Altra documentazione sul log del kernel
[gapil.git] / session.tex
1 %% session.tex
2 %%
3 %% Copyright (C) 2000-2011 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{Interfaccia utente: terminali e sessioni di lavoro}
13 \label{cha:session}
14
15
16 A lungo l'unico modo per interagire con sistema di tipo Unix è stato tramite
17 l'interfaccia dei terminali, ma anche oggi, nonostante la presenza di diverse
18 interfacce grafiche, essi continuano ad essere estensivamente usati per il
19 loro stretto legame la linea di comando.
20
21 Nella prima parte esamineremo i concetti base in cui si articola l'interfaccia
22 dei terminali, a partire dal sistema del \textit{job control} e delle sessioni
23 di lavoro, toccando infine anche le problematiche dell'interazione con
24 programmi non interattivi. Nella seconda parte tratteremo il funzionamento
25 dell'I/O su terminale, e delle varie peculiarità che esso viene ad assumere
26 nell'uso come interfaccia di accesso al sistema da parte degli utenti. La
27 terza parte coprirà le tematiche relative alla creazione e gestione dei
28 terminali virtuali, che consentono di replicare via software l'interfaccia dei
29 terminali.
30
31
32
33 \section{L'interazione con i terminali}
34 \label{sec:sess_job_control}
35
36 I terminali sono l'interfaccia con cui fin dalla loro nascita i sistemi
37 unix-like hanno gestito l'interazione con gli utenti, tramite quella riga di
38 comando che li caratterizza da sempre. Ma essi hanno anche una rilevanza
39 particolare perché quella dei terminali è l'unica interfaccia hardware usata
40 dal kernel per comunicare direttamente con gli utenti, con la cosiddetta
41 \textit{console} di sistema, senza dover passare per un programma.
42
43 Originariamente si trattava di dispositivi specifici (i terminali seriali, se
44 non addirittura le telescriventi). Oggi questa interfaccia viene in genere
45 emulata o tramite programmi o con le cosiddette console virtuali associate a
46 monitor e tastiera, ma esiste sempre la possibilità di associarla direttamente
47 ad alcuni dispositivi, come eventuali linee seriali.\footnote{ed in certi
48   casi, come buona parte dei dispositivi embedded su cui gira Linux (come
49   router, access point, ecc.) questa resta anche l'unica opzione per una
50   \textit{console} di sistema.}
51
52
53 \subsection{Il \textit{job control}}
54 \label{sec:sess_job_control_overview}
55
56 Viene comunemente chiamato \textit{job control} quell'insieme di funzionalità
57 il cui scopo è quello di permettere ad un utente di poter sfruttare le
58 capacità multitasking di un sistema Unix per eseguire in contemporanea più
59 processi, pur potendo accedere, di solito, ad un solo terminale,\footnote{con
60   le interfacce grafiche di \textit{X Window} e con i terminali virtuali via
61   rete tutto questo non è più vero, dato che si può accedere a molti terminali
62   in contemporanea da una singola postazione di lavoro, ma il sistema è nato
63   prima dell'esistenza di tutto ciò.} avendo cioè un solo punto in cui si può
64 avere accesso all'input ed all'output degli stessi.
65
66 Il \textit{job control} è una caratteristica opzionale, introdotta in BSD
67 negli anni '80, e successivamente standardizzata da POSIX.1; la sua
68 disponibilità nel sistema è verificabile attraverso il controllo della macro
69 \macro{\_POSIX\_JOB\_CONTROL}. In generale il \textit{job control} richiede il
70 supporto sia da parte della shell (quasi tutte ormai lo hanno), che da parte
71 del kernel; in particolare il kernel deve assicurare sia la presenza di un
72 driver per i terminali abilitato al \textit{job control} che quella dei
73 relativi segnali illustrati in sez.~\ref{sec:sig_job_control}. 
74
75 In un sistema che supporta il \textit{job control}, una volta completato il
76 login, l'utente avrà a disposizione una shell dalla quale eseguire i comandi e
77 potrà iniziare quella che viene chiamata una \textsl{sessione}, che riunisce
78 (vedi sez.~\ref{sec:sess_proc_group}) tutti i processi eseguiti all'interno
79 dello stesso login (esamineremo tutto il processo in dettaglio in
80 sez.~\ref{sec:sess_login}).
81
82 Siccome la shell è collegata ad un solo terminale, che viene usualmente
83 chiamato \textsl{terminale di controllo}, (vedi sez.~\ref{sec:sess_ctrl_term})
84 un solo comando alla volta (quello che viene detto in \textit{foreground} o in
85 \textsl{primo piano}), potrà scrivere e leggere dal terminale. La shell però
86 può eseguire, aggiungendo una ``\cmd{\&}'' alla fine del comando, più
87 programmi in contemporanea, mandandoli in \textit{background} (o \textsl{sullo
88   sfondo}), nel qual caso essi saranno eseguiti senza essere collegati al
89 terminale.
90
91 Si noti come si sia parlato di comandi e non di programmi o processi; fra le
92 funzionalità della shell infatti c'è anche quella di consentire di concatenare
93 più programmi in una sola riga di comando con le pipe, ed in tal caso verranno
94 eseguiti più programmi. Inoltre, anche quando si invoca un singolo programma,
95 questo potrà sempre lanciare eventuali sotto-processi per eseguire dei compiti
96 specifici.
97
98 Per questo l'esecuzione di un comando può originare più di un processo; quindi
99 nella gestione del \textit{job control} non si può far riferimento ai singoli
100 processi.  Per questo il kernel prevede la possibilità di raggruppare più
101 processi in un cosiddetto \itindex{process~group} \textit{process group}
102 (detto anche \textsl{raggruppamento di processi}, vedi
103 sez.~\ref{sec:sess_proc_group}). Deve essere cura della shell far sì che tutti
104 i processi che originano da una stessa riga di comando appartengano allo
105 stesso raggruppamento di processi, in modo che le varie funzioni di controllo,
106 ed i segnali inviati dal terminale, possano fare riferimento ad esso.
107
108 In generale all'interno di una sessione avremo un eventuale (può non esserci)
109 \itindex{process~group} \textit{process group} in \textit{foreground}, che
110 riunisce i processi che possono accedere al terminale, e più
111 \itindex{process~group} \textit{process group} in \textit{background}, che non
112 possono accedervi. Il \textit{job control} prevede che quando un processo
113 appartenente ad un raggruppamento in \textit{background} cerca di accedere al
114 terminale, venga inviato un segnale a tutti i processi del raggruppamento, in
115 modo da bloccarli (vedi sez.~\ref{sec:sess_ctrl_term}).
116
117 Un comportamento analogo si ha anche per i segnali generati dai comandi di
118 tastiera inviati dal terminale, che vengono inviati a tutti i processi del
119 raggruppamento in \textit{foreground}. In particolare \cmd{C-z} interrompe
120 l'esecuzione del comando, che può poi essere mandato in \textit{background}
121 con il comando \cmd{bg}.\footnote{si tenga presente che \cmd{bg} e \cmd{fg}
122   sono parole chiave che indicano comandi interni alla shell, e nel caso non
123   comportano l'esecuzione di un programma esterno ma operazioni di gestione
124   compiute direttamente dalla shell stessa.} Il comando \cmd{fg} consente
125 invece di mettere in \textit{foreground} un comando precedentemente lanciato
126 in \textit{background}.
127
128 Di norma la shell si cura anche di notificare all'utente (di solito prima
129 della stampa a video del prompt) lo stato dei vari processi; essa infatti sarà
130 in grado, grazie all'uso di \func{waitpid}, di rilevare sia i processi che
131 sono terminati, sia i raggruppamenti che sono bloccati (in questo caso usando
132 l'opzione \const{WUNTRACED}, secondo quanto illustrato in
133 sez.~\ref{sec:proc_wait}).
134
135
136 \subsection{I \textit{process group} e le \textsl{sessioni}}
137 \label{sec:sess_proc_group}
138
139 \itindbeg{process~group}
140
141 Come accennato in sez.~\ref{sec:sess_job_control_overview} nel job control i
142 processi vengono raggruppati in \textit{process group} e \textsl{sessioni};
143 per far questo vengono utilizzati due ulteriori identificatori (oltre quelli
144 visti in sez.~\ref{sec:proc_pid}) che il kernel associa a ciascun
145 processo:\footnote{in Linux questi identificatori sono mantenuti nei campi
146   \var{pgrp} e \var{session} della struttura \struct{task\_struct} definita in
147   \file{sched.h}.}  l'identificatore del \textit{process group} e
148 l'identificatore della \textsl{sessione}, che vengono indicati rispettivamente
149 con le sigle \acr{pgid} e \acr{sid}, e sono mantenuti in variabili di tipo
150 \type{pid\_t}. I valori di questi identificatori possono essere visualizzati
151 dal comando \cmd{ps} usando l'opzione \cmd{-j}.
152
153 Un \textit{process group} è pertanto definito da tutti i processi che hanno lo
154 stesso \acr{pgid}; è possibile leggere il valore di questo identificatore con
155 le funzioni \funcd{getpgid} e \funcd{getpgrp},\footnote{\func{getpgrp} è
156   definita nello standard POSIX.1, mentre \func{getpgid} è richiesta da SVr4.}
157 i cui prototipi sono:
158 \begin{functions}
159   \headdecl{unistd.h}
160
161   \funcdecl{pid\_t getpgid(pid\_t pid)} 
162   Legge il \acr{pgid} del processo \param{pid}.
163
164   \funcdecl{pid\_t getpgrp(void)}
165   Legge il \acr{pgid} del processo corrente.
166   
167   \bodydesc{Le funzioni restituiscono il \acr{pgid} del processo,
168     \func{getpgrp} ha sempre successo, mentre \func{getpgid} restituisce -1
169     ponendo \var{errno} a \errval{ESRCH} se il processo selezionato non
170     esiste.}
171 \end{functions}
172
173 La funzione \func{getpgid} permette di specificare il \acr{pid} del processo
174 di cui si vuole sapere il \acr{pgid}; un valore nullo per \param{pid}
175 restituisce il \acr{pgid} del processo corrente; \func{getpgrp} è di norma
176 equivalente a \code{getpgid(0)}.
177
178 In maniera analoga l'identificatore della sessione può essere letto dalla
179 funzione \funcd{getsid}, che però nelle \acr{glibc}\footnote{la system call è
180   stata introdotta in Linux a partire dalla versione 1.3.44, il supporto nelle
181   librerie del C è iniziato dalla versione 5.2.19. La funzione non è prevista
182   da POSIX.1, che parla solo di processi leader di sessione, e non di
183   identificatori di sessione.} è accessibile solo definendo
184 \macro{\_XOPEN\_SOURCE} e \macro{\_XOPEN\_SOURCE\_EXTENDED}; il suo prototipo
185 è:
186 \begin{prototype}{unistd.h}{pid\_t getsid(pid\_t pid)}
187   Legge l'identificatore di sessione del processo \param{pid}.
188   
189   \bodydesc{La funzione restituisce l'identificatore (un numero positivo) in
190   caso di successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà
191   i valori:
192     \begin{errlist}
193     \item[\errcode{ESRCH}] il processo selezionato non esiste.
194     \item[\errcode{EPERM}] in alcune implementazioni viene restituito quando il
195       processo selezionato non fa parte della stessa sessione del processo
196       corrente.
197     \end{errlist}
198   }
199 \end{prototype}
200
201 Entrambi gli identificatori vengono inizializzati alla creazione di ciascun
202 processo con lo stesso valore che hanno nel processo padre, per cui un
203 processo appena creato appartiene sempre allo stesso raggruppamento e alla
204 stessa sessione del padre. Vedremo poi come sia possibile creare più
205 \textit{process group} all'interno della stessa sessione, e spostare i
206 processi dall'uno all'altro, ma sempre all'interno di una stessa sessione.
207
208 Ciascun raggruppamento di processi ha sempre un processo principale, il
209 cosiddetto \itindex{process~group~leader} \textit{process group leader}, che è
210 identificato dall'avere un \acr{pgid} uguale al suo \acr{pid}, in genere
211 questo è il primo processo del raggruppamento, che si incarica di lanciare
212 tutti gli altri. Un nuovo raggruppamento si crea con la funzione
213 \funcd{setpgrp},\footnote{questa è la definizione di POSIX.1, BSD definisce
214   una funzione con lo stesso nome, che però è identica a \func{setpgid}; nelle
215   \acr{glibc} viene sempre usata sempre questa definizione, a meno di non
216   richiedere esplicitamente la compatibilità all'indietro con BSD, definendo
217   la macro \macro{\_BSD\_SOURCE}.} il cui prototipo è:
218 \begin{prototype}{unistd.h}{int setpgrp(void)}
219   Modifica il \acr{pgid} al valore del \acr{pid} del processo corrente.
220   
221   \bodydesc{La funzione restituisce il valore del nuovo \textit{process
222       group}.}
223 \end{prototype}
224
225 La funzione, assegnando al \acr{pgid} il valore del \acr{pid} processo
226 corrente, rende questo \itindex{process~group~leader} \textit{group leader} di
227 un nuovo raggruppamento, tutti i successivi processi da esso creati
228 apparterranno (a meno di non cambiare di nuovo il \acr{pgid}) al nuovo
229 raggruppamento. È possibile invece spostare un processo da un raggruppamento
230 ad un altro con la funzione \funcd{setpgid}, il cui prototipo è:
231 \begin{prototype}{unistd.h}{int setpgid(pid\_t pid, pid\_t pgid)}
232   Assegna al \acr{pgid} del processo \param{pid} il valore \param{pgid}.
233   
234   \bodydesc{La funzione ritorna il valore del nuovo \textit{process group}, e
235   -1 in caso di errore, nel qual caso \var{errno} assumerà i valori:
236     \begin{errlist}
237     \item[\errcode{ESRCH}] il processo selezionato non esiste.
238     \item[\errcode{EPERM}] il cambiamento non è consentito.
239     \item[\errcode{EACCES}] il processo ha già eseguito una \func{exec}.
240     \item[\errcode{EINVAL}] il valore di \param{pgid} è negativo.
241     \end{errlist}
242  }
243 \end{prototype}
244
245 La funzione permette di cambiare il \acr{pgid} del processo \param{pid}, ma il
246 cambiamento può essere effettuato solo se \param{pgid} indica un
247 \textit{process group} che è nella stessa sessione del processo chiamante.
248 Inoltre la funzione può essere usata soltanto sul processo corrente o su uno
249 dei suoi figli, ed in quest'ultimo caso ha successo soltanto se questo non ha
250 ancora eseguito una \func{exec}.\footnote{questa caratteristica è implementata
251   dal kernel che mantiene allo scopo un altro campo, \var{did\_exec}, in
252   \struct{task\_struct}.}  Specificando un valore nullo per \param{pid} si
253 indica il processo corrente, mentre specificando un valore nullo per
254 \param{pgid} si imposta il \textit{process group} al valore del \acr{pid} del
255 processo selezionato; pertanto \func{setpgrp} è equivalente a \code{setpgid(0,
256   0)}.
257
258 Di norma questa funzione viene usata dalla shell quando si usano delle
259 pipeline, per mettere nello stesso \textit{process group} tutti i programmi
260 lanciati su ogni linea di comando; essa viene chiamata dopo una \func{fork}
261 sia dal processo padre, per impostare il valore nel figlio, che da
262 quest'ultimo, per sé stesso, in modo che il cambiamento di \textit{process
263   group} sia immediato per entrambi; una delle due chiamate sarà ridondante,
264 ma non potendo determinare quale dei due processi viene eseguito per primo,
265 occorre eseguirle comunque entrambe per evitare di esporsi ad una
266 \itindex{race~condition} \textit{race condition}.
267
268 Si noti come nessuna delle funzioni esaminate finora permetta di spostare un
269 processo da una sessione ad un altra; infatti l'unico modo di far cambiare
270 sessione ad un processo è quello di crearne una nuova con l'uso di
271 \funcd{setsid}; il suo prototipo è:
272 \begin{prototype}{unistd.h}{pid\_t setsid(void)}
273   Crea una nuova sessione sul processo corrente impostandone \acr{sid} e
274   \acr{pgid}.
275   
276   \bodydesc{La funzione ritorna il valore del nuovo \acr{sid}, e -1 in caso di
277     errore, il solo errore possibile è \errval{EPERM}, che si ha quando il
278     \acr{pgid} e \acr{pid} del processo coincidono.}
279 \end{prototype}
280
281 La funzione imposta il \acr{pgid} ed il \acr{sid} del processo corrente al
282 valore del suo \acr{pid}, creando così una nuova sessione ed un nuovo
283 \textit{process group} di cui esso diventa leader (come per i \textit{process
284   group} un processo si dice leader di sessione\footnote{in Linux la proprietà
285   è mantenuta in maniera indipendente con un apposito campo \var{leader} in
286   \struct{task\_struct}.} se il suo \acr{sid} è uguale al suo \acr{pid}) ed
287 unico componente.  Inoltre la funzione distacca il processo da ogni terminale
288 di controllo (torneremo sull'argomento in sez.~\ref{sec:sess_ctrl_term}) cui
289 fosse in precedenza associato.
290
291 La funzione ha successo soltanto se il processo non è già
292 \itindex{process~group~leader} leader di un \textit{process group}, per cui
293 per usarla di norma si esegue una \func{fork} e si esce, per poi chiamare
294 \func{setsid} nel processo figlio, in modo che, avendo questo lo stesso
295 \acr{pgid} del padre ma un \acr{pid} diverso, non ci siano possibilità di
296 errore.\footnote{potrebbe sorgere il dubbio che, per il riutilizzo dei valori
297   dei \acr{pid} fatto nella creazione dei nuovi processi (vedi
298   sez.~\ref{sec:proc_pid}), il figlio venga ad assumere un valore
299   corrispondente ad un \textit{process group} esistente; questo viene evitato
300   dal kernel che considera come disponibili per un nuovo \acr{pid} solo valori
301   che non corrispondono ad altri \acr{pid}, \acr{pgid} o \acr{sid} in uso nel
302   sistema.} Questa funzione viene usata di solito nel processo di login (per i
303 dettagli vedi sez.~\ref{sec:sess_login}) per raggruppare in una sessione tutti
304 i comandi eseguiti da un utente dalla sua shell.
305
306 \itindend{process~group}
307
308 \subsection{Il terminale di controllo e il controllo di sessione}
309 \label{sec:sess_ctrl_term}
310
311 Come accennato in sez.~\ref{sec:sess_job_control_overview}, nel sistema del
312 \textit{job control} i processi all'interno di una sessione fanno riferimento
313 ad un terminale di controllo (ad esempio quello su cui si è effettuato il
314 login), sul quale effettuano le operazioni di lettura e
315 scrittura,\footnote{nel caso di login grafico la cosa può essere più
316   complessa, e di norma l'I/O è effettuato tramite il server X, ma ad esempio
317   per i programmi, anche grafici, lanciati da un qualunque emulatore di
318   terminale, sarà quest'ultimo a fare da terminale (virtuale) di controllo.} e
319 dal quale ricevono gli eventuali segnali da tastiera.
320
321 A tale scopo lo standard POSIX.1 prevede che ad ogni sessione possa essere
322 associato un terminale di controllo; in Linux questo viene realizzato
323 mantenendo fra gli attributi di ciascun processo anche qual'è il suo terminale
324 di controllo.\footnote{lo standard POSIX.1 non specifica nulla riguardo
325   l'implementazione; in Linux anch'esso viene mantenuto nella solita struttura
326   \struct{task\_struct}, nel campo \var{tty}.}  In generale ogni processo
327 eredita dal padre, insieme al \acr{pgid} e al \acr{sid} anche il terminale di
328 controllo (vedi sez.~\ref{sec:proc_fork}). In questo modo tutti processi
329 originati dallo stesso leader di sessione mantengono lo stesso terminale di
330 controllo.
331
332 Alla creazione di una nuova sessione con \func{setsid} ogni associazione con
333 il precedente terminale di controllo viene cancellata, ed il processo che è
334 divenuto un nuovo leader di sessione dovrà riottenere\footnote{solo quando ciò
335   è necessario, cosa che, come vedremo in sez.~\ref{sec:sess_daemon}, non è
336   sempre vera.}, un terminale di controllo. In generale questo viene fatto
337 automaticamente dal sistema\footnote{a meno di non avere richiesto
338   esplicitamente che questo non diventi un terminale di controllo con il flag
339   \const{O\_NOCTTY} (vedi sez.~\ref{sec:file_open}). In questo Linux segue la
340   semantica di SVr4; BSD invece richiede che il terminale venga allocato
341   esplicitamente con una \func{ioctl} con il comando \const{TIOCSCTTY}.}
342 quando viene aperto il primo terminale (cioè uno dei vari file di dispositivo
343 \file{/dev/tty*}) che diventa automaticamente il terminale di controllo,
344 mentre il processo diventa il \textsl{processo di controllo} di quella
345 sessione.
346
347 In genere (a meno di redirezioni) nelle sessioni di lavoro questo terminale è
348 associato ai file standard (di input, output ed error) dei processi nella
349 sessione, ma solo quelli che fanno parte del cosiddetto raggruppamento di
350 \textit{foreground}, possono leggere e scrivere in certo istante. Per
351 impostare il raggruppamento di \textit{foreground} di un terminale si usa la
352 funzione \funcd{tcsetpgrp}, il cui prototipo è:
353 \begin{functions}
354   \headdecl{unistd.h}
355   \headdecl{termios.h}
356   
357   \funcdecl{int tcsetpgrp(int fd, pid\_t pgrpid)} Imposta a \param{pgrpid} il
358   \textit{process group} di \textit{foreground} del terminale associato al
359   file descriptor \param{fd}.
360    
361   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
362     errore, nel qual caso \var{errno} assumerà i valori:
363     \begin{errlist}
364     \item[\errcode{ENOTTY}] il file \param{fd} non corrisponde al terminale di
365       controllo del processo chiamante.
366     \item[\errcode{ENOSYS}] il sistema non supporta il job control.
367     \item[\errcode{EPERM}] il \textit{process group} specificato non è nella
368     stessa sessione del processo chiamante.
369     \end{errlist}
370     ed inoltre \errval{EBADF} ed \errval{EINVAL}. 
371   }
372 \end{functions}
373 \noindent la funzione può essere eseguita con successo solo da
374 un processo nella stessa sessione e con lo stesso terminale di controllo. 
375
376 Come accennato in sez.~\ref{sec:sess_job_control_overview}, tutti i processi
377 (e relativi raggruppamenti) che non fanno parte del gruppo di
378 \textit{foreground} sono detti in \textit{background}; se uno si essi cerca di
379 accedere al terminale di controllo provocherà l'invio da parte del kernel di
380 uno dei due segnali \const{SIGTTIN} o \const{SIGTTOU} (a seconda che l'accesso
381 sia stato in lettura o scrittura) a tutto il suo \itindex{process~group}
382 \textit{process group}; dato che il comportamento di default di questi segnali
383 (si riveda quanto esposto in sez.~\ref{sec:sig_job_control}) è di fermare il
384 processo, di norma questo comporta che tutti i membri del gruppo verranno
385 fermati, ma non si avranno condizioni di errore.\footnote{la shell in genere
386   notifica comunque un avvertimento, avvertendo la presenza di processi
387   bloccati grazie all'uso di \func{waitpid}.} Se però si bloccano o ignorano i
388 due segnali citati, le funzioni di lettura e scrittura falliranno con un
389 errore di \errcode{EIO}.
390
391 Un processo può controllare qual è il gruppo di \textit{foreground} associato
392 ad un terminale con la funzione \funcd{tcgetpgrp}, il cui prototipo è:
393 \begin{functions}
394   \headdecl{unistd.h} \headdecl{termios.h}
395   
396   \funcdecl{pid\_t tcgetpgrp(int fd)} Legge il \textit{process group} di
397   \textit{foreground} del terminale associato al file descriptor \param{fd}.
398   \bodydesc{La funzione restituisce in caso di successo il \acr{pgid} del
399     gruppo di \textit{foreground}, e -1 in caso di errore, nel qual caso
400     \var{errno} assumerà i valori:
401     \begin{errlist}
402     \item[\errcode{ENOTTY}] non c'è un terminale di controllo o \param{fd} non
403       corrisponde al terminale di controllo del processo chiamante.
404     \end{errlist}
405     ed inoltre \errval{EBADF} ed \errval{ENOSYS}. 
406   }
407 \end{functions}
408
409 Si noti come entrambe le funzioni usino come argomento il valore di un file
410 descriptor, il risultato comunque non dipende dal file descriptor che si usa
411 ma solo dal terminale cui fa riferimento; il kernel inoltre permette a ciascun
412 processo di accedere direttamente al suo terminale di controllo attraverso il
413 file speciale \file{/dev/tty}, che per ogni processo è un sinonimo per il
414 proprio terminale di controllo.  Questo consente anche a processi che possono
415 aver rediretto l'output di accedere al terminale di controllo, pur non
416 disponendo più del file descriptor originario; un caso tipico è il programma
417 \cmd{crypt} che accetta la redirezione sullo standard input di un file da
418 decifrare, ma deve poi leggere la password dal terminale.
419
420 Un'altra caratteristica del terminale di controllo usata nel job control è che
421 utilizzando su di esso le combinazioni di tasti speciali (\texttt{C-z},
422 \texttt{C-c}, \texttt{C-y} e \texttt{C-|}) si farà sì che il kernel invii i
423 corrispondenti segnali (rispettivamente \const{SIGTSTP}, \const{SIGINT},
424 \const{SIGQUIT} e \const{SIGTERM}, trattati in sez.~\ref{sec:sig_job_control})
425 a tutti i processi del raggruppamento di \textit{foreground}; in questo modo
426 la shell può gestire il blocco e l'interruzione dei vari comandi.
427
428
429 Per completare la trattazione delle caratteristiche del job control legate al
430 terminale di controllo, occorre prendere in considerazione i vari casi legati
431 alla terminazione anomala dei processi, che sono di norma gestite attraverso
432 il segnale \const{SIGHUP}. Il nome del segnale deriva da \textit{hungup},
433 termine che viene usato per indicare la condizione in cui il terminale diventa
434 inutilizzabile, (letteralmente sarebbe \textsl{impiccagione}).
435
436 Quando si verifica questa condizione, ad esempio se si interrompe la linea, o
437 va giù la rete o più semplicemente si chiude forzatamente la finestra di
438 terminale su cui si stava lavorando, il kernel provvederà ad inviare il
439 segnale di \const{SIGHUP} al processo di controllo. L'azione preimpostata in
440 questo caso è la terminazione del processo, il problema che si pone è cosa
441 accade agli altri processi nella sessione, che non han più un processo di
442 controllo che possa gestire l'accesso al terminale, che potrebbe essere
443 riutilizzato per qualche altra sessione.
444
445 Lo standard POSIX.1 prevede che quando il processo di controllo termina, che
446 ciò avvenga o meno per un \textit{hungup} del terminale (ad esempio si
447 potrebbe terminare direttamente la shell con \cmd{kill}) venga inviato un
448 segnale di \const{SIGHUP} ai processi del raggruppamento di foreground. In
449 questo modo essi potranno essere avvisati che non esiste più un processo in
450 grado di gestire il terminale (di norma tutto ciò comporta la terminazione
451 anche di questi ultimi).
452
453 Restano però gli eventuali processi in background, che non ricevono il
454 segnale; in effetti se il terminale non dovesse più servire essi potrebbero
455 proseguire fino al completamento della loro esecuzione; ma si pone il problema
456 di come gestire quelli che sono bloccati, o che si bloccano nell'accesso al
457 terminale, in assenza di un processo che sia in grado di effettuare il
458 controllo dello stesso.
459
460 Questa è la situazione in cui si ha quello che viene chiamato un
461 \itindex{process~group~orphaned} \textit{orphaned process group}. Lo standard
462 POSIX.1 lo definisce come un \itindex{process~group} \textit{process group} i
463 cui processi hanno come padri esclusivamente o altri processi nel
464 raggruppamento, o processi fuori della sessione.  Lo standard prevede inoltre
465 che se la terminazione di un processo fa sì che un raggruppamento di processi
466 diventi orfano e se i suoi membri sono bloccati, ad essi vengano inviati in
467 sequenza i segnali di \const{SIGHUP} e \const{SIGCONT}.
468
469 La definizione può sembrare complicata, e a prima vista non è chiaro cosa
470 tutto ciò abbia a che fare con il problema della terminazione del processo di
471 controllo.  Consideriamo allora cosa avviene di norma nel \textit{job
472   control}: una sessione viene creata con \func{setsid} che crea anche un
473 nuovo \itindex{process~group} \textit{process group}: per definizione
474 quest'ultimo è sempre \itindex{process~group~orphaned} \textsl{orfano}, dato
475 che il padre del leader di sessione è fuori dalla stessa e il nuovo
476 \textit{process group} \itindex{process~group} contiene solo il leader di
477 sessione. Questo è un caso limite, e non viene emesso nessun segnale perché
478 quanto previsto dallo standard riguarda solo i raggruppamenti che diventano
479 orfani in seguito alla terminazione di un processo.\footnote{l'emissione dei
480   segnali infatti avviene solo nella fase di uscita del processo, come una
481   delle operazioni legate all'esecuzione di \func{\_exit}, secondo quanto
482   illustrato in sez.~\ref{sec:proc_termination}.}
483
484 Il leader di sessione provvederà a creare nuovi raggruppamenti che a questo
485 punto non sono orfani in quanto esso resta padre per almeno uno dei processi
486 del gruppo (gli altri possono derivare dal primo). Alla terminazione del
487 leader di sessione però avremo che, come visto in
488 sez.~\ref{sec:proc_termination}, tutti i suoi figli vengono adottati da
489 \cmd{init}, che è fuori dalla sessione. Questo renderà orfani tutti i process
490 group creati direttamente dal leader di sessione (a meno di non aver spostato
491 con \func{setpgid} un processo da un gruppo ad un altro, cosa che di norma non
492 viene fatta) i quali riceveranno, nel caso siano bloccati, i due segnali;
493 \const{SIGCONT} ne farà proseguire l'esecuzione, ed essendo stato nel
494 frattempo inviato anche \const{SIGHUP}, se non c'è un gestore per
495 quest'ultimo, i processi bloccati verranno automaticamente terminati.
496
497
498
499 \subsection{Dal login alla shell}
500 \label{sec:sess_login}
501
502 L'organizzazione del sistema del job control è strettamente connessa alle
503 modalità con cui un utente accede al sistema per dare comandi, collegandosi ad
504 esso con un terminale, che sia questo realmente tale, come un VT100 collegato
505 ad una seriale o virtuale, come quelli associati a schermo e tastiera o ad una
506 connessione di rete. Dato che i concetti base sono gli stessi, e dato che alla
507 fine le differenze sono\footnote{in generale nel caso di login via rete o di
508   terminali lanciati dall'interfaccia grafica cambia anche il processo da cui
509   ha origine l'esecuzione della shell.} nel dispositivo cui il kernel associa
510 i file standard (vedi sez.~\ref{sec:file_std_descr}) per l'I/O, tratteremo
511 solo il caso classico del terminale.
512
513 Abbiamo già brevemente illustrato in sez.~\ref{sec:intro_kern_and_sys} le
514 modalità con cui il sistema si avvia, e di come, a partire da \cmd{init},
515 vengano lanciati tutti gli altri processi. Adesso vedremo in maniera più
516 dettagliata le modalità con cui il sistema arriva a fornire ad un utente la
517 shell che gli permette di lanciare i suoi comandi su un terminale.
518
519 Nella maggior parte delle distribuzioni di GNU/Linux\footnote{in realtà negli
520   ultimi tempi questa situazione sta cambiando, e sono state proposte diversi
521   possibili rimpiazzi per il tradizionale \texttt{init} di System V, come
522   \texttt{upstart} o \texttt{systemd}, ma per quanto trattato in questa
523   sezione il risultato finale non cambia, si avrà comunque il lancio di un
524   programma che consenta l'accesso al terminale.}  viene usata la procedura di
525 avvio di System V; questa prevede che \cmd{init} legga dal file di
526 configurazione \conffile{/etc/inittab} quali programmi devono essere lanciati,
527 ed in quali modalità, a seconda del cosiddetto \textit{run level}, anch'esso
528 definito nello stesso file.
529
530 Tralasciando la descrizione del sistema dei \textit{run level}, (per il quale
531 si rimanda alla lettura delle pagine di manuale di \cmd{init} e di
532 \file{inittab} o alla trattazione in sez.~5.3.5 di \cite{AGL}) quello che
533 comunque viene sempre fatto è di eseguire almeno una istanza di un programma
534 che permetta l'accesso ad un terminale. Uno schema di massima della procedura
535 è riportato in fig.~\ref{fig:sess_term_login}.
536
537 \begin{figure}[htb]
538   \centering
539   \includegraphics[width=15cm]{img/tty_login}
540   \caption{Schema della procedura di login su un terminale.}
541   \label{fig:sess_term_login}
542 \end{figure}
543
544 Un terminale, che esso sia un terminale effettivo, attaccato ad una seriale o
545 ad un altro tipo di porta di comunicazione, o una delle console virtuali
546 associate allo schermo, viene sempre visto attraverso un device driver che ne
547 presenta un'interfaccia comune su un apposito file di dispositivo.
548
549 Per controllare un terminale si usa di solito il programma \cmd{getty} (od una
550 delle sue varianti), che permette di mettersi in ascolto su uno di questi
551 dispositivi. Alla radice della catena che porta ad una shell per i comandi
552 perciò c'è sempre \cmd{init} che esegue prima una \func{fork} e poi una
553 \func{exec} per lanciare una istanza di questo programma su un terminale, il
554 tutto ripetuto per ciascuno dei terminali che si hanno a disposizione (o per
555 un certo numero di essi, nel caso delle console virtuali), secondo quanto
556 indicato dall'amministratore nel file di configurazione del programma,
557 \conffile{/etc/inittab}.
558
559 Quando viene lanciato da \cmd{init} il programma parte con i privilegi di
560 amministratore e con un ambiente vuoto; \cmd{getty} si cura di chiamare
561 \func{setsid} per creare una nuova sessione ed un nuovo
562 \itindex{process~group} \textit{process group}, e di aprire il terminale (che
563 così diventa il terminale di controllo della sessione) in lettura sullo
564 standard input ed in scrittura sullo standard output e sullo standard error;
565 inoltre effettuerà, qualora servano, ulteriori impostazioni.\footnote{ad
566   esempio, come qualcuno si sarà accorto scrivendo un nome di login in
567   maiuscolo, può effettuare la conversione automatica dell'input in minuscolo,
568   ponendosi in una modalità speciale che non distingue fra i due tipi di
569   caratteri (a beneficio di alcuni vecchi terminali che non supportavano le
570   minuscole).}  Alla fine il programma stamperà un messaggio di benvenuto per
571 poi porsi in attesa dell'immissione del nome di un utente.
572
573 Una volta che si sia immesso il nome di login \cmd{getty} esegue direttamente
574 il programma \cmd{login} con una \func{exevle}, passando come argomento la
575 stringa con il nome, ed un ambiente opportunamente costruito che contenga
576 quanto necessario; ad esempio di solito viene opportunamente inizializzata la
577 variabile di ambiente \texttt{TERM} per identificare il terminale su cui si
578 sta operando, a beneficio dei programmi che verranno lanciati in seguito.
579
580 A sua volta \cmd{login}, che mantiene i privilegi di amministratore, usa il
581 nome dell'utente per effettuare una ricerca nel database degli
582 utenti,\footnote{in genere viene chiamata \func{getpwnam}, che abbiamo visto
583   in sez.~\ref{sec:sys_user_group}, per leggere la password e gli altri dati
584   dal database degli utenti.} e richiede una password. Se l'utente non esiste
585 o se la password non corrisponde\footnote{il confronto non viene effettuato
586   con un valore in chiaro; quanto immesso da terminale viene invece a sua
587   volta criptato, ed è il risultato che viene confrontato con il valore che
588   viene mantenuto nel database degli utenti.} la richiesta viene ripetuta un
589 certo numero di volte dopo di che \cmd{login} esce ed \cmd{init} provvede a
590 rilanciare un'altra istanza di \cmd{getty}.
591
592 Se invece la password corrisponde \cmd{login} esegue \func{chdir} per
593 impostare come directory di lavoro la \textit{home directory} dell'utente,
594 cambia i diritti di accesso al terminale (con \func{chown} e \func{chmod}) per
595 assegnarne la titolarità all'utente ed al suo gruppo principale, assegnandogli
596 al contempo i diritti di lettura e scrittura.\footnote{oggi queste operazioni,
597   insieme ad altre relative alla contabilità ed alla tracciatura degli
598   accessi, vengono gestite dalle distribuzioni più recenti in una maniera
599   generica appoggiandosi a servizi di sistema come \textit{ConsoleKit}, ma il
600   concetto generale resta sostanzialmente lo stesso.}  Inoltre il programma
601 provvede a costruire gli opportuni valori per le variabili di ambiente, come
602 \texttt{HOME}, \texttt{SHELL}, ecc.  Infine attraverso l'uso di \func{setuid},
603 \func{setgid} e \func{initgroups} verrà cambiata l'identità del proprietario
604 del processo, infatti, come spiegato in sez.~\ref{sec:proc_setuid}, avendo
605 invocato tali funzioni con i privilegi di amministratore, tutti gli user-ID ed
606 i group-ID (reali, effettivi e salvati) saranno impostati a quelli
607 dell'utente.
608
609 A questo punto \cmd{login} provvederà (fatte salve eventuali altre azioni
610 iniziali, come la stampa di messaggi di benvenuto o il controllo della posta)
611 ad eseguire con un'altra \func{exec} la shell, che si troverà con un ambiente
612 già pronto con i file standard di sez.~\ref{sec:file_std_descr} impostati sul
613 terminale, e pronta, nel ruolo di leader di sessione e di processo di
614 controllo per il terminale, a gestire l'esecuzione dei comandi come illustrato
615 in sez.~\ref{sec:sess_job_control_overview}. 
616
617 Dato che il processo padre resta sempre \cmd{init} quest'ultimo potrà
618 provvedere, ricevendo un \const{SIGCHLD} all'uscita della shell quando la
619 sessione di lavoro è terminata, a rilanciare \cmd{getty} sul terminale per
620 ripetere da capo tutto il procedimento.
621
622
623
624 \subsection{Interazione senza terminale: i \textsl{demoni} ed il
625   \textit{syslog}}
626 \label{sec:sess_daemon}
627
628 Come sottolineato fin da sez.~\ref{sec:intro_base_concept}, in un sistema
629 unix-like tutte le operazioni sono eseguite tramite processi, comprese quelle
630 operazioni di sistema (come l'esecuzione dei comandi periodici, o la consegna
631 della posta, ed in generale tutti i programmi di servizio) che non hanno
632 niente a che fare con la gestione diretta dei comandi dell'utente.
633
634 Questi programmi, che devono essere eseguiti in modalità non interattiva e
635 senza nessun intervento dell'utente, sono normalmente chiamati
636 \textsl{demoni}, (o \textit{daemons}), nome ispirato dagli omonimi spiritelli
637 della mitologia greca che svolgevano compiti che gli dei trovavano noiosi, di
638 cui parla anche Socrate (che sosteneva di averne uno al suo servizio).
639
640 %TODO ricontrollare, i miei ricordi di filosofia sono piuttosto datati.
641
642 Se però si lancia un programma demone dalla riga di comando in un sistema che
643 supporta, come Linux, il \textit{job control} esso verrà comunque associato ad
644 un terminale di controllo e mantenuto all'interno di una sessione, e anche se
645 può essere mandato in background e non eseguire più nessun I/O su terminale,
646 si avranno comunque tutte le conseguenze che abbiamo appena visto in
647 sez.~\ref{sec:sess_ctrl_term} (in particolare l'invio dei segnali in
648 corrispondenza dell'uscita del leader di sessione).
649
650 Per questo motivo un programma che deve funzionare come demone deve sempre
651 prendere autonomamente i provvedimenti opportuni (come distaccarsi dal
652 terminale e dalla sessione) ad impedire eventuali interferenze da parte del
653 sistema del \textit{job control}; questi sono riassunti in una lista di
654 prescrizioni\footnote{ad esempio sia Stevens in \cite{APUE}, che la
655   \textit{Unix Programming FAQ} \cite{UnixFAQ} ne riportano di sostanzialmente
656   identiche.} da seguire quando si scrive un demone.
657
658 Pertanto, quando si lancia un programma che deve essere eseguito come demone
659 occorrerà predisporlo in modo che esso compia le seguenti azioni:
660 \begin{enumerate*}
661 \item Eseguire una \func{fork} e terminare immediatamente il processo padre
662   proseguendo l'esecuzione nel figlio.  In questo modo si ha la certezza che
663   il figlio non è un \itindex{process~group~leader} \textit{process group
664     leader}, (avrà il \acr{pgid} del padre, ma un \acr{pid} diverso) e si può
665   chiamare \func{setsid} con successo. Inoltre la shell considererà terminato
666   il comando all'uscita del padre.
667 \item Eseguire \func{setsid} per creare una nuova sessione ed un nuovo
668   raggruppamento di cui il processo diventa automaticamente il leader, che
669   però non ha associato nessun terminale di controllo.
670 \item Assicurarsi che al processo non venga associato in seguito nessun nuovo
671   terminale di controllo; questo può essere fatto sia avendo cura di usare
672   sempre l'opzione \const{O\_NOCTTY} nell'aprire i file di terminale, che
673   eseguendo una ulteriore \func{fork} uscendo nel padre e proseguendo nel
674   figlio. In questo caso, non essendo più quest'ultimo un leader di sessione
675   non potrà ottenere automaticamente un terminale di controllo.
676 \item Eseguire una \func{chdir} per impostare la directory di lavoro del
677   processo (su \file{/} o su una directory che contenga dei file necessari per
678   il programma), per evitare che la directory da cui si è lanciato il processo
679   resti in uso e non sia possibile rimuoverla o smontare il filesystem che la
680   contiene.
681 \item Impostare la \itindex{umask} maschera dei permessi (di solito con
682   \code{umask(0)}) in modo da non essere dipendenti dal valore ereditato da
683   chi ha lanciato originariamente il processo.
684 \item Chiudere tutti i file aperti che non servono più (in generale tutti); in
685   particolare vanno chiusi i file standard che di norma sono ancora associati
686   al terminale (un'altra opzione è quella di redirigerli verso
687   \file{/dev/null}).
688 \end{enumerate*}
689
690
691 In Linux buona parte di queste azioni possono venire eseguite invocando la
692 funzione \funcd{daemon}, introdotta per la prima volta in BSD4.4; il suo
693 prototipo è:
694 \begin{prototype}{unistd.h}{int daemon(int nochdir, int noclose)}
695   Esegue le operazioni che distaccano il processo dal terminale di controllo e
696   lo fanno girare come demone.
697   
698   \bodydesc{La funzione restituisce (nel nuovo processo) 0 in caso di
699     successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà i
700     valori impostati dalle sottostanti \func{fork} e \func{setsid}.}
701 \end{prototype}
702
703 La funzione esegue una \func{fork}, per uscire subito, con \func{\_exit}, nel
704 padre, mentre l'esecuzione prosegue nel figlio che esegue subito una
705 \func{setsid}. In questo modo si compiono automaticamente i passi 1 e 2 della
706 precedente lista. Se \param{nochdir} è nullo la funzione imposta anche la
707 directory di lavoro su \file{/}, se \param{noclose} è nullo i file standard
708 vengono rediretti su \file{/dev/null} (corrispondenti ai passi 4 e 6); in caso
709 di valori non nulli non viene eseguita nessuna altra azione.
710
711 Dato che un programma demone non può più accedere al terminale, si pone il
712 problema di come fare per la notifica di eventuali errori, non potendosi più
713 utilizzare lo standard error; per il normale I/O infatti ciascun demone avrà
714 le sue modalità di interazione col sistema e gli utenti a seconda dei compiti
715 e delle funzionalità che sono previste; ma gli errori devono normalmente
716 essere notificati all'amministratore del sistema.
717
718 \itindbeg{syslog}
719
720 Una soluzione può essere quella di scrivere gli eventuali messaggi su uno
721 specifico file (cosa che a volte viene fatta comunque) ma questo comporta il
722 grande svantaggio che l'amministratore dovrà tenere sotto controllo un file
723 diverso per ciascun demone, e che possono anche generarsi conflitti di nomi.
724 Per questo in BSD4.2 venne introdotto un servizio di sistema, il
725 \textit{syslog}, che oggi si trova su tutti i sistemi Unix, e che permette ai
726 demoni di inviare messaggi all'amministratore in una maniera
727 standardizzata. 
728
729 Il servizio prevede vari meccanismi di notifica, e, come ogni altro servizio
730 in un sistema unix-like, viene gestito attraverso un apposito programma, che è
731 anch'esso un \textsl{demone}. In generale i messaggi di errore vengono
732 raccolti dal file speciale \file{/dev/log}, un socket locale (vedi
733 sez.~\ref{sec:sock_sa_local}) dedicato a questo scopo, o via rete, con un
734 socket UDP e trattati dal demone che gestisce il servizio. Il più comune di
735 questi è \texttt{syslogd}, che consente un semplice smistamento dei messaggi
736 sui file in base alle informazioni in esse presenti.\footnote{ad oggi però
737   \texttt{syslogd} è in sostanziale disuso, sostituito da programmi più
738   sofisticati come \texttt{rsyslog} o \texttt{syslog-ng}.}
739
740 Il servizio del \textit{syslog} permette infatti di trattare i vari messaggi
741 classificandoli attraverso due indici; il primo, chiamato \textit{facility},
742 suddivide in diverse categorie i messaggi in modo di raggruppare quelli
743 provenienti da operazioni che hanno attinenza fra loro, ed è organizzato in
744 sottosistemi (kernel, posta elettronica, demoni di stampa, ecc.). Il secondo,
745 chiamato \textit{priority}, identifica l'importanza dei vari messaggi, e
746 permette di classificarli e differenziare le modalità di notifica degli
747 stessi.
748
749 Il sistema del \textit{syslog} attraverso il proprio demone di gestione
750 provvede poi a riportare i messaggi all'amministratore attraverso una serie
751 differenti meccanismi come:
752 \begin{itemize*}
753 \item scriverli sulla console.
754 \item inviarli via mail ad uno specifico utente.
755 \item scriverli su un file (comunemente detto \textit{log file}, o giornale).
756 \item inviarli ad un altro demone (anche via rete su una macchina diversa).
757 \item ignorarli completamente.
758 \end{itemize*}
759 le modalità con cui queste azioni vengono realizzate dipendono ovviamente dal
760 demone che si usa, per la gestione del quale si rimanda ad un testo di
761 amministrazione di sistema.\footnote{l'argomento è ad esempio coperto dal
762   capitolo 3.2.3 si \cite{AGL}.}
763
764 Le \acr{glibc} definiscono una serie di funzioni standard con cui un processo
765 può accedere in maniera generica al servizio di \textit{syslog}, che però
766 funzionano solo localmente; se si vogliono inviare i messaggi ad un altro
767 sistema occorre farlo esplicitamente con un socket UDP, o utilizzare le
768 capacità di reinvio del servizio.
769
770 La prima funzione definita dall'interfaccia è \funcd{openlog}, che apre una
771 connessione al servizio di \textit{syslog}; essa in generale non è necessaria
772 per l'uso del servizio, ma permette di impostare alcuni valori che controllano
773 gli effetti delle chiamate successive; il suo prototipo è:
774 \begin{prototype}{syslog.h}{void openlog(const char *ident, int option, 
775 int facility)}
776
777 Apre una connessione al sistema del \textit{syslog}.
778   
779 \bodydesc{La funzione non restituisce nulla.}
780 \end{prototype}
781
782 La funzione permette di specificare, tramite \param{ident}, l'identità di chi
783 ha inviato il messaggio (di norma si passa il nome del programma, come
784 specificato da \code{argv[0]}); la stringa verrà preposta all'inizio di ogni
785 messaggio. Si tenga presente che il valore di \param{ident} che si passa alla
786 funzione è un puntatore, se la stringa cui punta viene cambiata lo sarà pure
787 nei successivi messaggi, e se viene cancellata i risultati potranno essere
788 impredicibili, per questo è sempre opportuno usare una stringa costante. 
789
790 L'argomento \param{facility} permette invece di preimpostare per le successive
791 chiamate l'omonimo indice che classifica la categoria del messaggio.
792 L'argomento è interpretato come una maschera binaria, e pertanto è possibile
793 inviare i messaggi su più categorie alla volta; i valori delle costanti che
794 identificano ciascuna categoria sono riportati in
795 tab.~\ref{tab:sess_syslog_facility}, il valore di \param{facility} deve essere
796 specificato con un OR aritmetico.
797
798 \begin{table}[htb]
799   \footnotesize
800   \centering
801   \begin{tabular}[c]{|l|p{8cm}|}
802     \hline
803     \textbf{Valore}& \textbf{Significato}\\
804     \hline
805     \hline
806     \const{LOG\_AUTH}     & Messaggi relativi ad autenticazione e sicurezza,
807                             obsoleto, è sostituito da \const{LOG\_AUTHPRIV}.\\
808     \const{LOG\_AUTHPRIV} & Sostituisce \const{LOG\_AUTH}.\\
809     \const{LOG\_CRON}     & Messaggi dei demoni di gestione dei comandi
810                             programmati (\cmd{cron} e \cmd{at}).\\
811     \const{LOG\_DAEMON}   & Demoni di sistema.\\
812     \const{LOG\_FTP}      & Servizio FTP.\\
813     \const{LOG\_KERN}     & Messaggi del kernel.\\
814     \const{LOG\_LOCAL0}   & Riservato all'amministratore per uso locale.\\
815     \hspace{.5cm}--- &   \hspace{3cm} ...\\
816     \const{LOG\_LOCAL7}   & Riservato all'amministratore per uso locale.\\
817     \const{LOG\_LPR}      & Messaggi del sistema di gestione delle stampanti.\\
818     \const{LOG\_MAIL}     & Messaggi del sistema di posta elettronica.\\
819     \const{LOG\_NEWS}     & Messaggi del sistema di gestione delle news 
820                             (USENET).\\
821     \const{LOG\_SYSLOG}   & Messaggi generati dal demone di gestione del
822                             \textit{syslog}.\\
823     \const{LOG\_USER}     & Messaggi generici a livello utente.\\
824     \const{LOG\_UUCP}     & Messaggi del sistema UUCP (\textit{Unix to Unix
825                              CoPy}, ormai in disuso).\\
826 \hline
827 \end{tabular}
828 \caption{Valori possibili per l'argomento \param{facility} di \func{openlog}.}
829 \label{tab:sess_syslog_facility}
830 \end{table}
831
832 L'argomento \param{option} serve invece per controllare il comportamento della
833 funzione \func{openlog} e delle modalità con cui le successive chiamate
834 scriveranno i messaggi, esso viene specificato come maschera binaria composta
835 con un OR aritmetico di una qualunque delle costanti riportate in
836 tab.~\ref{tab:sess_openlog_option}.
837
838 \begin{table}[htb]
839   \footnotesize
840 \centering
841 \begin{tabular}[c]{|l|p{8cm}|}
842 \hline
843 \textbf{Valore}& \textbf{Significato}\\
844 \hline
845 \hline
846 \const{LOG\_CONS}   & Scrive sulla console in caso di errore nell'invio del
847                       messaggio al sistema del \textit{syslog}. \\
848 \const{LOG\_NDELAY} & Apre la connessione al sistema del \textit{syslog}
849                       subito invece di attendere l'invio del primo messaggio.\\
850 \const{LOG\_NOWAIT} & Non usato su Linux, su altre piattaforme non attende i
851                       processi figli creati per inviare il messaggio.\\
852 \const{LOG\_ODELAY} & Attende il primo messaggio per aprire la connessione al
853                       sistema del \textit{syslog}.\\ 
854 \const{LOG\_PERROR} & Stampa anche su \file{stderr} (non previsto in
855                       POSIX.1-2001).\\ 
856 \const{LOG\_PID}    & Inserisce nei messaggi il \acr{pid} del processo
857                       chiamante.\\
858 \hline
859 \end{tabular}
860 \caption{Valori possibili per l'argomento \param{option} di \func{openlog}.}
861 \label{tab:sess_openlog_option}
862 \end{table}
863
864 La funzione che si usa per generare un messaggio è \funcd{syslog}, dato che
865 l'uso di \func{openlog} è opzionale, sarà quest'ultima a provvede a chiamare la
866 prima qualora ciò non sia stato fatto (nel qual caso il valore di
867 \param{ident} è \val{NULL}). Il suo prototipo è:
868 \begin{prototype}{syslog.h}
869 {void syslog(int priority, const char *format, ...)}
870
871 Genera un messaggio di priorità \param{priority}.
872
873 \bodydesc{La funzione non restituisce nulla.}
874 \end{prototype}
875
876 Il comportamento della funzione è analogo quello di \func{printf}, e il valore
877 dell'argomento \param{format} è identico a quello descritto nella pagina di
878 manuale di quest'ultima (per i valori principali si può vedere la trattazione
879 sommaria che se ne è fatto in sez.~\ref{sec:file_formatted_io}); l'unica
880 differenza è che la sequenza \val{\%m} viene rimpiazzata dalla stringa
881 restituita da \code{strerror(errno)}. Gli argomenti seguenti i primi due
882 devono essere forniti secondo quanto richiesto da \param{format}.
883
884 L'argomento \param{priority} permette di impostare sia la \textit{facility}
885 che la \textit{priority} del messaggio. In realtà viene prevalentemente usato
886 per specificare solo quest'ultima in quanto la prima viene di norma 
887 preimpostata con \func{openlog}. La priorità è indicata con un valore
888 numerico\footnote{le \acr{glibc}, seguendo POSIX.1-2001, prevedono otto
889   diverse priorità ordinate da 0 a 7, in ordine di importanza decrescente;
890   questo comporta che i tre bit meno significativi dell'argomento
891   \param{priority} sono occupati da questo valore, mentre i restanti bit più
892   significativi vengono usati per specificare la \textit{facility}.}
893 specificabile attraverso le costanti riportate in
894 tab.~\ref{tab:sess_syslog_priority}.  Nel caso si voglia specificare anche la
895 \textit{facility} basta eseguire un OR aritmetico del valore della priorità
896 con la maschera binaria delle costanti di tab.~\ref{tab:sess_syslog_facility}.
897
898 \begin{table}[htb]
899   \footnotesize
900   \centering
901   \begin{tabular}[c]{|l|p{8cm}|}
902     \hline
903     \textbf{Valore}& \textbf{Significato}\\
904     \hline
905     \hline
906     \const{LOG\_EMERG}   & Il sistema è inutilizzabile.\\
907     \const{LOG\_ALERT}   & C'è una emergenza che richiede intervento
908                            immediato.\\
909     \const{LOG\_CRIT}    & Si è in una condizione critica.\\
910     \const{LOG\_ERR}     & Si è in una condizione di errore.\\
911     \const{LOG\_WARNING} & Messaggio di avvertimento.\\
912     \const{LOG\_NOTICE}  & Notizia significativa relativa al comportamento.\\
913     \const{LOG\_INFO}    & Messaggio informativo.\\
914     \const{LOG\_DEBUG}   & Messaggio di debug.\\
915     \hline
916   \end{tabular}
917   \caption{Valori possibili per l'indice di importanza del messaggio da
918     specificare nell'argomento \param{priority} di \func{syslog}.}
919   \label{tab:sess_syslog_priority}
920 \end{table}
921
922 Una funzione sostanzialmente identica a \func{syslog}, la cui sola differenza
923 è prendere invece di una lista esplicita di argomenti un unico argomento
924 finale nella forma di una lista di argomenti passato come \macro{va\_list},
925 utile qualora si ottengano questi nella invocazione di una funzione
926 \index{variadic} \textit{variadic} (si rammenti quanto visto in
927 sez.~\ref{sec:proc_variadic}), è \funcd{vsyslog},\footnote{la funzione è
928   originaria di BSD e per utilizzarla deve essere definito
929   \macro{\_BSD\_SOURCE}.} il suo prototipo è:
930 \begin{prototype}{syslog.h}
931 {void vsyslog(int priority, const char *format, va\_list src)}
932
933 Genera un messaggio di priorità \param{priority}.
934
935 \bodydesc{La funzione non restituisce nulla.}
936 \end{prototype}
937
938 Per semplificare la gestione della scelta del livello di priorità a partire
939 dal quale si vogliono registrare i messaggi, le funzioni di gestione
940 mantengono per ogni processo una maschera che determina quale delle chiamate
941 effettuate a \func{syslog} verrà effettivamente registrata.  In questo modo
942 sarà possibile escludere, impostando opportunamente la maschera una volta per
943 tutte, i livelli di priorità che non interessa registrare.\footnote{questo
944   significa che in genere nei programmi vengono comunque previste le chiamate
945   a \func{syslog} per tutti i livelli di priorità, ma poi si imposta questa
946   maschera per registrare solo quello che effettivamente interessa.} La
947 funzione che consente di fare questo è \funcd{setlogmask}, ed il suo prototipo
948 è:
949 \begin{prototype}{syslog.h}{int setlogmask(int mask)}
950
951 Imposta la maschera dei messaggi al valore specificato.
952
953 \bodydesc{La funzione restituisce il precedente valore.}
954 \end{prototype}
955
956 La funzione restituisce il valore della maschera corrente, e se si passa un
957 valore nullo per \param{mask} la maschera corrente non viene modificata; in
958 questo modo si può leggere il valore della maschera corrente. Indicando un
959 valore non nullo per \param{mask} la registrazione dei messaggi viene
960 disabilitata per tutte quelle priorità che non rientrano nella maschera. In
961 genere il valore viene impostato usando la macro \macro{LOG\_MASK(p)} dove
962 \code{p} è una delle costanti di tab.~\ref{tab:sess_syslog_priority}. É
963 inoltre disponibile anche la macro \macro{LOG\_UPTO(p)} che permette di
964 specificare automaticamente tutte le priorità fino a quella indicata da
965 \code{p}.
966
967 Una volta che si sia certi che non si intende registrare più nessun messaggio
968 si può chiudere esplicitamente la connessione al \textit{syslog} con la
969 funzione \funcd{closelog}, il cui prototipo è:
970 \begin{prototype}{syslog.h}{void closelog(void)}
971
972 Chiude la connessione al \textit{syslog}.
973
974 \bodydesc{La funzione non restituisce nulla.}
975 \end{prototype}
976 \noindent l'uso di questa funzione è comunque completamente opzionale.
977
978 Come si evince anche dalla presenza della facility \const{LOG\_KERN} in
979 tab.~\ref{tab:sess_syslog_facility}, uno dei possibili utenti del servizio del
980 \textit{syslog} è anche il kernel, che a sua volta può avere necessità di
981 inviare messaggi verso l'\textit{user space}. I messaggi del kernel sono
982 mantenuti in un apposito buffer circolare e generati all'interno del kernel
983 tramite la funzione \func{printk}, analoga alla \func{printf} usata in
984 \textit{user space}.\footnote{una trattazione eccellente dell'argomento si
985   trova nel quarto capitolo di \cite{LinDevDri}.}
986
987 Come per i messaggi ordinari anche i messaggi del kernel hanno una priorità ma
988 in questo caso non si può contare sulla coincidenza con le costanti di
989 tab.~\ref{tab:sess_syslog_priority} dato che il codice del kernel viene
990 mantenuto in maniera indipendente dalle librerie. Per questo motivo le varie
991 priorità usate dal kernel sono associate ad un valore numerico che viene
992 tradotto in una stringa preposta ad ogni messaggio, secondo i valori che si
993 sono riportati in fig.~\ref{fig:printk_priority}
994
995 \begin{figure}[!htb]
996   \footnotesize \centering
997   \begin{minipage}[c]{15cm}
998     \includestruct{listati/printk_prio.c}
999   \end{minipage} 
1000   \normalsize 
1001   \caption{Definizione delle stringhe coi relativi valori numerici che
1002     indicano le priorità dei messaggi del kernel (ripresa da
1003     \texttt{linux/kernel.h}).}
1004   \label{fig:printk_priority}
1005 \end{figure}
1006
1007 Dato che i messaggi generati da \func{printk} hanno un loro specifico formato
1008 tradizionalmente si usava un demone ausiliario, \cmd{klogd}, per leggerli,
1009 rimappare le priorità sui valori di tab.~\ref{tab:sess_syslog_priority} e
1010 inviarli al sistema del \textit{syslog} nella facility \const{LOG\_KERN}.
1011 Oggi i nuovi demoni più avanzati che realizzano il servizio (come
1012 \texttt{rsyslog} o \texttt{syslog-ng}) sono in grado di fare tutto questo da
1013 soli.
1014
1015 Ma i messaggi del kernel non sono necessariamente connessi al sistema del
1016 \textit{syslog}; ad esempio possono anche essere letti direttamente dal buffer
1017 circolare con il comando \texttt{dmesg}. Inoltre è previsto che essi vengano
1018 stampati direttamente sul terminale indicato come \textit{console} di
1019 sistema,\footnote{quello che viene indicato con il parametro di avvio
1020   \texttt{console} del kernel, si consulti al riguardo sez.~5.3.1 di
1021   \cite{AGL}.} se superano una certa priorità, in modo che sia possibile
1022 vederli anche in caso di blocco totale del sistema (nell'assunzione che la
1023 console sia collegata).
1024
1025 In particolare la stampa dei messaggi sulla console è controllata con
1026 \procfile{/proc/sys/kernel/printk} (o dall'equivalente parametro di
1027 \func{sysctl}) che prevede quattro valori numerici interi: il primo indica la
1028 priorità di base oltre la quale vengono stampati i messaggi sulla console, il
1029 secondo la priorità di default assegnata ai messaggi che non ne hanno
1030 impostata una, il terzo il valore minimo che si può assegnare al primo
1031 valore,\footnote{quello che può essere usato con una delle operazioni di
1032   gestione che vedremo a breve per ``\textsl{silenziare}'' il kernel. } ed il
1033 quarto come valore di default.\footnote{anch'esso viene usato nelle operazioni
1034   di controllo per tornare ad un valore predefinito.}
1035
1036 Per la lettura dei messaggi del kernel e la gestione del relativo buffer
1037 circolare esiste una apposita \textit{system call} chiamata anch'essa
1038 \texttt{syslog}, ma dato il conflitto di nomi questa viene rimappata su
1039 un'altra funzione di libreria, in particolare nelle \acr{glibc} essa viene
1040 invocata tramite la funzione \funcd{klogctl},\footnote{nelle \acr{libc4} e
1041   nelle \acr{libc5} la funzione invece era \func{SYS\_klog}.} il cui prototipo
1042 è:
1043 \begin{prototype}{sys/klog.h}{int klogctl(int op, char *buffer, int len)}
1044
1045 Gestisce i messaggi di log del kernel.
1046
1047 \bodydesc{La funzione restituisce in caso di successo un intero positivo o
1048   nullo dipendente dall'operazione scelta e $-1$ in caso di errore, nel qual
1049   caso \var{errno} assumerà i valori:
1050   \begin{errlist}
1051   \item[\errcode{EINVAL}] l'argomento \param{op} non ha un valore valido.
1052   \item[\errcode{ERESTARTSYS}] l'operazione è stata interrotta da un segnale.
1053   \item[\errcode{EPERM}] non si hanno i privilegi richiesti per l'operazione.
1054   \item[\errcode{ENOSYS}] il supporto per \func{printk} non è stato compilato
1055     nel kernel.
1056   \end{errlist}
1057   ed inoltre \errval{EBADF} ed \errval{ENOSYS}.
1058 }
1059 \end{prototype}
1060
1061 La funzione prevede che si passi come primo argomento \param{op} un codice
1062 numerico che indica l'operazione richiesta, il secondo argomento deve essere,
1063 per le operazioni che compiono una lettura di dati, l'indirizzo del buffer su
1064 cui copiarli, mentre il terzo indica la lunghezza del buffer, quando questo è
1065 richiesto, oppure un valore numerico. L'effettivo uso di questi due argomenti
1066 dipende comunque dall'operazione richiesta, ma essi devono essere comunque
1067 specificati, anche quando non servono, nel qual caso verranno semplicemente
1068 ignorati.
1069
1070 \begin{table}[htb]
1071   \footnotesize
1072   \centering
1073   \begin{tabular}[c]{|l|p{10cm}|}
1074     \hline
1075     \textbf{Valore}& \textbf{Significato}\\
1076     \hline
1077     \hline
1078     \texttt{0} & apre il log (attualmente non fa niente), \param{buffer}
1079                  e \param{len} sono ignorati.\\
1080     \texttt{1} & chiude il log (attualmente non fa niente), \param{buffer}
1081                  e \param{len} sono ignorati.\\
1082     \texttt{2} & legge \param{len} byte nel buffer \param{buffer} dal log dei
1083                  messaggi.\\   
1084     \texttt{3} & legge \param{len} byte nel buffer \param{buffer} dal buffer
1085                  circolare dei messaggi.\\
1086     \texttt{4} & legge \param{len} byte nel buffer \param{buffer} dal buffer
1087                  circolare dei messaggi e lo svuota.\\
1088     \texttt{5} & svuota il buffer circolare dei messaggi, \param{buffer}
1089                  e \param{len} sono ignorati.\\
1090     \texttt{6} & disabilita la stampa dei messaggi sulla console, \param{buffer}
1091                  e \param{len} sono ignorati.\\
1092     \texttt{7} & abilita la stampa dei messaggi sulla console, \param{buffer}
1093                  e \param{len} sono ignorati.\\
1094     \texttt{8} & imposta a \param{len} il livello dei messaggi stampati sulla
1095                  console, \param{buffer} è ignorato.\\ 
1096     \texttt{9} & ritorna il numero di byte da leggere presenti sul buffer di
1097                  log, \param{buffer} e \param{len} sono ignorati.\\
1098     \texttt{10}& ritorna la dimensione del buffer di log, \param{buffer}
1099                  e \param{len} sono ignorati.\\
1100 \hline
1101 \end{tabular}
1102 \caption{Valori possibili per l'argomento \param{op} di \func{klogctl}.}
1103 \label{tab:klogctl_operation}
1104 \end{table}
1105
1106 Si sono riportati i possibili valori di \param{op}, con una breve spiegazione
1107 della relativa operazione e a come vengono usati gli altri due argomenti, in
1108 tab.~\ref{tab:klogctl_operation}. Come si può notare la funzione è una sorta
1109 di interfaccia comune usata per eseguire operazioni completamente diverse fra
1110 loro.
1111
1112 L'operazione relativa al valore 2 \param{op} consente di leggere un messaggio
1113 dal cosiddetto \textit{log} del kernel. Eseguire questa operazione è
1114 equivalente ad eseguire una lettura dal file
1115 \procfile{/proc/kmsg}:\footnote{in realtà è vero l'opposto, è questa funzione
1116   che viene eseguita quando si legge da questo file.} se non vi sono messaggi
1117 la funzione blocca in attesa di dati e ritorna soltanto quando questi
1118 diventino disponibili. In tal caso verranno letti \param{len} byte
1119 su \param{buffer} ed estratti dal log;\footnote{i dati del \textit{log} del
1120   kernel cioè si possono leggere una volta sola, se più processi eseguono
1121   l'operazione di lettura soltanto uno riceverà i dati, a meno che completata
1122   la propria operazione di lettura non restino altri messaggi pendenti che a
1123   questo punto potrebbero essere letti da un altro processo in attesa.} il
1124 valore di ritorno di \func{klogctl} corrisponderà al numero di byte ottenuti.
1125
1126 Se invece si usa l'operazione 3 i dati vengono letti dal buffer circolare
1127 usato da \texttt{printk}, che mantiene tutti i messaggi stampati dal kernel
1128 fino al limite delle sue dimensioni, in questo caso i messaggi possono essere
1129 letti più volte. Usando invece l'operazione 4 si richiede, dopo aver fatto la
1130 lettura, di cancellare il buffer circolare, che risulterà vuoto ad una lettura
1131 successiva. Anche con queste operazioni \param{len} indica il numero di byte
1132 da leggere e \param{buffer} il buffer dover leggerli, e la funzione ritorna il
1133 numero di byte effettivamente letti.
1134
1135 Le operazioni corrispondenti ai valori 6, 7 ed 8 fanno riferimento ai
1136 parametri del kernel gestiti con \procfile{/proc/sys/kernel/printk}
1137
1138
1139
1140 \itindend{syslog}
1141
1142
1143
1144 \section{L'I/O su terminale}
1145 \label{sec:sess_terminal_io}
1146
1147 Benché come ogni altro dispositivo i terminali siano accessibili come file,
1148 essi hanno assunto storicamente (essendo stati a lungo l'unico modo di
1149 accedere al sistema) una loro rilevanza specifica, che abbiamo già avuto modo
1150 di incontrare nella precedente sezione.
1151
1152 Esamineremo qui le peculiarità dell'I/O eseguito sui terminali, che per la
1153 loro particolare natura presenta delle differenze rispetto ai normali file su
1154 disco e agli altri dispositivi.
1155
1156
1157
1158 \subsection{L'architettura}
1159 \label{sec:term_design}
1160
1161 I terminali sono una classe speciale di dispositivi a caratteri (si ricordi la
1162 classificazione di sez.~\ref{sec:file_file_types}); un terminale ha infatti una
1163 caratteristica che lo contraddistingue da un qualunque altro dispositivo, e
1164 cioè che è destinato a gestire l'interazione con un utente (deve essere cioè
1165 in grado di fare da terminale di controllo per una sessione), che comporta la
1166 presenza di ulteriori capacità.
1167
1168 L'interfaccia per i terminali è una delle più oscure e complesse, essendosi
1169 stratificata dagli inizi dei sistemi Unix fino ad oggi. Questo comporta una
1170 grande quantità di opzioni e controlli relativi ad un insieme di
1171 caratteristiche (come ad esempio la velocità della linea) necessarie per
1172 dispositivi, come i terminali seriali, che al giorno d'oggi sono praticamente
1173 in disuso.
1174
1175 Storicamente i primi terminali erano appunto terminali di telescriventi
1176 (\textit{teletype}), da cui deriva sia il nome dell'interfaccia, \textit{TTY},
1177 che quello dei relativi file di dispositivo, che sono sempre della forma
1178 \texttt{/dev/tty*}.\footnote{ciò vale solo in parte per i terminali virtuali,
1179   essi infatti hanno due lati, un \textit{master}, che può assumere i nomi
1180   \file{/dev/pty[p-za-e][0-9a-f]} ed un corrispondente \textit{slave} con nome
1181   \file{/dev/tty[p-za-e][0-9a-f]}.}  Oggi essi includono le porte seriali, le
1182 console virtuali dello schermo, i terminali virtuali che vengono creati come
1183 canali di comunicazione dal kernel e che di solito vengono associati alle
1184 connessioni di rete (ad esempio per trattare i dati inviati con \cmd{telnet} o
1185 \cmd{ssh}).
1186
1187 L'I/O sui terminali si effettua con le stesse modalità dei file normali: si
1188 apre il relativo file di dispositivo, e si leggono e scrivono i dati con le
1189 usuali funzioni di lettura e scrittura, così se apriamo una console virtuale
1190 avremo che \func{read} leggerà quanto immesso dalla tastiera, mentre
1191 \func{write} scriverà sullo schermo.  In realtà questo è vero solo a grandi
1192 linee, perché non tiene conto delle caratteristiche specifiche dei terminali;
1193 una delle principali infatti è che essi prevedono due modalità di operazione,
1194 dette rispettivamente \textsl{modo canonico} e \textsl{modo non canonico}, che
1195 comportano dei comportamenti nettamente diversi.
1196
1197 La modalità preimpostata all'apertura del terminale è quella canonica, in cui
1198 le operazioni di lettura vengono sempre effettuate assemblando i dati in una
1199 linea;\footnote{per cui eseguendo una \func{read} su un terminale in modo
1200   canonico la funzione si bloccherà, anche se si sono scritti dei caratteri,
1201   fintanto che non si preme il tasto di ritorno a capo: a questo punto la
1202   linea sarà completa e la funzione ritornerà.} ed in cui alcuni caratteri
1203 vengono interpretati per compiere operazioni (come la generazione dei segnali
1204 illustrati in sez.~\ref{sec:sig_job_control}), questa di norma è la modalità in
1205 cui funziona la shell.
1206
1207 Un terminale in modo non canonico invece non effettua nessun accorpamento dei
1208 dati in linee né li interpreta; esso viene di solito usato dai programmi (gli
1209 editor ad esempio) che necessitano di poter leggere un carattere alla volta e
1210 che gestiscono al loro interno i vari comandi.
1211
1212 Per capire le caratteristiche dell'I/O sui terminali, occorre esaminare le
1213 modalità con cui esso viene effettuato; l'accesso, come per tutti i
1214 dispositivi, viene gestito da un driver apposito, la cui struttura generica è
1215 mostrata in fig.~\ref{fig:term_struct}. Ad un terminale sono sempre associate
1216 due code per gestire l'input e l'output, che ne implementano una
1217 bufferizzazione\footnote{completamente indipendente dalla eventuale ulteriore
1218   bufferizzazione fornita dall'interfaccia standard dei file.} all'interno del
1219 kernel.
1220
1221 \begin{figure}[htb]
1222   \centering \includegraphics[width=14.5cm]{img/term_struct}
1223   \caption{Struttura interna generica di un driver per un terminale.}
1224   \label{fig:term_struct}
1225 \end{figure}
1226
1227 La coda di ingresso mantiene i caratteri che sono stati letti dal terminale ma
1228 non ancora letti da un processo, la sua dimensione è definita dal parametro di
1229 sistema \const{MAX\_INPUT} (si veda sez.~\ref{sec:sys_file_limits}), che ne
1230 specifica il limite minimo, in realtà la coda può essere più grande e cambiare
1231 dimensione dinamicamente. Se è stato abilitato il controllo di flusso in
1232 ingresso il driver emette i caratteri di STOP e START per bloccare e sbloccare
1233 l'ingresso dei dati; altrimenti i caratteri immessi oltre le dimensioni
1234 massime vengono persi; in alcuni casi il driver provvede ad inviare
1235 automaticamente un avviso (un carattere di BELL, che provoca un beep)
1236 sull'output quando si eccedono le dimensioni della coda.  Se è abilitato il
1237 modo canonico i caratteri in ingresso restano nella coda fintanto che non
1238 viene ricevuto un a capo; un altro parametro del sistema, \const{MAX\_CANON},
1239 specifica la dimensione massima di una riga in modo canonico.
1240
1241 La coda di uscita è analoga a quella di ingresso e contiene i caratteri
1242 scritti dai processi ma non ancora inviati al terminale. Se è abilitato il
1243 controllo di flusso in uscita il driver risponde ai caratteri di START e STOP
1244 inviati dal terminale. Le dimensioni della coda non sono specificate, ma non
1245 hanno molta importanza, in quanto qualora esse vengano eccedute il driver
1246 provvede automaticamente a bloccare la funzione chiamante.
1247
1248
1249
1250 \subsection{La gestione delle caratteristiche di un terminale}
1251 \label{sec:term_attr}
1252
1253 Data le loro peculiarità, fin dall'inizio si è posto il problema di come
1254 gestire le caratteristiche specifiche dei terminali; storicamente i vari
1255 dialetti di Unix hanno utilizzato diverse funzioni, alla fine con POSIX.1, è
1256 stata effettuata una standardizzazione, unificando le differenze fra BSD e
1257 System V in una unica interfaccia, che è quella usata dal Linux.
1258
1259 Alcune di queste funzioni prendono come argomento un file descriptor (in
1260 origine molte operazioni venivano effettuate con \func{ioctl}), ma ovviamente
1261 possono essere usate solo con file che corrispondano effettivamente ad un
1262 terminale (altrimenti si otterrà un errore di \errcode{ENOTTY}); questo può
1263 essere evitato utilizzando la funzione \funcd{isatty}, il cui prototipo è:
1264 \begin{prototype}{unistd.h}{int isatty(int desc)}
1265   
1266   Controlla se il file descriptor \param{desc} è un terminale.
1267   
1268 \bodydesc{La funzione restituisce 1 se \param{desc} è connesso ad un
1269   terminale, 0 altrimenti.}
1270 \end{prototype}
1271
1272 Un'altra funzione che fornisce informazioni su un terminale è \funcd{ttyname},
1273 che permette di ottenere il nome del terminale associato ad un file
1274 descriptor; il suo prototipo è:
1275 \begin{prototype}{unistd.h}{char *ttyname(int desc)}
1276   
1277   Restituisce il nome del terminale associato al file \param{desc}.
1278   
1279    \bodydesc{La funzione restituisce il puntatore alla stringa contenente il
1280     nome del terminale associato \param{desc} e \val{NULL} in caso di
1281     errore.}
1282 \end{prototype}
1283
1284 Si tenga presente che la funzione restituisce un indirizzo di dati statici,
1285 che pertanto possono essere sovrascritti da successive chiamate. Una funzione
1286 funzione analoga, anch'essa prevista da POSIX.1, è \funcd{ctermid}, il cui
1287 prototipo è:
1288 \begin{prototype}{stdio.h}{char *ctermid(char *s)}
1289   
1290   Restituisce il nome del terminale di controllo del processo.
1291   
1292   \bodydesc{La funzione restituisce il puntatore alla stringa contenente il
1293     \textit{pathname} del terminale.}
1294 \end{prototype}
1295
1296 La funzione scrive il \itindex{pathname} \textit{pathname} del terminale di
1297 controllo del processo chiamante nella stringa posta all'indirizzo specificato
1298 dall'argomento \param{s}.  La memoria per contenere la stringa deve essere
1299 stata allocata in precedenza ed essere lunga almeno
1300 \const{L\_ctermid}\footnote{\const{L\_ctermid} è una delle varie costanti del
1301   sistema, non trattata esplicitamente in sez.~\ref{sec:sys_characteristics}
1302   che indica la dimensione che deve avere una stringa per poter contenere il
1303   nome di un terminale.} caratteri.
1304
1305 Esiste infine una versione \index{funzioni!rientranti} rientrante
1306 \funcd{ttyname\_r} della funzione \func{ttyname}, che non presenta il problema
1307 dell'uso di una zona di memoria statica; il suo prototipo è:
1308 \begin{prototype}{unistd.h}{int ttyname\_r(int desc, char *buff, size\_t len)}
1309   
1310   Restituisce il nome del terminale associato al file \param{desc}.
1311   
1312   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1313     errore, nel qual caso \var{errno} assumerà i valori:
1314     \begin{errlist}
1315     \item[\errcode{ERANGE}] la lunghezza del buffer, \param{len}, non è
1316       sufficiente per contenere la stringa restituita.
1317     \end{errlist}
1318     ed inoltre \errval{EBADF} ed \errval{ENOSYS}.
1319 }
1320 \end{prototype}
1321
1322 La funzione prende due argomenti, il puntatore alla zona di memoria
1323 \param{buff}, in cui l'utente vuole che il risultato venga scritto (dovrà
1324 ovviamente essere stata allocata in precedenza), e la relativa dimensione,
1325 \param{len}; se la stringa che deve essere restituita eccede questa dimensione
1326 si avrà una condizione di errore.
1327
1328 Se si passa come argomento \val{NULL} la funzione restituisce il puntatore ad
1329 una stringa statica che può essere sovrascritta da chiamate successive. Si
1330 tenga presente che il \itindex{pathname} \textit{pathname} restituito
1331 potrebbe non identificare univocamente il terminale (ad esempio potrebbe
1332 essere \file{/dev/tty}), inoltre non è detto che il processo possa
1333 effettivamente aprire il terminale.
1334
1335 I vari attributi vengono mantenuti per ciascun terminale in una struttura
1336 \struct{termios}, (la cui definizione è riportata in
1337 fig.~\ref{fig:term_termios}), usata dalle varie funzioni dell'interfaccia. In
1338 fig.~\ref{fig:term_termios} si sono riportati tutti i campi della definizione
1339 usata in Linux; di questi solo i primi cinque sono previsti dallo standard
1340 POSIX.1, ma le varie implementazioni ne aggiungono degli altri per mantenere
1341 ulteriori informazioni.\footnote{la definizione della struttura si trova in
1342   \file{bits/termios.h}, da non includere mai direttamente, Linux, seguendo
1343   l'esempio di BSD, aggiunge i due campi \var{c\_ispeed} e \var{c\_ospeed} per
1344   mantenere le velocità delle linee seriali, ed un campo ulteriore,
1345   \var{c\_line} per ... (NdT, trovare a che serve).}
1346 % TODO trovare a che serve
1347
1348 \begin{figure}[!htb] 
1349   \footnotesize \centering
1350   \begin{minipage}[c]{15cm}
1351     \includestruct{listati/termios.h}
1352   \end{minipage} 
1353   \normalsize 
1354   \caption{La struttura \structd{termios}, che identifica le proprietà di un
1355     terminale.}
1356   \label{fig:term_termios}
1357 \end{figure}
1358
1359 I primi quattro campi sono quattro flag che controllano il comportamento del
1360 terminale; essi sono realizzati come maschera binaria, pertanto il tipo
1361 \type{tcflag\_t} è di norma realizzato con un intero senza segno di lunghezza
1362 opportuna. I valori devono essere specificati bit per bit, avendo cura di non
1363 modificare i bit su cui non si interviene.
1364
1365 \begin{table}[b!ht]
1366   \footnotesize
1367   \centering
1368   \begin{tabular}[c]{|l|p{10cm}|}
1369     \hline
1370     \textbf{Valore}& \textbf{Significato}\\
1371     \hline
1372     \hline
1373     \const{INPCK}  & Abilita il controllo di parità in ingresso. Se non viene
1374                      impostato non viene fatto nessun controllo ed i caratteri
1375                      vengono passati in input direttamente.\\
1376     \const{IGNPAR} & Ignora gli errori di parità, il carattere viene passato
1377                      come ricevuto. Ha senso solo se si è impostato 
1378                      \const{INPCK}.\\
1379     \const{PARMRK} & Controlla come vengono riportati gli errori di parità. Ha 
1380                      senso solo se \const{INPCK} è impostato e \const{IGNPAR}
1381                      no. Se impostato inserisce una sequenza \texttt{0xFF
1382                        0x00} prima di ogni carattere che presenta errori di
1383                      parità, se non impostato un carattere con errori di
1384                      parità viene letto come uno \texttt{0x00}. Se un
1385                      carattere ha il valore \texttt{0xFF} e \const{ISTRIP} 
1386                      non è impostato, per evitare ambiguità esso viene sempre
1387                      riportato come \texttt{0xFF 0xFF}.\\
1388     \const{ISTRIP} & Se impostato i caratteri in input sono tagliati a sette
1389                      bit mettendo a zero il bit più significativo, altrimenti 
1390                      vengono passati tutti gli otto bit.\\
1391     \const{IGNBRK} & Ignora le condizioni di BREAK sull'input. Una
1392                      \textit{condizione di BREAK} è definita nel contesto di
1393                      una trasmissione seriale asincrona come una sequenza di
1394                      bit nulli più lunga di un byte.\\
1395     \const{BRKINT} & Controlla la reazione ad un BREAK quando
1396                      \const{IGNBRK} non è impostato. Se \const{BRKINT} è
1397                      impostato il BREAK causa lo scarico delle code, 
1398                      e se il terminale è il terminale di controllo per un 
1399                      gruppo in foreground anche l'invio di \const{SIGINT} ai
1400                      processi di quest'ultimo. Se invece \const{BRKINT} non è
1401                      impostato un BREAK viene letto come un carattere
1402                      NUL, a meno che non sia impostato \const{PARMRK}
1403                      nel qual caso viene letto come la sequenza di caratteri
1404                      \texttt{0xFF 0x00 0x00}.\\
1405     \const{IGNCR}  & Se impostato il carattere di ritorno carrello 
1406                      (\textit{carriage return}, \verb|'\r'|) viene scartato 
1407                      dall'input. Può essere utile per i terminali che inviano 
1408                      entrambi i caratteri di ritorno carrello e a capo 
1409                      (\textit{newline}, \verb|'\n'|).\\
1410     \const{ICRNL}  & Se impostato un carattere di ritorno carrello  
1411                      (\verb|'\r'|) sul terminale viene automaticamente 
1412                      trasformato in un a capo (\verb|'\n'|) sulla coda di
1413                      input.\\
1414     \const{INLCR}  & Se impostato il carattere di a capo
1415                      (\verb|'\n'|) viene automaticamente trasformato in un
1416                      ritorno carrello (\verb|'\r'|).\\
1417     \const{IUCLC}  & Se impostato trasforma i caratteri maiuscoli dal
1418                      terminale in minuscoli sull'ingresso (opzione non 
1419                      POSIX).\\
1420     \const{IXON}   & Se impostato attiva il controllo di flusso in uscita con i
1421                      caratteri di START e STOP. se si riceve
1422                      uno STOP l'output viene bloccato, e viene fatto
1423                      ripartire solo da uno START, e questi due
1424                      caratteri non vengono passati alla coda di input. Se non
1425                      impostato i due caratteri sono passati alla coda di input
1426                      insieme agli altri.\\
1427     \const{IXANY}  & Se impostato con il controllo di flusso permette a
1428                      qualunque carattere di far ripartire l'output bloccato da
1429                      un carattere di STOP.\\
1430     \const{IXOFF}  & Se impostato abilita il controllo di flusso in
1431                      ingresso. Il computer emette un carattere di STOP per
1432                      bloccare l'input dal terminale e lo sblocca con il
1433                      carattere START.\\
1434     \const{IMAXBEL}& Se impostato fa suonare il cicalino se si riempie la cosa
1435                      di ingresso; in Linux non è implementato e il kernel si
1436                      comporta cose se fosse sempre impostato (è una estensione
1437                      BSD).\\
1438     \hline
1439   \end{tabular}
1440   \caption{Costanti identificative dei vari bit del flag di controllo
1441     \var{c\_iflag} delle modalità di input di un terminale.}
1442   \label{tab:sess_termios_iflag}
1443 \end{table}
1444
1445 Il primo flag, mantenuto nel campo \var{c\_iflag}, è detto \textsl{flag di
1446   input} e controlla le modalità di funzionamento dell'input dei caratteri sul
1447 terminale, come il controllo di parità, il controllo di flusso, la gestione
1448 dei caratteri speciali; un elenco dei vari bit, del loro significato e delle
1449 costanti utilizzate per identificarli è riportato in
1450 tab.~\ref{tab:sess_termios_iflag}.
1451
1452 Si noti come alcuni di questi flag (come quelli per la gestione del flusso)
1453 fanno riferimento a delle caratteristiche che ormai sono completamente
1454 obsolete; la maggior parte inoltre è tipica di terminali seriali, e non ha
1455 alcun effetto su dispositivi diversi come le console virtuali o gli
1456 pseudo-terminali usati nelle connessioni di rete.
1457
1458 \begin{table}[htb]
1459   \footnotesize
1460   \centering
1461   \begin{tabular}[c]{|l|p{10cm}|}
1462     \hline
1463     \textbf{Valore}& \textbf{Significato}\\
1464     \hline
1465     \hline
1466     \const{OPOST} & Se impostato i caratteri vengono convertiti opportunamente
1467                     (in maniera dipendente dall'implementazione) per la 
1468                     visualizzazione sul terminale, ad esempio al
1469                     carattere di a capo (NL) può venire aggiunto un ritorno
1470                     carrello (CR).\\
1471     \const{OCRNL} & Se impostato converte automaticamente il carattere di a
1472                     capo (NL) nella coppia di caratteri ritorno carrello, a 
1473                     capo (CR-NL).\\
1474     \const{OLCUC} & Se impostato trasforma i caratteri minuscoli in ingresso 
1475                     in caratteri maiuscoli sull'uscita (non previsto da
1476                     POSIX.1).\\
1477     \const{ONLCR} & Se impostato converte automaticamente il carattere di a 
1478                     capo (NL) in un carattere di ritorno carrello (CR).\\
1479     \const{ONOCR} & Se impostato converte il carattere di ritorno carrello
1480                     (CR) nella coppia di caratteri CR-NL.\\
1481     \const{ONLRET}& Se impostato rimuove dall'output il carattere di ritorno
1482                     carrello (CR).\\
1483     \const{OFILL} & Se impostato in caso di ritardo sulla linea invia dei
1484                     caratteri di riempimento invece di attendere.\\
1485     \const{OFDEL} & Se impostato il carattere di riempimento è DEL
1486                     (\texttt{0x3F}), invece che NUL (\texttt{0x00}).\\
1487     \const{NLDLY} & Maschera per i bit che indicano il ritardo per il
1488                     carattere di a capo (NL), i valori possibili sono 
1489                     \val{NL0} o \val{NL1}.\\
1490     \const{CRDLY} & Maschera per i bit che indicano il ritardo per il
1491                     carattere ritorno carrello (CR), i valori possibili sono
1492                     \val{CR0}, \val{CR1}, \val{CR2} o \val{CR3}.\\
1493     \const{TABDLY}& Maschera per i bit che indicano il ritardo per il
1494                     carattere di tabulazione, i valori possibili sono
1495                     \val{TAB0}, \val{TAB1}, \val{TAB2} o \val{TAB3}.\\
1496     \const{BSDLY} & Maschera per i bit che indicano il ritardo per il
1497                     carattere di ritorno indietro (\textit{backspace}), i
1498                     valori possibili sono \val{BS0} o \val{BS1}.\\
1499     \const{VTDLY} & Maschera per i bit che indicano il ritardo per il
1500                     carattere di tabulazione verticale, i valori possibili sono
1501                     \val{VT0} o \val{VT1}.\\
1502     \const{FFDLY} & Maschera per i bit che indicano il ritardo per il
1503                     carattere di pagina nuova (\textit{form feed}), i valori
1504                     possibili sono \val{FF0} o \val{FF1}.\\
1505     \hline
1506   \end{tabular}
1507   \caption{Costanti identificative dei vari bit del flag di controllo
1508     \var{c\_oflag} delle modalità di output di un terminale.}
1509   \label{tab:sess_termios_oflag}
1510 \end{table}
1511
1512 Il secondo flag, mantenuto nel campo \var{c\_oflag}, è detto \textsl{flag di
1513   output} e controlla le modalità di funzionamento dell'output dei caratteri,
1514 come l'impacchettamento dei caratteri sullo schermo, la traslazione degli a
1515 capo, la conversione dei caratteri speciali; un elenco dei vari bit, del loro
1516 significato e delle costanti utilizzate per identificarli è riportato in
1517 tab.~\ref{tab:sess_termios_oflag}.
1518
1519 Si noti come alcuni dei valori riportati in tab.~\ref{tab:sess_termios_oflag}
1520 fanno riferimento a delle maschere di bit; essi infatti vengono utilizzati per
1521 impostare alcuni valori numerici relativi ai ritardi nell'output di alcuni
1522 caratteri: una caratteristica originaria dei primi terminali su telescrivente,
1523 che avevano bisogno di tempistiche diverse per spostare il carrello in
1524 risposta ai caratteri speciali, e che oggi sono completamente in disuso.
1525
1526 Si tenga presente inoltre che nel caso delle maschere il valore da inserire in
1527 \var{c\_oflag} deve essere fornito avendo cura di cancellare prima tutti i bit
1528 della maschera, i valori da immettere infatti (quelli riportati nella
1529 spiegazione corrispondente) sono numerici e non per bit, per cui possono
1530 sovrapporsi fra di loro. Occorrerà perciò utilizzare un codice del tipo:
1531
1532 \includecodesnip{listati/oflag.c}
1533
1534 \noindent che prima cancella i bit della maschera in questione e poi setta il
1535 valore.
1536
1537
1538 \begin{table}[htb]
1539   \footnotesize
1540   \centering
1541   \begin{tabular}[c]{|l|p{10cm}|}
1542     \hline
1543     \textbf{Valore}& \textbf{Significato}\\
1544     \hline
1545     \hline
1546     \const{CLOCAL} & Se impostato indica che il terminale è connesso in locale
1547                      e che le linee di controllo del modem devono essere
1548                      ignorate. Se non impostato effettuando una chiamata ad
1549                      \func{open} senza aver specificato il flag di
1550                      \const{O\_NOBLOCK} si bloccherà il processo finché 
1551                      non si è stabilita una connessione con il modem; inoltre 
1552                      se viene rilevata una disconnessione viene inviato un
1553                      segnale di \const{SIGHUP} al processo di controllo del
1554                      terminale. La lettura su un terminale sconnesso comporta
1555                      una condizione di \textit{end of file} e la scrittura un
1556                      errore di \errcode{EIO}.\\
1557     \const{HUPCL}  & Se è impostato viene distaccata la connessione del
1558                      modem quando l'ultimo dei processi che ha ancora un file
1559                      aperto sul terminale lo chiude o esce.\\
1560     \const{CREAD}  & Se è impostato si può leggere l'input del terminale,
1561                      altrimenti i caratteri in ingresso vengono scartati
1562                      quando arrivano.\\
1563     \const{CSTOPB} & Se impostato vengono usati due bit di stop sulla linea
1564                      seriale, se non impostato ne viene usato soltanto uno.\\
1565     \const{PARENB} & Se impostato abilita la generazione il controllo di
1566                      parità. La reazione in caso di errori dipende dai
1567                      relativi valori per \var{c\_iflag}, riportati in 
1568                      tab.~\ref{tab:sess_termios_iflag}. Se non è impostato i
1569                      bit di parità non vengono generati e i caratteri non
1570                      vengono controllati.\\
1571     \const{PARODD} & Ha senso solo se è attivo anche \const{PARENB}. Se 
1572                      impostato viene usata una parità è dispari, altrimenti 
1573                      viene usata una parità pari.\\
1574     \const{CSIZE}  & Maschera per i bit usati per specificare la dimensione 
1575                      del carattere inviato lungo la linea di trasmissione, i
1576                      valore ne indica la lunghezza (in bit), ed i valori   
1577                      possibili sono \val{CS5}, \val{CS6}, \val{CS7} e \val{CS8}
1578                      corrispondenti ad un analogo numero di bit.\\
1579     \const{CBAUD}  & Maschera dei bit (4+1) usati per impostare della velocità
1580                      della linea (il \textit{baud rate}) in ingresso; in Linux
1581                      non è implementato in quanto viene  usato un apposito
1582                      campo di \struct{termios}.\\
1583     \const{CBAUDEX}& Bit aggiuntivo per l'impostazione della velocità della
1584                      linea, per le stesse motivazioni del precedente non è
1585                      implementato in Linux.\\
1586     \const{CIBAUD} & Maschera dei bit della velocità della linea in
1587                      ingresso; analogo a \const{CBAUD}, anch'esso in Linux è
1588                      mantenuto in un apposito campo di \struct{termios}.\\
1589     \const{CRTSCTS}& Abilita il controllo di flusso hardware sulla seriale,
1590                      attraverso l'utilizzo delle dei due fili di RTS e CTS.\\
1591     \hline
1592   \end{tabular}
1593   \caption{Costanti identificative dei vari bit del flag di controllo
1594     \var{c\_cflag} delle modalità di controllo di un terminale.}
1595   \label{tab:sess_termios_cflag}
1596 \end{table}
1597
1598 Il terzo flag, mantenuto nel campo \var{c\_cflag}, è detto \textsl{flag di
1599   controllo} ed è legato al funzionamento delle linee seriali, permettendo di
1600 impostarne varie caratteristiche, come il numero di bit di stop, le
1601 impostazioni della parità, il funzionamento del controllo di flusso; esso ha
1602 senso solo per i terminali connessi a linee seriali. Un elenco dei vari bit,
1603 del loro significato e delle costanti utilizzate per identificarli è riportato
1604 in tab.~\ref{tab:sess_termios_cflag}.
1605
1606 I valori di questo flag sono molto specifici, e completamente indirizzati al
1607 controllo di un terminale mantenuto su una linea seriale; essi pertanto non
1608 hanno nessuna rilevanza per i terminali che usano un'altra interfaccia, come
1609 le console virtuali e gli pseudo-terminali usati dalle connessioni di rete.
1610
1611 Inoltre alcuni valori sono previsti solo per quelle implementazioni (lo
1612 standard POSIX non specifica nulla riguardo l'implementazione, ma solo delle
1613 funzioni di lettura e scrittura) che mantengono le velocità delle linee
1614 seriali all'interno dei flag; come accennato in Linux questo viene fatto
1615 (seguendo l'esempio di BSD) attraverso due campi aggiuntivi, \var{c\_ispeed} e
1616 \var{c\_ospeed}, nella struttura \struct{termios} (mostrati in
1617 fig.~\ref{fig:term_termios}).
1618
1619 \begin{table}[b!ht]
1620   \footnotesize
1621   \centering
1622   \begin{tabular}[c]{|l|p{10cm}|}
1623     \hline
1624     \textbf{Valore}& \textbf{Significato}\\
1625     \hline
1626     \hline
1627     \const{ICANON} & Se impostato il terminale opera in modo canonico,
1628                      altrimenti opera in modo non canonico.\\
1629     \const{ECHO}   & Se è impostato viene attivato l'eco dei caratteri in
1630                      input sull'output del terminale.\\
1631     \const{ECHOE}  & Se è impostato l'eco mostra la cancellazione di un
1632                      carattere in input (in reazione al carattere ERASE)
1633                      cancellando l'ultimo carattere della riga corrente dallo
1634                      schermo; altrimenti il carattere è rimandato in eco per
1635                      mostrare quanto accaduto (usato per i terminali con
1636                      l'uscita su una stampante).\\
1637     \const{ECHOPRT}& Se impostato abilita la visualizzazione del carattere di
1638                      cancellazione in una modalità adatta ai terminali con
1639                      l'uscita su stampante; l'invio del carattere di ERASE
1640                      comporta la stampa di un ``\texttt{|}'' seguito dal
1641                      carattere cancellato, e così via in caso di successive
1642                      cancellazioni, quando si riprende ad immettere carattere 
1643                      normali prima verrà stampata una ``\texttt{/}''.\\
1644     \const{ECHOK}  & Se impostato abilita il trattamento della visualizzazione
1645                      del carattere KILL, andando a capo dopo aver visualizzato
1646                      lo stesso, altrimenti viene solo mostrato il carattere e
1647                      sta all'utente ricordare che l'input precedente è stato
1648                      cancellato.\\
1649     \const{ECHOKE} & Se impostato abilita il trattamento della visualizzazione
1650                      del carattere KILL cancellando i caratteri precedenti
1651                      nella linea secondo le modalità specificate dai valori di
1652                      \const{ECHOE} e \const{ECHOPRT}.\\
1653     \const{ECHONL} & Se impostato viene effettuato l'eco di un a
1654                      capo (\verb|\n|) anche se non è stato impostato
1655                      \const{ECHO}.\\
1656     \const{ECHOCTL}& Se impostato insieme ad \const{ECHO} i caratteri di
1657                      controllo ASCII (tranne TAB, NL, START, e STOP) sono
1658                      mostrati nella forma che prepone un ``\texttt{\circonf}'' 
1659                      alla lettera ottenuta sommando \texttt{0x40} al valore del
1660                      carattere (di solito questi si possono ottenere anche
1661                      direttamente premendo il tasto \texttt{ctrl} più la
1662                      relativa lettera).\\
1663     \const{ISIG}   & Se impostato abilita il riconoscimento dei caratteri
1664                      INTR, QUIT, e SUSP generando il relativo segnale.\\
1665     \const{IEXTEN} & Abilita alcune estensioni previste dalla
1666                      implementazione. Deve essere impostato perché caratteri
1667                      speciali come EOL2, LNEXT, REPRINT e WERASE possano
1668                      essere interpretati.\\
1669     \const{NOFLSH} & Se impostato disabilita lo scarico delle code di ingresso
1670                      e uscita quando vengono emessi i segnali \const{SIGINT}, 
1671                      \const{SIGQUIT} e \const{SIGSUSP}.\\
1672     \const{TOSTOP} & Se abilitato, con il supporto per il job control presente,
1673                      genera il segnale \const{SIGTTOU} per un processo in
1674                      background che cerca di scrivere sul terminale.\\
1675     \const{XCASE}  & Se impostato il terminale funziona solo con le
1676                      maiuscole. L'input è convertito in minuscole tranne per i
1677                      caratteri preceduti da una ``\texttt{\bslash}''. In output
1678                      le maiuscole sono precedute da una ``\texttt{\bslash}'' e 
1679                      le minuscole convertite in maiuscole.\\
1680     \const{DEFECHO}& Se impostato effettua l'eco solo se c'è un processo in
1681                      lettura.\\
1682     \const{FLUSHO} & Effettua la cancellazione della coda di uscita. Viene
1683                      attivato dal carattere DISCARD. Non è supportato in
1684                      Linux.\\
1685     \const{PENDIN} & Indica che la linea deve essere ristampata, viene
1686                      attivato dal carattere REPRINT e resta attivo fino alla
1687                      fine della ristampa. Non è supportato in Linux.\\
1688     \hline
1689   \end{tabular}
1690   \caption{Costanti identificative dei vari bit del flag di controllo
1691     \var{c\_lflag} delle modalità locali di un terminale.}
1692   \label{tab:sess_termios_lflag}
1693 \end{table}
1694
1695 Il quarto flag, mantenuto nel campo \var{c\_lflag}, è detto \textsl{flag
1696   locale}, e serve per controllare il funzionamento dell'interfaccia fra il
1697 driver e l'utente, come abilitare l'eco, gestire i caratteri di controllo e
1698 l'emissione dei segnali, impostare modo canonico o non canonico; un elenco dei
1699 vari bit, del loro significato e delle costanti utilizzate per identificarli è
1700 riportato in tab.~\ref{tab:sess_termios_lflag}. Con i terminali odierni l'unico
1701 flag con cui probabilmente si può avere a che fare è questo, in quanto è con
1702 questo che si impostano le caratteristiche generiche comuni a tutti i
1703 terminali.
1704
1705 Si tenga presente che i flag che riguardano le modalità di eco dei caratteri
1706 (\const{ECHOE}, \const{ECHOPRT}, \const{ECHOK}, \const{ECHOKE},
1707 \const{ECHONL}) controllano solo il comportamento della visualizzazione, il
1708 riconoscimento dei vari caratteri dipende dalla modalità di operazione, ed
1709 avviene solo in modo canonico, pertanto questi flag non hanno significato se
1710 non è impostato \const{ICANON}.
1711
1712 Oltre ai vari flag per gestire le varie caratteristiche dei terminali,
1713 \struct{termios} contiene pure il campo \var{c\_cc} che viene usato per
1714 impostare i caratteri speciali associati alle varie funzioni di controllo. Il
1715 numero di questi caratteri speciali è indicato dalla costante \const{NCCS},
1716 POSIX ne specifica almeno 11, ma molte implementazioni ne definiscono molti
1717 altri.\footnote{in Linux il valore della costante è 32, anche se i caratteri
1718   effettivamente definiti sono solo 17.}
1719
1720 \begin{table}[htb]
1721   \footnotesize
1722   \centering
1723   \begin{tabular}[c]{|l|c|c|p{7cm}|}
1724     \hline
1725     \textbf{Indice} & \textbf{Valore}&\textbf{Codice} & \textbf{Funzione}\\
1726     \hline
1727     \hline
1728     \const{VINTR} &\texttt{0x03}&(\texttt{C-c})& Carattere di interrupt, 
1729                                                  provoca l'emissione di 
1730                                                  \const{SIGINT}.\\
1731     \const{VQUIT} &\texttt{0x1C}&(\texttt{C-|})& Carattere di uscita provoca 
1732                                                  l'emissione di 
1733                                                  \const{SIGQUIT}.\\
1734     \const{VERASE}&\texttt{0x7f}&  DEL         & Carattere di ERASE, cancella
1735                                                  l'ultimo carattere
1736                                                  precedente nella linea.\\
1737     \const{VKILL} &\texttt{0x15}&(\texttt{C-u})& Carattere di KILL, cancella
1738                                                  l'intera riga.\\
1739     \const{VEOF}  &\texttt{0x04}&(\texttt{C-d})& Carattere di
1740                                                  \textit{end-of-file}. Causa
1741                                                  l'invio del contenuto del
1742                                                  buffer di ingresso al
1743                                                  processo in lettura anche se
1744                                                  non è ancora stato ricevuto
1745                                                  un a capo. Se è il primo
1746                                                  carattere immesso comporta il
1747                                                  ritorno di \func{read} con
1748                                                  zero caratteri, cioè la
1749                                                  condizione di
1750                                                  \textit{end-of-file}.\\
1751     \const{VTIME} &     ---     &  ---   & Timeout, in decimi di secondo, per
1752                                            una lettura in modo non canonico.\\
1753     \const{VMIN}  &     ---     &  ---   & Numero minimo di caratteri per una 
1754                                            lettura in modo non canonico.\\
1755     \const{VSWTC} &\texttt{0x00}&   NUL  & Carattere di switch. Non supportato
1756                                            in Linux.\\
1757     \const{VSTART}&\texttt{0x21}&(\texttt{C-q})& Carattere di START. Riavvia un
1758                                                  output bloccato da uno STOP.\\
1759     \const{VSTOP} &\texttt{0x23}&(\texttt{C-s})& Carattere di STOP. Blocca
1760                                                  l'output fintanto che non
1761                                                  viene premuto un carattere di
1762                                                  START.\\
1763     \const{VSUSP} &\texttt{0x1A}&(\texttt{C-z})& Carattere di
1764                                                  sospensione. Invia il segnale
1765                                                  \const{SIGTSTP}.\\
1766     \const{VEOL}  &\texttt{0x00}& NUL &    Carattere di fine riga. Agisce come
1767                                            un a capo, ma non viene scartato ed
1768                                            è letto come l'ultimo carattere
1769                                            nella riga.\\
1770     \const{VREPRINT}&\texttt{0x12}&(\texttt{C-r})& Ristampa i caratteri non
1771                                                  ancora letti.\\
1772     \const{VDISCARD}&\texttt{0x07}&(\texttt{C-o})& Non riconosciuto in Linux.\\
1773     \const{VWERASE}&\texttt{0x17}&(\texttt{C-w})&Cancellazione di una
1774                                                  parola.\\
1775     \const{VLNEXT}&\texttt{0x16}&(\texttt{C-v})& Carattere di escape, serve a
1776                                                  quotare il carattere
1777                                                  successivo che non viene
1778                                                  interpretato ma passato
1779                                                  direttamente all'output.\\
1780     \const{VEOL2} &\texttt{0x00}&   NUL  & Ulteriore carattere di fine
1781                                            riga. Ha lo stesso effetto di
1782                                            \const{VEOL} ma può essere un
1783                                            carattere diverso. \\
1784     \hline
1785   \end{tabular}
1786   \caption{Valori dei caratteri di controllo mantenuti nel campo \var{c\_cc}
1787     della struttura \struct{termios}.} 
1788   \label{tab:sess_termios_cc}
1789 \end{table}
1790
1791
1792 A ciascuna di queste funzioni di controllo corrisponde un elemento del vettore
1793 \var{c\_cc} che specifica quale è il carattere speciale associato; per
1794 portabilità invece di essere indicati con la loro posizione numerica nel
1795 vettore, i vari elementi vengono indicizzati attraverso delle opportune
1796 costanti, il cui nome corrisponde all'azione ad essi associata. Un elenco
1797 completo dei caratteri di controllo, con le costanti e delle funzionalità
1798 associate è riportato in tab.~\ref{tab:sess_termios_cc}, usando quelle
1799 definizioni diventa possibile assegnare un nuovo carattere di controllo con un
1800 codice del tipo:
1801 \includecodesnip{listati/value_c_cc.c}
1802
1803 La maggior parte di questi caratteri (tutti tranne \const{VTIME} e
1804 \const{VMIN}) hanno effetto solo quando il terminale viene utilizzato in modo
1805 canonico; per alcuni devono essere soddisfatte ulteriori richieste, ad esempio
1806 \const{VINTR}, \const{VSUSP}, e \const{VQUIT} richiedono sia impostato
1807 \const{ISIG}; \const{VSTART} e \const{VSTOP} richiedono sia impostato
1808 \const{IXON}; \const{VLNEXT}, \const{VWERASE}, \const{VREPRINT} richiedono sia
1809 impostato \const{IEXTEN}.  In ogni caso quando vengono attivati i caratteri
1810 vengono interpretati e non sono passati sulla coda di ingresso.
1811
1812 Per leggere ed scrivere tutte le varie impostazioni dei terminali viste finora
1813 lo standard POSIX prevede due funzioni che utilizzano come argomento un
1814 puntatore ad una struttura \struct{termios} che sarà quella in cui andranno
1815 immagazzinate le impostazioni.  Le funzioni sono \funcd{tcgetattr} e
1816 \funcd{tcsetattr} ed il loro prototipo è:
1817 \begin{functions}
1818   \headdecl{unistd.h} 
1819   \headdecl{termios.h}  
1820   \funcdecl{int tcgetattr(int fd, struct termios *termios\_p)} 
1821   Legge il valore delle impostazioni di un terminale.
1822   
1823   \funcdecl{int tcsetattr(int fd, int optional\_actions, struct termios
1824     *termios\_p)} 
1825   Scrive le impostazioni di un terminale.
1826   
1827   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
1828     caso di errore, nel qual caso \var{errno} assumerà i valori:
1829     \begin{errlist}
1830     \item[\errcode{EINTR}] la funzione è stata interrotta. 
1831     \end{errlist}
1832     ed inoltre \errval{EBADF}, \errval{ENOTTY} ed \errval{EINVAL}. 
1833   }
1834 \end{functions}
1835
1836 Le funzioni operano sul terminale cui fa riferimento il file descriptor
1837 \param{fd} utilizzando la struttura indicata dal puntatore \param{termios\_p}
1838 per lo scambio dei dati. Si tenga presente che le impostazioni sono associate
1839 al terminale e non al file descriptor; questo significa che se si è cambiata
1840 una impostazione un qualunque altro processo che apra lo stesso terminale, od
1841 un qualunque altro file descriptor che vi faccia riferimento, vedrà le nuove
1842 impostazioni pur non avendo nulla a che fare con il file descriptor che si è
1843 usato per effettuare i cambiamenti.
1844
1845 Questo significa che non è possibile usare file descriptor diversi per
1846 utilizzare automaticamente il terminale in modalità diverse, se esiste una
1847 necessità di accesso differenziato di questo tipo occorrerà cambiare
1848 esplicitamente la modalità tutte le volte che si passa da un file descriptor
1849 ad un altro.
1850
1851 La funzione \func{tcgetattr} legge i valori correnti delle impostazioni di un
1852 terminale qualunque nella struttura puntata da \param{termios\_p};
1853 \func{tcsetattr} invece effettua la scrittura delle impostazioni e quando
1854 viene invocata sul proprio terminale di controllo può essere eseguita con
1855 successo solo da un processo in foreground.  Se invocata da un processo in
1856 background infatti tutto il gruppo riceverà un segnale di \const{SIGTTOU} come
1857 se si fosse tentata una scrittura, a meno che il processo chiamante non abbia
1858 \const{SIGTTOU} ignorato o bloccato, nel qual caso l'operazione sarà eseguita.
1859
1860 La funzione \func{tcsetattr} prevede tre diverse modalità di funzionamento,
1861 specificabili attraverso l'argomento \param{optional\_actions}, che permette
1862 di stabilire come viene eseguito il cambiamento delle impostazioni del
1863 terminale, i valori possibili sono riportati in
1864 tab.~\ref{tab:sess_tcsetattr_option}; di norma (come fatto per le due funzioni
1865 di esempio) si usa sempre \const{TCSANOW}, le altre opzioni possono essere
1866 utili qualora si cambino i parametri di output.
1867
1868 \begin{table}[htb]
1869   \footnotesize
1870   \centering
1871   \begin{tabular}[c]{|l|p{8cm}|}
1872     \hline
1873     \textbf{Valore}& \textbf{Significato}\\
1874     \hline
1875     \hline
1876     \const{TCSANOW}  & Esegue i cambiamenti in maniera immediata.\\
1877     \const{TCSADRAIN}& I cambiamenti vengono eseguiti dopo aver atteso che
1878                        tutto l'output presente sulle code è stato scritto.\\
1879     \const{TCSAFLUSH}& È identico a \const{TCSADRAIN}, ma in più scarta
1880                        tutti i dati presenti sulla coda di input.\\
1881     \hline
1882   \end{tabular}
1883   \caption{Possibili valori per l'argomento \param{optional\_actions} della
1884     funzione \func{tcsetattr}.} 
1885   \label{tab:sess_tcsetattr_option}
1886 \end{table}
1887
1888 Occorre infine tenere presente che \func{tcsetattr} ritorna con successo anche
1889 se soltanto uno dei cambiamenti richiesti è stato eseguito. Pertanto se si
1890 effettuano più cambiamenti è buona norma controllare con una ulteriore
1891 chiamata a \func{tcgetattr} che essi siano stati eseguiti tutti quanti.
1892
1893 \begin{figure}[!htb]
1894   \footnotesize \centering
1895   \begin{minipage}[c]{15cm}
1896     \includecodesample{listati/SetTermAttr.c}
1897   \end{minipage} 
1898   \normalsize 
1899   \caption{Codice della funzione \func{SetTermAttr} che permette di
1900     impostare uno dei flag di controllo locale del terminale.}
1901   \label{fig:term_set_attr}
1902 \end{figure}
1903
1904 Come già accennato per i cambiamenti effettuati ai vari flag di controllo
1905 occorre che i valori di ciascun bit siano specificati avendo cura di mantenere
1906 intatti gli altri; per questo motivo in generale si deve prima leggere il
1907 valore corrente delle impostazioni con \func{tcgetattr} per poi modificare i
1908 valori impostati.
1909
1910 In fig.~\ref{fig:term_set_attr} e fig.~\ref{fig:term_unset_attr} si è riportato
1911 rispettivamente il codice delle due funzioni \func{SetTermAttr} e
1912 \func{UnSetTermAttr}, che possono essere usate per impostare o rimuovere, con
1913 le dovute precauzioni, un qualunque bit di \var{c\_lflag}. Il codice di
1914 entrambe le funzioni può essere trovato nel file \file{SetTermAttr.c} dei
1915 sorgenti allegati.
1916
1917 La funzione \func{SetTermAttr} provvede ad impostare il bit specificato
1918 dall'argomento \param{flag}; prima si leggono i valori correnti
1919 (\texttt{\small 10}) con \func{tcgetattr}, uscendo con un messaggio in caso di
1920 errore (\texttt{\small 11--14}), poi si provvede a impostare solo i bit
1921 richiesti (possono essere più di uno) con un OR binario (\texttt{\small 15});
1922 infine si scrive il nuovo valore modificato con \func{tcsetattr}
1923 (\texttt{\small 16}), notificando un eventuale errore (\texttt{\small 11--14})
1924 o uscendo normalmente.
1925
1926 \begin{figure}[!htb]
1927   \footnotesize \centering
1928   \begin{minipage}[c]{15cm}
1929     \includecodesample{listati/UnSetTermAttr.c}
1930   \end{minipage} 
1931   \normalsize 
1932   \caption{Codice della funzione \func{UnSetTermAttr} che permette di
1933     rimuovere uno dei flag di controllo locale del terminale.} 
1934   \label{fig:term_unset_attr}
1935 \end{figure}
1936
1937 La seconda funzione, \func{UnSetTermAttr}, è assolutamente identica alla
1938 prima, solo che in questo caso, in (\texttt{\small 15}), si rimuovono i bit
1939 specificati dall'argomento \param{flag} usando un AND binario del valore
1940 negato.
1941
1942
1943 Al contrario di tutte le altre caratteristiche dei terminali, che possono
1944 essere impostate esplicitamente utilizzando gli opportuni campi di
1945 \struct{termios}, per le velocità della linea (il cosiddetto \textit{baud
1946   rate}) non è prevista una implementazione standardizzata, per cui anche se
1947 in Linux sono mantenute in due campi dedicati nella struttura, questi non
1948 devono essere acceduti direttamente ma solo attraverso le apposite funzioni di
1949 interfaccia provviste da POSIX.1.
1950
1951 Lo standard prevede due funzioni per scrivere la velocità delle linee seriali,
1952 \funcd{cfsetispeed} per la velocità della linea di ingresso e
1953 \funcd{cfsetospeed} per la velocità della linea di uscita; i loro prototipi
1954 sono:
1955 \begin{functions}
1956   \headdecl{unistd.h} 
1957   \headdecl{termios.h}  
1958   \funcdecl{int cfsetispeed(struct termios *termios\_p, speed\_t speed)} 
1959   Imposta la velocità delle linee seriali in ingresso.
1960   
1961   \funcdecl{int cfsetospeed(struct termios *termios\_p, speed\_t speed)} 
1962   Imposta la velocità delle linee seriali in uscita.
1963   
1964   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
1965     caso di errore, che avviene solo quando il valore specificato non è
1966     valido.}
1967 \end{functions}
1968  
1969 Si noti che le funzioni si limitano a scrivere opportunamente il valore della
1970 velocità prescelta \param{speed} all'interno della struttura puntata da
1971 \param{termios\_p}; per effettuare l'impostazione effettiva occorrerà poi
1972 chiamare \func{tcsetattr}.
1973
1974 Si tenga presente che per le linee seriali solo alcuni valori di velocità sono
1975 validi; questi possono essere specificati direttamente (le \acr{glibc}
1976 prevedono che i valori siano indicati in bit per secondo), ma in generale
1977 altre versioni di librerie possono utilizzare dei valori diversi; per questo
1978 POSIX.1 prevede una serie di costanti che però servono solo per specificare le
1979 velocità tipiche delle linee seriali:
1980 \begin{verbatim}
1981      B0       B50      B75      B110     B134     B150     B200     
1982      B300     B600     B1200    B1800    B2400    B4800    B9600    
1983      B19200   B38400   B57600   B115200  B230400  B460800
1984 \end{verbatim}
1985
1986 Un terminale può utilizzare solo alcune delle velocità possibili, le funzioni
1987 però non controllano se il valore specificato è valido, dato che non possono
1988 sapere a quale terminale le velocità saranno applicate; sarà l'esecuzione di
1989 \func{tcsetattr} a fallire quando si cercherà di eseguire l'impostazione.
1990 Di norma il valore ha senso solo per i terminali seriali dove indica appunto
1991 la velocità della linea di trasmissione; se questa non corrisponde a quella
1992 del terminale quest'ultimo non potrà funzionare: quando il terminale non è
1993 seriale il valore non influisce sulla velocità di trasmissione dei dati. 
1994
1995 In generale impostare un valore nullo (\val{B0}) sulla linea di output fa si
1996 che il modem non asserisca più le linee di controllo, interrompendo di fatto
1997 la connessione, qualora invece si utilizzi questo valore per la linea di input
1998 l'effetto sarà quello di rendere la sua velocità identica a quella della linea
1999 di output.
2000
2001 Analogamente a quanto avviene per l'impostazione, le velocità possono essere
2002 lette da una struttura \struct{termios} utilizzando altre due funzioni,
2003 \funcd{cfgetispeed} e \funcd{cfgetospeed}, i cui prototipi sono:
2004 \begin{functions}
2005   \headdecl{unistd.h} 
2006   \headdecl{termios.h}  
2007   \funcdecl{speed\_t cfgetispeed(struct termios *termios\_p)} 
2008   Legge la velocità delle linee seriali in ingresso.
2009   
2010   \funcdecl{speed\_t cfgetospeed(struct termios *termios\_p)} 
2011   Legge la velocità delle linee seriali in uscita.
2012   
2013   \bodydesc{Entrambe le funzioni restituiscono la velocità della linea, non
2014   sono previste condizioni di errore.}
2015 \end{functions}
2016
2017 Anche in questo caso le due funzioni estraggono i valori della velocità della
2018 linea da una struttura, il cui indirizzo è specificato dall'argomento
2019 \param{termios\_p} che deve essere stata letta in precedenza con
2020 \func{tcgetattr}.
2021
2022
2023
2024 \subsection{La gestione della disciplina di linea.}
2025 \label{sec:term_line_discipline}
2026
2027 Come illustrato dalla struttura riportata in fig.~\ref{fig:term_struct} tutti
2028 i terminali hanno un insieme di funzionalità comuni, che prevedono la presenza
2029 di code di ingresso ed uscita; in generale si fa riferimento ad esse con il
2030 nome di \textsl{discipline di linea}.
2031
2032 Lo standard POSIX prevede alcune funzioni che permettono di intervenire
2033 direttamente sulla gestione di quest'ultime e sull'interazione fra i dati in
2034 ingresso ed uscita e le relative code. In generale tutte queste funzioni
2035 vengono considerate, dal punto di vista dell'accesso al terminale, come delle
2036 funzioni di scrittura, pertanto se usate da processi in background sul loro
2037 terminale di controllo provocano l'emissione di \const{SIGTTOU} come
2038 illustrato in sez.~\ref{sec:sess_ctrl_term}.\footnote{con la stessa eccezione,
2039   già vista per \func{tcsetattr}, che quest'ultimo sia bloccato o ignorato dal
2040   processo chiamante.}
2041
2042 Una prima funzione, che è efficace solo in caso di terminali seriali asincroni
2043 (non fa niente per tutti gli altri terminali), è \funcd{tcsendbreak}; il suo
2044 prototipo è:
2045 \begin{functions}
2046   \headdecl{unistd.h} 
2047   \headdecl{termios.h}  
2048   
2049   \funcdecl{int tcsendbreak(int fd, int duration)} Genera una condizione di
2050   break inviando un flusso di bit nulli.
2051   
2052   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2053     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2054     \errval{ENOTTY}.}
2055 \end{functions}
2056
2057 La funzione invia un flusso di bit nulli (che genera una condizione di break)
2058 sul terminale associato a \param{fd}; un valore nullo di \param{duration}
2059 implica una durata del flusso fra 0.25 e 0.5 secondi, un valore diverso da
2060 zero implica una durata pari a \code{duration*T} dove \code{T} è un valore
2061 compreso fra 0.25 e 0.5.\footnote{lo standard POSIX specifica il comportamento
2062   solo nel caso si sia impostato un valore nullo per \param{duration}; il
2063   comportamento negli altri casi può dipendere dalla implementazione.}
2064
2065 Le altre funzioni previste da POSIX servono a controllare il comportamento
2066 dell'interazione fra le code associate al terminale e l'utente; la prima è
2067 \funcd{tcdrain}, il cui prototipo è:
2068 \begin{functions}
2069   \headdecl{unistd.h} 
2070   \headdecl{termios.h}  
2071   
2072   \funcdecl{int tcdrain(int fd)} Attende lo svuotamento della coda di output.
2073   
2074   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2075     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2076     \errval{ENOTTY}.}
2077 \end{functions}
2078
2079 La funzione blocca il processo fino a che tutto l'output presente sulla coda
2080 di uscita non è stato trasmesso al terminale associato ad \param{fd}. % La
2081                                 % funzione è  un punto di cancellazione per i
2082                                 % programmi multi-thread, in tal caso le
2083                                 % chiamate devono essere protette con dei
2084                                 % gestori di cancellazione. 
2085
2086 Una seconda funzione, \funcd{tcflush}, permette svuotare immediatamente le code
2087 di cancellando tutti i dati presenti al loro interno; il suo prototipo è:
2088 \begin{functions}
2089   \headdecl{unistd.h} \headdecl{termios.h}
2090   
2091   \funcdecl{int tcflush(int fd, int queue)} Cancella i dati presenti
2092   nelle code di ingresso o di uscita.
2093   
2094   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2095     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2096     \errval{ENOTTY}.}
2097 \end{functions}
2098
2099 La funzione agisce sul terminale associato a \param{fd}, l'argomento
2100 \param{queue} permette di specificare su quale coda (ingresso, uscita o
2101 entrambe), operare. Esso può prendere i valori riportati in
2102 tab.~\ref{tab:sess_tcflush_queue}, nel caso si specifichi la coda di ingresso
2103 cancellerà i dati ricevuti ma non ancora letti, nel caso si specifichi la coda
2104 di uscita cancellerà i dati scritti ma non ancora trasmessi.
2105
2106 \begin{table}[htb]
2107   \footnotesize
2108   \centering
2109   \begin{tabular}[c]{|l|p{8cm}|}
2110     \hline
2111     \textbf{Valore}& \textbf{Significato}\\
2112     \hline
2113     \hline
2114     \const{TCIFLUSH} & Cancella i dati sulla coda di ingresso.\\
2115     \const{TCOFLUSH} & Cancella i dati sulla coda di uscita. \\
2116     \const{TCIOFLUSH}& Cancella i dati su entrambe le code.\\
2117     \hline
2118   \end{tabular}
2119   \caption{Possibili valori per l'argomento \param{queue} della
2120     funzione \func{tcflush}.} 
2121   \label{tab:sess_tcflush_queue}
2122 \end{table}
2123
2124
2125 L'ultima funzione dell'interfaccia che interviene sulla disciplina di linea è
2126 \funcd{tcflow}, che viene usata per sospendere la trasmissione e la ricezione
2127 dei dati sul terminale; il suo prototipo è:
2128 \begin{functions}
2129   \headdecl{unistd.h} 
2130   \headdecl{termios.h}  
2131   
2132   \funcdecl{int tcflow(int fd, int action)} 
2133   
2134   Sospende e riavvia il flusso dei dati sul terminale.
2135
2136   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2137     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2138     \errval{ENOTTY}.}
2139 \end{functions}
2140
2141 La funzione permette di controllare (interrompendo e facendo riprendere) il
2142 flusso dei dati fra il terminale ed il sistema sia in ingresso che in uscita.
2143 Il comportamento della funzione è regolato dall'argomento \param{action}, i
2144 cui possibili valori, e relativa azione eseguita dalla funzione, sono
2145 riportati in tab.~\ref{tab:sess_tcflow_action}.
2146
2147 \begin{table}[htb]
2148    \footnotesize
2149   \centering
2150   \begin{tabular}[c]{|l|p{8cm}|}
2151     \hline
2152     \textbf{Valore}& \textbf{Azione}\\
2153     \hline
2154     \hline
2155     \const{TCOOFF}& Sospende l'output.\\
2156     \const{TCOON} & Riprende un output precedentemente sospeso.\\
2157     \const{TCIOFF}& Il sistema trasmette un carattere di STOP, che 
2158                     fa interrompere la trasmissione dei dati dal terminale.\\
2159     \const{TCION} & Il sistema trasmette un carattere di START, che 
2160                     fa riprendere la trasmissione dei dati dal terminale.\\
2161     \hline
2162   \end{tabular}
2163   \caption{Possibili valori per l'argomento \param{action} della
2164     funzione \func{tcflow}.} 
2165   \label{tab:sess_tcflow_action}
2166 \end{table}
2167
2168
2169
2170 \subsection{Operare in \textsl{modo non canonico}}
2171 \label{sec:term_non_canonical}
2172
2173 Operare con un terminale in modo canonico è relativamente semplice; basta
2174 eseguire una lettura e la funzione ritornerà quando una il driver del
2175 terminale avrà completato una linea di input. Non è detto che la linea sia
2176 letta interamente (si può aver richiesto un numero inferiore di byte) ma in
2177 ogni caso nessun dato verrà perso, e il resto della linea sarà letto alla
2178 chiamata successiva.
2179
2180 Inoltre in modo canonico la gestione dell'input è di norma eseguita
2181 direttamente dal driver del terminale, che si incarica (a seconda di quanto
2182 impostato con le funzioni viste nei paragrafi precedenti) di cancellare i
2183 caratteri, bloccare e riavviare il flusso dei dati, terminare la linea quando
2184 viene ricevuti uno dei vari caratteri di terminazione (NL, EOL, EOL2, EOF).
2185
2186 In modo non canonico tocca invece al programma gestire tutto quanto, i
2187 caratteri NL, EOL, EOL2, EOF, ERASE, KILL, CR, REPRINT non vengono
2188 interpretati automaticamente ed inoltre, non dividendo più l'input in linee,
2189 il sistema non ha più un limite definito per quando ritornare i dati ad un
2190 processo. Per questo motivo abbiamo visto che in \var{c\_cc} sono previsti due
2191 caratteri speciali, MIN e TIME (specificati dagli indici \const{VMIN} e
2192 \const{VTIME} in \var{c\_cc}) che dicono al sistema di ritornare da una
2193 \func{read} quando è stata letta una determinata quantità di dati o è passato
2194 un certo tempo.
2195
2196 Come accennato nella relativa spiegazione in tab.~\ref{tab:sess_termios_cc},
2197 TIME e MIN non sono in realtà caratteri ma valori numerici. Il comportamento
2198 del sistema per un terminale in modalità non canonica prevede quattro casi
2199 distinti:
2200 \begin{description}
2201 \item[MIN$>0$, TIME$>0$] In questo caso MIN stabilisce il numero minimo di
2202   caratteri desiderati e TIME un tempo di attesa, in decimi di secondo, fra un
2203   carattere e l'altro. Una \func{read} ritorna se vengono ricevuti almeno MIN
2204   caratteri prima della scadenza di TIME (MIN è solo un limite inferiore, se
2205   la funzione ha richiesto un numero maggiore di caratteri ne possono essere
2206   restituiti di più); se invece TIME scade vengono restituiti i byte ricevuti
2207   fino ad allora (un carattere viene sempre letto, dato che il timer inizia a
2208   scorrere solo dopo la ricezione del primo carattere).
2209 \item[MIN$>0$, TIME$=0$] Una \func{read} ritorna solo dopo che sono stati
2210   ricevuti almeno MIN caratteri. Questo significa che una \func{read} può
2211   bloccarsi indefinitamente. 
2212 \item[MIN$=0$, TIME$>0$] In questo caso TIME indica un tempo di attesa dalla
2213   chiamata di \func{read}, la funzione ritorna non appena viene ricevuto un
2214   carattere o scade il tempo. Si noti che è possibile che \func{read} ritorni
2215   con un valore nullo.
2216 \item[MIN$=0$, TIME$=0$] In questo caso una \func{read} ritorna immediatamente
2217   restituendo tutti i caratteri ricevuti. Anche in questo caso può ritornare
2218   con un valore nullo.
2219 \end{description}
2220
2221
2222
2223 \section{La gestione dei terminali virtuali}
2224 \label{sec:sess_virtual_terminal}
2225
2226
2227 % TODO terminali virtuali 
2228 % Qui c'è da mettere tutta la parte sui terminali virtuali, e la gestione
2229 % degli stessi
2230 %
2231
2232 Da fare.
2233
2234 \subsection{I terminali virtuali}
2235 \label{sec:sess_pty}
2236
2237 Qui vanno spiegati i terminali virtuali, \file{/dev/pty} e compagnia.
2238 % vedi man pts
2239
2240
2241 \subsection{Allocazione dei terminali virtuali}
2242 \label{sec:sess_openpty}
2243
2244 Qui vanno le cose su \func{openpty} e compagnia.
2245
2246 % TODO le ioctl dei terminali
2247 % TODO trattare \func{posix\_openpt}
2248
2249
2250
2251 % TODO materiale sulle seriali
2252 % vedi http://www.easysw.com/~mike/serial/serial.html
2253 % TODO materiale generico sul layer TTY
2254 % vedi http://www.linusakesson.net/programming/tty/index.php
2255
2256
2257 % LocalWords:  kernel multitasking dell'I job control BSD POSIX shell sez group
2258 % LocalWords:  foreground process bg fg Di waitpid WUNTRACED pgrp session sched
2259 % LocalWords:  struct pgid sid pid ps getpgid getpgrp SVr unistd void errno int
2260 % LocalWords:  ESRCH getsid glibc system call XOPEN SOURCE EPERM setpgrp EACCES
2261 % LocalWords:  setpgid exec EINVAL did fork race condition setsid l'I tty ioctl
2262 % LocalWords:  NOCTTY TIOCSCTTY error tcsetpgrp termios fd pgrpid descriptor VT
2263 % LocalWords:  ENOTTY ENOSYS EBADF SIGTTIN SIGTTOU EIO tcgetpgrp crypt SIGTSTP
2264 % LocalWords:  SIGINT SIGQUIT SIGTERM SIGHUP hungup kill orphaned SIGCONT exit
2265 % LocalWords:  init Slackware run level inittab fig device getty exevle TERM at
2266 % LocalWords:  getpwnam chdir home chown chmod setuid setgid initgroups SIGCHLD
2267 % LocalWords:  daemon like daemons NdT Stevens Programming FAQ filesystem umask
2268 % LocalWords:  noclose syslog syslogd socket UDP klogd printk printf facility
2269 % LocalWords:  priority log openlog const char ident option argv tab AUTH CRON
2270 % LocalWords:  AUTHPRIV cron FTP KERN LOCAL LPR NEWS news USENET UUCP CONS CRIT
2271 % LocalWords:  NDELAY NOWAIT ODELAY PERROR stderr format strerror EMERG ALERT
2272 % LocalWords:  ERR WARNING NOTICE INFO DEBUG debug setlogmask mask UPTO za ssh
2273 % LocalWords:  teletype telnet read write BELL beep CANON isatty desc ttyname
2274 % LocalWords:  NULL ctermid stdio pathname buff size len ERANGE bits ispeed xFF
2275 % LocalWords:  ospeed line tcflag INPCK IGNPAR PARMRK ISTRIP IGNBRK BREAK NUL
2276 % LocalWords:  BRKINT IGNCR carriage return newline ICRNL INLCR IUCLC IXON NL
2277 % LocalWords:  IXANY IXOFF IMAXBEL iflag OPOST CR OCRNL OLCUC ONLCR ONOCR OFILL
2278 % LocalWords:  ONLRET OFDEL NLDLY CRDLY TABDLY BSDLY backspace BS VTDLY FFDLY
2279 % LocalWords:  form feed FF oflag CLOCAL NOBLOCK of HUPCL CREAD CSTOPB PARENB
2280 % LocalWords:  PARODD CSIZE CS CBAUD CBAUDEX CIBAUD CRTSCTS RTS CTS cflag ECHO
2281 % LocalWords:  ICANON ECHOE ERASE ECHOPRT ECHOK ECHOKE ECHONL ECHOCTL ctrl ISIG
2282 % LocalWords:  INTR QUIT SUSP IEXTEN EOL LNEXT REPRINT WERASE NOFLSH and TOSTOP
2283 % LocalWords:  SIGSUSP XCASE DEFECHO FLUSHO DISCARD PENDIN lflag NCCS VINTR EOF
2284 % LocalWords:  interrupt VQUIT VERASE VKILL VEOF VTIME VMIN VSWTC switch VSTART
2285 % LocalWords:  VSTOP VSUSP VEOL VREPRINT VDISCARD VWERASE VLNEXT escape actions
2286 % LocalWords:  tcgetattr tcsetattr EINTR TCSANOW TCSADRAIN TCSAFLUSH speed MIN
2287 % LocalWords:  SetTermAttr UnSetTermAttr cfsetispeed cfsetospeed cfgetispeed ng
2288 % LocalWords:  cfgetospeed quest'ultime tcsendbreak duration break tcdrain list
2289 % LocalWords:  tcflush queue TCIFLUSH TCOFLUSH TCIOFLUSH tcflow action TCOOFF
2290 % LocalWords:  TCOON TCIOFF TCION timer openpty Window nochdir embedded router
2291 % LocalWords:  access point upstart systemd rsyslog vsyslog variadic src linux
2292 % LocalWords:  closelog dmesg sysctl klogctl sys ERESTARTSYS
2293
2294 %%% Local Variables: 
2295 %%% mode: latex
2296 %%% TeX-master: "gapil"
2297 %%% End: