Aggiunta funzione MurexRead, riscritti Mutex con il file locking
[gapil.git] / simpltcp.tex
1 %% simpltcp.tex
2 %%
3 %% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{Un esempio completo di client/server TCP}
12 \label{cha:simple_TCP_sock}
13
14 In questo capitolo riprenderemo le funzioni trattate nel precedente, usandole
15 per scrivere una prima applicazione client/server che usi i socket TCP per una
16 comunicazione in entrambe le direzioni. 
17
18 Inoltre prenderemo in esame, oltre al comportamento in condizioni normali,
19 anche tutti i possibili scenari particolari (errori, sconnessione della rete,
20 crash del client o del server durante la connessione) che possono avere luogo
21 durante l'impiego di un'applicazione di rete.
22
23
24 \section{Il servizio \texttt{echo}}
25 \label{sec:TCPsimp_echo}
26
27 L'applicazione scelta come esempio sarà un'implementazione elementare, ma
28 completa, del servizio \texttt{echo}. Il servizio \texttt{echo} è uno dei
29 servizi standard solitamente provvisti direttamente dal superserver
30 \cmd{inetd}, ed è definito dall'RFC~862. Come dice il nome il servizio deve
31 rimandare indietro sulla connessione i dati che gli vengono inviati; l'RFC
32 descrive le specifiche sia per TCP che UDP, e per il primo stabilisce che una
33 volta stabilita la connessione ogni dato in ingresso deve essere rimandato in
34 uscita, fintanto che il chiamante non ha chiude la connessione; il servizio
35 opera sulla porta 7.
36
37 Nel nostro caso l'esempio sarà costituito da un client che legge una linea di
38 caratteri dallo standard input e la scrive sul server, il server leggerà la
39 linea dalla connessione e la riscriverà all'indietro; sarà compito del client
40 leggere la risposta del server e stamparla sullo standard output.
41
42 Si è scelto di usare questo servizio, seguendo l'esempio di \cite{UNP1},
43 perché costituisce il prototipo ideale di una generica applicazione di rete in
44 cui un server risponde alle richieste di un client; tutto quello che cambia
45 nel caso si una applicazione più complessa è la elaborazione dell'input del
46 client da parte del server nel fornire le risposte in uscita.
47
48 Partiremo da un'implementazione elementare che dovrà essere rimaneggiata di
49 volta in volta per poter tenere conto di tutte le evenienze che si possono
50 manifestare nella vita reale di un'applicazione di rete, fino ad arrivare ad
51 un'implementazione completa.
52
53 \subsection{La struttura del server}
54 \label{sec:TCPsimp_server_main}
55
56 La prima versione del server, \file{ElemEchoTCPServer.c}, si compone di un
57 corpo principale, costituito dalla funzione \code{main}.  Questa si incarica
58 di creare il socket, metterlo in ascolto di connessioni in arrivo e creare un
59 processo figlio a cui delegare la gestione di ciascuna connessione.  Questa
60 parte, riportata in \figref{fig:TCPsimpl_serv_code}, è analoga a quella vista
61 nel precedente esempio esaminato in \secref{sec:TCPel_cunc_serv}.
62
63 \begin{figure}[!htb]
64   \footnotesize
65   \begin{lstlisting}{}
66 /* Subroutines declaration */
67 void ServEcho(int sockfd);
68 /* Program beginning */
69 int main(int argc, char *argv[])
70 {
71     int list_fd, conn_fd;
72     pid_t pid;
73     struct sockaddr_in serv_add;
74      ...
75     /* create socket */
76     if ( (list_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
77         perror("Socket creation error");
78         exit(-1);
79     }
80     /* initialize address */
81     memset((void *)&serv_add, 0, sizeof(serv_add)); /* clear server address */
82     serv_add.sin_family = AF_INET;                  /* address type is INET */
83     serv_add.sin_port = htons(13);                  /* daytime port is 13 */
84     serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
85     /* bind socket */
86     if (bind(list_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
87         perror("bind error");
88         exit(-1);
89     }
90     /* listen on socket */
91     if (listen(list_fd, BACKLOG) < 0 ) {
92         perror("listen error");
93         exit(-1);
94     }
95     /* handle echo to client */
96     while (1) {
97         /* accept connection */
98         if ( (conn_fd = accept(list_fd, NULL, NULL)) < 0) {
99             perror("accept error");
100             exit(-1);
101         }
102         /* fork to handle connection */
103         if ( (pid = fork()) < 0 ){
104             perror("fork error");
105             exit(-1);
106         }
107         if (pid == 0) {      /* child */
108             close(list_fd);          /* close listening socket */   
109             SockEcho(conn_fd);       /* handle echo */
110             exit(0);
111         } else {             /* parent */
112             close(conn_fd);          /* close connected socket */
113         }
114     }
115     /* normal exit, never reached */
116     exit(0);
117 }
118   \end{lstlisting}
119   \caption{Codice della funzione \code{main} della prima versione del server
120     per il servizio \texttt{echo}.}
121   \label{fig:TCPsimpl_serv_code}
122 \end{figure}
123
124 La struttura di questa prima versione del server è sostanzialmente identica a
125 quella dell'esempio citato, ed ad esso si applicano le considerazioni fatte in
126 \secref{sec:TCPel_cunc_daytime}. Le uniche differenze rispetto all'esempio in
127 \figref{fig:TCPel_serv_code} sono che in questo caso per il socket in ascolto
128 viene usata la porta 7 e che tutta la gestione della comunicazione è delegata
129 alla funzione \code{ServEcho}.
130 %  Per ogni connessione viene creato un
131 % processo figlio, il quale si incarica di lanciare la funzione
132 % \texttt{SockEcho}.
133
134 Il codice della funzione \code{ServEcho} è invece mostrata in
135 \figref{fig:TCPsimpl_server_elem_sub}, la comunicazione viene gestita
136 all'interno del ciclo (linee \texttt{\small 6--8}).  I dati inviati dal client
137 vengono letti dal socket con una semplice \func{read} (che ritorna solo in
138 presenza di dati in arrivo), la riscrittura viene invece gestita dalla
139 funzione \func{SockWrite} (descritta in \figref{fig:sock_SockWrite_code}) che
140 si incarica di tenere conto automaticamente della possibilità che non tutti i
141 dati di cui è richiesta la scrittura vengano trasmessi con una singola
142 \func{write}.
143
144 \begin{figure}[!htb]
145   \footnotesize
146   \begin{lstlisting}{}
147 void ServEcho(int sockfd) {
148     char buffer[MAXLINE];
149     int nread, nwrite;
150     
151     /* main loop, reading 0 char means client close connection */
152     while ( (nread = read(sockfd, buffer, MAXLINE)) != 0) {
153         nwrite = SockWrite(sockfd, buffer, nread);
154     }
155     return;
156 }
157   \end{lstlisting}
158   \caption{Codice della prima versione della funzione \code{ServEcho} per la
159     gestione del servizio \texttt{echo}.}
160   \label{fig:TCPsimpl_server_elem_sub}
161 \end{figure}
162
163 Quando il client chiude la connessione il ricevimento del FIN fa ritornare la
164 \func{read} con un numero di byte letti pari a zero, il che causa l'uscita
165 dal ciclo e il ritorno della funzione, che a sua volta causa la terminazione
166 del processo figlio.
167
168
169 \subsection{Il client}
170 \label{sec:TCPsimp_client_main}
171
172 Il codice del client è riportato in \figref{fig:TCPsimpl_client_elem}, anche
173 esso ricalca la struttura del precedente client per il servizio
174 \texttt{daytime} (vedi \secref{sec:net_cli_sample}) ma, come per il server, lo
175 si è diviso in due parti, inserendo la parte relativa alle operazioni
176 specifiche previste per il protocollo \texttt{echo} in una funzione a parte.
177 \begin{figure}[!htb]
178   \footnotesize
179   \begin{lstlisting}{}
180 int main(int argc, char *argv[])
181 {
182 /* 
183  * Variables definition  
184  */
185     int sock_fd, i;
186     struct sockaddr_in serv_add;
187     ...
188     /* create socket */
189     if ( (sock_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
190         perror("Socket creation error");
191         return -1;
192     }
193     /* initialize address */
194     memset((void *) &serv_add, 0, sizeof(serv_add)); /* clear server address */
195     serv_add.sin_family = AF_INET;                   /* address type is INET */
196     serv_add.sin_port = htons(7);                    /* echo port is 7 */
197     /* build address using inet_pton */
198     if ( (inet_pton(AF_INET, argv[optind], &serv_add.sin_addr)) <= 0) {
199         perror("Address creation error");
200         return -1;
201     }
202     /* extablish connection */
203     if (connect(sock_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
204         perror("Connection error");
205         return -1;
206     }
207     /* read daytime from server */
208     ClientEcho(stdin, sock_fd);
209     /* normal exit */
210     return 0;
211 }
212   \end{lstlisting}
213   \caption{Codice della prima versione del client \texttt{echo}.}
214   \label{fig:TCPsimpl_client_elem}
215 \end{figure}
216
217 La funzione \code{main} si occupa della creazione del socket e della
218 connessione (linee \texttt{\small 10--27}) secondo la stessa modalità spiegata
219 in \secref{sec:net_cli_sample}, il client si connette sulla porta 7
220 all'indirizzo specificato dalla linea di comando (a cui si è aggiunta una
221 elementare gestione delle opzioni non riportata in figura).
222
223 Completata la connessione, al ritorno di \func{connect}, la funzione
224 \code{ClientEcho}, riportata in \figref{fig:TCPsimpl_client_echo_sub}, si
225 preoccupa di gestire la comunicazione, leggendo una riga alla volta dallo
226 \file{stdin}, scrivendola sul socket e ristampando su \file{stdout} quanto
227 ricevuto in risposta dal server.
228
229 \begin{figure}[!htb]
230   \footnotesize
231   \begin{lstlisting}{}
232 void ClientEcho(FILE * filein, int socket) 
233 {
234     char sendbuff[MAXLINE], recvbuff[MAXLINE];
235     int nread; 
236     while (fgets(sendbuff, MAXLINE, filein) != NULL) {
237         SockWrite(socket, sendbuff, strlen(sendbuff)); 
238         nread = SockRead(socket, recvbuff, strlen(sendbuff));        
239         recvbuff[nread] = 0;
240         fputs(recvbuff, stdout);
241     }
242     return;
243 }
244   \end{lstlisting}
245   \caption{Codice della prima versione della funzione \texttt{ClientEcho} per 
246     la gestione del servizio \texttt{echo}.}
247   \label{fig:TCPsimpl_client_echo_sub}
248 \end{figure}
249
250 La funzione utilizza due buffer per gestire i dati inviati e letti sul socket
251 (\texttt{\small 3}).  La comunicazione viene gestita all'interno di un ciclo
252 (linee \texttt{\small 5--10}), i dati da inviare sulla connessione vengono
253 presi dallo \file{stdin} usando la funzione \func{fgets} che legge una
254 linea di testo (terminata da un \texttt{CR} e fino al massimo di
255 \const{MAXLINE} caratteri) e la salva sul buffer di invio, la funzione
256 \func{SockWrite} (\texttt{\small 3}) scrive detti dati sul socket (gestendo
257 l'invio multiplo qualora una singola \func{write} non basti, come spiegato
258 in \secref{sec:sock_io_behav}).
259
260 I dati che vengono riletti indietro con una \func{SockRead} sul buffer di
261 ricezione e viene inserita la terminazione della stringa (\texttt{\small
262   7--8}) e per poter usare la funzione \func{fputs} per scriverli su
263 \file{stdout}. 
264
265 Un end of file inviato su \file{stdin} causa il ritorno di \func{fgets}
266 con un puntatore nullo e l'uscita dal ciclo, al che la subroutine ritorna ed
267 il client esce.
268
269
270 \section{Il funzionamento del servizio}
271 \label{sec:TCPsimpl_normal_work}
272
273 Benché il codice dell'esempio precedente sia molto ridotto, esso ci permetterà
274 di considerare in dettaglio tutte le problematiche che si possono incontrare
275 nello scrivere un'applicazione di rete. Infatti attraverso l'esame delle sue
276 modalità di funzionamento normali, all'avvio e alla terminazione, e di quello
277 che avviene nelle varie situazioni limite, da una parte potremo approfondire
278 la comprensione del protocollo TCP/IP e dall'altra ricavare le indicazioni
279 necessarie per essere in grado di scrivere applicazioni robuste, in grado di
280 gestire anche i casi limite.
281
282
283 \subsection{L'avvio e il funzionamento}
284 \label{sec:TCPsimpl_startup}
285
286 Il primo passo è compilare e lanciare il server (da root, per poter usare la
287 porta 7 che è riservata), alla partenza esso eseguirà l'apertura passiva con
288 la sequenza delle chiamate a \func{socket}, \func{bind}, \func{listen} e poi
289 si bloccherà nella \func{accept}. A questo punto si potrà controllarne lo
290 stato con \cmd{netstat}:
291 \begin{verbatim}
292 [piccardi@roke piccardi]$ netstat -at
293 Active Internet connections (servers and established)
294 Proto Recv-Q Send-Q Local Address           Foreign Address         State 
295 ...
296 tcp        0      0 *:echo                  *:*                     LISTEN
297 ...
298 \end{verbatim} %$
299 che ci mostra come il socket sia in ascolto sulla porta richiesta, accettando
300 connessioni da qualunque indirizzo e da qualunque porta e su qualunque
301 interfaccia locale.
302
303 A questo punto si può lanciare il client, esso chiamerà \func{socket} e
304 \func{connect}; una volta completato il three way handshake la connessione è
305 stabilita; la \func{connect} ritornerà nel client\footnote{si noti che è
306   sempre la \func{connect} del client a ritornare per prima, in quanto
307   questo avviene alla ricezione del secondo segmento (l'ACK del server) del
308   three way handshake, la \func{accept} del server ritorna solo dopo
309   un altro mezzo RTT quando il terzo segmento (l'ACK del client) viene
310   ricevuto.} e la \func{accept} nel server, ed usando di nuovo
311 \cmd{netstat} otterremmo che:
312 \begin{verbatim}
313 Active Internet connections (servers and established)
314 Proto Recv-Q Send-Q Local Address           Foreign Address         State
315 tcp        0      0 *:echo                  *:*                     LISTEN
316 tcp        0      0 roke:echo               gont:32981              ESTABLISHED
317 \end{verbatim}
318 mentre per quanto riguarda l'esecuzione dei programmi avremo che:
319 \begin{itemize}
320 \item il client chiama la funzione \code{ClientEcho} che si blocca sulla
321   \func{fgets} dato che non si è ancora scritto nulla sul terminale.
322 \item il server eseguirà una \func{fork} facendo chiamare al processo figlio
323   la funzione \code{ServEcho}, quest'ultima si bloccherà sulla \func{read}
324   dal socket sul quale ancora non sono presenti dati.
325 \item il processo padre del server chiamerà di nuovo \func{accept}
326   bloccandosi fino all'arrivo di un'altra connessione.
327 \end{itemize}
328 e se usiamo il comando \cmd{ps} per esaminare lo stato dei processi otterremo
329 un risultato del tipo:
330 \begin{verbatim}
331 [piccardi@roke piccardi]$ ps ax
332   PID TTY      STAT   TIME COMMAND
333  ...  ...      ...    ...  ...
334  2356 pts/0    S      0:00 ./echod
335  2358 pts/1    S      0:00 ./echo 127.0.0.1
336  2359 pts/0    S      0:00 ./echod
337 \end{verbatim} %$
338 (dove si sono cancellate le righe inutili) da cui si evidenzia la presenza di
339 tre processi, tutti in stato di \textit{sleep} (vedi
340 \tabref{tab:proc_proc_states}).
341
342 Se a questo punto si inizia a scrivere qualcosa sul client non sarà trasmesso
343 niente fin tanto che non si prema il tasto di a capo (si ricordi quanto detto
344 in \secref{sec:file_line_io} a proposito dell'I/O su terminale), solo allora
345 \func{fgets} ritornerà ed il client scriverà quanto immesso sul socket, per
346 poi passare a rileggere quanto gli viene inviato all'indietro dal server, che
347 a sua volta sarà inviato sullo standard output, che nel caso ne provoca
348 l'immediatamente stampa a video.
349
350
351 \subsection{La conclusione normale}
352 \label{sec:TCPsimpl_conclusion}
353
354 Tutto quello che scriveremo sul client sarà rimandato indietro dal server e
355 ristampato a video fintanto che non concluderemo l'immissione dei dati; una
356 sessione tipica sarà allora del tipo: 
357 \begin{verbatim}
358 [piccardi@roke sources]$ ./echo 127.0.0.1
359 Questa e` una prova
360 Questa e` una prova
361 Ho finito
362 Ho finito
363 \end{verbatim} %$
364 che termineremo inviando un EOF dal terminale (usando la combinazione di tasti
365 ctrl-D, che non compare a schermo); se eseguiamo un \cmd{netstat} a questo
366 punto avremo:
367 \begin{verbatim}
368 [piccardi@roke piccardi]$ netstat -at 
369 tcp        0      0 *:echo                  *:*                     LISTEN
370 tcp        0      0 localhost:33032         localhost:echo          TIME_WAIT
371 \end{verbatim} %$
372 con il client che entra in \texttt{TIME\_WAIT}.
373
374 Esaminiamo allora in dettaglio la sequenza di eventi che porta alla
375 terminazione normale della connessione, che ci servirà poi da riferimento
376 quando affronteremo il comportamento in caso di conclusioni anomale:
377
378 \begin{enumerate}
379 \item inviando un carattere di EOF da terminale la \func{fgets} ritorna
380   restituendo un puntatore nullo che causa l'uscita dal ciclo di
381   \code{while}, così la \code{ClientEcho} ritorna.
382 \item al ritorno di \code{ClientEcho} ritorna anche la funzione \code{main}, e
383   come parte del processo terminazione tutti i file descriptor vengono chiusi
384   (si ricordi quanto detto in \secref{sec:proc_term_conclusion}); questo causa
385   la chiusura del socket di comunicazione; il client allora invierà un FIN al
386   server a cui questo risponderà con un ACK.  A questo punto il client verrà a
387   trovarsi nello stato \texttt{FIN\_WAIT\_2} ed il server nello stato
388   \texttt{CLOSE\_WAIT} (si riveda quanto spiegato in
389   \secref{sec:TCPel_conn_term}).
390 \item quando il server riceve il FIN la \func{read} del processo figlio che
391   gestisce la connessione ritorna restituendo 0 causando così l'uscita dal
392   ciclo e il ritorno di \code{ServEcho}, a questo punto il processo figlio
393   termina chiamando \func{exit}.
394 \item all'uscita del figlio tutti i file descriptor vengono chiusi, la
395   chiusura del socket connesso fa sì che venga effettuata la sequenza finale
396   di chiusura della connessione, viene emesso un FIN dal server che riceverà
397   un ACK dal client, a questo punto la connessione è conclusa e il client
398   resta nello stato \texttt{TIME\_WAIT}.
399
400 \end{enumerate}
401
402
403 \subsection{La gestione dei processi figli}
404 \label{sec:TCPsimpl_child_hand}
405
406 Tutto questo riguarda la connessione, c'è però da tenere conto dell'effetto
407 del procedimento di chiusura del processo figlio nel server (si veda quanto
408 esaminato in \secref{sec:proc_termination}). In questo caso avremo l'invio del
409 segnale \const{SIGCHLD} al padre, ma dato che non si è installato un
410 gestore e che l'azione predefinita per questo segnale è quella di essere
411 ignorato, non avendo predisposto la ricezione dello stato di terminazione,
412 otterremo che il processo figlio entrerà nello stato di zombie\index{zombie}
413 (si riveda quanto illustrato in \secref{sec:sig_sigchld}), come risulterà
414 ripetendo il comando \cmd{ps}:
415 \begin{verbatim}
416  2356 pts/0    S      0:00 ./echod
417  2359 pts/0    Z      0:00 [echod <defunct>]
418 \end{verbatim}
419
420 Poiché non è possibile lasciare processi zombie\index{zombie} che pur inattivi
421 occupano spazio nella tabella dei processi e a lungo andare saturerebbero le
422 risorse del kernel, occorrerà ricevere opportunamente lo stato di terminazione
423 del processo (si veda \secref{sec:proc_wait}), cosa che faremo utilizzando
424 \const{SIGCHLD} secondo quanto illustrato in \secref{sec:sig_sigchld}.
425
426 La prima modifica al nostro server è pertanto quella di inserire la gestione
427 della terminazione dei processi figli attraverso l'uso di un gestore.
428 Per questo useremo la funzione \code{Signal}, illustrata in
429 \figref{fig:sig_Signal_code}, per installare il semplice gestore che
430 riceve i segnali dei processi figli terminati già visto in 
431 \figref{fig:sig_sigchld_handl}; aggiungendo il seguente codice:
432 \begin{lstlisting}{}
433     ...
434     /* install SIGCHLD handler */
435     Signal(SIGCHLD, sigchld_hand);  /* establish handler */
436     /* create socket */
437     ...
438 \end{lstlisting}
439
440 \noindent
441 all'esempio illustrato in \figref{fig:TCPsimpl_serv_code}, e linkando il tutto
442 alla funzione \code{sigchld\_hand}, si risolverà completamente il problema
443 degli zombie\index{zombie}.
444
445
446
447 %%% Local Variables: 
448 %%% mode: latex
449 %%% TeX-master: "gapil"
450 %%% End: