolta si parla di
   \textsl{accesso diretto} riferendosi alla capacità, che non ha niente a che
   fare con tutto ciò, di effettuare, attraverso degli appositi file di
-  dispositivo\index{file!di dispositivo}, operazioni di I/O direttamente sui
+  dispositivo\index{file!di~dispositivo}, operazioni di I/O direttamente sui
   dischi senza passare attraverso un filesystem (il cosiddetto \textit{raw
     access}, introdotto coi kernel della serie 2.4.x).}
 
   dischi senza passare attraverso un filesystem (il cosiddetto \textit{raw
     access}, introdotto coi kernel della serie 2.4.x).}
 
@@ -296,53 +297,6 @@ infatti segue solo lo standard POSIX.1 dei sistemi Unix, ed 
 portabilità più limitata.
 
 
 portabilità più limitata.
 
 
-% \subsection{Caratteristiche specifiche dei file in Unix}
-% \label{sec:fileint_unix_spec}
-
-% Essendo un sistema multitasking e multiutente esistono alcune caratteristiche
-% specifiche di un sistema unix-like che devono essere tenute in conto
-% nell'accesso ai file. È infatti normale che più processi o programmi possano
-% accedere contemporaneamente allo stesso file e devono poter eseguire le loro
-% operazioni indipendentemente da quello che fanno gli altri processi.
-
-% Per questo motivo le strutture usate per all'accesso ai file sono relative al
-% processo che effettua l'accesso.  All'apertura di ogni file infatti viene
-% creata all'interno del processo una apposita struttura in cui sono memorizzati
-% tutti gli attributi del medesimo, che viene utilizzata per tutte le
-% operazioni. Questa è una struttura che resta locale al processo stesso; in
-% questo modo processi diversi possono usare le proprie strutture locali per
-% accedere ai file (che può essere sempre lo stesso) in maniera assolutamente
-% indipendente.
-
-% Questo ha delle conseguenze di cui è bene tenere conto; ad esempio in tutti i
-% sistemi POSIX uno degli attributi di un file aperto è la posizione corrente nel
-% file, cioè il punto nel file in cui verrebbe letto o scritto alla operazione
-% successiva. Essa è rappresentata da un numero intero che indica il numero di
-% byte dall'inizio del file, che viene (a meno che non si apra il file in
-% append) inizializzato a zero all'apertura del medesimo.
-
-% Questo è uno dei dati che viene mantenuto nella suddetta struttura, per cui
-% ogni processo avrà la sua posizione corrente nel file, che non sarà
-% influenzata da quello che altri processi possono fare. Anzi, aprire un file
-% significa appunto creare ed inizializzare una tale struttura, per cui se si
-% apre due volte lo stesso file all'interno dello stesso processo, si otterranno
-% due file descriptor o due stream che avranno ancora una posizione corrente nel
-% file assolutamente indipendente.
-
-% Si tenga conto inoltre che un'altro dei dati contenuti nella struttura di
-% accesso è un riferimento all'inode del file, pertanto anche se il file viene
-% cancellato da un altro processo, sarà sempre possibile mantenere l'accesso ai
-% dati, e lo spazio su disco non verrà rilasciato fintanto che il file non sarà
-% chiuso e l'ultimo riferimento cancellato. È pertanto possibile (come vedremo
-% in dettaglio in sez.~\ref{sec:file_link}) aprire un file provvisorio per
-% cancellarlo immediatamente dopo; in questo modo all'uscita del programma il
-% file scomparirà definitivamente dal disco, ma il file ed il suo contenuto
-% saranno disponibili per tutto il tempo in cui il processo è attivo.
-
-% Ritorneremo su questo più avanti in sez.~\ref{sec:file_fd}, quando tratteremo
-% l'input/output sui file, esaminando in dettaglio come tutto ciò viene
-% realizzato.
-
 
 \section{L'architettura della gestione dei file}
 \label{sec:file_arch_func}
 
 \section{L'architettura della gestione dei file}
 \label{sec:file_arch_func}
@@ -376,14 +330,14 @@ Linux, l'\acr{ext2}.
 % \textit{inode}, \textit{dentry}, \textit{dcache}.
 
 In Linux il concetto di \textit{everything is a file} è stato implementato
 % \textit{inode}, \textit{dentry}, \textit{dcache}.
 
 In Linux il concetto di \textit{everything is a file} è stato implementato
-attraverso il \textit{Virtual File System} (da qui in avanti VFS) che è uno
-strato intermedio che il kernel usa per accedere ai più svariati filesystem
-mantenendo la stessa interfaccia per i programmi in user space. Esso fornisce
-un livello di indirezione che permette di collegare le operazioni di
-manipolazione sui file alle operazioni di I/O, e gestisce l'organizzazione di
-queste ultime nei vari modi in cui i diversi filesystem le effettuano,
-permettendo la coesistenza di filesystem differenti all'interno dello stesso
-albero delle directory.
+attraverso il \textit{Virtual File System}\index{\textit{Virtual~File~System}}
+(da qui in avanti VFS) che è uno strato intermedio che il kernel usa per
+accedere ai più svariati filesystem mantenendo la stessa interfaccia per i
+programmi in user space. Esso fornisce un livello di indirezione che permette
+di collegare le operazioni di manipolazione sui file alle operazioni di I/O, e
+gestisce l'organizzazione di queste ultime nei vari modi in cui i diversi
+filesystem le effettuano, permettendo la coesistenza di filesystem differenti
+all'interno dello stesso albero delle directory.
 
 Quando un processo esegue una system call che opera su un file, il kernel
 chiama sempre una funzione implementata nel VFS; la funzione eseguirà le
 
 Quando un processo esegue una system call che opera su un file, il kernel
 chiama sempre una funzione implementata nel VFS; la funzione eseguirà le
@@ -439,21 +393,22 @@ il descrittore di file contiene i puntatori alle funzioni che vengono usate
 sui file già aperti.
 
 
 sui file già aperti.
 
 
-\subsection{Il funzionamento del VFS}
+\subsection{Il funzionamento del \textit{Virtual File System}}
 \label{sec:file_vfs_work}
 
 \label{sec:file_vfs_work}
 
-La funzione più importante implementata dal VFS è la system call \func{open}
-che permette di aprire un file. Dato un pathname viene eseguita una ricerca
-dentro la \textit{directory entry cache} (in breve \textit{dcache}), una
-tabella che contiene tutte le \textit{directory entry} (in breve
-\textit{dentry}) che permette di associare in maniera rapida ed efficiente il
-pathname a una specifica \textit{dentry}.
+La funzione più importante implementata dal
+VFS\index{\textit{Virtual~File~System}} è la system call \func{open} che
+permette di aprire un file. Dato un \index{\textit{pathname}}\textit{pathname}
+viene eseguita una ricerca dentro la \textit{directory entry cache} (in breve
+\textit{dcache}), una tabella che contiene tutte le \textit{directory entry}
+(in breve \textit{dentry}) che permette di associare in maniera rapida ed
+efficiente il \textit{pathname} a una specifica \textit{dentry}.
 
 Una singola \textit{dentry} contiene in genere il puntatore ad un
 \textit{inode}\index{inode}; quest'ultimo è la struttura base che sta sul
 disco e che identifica un singolo oggetto del VFS sia esso un file ordinario,
 una directory, un link simbolico, una FIFO, un file di
 
 Una singola \textit{dentry} contiene in genere il puntatore ad un
 \textit{inode}\index{inode}; quest'ultimo è la struttura base che sta sul
 disco e che identifica un singolo oggetto del VFS sia esso un file ordinario,
 una directory, un link simbolico, una FIFO, un file di
-dispositivo\index{file!di dispositivo}, o una qualsiasi altra cosa che possa
+dispositivo\index{file!di~dispositivo}, o una qualsiasi altra cosa che possa
 essere rappresentata dal VFS (i tipi di file riportati in
 tab.~\ref{tab:file_file_types}). A ciascuno di essi è associata pure una
 struttura che sta in memoria, e che, oltre alle informazioni sullo specifico
 essere rappresentata dal VFS (i tipi di file riportati in
 tab.~\ref{tab:file_file_types}). A ciascuno di essi è associata pure una
 struttura che sta in memoria, e che, oltre alle informazioni sullo specifico
@@ -471,8 +426,8 @@ La \textit{dcache} costituisce perci
 l'albero dei file, ovviamente per non riempire tutta la memoria questa vista è
 parziale (la \textit{dcache} cioè contiene solo le \textit{dentry} per i file
 per i quali è stato richiesto l'accesso), quando si vuole risolvere un nuovo
 l'albero dei file, ovviamente per non riempire tutta la memoria questa vista è
 parziale (la \textit{dcache} cioè contiene solo le \textit{dentry} per i file
 per i quali è stato richiesto l'accesso), quando si vuole risolvere un nuovo
-pathname il VFS deve creare una nuova \textit{dentry} e caricare
-l'inode\index{inode} corrispondente in memoria.
+\index{\textit{pathname}}\textit{pathname} il VFS deve creare una nuova
+\textit{dentry} e caricare l'inode\index{inode} corrispondente in memoria.
 
 Questo procedimento viene eseguito dal metodo \code{lookup()}
 dell'inode\index{inode} della directory che contiene il file; questo viene
 
 Questo procedimento viene eseguito dal metodo \code{lookup()}
 dell'inode\index{inode} della directory che contiene il file; questo viene
@@ -548,7 +503,7 @@ unix-like) organizza i dati che tiene su disco attraverso l'uso di un
 filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
 quella di poter supportare, grazie al VFS, una enorme quantità di filesystem
 diversi, ognuno dei quali ha una sua particolare struttura e funzionalità
 filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
 quella di poter supportare, grazie al VFS, una enorme quantità di filesystem
 diversi, ognuno dei quali ha una sua particolare struttura e funzionalità
-proprie.  Per questo, per il momento non entreremo nei dettagli di un
+proprie.  Per questo per il momento non entreremo nei dettagli di un
 filesystem specifico, ma daremo una descrizione a grandi linee che si adatta
 alle caratteristiche comuni di qualunque filesystem di sistema unix-like.
 
 filesystem specifico, ma daremo una descrizione a grandi linee che si adatta
 alle caratteristiche comuni di qualunque filesystem di sistema unix-like.
 
@@ -556,7 +511,7 @@ Lo spazio fisico di un disco viene usualmente diviso in partizioni; ogni
 partizione può contenere un filesystem. La strutturazione tipica
 dell'informazione su un disco è riportata in fig.~\ref{fig:file_disk_filesys};
 in essa si fa riferimento alla struttura del filesystem \acr{ext2}, che
 partizione può contenere un filesystem. La strutturazione tipica
 dell'informazione su un disco è riportata in fig.~\ref{fig:file_disk_filesys};
 in essa si fa riferimento alla struttura del filesystem \acr{ext2}, che
-prevede una separazione dei dati in \textit{blocks group} che replicano il
+prevede una separazione dei dati in \textit{block group} che replicano il
 superblock (ma sulle caratteristiche di \acr{ext2} torneremo in
 sez.~\ref{sec:file_ext2}). È comunque caratteristica comune di tutti i
 filesystem per Unix, indipendentemente da come poi viene strutturata nei
 superblock (ma sulle caratteristiche di \acr{ext2} torneremo in
 sez.~\ref{sec:file_ext2}). È comunque caratteristica comune di tutti i
 filesystem per Unix, indipendentemente da come poi viene strutturata nei
@@ -691,7 +646,7 @@ non sono presenti sugli altri filesystem Unix. Le principali sono le seguenti:
 La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD: un
 filesystem è composto da un insieme di blocchi, la struttura generale è quella
 riportata in fig.~\ref{fig:file_filesys_detail}, in cui la partizione è divisa
 La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD: un
 filesystem è composto da un insieme di blocchi, la struttura generale è quella
 riportata in fig.~\ref{fig:file_filesys_detail}, in cui la partizione è divisa
-in gruppi di blocchi.\footnote{non si confonda la questa definizione con
+in gruppi di blocchi.\footnote{non si confonda questa definizione con
   quella riportata in fig.~\ref{fig:file_dirent_struct}; in quel caso si fa
   riferimento alla struttura usata in user space per riportare i dati
   contenuti in una directory generica, questa fa riferimento alla struttura
   quella riportata in fig.~\ref{fig:file_dirent_struct}; in quel caso si fa
   riferimento alla struttura usata in user space per riportare i dati
   contenuti in una directory generica, questa fa riferimento alla struttura