Piccole correzioni e completata la parte sui limiti aggiungendo
[gapil.git] / prochand.tex
1 %% prochand.tex
2 %%
3 %% Copyright (C) 2000-2012 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione dei processi}
13 \label{cha:process_handling}
14
15 Come accennato nell'introduzione in un sistema unix-like tutte le operazioni
16 vengono svolte tramite opportuni processi.  In sostanza questi ultimi vengono
17 a costituire l'unità base per l'allocazione e l'uso delle risorse del sistema.
18
19 Nel precedente capitolo abbiamo esaminato il funzionamento di un processo come
20 unità a se stante, in questo esamineremo il funzionamento dei processi
21 all'interno del sistema. Saranno cioè affrontati i dettagli della creazione e
22 della terminazione dei processi, della gestione dei loro attributi e
23 privilegi, e di tutte le funzioni a questo connesse. Infine nella sezione
24 finale introdurremo alcune problematiche generiche della programmazione in
25 ambiente multitasking.
26
27
28 \section{Le funzioni di base della gestione dei processi}
29 \label{sec:proc_handling}
30
31 In questa sezione tratteremo le problematiche della gestione dei processi
32 all'interno del sistema, illustrandone tutti i dettagli.  Inizieremo con una
33 panoramica dell'architettura dei processi, tratteremo poi le funzioni
34 elementari che permettono di leggerne gli identificatori, per poi passare alla
35 spiegazione delle funzioni base che si usano per la creazione e la
36 terminazione dei processi, e per la messa in esecuzione degli altri programmi.
37
38
39 \subsection{L'architettura della gestione dei processi}
40 \label{sec:proc_hierarchy}
41
42 A differenza di quanto avviene in altri sistemi, ad esempio nel VMS la
43 generazione di nuovi processi è un'operazione privilegiata, una delle
44 caratteristiche fondanti di Unix, che esamineremo in dettaglio più avanti, è
45 che qualunque processo può a sua volta generarne altri. Ogni processo è
46 identificato presso il sistema da un numero univoco, il cosiddetto
47 \itindex{Process~ID~(PID)} \textit{Process ID} o, più brevemente, \ids{PID},
48 assegnato in forma progressiva (vedi sez.~\ref{sec:proc_pid}) quando il
49 processo viene creato.
50
51 Una seconda caratteristica di un sistema unix-like è che la generazione di un
52 processo è un'operazione separata rispetto al lancio di un programma. In
53 genere la sequenza è sempre quella di creare un nuovo processo, il quale
54 eseguirà, in un passo successivo, il programma desiderato: questo è ad esempio
55 quello che fa la shell quando mette in esecuzione il programma che gli
56 indichiamo nella linea di comando.
57
58 Una terza caratteristica del sistema è che ogni processo è sempre stato
59 generato da un altro processo, il processo generato viene chiamato
60 \textit{processo figlio} (\textit{child process}) mentre quello che lo ha
61 viene chiamato \textsl{processo padre} (\textit{parent process}). Questo vale
62 per tutti i processi, con una sola eccezione, dato che ci deve essere un punto
63 di partenza esiste un processo speciale (che normalmente è \cmd{/sbin/init}),
64 che come abbiamo accennato in sez.~\ref{sec:intro_kern_and_sys} viene lanciato
65 dal kernel alla conclusione della fase di avvio. Essendo questo il primo
66 processo lanciato dal sistema ha sempre il \ids{PID} uguale a 1 e non è figlio
67 di nessun altro processo.
68
69 Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far
70 partire tutti gli altri processi necessari al funzionamento del sistema,
71 inoltre \cmd{init} è essenziale per svolgere una serie di compiti
72 amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di
73 essi in sez.~\ref{sec:proc_termination}) e non può mai essere terminato. La
74 struttura del sistema comunque consente di lanciare al posto di \cmd{init}
75 qualunque altro programma, e in casi di emergenza (ad esempio se il file di
76 \cmd{init} si fosse corrotto) è ad esempio possibile lanciare una shell al suo
77 posto.\footnote{la cosa si fa passando la riga \cmd{init=/bin/sh} come
78   parametro di avvio del kernel, l'argomento è di natura sistemistica e
79   trattato in sez.~5.3 di \cite{AGL}.}
80
81 \begin{figure}[!htb]
82   \footnotesize
83 \begin{Command}
84 [piccardi@gont piccardi]$ pstree -n 
85 \end{Command}
86 \begin{Terminal}
87 init-+-keventd
88      |-kapm-idled
89      |-kreiserfsd
90      |-portmap
91      |-syslogd
92      |-klogd
93      |-named
94      |-rpc.statd
95      |-gpm
96      |-inetd
97      |-junkbuster
98      |-master-+-qmgr
99      |        `-pickup
100      |-sshd
101      |-xfs
102      |-cron
103      |-bash---startx---xinit-+-XFree86
104      |                       `-WindowMaker-+-ssh-agent
105      |                                     |-wmtime
106      |                                     |-wmmon
107      |                                     |-wmmount
108      |                                     |-wmppp
109      |                                     |-wmcube
110      |                                     |-wmmixer
111      |                                     |-wmgtemp
112      |                                     |-wterm---bash---pstree
113      |                                     `-wterm---bash-+-emacs
114      |                                                    `-man---pager
115      |-5*[getty]
116      |-snort
117      `-wwwoffled
118 \end{Terminal}
119 %$
120   \caption{L'albero dei processi, così come riportato dal comando
121     \cmd{pstree}.}
122   \label{fig:proc_tree}
123 \end{figure}
124
125 Dato che tutti i processi attivi nel sistema sono comunque generati da
126 \cmd{init} o da uno dei suoi figli si possono classificare i processi con la
127 relazione padre/figlio in un'organizzazione gerarchica ad albero. In
128 fig.~\ref{fig:proc_tree} si è mostrato il risultato del comando \cmd{pstree}
129 che permette di visualizzare questa struttura, alla cui base c'è \cmd{init}
130 che è progenitore di tutti gli altri processi.\footnote{in realtà questo non è
131   del tutto vero, in Linux, specialmente nelle versioni più recenti del
132   kernel, ci sono alcuni processi speciali (come \cmd{keventd}, \cmd{kswapd},
133   ecc.) che pur comparendo nei comandi come figli di \cmd{init}, o con
134   \ids{PID} successivi ad uno, sono in realtà processi interni al kernel e che
135   non rientrano in questa classificazione.}
136
137 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
138 \itindex{process~table} \textit{process table}. Per ciascun processo viene
139 mantenuta una voce in questa tabella, costituita da una struttura
140 \kstruct{task\_struct}, che contiene tutte le informazioni rilevanti per quel
141 processo. Tutte le strutture usate a questo scopo sono dichiarate
142 nell'\textit{header file} \file{linux/sched.h}, ed uno schema semplificato,
143 che riporta la struttura delle principali informazioni contenute nella
144 \struct{task\_struct} (che in seguito incontreremo a più riprese), è mostrato
145 in fig.~\ref{fig:proc_task_struct}.
146
147 \begin{figure}[!htb]
148   \centering \includegraphics[width=14cm]{img/task_struct}
149   \caption{Schema semplificato dell'architettura delle strutture usate dal
150     kernel nella gestione dei processi.}
151   \label{fig:proc_task_struct}
152 \end{figure}
153
154 % TODO la task_struct è cambiata per qualche dettaglio vedi anche
155 % http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
156 % TODO completare la parte su quando viene chiamato lo scheduler.
157
158 Come accennato in sez.~\ref{sec:intro_unix_struct} è lo \itindex{scheduler}
159 \textit{scheduler} che decide quale processo mettere in esecuzione; esso viene
160 eseguito ad ogni \textit{system call} ed ad ogni interrupt e in una serie di
161 altre occasioni, ma può essere anche attivato esplicitamente. Il timer di
162 sistema provvede comunque a che esso sia invocato periodicamente; generando un
163 interrupt periodico secondo la frequenza specificata dalla costante
164 \const{HZ},\footnote{fino al kernel 2.4 il valore di \const{HZ} era 100 su
165   tutte le architetture tranne l'alpha, per cui era 1000, nel 2.6 è stato
166   portato a 1000 su tutte; dal 2.6.13 lo si può impostare in fase di
167   compilazione del kernel, con un default di 250 e valori possibili di 100,
168   250, 1000 e dal 2.6.20 anche 300 (che è divisibile per le frequenze di
169   refresh della televisione); occorre fare attenzione a non confondere questo
170   valore con quello dei \itindex{clock~tick} \textit{clock tick} (vedi
171   sez.~\ref{sec:sys_unix_time}).} definita in \file{asm/param.h}, ed il cui
172 valore è espresso in Hertz.
173
174 A partire dal kernel 2.6.21 è stato introdotto anche un meccanismo
175 completamente diverso, detto \textit{tickless}, in cui non c'è più una
176 interruzione periodica con frequenza prefissata, ma ad ogni chiamata del timer
177 viene programmata l'interruzione successiva sulla base di una stima; in questo
178 modo si evita di dover eseguire un migliaio di interruzioni al secondo anche
179 su macchine che non stanno facendo nulla, con un forte risparmio nell'uso
180 dell'energia da parte del processore che può essere messo in stato di
181 sospensione anche per lunghi periodi di tempo.
182
183 Indipendentemente dalle motivazioni per cui questo avviene, ogni volta che
184 viene eseguito lo \itindex{scheduler} \textit{scheduler} effettua il calcolo
185 delle priorità dei vari processi attivi (torneremo su questo in
186 sez.~\ref{sec:proc_priority}) e stabilisce quale di essi debba essere posto in
187 esecuzione fino alla successiva invocazione.
188
189
190 \subsection{Gli identificatori dei processi}
191 \label{sec:proc_pid}
192
193 Come accennato nella sezione precedente ogni processo viene identificato dal
194 sistema da un numero identificativo univoco, il \textit{process ID} o
195 \ids{PID}. Questo è un tipo di dato standard, \type{pid\_t} che in genere è un
196 intero con segno (nel caso di Linux e della \acr{glibc} il tipo usato è
197 \ctyp{int}).
198
199 Il \ids{PID} viene assegnato in forma progressiva ogni volta che un nuovo
200 processo viene creato,\footnote{in genere viene assegnato il numero successivo
201   a quello usato per l'ultimo processo creato, a meno che questo numero non
202   sia già utilizzato per un altro \ids{PID}, \acr{pgid} o \acr{sid} (vedi
203   sez.~\ref{sec:sess_proc_group}).} fino ad un limite che, essendo il
204 tradizionalmente il \ids{PID} un numero positivo memorizzato in un intero a 16
205 bit, arriva ad un massimo di 32768.  Oltre questo valore l'assegnazione
206 riparte dal numero più basso disponibile a partire da un minimo di
207 300,\footnote{questi valori, fino al kernel 2.4.x, erano definiti dalla macro
208   \const{PID\_MAX} nei file \file{threads.h} e \file{fork.c} dei sorgenti del
209   kernel, con il 2.6.x e la nuova interfaccia per i \itindex{thread}
210   \textit{thread} anche il meccanismo di allocazione dei \ids{PID} è stato
211   modificato ed il valore massimo è impostabile attraverso il file
212   \sysctlfile{kernel/pid\_max} e di default vale 32768.} che serve a
213 riservare i \ids{PID} più bassi ai processi eseguiti direttamente dal kernel.
214 Per questo motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di
215 avvio (\cmd{init}) ha sempre il \ids{PID} uguale a uno.
216
217 Tutti i processi inoltre memorizzano anche il \ids{PID} del genitore da cui
218 sono stati creati, questo viene chiamato in genere \ids{PPID} (da
219 \itindex{Parent~Process~ID~(PPID)} \textit{Parent Process ID}).  Questi due
220 identificativi possono essere ottenuti usando le due funzioni di sistema
221 \funcd{getpid} e \funcd{getppid}, i cui prototipi sono:
222
223 \begin{funcproto}{ 
224 \fhead{sys/types.h}
225 \fhead{unistd.h}
226 \fdecl{pid\_t getpid(void)}
227 \fdesc{Restituisce il \ids{PID} del processo corrente..} 
228 \fdecl{pid\_t getppid(void)}
229 \fdesc{Restituisce il \ids{PID} del padre del processo corrente.} 
230 }
231 {Entrambe le funzioni non riportano condizioni di errore.}   
232 \end{funcproto}
233
234 \noindent esempi dell'uso di queste funzioni sono riportati in
235 fig.~\ref{fig:proc_fork_code}, nel programma \file{fork\_test.c}.
236
237 Il fatto che il \ids{PID} sia un numero univoco per il sistema lo rende un
238 candidato per generare ulteriori indicatori associati al processo di cui
239 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
240 funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
241 \ids{PID} per generare un \textit{pathname} univoco, che non potrà essere
242 replicato da un altro processo che usi la stessa funzione. Questo utilizzo
243 però può risultare pericoloso, un \ids{PID} infatti è univoco solo fintanto
244 che un processo è attivo, una volta terminato esso potrà essere riutilizzato
245 da un processo completamente diverso, e di questo bisogna essere ben
246 consapevoli.
247
248 Tutti i processi figli dello stesso processo padre sono detti
249 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
250   sessione}, in cui si raggruppano i processi creati su uno stesso terminale,
251 o relativi allo stesso login. Torneremo su questo argomento in dettaglio in
252 cap.~\ref{cha:session}, dove esamineremo gli altri identificativi associati ad
253 un processo e le varie relazioni fra processi utilizzate per definire una
254 sessione.
255
256 Oltre al \ids{PID} e al \ids{PPID}, e a quelli che vedremo in
257 sez.~\ref{sec:sess_proc_group}, relativi al controllo di sessione, ad ogni
258 processo vengono associati degli ulteriori identificatori ed in particolare
259 quelli che vengono usati per il controllo di accesso.  Questi servono per
260 determinare se un processo può eseguire o meno le operazioni richieste, a
261 seconda dei privilegi e dell'identità di chi lo ha posto in esecuzione;
262 l'argomento è complesso e sarà affrontato in dettaglio in
263 sez.~\ref{sec:proc_perms}.
264
265
266 \subsection{La funzione \func{fork} e le funzioni di creazione dei processi}
267 \label{sec:proc_fork}
268
269 La funzione di sistema \funcd{fork} è la funzione fondamentale della gestione
270 dei processi: come si è detto tradizionalmente l'unico modo di creare un nuovo
271 processo era attraverso l'uso di questa funzione,\footnote{in realtà oggi la
272   \textit{system call} usata da Linux per creare nuovi processi è \func{clone}
273   (vedi \ref{sec:process_clone}), anche perché a partire dalla \acr{glibc}
274   2.3.3 non viene più usata la \textit{system call} originale, ma la stessa
275   \func{fork} viene implementata tramite \func{clone}, cosa che consente una
276   migliore interazione coi \textit{thread}.} essa quindi riveste un ruolo
277 centrale tutte le volte che si devono scrivere programmi che usano il
278 multitasking.\footnote{oggi questa rilevanza, con la diffusione dell'uso dei
279   \textit{thread} che tratteremo al cap.~\ref{cha:threads}, è in parte minore,
280   ma \func{fork} resta comunque la funzione principale per la creazione di
281   processi.} Il prototipo della funzione è:
282
283 \begin{funcproto}{ 
284 \fhead{unistd.h}
285 \fdecl{pid\_t fork(void)}
286 \fdesc{Crea un nuovo processo.} 
287 }
288 {La funzione ritorna il \ids{PID} del figlio al padre e $0$ al figlio in caso 
289   di successo e $-1$ al padre senza creare il figlio per un errore,
290   nel qual caso \var{errno} assumerà uno dei valori: 
291   \begin{errlist}
292   \item[\errcode{EAGAIN}] non ci sono risorse sufficienti per creare un altro
293     processo (per allocare la tabella delle pagine e le strutture del task) o
294     si è esaurito il numero di processi disponibili.
295   \item[\errcode{ENOMEM}] non è stato possibile allocare la memoria per le
296     strutture necessarie al kernel per creare il nuovo processo.
297   \end{errlist}}
298 \end{funcproto}
299
300 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
301 il processo figlio continuano ad essere eseguiti normalmente a partire
302 dall'istruzione successiva alla \func{fork}. Il processo figlio è una copia del
303 padre, e riceve una copia dei \index{segmento!testo} segmenti di testo,
304 \index{segmento!dati} dati e dello \itindex{stack} \textit{stack} (vedi
305 sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del
306 padre. Si tenga presente però che la memoria è copiata e non condivisa,
307 pertanto padre e figlio vedranno variabili diverse e le eventuali modifiche
308 saranno totalmente indipendenti.
309
310 Per quanto riguarda la gestione della memoria, in generale il
311 \index{segmento!testo} segmento di testo, che è identico per i due processi, è
312 condiviso e tenuto in sola lettura per il padre e per i figli. Per gli altri
313 segmenti Linux utilizza la tecnica del \itindex{copy~on~write} \textit{copy on
314   write}. Questa tecnica comporta che una pagina di memoria viene
315 effettivamente copiata per il nuovo processo solo quando ci viene effettuata
316 sopra una scrittura, e si ha quindi una reale differenza fra padre e figlio.
317 In questo modo si rende molto più efficiente il meccanismo della creazione di
318 un nuovo processo, non essendo più necessaria la copia di tutto lo spazio
319 degli indirizzi virtuali del padre, ma solo delle pagine di memoria che sono
320 state modificate, e solo al momento della modifica stessa.
321
322 La differenza che si ha nei due processi è che nel processo padre il valore di
323 ritorno della funzione \func{fork} è il \ids{PID} del processo figlio, mentre
324 nel figlio è zero; in questo modo il programma può identificare se viene
325 eseguito dal padre o dal figlio.  Si noti come la funzione \func{fork} ritorni
326 due volte, una nel padre e una nel figlio.
327
328 La scelta di questi valori di ritorno non è casuale, un processo infatti può
329 avere più figli, ed il valore di ritorno di \func{fork} è l'unico modo che gli
330 permette di identificare quello appena creato. Al contrario un figlio ha
331 sempre un solo padre, il cui \ids{PID} può sempre essere ottenuto con
332 \func{getppid}, come spiegato in sez.~\ref{sec:proc_pid}, per cui si usa il
333 valore nullo, che non è il \ids{PID} di nessun processo.
334
335 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni: o ci
336 sono già troppi processi nel sistema, il che di solito è sintomo che
337 qualcos'altro non sta andando per il verso giusto, o si è ecceduto il limite
338 sul numero totale di processi permessi all'utente, argomento che tratteremo in
339 dettaglio in sez.~\ref{sec:sys_resource_limit}.
340
341 L'uso di \func{fork} avviene secondo due modalità principali; la prima è
342 quella in cui all'interno di un programma si creano processi figli cui viene
343 affidata l'esecuzione di una certa sezione di codice, mentre il processo padre
344 ne esegue un'altra. È il caso tipico dei programmi server (il modello
345 \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}) in cui il
346 padre riceve ed accetta le richieste da parte dei programmi client, per
347 ciascuna delle quali pone in esecuzione un figlio che è incaricato di fornire
348 il servizio.
349
350 La seconda modalità è quella in cui il processo vuole eseguire un altro
351 programma; questo è ad esempio il caso della shell. In questo caso il processo
352 crea un figlio la cui unica operazione è quella di fare una \func{exec} (di
353 cui parleremo in sez.~\ref{sec:proc_exec}) subito dopo la \func{fork}.
354
355 Alcuni sistemi operativi (il VMS ad esempio) combinano le operazioni di questa
356 seconda modalità (una \func{fork} seguita da una \func{exec}) in un'unica
357 operazione che viene chiamata \textit{spawn}. Nei sistemi unix-like è stato
358 scelto di mantenere questa separazione, dato che, come per la prima modalità
359 d'uso, esistono numerosi scenari in cui si può usare una \func{fork} senza
360 aver bisogno di eseguire una \func{exec}. 
361
362 Inoltre, anche nel caso della seconda modalità d'uso, avere le due funzioni
363 separate permette al figlio di cambiare alcune caratteristiche del processo
364 (maschera dei segnali, redirezione dell'output, utente per conto del cui viene
365 eseguito, e molto altro su cui torneremo in seguito) prima della \func{exec},
366 rendendo così relativamente facile intervenire sulle le modalità di esecuzione
367 del nuovo programma.
368
369 \begin{figure}[!htb]
370   \footnotesize \centering
371   \begin{minipage}[c]{\codesamplewidth}
372   \includecodesample{listati/fork_test.c}
373   \end{minipage}
374   \normalsize
375   \caption{Esempio di codice per la creazione di nuovi processi (da
376     \file{fork\_test.c}).}
377   \label{fig:proc_fork_code}
378 \end{figure}
379
380 In fig.~\ref{fig:proc_fork_code} è riportato il corpo del codice del programma
381 di esempio \cmd{forktest}, che permette di illustrare molte caratteristiche
382 dell'uso della funzione \func{fork}. Il programma crea un numero di figli
383 specificato da linea di comando, e prende anche alcune opzioni per indicare
384 degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
385 \func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
386 descrizione delle opzioni). Il codice completo, compresa la parte che gestisce
387 le opzioni a riga di comando, è disponibile nel file \file{fork\_test.c},
388 distribuito insieme agli altri sorgenti degli esempi su
389 \url{http://gapil.truelite.it/gapil_source.tgz}.
390
391 Decifrato il numero di figli da creare, il ciclo principale del programma
392 (\texttt{\small 24--40}) esegue in successione la creazione dei processi figli
393 controllando il successo della chiamata a \func{fork} (\texttt{\small
394   25--29}); ciascun figlio (\texttt{\small 31--34}) si limita a stampare il
395 suo numero di successione, eventualmente attendere il numero di secondi
396 specificato e scrivere un messaggio prima di uscire. Il processo padre invece
397 (\texttt{\small 36--38}) stampa un messaggio di creazione, eventualmente
398 attende il numero di secondi specificato, e procede nell'esecuzione del ciclo;
399 alla conclusione del ciclo, prima di uscire, può essere specificato un altro
400 periodo di attesa.
401
402 Se eseguiamo il comando, che è preceduto dall'istruzione \code{export
403   LD\_LIBRARY\_PATH=./} per permettere l'uso delle librerie dinamiche, senza
404 specificare attese (come si può notare in (\texttt{\small 17--19}) i valori
405 predefiniti specificano di non attendere), otterremo come risultato sul
406 terminale:
407 \begin{Command}
408 [piccardi@selidor sources]$ export LD_LIBRARY_PATH=./; ./forktest 3
409 \end{Command}
410 %$
411 \begin{Terminal}
412 Process 1963: forking 3 child
413 Spawned 1 child, pid 1964 
414 Child 1 successfully executing
415 Child 1, parent 1963, exiting
416 Go to next child 
417 Spawned 2 child, pid 1965 
418 Child 2 successfully executing
419 Child 2, parent 1963, exiting
420 Go to next child 
421 Child 3 successfully executing
422 Child 3, parent 1963, exiting
423 Spawned 3 child, pid 1966 
424 Go to next child 
425 \end{Terminal} 
426
427 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
428 si può dire quale processo fra il padre ed il figlio venga eseguito per primo
429 dopo la chiamata a \func{fork}; dall'esempio si può notare infatti come nei
430 primi due cicli sia stato eseguito per primo il padre (con la stampa del
431 \ids{PID} del nuovo processo) per poi passare all'esecuzione del figlio
432 (completata con i due avvisi di esecuzione ed uscita), e tornare
433 all'esecuzione del padre (con la stampa del passaggio al ciclo successivo),
434 mentre la terza volta è stato prima eseguito il figlio (fino alla conclusione)
435 e poi il padre.
436
437 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
438 \itindex{scheduler} \textit{scheduling} usato dal kernel, dalla particolare
439 situazione in cui si trova la macchina al momento della chiamata, risultando
440 del tutto impredicibile.  Eseguendo più volte il programma di prova e
441 producendo un numero diverso di figli, si sono ottenute situazioni
442 completamente diverse, compreso il caso in cui il processo padre ha eseguito
443 più di una \func{fork} prima che uno dei figli venisse messo in esecuzione.
444
445 Pertanto non si può fare nessuna assunzione sulla sequenza di esecuzione delle
446 istruzioni del codice fra padre e figli, né sull'ordine in cui questi potranno
447 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
448 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
449 rischio di incorrere nelle cosiddette \itindex{race~condition} \textit{race
450   condition} (vedi sez.~\ref{sec:proc_race_cond}).
451
452 In realtà con l'introduzione dei kernel della serie 2.6 lo \itindex{scheduler}
453 \textit{scheduler} è stato modificato per eseguire sempre per primo il
454 figlio.\footnote{i risultati precedenti infatti sono stati ottenuti usando un
455   kernel della serie 2.4.}  Questa è una ottimizzazione adottata per evitare
456 che il padre, effettuando per primo una operazione di scrittura in memoria,
457 attivasse il meccanismo del \itindex{copy~on~write} \textit{copy on write},
458 operazione inutile qualora il figlio venga creato solo per eseguire una
459 \func{exec} su altro programma che scarta completamente lo spazio degli
460 indirizzi e rende superflua la copia della memoria modificata dal
461 padre. Eseguendo sempre per primo il figlio la \func{exec} verrebbe effettuata
462 subito, con la certezza di utilizzare \itindex{copy~on~write} \textit{copy on
463   write} solo quando necessario.
464
465 Con il kernel 2.6.32 però il comportamento è stato nuovamente cambiato,
466 stavolta facendo eseguire per primo sempre il padre. Si è realizzato infatti
467 che l'eventualità prospettata per la scelta precedente era comunque molto
468 improbabile, mentre l'esecuzione immediata del padre presenta sempre il
469 vantaggio di poter utilizzare immediatamente tutti i dati che sono nella cache
470 della CPU e nella unità di gestione della memoria virtuale senza doverli
471 invalidare, cosa che per i processori moderni, che hanno linee di cache
472 interne molto profonde, avrebbe un forte impatto sulle prestazioni.
473
474 Allora anche se quanto detto in precedenza vale come comportamento effettivo
475 dei programmi soltanto per i kernel fino alla serie 2.4, per mantenere la
476 portabilità con altri kernel unix-like, e con i diversi comportamenti adottati
477 dalle Linux nelle versioni successive, è opportuno non fare affidamento su
478 nessun tipo comportamento predefinito e non dare per assunta l'esecuzione
479 preventiva del padre o del figlio.
480
481 Si noti poi come dopo la \func{fork}, essendo i segmenti di memoria utilizzati
482 dai singoli processi completamente indipendenti, le modifiche delle variabili
483 nei processi figli, come l'incremento di \var{i} in (\texttt{\small 31}), sono
484 visibili solo a loro, (ogni processo vede solo la propria copia della
485 memoria), e non hanno alcun effetto sul valore che le stesse variabili hanno
486 nel processo padre ed in eventuali altri processi figli che eseguano lo stesso
487 codice.
488
489 Un secondo aspetto molto importante nella creazione dei processi figli è
490 quello dell'interazione dei vari processi con i file. Ne parleremo qui anche
491 se buona parte dei concetti relativi ai file verranno trattati più avanti
492 (principalmente in sez.~\ref{sec:file_unix_interface}). Per illustrare meglio
493 quello che avviene si può redirigere su un file l'output del programma di
494 test, quello che otterremo è:
495 \begin{Command}
496 [piccardi@selidor sources]$ ./forktest 3 > output
497 [piccardi@selidor sources]$ cat output
498 \end{Command}
499 \begin{Terminal}
500 Process 1967: forking 3 child
501 Child 1 successfully executing
502 Child 1, parent 1967, exiting
503 Test for forking 3 child
504 Spawned 1 child, pid 1968 
505 Go to next child 
506 Child 2 successfully executing
507 Child 2, parent 1967, exiting
508 Test for forking 3 child
509 Spawned 1 child, pid 1968 
510 Go to next child 
511 Spawned 2 child, pid 1969 
512 Go to next child 
513 Child 3 successfully executing
514 Child 3, parent 1967, exiting
515 Test for forking 3 child
516 Spawned 1 child, pid 1968 
517 Go to next child 
518 Spawned 2 child, pid 1969 
519 Go to next child 
520 Spawned 3 child, pid 1970 
521 Go to next child 
522 \end{Terminal}
523 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
524
525 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
526 in gran dettaglio in sez.~\ref{sec:file_unix_interface} per l'interfaccia
527 nativa Unix ed in sez.~\ref{sec:files_std_interface} per la standardizzazione
528 adottata nelle librerie del linguaggio C e valida per qualunque sistema
529 operativo. Qui basta accennare che si sono usate le funzioni standard della
530 libreria del C che prevedono l'output bufferizzato. Il punto è che questa
531 bufferizzazione (che tratteremo in dettaglio in sez.~\ref{sec:file_buffering})
532 varia a seconda che si tratti di un file su disco, in cui il buffer viene
533 scaricato su disco solo quando necessario, o di un terminale, in cui il buffer
534 viene scaricato ad ogni carattere di a capo.
535
536 Nel primo esempio allora avevamo che, essendovi un a capo nella stringa
537 stampata, ad ogni chiamata a \func{printf} il buffer veniva scaricato, per cui
538 le singole righe comparivano a video subito dopo l'esecuzione della
539 \func{printf}. Ma con la redirezione su file la scrittura non avviene più alla
540 fine di ogni riga e l'output resta nel buffer. Dato che ogni figlio riceve una
541 copia della memoria del padre, esso riceverà anche quanto c'è nel buffer delle
542 funzioni di I/O, comprese le linee scritte dal padre fino allora. Così quando
543 il buffer viene scritto su disco all'uscita del figlio, troveremo nel file
544 anche tutto quello che il processo padre aveva scritto prima della sua
545 creazione. E alla fine del file (dato che in questo caso il padre esce per
546 ultimo) troveremo anche l'output completo del padre.
547
548 L'esempio ci mostra un altro aspetto fondamentale dell'interazione con i file,
549 valido anche per l'esempio precedente, ma meno evidente: il fatto cioè che non
550 solo processi diversi possono scrivere in contemporanea sullo stesso file
551 (l'argomento dell'accesso concorrente ai file è trattato in dettaglio in
552 sez.~\ref{sec:file_shared_access}), ma anche che, a differenza di quanto
553 avviene per le variabili in memoria, la posizione corrente sul file è
554 condivisa fra il padre e tutti i processi figli.
555
556 Quello che succede è che quando lo \textit{standard output}\footnote{si chiama
557   così il file su cui un programma scrive i suoi dati in uscita, tratteremo
558   l'argomento in dettaglio in sez.~\ref{sec:file_fd}.} del padre viene
559 rediretto come si è fatto nell'esempio, lo stesso avviene anche per tutti i
560 figli. La funzione \func{fork} infatti ha la caratteristica di duplicare nei
561 processi figli tutti i \textit{file descriptor} (vedi sez.~\ref{sec:file_fd})
562 dei file aperti nel processo padre (allo stesso modo in cui lo fa la funzione
563 \func{dup}, trattata in sez.~\ref{sec:file_dup}), il che comporta che padre e
564 figli condividono le stesse voci della \itindex{file~table} \textit{file
565   table} (tratteremo in dettaglio questi termini in
566 sez.~\ref{sec:file_shared_access}) fra cui c'è anche la posizione corrente nel
567 file.
568
569 In questo modo se un processo scrive su un file aggiornerà la posizione
570 corrente sulla \itindex{file~table} \textit{file table}, e tutti gli altri
571 processi, che vedono la stessa \itindex{file~table} \textit{file table},
572 vedranno il nuovo valore. In questo modo si evita, in casi come quello appena
573 mostrato in cui diversi processi scrivono sullo stesso file, che l'output
574 successivo di un processo vada a sovrapporsi a quello dei precedenti: l'output
575 potrà risultare mescolato, ma non ci saranno parti perdute per via di una
576 sovrascrittura.
577
578 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
579 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
580 scrivono sullo stesso file. Un caso tipico di questo comportamento è la shell
581 quando lancia un programma.  In questo modo, anche se lo standard output viene
582 rediretto, il padre potrà sempre continuare a scrivere in coda a quanto
583 scritto dal figlio in maniera automatica; se così non fosse ottenere questo
584 comportamento sarebbe estremamente complesso necessitando di una qualche forma
585 di comunicazione fra i due processi per far riprendere al padre la scrittura
586 al punto giusto.
587
588 In generale comunque non è buona norma far scrivere più processi sullo stesso
589 file senza una qualche forma di sincronizzazione in quanto, come visto anche
590 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
591 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
592 i file dopo una \func{fork} sono sostanzialmente due:
593 \begin{enumerate*}
594 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
595   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
596   della posizione corrente dopo eventuali operazioni di lettura e scrittura
597   effettuate dal figlio è automatica.
598 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
599   ciascuno dei due processi deve chiudere i file che non gli servono una volta
600   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
601 \end{enumerate*}
602
603 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
604 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
605 comune dopo l'esecuzione di una \func{fork} è la seguente:
606 \begin{itemize*}
607 \item i file aperti e gli eventuali flag di \itindex{close-on-exec}
608   \textit{close-on-exec} impostati (vedi sez.~\ref{sec:proc_exec} e
609   sez.~\ref{sec:file_fcntl_ioctl});
610 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
611     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
612   \textsl{group-ID effettivo} ed i \textit{group-ID supplementari} (vedi
613   sez.~\ref{sec:proc_access_id});
614 \item gli identificatori per il controllo di sessione: il
615   \itindex{process~group} \textit{process group-ID} e il \textit{session id}
616   ed il terminale di controllo (vedi sez.~\ref{sec:sess_proc_group});
617 \item la \index{directory~di~lavoro} directory di lavoro e la directory radice
618   (vedi sez.~\ref{sec:file_work_dir} e sez.~\ref{sec:file_chroot});
619 \item la maschera dei permessi di creazione dei file (vedi
620   sez.~\ref{sec:file_perm_management});
621 \item la maschera dei segnali bloccati (vedi sez.~\ref{sec:sig_sigmask}) e le
622   azioni installate (vedi sez.~\ref{sec:sig_gen_beha});
623 \item i segmenti di memoria condivisa agganciati al processo (vedi
624   sez.~\ref{sec:ipc_sysv_shm});
625 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
626 \item il valori di \textit{nice}, le priorità real-time e le affinità di
627   processore (vedi sez.~\ref{sec:proc_sched_stand},
628   sez.~\ref{sec:proc_real_time} e sez.~\ref{sec:proc_sched_multiprocess});
629 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
630 \item l'insieme dei descrittori associati alle code di messaggi POSIX (vedi
631   sez.~\ref{sec:ipc_posix_mq}) che vengono copiate come i \textit{file
632     descriptor}, questo significa che entrambi condivideranno gli stessi flag.
633 \end{itemize*}
634
635 Oltre a quelle relative ad un diverso spazio degli indirizzi (e una memoria
636 totalmente indipendente) le differenze fra padre e figlio dopo l'esecuzione di
637 una \func{fork} invece sono:\footnote{a parte le ultime quattro, relative a
638   funzionalità specifiche di Linux, le altre sono esplicitamente menzionate
639   dallo standard POSIX.1-2001.}
640 \begin{itemize*}
641 \item il valore di ritorno di \func{fork};
642 \item il \ids{PID} (\textit{process id}), quello del figlio viene assegnato ad
643   un nuovo valore univoco;
644 \item il \ids{PPID} (\textit{parent process id}), quello del figlio viene
645   impostato al \ids{PID} del padre;
646 \item i valori dei tempi di esecuzione (vedi sez.~\ref{sec:sys_cpu_times}) e
647   delle risorse usate (vedi sez.~\ref{sec:sys_resource_use}), che nel figlio
648   sono posti a zero;
649 \item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}) e sulla
650   memoria (vedi sez.~\ref{sec:proc_mem_lock}), che non vengono ereditati dal
651   figlio;
652 \item gli allarmi, i timer (vedi sez.~\ref{sec:sig_alarm_abort}) ed i segnali
653   pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che per il figlio vengono
654   cancellati.
655 \item le operazioni di I/O asincrono in corso (vedi
656   sez.~\ref{sec:file_asyncronous_io}) che non vengono ereditate dal figlio;
657 \item gli aggiustamenti fatti dal padre ai semafori con \func{semop} (vedi
658   sez.~\ref{sec:ipc_sysv_sem}).
659 \item le notifiche sui cambiamenti delle directory con \textit{dnotify} (vedi
660   sez.~\ref{sec:sig_notification}), che non vengono ereditate dal figlio;
661 \item le mappature di memoria marcate come \const{MADV\_DONTFORK} (vedi
662   sez.~\ref{sec:file_memory_map}) che non vengono ereditate dal figlio;
663 \item l'impostazione con \func{prctl} (vedi sez.~\ref{sec:process_prctl}) che
664   notifica al figlio la terminazione del padre viene cancellata se presente
665   nel padre;
666 \item il segnale di terminazione del figlio è sempre \signal{SIGCHLD} anche
667   qualora nel padre fosse stato modificato (vedi sez.~\ref{sec:process_clone}). 
668 \end{itemize*}
669
670 Una seconda funzione storica usata per la creazione di un nuovo processo è
671 \funcm{vfork}, che è esattamente identica a \func{fork} ed ha la stessa
672 semantica e gli stessi errori; la sola differenza è che non viene creata la
673 tabella delle pagine né la struttura dei task per il nuovo processo. Il
674 processo padre è posto in attesa fintanto che il figlio non ha eseguito una
675 \func{execve} o non è uscito con una \func{\_exit}. Il figlio condivide la
676 memoria del padre (e modifiche possono avere effetti imprevedibili) e non deve
677 ritornare o uscire con \func{exit} ma usare esplicitamente \func{\_exit}.
678
679 Questa funzione è un rimasuglio dei vecchi tempi in cui eseguire una
680 \func{fork} comportava anche la copia completa del segmento dati del processo
681 padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
682 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
683 venne introdotta in BSD per migliorare le prestazioni.
684
685 Dato che Linux supporta il \itindex{copy~on~write} \textit{copy on write} la
686 perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
687 funzione, che resta un caso speciale della \textit{system call} \func{clone}
688 (che tratteremo in dettaglio in sez.~\ref{sec:process_clone}) è deprecato; per
689 questo eviteremo di trattarla ulteriormente.
690
691
692 \subsection{La conclusione di un processo}
693 \label{sec:proc_termination}
694
695 In sez.~\ref{sec:proc_conclusion} abbiamo già affrontato le modalità con cui
696 chiudere un programma, ma dall'interno del programma stesso. Avendo a che fare
697 con un sistema \textit{multitasking} resta da affrontare l'argomento dal punto
698 di vista di come il sistema gestisce la conclusione dei processi.
699
700 Abbiamo visto in sez.~\ref{sec:proc_conclusion} le tre modalità con cui un
701 programma viene terminato in maniera normale: la chiamata di \func{exit}, che
702 esegue le funzioni registrate per l'uscita e chiude gli \textit{stream} e poi
703 esegue \func{\_exit}, il ritorno dalla funzione \code{main} equivalente alla
704 chiamata di \func{exit}, e la chiamata diretta a \func{\_exit}, che passa
705 direttamente alle operazioni di terminazione del processo da parte del kernel.
706
707 Ma abbiamo accennato che oltre alla conclusione normale esistono anche delle
708 modalità di conclusione anomala. Queste sono in sostanza due: il programma può
709 chiamare la funzione \func{abort} (vedi sez.~\ref{sec:sig_alarm_abort}) per
710 invocare una chiusura anomala, o essere terminato da un segnale (torneremo sui
711 segnali in cap.~\ref{cha:signals}).  In realtà anche la prima modalità si
712 riconduce alla seconda, dato che \func{abort} si limita a generare il segnale
713 \signal{SIGABRT}.
714
715 Qualunque sia la modalità di conclusione di un processo, il kernel esegue
716 comunque una serie di operazioni di terminazione: chiude tutti i file aperti,
717 rilascia la memoria che stava usando, e così via; l'elenco completo delle
718 operazioni eseguite alla chiusura di un processo è il seguente:
719 \begin{itemize*}
720 \item tutti i \textit{file descriptor} (vedi sez.~\ref{sec:file_fd}) sono
721   chiusi;
722 \item viene memorizzato lo stato di terminazione del processo;
723 \item ad ogni processo figlio viene assegnato un nuovo padre (in genere
724   \cmd{init});
725 \item viene inviato il segnale \signal{SIGCHLD} al processo padre (vedi
726   sez.~\ref{sec:sig_sigchld});
727 \item se il processo è un leader di sessione ed il suo terminale di controllo
728   è quello della sessione viene mandato un segnale di \signal{SIGHUP} a tutti i
729   processi del gruppo di \textit{foreground} e il terminale di controllo viene
730   disconnesso (vedi sez.~\ref{sec:sess_ctrl_term});
731 \item se la conclusione di un processo rende orfano un \textit{process
732     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
733   inviati in successione i segnali \signal{SIGHUP} e \signal{SIGCONT}
734   (vedi ancora sez.~\ref{sec:sess_ctrl_term}).
735 \end{itemize*}
736
737 \itindbeg{termination~status} 
738
739 Oltre queste operazioni è però necessario poter disporre di un meccanismo
740 ulteriore che consenta di sapere come la terminazione è avvenuta: dato che in
741 un sistema unix-like tutto viene gestito attraverso i processi, il meccanismo
742 scelto consiste nel riportare lo \itindex{termination~status} \textsl{stato di
743   terminazione} (il cosiddetto \textit{termination status}) al processo padre.
744
745 Nel caso di conclusione normale, abbiamo visto in
746 sez.~\ref{sec:proc_conclusion} che lo stato di uscita del processo viene
747 caratterizzato tramite il valore del cosiddetto \textit{exit status}, cioè il
748 valore passato come argomento alle funzioni \func{exit} o \func{\_exit} o il
749 valore di ritorno per \code{main}.  Ma se il processo viene concluso in
750 maniera anomala il programma non può specificare nessun \textit{exit status},
751 ed è il kernel che deve generare autonomamente il \textit{termination status}
752 per indicare le ragioni della conclusione anomala.
753
754 Si noti la distinzione fra \textit{exit status} e \textit{termination status}:
755 quello che contraddistingue lo stato di chiusura del processo e viene
756 riportato attraverso le funzioni \func{wait} o \func{waitpid} (vedi
757 sez.~\ref{sec:proc_wait}) è sempre quest'ultimo; in caso di conclusione
758 normale il kernel usa il primo (nel codice eseguito da \func{\_exit}) per
759 produrre il secondo.
760
761 La scelta di riportare al padre lo stato di terminazione dei figli, pur
762 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
763 alla sua creazione è scontato che ogni nuovo processo abbia un padre, non è
764 detto che sia così alla sua conclusione, dato che il padre potrebbe essere già
765 terminato; si potrebbe avere cioè quello che si chiama un processo
766 \textsl{orfano}.
767
768 Questa complicazione viene superata facendo in modo che il processo orfano
769 venga \textsl{adottato} da \cmd{init}, o meglio dal processo con \ids{PID} 1,
770 cioè quello lanciato direttamente dal kernel all'avvio, che sta alla base
771 dell'albero dei processi visto in sez.~\ref{sec:proc_hierarchy} e che anche
772 per questo motivo ha un ruolo essenziale nel sistema e non può mai
773 terminare.\footnote{almeno non senza un blocco completo del sistema, in caso
774   di terminazione o di non esecuzione di \cmd{init} infatti il kernel si
775   blocca con un cosiddetto \textit{kernel panic}, dato che questo è un errore
776   fatale.}
777
778 Come già accennato quando un processo termina, il kernel controlla se è il
779 padre di altri processi in esecuzione: in caso positivo allora il \ids{PPID}
780 di tutti questi processi verrà sostituito dal kernel con il \ids{PID} di
781 \cmd{init}, cioè con 1. In questo modo ogni processo avrà sempre un padre (nel
782 caso possiamo parlare di un padre \textsl{adottivo}) cui riportare il suo
783 stato di terminazione.  
784
785 Come verifica di questo comportamento possiamo eseguire il nostro programma
786 \cmd{forktest} imponendo a ciascun processo figlio due secondi di attesa prima
787 di uscire, il risultato è:
788 \begin{Command}
789 [piccardi@selidor sources]$ ./forktest -c2 3
790 \end{Command}
791 \begin{Terminal}[commandchars=\\\{\}]
792 Process 1972: forking 3 child
793 Spawned 1 child, pid 1973 
794 Child 1 successfully executing
795 Go to next child 
796 Spawned 2 child, pid 1974 
797 Child 2 successfully executing
798 Go to next child 
799 Child 3 successfully executing
800 Spawned 3 child, pid 1975 
801 Go to next child 
802
803 \textbf{[piccardi@selidor sources]$} Child 3, parent 1, exiting
804 Child 2, parent 1, exiting
805 Child 1, parent 1, exiting
806 \end{Terminal}
807 come si può notare in questo caso il processo padre si conclude prima dei
808 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
809 secondi dopo viene stampato a video anche l'output dei tre figli che
810 terminano, e come si può notare in questo caso, al contrario di quanto visto
811 in precedenza, essi riportano 1 come \ids{PPID}.
812
813 Altrettanto rilevante è il caso in cui il figlio termina prima del padre,
814 perché non è detto che il padre possa ricevere immediatamente lo stato di
815 terminazione, quindi il kernel deve comunque conservare una certa quantità di
816 informazioni riguardo ai processi che sta terminando.
817
818 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
819 memorizzando alcuni dati essenziali, come il \ids{PID}, i tempi di CPU usati
820 dal processo (vedi sez.~\ref{sec:sys_unix_time}) e lo stato di terminazione,
821 mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. 
822
823 I processi che sono terminati, ma il cui stato di terminazione non è stato
824 ancora ricevuto dal padre sono chiamati \itindex{zombie} \textit{zombie}, essi
825 restano presenti nella tabella dei processi ed in genere possono essere
826 identificati dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella
827 colonna che ne indica lo stato (vedi tab.~\ref{tab:proc_proc_states}). Quando
828 il padre effettuerà la lettura dello stato di terminazione anche questa
829 informazione, non più necessaria, verrà scartata ed il processo potrà
830 considerarsi completamente concluso.
831
832 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
833 condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
834 sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
835 secondi prima di uscire. In questo caso, usando \cmd{ps} sullo stesso
836 terminale (prima dello scadere dei 10 secondi) otterremo:
837 \begin{Command}
838 [piccardi@selidor sources]$ ps T
839 \end{Command}
840 %$
841 \begin{Terminal}
842   PID TTY      STAT   TIME COMMAND
843   419 pts/0    S      0:00 bash
844   568 pts/0    S      0:00 ./forktest -e10 3
845   569 pts/0    Z      0:00 [forktest <defunct>]
846   570 pts/0    Z      0:00 [forktest <defunct>]
847   571 pts/0    Z      0:00 [forktest <defunct>]
848   572 pts/0    R      0:00 ps T
849 \end{Terminal} 
850 e come si vede, dato che non si è fatto nulla per riceverne lo stato di
851 terminazione, i tre processi figli sono ancora presenti pur essendosi
852 conclusi, con lo stato di \itindex{zombie} \textit{zombie} e l'indicazione che
853 sono terminati (la scritta \texttt{defunct}).
854
855 La possibilità di avere degli \itindex{zombie} \textit{zombie} deve essere
856 tenuta sempre presente quando si scrive un programma che deve essere mantenuto
857 in esecuzione a lungo e creare molti figli. In questo caso si deve sempre
858 avere cura di far leggere l'eventuale stato di uscita di tutti i figli. In
859 genere questo si fa attraverso un apposito \textit{signal handler}, che chiama
860 la funzione \func{wait}, (vedi sez.~\ref{sec:sig_sigchld} e
861 sez.~\ref{sec:proc_wait}) di cui vedremo un esempio in
862 fig.~\ref{fig:sig_sigchld_handl}.  
863
864 Questa operazione è necessaria perché anche se gli \itindex{zombie}
865 \textit{zombie} non consumano risorse di memoria o processore, occupano
866 comunque una voce nella tabella dei processi e se li si lascia accumulare a
867 lungo quest'ultima potrebbe riempirsi, con l'impossibilità di lanciare nuovi
868 processi. 
869
870 Si noti tuttavia che quando un processo adottato da \cmd{init} termina, non
871 diviene mai uno \itindex{zombie} \textit{zombie}. Questo perché una delle
872 funzioni di \cmd{init} è appunto quella di chiamare la funzione \func{wait}
873 per i processi a cui fa da padre, completandone la terminazione. Questo è
874 quanto avviene anche quando, come nel caso del precedente esempio con
875 \cmd{forktest}, il padre termina con dei figli in stato di \itindex{zombie}
876 \textit{zombie}. Questi scompaiono quando, alla terminazione del padre dopo i
877 secondi programmati, tutti figli che avevamo generato, e che erano diventati
878 \itindex{zombie} \textit{zombie}, vengono adottati da \cmd{init}, il quale
879 provvede a completarne la terminazione.
880
881 Si tenga presente infine che siccome gli \itindex{zombie} \textit{zombie} sono
882 processi già terminati, non c'è modo di eliminarli con il comando \cmd{kill} o
883 inviandogli un qualunque segnale di terminazione (l'argomento è trattato in
884 sez.~\ref{sec:sig_termination}). L'unica possibilità di cancellarli dalla
885 tabella dei processi è quella di terminare il processo che li ha generati, in
886 modo che \cmd{init} possa adottarli e concluderne la terminazione.
887
888 \subsection{Le funzioni di attesa e ricezione degli stati di uscita}
889 \label{sec:proc_wait}
890
891 Uno degli usi più comuni delle capacità multitasking di un sistema unix-like
892 consiste nella creazione di programmi di tipo server, in cui un processo
893 principale attende le richieste che vengono poi soddisfatte da una serie di
894 processi figli. 
895
896 Si è già sottolineato al paragrafo precedente come in questo caso diventi
897 necessario gestire esplicitamente la conclusione dei figli onde evitare di
898 riempire di \itindex{zombie} \textit{zombie} la tabella dei
899 processi. Tratteremo in questa sezione le funzioni di sistema deputate a
900 questo compito; la prima è \funcd{wait} ed il suo prototipo è:
901
902 \begin{funcproto}{ 
903 \fhead{sys/types.h}
904 \fhead{sys/wait.h}
905 \fdecl{pid\_t wait(int *status)}
906 \fdesc{Attende la terminazione di un processo.} 
907 }
908 {La funzione ritorna il \ids{PID} del figlio in caso di successo e $-1$ per un
909   errore, nel qual caso \var{errno} assumerà uno dei valori:
910   \begin{errlist}
911   \item[\errcode{ECHILD}] il processo non ha nessun figlio di cui attendere
912     uno stato di terminazione.
913   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
914   \end{errlist}}
915 \end{funcproto}
916
917 Questa funzione è presente fin dalle prime versioni di Unix ed è quella usata
918 tradizionalmente per attendere la terminazione dei figli. La funzione sospende
919 l'esecuzione del processo corrente e ritorna non appena un qualunque processo
920 figlio termina. Se un figlio è già terminato prima della sua chiamata la
921 funzione ritorna immediatamente, se più processi figli sono già terminati
922 occorrerà continuare a chiamare la funzione più volte fintanto che non si è
923 recuperato lo stato di terminazione di tutti quanti.
924
925 Al ritorno della funzione lo stato di terminazione del figlio viene salvato
926 (come \itindex{value~result~argument} \textit{value result argument}) nella
927 variabile puntata da \param{status} e tutte le risorse del kernel relative al
928 processo (vedi sez.~\ref{sec:proc_termination}) vengono rilasciate.  Nel caso
929 un processo abbia più figli il valore di ritorno della funzione sarà impostato
930 al \ids{PID} del processo di cui si è ricevuto lo stato di terminazione, cosa
931 che permette di identificare qual è il figlio che è terminato.
932
933 \itindend{termination~status} 
934
935 Questa funzione ha il difetto di essere poco flessibile, in quanto ritorna
936 all'uscita di un qualunque processo figlio. Nelle occasioni in cui è
937 necessario attendere la conclusione di uno specifico processo fra tutti quelli
938 esistenti occorre predisporre un meccanismo che tenga conto di tutti processi
939 che sono terminati, e provveda a ripetere la chiamata alla funzione nel caso
940 il processo cercato non risulti fra questi. Se infatti il processo cercato è
941 già terminato e se è già ricevuto lo stato di uscita senza registrarlo, la
942 funzione non ha modo di accorgersene, e si continuerà a chiamarla senza
943 accorgersi che quanto interessava è già accaduto.
944
945 Per questo motivo lo standard POSIX.1 ha introdotto una seconda funzione che
946 effettua lo stesso servizio, ma dispone di una serie di funzionalità più
947 ampie, legate anche al controllo di sessione (si veda
948 sez.~\ref{sec:sess_job_control}).  Dato che è possibile ottenere lo stesso
949 comportamento di \func{wait}\footnote{in effetti il codice
950   \code{wait(\&status)} è del tutto equivalente a \code{waitpid(WAIT\_ANY,
951     \&status, 0)}.} si consiglia di utilizzare sempre questa nuova funzione di
952 sistema, \funcd{waitpid}, il cui prototipo è:
953
954 \begin{funcproto}{ 
955 \fhead{sys/types.h}
956 \fhead{sys/wait.h}
957 \fdecl{pid\_t waitpid(pid\_t pid, int *status, int options)}
958 \fdesc{Attende il cambiamento di stato di un processo figlio.} 
959 }
960 {La funzione ritorna il \ids{PID} del processo che ha cambiato stato in caso
961   di successo, o 0 se è stata specificata l'opzione \const{WNOHANG} e il
962   processo non è uscito e $-1$ per un errore, nel qual caso \var{errno}
963   assumerà uno dei valori:
964   \begin{errlist}
965   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
966     non è figlio del processo chiamante.
967   \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
968     la funzione è stata interrotta da un segnale.
969   \item[\errcode{EINVAL}] si è specificato un valore non valido per
970     l'argomento \param{options}.
971   \end{errlist}}
972 \end{funcproto}
973
974 La prima differenza fra le due funzioni è che con \func{waitpid} si può
975 specificare in maniera flessibile quale processo attendere, sulla base del
976 valore fornito dall'argomento \param{pid}, questo può assumere diversi valori,
977 secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}, dove si
978 sono riportate anche le costanti definite per indicare alcuni di essi. 
979
980 \begin{table}[!htb]
981   \centering
982   \footnotesize
983   \begin{tabular}[c]{|c|c|p{8cm}|}
984     \hline
985     \textbf{Valore} & \textbf{Costante} &\textbf{Significato}\\
986     \hline
987     \hline
988     $<-1$& --               & Attende per un figlio il cui
989                               \itindex{process~group} \textit{process group}
990                               (vedi sez.~\ref{sec:sess_proc_group}) è uguale
991                               al valore assoluto di \param{pid}.\\ 
992     $-1$&\const{WAIT\_ANY}  & Attende per un figlio qualsiasi, usata in
993                               questa maniera senza specificare nessuna opzione
994                               è equivalente a \func{wait}.\\ 
995     $ 0$&\const{WAIT\_MYPGRP}&Attende per un figlio il cui
996                               \itindex{process~group} \textit{process group}
997                               (vedi sez.~\ref{sec:sess_proc_group}) è
998                               uguale a quello del processo chiamante.\\ 
999     $>0$& --                & Attende per un figlio il cui \ids{PID} è uguale
1000                               al valore di \param{pid}.\\
1001     \hline
1002   \end{tabular}
1003   \caption{Significato dei valori dell'argomento \param{pid} della funzione
1004     \func{waitpid}.}
1005   \label{tab:proc_waidpid_pid}
1006 \end{table}
1007
1008 Il comportamento di \func{waitpid} può inoltre essere modificato passando alla
1009 funzione delle opportune opzioni tramite l'argomento \param{options}; questo
1010 deve essere specificato come maschera binaria delle costanti riportati nella
1011 prima parte in tab.~\ref{tab:proc_waitpid_options} che possono essere
1012 combinate fra loro con un OR aritmetico. Nella seconda parte della stessa
1013 tabella si sono riportati anche alcune opzioni non standard specifiche di
1014 Linux, che consentono un controllo più dettagliato per i processi creati con
1015 la \textit{system call} generica \func{clone} (vedi
1016 sez.~\ref{sec:process_clone}) e che vengono usati principalmente per la
1017 gestione della terminazione dei \itindex{thread} \textit{thread} (vedi
1018 sez.~\ref{sec:thread_xxx}).
1019
1020 \begin{table}[!htb]
1021   \centering
1022   \footnotesize
1023   \begin{tabular}[c]{|l|p{8cm}|}
1024     \hline
1025     \textbf{Costante} & \textbf{Descrizione}\\
1026     \hline
1027     \hline
1028     \const{WNOHANG}   & La funzione ritorna immediatamente anche se non è
1029                         terminato nessun processo figlio.\\
1030     \const{WUNTRACED} & Ritorna anche quando un processo figlio è stato
1031                         fermato.\\ 
1032     \const{WCONTINUED}& Ritorna anche quando un processo figlio che era stato
1033                         fermato ha ripreso l'esecuzione (disponibile solo a
1034                         partire dal kernel 2.6.10).\\
1035     \hline
1036     \const{\_\_WCLONE}& Attende solo per i figli creati con \func{clone} 
1037                         (vedi sez.~\ref{sec:process_clone}), vale a dire
1038                         processi che non emettono nessun segnale 
1039                         o emettono un segnale diverso da \signal{SIGCHLD} alla
1040                         terminazione, il default è attendere soltanto i
1041                         processi figli ordinari ignorando quelli creati da
1042                         \func{clone}.\\
1043     \const{\_\_WALL}  & Attende per qualunque figlio, sia ordinario che creato
1044                         con  \func{clone}, se specificata insieme a
1045                         \const{\_\_WCLONE} quest'ultima viene ignorata. \\
1046     \const{\_\_WNOTHREAD}& Non attende per i figli di altri \textit{thread}
1047                         dello stesso \textit{thread group}, questo era il
1048                         comportamento di default del kernel 2.4 che non
1049                         supportava la possibilità, divenuta il default a
1050                         partire dal 2.6, di attendere un qualunque figlio
1051                         appartenente allo stesso \textit{thread group}. \\
1052     \hline
1053   \end{tabular}
1054   \caption{Costanti che identificano i bit dell'argomento \param{options}
1055     della funzione \func{waitpid}.} 
1056   \label{tab:proc_waitpid_options}
1057 \end{table}
1058
1059
1060 L'uso dell'opzione \const{WNOHANG} consente di prevenire il blocco della
1061 funzione qualora nessun figlio sia uscito o non si siano verificate le altre
1062 condizioni per l'uscita della funzione. in tal caso. In tal caso la funzione,
1063 invece di restituire il \ids{PID} del processo (che è sempre un intero
1064 positivo) ritornerà un valore nullo.
1065
1066 Le altre due opzioni, \const{WUNTRACED} e \const{WCONTINUED}, consentono
1067 rispettivamente di tracciare non la terminazione di un processo, ma il fatto
1068 che esso sia stato fermato, o fatto ripartire, e sono utilizzate per la
1069 gestione del controllo di sessione (vedi sez.~\ref{sec:sess_job_control}).
1070
1071 Nel caso di \const{WUNTRACED} la funzione ritorna, restituendone il \ids{PID},
1072 quando un processo figlio entra nello stato \textit{stopped}\footnote{in
1073   realtà viene notificato soltanto il caso in cui il processo è stato fermato
1074   da un segnale di stop (vedi sez.~\ref{sec:sess_ctrl_term}), e non quello in
1075   cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace} (vedi
1076   sez.~\ref{sec:process_ptrace}).} (vedi tab.~\ref{tab:proc_proc_states}),
1077 mentre con \const{WCONTINUED} la funzione ritorna quando un processo in stato
1078 \textit{stopped} riprende l'esecuzione per la ricezione del segnale
1079 \signal{SIGCONT} (l'uso di questi segnali per il controllo di sessione è
1080 trattato in sez.~\ref{sec:sess_ctrl_term}).
1081
1082 La terminazione di un processo figlio (così come gli altri eventi osservabili
1083 con \func{waitpid}) è chiaramente un evento asincrono rispetto all'esecuzione
1084 di un programma e può avvenire in un qualunque momento. Per questo motivo,
1085 come accennato nella sezione precedente, una delle azioni prese dal kernel
1086 alla conclusione di un processo è quella di mandare un segnale di
1087 \signal{SIGCHLD} al padre. L'azione predefinita (si veda
1088 sez.~\ref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
1089 generazione costituisce il meccanismo di comunicazione asincrona con cui il
1090 kernel avverte il processo padre che uno dei suoi figli è terminato.
1091
1092 Il comportamento delle funzioni è però cambiato nel passaggio dal kernel 2.4
1093 al kernel 2.6, quest'ultimo infatti si è adeguato alle prescrizioni dello
1094 standard POSIX.1-2001 e come da esso richiesto se \signal{SIGCHLD} viene
1095 ignorato, o se si imposta il flag di \const{SA\_NOCLDSTOP} nella ricezione
1096 dello stesso (si veda sez.~\ref{sec:sig_sigaction}) i processi figli che
1097 terminano non diventano \textit{zombie} e sia \func{wait} che \func{waitpid}
1098 si bloccano fintanto che tutti i processi figli non sono terminati, dopo di
1099 che falliscono con un errore di \errcode{ENOCHLD}.\footnote{questo è anche il
1100   motivo per cui le opzioni \const{WUNTRACED} e \const{WCONTINUED} sono
1101   utilizzabili soltanto qualora non si sia impostato il flag di
1102   \const{SA\_NOCLDSTOP} per il segnale \signal{SIGCHLD}.}
1103
1104 Con i kernel della serie 2.4 e tutti i kernel delle serie precedenti entrambe
1105 le funzioni di attesa ignorano questa prescrizione e si comportano sempre
1106 nello stesso modo,\footnote{lo standard POSIX.1 originale infatti lascia
1107   indefinito il comportamento di queste funzioni quando \signal{SIGCHLD} viene
1108   ignorato.} indipendentemente dal fatto \signal{SIGCHLD} sia ignorato o meno:
1109 attendono la terminazione di un processo figlio e ritornano il relativo
1110 \ids{PID} e lo stato di terminazione nell'argomento \param{status}.
1111
1112 In generale in un programma non si vuole essere forzati ad attendere la
1113 conclusione di un processo figlio per proseguire l'esecuzione, specie se tutto
1114 questo serve solo per leggerne lo stato di chiusura (ed evitare eventualmente
1115 la presenza di \itindex{zombie} \textit{zombie}).  Per questo la modalità più
1116 comune di chiamare queste funzioni è quella di utilizzarle all'interno di un
1117 \textit{signal handler} (vedremo un esempio di come gestire \signal{SIGCHLD}
1118 con i segnali in sez.~\ref{sec:sig_example}). In questo caso infatti, dato che
1119 il segnale è generato dalla terminazione di un figlio, avremo la certezza che
1120 la chiamata a \func{waitpid} non si bloccherà.
1121
1122 Come accennato sia \func{wait} che \func{waitpid} restituiscono lo stato di
1123 terminazione del processo tramite il puntatore \param{status}, e se non
1124 interessa memorizzare lo stato si può passare un puntatore nullo. Il valore
1125 restituito da entrambe le funzioni dipende dall'implementazione, ma
1126 tradizionalmente gli 8 bit meno significativi sono riservati per memorizzare
1127 lo \itindex{exit~status} stato di uscita del processo, e gli altri per
1128 indicare il segnale che ha causato la terminazione (in caso di conclusione
1129 anomala), uno per indicare se è stato generato un \itindex{core~dump}
1130 \textit{core dump} (vedi sez.~\ref{sec:sig_standard}), ecc.\footnote{le
1131   definizioni esatte si possono trovare in \file{<bits/waitstatus.h>} ma
1132   questo file non deve mai essere usato direttamente, esso viene incluso
1133   attraverso \file{<sys/wait.h>}.}
1134
1135 \begin{table}[!htb]
1136   \centering
1137   \footnotesize
1138   \begin{tabular}[c]{|l|p{10cm}|}
1139     \hline
1140     \textbf{Macro} & \textbf{Descrizione}\\
1141     \hline
1142     \hline
1143     \macro{WIFEXITED}\texttt{(s)}   & Condizione vera (valore non nullo) per
1144                                       un processo figlio che sia terminato
1145                                       normalmente. \\ 
1146     \macro{WEXITSTATUS}\texttt{(s)} & Restituisce gli otto bit meno
1147                                       significativi dello stato di uscita del
1148                                       processo (passato attraverso
1149                                       \func{\_exit}, \func{exit} o come valore
1150                                       di ritorno di \code{main}); può essere
1151                                       valutata solo se \val{WIFEXITED} ha
1152                                       restituito un valore non nullo.\\ 
1153     \macro{WIFSIGNALED}\texttt{(s)} & Condizione vera se il processo figlio è
1154                                       terminato in maniera anomala a causa di
1155                                       un segnale che non è stato catturato
1156                                       (vedi sez.~\ref{sec:sig_notification}).\\ 
1157     \macro{WTERMSIG}\texttt{(s)}    & Restituisce il numero del segnale che ha
1158                                       causato la terminazione anomala del
1159                                       processo; può essere valutata solo se
1160                                       \val{WIFSIGNALED} ha restituito un
1161                                       valore non nullo.\\
1162     \macro{WCOREDUMP}\texttt{(s)}   & Vera se il processo terminato ha
1163                                       generato un file di \itindex{core~dump}
1164                                       \textit{core dump}; può essere valutata
1165                                       solo se \val{WIFSIGNALED} ha restituito
1166                                       un valore non nullo.\footnotemark \\
1167     \macro{WIFSTOPPED}\texttt{(s)}  & Vera se il processo che ha causato il
1168                                       ritorno di \func{waitpid} è bloccato;
1169                                       l'uso è possibile solo con
1170                                       \func{waitpid} avendo specificato
1171                                       l'opzione \const{WUNTRACED}.\\
1172     \macro{WSTOPSIG}\texttt{(s)}    & Restituisce il numero del segnale che ha
1173                                       bloccato il processo; può essere
1174                                       valutata solo se \val{WIFSTOPPED} ha
1175                                       restituito un valore non nullo. \\ 
1176     \macro{WIFCONTINUED}\texttt{(s)}& Vera se il processo che ha causato il
1177                                       ritorno è stato riavviato da un
1178                                       \signal{SIGCONT} (disponibile solo a
1179                                       partire dal kernel 2.6.10).\\
1180     \hline
1181   \end{tabular}
1182   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
1183     verificare lo stato di terminazione \var{s} di un processo.}
1184   \label{tab:proc_status_macro}
1185 \end{table}
1186
1187 \footnotetext{questa macro non è definita dallo standard POSIX.1-2001, ma è
1188   presente come estensione sia in Linux che in altri Unix, deve essere
1189   pertanto utilizzata con attenzione (ad esempio è il caso di usarla in un
1190   blocco \texttt{\#ifdef WCOREDUMP ... \#endif}.}
1191
1192 Lo standard POSIX.1 definisce una serie di macro di preprocessore da usare per
1193 analizzare lo stato di uscita. Esse sono definite sempre in
1194 \file{<sys/wait.h>} ed elencate in tab.~\ref{tab:proc_status_macro}. Si tenga
1195 presente che queste macro prevedono che gli si passi come parametro la
1196 variabile di tipo \ctyp{int} puntata dall'argomento \param{status} restituito
1197 da \func{wait} o \func{waitpid}.
1198
1199 Si tenga conto che nel caso di conclusione anomala il valore restituito da
1200 \val{WTERMSIG} può essere confrontato con le costanti che identificano i
1201 segnali definite in \headfile{signal.h} ed elencate in
1202 tab.~\ref{tab:sig_signal_list}, e stampato usando le apposite funzioni
1203 trattate in sez.~\ref{sec:sig_strsignal}.
1204
1205 A partire dal kernel 2.6.9, sempre in conformità allo standard POSIX.1-2001, è
1206 stata introdotta una nuova funzione di attesa che consente di avere un
1207 controllo molto più preciso sui possibili cambiamenti di stato dei processi
1208 figli e più dettagli sullo stato di uscita; la funzione di sistema è
1209 \funcd{waitid} ed il suo prototipo è:
1210
1211 \begin{funcproto}{ 
1212 \fhead{sys/types.h}
1213 \fhead{sys/wait.h}
1214 \fdecl{int waitid(idtype\_t idtype, id\_t id, siginfo\_t *infop, int options)}
1215 \fdesc{Attende il cambiamento di stato di un processo figlio.} 
1216 }
1217 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1218   caso \var{errno} assumerà uno dei valori:
1219   \begin{errlist}
1220   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
1221     non è figlio del processo chiamante.
1222   \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
1223     la funzione è stata interrotta da un segnale.
1224   \item[\errcode{EINVAL}] si è specificato un valore non valido per
1225     l'argomento \param{options}.
1226   \end{errlist}}
1227 \end{funcproto}
1228
1229 La funzione prevede che si specifichi quali processi si intendono osservare
1230 usando i due argomenti \param{idtype} ed \param{id}; il primo indica se ci si
1231 vuole porre in attesa su un singolo processo, un gruppo di processi o un
1232 processo qualsiasi, e deve essere specificato secondo uno dei valori di
1233 tab.~\ref{tab:proc_waitid_idtype}; il secondo indica, a seconda del valore del
1234 primo, quale processo o quale gruppo di processi selezionare.
1235
1236 \begin{table}[!htb]
1237   \centering
1238   \footnotesize
1239   \begin{tabular}[c]{|l|p{8cm}|}
1240     \hline
1241     \textbf{Valore} & \textbf{Descrizione}\\
1242     \hline
1243     \hline
1244     \const{P\_PID} & Indica la richiesta di attendere per un processo figlio
1245                      il cui \ids{PID} corrisponda al valore dell'argomento
1246                      \param{id}.\\
1247     \const{P\_PGID}& Indica la richiesta di attendere per un processo figlio
1248                      appartenente al \textit{process group} (vedi
1249                      sez.~\ref{sec:sess_proc_group}) il cui \acr{pgid}
1250                      corrisponda al valore dell'argomento \param{id}.\\
1251     \const{P\_ALL} & Indica la richiesta di attendere per un processo figlio
1252                      generico, il valore dell'argomento \param{id} viene
1253                      ignorato.\\
1254     \hline
1255   \end{tabular}
1256   \caption{Costanti per i valori dell'argomento \param{idtype} della funzione
1257     \func{waitid}.}
1258   \label{tab:proc_waitid_idtype}
1259 \end{table}
1260
1261 Come per \func{waitpid} anche il comportamento di \func{waitid} viene
1262 controllato dall'argomento \param{options}, da specificare come maschera
1263 binaria dei valori riportati in tab.~\ref{tab:proc_waitid_options}. Benché
1264 alcuni di questi siano identici come significato ed effetto ai precedenti di
1265 tab.~\ref{tab:proc_waitpid_options}, ci sono delle differenze significative:
1266 in questo caso si dovrà specificare esplicitamente l'attesa della terminazione
1267 di un processo impostando l'opzione \const{WEXITED}, mentre il precedente
1268 \const{WUNTRACED} è sostituito da \const{WSTOPPED}.  Infine è stata aggiunta
1269 l'opzione \const{WNOWAIT} che consente una lettura dello stato mantenendo il
1270 processo in attesa di ricezione, così che una successiva chiamata possa di
1271 nuovo riceverne lo stato.
1272
1273 \begin{table}[!htb]
1274   \centering
1275   \footnotesize
1276   \begin{tabular}[c]{|l|p{8cm}|}
1277     \hline
1278     \textbf{Valore} & \textbf{Descrizione}\\
1279     \hline
1280     \hline
1281     \const{WEXITED}   & Ritorna quando un processo figlio è terminato.\\
1282     \const{WNOHANG}   & Ritorna immediatamente anche se non c'è niente da
1283                         notificare.\\ 
1284     \const{WSTOPPED} &  Ritorna quando un processo figlio è stato fermato.\\
1285     \const{WCONTINUED}& Ritorna quando un processo figlio che era stato
1286                         fermato ha ripreso l'esecuzione.\\
1287     \const{WNOWAIT}   & Lascia il processo ancora in attesa di ricezione, così
1288                         che una successiva chiamata possa di nuovo riceverne
1289                         lo stato.\\
1290     \hline
1291   \end{tabular}
1292   \caption{Costanti che identificano i bit dell'argomento \param{options}
1293     della funzione \func{waitid}.} 
1294   \label{tab:proc_waitid_options}
1295 \end{table}
1296
1297 La funzione \func{waitid} restituisce un valore nullo in caso di successo, e
1298 $-1$ in caso di errore; viene restituito un valore nullo anche se è stata
1299 specificata l'opzione \const{WNOHANG} e la funzione è ritornata immediatamente
1300 senza che nessun figlio sia terminato. Pertanto per verificare il motivo del
1301 ritorno della funzione occorre analizzare le informazioni che essa
1302 restituisce; queste, al contrario delle precedenti \func{wait} e
1303 \func{waitpid} che usavano un semplice valore numerico, sono ritornate in una
1304 struttura di tipo \struct{siginfo\_t} (vedi fig.~\ref{fig:sig_siginfo_t})
1305 all'indirizzo puntato dall'argomento \param{infop}.
1306
1307 Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
1308 suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
1309 basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
1310 campi:
1311 \begin{basedescript}{\desclabelwidth{2.0cm}}
1312 \item[\var{si\_pid}] con il \ids{PID} del figlio.
1313 \item[\var{si\_uid}] con l'\textsl{user-ID reale} (vedi
1314   sez.~\ref{sec:proc_perms}) del figlio.
1315 \item[\var{si\_signo}] con \signal{SIGCHLD}.
1316 \item[\var{si\_status}] con lo stato di uscita del figlio o con il segnale che
1317   lo ha terminato, fermato o riavviato.
1318 \item[\var{si\_code}] con uno fra \const{CLD\_EXITED}, \const{CLD\_KILLED},
1319   \const{CLD\_STOPPED}, \const{CLD\_CONTINUED}, \const{CLD\_TRAPPED} e
1320   \const{CLD\_DUMPED} a indicare la ragione del ritorno della funzione, il cui
1321   significato è, nell'ordine: uscita normale, terminazione da segnale,
1322   processo fermato, processo riavviato, processo terminato in
1323   \itindex{core~dump} \textit{core dump} (vedi sez.~\ref{sec:sig_standard}).
1324 \end{basedescript}
1325
1326 Infine Linux, seguendo un'estensione di BSD, supporta altre due funzioni per
1327 la lettura dello stato di terminazione di un processo, analoghe alle
1328 precedenti ma che prevedono un ulteriore argomento attraverso il quale il
1329 kernel può restituire al padre informazioni sulle risorse (vedi
1330 sez.~\ref{sec:sys_res_limits}) usate dal processo terminato e dai vari figli.
1331 Le due funzioni di sistema sono \funcd{wait3} e \funcd{wait4}, che diventano
1332 accessibili definendo la macro \macro{\_USE\_BSD}, i loro prototipi sono:
1333
1334 \begin{funcproto}{ 
1335 \fhead{sys/types.h}
1336 \fhead{sys/times.h}
1337 \fhead{sys/resource.h}
1338 \fhead{sys/wait.h}
1339 \fdecl{int wait3(int *status, int options, struct rusage *rusage)}
1340 \fdecl{int wait4(pid\_t pid, int *status, int options, struct rusage *rusage)}
1341 \fdesc{Attende il cambiamento di stato di un processo figlio, riportando l'uso
1342   delle risorse.} 
1343 }
1344 {La funzione ha gli stessi valori di ritorno e codici di errore di
1345   \func{waitpid}. }
1346 \end{funcproto}
1347
1348 La funzione \func{wait4} è identica \func{waitpid} sia nel comportamento che
1349 per i valori dei primi tre argomenti, ma in più restituisce nell'argomento
1350 aggiuntivo \param{rusage} un sommario delle risorse usate dal processo. Questo
1351 argomento è una struttura di tipo \struct{rusage} definita in
1352 \headfile{sys/resource.h}, che viene utilizzata anche dalla funzione
1353 \func{getrusage} per ottenere le risorse di sistema usate da un processo. La
1354 sua definizione è riportata in fig.~\ref{fig:sys_rusage_struct} e ne
1355 tratteremo in dettaglio il significato sez.~\ref{sec:sys_resource_use}. La
1356 funzione \func{wait3} è semplicemente un caso particolare di (e con Linux
1357 viene realizzata con la stessa \textit{system call}), ed è equivalente a
1358 chiamare \code{wait4(-1, \&status, opt, rusage)}, per questo motivo è ormai
1359 deprecata in favore di \func{wait4}.
1360
1361
1362
1363 \subsection{La famiglia delle funzioni \func{exec} per l'esecuzione dei
1364   programmi}
1365 \label{sec:proc_exec}
1366
1367 Abbiamo già detto che una delle modalità principali con cui si utilizzano i
1368 processi in Unix è quella di usarli per lanciare nuovi programmi: questo viene
1369 fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un
1370 processo chiama una di queste funzioni esso viene completamente sostituito dal
1371 nuovo programma, il \ids{PID} del processo non cambia, dato che non viene
1372 creato un nuovo processo, la funzione semplicemente rimpiazza lo
1373 \itindex{stack} \textit{stack}, i \index{segmento!dati} dati ed il
1374 \index{segmento!testo} testo del processo corrente con un nuovo programma
1375 letto da disco, eseguendo il \itindex{link-loader} \textit{link-loader} con
1376 gli effetti illustrati in sez.~\ref{sec:proc_main}.
1377
1378 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
1379 famiglia di funzioni) che possono essere usate per questo compito, in realtà
1380 (come mostrato in fig.~\ref{fig:proc_exec_relat}), tutte queste funzioni sono
1381 tutte varianti che consentono di invocare in modi diversi, semplificando il
1382 passaggio degli argomenti, la \textit{system call} \funcd{execve}, il cui
1383 prototipo è:
1384
1385 \begin{funcproto}{ 
1386 \fhead{unistd.h}
1387 \fdecl{int execve(const char *filename, char *const argv[], char *const envp[])}
1388 \fdesc{Esegue un programma.} 
1389 }
1390 {La funzione ritorna solo in caso di errore, restituendo $-1$, nel qual
1391  caso \var{errno} assumerà uno dei valori:
1392 \begin{errlist}
1393   \item[\errcode{EACCES}] il file o l'interprete non file ordinari, o non sono
1394     eseguibili, o il file è su un filesystem montato con l'opzione
1395     \cmd{noexec}, o manca  il permesso di attraversamento di una delle
1396     directory del \textit{pathname}.
1397   \item[\errcode{EINVAL}] l'eseguibile ELF ha più di un segmento
1398     \const{PF\_INTERP}, cioè chiede di essere eseguito da più di un
1399     interprete.
1400   \item[\errcode{ELIBBAD}] un interprete ELF non è in un formato
1401     riconoscibile.
1402   \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
1403     riconosciuto come tale, o compilato per un'altra architettura.
1404   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
1405     necessari per eseguirlo non esistono.
1406   \item[\errcode{EPERM}] il file ha i bit \itindex{suid~bit} \acr{suid} o
1407     \itindex{sgid~bit} \acr{sgid} e l'utente non è root, ed il processo viene
1408     tracciato, oppure il filesystem è montato con l'opzione \cmd{nosuid}.
1409   \item[\errcode{ETXTBSY}] l'eseguibile è aperto in scrittura da uno o più
1410     processi. 
1411   \item[\errcode{E2BIG}] la lista degli argomenti è troppo grande.
1412   \end{errlist}
1413   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{EISDIR}, \errval{ELOOP},
1414   \errval{EMFILE}, \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOMEM},
1415   \errval{ENOTDIR} nel loro significato generico.  }
1416 \end{funcproto}
1417
1418 La funzione \func{execve} esegue il programma o lo script indicato dal
1419 \textit{pathname} \param{filename}, passandogli la lista di argomenti indicata
1420 da \param{argv} e come ambiente la lista di stringhe indicata
1421 da \param{envp}. Entrambe le liste devono essere terminate da un puntatore
1422 nullo. I vettori degli argomenti e dell'ambiente possono essere acceduti dal
1423 nuovo programma quando la sua funzione \code{main} è dichiarata nella forma
1424 \code{main(int argc, char *argv[], char *envp[])}. Si tenga presente per il
1425 passaggio degli argomenti e dell'ambiente esistono comunque dei limiti, su cui
1426 torneremo in sez.~\ref{sec:sys_res_limits}).
1427 % TODO aggiungere la parte sul numero massimo di argomenti, da man execve
1428
1429 In caso di successo la funzione non ritorna, in quanto al posto del programma
1430 chiamante viene eseguito il nuovo programma indicato da \param{filename}. Se
1431 il processo corrente è tracciato con \func{ptrace} (vedi
1432 sez.~\ref{sec:process_ptrace}) in caso di successo viene emesso il segnale
1433 \signal{SIGTRAP}.
1434
1435 Le altre funzioni della famiglia (\funcd{execl}, \funcd{execv},
1436 \funcd{execle}, \funcd{execlp}, \funcd{execvp}) servono per fornire all'utente
1437 una serie di possibili diverse interfacce nelle modalità di passaggio degli
1438 argomenti all'esecuzione del nuovo programma. I loro prototipi sono:
1439
1440 \begin{funcproto}{ 
1441 \fhead{unistd.h}
1442 \fdecl{int execl(const char *path, const char *arg, ...)}
1443 \fdecl{int execv(const char *path, char *const argv[])}
1444 \fdecl{int execle(const char *path, const char *arg, ..., char * const envp[])}
1445 \fdecl{int execlp(const char *file, const char *arg, ...)}
1446 \fdecl{int execvp(const char *file, char *const argv[])}
1447 \fdesc{Eseguono un programma.} 
1448 }
1449 {Le funzioni ritornano solo in caso di errore, restituendo $-1$, i codici di
1450   errore sono gli stessi di \func{execve}.
1451 }
1452 \end{funcproto}
1453
1454 Tutte le funzioni mettono in esecuzione nel processo corrente il programma
1455 indicati nel primo argomento. Gli argomenti successivi consentono di
1456 specificare gli argomenti e l'ambiente che saranno ricevuti dal nuovo
1457 processo. Per capire meglio le differenze fra le funzioni della famiglia si può
1458 fare riferimento allo specchietto riportato in
1459 tab.~\ref{tab:proc_exec_scheme}. La relazione fra le funzioni è invece
1460 illustrata in fig.~\ref{fig:proc_exec_relat}.
1461
1462 \begin{table}[!htb]
1463   \footnotesize
1464   \centering
1465   \begin{tabular}[c]{|l|c|c|c||c|c|c|}
1466     \hline
1467     \multicolumn{1}{|c|}{\textbf{Caratteristiche}} & 
1468     \multicolumn{6}{|c|}{\textbf{Funzioni}} \\
1469     \hline
1470     &\func{execl}\texttt{ }&\func{execlp}&\func{execle}
1471     &\func{execv}\texttt{ }& \func{execvp}& \func{execve} \\
1472     \hline
1473     \hline
1474     argomenti a lista    &$\bullet$&$\bullet$&$\bullet$&&& \\
1475     argomenti a vettore  &&&&$\bullet$&$\bullet$&$\bullet$\\
1476     \hline
1477     filename completo     &$\bullet$&&$\bullet$&$\bullet$&&$\bullet$\\ 
1478     ricerca su \var{PATH} &&$\bullet$&&&$\bullet$& \\
1479     \hline
1480     ambiente a vettore   &&&$\bullet$&&&$\bullet$ \\
1481     uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\
1482     \hline
1483   \end{tabular}
1484   \caption{Confronto delle caratteristiche delle varie funzioni della 
1485     famiglia \func{exec}.}
1486   \label{tab:proc_exec_scheme}
1487 \end{table}
1488
1489 La prima differenza fra le funzioni riguarda le modalità di passaggio dei
1490 valori che poi andranno a costituire gli argomenti a linea di comando (cioè i
1491 valori di \param{argv} e \param{argc} visti dalla funzione \code{main} del
1492 programma chiamato). Queste modalità sono due e sono riassunte dagli mnemonici
1493 ``\texttt{v}'' e ``\texttt{l}'' che stanno rispettivamente per \textit{vector}
1494 e \textit{list}.
1495
1496 Nel primo caso gli argomenti sono passati tramite il vettore di puntatori
1497 \var{argv[]} a stringhe terminate con zero che costituiranno gli argomenti a
1498 riga di comando, questo vettore \emph{deve} essere terminato da un puntatore
1499 nullo. Nel secondo caso le stringhe degli argomenti sono passate alla funzione
1500 come lista di puntatori, nella forma:
1501 \includecodesnip{listati/char_list.c}
1502 che deve essere terminata da un puntatore nullo.  In entrambi i casi vale la
1503 convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato
1504 per indicare il nome del file che contiene il programma che verrà eseguito.
1505
1506 \begin{figure}[!htb]
1507   \centering \includegraphics[width=10cm]{img/exec_rel}
1508   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
1509   \label{fig:proc_exec_relat}
1510 \end{figure}
1511
1512 La seconda differenza fra le funzioni riguarda le modalità con cui si
1513 specifica il programma che si vuole eseguire. Con lo mnemonico ``\texttt{p}''
1514 si indicano le due funzioni che replicano il comportamento della shell nello
1515 specificare il comando da eseguire; quando l'argomento \param{file} non
1516 contiene una ``\texttt{/}'' esso viene considerato come un nome di programma,
1517 e viene eseguita automaticamente una ricerca fra i file presenti nella lista
1518 di directory specificate dalla variabile di ambiente \envvar{PATH}. Il file
1519 che viene posto in esecuzione è il primo che viene trovato. Se si ha un errore
1520 relativo a permessi di accesso insufficienti (cioè l'esecuzione della
1521 sottostante \func{execve} ritorna un \errcode{EACCES}), la ricerca viene
1522 proseguita nelle eventuali ulteriori directory indicate in \envvar{PATH}; solo
1523 se non viene trovato nessun altro file viene finalmente restituito
1524 \errcode{EACCES}.  Le altre quattro funzioni si limitano invece a cercare di
1525 eseguire il file indicato dall'argomento \param{path}, che viene interpretato
1526 come il \textit{pathname} del programma.
1527
1528 La terza differenza è come viene passata la lista delle variabili di ambiente.
1529 Con lo mnemonico ``\texttt{e}'' vengono indicate quelle funzioni che
1530 necessitano di un vettore di parametri \var{envp[]} analogo a quello usato per
1531 gli argomenti a riga di comando (terminato quindi da un \val{NULL}), le altre
1532 usano il valore della variabile \var{environ} (vedi
1533 sez.~\ref{sec:proc_environ}) del processo di partenza per costruire
1534 l'ambiente.
1535
1536 Oltre a mantenere lo stesso \ids{PID}, il nuovo programma fatto partire da una
1537 delle funzioni della famiglia \func{exec} mantiene la gran parte delle
1538 proprietà del processo chiamante; una lista delle più significative è la
1539 seguente:
1540 \begin{itemize*}
1541 \item il \textit{process id} (\ids{PID}) ed il \textit{parent process id}
1542   (\ids{PPID});
1543 \item l'\textsl{user-ID reale}, il \textit{group-ID reale} ed i
1544   \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id});
1545 \item la directory radice e la \index{directory~di~lavoro} directory di lavoro
1546   corrente (vedi sez.~\ref{sec:file_work_dir});
1547 \item la maschera di creazione dei file \itindex{umask} (\textit{umask}, vedi
1548   sez.~\ref{sec:file_perm_management}) ed i \textit{lock} sui file (vedi
1549   sez.~\ref{sec:file_locking});
1550 \item il valori di \textit{nice}, le priorità real-time e le affinità di
1551   processore (vedi sez.~\ref{sec:proc_sched_stand};
1552   sez.~\ref{sec:proc_real_time} e sez.~\ref{sec:proc_sched_multiprocess});
1553 \item il \textit{session ID} (\acr{sid}) ed il \itindex{process~group}
1554   \textit{process group ID} (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
1555 \item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term});
1556 \item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort});
1557 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
1558 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime};
1559   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times});
1560 % TODO ===========Importante=============
1561 % TODO questo sotto è incerto, verificare
1562 % TODO ===========Importante=============
1563 \item la maschera dei segnali (si veda sez.~\ref{sec:sig_sigmask}).
1564 \end{itemize*}
1565
1566 Una serie di proprietà del processo originale, che non avrebbe senso mantenere
1567 in un programma che esegue un codice completamente diverso in uno spazio di
1568 indirizzi totalmente indipendente e ricreato da zero, vengono perse con
1569 l'esecuzione di una \func{exec}. Lo standard POSIX.1-2001 prevede che le
1570 seguenti proprietà non vengano preservate:
1571 \begin{itemize*}
1572 \item l'insieme dei segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
1573   viene cancellato;
1574 \item gli eventuali stack alternativi per i segnali (vedi
1575   sez.~\ref{sec:sig_specific_features});
1576 \item i \textit{directory stream} (vedi sez.~\ref{sec:file_dir_read}), che
1577   vengono chiusi;
1578 \item le mappature dei file in memoria (vedi sez.~\ref{sec:file_memory_map});
1579 \item i segmenti di memoria condivisa SysV (vedi sez.~\ref{sec:ipc_sysv_shm})
1580   e POSIX (vedi sez.~\ref{sec:ipc_posix_shm});
1581 \item i \itindex{memory~locking} \textit{memory lock} (vedi
1582   sez.~\ref{sec:proc_mem_lock});
1583 \item le funzioni registrate all'uscita (vedi sez.~\ref{sec:proc_atexit});
1584 \item i semafori e le code di messaggi POSIX (vedi
1585   sez.~\ref{sec:ipc_posix_sem} e sez.~\ref{sec:ipc_posix_mq});
1586 \item i timer POSIX (vedi sez.~\ref{sec:sig_timer_adv}).
1587 \end{itemize*}
1588
1589 Inoltre i segnali che sono stati impostati per essere ignorati nel processo
1590 chiamante mantengono la stessa impostazione pure nel nuovo programma, ma tutti
1591 gli altri segnali, ed in particolare quelli per i quali è stato installato un
1592 gestore vengono impostati alla loro azione predefinita (vedi
1593 sez.~\ref{sec:sig_gen_beha}). Un caso speciale è il segnale \signal{SIGCHLD}
1594 che, quando impostato a \const{SIG\_IGN}, potrebbe anche essere reimpostato a
1595 \const{SIG\_DFL}. Lo standard POSIX.1-2001 prevede che questo comportamento
1596 sia deciso dalla singola implementazione, quella di Linux è di non modificare
1597 l'impostazione precedente.
1598
1599 Oltre alle precedenti, che sono completamente generali e disponibili anche su
1600 altri sistemi unix-like, esistono altre proprietà dei processi, attinenti alle
1601 caratteristiche specifiche di Linux, che non vengono preservate
1602 nell'esecuzione della funzione \func{exec}, queste sono:
1603 \begin{itemize*}
1604 \item le operazioni di I/O asincrono (vedi sez.~\ref{sec:file_asyncronous_io})
1605   pendenti vengono cancellate;
1606 \item le \itindex{capabilities} \textit{capabilities} vengono modificate come
1607   illustrato in sez.~\ref{sec:proc_capabilities};
1608 \item tutti i \itindex{thread} \textit{thread} tranne il chiamante (vedi
1609   sez.~\ref{sec:thread_xxx}) sono cancellati e tutti gli oggetti ad essi
1610   relativi (vedi sez.~\ref{sec:thread_xxx}) rimossi;
1611 \item viene impostato il flag \const{PR\_SET\_DUMPABLE} di \func{prctl} (vedi
1612   sez.~\ref{sec:process_prctl}) a meno che il programma da eseguire non sia
1613   \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} (vedi
1614   sez.~\ref{sec:proc_access_id});
1615 \item il flag \const{PR\_SET\_KEEPCAPS} di \func{prctl} (vedi
1616   sez.~\ref{sec:process_prctl}) viene cancellato;
1617 \item il nome del processo viene impostato al nome del file contenente il
1618   programma messo in esecuzione;
1619 \item il segnale di terminazione viene reimpostato a \signal{SIGCHLD};
1620 \item l'ambiente viene reinizializzato impostando le variabili attinenti alla
1621   localizzazione al valore di default POSIX. 
1622 \end{itemize*}
1623
1624 La gestione dei file aperti nel passaggio al nuovo programma lanciato con
1625 \func{exec} dipende dal valore che ha il flag di \itindex{close-on-exec}
1626 \textit{close-on-exec} (vedi sez.~\ref{sec:file_fcntl_ioctl}) per ciascun
1627 \textit{file descriptor}. I file per cui è impostato vengono chiusi, tutti gli
1628 altri file restano aperti. Questo significa che il comportamento predefinito è
1629 che i file restano aperti attraverso una \func{exec}, a meno di una chiamata
1630 esplicita a \func{fcntl} che imposti il suddetto flag.  Per le directory, lo
1631 standard POSIX.1 richiede che esse vengano chiuse attraverso una \func{exec},
1632 in genere questo è fatto dalla funzione \func{opendir} (vedi
1633 sez.~\ref{sec:file_dir_read}) che effettua da sola l'impostazione del flag di
1634 \itindex{close-on-exec} \textit{close-on-exec} sulle directory che apre, in
1635 maniera trasparente all'utente.
1636
1637 Il comportamento della funzione in relazione agli identificatori relativi al
1638 controllo di accesso verrà trattato in dettaglio in sez.~\ref{sec:proc_perms},
1639 qui è sufficiente anticipare (si faccia riferimento a
1640 sez.~\ref{sec:proc_access_id} per la definizione di questi identificatori)
1641 come l'\textsl{user-ID reale} ed il \textsl{group-ID reale} restano sempre gli
1642 stessi, mentre l'\textsl{user-ID salvato} ed il \textsl{group-ID salvato}
1643 vengono impostati rispettivamente all'\textsl{user-ID effettivo} ed il
1644 \textsl{group-ID effettivo}. Questi ultimi normalmente non vengono modificati,
1645 a meno che il file di cui viene chiesta l'esecuzione non abbia o il
1646 \itindex{suid~bit} \acr{suid} bit o lo \itindex{sgid~bit} \acr{sgid} bit
1647 impostato, in questo caso l'\textsl{user-ID effettivo} ed il \textsl{group-ID
1648   effettivo} vengono impostati rispettivamente all'utente o al gruppo cui il
1649 file appartiene.
1650
1651 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
1652 condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
1653 del programma per caricare le librerie necessarie ed effettuare il link
1654 dell'eseguibile.\footnote{il formato è ormai in completo disuso, per cui è
1655   molto probabile che non il relativo supporto non sia disponibile.} Se il
1656 programma è in formato ELF per caricare le librerie dinamiche viene usato
1657 l'interprete indicato nel segmento \const{PT\_INTERP} previsto dal formato
1658 stesso, in genere questo è \sysfile{/lib/ld-linux.so.1} per programmi
1659 collegati con la \acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi
1660 collegati con la \acr{glibc}.
1661
1662 Infine nel caso il programma che si vuole eseguire sia uno script e non un
1663 binario, questo deve essere un file di testo che deve iniziare con una linea
1664 nella forma:
1665 \begin{Example}
1666 #!/path/to/interpreter [argomenti]
1667 \end{Example}
1668 dove l'interprete indicato deve essere un eseguibile binario e non un altro
1669 script, che verrà chiamato come se si fosse eseguito il comando
1670 \cmd{interpreter [argomenti] filename}.\footnote{si tenga presente che con
1671   Linux quanto viene scritto come \texttt{argomenti} viene passato
1672   all'interprete come un unico argomento con una unica stringa di lunghezza
1673   massima di 127 caratteri e se questa dimensione viene ecceduta la stringa
1674   viene troncata; altri Unix hanno dimensioni massime diverse, e diversi
1675   comportamenti, ad esempio FreeBSD esegue la scansione della riga e la divide
1676   nei vari argomenti e se è troppo lunga restituisce un errore di
1677   \const{ENAMETOOLONG}, una comparazione dei vari comportamenti si trova su
1678   \url{http://www.in-ulm.de/~mascheck/various/shebang/}.}
1679
1680 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
1681 basata la gestione tradizionale dei processi in Unix: con \func{fork} si crea
1682 un nuovo processo, con \func{exec} si lancia un nuovo programma, con
1683 \func{exit} e \func{wait} si effettua e verifica la conclusione dei
1684 processi. Tutte le altre funzioni sono ausiliarie e servono per la lettura e
1685 l'impostazione dei vari parametri connessi ai processi.
1686
1687
1688
1689 \section{Il controllo di accesso}
1690 \label{sec:proc_perms}
1691
1692 In questa sezione esamineremo le problematiche relative al controllo di
1693 accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
1694 usati, come questi possono essere modificati nella creazione e nel lancio di
1695 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
1696 problematiche connesse ad una gestione accorta dei privilegi.
1697
1698
1699 \subsection{Gli identificatori del controllo di accesso}
1700 \label{sec:proc_access_id}
1701
1702 Come accennato in sez.~\ref{sec:intro_multiuser} il modello base\footnote{in
1703   realtà già esistono estensioni di questo modello base, che lo rendono più
1704   flessibile e controllabile, come le \itindex{capabilities}
1705   \textit{capabilities} illustrate in sez.~\ref{sec:proc_capabilities}, le ACL
1706   per i file (vedi sez.~\ref{sec:file_ACL}) o il
1707   \itindex{Mandatory~Access~Control~(MAC)} \textit{Mandatory Access Control}
1708   di \index{SELinux} SELinux; inoltre basandosi sul lavoro effettuato con
1709   SELinux, a partire dal kernel 2.5.x, è iniziato lo sviluppo di una
1710   infrastruttura di sicurezza, i \itindex{Linux~Security~Modules}
1711   \textit{Linux Security Modules}, o LSM, in grado di fornire diversi agganci
1712   a livello del kernel per modularizzare tutti i possibili controlli di
1713   accesso, cosa che ha permesso di realizzare diverse alternative a
1714   \index{SELinux} SELinux.} di sicurezza di un sistema unix-like è fondato sui
1715 concetti di utente e gruppo, e sulla separazione fra l'amministratore
1716 (\textsl{root}, detto spesso anche \textit{superuser}) che non è sottoposto a
1717 restrizioni, ed il resto degli utenti, per i quali invece vengono effettuati i
1718 vari controlli di accesso.
1719
1720 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
1721 identificatori univoci, lo \itindex{User~ID~(PID)} \textsl{User-ID}
1722 (abbreviato in \ids{UID}) ed il \itindex{Group~ID~(PID)} \textsl{Group-ID}
1723 (abbreviato in \ids{GID}). Questi servono al kernel per identificare uno
1724 specifico utente o un gruppo di utenti, per poi poter controllare che essi
1725 siano autorizzati a compiere le operazioni richieste.  Ad esempio in
1726 sez.~\ref{sec:file_access_control} vedremo come ad ogni file vengano associati
1727 un utente ed un gruppo (i suoi \textsl{proprietari}, indicati appunto tramite
1728 un \ids{UID} ed un \ids{GID}) che vengono controllati dal kernel nella
1729 gestione dei permessi di accesso.
1730
1731 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
1732 evidente che per poter implementare un controllo sulle operazioni occorre
1733 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
1734 anche a ciascun processo dovrà essere associato un utente e un gruppo.
1735
1736 Un semplice controllo di una corrispondenza fra identificativi non garantisce
1737 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
1738 disporre di privilegi diversi, o dover impersonare un altro utente per un
1739 limitato insieme di operazioni. Per questo motivo in generale tutti i sistemi
1740 unix-like prevedono che i processi abbiano almeno due gruppi di
1741 identificatori, chiamati rispettivamente \textit{real} ed \textit{effective}
1742 (cioè \textsl{reali} ed \textsl{effettivi}). Nel caso di Linux si aggiungono
1743 poi altri due gruppi, il \textit{saved} (\textsl{salvati}) ed il
1744 \textit{filesystem} (\textsl{di filesystem}), secondo la situazione illustrata
1745 in tab.~\ref{tab:proc_uid_gid}.
1746
1747 \begin{table}[htb]
1748   \footnotesize
1749   \centering
1750   \begin{tabular}[c]{|c|c|l|p{7cm}|}
1751     \hline
1752     \textbf{Suffisso} & \textbf{Gruppo} & \textbf{Denominazione} 
1753                                         & \textbf{Significato} \\ 
1754     \hline
1755     \hline
1756     \texttt{uid} & \textit{real} & \textsl{user-ID reale} 
1757                  & Indica l'utente che ha lanciato il programma.\\ 
1758     \texttt{gid} & '' &\textsl{group-ID reale} 
1759                  & Indica il gruppo principale dell'utente che ha lanciato 
1760                    il programma.\\ 
1761     \hline
1762     \texttt{euid}& \textit{effective} &\textsl{user-ID effettivo} 
1763                  & Indica l'utente usato nel controllo di accesso.\\ 
1764     \texttt{egid}& '' & \textsl{group-ID effettivo} 
1765                  & Indica il gruppo usato nel controllo di accesso.\\ 
1766     --           & -- & \textsl{group-ID supplementari} 
1767                  & Indicano gli ulteriori gruppi cui l'utente appartiene.\\ 
1768     \hline
1769     --           & \textit{saved} & \textsl{user-ID salvato} 
1770                  & Mantiene una copia dell'\acr{euid} iniziale.\\ 
1771     --           & '' & \textsl{group-ID salvato} 
1772                  & Mantiene una copia dell'\acr{egid} iniziale.\\ 
1773     \hline
1774     \texttt{fsuid}& \textit{filesystem} &\textsl{user-ID di filesystem} 
1775                  & Indica l'utente effettivo per l'accesso al filesystem. \\ 
1776     \texttt{fsgid}& '' & \textsl{group-ID di filesystem} 
1777                  & Indica il gruppo effettivo per l'accesso al filesystem.\\ 
1778     \hline
1779   \end{tabular}
1780   \caption{Identificatori di utente e gruppo associati a ciascun processo con
1781     indicazione dei suffissi usati dalle varie funzioni di manipolazione.}
1782   \label{tab:proc_uid_gid}
1783 \end{table}
1784
1785 Al primo gruppo appartengono l'\ids{UID} \textsl{reale} ed il \ids{GID}
1786 \textsl{reale}: questi vengono impostati al login ai valori corrispondenti
1787 all'utente con cui si accede al sistema (e relativo gruppo principale).
1788 Servono per l'identificazione dell'utente e normalmente non vengono mai
1789 cambiati. In realtà vedremo (in sez.~\ref{sec:proc_setuid}) che è possibile
1790 modificarli, ma solo ad un processo che abbia i privilegi di amministratore;
1791 questa possibilità è usata proprio dal programma \cmd{login} che, una volta
1792 completata la procedura di autenticazione, lancia una shell per la quale
1793 imposta questi identificatori ai valori corrispondenti all'utente che entra
1794 nel sistema.
1795
1796 Al secondo gruppo appartengono l'\ids{UID} \textsl{effettivo} e il \ids{GID}
1797 \textsl{effettivo}, a cui si aggiungono gli eventuali \ids{GID}
1798 \textsl{supplementari} dei gruppi dei quali l'utente fa parte.  Questi sono
1799 invece gli identificatori usati nelle verifiche dei permessi del processo e
1800 per il controllo di accesso ai file (argomento affrontato in dettaglio in
1801 sez.~\ref{sec:file_perm_overview}).
1802
1803 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
1804 \textit{real} tranne nel caso in cui, come accennato in
1805 sez.~\ref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i
1806 bit \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} impostati
1807 (il significato di questi bit è affrontato in dettaglio in
1808 sez.~\ref{sec:file_special_perm}). In questo caso essi saranno impostati
1809 all'utente e al gruppo proprietari del file. Questo consente, per programmi in
1810 cui ci sia questa necessità, di dare a qualunque utente i privilegi o i
1811 permessi di un altro, compreso l'amministratore.
1812
1813 Come nel caso del \ids{PID} e del \ids{PPID}, anche tutti questi
1814 identificatori possono essere ottenuti da un programma attraverso altrettante
1815 funzioni di sistema dedicate alla loro lettura, queste sono \funcd{getuid},
1816 \funcd{geteuid}, \funcd{getgid} e \funcd{getegid}, ed i loro prototipi sono:
1817
1818 \begin{funcproto}{ 
1819 \fhead{unistd.h}
1820 \fhead{sys/types.h}
1821 \fdecl{uid\_t getuid(void)}
1822 \fdesc{Legge l'\ids{UID} reale del processo corrente.} 
1823 \fdecl{uid\_t geteuid(void)}
1824 \fdesc{Legge l'\ids{UID} effettivo del processo corrente.} 
1825 \fdecl{gid\_t getgid(void)}
1826 \fdesc{Legge il \ids{GID} reale del processo corrente.} 
1827 \fdecl{gid\_t getegid(void)}
1828 \fdesc{Legge il \ids{GID} effettivo del processo corrente.}
1829 }
1830 {Le funzioni ritornano i rispettivi identificativi del processo corrente, e
1831   non sono previste condizioni di errore.}
1832 \end{funcproto}
1833
1834 In generale l'uso di privilegi superiori, ottenibile con un \ids{UID}
1835 \textsl{effettivo} diverso da quello reale, deve essere limitato il più
1836 possibile, per evitare abusi e problemi di sicurezza, per questo occorre anche
1837 un meccanismo che consenta ad un programma di rilasciare gli eventuali
1838 maggiori privilegi necessari, una volta che si siano effettuate le operazioni
1839 per i quali erano richiesti, e a poterli eventualmente recuperare in caso
1840 servano di nuovo.
1841
1842 Questo in Linux viene fatto usando altri due gruppi di identificatori, il
1843 \textit{saved} ed il \textit{filesystem}. Il primo gruppo è lo stesso usato in
1844 SVr4, e previsto dallo standard POSIX quando è definita la costante
1845 \macro{\_POSIX\_SAVED\_IDS},\footnote{in caso si abbia a cuore la portabilità
1846   del programma su altri Unix è buona norma controllare sempre la
1847   disponibilità di queste funzioni controllando se questa costante è
1848   definita.} il secondo gruppo è specifico di Linux e viene usato per
1849 migliorare la sicurezza con NFS (il \textit{Network File System}, protocollo
1850 che consente di accedere ai file via rete).
1851
1852 L'\ids{UID} \textsl{salvato} ed il \ids{GID} \textsl{salvato} sono copie
1853 dell'\ids{UID} \textsl{effettivo} e del \ids{GID} \textsl{effettivo} del
1854 processo padre, e vengono impostati dalla funzione \func{exec} all'avvio del
1855 processo, come copie dell'\ids{UID} \textsl{effettivo} e del \ids{GID}
1856 \textsl{effettivo} dopo che questi sono stati impostati tenendo conto di
1857 eventuali \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid}.  Essi
1858 quindi consentono di tenere traccia di quale fossero utente e gruppo effettivi
1859 all'inizio dell'esecuzione di un nuovo programma.
1860
1861 L'\ids{UID} \textsl{di filesystem} e il \ids{GID} \textsl{di filesystem} sono
1862 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
1863 (torneremo sull'argomento in sez.~\ref{sec:proc_setuid}). Essi sono una
1864 replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
1865 quali si sostituiscono per tutte le operazioni di verifica dei permessi
1866 relativi ai file (trattate in sez.~\ref{sec:file_perm_overview}).  Ogni
1867 cambiamento effettuato sugli identificatori effettivi viene automaticamente
1868 riportato su di essi, per cui in condizioni normali si può tranquillamente
1869 ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
1870
1871
1872 \subsection{Le funzioni di gestione degli identificatori dei processi}
1873 \label{sec:proc_setuid}
1874
1875 Le funzioni di sistema più comuni che vengono usate per cambiare identità
1876 (cioè utente e gruppo di appartenenza) ad un processo, e che come accennato in
1877 sez.~\ref{sec:proc_access_id} seguono la semantica POSIX che prevede
1878 l'esistenza dell'\ids{UID} salvato e del \ids{GID} salvato, sono
1879 rispettivamente \funcd{setuid} e \funcd{setgid}; i loro prototipi sono:
1880
1881 \begin{funcproto}{ 
1882 \fhead{unistd.h}
1883 \fhead{sys/types.h}
1884 \fdecl{int setuid(uid\_t uid)}
1885 \fdesc{Imposta l'\ids{UID} del processo corrente.} 
1886 \fdecl{int setgid(gid\_t gid)}
1887 \fdesc{Imposta il \ids{GID} del processo corrente.} 
1888 }
1889 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1890 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
1891 }
1892 \end{funcproto}
1893
1894 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
1895 la prima, la seconda si comporta esattamente allo stesso modo facendo
1896 riferimento al \ids{GID} invece che all'\ids{UID}.  Gli eventuali \ids{GID}
1897 supplementari non vengono modificati.
1898
1899 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
1900 l'\ids{UID} effettivo è zero (cioè è quello dell'amministratore di sistema)
1901 allora tutti gli identificatori (\textit{real}, \textit{effective} e
1902 \textit{saved}) vengono impostati al valore specificato da \param{uid},
1903 altrimenti viene impostato solo l'\ids{UID} effettivo, e soltanto se il valore
1904 specificato corrisponde o all'\ids{UID} reale o all'\ids{UID} salvato. Negli
1905 altri casi viene segnalato un errore con \errcode{EPERM}.
1906
1907 Come accennato l'uso principale di queste funzioni è quello di poter
1908 consentire ad un programma con i bit \itindex{suid~bit} \acr{suid} o
1909 \itindex{sgid~bit} \acr{sgid} impostati (vedi
1910 sez.~\ref{sec:file_special_perm}) di riportare l'\ids{UID} effettivo a quello
1911 dell'utente che ha lanciato il programma, effettuare il lavoro che non
1912 necessita di privilegi aggiuntivi, ed eventualmente tornare indietro.
1913
1914 Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
1915 viene gestito l'accesso al file \sysfile{/var/run/utmp}.  In questo file viene
1916 registrato chi sta usando il sistema al momento corrente; chiaramente non può
1917 essere lasciato aperto in scrittura a qualunque utente, che potrebbe
1918 falsificare la registrazione. Per questo motivo questo file (e l'analogo
1919 \sysfile{/var/log/wtmp} su cui vengono registrati login e logout) appartengono
1920 ad un gruppo dedicato (in genere \acr{utmp}) ed i programmi che devono
1921 accedervi (ad esempio tutti i programmi di terminale in X, o il programma
1922 \cmd{screen} che crea terminali multipli su una console) appartengono a questo
1923 gruppo ed hanno il bit \acr{sgid} impostato.
1924
1925 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato, la
1926 situazione degli identificatori è la seguente:
1927 \begin{eqnarray*}
1928   \label{eq:1}
1929   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (del chiamante)} \\
1930   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1931   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp}}
1932 \end{eqnarray*}
1933 in questo modo, dato che il \textsl{group-ID effettivo} è quello giusto, il
1934 programma può accedere a \sysfile{/var/run/utmp} in scrittura ed aggiornarlo.
1935 A questo punto il programma può eseguire una \code{setgid(getgid())} per
1936 impostare il \textsl{group-ID effettivo} a quello dell'utente (e dato che il
1937 \textsl{group-ID reale} corrisponde la funzione avrà successo), in questo modo
1938 non sarà possibile lanciare dal terminale programmi che modificano detto file,
1939 in tal caso infatti la situazione degli identificatori sarebbe:
1940 \begin{eqnarray*}
1941   \label{eq:2}
1942   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (invariato)}  \\
1943   \textsl{group-ID effettivo}  &=& \textrm{\ids{GID}} \\
1944   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1945 \end{eqnarray*}
1946 e ogni processo lanciato dal terminale avrebbe comunque \ids{GID} come
1947 \textsl{group-ID effettivo}. All'uscita dal terminale, per poter di nuovo
1948 aggiornare lo stato di \sysfile{/var/run/utmp} il programma eseguirà una
1949 \code{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
1950 \acr{utmp}, ottenuto ad esempio con una precedente \func{getegid}), dato che
1951 in questo caso il valore richiesto corrisponde al \textsl{group-ID salvato} la
1952 funzione avrà successo e riporterà la situazione a:
1953 \begin{eqnarray*}
1954   \label{eq:3}
1955   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (invariato)}  \\
1956   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1957   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1958 \end{eqnarray*}
1959 consentendo l'accesso a \sysfile{/var/run/utmp}.
1960
1961 Occorre però tenere conto che tutto questo non è possibile con un processo con
1962 i privilegi di amministratore, in tal caso infatti l'esecuzione di una
1963 \func{setuid} comporta il cambiamento di tutti gli identificatori associati al
1964 processo, rendendo impossibile riguadagnare i privilegi di amministratore.
1965 Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
1966 crea una nuova shell per l'utente, ma quando si vuole cambiare soltanto
1967 l'\ids{UID} effettivo del processo per cedere i privilegi occorre
1968 ricorrere ad altre funzioni.
1969
1970 Le due funzioni di sistema \funcd{setreuid} e \funcd{setregid} derivano da BSD
1971 che, non supportando (almeno fino alla versione 4.3+BSD) gli identificatori
1972 del gruppo \textit{saved}, le usa per poter scambiare fra di loro
1973 \textit{effective} e \textit{real}; i rispettivi prototipi sono:
1974
1975 \begin{funcproto}{ 
1976 \fhead{unistd.h}
1977 \fhead{sys/types.h}
1978 \fdecl{int setreuid(uid\_t ruid, uid\_t euid)}
1979 \fdesc{Imposta \ids{UID} reale e \ids{UID} effettivo del processo corrente.} 
1980 \fdecl{int setregid(gid\_t rgid, gid\_t egid)}
1981 \fdesc{Imposta \ids{GID} reale e \ids{GID} effettivo del processo corrente.} 
1982 }
1983 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1984 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
1985 }
1986 \end{funcproto}
1987
1988 Le due funzioni sono identiche, quanto diremo per la prima riguardo gli
1989 \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
1990 \func{setreuid} imposta rispettivamente l'\ids{UID} reale e l'\ids{UID}
1991 effettivo del processo corrente ai valori specificati da \param{ruid}
1992 e \param{euid}.  I processi non privilegiati possono impostare solo valori che
1993 corrispondano o al loro \ids{UID} effettivo o a quello reale o a quello
1994 salvato, valori diversi comportano il fallimento della chiamata.
1995 L'amministratore invece può specificare un valore qualunque.  Specificando un
1996 argomento di valore $-1$ l'identificatore corrispondente verrà lasciato
1997 inalterato.
1998
1999 Con queste funzioni si possono scambiare fra loro gli \ids{UID} reale ed
2000 effettivo, e pertanto è possibile implementare un comportamento simile a
2001 quello visto in precedenza per \func{setgid}, cedendo i privilegi con un primo
2002 scambio, e recuperandoli, una volta eseguito il lavoro non privilegiato, con
2003 un secondo scambio.
2004
2005 In questo caso però occorre porre molta attenzione quando si creano nuovi
2006 processi nella fase intermedia in cui si sono scambiati gli identificatori, in
2007 questo caso infatti essi avranno un \ids{UID} reale privilegiato, che dovrà
2008 essere esplicitamente eliminato prima di porre in esecuzione un nuovo
2009 programma, occorrerà cioè eseguire un'altra chiamata dopo la \func{fork} e
2010 prima della \func{exec} per uniformare l'\ids{UID} reale a quello effettivo,
2011 perché in caso contrario il nuovo programma potrebbe a sua volta effettuare
2012 uno scambio e riottenere dei privilegi non previsti.
2013
2014 Lo stesso problema di propagazione dei privilegi ad eventuali processi figli
2015 si pone anche per l'\ids{UID} salvato. Ma la funzione \func{setreuid} deriva
2016 da un'implementazione di sistema che non ne prevede la presenza, e quindi non
2017 è possibile usarla per correggere la situazione come nel caso precedente. Per
2018 questo motivo in Linux tutte le volte che si imposta un qualunque valore
2019 diverso da quello dall'\ids{UID} reale corrente, l'\ids{UID} salvato viene
2020 automaticamente uniformato al valore dell'\ids{UID} effettivo.
2021
2022 Altre due funzioni di sistema, \funcd{seteuid} e \funcd{setegid}, sono
2023 un'estensione dello standard POSIX.1, ma sono comunque supportate dalla
2024 maggior parte degli Unix, esse vengono usate per cambiare gli identificatori
2025 del gruppo \textit{effective} ed i loro prototipi sono:
2026
2027 \begin{funcproto}{ 
2028 \fhead{unistd.h}
2029 \fhead{sys/types.h}
2030 \fdecl{int seteuid(uid\_t uid)}
2031 \fdesc{Imposta l'\ids{UID} effettivo del processo corrente.} 
2032 \fdecl{int setegid(gid\_t gid)}
2033 \fdesc{Imposta il \ids{GID} effettivo del processo corrente.} 
2034 }
2035 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2036 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
2037 }
2038 \end{funcproto}
2039
2040 Ancora una volta le due funzioni sono identiche, e quanto diremo per la prima
2041 riguardo gli \ids{UID} si applica allo stesso modo alla seconda per i
2042 \ids{GID}. Con \func{seteuid} gli utenti normali possono impostare l'\ids{UID}
2043 effettivo solo al valore dell'\ids{UID} reale o dell'\ids{UID} salvato,
2044 l'amministratore può specificare qualunque valore. Queste funzioni sono usate
2045 per permettere all'amministratore di impostare solo l'\ids{UID} effettivo,
2046 dato che l'uso normale di \func{setuid} comporta l'impostazione di tutti gli
2047 identificatori.
2048  
2049 Le due funzioni di sistema \funcd{setresuid} e \funcd{setresgid} sono invece
2050 un'estensione introdotta in Linux (a partire dal kernel 2.1.44) e permettono
2051 un completo controllo su tutti e tre i gruppi di identificatori
2052 (\textit{real}, \textit{effective} e \textit{saved}), i loro prototipi sono:
2053
2054 \begin{funcproto}{ 
2055 \fhead{unistd.h}
2056 \fhead{sys/types.h}
2057 \fdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)}
2058 \fdesc{Imposta l'\ids{UID} reale, effettivo e salvato del processo corrente.} 
2059 \fdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)}
2060 \fdesc{Imposta il \ids{GID} reale, effettivo e salvato del processo corrente.} 
2061 }
2062 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2063 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
2064 }
2065 \end{funcproto}
2066
2067 Di nuovo le due funzioni sono identiche e quanto detto per la prima riguardo
2068 gli \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
2069 \func{setresuid} imposta l'\ids{UID} reale, l'\ids{UID} effettivo e
2070 l'\ids{UID} salvato del processo corrente ai valori specificati
2071 rispettivamente dagli argomenti \param{ruid}, \param{euid} e \param{suid}.  I
2072 processi non privilegiati possono cambiare uno qualunque degli\ids{UID} solo
2073 ad un valore corrispondente o all'\ids{UID} reale, o a quello effettivo o a
2074 quello salvato, l'amministratore può specificare i valori che vuole. Un valore
2075 di $-1$ per un qualunque argomento lascia inalterato l'identificatore
2076 corrispondente.
2077
2078 Per queste funzioni di sistema esistono anche due controparti,
2079 \funcd{getresuid} e \funcd{getresgid},\footnote{le funzioni non sono standard,
2080   anche se appaiono in altri kernel, su Linux sono presenti dal kernel 2.1.44
2081   e con le versioni della \acr{glibc} a partire dalla 2.3.2, definendo la
2082   macro \macro{\_GNU\_SOURCE}.} che permettono di leggere in blocco i vari
2083 identificatori; i loro prototipi sono:
2084
2085 \begin{funcproto}{ 
2086 \fhead{unistd.h}
2087 \fhead{sys/types.h}
2088 \fdecl{int getresuid(uid\_t *ruid, uid\_t *euid, uid\_t *suid)}
2089 \fdesc{Legge l'\ids{UID} reale, effettivo e salvato del processo corrente.} 
2090 \fdecl{int getresgid(gid\_t *rgid, gid\_t *egid, gid\_t *sgid)}
2091 \fdesc{Legge il \ids{GID} reale, effettivo e salvato del processo corrente.} 
2092 }
2093 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2094   caso \var{errno} può assumere solo il valore \errcode{EFAULT} se gli
2095   indirizzi delle variabili di ritorno non sono validi.  }
2096 \end{funcproto}
2097
2098 Anche queste funzioni sono un'estensione specifica di Linux, e non richiedono
2099 nessun privilegio. I valori sono restituiti negli argomenti, che vanno
2100 specificati come puntatori (è un altro esempio di
2101 \itindex{value~result~argument} \textit{value result argument}). Si noti che
2102 queste funzioni sono le uniche in grado di leggere gli identificatori del
2103 gruppo \textit{saved}.
2104
2105 Infine le funzioni \func{setfsuid} e \func{setfsgid} servono per impostare gli
2106 identificatori del gruppo \textit{filesystem} che sono usati da Linux per il
2107 controllo dell'accesso ai file.  Come già accennato in
2108 sez.~\ref{sec:proc_access_id} Linux definisce questo ulteriore gruppo di
2109 identificatori, che in circostanze normali sono assolutamente equivalenti a
2110 quelli del gruppo \textit{effective}, dato che ogni cambiamento di questi
2111 ultimi viene immediatamente riportato su di essi.
2112
2113 C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
2114 identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
2115 ovviare ad un problema di sicurezza che si presenta quando si deve
2116 implementare un server NFS. 
2117
2118 Il server NFS infatti deve poter cambiare l'identificatore con cui accede ai
2119 file per assumere l'identità del singolo utente remoto, ma se questo viene
2120 fatto cambiando l'\ids{UID} effettivo o l'\ids{UID} reale il server si espone
2121 alla ricezione di eventuali segnali ostili da parte dell'utente di cui ha
2122 temporaneamente assunto l'identità.  Cambiando solo l'\ids{UID} di filesystem
2123 si ottengono i privilegi necessari per accedere ai file, mantenendo quelli
2124 originari per quanto riguarda tutti gli altri controlli di accesso, così che
2125 l'utente non possa inviare segnali al server NFS.
2126
2127 Le due funzioni di sistema usate per cambiare questi identificatori sono
2128 \funcd{setfsuid} e \funcd{setfsgid}, ed ovviamente sono specifiche di Linux e
2129 non devono essere usate se si intendono scrivere programmi portabili; i loro
2130 prototipi sono:
2131
2132 \begin{funcproto}{ 
2133 \fhead{sys/fsuid.h}
2134 \fdecl{int setfsuid(uid\_t fsuid)}
2135 \fdesc{Imposta l'\ids{UID} di filesystem del processo corrente.} 
2136 \fdecl{int setfsgid(gid\_t fsgid)}
2137 \fdesc{Legge il \ids{GID} di filesystem del processo corrente.} 
2138 }
2139 {Le funzioni restituiscono il nuovo valore dell'identificativo in caso di
2140   successo e quello corrente per un errore, in questo caso non viene però
2141   impostato nessun codice di errore in \var{errno}.}
2142 \end{funcproto}
2143
2144 Le due funzioni sono analoghe ed usano il valore passato come argomento per
2145 effettuare l'impostazione dell'identificativo.  Le funzioni hanno successo
2146 solo se il processo chiamante ha i privilegi di amministratore o, per gli
2147 altri utenti, se il valore specificato coincide con uno dei di quelli del
2148 gruppo \textit{real}, \textit{effective} o \textit{saved}.
2149
2150
2151 \subsection{Le funzioni per la gestione dei gruppi associati a un processo}
2152 \label{sec:proc_setgroups}
2153
2154 Le ultime funzioni che esamineremo sono quelle che permettono di operare sui
2155 gruppi supplementari cui un utente può appartenere. Ogni processo può avere
2156 almeno \const{NGROUPS\_MAX} gruppi supplementari\footnote{il numero massimo di
2157   gruppi secondari può essere ottenuto con \func{sysconf} (vedi
2158   sez.~\ref{sec:sys_limits}), leggendo il parametro
2159   \texttt{\_SC\_NGROUPS\_MAX}.} in aggiunta al gruppo primario; questi vengono
2160 ereditati dal processo padre e possono essere cambiati con queste funzioni.
2161
2162 La funzione di sistema che permette di leggere i gruppi supplementari
2163 associati ad un processo è \funcd{getgroups}; questa funzione è definita nello
2164 standard POSIX.1, ed il suo prototipo è:
2165
2166 \begin{funcproto}{ 
2167 \fhead{sys/types.h}
2168 \fhead{unistd.h}
2169 \fdecl{int getgroups(int size, gid\_t list[])}
2170 \fdesc{Legge gli identificatori dei gruppi supplementari.} 
2171 }
2172 {La funzione ritorna il numero di gruppi letti in caso di successo e $-1$ per
2173   un errore, nel qual caso \var{errno} assumerà uno dei valori:
2174 \begin{errlist}
2175 \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2176 \item[\errcode{EINVAL}] il valore di \param{size} è diverso da zero ma
2177   minore del numero di gruppi supplementari del processo.
2178 \end{errlist}}
2179 \end{funcproto}
2180
2181 La funzione legge gli identificatori dei gruppi supplementari del processo sul
2182 vettore \param{list} che deve essere di dimensione pari a \param{size}. Non è
2183 specificato se la funzione inserisca o meno nella lista il \ids{GID} effettivo
2184 del processo. Se si specifica un valore di \param{size} uguale a $0$ allora
2185 l'argomento \param{list} non viene modificato, ma si ottiene il numero di
2186 gruppi supplementari.
2187
2188 Una seconda funzione, \funcd{getgrouplist}, può invece essere usata per
2189 ottenere tutti i gruppi a cui appartiene utente identificato per nome; il suo
2190 prototipo è:
2191
2192 \begin{funcproto}{ 
2193 \fhead{grp.h}
2194 \fdecl{int getgrouplist(const char *user, gid\_t group, gid\_t *groups, int
2195   *ngroups)} 
2196 \fdesc{Legge i gruppi cui appartiene un utente.} 
2197 }
2198 {La funzione ritorna il numero di gruppi ottenuto in caso di successo e $-1$
2199   per un errore, che avviene solo quando il numero di gruppi è maggiore di
2200   quelli specificati con \param{ngroups}.}
2201 \end{funcproto}
2202
2203 La funzione esegue una scansione del database dei gruppi (si veda
2204 sez.~\ref{sec:sys_user_group}) per leggere i gruppi supplementari dell'utente
2205 specificato per nome (e non con un \ids{UID}) nella stringa passata con
2206 l'argomento \param{user}. Ritorna poi nel vettore \param{groups} la lista dei
2207 \ids{GID} dei gruppi a cui l'utente appartiene. Si noti che \param{ngroups},
2208 che in ingresso deve indicare la dimensione di \param{group}, è passato come
2209 \itindex{value~result~argument} \textit{value result argument} perché, qualora
2210 il valore specificato sia troppo piccolo, la funzione ritorna $-1$, passando
2211 comunque indietro il numero dei gruppi trovati, in modo da poter ripetere la
2212 chiamata con un vettore di dimensioni adeguate.
2213
2214 Infine per impostare i gruppi supplementari di un processo ci sono due
2215 funzioni, che possono essere usate solo se si hanno i privilegi di
2216 amministratore.\footnote{e più precisamente se si ha la \itindex{capabilities}
2217   \textit{capability} \macro{CAP\_SETGID}.} La prima delle due è la funzione
2218 di sistema \funcd{setgroups},\footnote{la funzione è definita in BSD e SRv4,
2219   ma a differenza di \func{getgroups} non è stata inclusa in POSIX.1-2001, per
2220   poterla utilizzare deve essere definita la macro \macro{\_BSD\_SOURCE}.} ed
2221 il suo prototipo è:
2222
2223 \begin{funcproto}{ 
2224 \fhead{grp.h}
2225 \fdecl{int setgroups(size\_t size, gid\_t *list)}
2226 \fdesc{Imposta i gruppi supplementari del processo.} 
2227 }
2228 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2229 caso \var{errno} assumerà uno dei valori:
2230 \begin{errlist}
2231 \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2232 \item[\errcode{EINVAL}] il valore di \param{size} è maggiore del valore
2233     massimo consentito di gruppi supplementari.
2234 \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
2235 \end{errlist}}
2236 \end{funcproto}
2237
2238 La funzione imposta i gruppi supplementari del processo corrente ai valori
2239 specificati nel vettore passato con l'argomento \param{list}, di dimensioni
2240 date dall'argomento \param{size}. Il numero massimo di gruppi supplementari
2241 che si possono impostare è un parametro di sistema, che può essere ricavato
2242 con le modalità spiegate in sez.~\ref{sec:sys_characteristics}.
2243
2244 Se invece si vogliono impostare i gruppi supplementari del processo a quelli
2245 di un utente specifico, si può usare la funzione \funcd{initgroups} il cui
2246 prototipo è:
2247
2248 \begin{funcproto}{ 
2249 \fhead{sys/types.h}
2250 \fhead{grp.h}
2251 \fdecl{int initgroups(const char *user, gid\_t group)}
2252 \fdesc{Inizializza la lista dei gruppi supplementari.} 
2253 }
2254 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2255 caso \var{errno} assumerà uno dei valori:
2256 \begin{errlist}
2257 \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare lo spazio per
2258   informazioni dei gruppi.
2259 \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
2260 \end{errlist}}
2261 \end{funcproto}
2262
2263 La funzione esegue la scansione del database dei gruppi (usualmente
2264 \conffile{/etc/group}) cercando i gruppi di cui è membro l'utente \param{user}
2265 (di nuovo specificato per nome e non per \ids{UID}) con cui costruisce una
2266 lista di gruppi supplementari, a cui aggiunge anche
2267 \param{group}, infine imposta questa lista per il processo corrente usando
2268 \func{setgroups}.  Si tenga presente che sia \func{setgroups} che
2269 \func{initgroups} non sono definite nello standard POSIX.1 e che pertanto non
2270 è possibile utilizzarle quando si definisce \macro{\_POSIX\_SOURCE} o si
2271 compila con il flag \cmd{-ansi}, è pertanto meglio evitarle se si vuole
2272 scrivere codice portabile.
2273
2274  
2275 \section{La gestione della priorità dei processi}
2276 \label{sec:proc_priority}
2277
2278 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
2279 lo \itindex{scheduler} \textit{scheduler} assegna la CPU ai vari processi
2280 attivi.  In particolare prenderemo in esame i vari meccanismi con cui viene
2281 gestita l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
2282 gestione. Tratteremo infine anche le altre priorità dei processi (come quelle
2283 per l'accesso a disco) divenute disponibili con i kernel più recenti.
2284
2285
2286 \subsection{I meccanismi di \textit{scheduling}}
2287 \label{sec:proc_sched}
2288
2289 \itindbeg{scheduler}
2290
2291 La scelta di un meccanismo che sia in grado di distribuire in maniera efficace
2292 il tempo di CPU per l'esecuzione dei processi è sempre una questione delicata,
2293 ed oggetto di numerose ricerche; in generale essa dipende in maniera
2294 essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
2295 cui non esiste un meccanismo che sia valido per tutti gli usi.
2296
2297 La caratteristica specifica di un sistema multitasking come Linux è quella del
2298 cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
2299   multitasking}: questo significa che al contrario di altri sistemi (che usano
2300 invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
2301   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
2302 quando la CPU deve essere passata ad un altro processo. Come accennato in
2303 sez.~\ref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
2304 apposita del kernel, lo \textit{scheduler}, il cui scopo è quello di
2305 distribuire al meglio il tempo di CPU fra i vari processi.
2306
2307 La cosa è resa ancora più complicata dal fatto che con le architetture
2308 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
2309 utilizzare.\footnote{nei processori moderni la presenza di ampie cache può
2310   rendere poco efficiente trasferire l'esecuzione di un processo da una CPU ad
2311   un'altra, per cui effettuare la migliore scelta fra le diverse CPU non è
2312   banale.}  Tutto questo comunque appartiene alle sottigliezze
2313 dell'implementazione del kernel; dal punto di vista dei programmi che girano
2314 in \textit{user space}, anche quando si hanno più processori (e dei processi
2315 che sono eseguiti davvero in contemporanea), le politiche di
2316 \textit{scheduling} riguardano semplicemente l'allocazione della risorsa
2317 \textsl{tempo di esecuzione}, la cui assegnazione sarà governata dai
2318 meccanismi di scelta delle priorità che restano gli stessi indipendentemente
2319 dal numero di processori.
2320
2321 Si tenga conto poi che i processi non devono solo eseguire del codice: ad
2322 esempio molto spesso saranno impegnati in operazioni di I/O, o potranno
2323 venire bloccati da un comando dal terminale, o sospesi per un certo periodo di
2324 tempo.  In tutti questi casi la CPU diventa disponibile ed è compito dello
2325 kernel provvedere a mettere in esecuzione un altro processo.
2326
2327 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
2328 processo, in Linux un processo può trovarsi in uno degli stati riportati in
2329 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
2330 \textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
2331 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
2332 fintanto che esso si trova in uno qualunque degli altri stati.
2333
2334 \begin{table}[htb]
2335   \footnotesize
2336   \centering
2337   \begin{tabular}[c]{|p{2.4cm}|c|p{9cm}|}
2338     \hline
2339     \textbf{Stato} & \texttt{STAT} & \textbf{Descrizione} \\
2340     \hline
2341     \hline
2342     \textit{runnable}& \texttt{R} & Il processo è in esecuzione o è pronto ad
2343                                     essere eseguito (cioè è in attesa che gli
2344                                     venga assegnata la CPU).\\
2345     \textit{sleep}   & \texttt{S} & Il processo  è in attesa di un
2346                                     risposta dal sistema, ma può essere 
2347                                     interrotto da un segnale.\\
2348     \textit{uninterrutible sleep}& \texttt{D} & Il  processo è in
2349                                     attesa di un risposta dal sistema (in 
2350                                     genere per I/O), e non può essere
2351                                     interrotto in nessuna circostanza.\\
2352     \textit{stopped} & \texttt{T} & Il processo è stato fermato con un
2353                                     \signal{SIGSTOP}, o è tracciato.\\
2354     \textit{zombie}\itindex{zombie}& \texttt{Z} & Il processo è terminato ma il
2355                                     suo stato di terminazione non è ancora
2356                                     stato letto dal padre.\\
2357     \textit{killable}& \texttt{D} & Un nuovo stato introdotto con il kernel
2358                                     2.6.25, sostanzialmente identico
2359                                     all'\textit{uninterrutible sleep} con la
2360                                     sola differenza che il processo può
2361                                     terminato con \signal{SIGKILL} (usato per
2362                                     lo più per NFS).\\ 
2363     \hline
2364   \end{tabular}
2365   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
2366     \texttt{STAT} si è riportata la corrispondente lettera usata dal comando 
2367     \cmd{ps} nell'omonimo campo.}
2368   \label{tab:proc_proc_states}
2369 \end{table}
2370
2371 Si deve quindi tenere presente che l'utilizzo della CPU è soltanto una delle
2372 risorse che sono necessarie per l'esecuzione di un programma, e a seconda
2373 dello scopo del programma non è detto neanche che sia la più importante, dato
2374 che molti programmi dipendono in maniera molto più critica dall'I/O. Per
2375 questo motivo non è affatto detto che dare ad un programma la massima priorità
2376 di esecuzione abbia risultati significativi in termini di prestazioni.
2377
2378 Il meccanismo tradizionale di \textit{scheduling} di Unix (che tratteremo in
2379 sez.~\ref{sec:proc_sched_stand}) è sempre stato basato su delle
2380 \textsl{priorità dinamiche}, in modo da assicurare che tutti i processi, anche
2381 i meno importanti, potessero ricevere un po' di tempo di CPU. In sostanza
2382 quando un processo ottiene la CPU la sua priorità viene diminuita. In questo
2383 modo alla fine, anche un processo con priorità iniziale molto bassa, finisce
2384 per avere una priorità sufficiente per essere eseguito.
2385
2386 Lo standard POSIX.1b però ha introdotto il concetto di \textsl{priorità
2387   assoluta}, (chiamata anche \textsl{priorità statica}, in contrapposizione
2388 alla normale priorità dinamica), per tenere conto dei sistemi
2389 \textit{real-time},\footnote{per sistema \textit{real-time} si intende un
2390   sistema in grado di eseguire operazioni in un tempo ben determinato; in
2391   genere si tende a distinguere fra l'\textit{hard real-time} in cui è
2392   necessario che i tempi di esecuzione di un programma siano determinabili con
2393   certezza assoluta (come nel caso di meccanismi di controllo di macchine,
2394   dove uno sforamento dei tempi avrebbe conseguenze disastrose), e
2395   \textit{soft-real-time} in cui un occasionale sforamento è ritenuto
2396   accettabile.} in cui è vitale che i processi che devono essere eseguiti in
2397 un determinato momento non debbano aspettare la conclusione di altri che non
2398 hanno questa necessità.
2399
2400 Il concetto di priorità assoluta dice che quando due processi si contendono
2401 l'esecuzione, vince sempre quello con la priorità assoluta più alta.
2402 Ovviamente questo avviene solo per i processi che sono pronti per essere
2403 eseguiti (cioè nello stato \textit{runnable}).  La priorità assoluta viene in
2404 genere indicata con un numero intero, ed un valore più alto comporta una
2405 priorità maggiore. Su questa politica di \textit{scheduling} torneremo in
2406 sez.~\ref{sec:proc_real_time}.
2407
2408 In generale quello che succede in tutti gli Unix moderni è che ai processi
2409 normali viene sempre data una priorità assoluta pari a zero, e la decisione di
2410 assegnazione della CPU è fatta solo con il meccanismo tradizionale della
2411 priorità dinamica. In Linux tuttavia è possibile assegnare anche una priorità
2412 assoluta, nel qual caso un processo avrà la precedenza su tutti gli altri di
2413 priorità inferiore, che saranno eseguiti solo quando quest'ultimo non avrà
2414 bisogno della CPU.
2415
2416
2417 \subsection{Il meccanismo di \textit{scheduling} standard}
2418 \label{sec:proc_sched_stand}
2419
2420 A meno che non si abbiano esigenze specifiche,\footnote{per alcune delle quali
2421   sono state introdotte delle varianti specifiche.} l'unico meccanismo di
2422 \textit{scheduling} con il quale si avrà a che fare è quello tradizionale, che
2423 prevede solo priorità dinamiche. È di questo che, di norma, ci si dovrà
2424 preoccupare nella programmazione.  Come accennato in Linux i processi ordinari
2425 hanno tutti una priorità assoluta nulla; quello che determina quale, fra tutti
2426 i processi in attesa di esecuzione, sarà eseguito per primo, è la cosiddetta
2427 \textsl{priorità dinamica},\footnote{quella che viene mostrata nella colonna
2428   \texttt{PR} del comando \texttt{top}.} che è chiamata così proprio perché
2429 varia nel corso dell'esecuzione di un processo.
2430
2431 Il meccanismo usato da Linux è in realtà piuttosto complesso,\footnote{e
2432   dipende strettamente dalla versione di kernel; in particolare a partire
2433   dalla serie 2.6.x lo scheduler è stato riscritto completamente, con molte
2434   modifiche susseguitesi per migliorarne le prestazioni, per un certo periodo
2435   ed è stata anche introdotta la possibilità di usare diversi algoritmi,
2436   selezionabili sia in fase di compilazione, che, nelle versioni più recenti,
2437   all'avvio (addirittura è stato ideato un sistema modulare che permette di
2438   cambiare lo scheduler a sistema attivo).} ma a grandi linee si può dire che
2439 ad ogni processo è assegnata una \textit{time-slice}, cioè un intervallo di
2440 tempo (letteralmente una fetta) per il quale, a meno di eventi esterni, esso
2441 viene eseguito senza essere interrotto.  Inoltre la priorità dinamica viene
2442 calcolata dallo scheduler a partire da un valore iniziale che viene
2443 \textsl{diminuito} tutte le volte che un processo è in stato \textit{runnable}
2444 ma non viene posto in esecuzione.\footnote{in realtà il calcolo della priorità
2445   dinamica e la conseguente scelta di quale processo mettere in esecuzione
2446   avviene con un algoritmo molto più complicato, che tiene conto anche della
2447   \textsl{interattività} del processo, utilizzando diversi fattori, questa è
2448   una brutale semplificazione per rendere l'idea del funzionamento, per una
2449   trattazione più dettagliata, anche se non aggiornatissima, dei meccanismi di
2450   funzionamento dello scheduler si legga il quarto capitolo di
2451   \cite{LinKernDev}.} Lo scheduler infatti mette sempre in esecuzione, fra
2452 tutti i processi in stato \textit{runnable}, quello che ha il valore di
2453 priorità dinamica più basso.\footnote{con le priorità dinamiche il significato
2454   del valore numerico ad esse associato è infatti invertito, un valore più
2455   basso significa una priorità maggiore.} Il fatto che questo valore venga
2456 diminuito quando un processo non viene posto in esecuzione pur essendo pronto,
2457 significa che la priorità dei processi che non ottengono l'uso del processore
2458 viene progressivamente incrementata, così che anche questi alla fine hanno la
2459 possibilità di essere eseguiti.
2460
2461 Sia la dimensione della \textit{time-slice} che il valore di partenza della
2462 priorità dinamica sono determinate dalla cosiddetta \textit{nice} (o
2463 \textit{niceness}) del processo.\footnote{questa è una delle tante proprietà
2464   che ciascun processo si porta dietro, essa viene ereditata dai processi
2465   figli e mantenuta attraverso una \func{exec}; fino alla serie 2.4 essa era
2466   mantenuta nell'omonimo campo \texttt{nice} della \texttt{task\_struct}, con
2467   la riscrittura dello scheduler eseguita nel 2.6 viene mantenuta nel campo
2468   \texttt{static\_prio} come per le priorità statiche.} L'origine del nome di
2469 questo parametro sta nel fatto che generalmente questo viene usato per
2470 \textsl{diminuire} la priorità di un processo, come misura di cortesia nei
2471 confronti degli altri.  I processi infatti vengono creati dal sistema con un
2472 valore nullo e nessuno è privilegiato rispetto agli altri. Specificando un
2473 valore di \textit{nice} positivo si avrà una \textit{time-slice} più breve ed
2474 un valore di priorità dinamica iniziale più alto, mentre un valore negativo
2475 darà una \textit{time-slice} più lunga ed un valore di priorità dinamica
2476 iniziale più basso.
2477
2478 Esistono diverse funzioni che consentono di indicare un valore di
2479 \textit{nice} di un processo; la più semplice è \funcd{nice}, che opera sul
2480 processo corrente, il suo prototipo è:
2481
2482 \begin{funcproto}{ 
2483 \fhead{unistd.h}
2484 \fdecl{int nice(int inc)}
2485 \fdesc{Aumenta il valore di \textit{nice} del processo corrente.} 
2486 }
2487 {La funzione ritorna il nuovo valore di \textit{nice} in caso di successo e
2488   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2489 \begin{errlist}
2490   \item[\errcode{EPERM}] non si ha il permesso di specificare un valore
2491     di \param{inc} negativo. 
2492 \end{errlist}}
2493 \end{funcproto}
2494
2495 L'argomento \param{inc} indica l'incremento da effettuare rispetto al valore
2496 di \textit{nice} corrente, che può assumere valori compresi fra
2497 \const{PRIO\_MIN} e \const{PRIO\_MAX}; nel caso di Linux sono fra $-20$ e
2498 $19$,\footnote{in realtà l'intervallo varia a seconda delle versioni di
2499   kernel, ed è questo a partire dal kernel 1.3.43, anche se oggi si può avere
2500   anche l'intervallo fra $-20$ e $20$.} ma per \param{inc} si può specificare
2501 un valore qualunque, positivo o negativo, ed il sistema provvederà a troncare
2502 il risultato nell'intervallo consentito. Valori positivi comportano maggiore
2503 \textit{cortesia} e cioè una diminuzione della priorità, valori negativi
2504 comportano invece un aumento della priorità. Con i kernel precedenti il 2.6.12
2505 solo l'amministratore\footnote{o un processo con la \itindex{capabilities}
2506   \textit{capability} \const{CAP\_SYS\_NICE}, vedi
2507   sez.~\ref{sec:proc_capabilities}.} può specificare valori negativi
2508 di \param{inc} che permettono di aumentare la priorità di un processo, a
2509 partire da questa versione è consentito anche agli utenti normali alzare
2510 (entro certi limiti, che vedremo in sez.~\ref{sec:sys_resource_limit}) la
2511 priorità dei propri processi.
2512
2513 Gli standard SUSv2 e POSIX.1 prevedono che la funzione ritorni il nuovo valore
2514 di \textit{nice} del processo; tuttavia la \textit{system call} di Linux non
2515 segue questa convenzione e restituisce sempre $0$ in caso di successo e $-1$
2516 in caso di errore; questo perché $-1$ è anche un valore di \textit{nice}
2517 legittimo e questo comporta una confusione con una eventuale condizione di
2518 errore. La \textit{system call} originaria inoltre non consente, se non dotati
2519 di adeguati privilegi, di diminuire un valore di \textit{nice} precedentemente
2520 innalzato.
2521  
2522 Fino alla \acr{glibc} 2.2.4 la funzione di libreria riportava direttamente il
2523 risultato dalla \textit{system call}, violando lo standard, per cui per
2524 ottenere il nuovo valore occorreva una successiva chiamata alla funzione
2525 \func{getpriority}. A partire dalla \acr{glibc} 2.2.4 \func{nice} è stata
2526 reimplementata e non viene più chiamata la omonima \textit{system call}, con
2527 questa versione viene restituito come valore di ritorno il valore di
2528 \textit{nice}, come richiesto dallo standard.\footnote{questo viene fatto
2529   chiamando al suo interno \func{setpriority}, che tratteremo a breve.}  In
2530 questo caso l'unico modo per rilevare in maniera affidabile una condizione di
2531 errore è quello di azzerare \var{errno} prima della chiamata della funzione e
2532 verificarne il valore quando \func{nice} restituisce $-1$.
2533
2534 Per leggere il valore di \textit{nice} di un processo occorre usare la
2535 funzione di sistema \funcd{getpriority}, derivata da BSD; il suo prototipo è:
2536
2537 \begin{funcproto}{ 
2538 \fhead{sys/time.h}
2539 \fhead{sys/resource.h}
2540 \fdecl{int getpriority(int which, int who)}
2541 \fdesc{Legge un valore di \textit{nice}.} 
2542 }
2543 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2544 caso \var{errno} assumerà uno dei valori:
2545 \begin{errlist}
2546 \item[\errcode{EINVAL}] il valore di \param{which} non è uno di quelli
2547     elencati in tab.~\ref{tab:proc_getpriority}.
2548 \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
2549   \param{which} e \param{who}.
2550 \end{errlist}}
2551 \end{funcproto}
2552
2553 La funzione permette, a seconda di quanto specificato
2554 nell'argomento \param{which}, di leggere il valore di \textit{nice} di un
2555 processo, di un gruppo di processi (vedi sez.~\ref{sec:sess_proc_group}) o di
2556 un utente indicato dall'argomento \param{who}. Nelle vecchie versioni può
2557 essere necessario includere anche \headfile{sys/time.h}, questo non è più
2558 necessario con versioni recenti delle librerie, ma è comunque utile per
2559 portabilità.
2560
2561 I valori possibili per \param{which}, ed il tipo di valore che occorre usare
2562 in corrispondenza per \param{who} solo elencati nella legenda di
2563 tab.~\ref{tab:proc_getpriority} insieme ai relativi significati. Usare un
2564 valore nullo per \param{who} indica, a seconda della corrispondente
2565 indicazione usata per \param{which} il processo, il gruppo di processi o
2566 l'utente correnti.
2567
2568 \begin{table}[htb]
2569   \centering
2570   \footnotesize
2571   \begin{tabular}[c]{|c|c|l|}
2572     \hline
2573     \param{which} & \param{who} & \textbf{Significato} \\
2574     \hline
2575     \hline
2576     \const{PRIO\_PROCESS} & \type{pid\_t} & processo  \\
2577     \const{PRIO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
2578                                             \textit{process group}  \\ 
2579     \const{PRIO\_USER}    & \type{uid\_t} & utente \\
2580     \hline
2581   \end{tabular}
2582   \caption{Legenda del valore dell'argomento \param{which} e del tipo
2583     dell'argomento \param{who} delle funzioni \func{getpriority} e
2584     \func{setpriority} per le tre possibili scelte.}
2585   \label{tab:proc_getpriority}
2586 \end{table}
2587
2588 In caso di una indicazione che faccia riferimento a più processi, la funzione
2589 restituisce la priorità più alta (cioè il valore più basso) fra quelle dei
2590 processi corrispondenti. Come per \func{nice} $-1$ è un valore possibile
2591 corretto, per cui di nuovo per poter rilevare una condizione di errore è
2592 necessario cancellare sempre \var{errno} prima della chiamata alla funzione e
2593 quando si ottiene un valore di ritorno uguale a $-1$ per verificare che essa
2594 resti uguale a zero.
2595
2596 Analoga a \func{getpriority} è la funzione di sistema \funcd{setpriority} che
2597 permette di impostare la priorità di uno o più processi; il suo prototipo è:
2598
2599 \begin{funcproto}{ 
2600 \fhead{sys/time.h}
2601 \fhead{sys/resource.h}
2602 \fdecl{int setpriority(int which, int who, int prio)}
2603 \fdesc{Imposta un valore di \textit{nice}.} 
2604 }
2605 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2606 caso \var{errno} assumerà uno dei valori:
2607 \begin{errlist}
2608 \item[\errcode{EACCES}] si è richiesto un aumento di priorità senza avere
2609   sufficienti privilegi.
2610 \item[\errcode{EINVAL}] il valore di \param{which} non è uno di quelli
2611   elencati in tab.~\ref{tab:proc_getpriority}.
2612 \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
2613   cercato di modificare la priorità di un processo di un altro utente.
2614 \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
2615   \param{which} e \param{who}.
2616 \end{errlist}}
2617 \end{funcproto}
2618
2619 La funzione imposta la priorità dinamica al valore specificato da \param{prio}
2620 per tutti i processi indicati dagli argomenti \param{which} e \param{who}, per
2621 i quali valgono le stesse considerazioni fatte per \func{getpriority} e lo
2622 specchietto di tab.~\ref{tab:proc_getpriority}. 
2623
2624 In questo caso come valore di \param{prio} deve essere specificato il valore
2625 di \textit{nice} da assegnare, e non un incremento (positivo o negativo) come
2626 nel caso di \func{nice}, nell'intervallo fra \const{PRIO\_MIN} ($-20$) e
2627 \const{PRIO\_MAX} ($19$). La funzione restituisce il valore di \textit{nice}
2628 assegnato in caso di successo e $-1$ in caso di errore, e come per \func{nice}
2629 anche in questo caso per rilevare un errore occorre sempre porre a zero
2630 \var{errno} prima della chiamata della funzione, essendo $-1$ un valore di
2631 \textit{nice} valido.
2632
2633 Si tenga presente che solo l'amministratore\footnote{o più precisamente un
2634   processo con la \itindex{capabilities} \textit{capability}
2635   \const{CAP\_SYS\_NICE}, vedi sez.~\ref{sec:proc_capabilities}.} ha la
2636 possibilità di modificare arbitrariamente le priorità di qualunque
2637 processo. Un utente normale infatti può modificare solo la priorità dei suoi
2638 processi ed in genere soltanto diminuirla.  Fino alla versione di kernel
2639 2.6.12 Linux ha seguito le specifiche dello standard SUSv3, e come per tutti i
2640 sistemi derivati da SysV veniva richiesto che l'\ids{UID} reale o quello
2641 effettivo del processo chiamante corrispondessero all'\ids{UID} reale (e solo
2642 a quello) del processo di cui si intendeva cambiare la priorità. A partire
2643 dalla versione 2.6.12 è stata adottata la semantica in uso presso i sistemi
2644 derivati da BSD (SunOS, Ultrix, *BSD), in cui la corrispondenza può essere
2645 anche con l'\ids{UID} effettivo.
2646
2647 Sempre a partire dal kernel 2.6.12 è divenuto possibile anche per gli utenti
2648 ordinari poter aumentare la priorità dei propri processi specificando un
2649 valore di \param{prio} negativo. Questa operazione non è possibile però in
2650 maniera indiscriminata, ed in particolare può essere effettuata solo
2651 nell'intervallo consentito dal valore del limite \const{RLIMIT\_NICE}
2652 (torneremo su questo in sez.~\ref{sec:sys_resource_limit}).
2653
2654 Infine nonostante i valori siano sempre rimasti gli stessi, il significato del
2655 valore di \textit{nice} è cambiato parecchio nelle progressive riscritture
2656 dello \textit{scheduler} di Linux, ed in particolare a partire dal kernel
2657 2.6.23 l'uso di diversi valori di \textit{nice} ha un impatto molto più forte
2658 nella distribuzione della CPU ai processi. Infatti se viene comunque calcolata
2659 una priorità dinamica per i processi che non ricevono la CPU così che anche
2660 essi possano essere messi in esecuzione, un alto valore di \textit{nice}
2661 corrisponde comunque ad una \textit{time-slice} molto piccola che non cresce
2662 comunque, per cui un processo a bassa priorità avrà davvero scarse possibilità
2663 di essere eseguito in presenza di processi attivi a priorità più alta.
2664
2665
2666
2667 \subsection{Il meccanismo di \textit{scheduling real-time}}
2668 \label{sec:proc_real_time}
2669
2670 Come spiegato in sez.~\ref{sec:proc_sched} lo standard POSIX.1b ha introdotto
2671 le priorità assolute per permettere la gestione di processi real-time. In
2672 realtà nel caso di Linux non si tratta di un vero \textit{hard real-time}, in
2673 quanto in presenza di eventuali interrupt il kernel interrompe l'esecuzione di
2674 un processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
2675   siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
2676   ottenere un sistema effettivamente \textit{hard real-time}. In tal caso
2677   infatti gli interrupt vengono intercettati dall'interfaccia
2678   \textit{real-time} (o nel caso di Adeos gestiti dalle code del nano-kernel),
2679   in modo da poterli controllare direttamente qualora ci sia la necessità di
2680   avere un processo con priorità più elevata di un \textit{interrupt
2681     handler}.} mentre con l'incorrere in un \itindex{page~fault} \textit{page
2682   fault} si possono avere ritardi non previsti.  Se l'ultimo problema può
2683 essere aggirato attraverso l'uso delle funzioni di controllo della memoria
2684 virtuale (vedi sez.~\ref{sec:proc_mem_lock}), il primo non è superabile e può
2685 comportare ritardi non prevedibili riguardo ai tempi di esecuzione di
2686 qualunque processo.
2687
2688 Nonostante questo, ed in particolare con una serie di miglioramenti che sono
2689 stati introdotti nello sviluppo del kernel,\footnote{in particolare a partire
2690   dalla versione 2.6.18 sono stati inserite nel kernel una serie di modifiche
2691   che consentono di avvicinarsi sempre di più ad un vero e proprio sistema
2692   \textit{real-time} estendendo il concetto di \textit{preemption} alle
2693   operazioni dello stesso kernel; esistono vari livelli a cui questo può
2694   essere fatto, ottenibili attivando in fase di compilazione una fra le
2695   opzioni \texttt{CONFIG\_PREEMPT\_NONE}, \texttt{CONFIG\_PREEMPT\_VOLUNTARY}
2696   e \texttt{CONFIG\_PREEMPT\_DESKTOP}.} si può arrivare ad una ottima
2697 approssimazione di sistema \textit{real-time} usando le priorità assolute.
2698 Occorre farlo però con molta attenzione: se si dà ad un processo una priorità
2699 assoluta e questo finisce in un loop infinito, nessun altro processo potrà
2700 essere eseguito, ed esso sarà mantenuto in esecuzione permanentemente
2701 assorbendo tutta la CPU e senza nessuna possibilità di riottenere l'accesso al
2702 sistema. Per questo motivo è sempre opportuno, quando si lavora con processi
2703 che usano priorità assolute, tenere attiva una shell cui si sia assegnata la
2704 massima priorità assoluta, in modo da poter essere comunque in grado di
2705 rientrare nel sistema.
2706
2707 Quando c'è un processo con priorità assoluta lo \textit{scheduler} lo metterà
2708 in esecuzione prima di ogni processo normale. In caso di più processi sarà
2709 eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
2710 processi con la stessa priorità assoluta questi vengono tenuti in una coda e
2711 tocca al kernel decidere quale deve essere eseguito.  Il meccanismo con cui
2712 vengono gestiti questi processi dipende dalla politica di \textit{scheduling}
2713 che si è scelta; lo standard ne prevede due:
2714 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
2715 \item[\textit{First In First Out} (FIFO)] Il processo viene eseguito
2716   fintanto che non cede volontariamente la CPU (con la funzione
2717   \func{sched\_yield}), si blocca, finisce o viene interrotto da un processo a
2718   priorità più alta. Se il processo viene interrotto da uno a priorità più
2719   alta esso resterà in cima alla lista e sarà il primo ad essere eseguito
2720   quando i processi a priorità più alta diverranno inattivi. Se invece lo si
2721   blocca volontariamente sarà posto in coda alla lista (ed altri processi con
2722   la stessa priorità potranno essere eseguiti).
2723 \item[\textit{Round Robin} (RR)] Il comportamento è del tutto analogo a quello
2724   precedente, con la sola differenza che ciascun processo viene eseguito al
2725   massimo per un certo periodo di tempo (la cosiddetta \textit{time-slice})
2726   dopo di che viene automaticamente posto in fondo alla coda dei processi con
2727   la stessa priorità. In questo modo si ha comunque una esecuzione a turno di
2728   tutti i processi, da cui il nome della politica. Solo i processi con la
2729   stessa priorità ed in stato \textit{runnable} entrano nel
2730   \textsl{girotondo}.
2731 \end{basedescript}
2732
2733 Lo standard POSIX.1-2001 prevede una funzione che consenta sia di modificare
2734 le politiche di \textit{scheduling}, passando da \textit{real-time} a
2735 ordinarie o viceversa, che di specificare, in caso di politiche
2736 \textit{real-time}, la eventuale priorità statica; la funzione di sistema è
2737 \funcd{sched\_setscheduler} ed il suo prototipo è:
2738
2739 \begin{funcproto}{ 
2740 \fhead{sched.h}
2741 \fdecl{int sched\_setscheduler(pid\_t pid, int policy, const struct
2742   sched\_param *p)}
2743 \fdesc{Imposta priorità e politica di \textit{scheduling}.} 
2744 }
2745 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2746 caso \var{errno} assumerà uno dei valori:
2747 \begin{errlist}
2748     \item[\errcode{EINVAL}] il valore di \param{policy} non esiste o il
2749       relativo valore di \param{p} non è valido per la politica scelta.
2750     \item[\errcode{EPERM}] il processo non ha i privilegi per attivare la
2751       politica richiesta.
2752     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2753  \end{errlist}}
2754 \end{funcproto}
2755
2756 La funzione esegue l'impostazione per il processo specificato dall'argomento
2757 \param{pid}, un valore nullo di questo argomento esegue l'impostazione per il
2758 processo corrente.  La politica di \textit{scheduling} è specificata
2759 dall'argomento \param{policy} i cui possibili valori sono riportati in
2760 tab.~\ref{tab:proc_sched_policy}; la parte alta della tabella indica le
2761 politiche \textit{real-time}, quella bassa le politiche ordinarie. Un valore
2762 negativo per \param{policy} mantiene la politica di \textit{scheduling}
2763 corrente.
2764
2765 \begin{table}[htb]
2766   \centering
2767   \footnotesize
2768   \begin{tabular}[c]{|l|p{6cm}|}
2769     \hline
2770     \textbf{Politica}  & \textbf{Significato} \\
2771     \hline
2772     \hline
2773     \const{SCHED\_FIFO} & \textit{Scheduling real-time} con politica
2774                           \textit{FIFO}. \\
2775     \const{SCHED\_RR}   & \textit{Scheduling real-time} con politica
2776                           \textit{Round Robin}. \\ 
2777     \hline
2778     \const{SCHED\_OTHER}& \textit{Scheduling} ordinario.\\
2779     \const{SCHED\_BATCH}& \textit{Scheduling} ordinario con l'assunzione
2780                           ulteriore di lavoro \textit{CPU
2781                             intensive} (dal kernel 2.6.16)\\ 
2782     \const{SCHED\_IDLE} & \textit{Scheduling} di priorità estremamente
2783                           bassa (dal kernel 2.6.23)\\
2784     \hline
2785   \end{tabular}
2786   \caption{Valori dell'argomento \param{policy} per la funzione
2787     \func{sched\_setscheduler}.}
2788   \label{tab:proc_sched_policy}
2789 \end{table}
2790
2791 Con le versioni più recenti del kernel sono state introdotte anche delle
2792 varianti sulla politica di \textit{scheduling} tradizionale per alcuni carichi
2793 di lavoro specifici, queste due nuove politiche sono specifiche di Linux e non
2794 devono essere usate se si vogliono scrivere programmi portabili.
2795
2796 La politica \const{SCHED\_BATCH} è una variante della politica ordinaria con
2797 la sola differenza che i processi ad essa soggetti non ottengono, nel calcolo
2798 delle priorità dinamiche fatto dallo scheduler, il cosiddetto bonus di
2799 interattività che mira a favorire i processi che si svegliano dallo stato di
2800 \textit{sleep}.\footnote{cosa che accade con grande frequenza per i processi
2801   interattivi, dato che essi sono per la maggior parte del tempo in attesa di
2802   dati in ingresso da parte dell'utente.} La si usa pertanto, come indica il
2803 nome, per processi che usano molta CPU (come programmi di calcolo) che in
2804 questo modo sono leggermente sfavoriti rispetto ai processi interattivi che
2805 devono rispondere a dei dati in ingresso, pur non perdendo il loro valore di
2806 \textit{nice}.
2807
2808 La politica \const{SCHED\_IDLE} invece è una politica dedicata ai processi che
2809 si desidera siano eseguiti con la più bassa priorità possibile, ancora più
2810 bassa di un processo con il minimo valore di \textit{nice}. In sostanza la si
2811 può utilizzare per processi che devono essere eseguiti se non c'è niente altro
2812 da fare. Va comunque sottolineato che anche un processo \const{SCHED\_IDLE}
2813 avrà comunque una sua possibilità di utilizzo della CPU, sia pure in
2814 percentuale molto bassa.
2815
2816 Qualora si sia richiesta una politica \textit{real-time} il valore della
2817 priorità statica viene impostato attraverso la struttura
2818 \struct{sched\_param}, riportata in fig.~\ref{fig:sig_sched_param}, il cui
2819 solo campo attualmente definito è \var{sched\_priority}. Il campo deve
2820 contenere il valore della priorità statica da assegnare al processo; lo
2821 standard prevede che questo debba essere assegnato all'interno di un
2822 intervallo fra un massimo ed un minimo che nel caso di Linux sono
2823 rispettivamente 1 e 99.
2824
2825 \begin{figure}[!htbp]
2826   \footnotesize \centering
2827   \begin{minipage}[c]{0.5\textwidth}
2828     \includestruct{listati/sched_param.c}
2829   \end{minipage} 
2830   \normalsize 
2831   \caption{La struttura \structd{sched\_param}.} 
2832   \label{fig:sig_sched_param}
2833 \end{figure}
2834
2835 I processi con politica di \textit{scheduling} ordinaria devono sempre
2836 specificare un valore nullo di \var{sched\_priority} altrimenti si avrà un
2837 errore \errcode{EINVAL}, questo valore infatti non ha niente a che vedere con
2838 la priorità dinamica determinata dal valore di \textit{nice}, che deve essere
2839 impostato con le funzioni viste in precedenza.
2840
2841 Lo standard POSIX.1b prevede comunque che l'intervallo dei valori delle
2842 priorità statiche possa essere ottenuto con le funzioni di sistema
2843 \funcd{sched\_get\_priority\_max} e \funcd{sched\_get\_priority\_min}, i cui
2844 prototipi sono:
2845
2846 \begin{funcproto}{ 
2847 \fhead{sched.h}
2848 \fdecl{int sched\_get\_priority\_max(int policy)}
2849 \fdesc{Legge il valore massimo di una priorità statica.} 
2850 \fdecl{int sched\_get\_priority\_min(int policy)}
2851 \fdesc{Legge il valore minimo di una priorità statica.} 
2852 }
2853 {Le funzioni ritornano il valore della priorità in caso di successo e $-1$ per
2854   un errore, nel qual caso \var{errno} assumerà il valore:
2855 \begin{errlist}
2856 \item[\errcode{EINVAL}] il valore di \param{policy} non è valido.
2857 \end{errlist}}
2858 \end{funcproto}
2859
2860 Le funzioni ritornano rispettivamente i due valori della massima e minima
2861 priorità statica possano essere ottenuti per una delle politiche di
2862 \textit{scheduling} \textit{real-time} indicata dall'argomento \param{policy}.
2863
2864 Si tenga presente che quando si imposta una politica di \textit{scheduling}
2865 real-time per un processo o se ne cambia la priorità statica questo viene
2866 messo in cima alla lista dei processi con la stessa priorità; questo comporta
2867 che verrà eseguito subito, interrompendo eventuali altri processi con la
2868 stessa priorità in quel momento in esecuzione.
2869
2870 Il kernel mantiene i processi con la stessa priorità assoluta in una lista, ed
2871 esegue sempre il primo della lista, mentre un nuovo processo che torna in
2872 stato \textit{runnable} viene sempre inserito in coda alla lista. Se la
2873 politica scelta è \const{SCHED\_FIFO} quando il processo viene eseguito viene
2874 automaticamente rimesso in coda alla lista, e la sua esecuzione continua
2875 fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
2876 volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
2877 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
2878 nel caso che esso sia stato interrotto da un processo a priorità più alta.
2879
2880 Solo un processo con i privilegi di amministratore\footnote{più precisamente
2881   con la \itindex{capabilities} capacità \const{CAP\_SYS\_NICE}, vedi
2882   sez.~\ref{sec:proc_capabilities}.} può impostare senza restrizioni priorità
2883 assolute diverse da zero o politiche \const{SCHED\_FIFO} e
2884 \const{SCHED\_RR}. Un utente normale può modificare solo le priorità di
2885 processi che gli appartengono; è cioè richiesto che l'\ids{UID} effettivo del
2886 processo chiamante corrisponda all'\ids{UID} reale o effettivo del processo
2887 indicato con \param{pid}.
2888
2889 Fino al kernel 2.6.12 gli utenti normali non potevano impostare politiche
2890 \textit{real-time} o modificare la eventuale priorità statica di un loro
2891 processo. A partire da questa versione è divenuto possibile anche per gli
2892 utenti normali usare politiche \textit{real-time} fintanto che la priorità
2893 assoluta che si vuole impostare è inferiore al limite \const{RLIMIT\_RTPRIO}
2894 (vedi sez.~\ref{sec:sys_resource_limit}) ad essi assegnato. 
2895
2896 Unica eccezione a questa possibilità sono i processi \const{SCHED\_IDLE}, che
2897 non possono cambiare politica di \textit{scheduling} indipendentemente dal
2898 valore di \const{RLIMIT\_RTPRIO}. Inoltre, in caso di processo già sottoposto
2899 ad una politica \textit{real-time}, un utente può sempre, indipendentemente
2900 dal valore di \const{RLIMIT\_RTPRIO}, diminuirne la priorità o portarlo ad una
2901 politica ordinaria.
2902
2903 Se si intende operare solo sulla priorità statica di un processo si possono
2904 usare le due funzioni di sistema \funcd{sched\_setparam} e
2905 \funcd{sched\_getparam} che consentono rispettivamente di impostarne e
2906 leggerne il valore, i loro prototipi sono:
2907
2908 \begin{funcproto}{
2909 \fhead{sched.h}
2910 \fdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *param)}
2911 \fdesc{Imposta la priorità statica di un processo.} 
2912 \fdecl{int sched\_getparam(pid\_t pid, struct sched\_param *param)}
2913 \fdesc{Legge la priorità statica di un processo.} 
2914 }
2915 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2916 caso \var{errno} assumerà uno dei valori:
2917 \begin{errlist}
2918 \item[\errcode{EINVAL}] il valore di \param{param} non ha senso per la
2919   politica usata dal processo.
2920 \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
2921   l'operazione.
2922 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2923 \end{errlist}}
2924 \end{funcproto}
2925
2926 Le funzioni richiedono di indicare nell'argomento \param{pid} il processo su
2927 cui operare e usano l'argomento \param{param} per mantenere il valore della
2928 priorità dinamica. Questo è ancora una struttura \struct{sched\_param} ed
2929 assume gli stessi valori già visti per \func{sched\_setscheduler}.
2930
2931 L'uso di \func{sched\_setparam}, compresi i controlli di accesso che vi si
2932 applicano, è del tutto equivalente a quello di \func{sched\_setscheduler} con
2933 argomento \param{policy} uguale a $-1$. Come per \func{sched\_setscheduler}
2934 specificando $0$ come valore dell'argomento \param{pid} si opera sul processo
2935 corrente. Benché la funzione sia utilizzabile anche con processi sottoposti a
2936 politica ordinaria essa ha senso soltanto per quelli \textit{real-time}, dato
2937 che per i primi la priorità statica può essere soltanto nulla.  La
2938 disponibilità di entrambe le funzioni può essere verificata controllando la
2939 macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è definita nell'\textit{header
2940   file} \headfile{sched.h}.
2941
2942 Se invece si vuole sapere quale è politica di \textit{scheduling} di un
2943 processo si può usare la funzione di sistema \funcd{sched\_getscheduler}, il
2944 cui prototipo è:
2945
2946 \begin{funcproto}{ 
2947 \fhead{sched.h}
2948 \fdecl{int sched\_getscheduler(pid\_t pid)}
2949 \fdesc{Legge la politica di \textit{scheduling}.} 
2950 }
2951 {La funzione ritorna la politica di \textit{scheduling}  in caso di successo e
2952   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2953 \begin{errlist}
2954     \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
2955       l'operazione.
2956     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2957 \end{errlist}}
2958 \end{funcproto}
2959
2960 La funzione restituisce il valore, secondo quanto elencato in
2961 tab.~\ref{tab:proc_sched_policy}, della politica di \textit{scheduling} per il
2962 processo specificato dall'argomento \param{pid}, se questo è nullo viene
2963 restituito il valore relativo al processo chiamante.
2964
2965 L'ultima funzione di sistema che permette di leggere le informazioni relative
2966 ai processi real-time è \funcd{sched\_rr\_get\_interval}, che permette di
2967 ottenere la lunghezza della \textit{time-slice} usata dalla politica
2968 \textit{round robin}; il suo prototipo è:
2969
2970 \begin{funcproto}{ 
2971 \fhead{sched.h}
2972 \fdecl{int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)}
2973 \fdesc{Legge la durata della \textit{time-slice} per lo \textit{scheduling}
2974   \textit{round robin}.}  
2975 }
2976 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2977 caso \var{errno} assumerà uno dei valori:
2978 \begin{errlist}
2979 \item[\errcode{EINVAL}] l'argomento \param{pid} non è valido. 
2980 \item[\errcode{ENOSYS}] la \textit{system call} non è presente (solo per
2981   kernel arcaici).
2982 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2983 \end{errlist}
2984 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
2985 \end{funcproto}
2986
2987 La funzione restituisce nell'argomento \param{tp} come una struttura
2988 \struct{timespec}, (la cui definizione si può trovare in
2989 fig.~\ref{fig:sys_timeval_struct}) il valore dell'intervallo di tempo usato
2990 per la politica \textit{round robin} dal processo indicato da \ids{PID}. Il
2991 valore dipende dalla versione del kernel, a lungo infatti questo intervallo di
2992 tempo era prefissato e non modificabile ad un valore di 150 millisecondi,
2993 restituito indipendentemente dal \ids{PID} indicato. 
2994
2995 Con kernel recenti però è possibile ottenere una variazione della
2996 \textit{time-slice}, modificando il valore di \textit{nice} del processo
2997 (anche se questo non incide assolutamente sulla priorità statica) che come
2998 accennato in precedenza modifica il valore assegnato alla \textit{time-slice}
2999 di un processo ordinario, che però viene usato anche dai processi
3000 \textit{real-time}.
3001
3002 Come accennato ogni processo può rilasciare volontariamente la CPU in modo da
3003 consentire agli altri processi di essere eseguiti; la funzione di sistema che
3004 consente di fare tutto questo è \funcd{sched\_yield}, il cui prototipo è:
3005
3006 \begin{funcproto}{ 
3007 \fhead{sched.h}
3008 \fdecl{int sched\_yield(void)}
3009 \fdesc{Rilascia volontariamente l'esecuzione.} 
3010 }
3011 {La funzione ritorna $0$ in caso di successo e teoricamente $-1$ per un
3012   errore, ma su Linux ha sempre successo.}
3013 \end{funcproto}
3014
3015
3016 Questa funzione ha un utilizzo effettivo soltanto quando si usa lo
3017 \textit{scheduling} \textit{real-time}, e serve a far sì che il processo
3018 corrente rilasci la CPU, in modo da essere rimesso in coda alla lista dei
3019 processi con la stessa priorità per permettere ad un altro di essere eseguito;
3020 se però il processo è l'unico ad essere presente sulla coda l'esecuzione non
3021 sarà interrotta. In genere usano questa funzione i processi con politica
3022 \const{SCHED\_FIFO}, per permettere l'esecuzione degli altri processi con pari
3023 priorità quando la sezione più urgente è finita.
3024
3025 La funzione può essere utilizzata anche con processi che usano lo
3026 \textit{scheduling} ordinario, ma in questo caso il comportamento non è ben
3027 definito, e dipende dall'implementazione. Fino al kernel 2.6.23 questo
3028 comportava che i processi venissero messi in fondo alla coda di quelli attivi,
3029 con la possibilità di essere rimessi in esecuzione entro breve tempo, con
3030 l'introduzione del \textit{Completely Fair Scheduler} questo comportamento è
3031 cambiato ed un processo che chiama la funzione viene inserito nella lista dei
3032 processi inattivo, con un tempo molto maggiore.\footnote{è comunque possibile
3033   ripristinare un comportamento analogo al precedente scrivendo il valore 1
3034   nel file \sysctlfile{kernel/sched\_compat\_yield}.}
3035
3036 L'uso delle funzione nella programmazione ordinaria può essere utile e
3037 migliorare le prestazioni generali del sistema quando si è appena rilasciata
3038 una risorsa contesa con altri processi, e si vuole dare agli altri una
3039 possibilità di approfittarne mettendoli in esecuzione, ma chiamarla senza
3040 necessità, specie se questo avviene ripetutamente all'interno di un qualche
3041 ciclo, può avere invece un forte impatto negativo per la generazione di
3042 \itindex{contest~switch} \textit{contest switch} inutili.
3043
3044
3045 \subsection{Il controllo dello \textit{scheduler} per i sistemi
3046   multiprocessore}
3047 \label{sec:proc_sched_multiprocess}
3048
3049 Con il supporto dei sistemi multiprocessore sono state introdotte delle
3050 funzioni che permettono di controllare in maniera più dettagliata la scelta di
3051 quale processore utilizzare per eseguire un certo programma. Uno dei problemi
3052 che si pongono nei sistemi multiprocessore è infatti quello del cosiddetto
3053 \index{effetto~ping-pong} \textsl{effetto ping-pong}. Può accadere cioè che lo
3054 \textit{scheduler}, quando riavvia un processo precedentemente interrotto
3055 scegliendo il primo processore disponibile, lo faccia eseguire da un
3056 processore diverso rispetto a quello su cui era stato eseguito in
3057 precedenza. Se il processo passa da un processore all'altro in questo modo,
3058 cosa che avveniva abbastanza di frequente con i kernel della seria 2.4.x, si
3059 ha l'\textsl{effetto ping-pong}.
3060
3061 Questo tipo di comportamento può generare dei seri problemi di prestazioni;
3062 infatti tutti i processori moderni utilizzano una memoria interna (la
3063 \textit{cache}) contenente i dati più usati, che permette di evitare di
3064 eseguire un accesso (molto più lento) alla memoria principale sulla scheda
3065 madre.  Chiaramente un processo sarà favorito se i suoi dati sono nella cache
3066 del processore, ma è ovvio che questo può essere vero solo per un processore
3067 alla volta, perché in presenza di più copie degli stessi dati su più
3068 processori, non si potrebbe determinare quale di questi ha la versione dei
3069 dati aggiornata rispetto alla memoria principale.
3070
3071 Questo comporta che quando un processore inserisce un dato nella sua cache,
3072 tutti gli altri processori che hanno lo stesso dato devono invalidarlo, e
3073 questa operazione è molto costosa in termini di prestazioni. Il problema
3074 diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
3075 infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
3076 e si ha una continua invalidazione della cache, che non diventa mai
3077 disponibile.
3078
3079 \itindbeg{CPU~affinity}
3080
3081 Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
3082   di processore} (o \textit{CPU affinity}); la possibilità cioè di far sì che
3083 un processo possa essere assegnato per l'esecuzione sempre allo stesso
3084 processore. Lo \textit{scheduler} dei kernel della serie 2.4.x aveva una
3085 scarsa \textit{CPU affinity}, e \index{effetto~ping-pong} l'effetto ping-pong
3086 era comune; con il nuovo \textit{scheduler} dei kernel della 2.6.x questo
3087 problema è stato risolto ed esso cerca di mantenere il più possibile ciascun
3088 processo sullo stesso processore.
3089
3090 In certi casi però resta l'esigenza di poter essere sicuri che un processo sia
3091 sempre eseguito dallo stesso processore,\footnote{quella che viene detta
3092   \textit{hard CPU affinity}, in contrasto con quella fornita dallo
3093   \textit{scheduler}, detta \textit{soft CPU affinity}, che di norma indica
3094   solo una preferenza, non un requisito assoluto.} e per poter risolvere
3095 questo tipo di problematiche nei nuovi kernel\footnote{le due \textit{system
3096     call} per la gestione della \textit{CPU affinity} sono state introdotte
3097   nel kernel 2.5.8, e le corrispondenti funzioni di sistema nella
3098   \textsl{glibc} 2.3.} è stata introdotta l'opportuna infrastruttura ed una
3099 nuova \textit{system call} che permette di impostare su quali processori far
3100 eseguire un determinato processo attraverso una \textsl{maschera di
3101   affinità}. La corrispondente funzione di sistema è
3102 \funcd{sched\_setaffinity} ed il suo prototipo è:
3103
3104 \index{insieme~di~processori|(}
3105
3106 \begin{funcproto}{ 
3107 \fhead{sched.h}
3108 \fdecl{int sched\_setaffinity(pid\_t pid, size\_t setsize, 
3109   cpu\_set\_t *mask)}
3110 \fdesc{Imposta la maschera di affinità di un processo.} 
3111 }
3112 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3113 caso \var{errno} assumerà uno dei valori:
3114 \begin{errlist}
3115 \item[\errcode{EINVAL}] il valore di \param{mask} contiene riferimenti a
3116   processori non esistenti nel sistema o a cui non è consentito l'accesso.
3117 \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
3118   eseguire l'operazione.
3119 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3120 \end{errlist}
3121 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
3122 \end{funcproto}
3123
3124 Questa funzione e la corrispondente \func{sched\_getaffinity} hanno una storia
3125 abbastanza complessa, la sottostante \textit{system call} infatti prevede
3126 l'uso di due soli argomenti (per il pid e l'indicazione della maschera dei
3127 processori), che corrispondono al fatto che l'implementazione effettiva usa
3128 una semplice maschera binaria. Quando le funzioni vennero incluse nella
3129 \acr{glibc} assunsero invece un prototipo simile a quello mostrato però con il
3130 secondo argomento di tipo \ctyp{unsigned int}. A complicare la cosa si
3131 aggiunge il fatto che nella versione 2.3.3 della \acr{glibc} detto argomento
3132 venne stato eliminato, per poi essere ripristinato nella versione 2.3.4 nella
3133 forma attuale.\footnote{pertanto se la vostra pagina di manuale non è
3134   aggiornata, o usate quella particolare versione della \acr{glibc}, potrete
3135   trovare indicazioni diverse, il prototipo illustrato è quello riportato
3136   nella versione corrente (maggio 2008) delle pagine di manuale e
3137   corrispondente alla definizione presente in \headfile{sched.h}.}
3138
3139 La funzione imposta, con l'uso del valore contenuto all'indirizzo
3140 \param{mask}, l'insieme dei processori sui quali deve essere eseguito il
3141 processo identificato tramite il valore passato in \param{pid}. Come in
3142 precedenza il valore nullo di \param{pid} indica il processo corrente.  Per
3143 poter utilizzare questa funzione sono richiesti i privilegi di amministratore
3144 (è necessaria la capacità \const{CAP\_SYS\_NICE}) altrimenti essa fallirà con
3145 un errore di \errcode{EPERM}. Una volta impostata una maschera di affinità,
3146 questa viene ereditata attraverso una \func{fork}, in questo modo diventa
3147 possibile legare automaticamente un gruppo di processi ad un singolo
3148 processore.
3149
3150 Nell'uso comune, almeno con i kernel successivi alla serie 2.6.x, l'uso di
3151 questa funzione non è necessario, in quanto è lo scheduler stesso che provvede
3152 a mantenere al meglio l'affinità di processore. Esistono però esigenze
3153 particolari, ad esempio quando un processo (o un gruppo di processi) è
3154 utilizzato per un compito importante (ad esempio per applicazioni
3155 \textit{real-time} o la cui risposta è critica) e si vuole la massima
3156 velocità, e con questa interfaccia diventa possibile selezionare gruppi di
3157 processori utilizzabili in maniera esclusiva.  Lo stesso dicasi quando
3158 l'accesso a certe risorse (memoria o periferiche) può avere un costo diverso a
3159 seconda del processore, come avviene nelle architetture NUMA
3160 (\textit{Non-Uniform Memory Access}).
3161
3162 Infine se un gruppo di processi accede alle stesse risorse condivise (ad
3163 esempio una applicazione con più \itindex{thread} \textit{thread}) può avere
3164 senso usare lo stesso processore in modo da sfruttare meglio l'uso della sua
3165 cache; questo ovviamente riduce i benefici di un sistema multiprocessore
3166 nell'esecuzione contemporanea dei \itindex{thread} \textit{thread}, ma in
3167 certi casi (quando i \itindex{thread} \textit{thread} sono inerentemente
3168 serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
3169 nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
3170 di processore.
3171
3172 Dato che il numero di processori può variare a seconda delle architetture, per
3173 semplificare l'uso dell'argomento \param{mask} la \acr{glibc} ha introdotto un
3174 apposito dato di tipo, \type{cpu\_set\_t},\footnote{questa è una estensione
3175   specifica della \acr{glibc}, da attivare definendo la macro
3176   \macro{\_GNU\_SOURCE}, non esiste infatti una standardizzazione per questo
3177   tipo di interfaccia e POSIX al momento non prevede nulla al riguardo.} che
3178 permette di identificare un insieme di processori. Il dato è normalmente una
3179 maschera binaria: nei casi più comuni potrebbe bastare un intero a 32 bit, in
3180 cui ogni bit corrisponde ad un processore, ma oggi esistono architetture in
3181 cui questo numero può non essere sufficiente, e per questo è stato creato
3182 questo \index{tipo!opaco} tipo opaco e una interfaccia di gestione che
3183 permette di usare a basso livello un tipo di dato qualunque rendendosi
3184 indipendenti dal numero di bit e dalla loro disposizione.  Per questo le
3185 funzioni richiedono anche che oltre all'insieme di processori si indichi anche
3186 la dimensione dello stesso con l'argomento \param{setsize}, per il quale, se
3187 non si usa l'allocazione dinamica che vedremo a breve, ed è in genere
3188 sufficiente passare il valore \code{sizeof(cpu\_set\_t)}.
3189
3190 L'interfaccia di gestione degli insiemi di processori, oltre alla definizione
3191 del tipo \type{cpu\_set\_t}, prevede una serie di macro di preprocessore per
3192 la manipolazione degli stessi. Quelle di base, che consentono rispettivamente
3193 di svuotare un insieme, di aggiungere o togliere un processore o di verificare
3194 se esso è già presente in un insieme, sono le seguenti:
3195
3196 {\centering
3197 \vspace{3pt}
3198 \begin{funcbox}{ 
3199 \fhead{sched.h}
3200 \fdecl{void \macro{CPU\_ZERO}(cpu\_set\_t *set)}
3201 \fdesc{Inizializza un insieme di processori vuoto \param{set}.} 
3202 \fdecl{void \macro{CPU\_SET}(int cpu, cpu\_set\_t *set)}
3203 \fdesc{Inserisce il processore \param{cpu} nell'insieme di processori \param{set}.} 
3204 \fdecl{void \macro{CPU\_CLR}(int cpu, cpu\_set\_t *set)}
3205 \fdesc{Rimuove il processore \param{cpu} nell'insieme di processori \param{set}.} 
3206 \fdecl{int \macro{CPU\_ISSET}(int cpu, cpu\_set\_t *set)}
3207 \fdesc{Controlla se il processore \param{cpu} è nell'insieme di processori \param{set}.} 
3208 }
3209 \end{funcbox}}
3210
3211 Queste macro che sono ispirate dalle analoghe usate per gli insiemi di
3212 \textit{file descriptor} (vedi sez.~\ref{sec:file_select}) e sono state
3213 introdotte con la versione 2.3.3 della \acr{glibc}. Tutte richiedono che si
3214 specifichi il numero di una CPU nell'argomento \param{cpu}, ed un insieme su
3215 cui operare. L'unica che ritorna un risultato è \macro{CPU\_ISSET}, che
3216 restituisce un intero da usare come valore logico (zero se la CPU non è
3217 presente, diverso da zero se è presente).
3218
3219 Si tenga presente che trattandosi di macro l'argomento \param{cpu} può essere
3220 valutato più volte. Questo significa ad esempio che non si può usare al suo
3221 posto una funzione o un'altra macro, altrimenti queste verrebbero eseguite più
3222 volte, l'argomento cioè non deve avere \textsl{effetti collaterali} (in gergo
3223 \itindex{side~effects} \textit{side effects}).\footnote{nel linguaggio C si
3224   parla appunto di \textit{side effects} quando si usano istruzioni la cui
3225   valutazione comporta effetti al di fuori dell'istruzione stessa, come il
3226   caso indicato in cui si passa una funzione ad una macro che usa l'argomento
3227   al suo interno più volte, o si scrivono espressioni come \code{a=a++} in cui
3228   non è chiaro se prima avvenga l'incremento e poi l'assegnazione, ed il cui
3229   risultato dipende dall'implementazione del compilatore.}
3230
3231 Le CPU sono numerate da zero (che indica la prima disponibile) fino ad
3232 un numero massimo che dipende dalla architettura hardware. La costante
3233 \const{CPU\_SETSIZE} indica il numero massimo di processori che possono far
3234 parte di un insieme (al momento vale sempre 1024), e costituisce un limite
3235 massimo al valore dell'argomento \param{cpu}.
3236 Dalla versione 2.6 della \acr{glibc} alle precedenti macro è stata aggiunta,
3237 per contare il numero di processori in un insieme, l'ulteriore:
3238
3239 {\centering
3240 \vspace{3pt}
3241 \begin{funcbox}{ 
3242 \fhead{sched.h}
3243 \fdecl{int \macro{CPU\_COUNT}(cpu\_set\_t *set)}
3244 \fdesc{Conta il numero di processori presenti nell'insieme \param{set}.} 
3245 }
3246 \end{funcbox}}
3247
3248 A partire dalla versione 2.7 della \acr{glibc} sono state introdotte altre
3249 macro che consentono ulteriori manipolazioni, in particolare si possono
3250 compiere delle operazioni logiche sugli insiemi di processori con:
3251
3252 {\centering
3253 \vspace{3pt}
3254 \begin{funcbox}{ 
3255 \fhead{sched.h}
3256 \fdecl{void \macro{CPU\_AND}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3257 \fdesc{Esegue l'AND logico di due insiemi di processori.} 
3258 \fdecl{void \macro{CPU\_OR}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3259 \fdesc{Esegue l'OR logico di due insiemi di processori.} 
3260 \fdecl{void \macro{CPU\_XOR}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3261 \fdesc{Esegue lo XOR logico di due insiemi di processori.} 
3262 \fdecl{int \macro{CPU\_EQUAL}(cpu\_set\_t *set1, cpu\_set\_t *set2)}
3263 \fdesc{Verifica se due insiemi di processori sono uguali.} 
3264 }
3265 \end{funcbox}}
3266
3267 Le prime tre macro richiedono due insiemi di partenza, \param{srcset1}
3268 e \param{srcset2} e forniscono in un terzo insieme \param{destset} (che può
3269 essere anche lo stesso di uno dei precedenti) il risultato della rispettiva
3270 operazione logica sui contenuti degli stessi. In sostanza con \macro{CPU\_AND}
3271 si otterrà come risultato l'insieme che contiene le CPU presenti in entrambi
3272 gli insiemi di partenza, con \macro{CPU\_OR} l'insieme che contiene le CPU
3273 presenti in uno qualunque dei due insiemi di partenza, e con \macro{CPU\_XOR}
3274 l'insieme che contiene le CPU presenti presenti in uno solo dei due insiemi di
3275 partenza. Infine \macro{CPU\_EQUAL} confronta due insiemi ed è l'unica che
3276 restituisce un intero, da usare come valore logico che indica se sono
3277 identici o meno.
3278
3279 Inoltre, sempre a partire dalla versione 2.7 della \acr{glibc}, è stata
3280 introdotta la possibilità di una allocazione dinamica degli insiemi di
3281 processori, per poterli avere di dimensioni corrispondenti al numero di CPU
3282 effettivamente in gioco, senza dover fare riferimento necessariamente alla
3283 precedente dimensione preimpostata di 1024. Per questo motivo sono state
3284 definite tre ulteriori macro, che consentono rispettivamente di allocare,
3285 disallocare ed ottenere la dimensione in byte di un insieme di processori:
3286
3287 {\centering
3288 \vspace{3pt}
3289 \begin{funcbox}{ 
3290 \fhead{sched.h}
3291 \fdecl{cpu\_set\_t * \macro{CPU\_ALLOC}(num\_cpus)}
3292 \fdesc{Alloca dinamicamente un insieme di processori di dimensione voluta.} 
3293 \fdecl{void \macro{CPU\_FREE}(cpu\_set\_t *set)}
3294 \fdesc{Disalloca un insieme di processori allocato dinamicamente.} 
3295 \fdecl{size\_t \macro{CPU\_ALLOC\_SIZE}(num\_cpus)}
3296 \fdesc{Ritorna la dimensione di un insieme di processori allocato dinamicamente.} 
3297 }
3298 \end{funcbox}}
3299
3300 La prima macro, \macro{CPU\_ALLOC}, restituisce il puntatore ad un insieme di
3301 processori in grado di contenere almeno \param{num\_cpus} che viene allocato
3302 dinamicamente. Ogni insieme così allocato dovrà essere disallocato con
3303 \macro{CPU\_FREE} passandogli un puntatore ottenuto da una precedente
3304 \macro{CPU\_ALLOC}. La terza macro, \macro{CPU\_ALLOC\_SIZE}, consente di
3305 ottenere la dimensione in byte di un insieme allocato dinamicamente che
3306 contenga \param{num\_cpus} processori.
3307
3308 Dato che le dimensioni effettive possono essere diverse le macro di gestione e
3309 manipolazione che abbiamo trattato in precedenza non si applicano agli insiemi
3310 allocati dinamicamente, per i quali dovranno sono state definite altrettante
3311 macro equivalenti contraddistinte dal suffisso \texttt{\_S}, che effettuano le
3312 stesse operazioni, ma richiedono in più un argomento
3313 aggiuntivo \param{setsize} che deve essere assegnato al valore ottenuto con
3314 \macro{CPU\_ALLOC\_SIZE}. Questo stesso valore deve essere usato per l'omonimo
3315 argomento delle funzioni \func{sched\_setaffinity} o \func{sched\_getaffinity}
3316 quando si vuole usare per l'argomento che indica la maschera di affinità un
3317 insieme di processori allocato dinamicamente.
3318
3319 \index{insieme~di~processori|)}
3320
3321 A meno di non aver utilizzato \func{sched\_setaffinity}, in condizioni
3322 ordinarie la maschera di affinità di un processo è preimpostata dal sistema in
3323 modo che esso possa essere eseguito su qualunque processore. Se ne può
3324 comunque ottenere il valore corrente usando la funzione di sistema
3325 \funcd{sched\_getaffinity}, il cui prototipo è:
3326
3327 \begin{funcproto}{ 
3328 \fhead{sched.h}
3329 \fdecl{int sched\_getaffinity (pid\_t pid, size\_t setsize, 
3330   cpu\_set\_t *mask)}
3331 \fdesc{Legge la maschera di affinità di un processo.} 
3332 }
3333 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3334 caso \var{errno} assumerà uno dei valori:
3335 \begin{errlist}
3336 \item[\errcode{EINVAL}] \param{setsize} è più piccolo delle dimensioni
3337   della maschera di affinità usata dal kernel.
3338 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3339 \end{errlist}
3340 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
3341 \end{funcproto}
3342
3343 La funzione restituirà all'indirizzo specificato da \param{mask} il valore
3344 della maschera di affinità del processo indicato dall'argomento \param{pid}
3345 (al solito un valore nullo indica il processo corrente) così da poterla
3346 riutilizzare per una successiva reimpostazione.
3347
3348 È chiaro che queste funzioni per la gestione dell'affinità hanno significato
3349 soltanto su un sistema multiprocessore, esse possono comunque essere
3350 utilizzate anche in un sistema con un processore singolo, nel qual caso però
3351 non avranno alcun risultato effettivo.
3352
3353
3354 \itindend{scheduler}
3355 \itindend{CPU~affinity}
3356
3357
3358 \subsection{Le priorità per le operazioni di I/O}
3359 \label{sec:io_priority}
3360
3361 A lungo l'unica priorità usata per i processi è stata quella relativa
3362 all'assegnazione dell'uso del processore. Ma il processore non è l'unica
3363 risorsa che i processi devono contendersi, un'altra, altrettanto importante
3364 per le prestazioni, è quella dell'accesso a disco. Per questo motivo nello
3365 sviluppo del kernel sono stati introdotti diversi \textit{I/O scheduler} in
3366 grado di distribuire in maniera opportuna questa risorsa ai vari processi.
3367
3368 Fino al kernel 2.6.17 era possibile soltanto differenziare le politiche
3369 generali di gestione, scegliendo di usare un diverso \textit{I/O scheduler}. A
3370 partire da questa versione, con l'introduzione dello \textit{scheduler} CFQ
3371 (\textit{Completely Fair Queuing}) è divenuto possibile, qualora si usi questo
3372 \textit{scheduler}, impostare anche delle diverse priorità di accesso per i
3373 singoli processi.\footnote{al momento (kernel 2.6.31), le priorità di I/O sono
3374   disponibili soltanto per questo \textit{scheduler}.}
3375
3376 La scelta di uno \textit{scheduler} di I/O si può fare in maniera generica per
3377 tutto il sistema all'avvio del kernel con il parametro di avvio
3378 \texttt{elevator},\footnote{per la trattazione dei parametri di avvio del
3379   kernel si rimanda al solito alla sez.~5.3 di \cite{AGL}.} cui assegnare il
3380 nome dello \textit{scheduler}, ma se ne può anche indicare uno specifico per
3381 l'accesso al singolo disco scrivendo nel file
3382 \texttt{/sys/block/\textit{<dev>}/queue/scheduler} (dove
3383 \texttt{\textit{<dev>}} è il nome del dispositivo associato al disco).
3384
3385 Gli \textit{scheduler} disponibili sono mostrati dal contenuto dello stesso
3386 file che riporta fra parentesi quadre quello attivo, il default in tutti i
3387 kernel recenti è proprio il \texttt{cfq},\footnote{nome con cui si indica
3388   appunto lo \textit{scheduler} CFQ.} che supporta le priorità. Per i dettagli
3389 sulle caratteristiche specifiche degli altri \textit{scheduler}, la cui
3390 discussione attiene a problematiche di ambito sistemistico, si consulti la
3391 documentazione nella directory \texttt{Documentation/block/} dei sorgenti del
3392 kernel.
3393
3394 Una volta che si sia impostato lo \textit{scheduler} CFQ ci sono due
3395 specifiche \textit{system call}, specifiche di Linux, che consentono di
3396 leggere ed impostare le priorità di I/O.\footnote{se usate in corrispondenza
3397   ad uno \textit{scheduler} diverso il loro utilizzo non avrà alcun effetto.}
3398 Dato che non esiste una interfaccia diretta nella \acr{glibc} per queste due
3399 funzioni\footnote{almeno al momento della scrittura di questa sezione, con la
3400   versione 2.11 della \acr{glibc}.} occorrerà invocarle tramite la funzione
3401 \func{syscall} (come illustrato in sez.~\ref{sec:proc_syscall}). Le due
3402 \textit{system call} sono \funcd{ioprio\_get} ed \funcd{ioprio\_set}; i
3403 rispettivi prototipi sono:
3404
3405 \begin{funcproto}{ 
3406 \fhead{linux/ioprio.h}
3407 \fdecl{int ioprio\_get(int which, int who)}
3408 \fdesc{Legge la priorità di I/O di un processo.} 
3409 \fdecl{int ioprio\_set(int which, int who, int ioprio)}
3410 \fdesc{Imposta la priorità di I/O di un processo.} 
3411 }
3412 {Le funzioni ritornano rispettivamente un intero positivo o 0 in caso di
3413   successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
3414   valori:
3415 \begin{errlist}
3416 \item[\errcode{EINVAL}] i valori di \param{which} o di \param{ioprio} non
3417   sono validi. 
3418 \item[\errcode{EPERM}] non si hanno i privilegi per eseguire
3419   l'impostazione (solo per \func{ioprio\_set}). 
3420 \item[\errcode{ESRCH}] non esiste un processo corrispondente alle indicazioni.
3421 \end{errlist}}
3422 \end{funcproto}
3423
3424 Le funzioni leggono o impostano la priorità di I/O sulla base dell'indicazione
3425 dei due argomenti \param{which} e \param{who} che hanno lo stesso significato
3426 già visto per gli omonimi argomenti di \func{getpriority} e
3427 \func{setpriority}. Anche in questo caso si deve specificare il valore
3428 di \param{which} tramite le opportune costanti riportate in
3429 tab.~\ref{tab:ioprio_args} che consentono di indicare un singolo processo, i
3430 processi di un \textit{process group} (tratteremo questo argomento in
3431 sez.~\ref{sec:sess_proc_group}) o tutti i processi di un utente.
3432
3433 \begin{table}[htb]
3434   \centering
3435   \footnotesize
3436   \begin{tabular}[c]{|c|c|l|}
3437     \hline
3438     \param{which} & \param{who} & \textbf{Significato} \\
3439     \hline
3440     \hline
3441     \const{IPRIO\_WHO\_PROCESS} & \type{pid\_t} & processo\\
3442     \const{IPRIO\_WHO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
3443                                                   \textit{process group}\\ 
3444     \const{IPRIO\_WHO\_USER}    & \type{uid\_t} & utente\\
3445     \hline
3446   \end{tabular}
3447   \caption{Legenda del valore dell'argomento \param{which} e del tipo
3448     dell'argomento \param{who} delle funzioni \func{ioprio\_get} e
3449     \func{ioprio\_set} per le tre possibili scelte.}
3450   \label{tab:ioprio_args}
3451 \end{table}
3452
3453 In caso di successo \func{ioprio\_get} restituisce un intero positivo che
3454 esprime il valore della priorità di I/O, questo valore è una maschera binaria
3455 composta da due parti, una che esprime la \textsl{classe} di
3456 \textit{scheduling} di I/O del processo, l'altra che esprime, quando la classe
3457 di \textit{scheduling} lo prevede, la priorità del processo all'interno della
3458 classe stessa. Questo stesso formato viene utilizzato per indicare il valore
3459 della priorità da impostare con l'argomento \param{ioprio} di
3460 \func{ioprio\_set}.
3461 \begin{table}[htb]
3462   \centering
3463   \footnotesize
3464   \begin{tabular}[c]{|l|p{8cm}|}
3465     \hline
3466     \textbf{Macro} & \textbf{Significato}\\
3467     \hline
3468     \hline
3469     \macro{IOPRIO\_PRIO\_CLASS}\texttt{(\textit{value})}
3470                                 & Dato il valore di una priorità come
3471                                   restituito da \func{ioprio\_get} estrae il
3472                                   valore della classe.\\
3473     \macro{IOPRIO\_PRIO\_DATA}\texttt{(\textit{value})}
3474                                 & Dato il valore di una priorità come
3475                                   restituito da \func{ioprio\_get} estrae il
3476                                   valore della priorità.\\
3477     \macro{IOPRIO\_PRIO\_VALUE}\texttt{(\textit{class},\textit{prio})}
3478                                 & Dato un valore di priorità ed una classe
3479                                   ottiene il valore numerico da passare a
3480                                   \func{ioprio\_set}.\\
3481     \hline
3482   \end{tabular}
3483   \caption{Le macro per la gestione dei valori numerici .}
3484   \label{tab:IOsched_class_macro}
3485 \end{table}
3486
3487
3488 Per la gestione dei valori che esprimono le priorità di I/O sono state
3489 definite delle opportune macro di preprocessore, riportate in
3490 tab.~\ref{tab:IOsched_class_macro}. I valori delle priorità si ottengono o si
3491 impostano usando queste macro.  Le prime due si usano con il valore restituito
3492 da \func{ioprio\_get} e per ottenere rispettivamente la classe di
3493 \textit{scheduling}\footnote{restituita dalla macro con i valori di
3494   tab.~\ref{tab:IOsched_class}.} e l'eventuale valore della priorità. La terza
3495 macro viene invece usata per creare un valore di priorità da usare come
3496 argomento di \func{ioprio\_set} per eseguire una impostazione.
3497
3498 \begin{table}[htb]
3499   \centering
3500   \footnotesize
3501   \begin{tabular}[c]{|l|l|}
3502     \hline
3503     \textbf{Classe}  & \textbf{Significato} \\
3504     \hline
3505     \hline
3506     \const{IOPRIO\_CLASS\_RT}  & \textit{Scheduling} di I/O \textit{real-time}.\\ 
3507     \const{IOPRIO\_CLASS\_BE}  & \textit{Scheduling} di I/O ordinario.\\ 
3508     \const{IOPRIO\_CLASS\_IDLE}& \textit{Scheduling} di I/O di priorità minima.\\
3509     \hline
3510   \end{tabular}
3511   \caption{Costanti che identificano le classi di \textit{scheduling} di I/O.}
3512   \label{tab:IOsched_class}
3513 \end{table}
3514
3515 Le classi di \textit{scheduling} previste dallo \textit{scheduler} CFQ sono
3516 tre, e ricalcano tre diverse modalità di distribuzione delle risorse analoghe
3517 a quelle già adottate anche nel funzionamento dello \textit{scheduler} del
3518 processore. Ciascuna di esse è identificata tramite una opportuna costante,
3519 secondo quanto riportato in tab.~\ref{tab:IOsched_class}.
3520
3521 La classe di priorità più bassa è \const{IOPRIO\_CLASS\_IDLE}; i processi in
3522 questa classe riescono ad accedere a disco soltanto quando nessun altro
3523 processo richiede l'accesso. Occorre pertanto usarla con molta attenzione,
3524 perché un processo in questa classe può venire completamente bloccato quando
3525 ci sono altri processi in una qualunque delle altre due classi che stanno
3526 accedendo al disco. Quando si usa questa classe non ha senso indicare un
3527 valore di priorità, dato che in questo caso non esiste nessuna gerarchia e la
3528 priorità è identica, la minima possibile, per tutti i processi.
3529
3530 La seconda classe di priorità di I/O è \const{IOPRIO\_CLASS\_BE} (il nome sta
3531 per \textit{best-effort}) che è quella usata ordinariamente da tutti
3532 processi. In questo caso esistono priorità diverse che consentono di
3533 assegnazione di una maggiore banda passante nell'accesso a disco ad un
3534 processo rispetto agli altri, con meccanismo simile a quello dei valori di
3535 \textit{nice} in cui si evita che un processo a priorità più alta possa
3536 bloccare indefinitamente quelli a priorità più bassa. In questo caso però le
3537 diverse priorità sono soltanto otto, indicate da un valore numerico fra 0 e 7
3538 e come per \textit{nice} anche in questo caso un valore più basso indica una
3539 priorità maggiore. 
3540
3541
3542 Infine la classe di priorità di I/O \textit{real-time}
3543 \const{IOPRIO\_CLASS\_RT} ricalca le omonime priorità di processore: un
3544 processo in questa classe ha sempre la precedenza nell'accesso a disco
3545 rispetto a tutti i processi delle altre classi e di un processo nella stessa
3546 classe ma con priorità inferiore, ed è pertanto in grado di bloccare
3547 completamente tutti gli altri. Anche in questo caso ci sono 8 priorità diverse
3548 con un valore numerico fra 0 e 7, con una priorità più elevata per valori più
3549 bassi.
3550
3551 In generale nel funzionamento ordinario la priorità di I/O di un processo
3552 viene impostata in maniera automatica nella classe \const{IOPRIO\_CLASS\_BE}
3553 con un valore ottenuto a partire dal corrispondente valore di \textit{nice}
3554 tramite la formula: $\mathtt{\mathit{prio}}=(\mathtt{\mathit{nice}}+20)/5$. Un
3555 utente ordinario può modificare con \func{ioprio\_set} soltanto le priorità
3556 dei processi che gli appartengono,\footnote{per la modifica delle priorità di
3557   altri processi occorrono privilegi amministrativi, ed in particolare la
3558   capacità \const{CAP\_SYS\_NICE} (vedi sez.~\ref{sec:proc_capabilities}).}
3559 cioè quelli il cui \ids{UID} reale corrisponde all'\ids{UID} reale o effettivo
3560 del chiamante. Data la possibilità di ottenere un blocco totale del sistema,
3561 solo l'amministratore\footnote{o un processo con la capacità
3562   \const{CAP\_SYS\_ADMIN} (vedi sez.~\ref{sec:proc_capabilities}).} può
3563 impostare un processo ad una priorità di I/O nella classe
3564 \const{IOPRIO\_CLASS\_RT}, lo stesso privilegio era richiesto anche per la
3565 classe \const{IOPRIO\_CLASS\_IDLE} fino al kernel 2.6.24, ma dato che in
3566 questo caso non ci sono effetti sugli altri processi questo limite è stato
3567 rimosso a partire dal kernel 2.6.25.
3568
3569 %TODO verificare http://lwn.net/Articles/355987/
3570 \section{Funzioni di gestione avanzata}
3571 \label{sec:proc_advanced_control}
3572
3573 Nelle precedenti sezioni si sono trattate la gran parte delle funzioni che
3574 attengono alla gestione ordinaria dei processi e delle loro proprietà più
3575 comuni. Tratteremo qui alcune \textit{system call} dedicate alla gestione di
3576 funzionalità dei processi molto specifiche ed avanzate, il cui uso è in genere
3577 piuttosto ridotto. Trattandosi di problematiche abbastanza complesse, che
3578 spesso presuppongono la conoscenza di altri argomenti trattati nel seguito
3579 della guida, si può saltare questa sezione in una prima lettura, tornando su
3580 di essa in un secondo tempo.
3581
3582
3583 \subsection{La funzione \func{prctl}}
3584 \label{sec:process_prctl}
3585
3586 Benché la gestione ordinaria possa essere effettuata attraverso le funzioni
3587 che abbiamo già esaminato nelle sezioni precedenti, esistono una serie di
3588 proprietà e caratteristiche particolari dei processi non coperte da esse, per
3589 la cui gestione è stata predisposta una apposita \textit{system call} che
3590 fornisce una interfaccia generica per tutte le operazioni specialistiche. La
3591 funzione di sistema è \funcd{prctl} ed il suo prototipo è:\footnote{la
3592   funzione non è standardizzata ed è specifica di Linux, anche se ne esiste
3593   una analoga in IRIX; è stata introdotta con il kernel 2.1.57.}
3594
3595 \begin{funcproto}{ 
3596 \fhead{sys/prctl.h}
3597 \fdecl{int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned
3598   long arg4, \\
3599 \phantom{int prctl(}unsigned long arg5)}
3600 \fdesc{Esegue una operazione speciale sul processo corrente.} 
3601 }
3602 {La funzione ritorna $0$ o un valore positivo dipendente dall'operazione in
3603   caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
3604   valori diversi a seconda del tipo di operazione richiesta (in genere
3605   \errval{EINVAL} o \errval{EPERM}).}
3606 \end{funcproto}
3607
3608 La funzione ritorna un valore nullo o positivo in caso di successo e $-1$ in
3609 caso di errore; il significato degli argomenti della funzione successivi al
3610 primo, il valore di ritorno in caso di successo, il tipo di errore restituito
3611 in \var{errno} dipendono dall'operazione eseguita, indicata tramite il primo
3612 argomento, \param{option}. Questo è un valore intero che identifica
3613 l'operazione, e deve essere specificato con l'uso di una delle costanti
3614 predefinite del seguente elenco, che illustra quelle disponibili al
3615 momento:\footnote{alla stesura di questa sezione, cioè con il kernel 3.2.}
3616
3617 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
3618 \item[\const{PR\_CAPBSET\_READ}] Controlla la disponibilità di una delle
3619   \itindex{capabilities} \textit{capabilities} (vedi
3620   sez.~\ref{sec:proc_capabilities}). La funzione ritorna 1 se la capacità
3621   specificata nell'argomento \param{arg2} (con una delle costanti di
3622   tab.~\ref{tab:proc_capabilities}) è presente nel \textit{capabilities
3623     bounding set} del processo e zero altrimenti, se \param{arg2} non è un
3624   valore valido si avrà un errore di \errval{EINVAL}.  Introdotta a partire
3625   dal kernel 2.6.25.
3626
3627 \item[\const{PR\_CAPBSET\_DROP}] Rimuove permanentemente una delle
3628   \itindex{capabilities} \textit{capabilities} (vedi
3629   sez.~\ref{sec:proc_capabilities}) dal processo e da tutti i suoi
3630   discendenti. La funzione cancella la capacità specificata
3631   nell'argomento \param{arg2} con una delle costanti di
3632   tab.~\ref{tab:proc_capabilities} dal \textit{capabilities bounding set}
3633   \itindex{capabilities~bounding~set} del processo. L'operazione richiede i
3634   privilegi di amministratore (la capacità \const{CAP\_SETPCAP}), altrimenti
3635   la chiamata fallirà con un errore di \errcode{EPERM}; se il valore
3636   di \param{arg2} non è valido o se il supporto per le \textit{file
3637     capabilities} non è stato compilato nel kernel la chiamata fallirà con un
3638   errore di \errval{EINVAL}. Introdotta a partire dal kernel 2.6.25.
3639
3640 \item[\const{PR\_SET\_DUMPABLE}] Imposta il flag che determina se la
3641   terminazione di un processo a causa di un segnale per il quale è prevista la
3642   generazione di un file di \itindex{core~dump} \textit{core dump} (vedi
3643   sez.~\ref{sec:sig_standard}) lo genera effettivamente. In genere questo flag
3644   viene attivato automaticamente, ma per evitare problemi di sicurezza (la
3645   generazione di un file da parte di processi privilegiati può essere usata
3646   per sovrascriverne altri) viene cancellato quando si mette in esecuzione un
3647   programma con i bit \acr{suid} e \acr{sgid} attivi (vedi
3648   sez.~\ref{sec:file_special_perm}) o con l'uso delle funzioni per la modifica
3649   degli \ids{UID} dei processi (vedi sez.~\ref{sec:proc_setuid}). 
3650
3651   L'operazione è stata introdotta a partire dal kernel 2.3.20, fino al kernel
3652   2.6.12 e per i kernel successivi al 2.6.17 era possibile usare solo un
3653   valore 0 di \param{arg2} per disattivare il flag ed un valore 1 per
3654   attivarlo. Nei kernel dal 2.6.13 al 2.6.17 è stato supportato anche il
3655   valore 2, che causava la generazione di un \itindex{core~dump} \textit{core
3656     dump} leggibile solo dall'amministratore, ma questa funzionalità è stata
3657   rimossa per motivi di sicurezza, in quanto consentiva ad un utente normale
3658   di creare un file di \textit{core dump} appartenente all'amministratore in
3659   directory dove l'utente avrebbe avuto permessi di accesso.
3660
3661 \item[\const{PR\_GET\_DUMPABLE}] Ottiene come valore di ritorno della funzione
3662   lo stato corrente del flag che controlla la effettiva generazione dei
3663   \itindex{core~dump} \textit{core dump}. Introdotta a partire dal kernel
3664   2.3.20.
3665
3666 \item[\const{PR\_SET\_ENDIAN}] Imposta la \itindex{endianness}
3667   \textit{endianness} del processo chiamante secondo il valore fornito
3668   in \param{arg2}. I valori possibili sono sono: \const{PR\_ENDIAN\_BIG}
3669   (\textit{big endian}), \const{PR\_ENDIAN\_LITTLE} (\textit{little endian}),
3670   e \const{PR\_ENDIAN\_PPC\_LITTLE} (lo pseudo \textit{little endian} del
3671   PowerPC). Introdotta a partire dal kernel 2.6.18, solo per architettura
3672   PowerPC.
3673
3674 \item[\const{PR\_GET\_ENDIAN}] Ottiene il valore della \itindex{endianness}
3675   \textit{endianness} del processo chiamante, salvato sulla variabile puntata
3676   da \param{arg2} che deve essere passata come di tipo ``\ctyp{int
3677     *}''. Introdotta a partire dal kernel 2.6.18, solo su PowerPC.
3678
3679 \item[\const{PR\_SET\_FPEMU}] Imposta i bit di controllo per l'emulazione
3680   della virgola mobile su architettura ia64, secondo il valore
3681   di \param{arg2}, si deve passare \const{PR\_FPEMU\_NOPRINT} per emulare in
3682   maniera trasparente l'accesso alle operazioni in virgola mobile, o
3683   \const{PR\_FPEMU\_SIGFPE} per non emularle ed inviare il segnale
3684   \signal{SIGFPE} (vedi sez.~\ref{sec:sig_prog_error}). Introdotta a partire
3685   dal kernel 2.4.18, solo su architettura ia64.
3686
3687 \item[\const{PR\_GET\_FPEMU}] Ottiene il valore dei flag di controllo
3688   dell'emulazione della virgola mobile, salvato all'indirizzo puntato
3689   da \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3690   partire dal kernel 2.4.18, solo su architettura ia64.
3691
3692 \item[\const{PR\_SET\_FPEXC}] Imposta la modalità delle eccezioni in virgola
3693   mobile (\textit{floating-point exception mode}) al valore di \param{arg2}.
3694   I valori possibili sono: 
3695   \begin{itemize*}
3696   \item \const{PR\_FP\_EXC\_SW\_ENABLE} per usare FPEXC per le eccezioni,
3697   \item \const{PR\_FP\_EXC\_DIV} per la divisione per zero in virgola mobile,
3698   \item \const{PR\_FP\_EXC\_OVF} per gli overflow,
3699   \item \const{PR\_FP\_EXC\_UND} per gli underflow,
3700   \item \const{PR\_FP\_EXC\_RES} per risultati non esatti,
3701   \item \const{PR\_FP\_EXC\_INV} per operazioni invalide,
3702   \item \const{PR\_FP\_EXC\_DISABLED} per disabilitare le eccezioni,
3703   \item \const{PR\_FP\_EXC\_NONRECOV} per usare la modalità di eccezione
3704     asincrona non recuperabile,
3705   \item \const{PR\_FP\_EXC\_ASYNC} per usare la modalità di eccezione
3706     asincrona recuperabile,
3707   \item \const{PR\_FP\_EXC\_PRECISE} per la modalità precisa di
3708     eccezione.\footnote{trattasi di gestione specialistica della gestione
3709       delle eccezioni dei calcoli in virgola mobile che, i cui dettagli al
3710       momento vanno al di là dello scopo di questo testo.}
3711   \end{itemize*}
3712 Introdotta a partire dal kernel 2.4.21, solo su PowerPC.
3713
3714 \item[\const{PR\_GET\_FPEXC}] Ottiene il valore della modalità delle eccezioni
3715   delle operazioni in virgola mobile, salvata all'indirizzo
3716   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''.  Introdotta
3717   a partire dal kernel 2.4.21, solo su PowerPC.
3718
3719 \item[\const{PR\_SET\_KEEPCAPS}] Consente di controllare quali
3720   \itindex{capabilities} \textit{capabilities} vengono cancellate quando si
3721   esegue un cambiamento di \ids{UID} del processo (per i dettagli si veda
3722   sez.~\ref{sec:proc_capabilities}, in particolare quanto illustrato a
3723   pag.~\pageref{sec:capability-uid-transition}). Un valore nullo (il default)
3724   per \param{arg2} comporta che vengano cancellate, il valore 1 che vengano
3725   mantenute, questo valore viene sempre cancellato attraverso una \func{exec}.
3726   L'uso di questo flag è stato sostituito, a partire dal kernel 2.6.26, dal
3727   flag \const{SECURE\_KEEP\_CAPS} dei \itindex{securebits} \textit{securebits}
3728   (vedi l'uso di \const{PR\_SET\_SECUREBITS} più avanti). Introdotta a partire
3729   dal kernel 2.2.18.
3730
3731 \item[\const{PR\_GET\_KEEPCAPS}] Ottiene come valore di ritorno della funzione
3732   il valore del flag di controllo delle \itindex{capabilities}
3733   \textit{capabilities} impostato con \const{PR\_SET\_KEEPCAPS}. Introdotta a
3734   partire dal kernel 2.2.18.
3735
3736 \item[\const{PR\_SET\_NAME}] Imposta il nome del processo chiamante alla
3737   stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}''. Il
3738   nome può essere lungo al massimo 16 caratteri, e la stringa deve essere
3739   terminata da NUL se più corta.  Introdotta a partire dal kernel 2.6.9.
3740
3741 \item[\const{PR\_GET\_NAME}] Ottiene il nome del processo chiamante nella
3742   stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}'';
3743   si devono allocare per questo almeno 16 byte, e il nome sarà terminato da
3744   NUL se più corto. Introdotta a partire dal kernel 2.6.9.
3745
3746 \item[\const{PR\_SET\_PDEATHSIG}] Consente di richiedere l'emissione di un
3747   segnale, che sarà ricevuto dal processo chiamante, in occorrenza della
3748   terminazione del proprio processo padre; in sostanza consente di invertire
3749   il ruolo di \signal{SIGCHLD}. Il valore di \param{arg2} deve indicare il
3750   numero del segnale, o 0 per disabilitare l'emissione. Il valore viene
3751   automaticamente cancellato per un processo figlio creato con \func{fork}.
3752   Introdotta a partire dal kernel 2.1.57.
3753
3754 \item[\const{PR\_GET\_PDEATHSIG}] Ottiene il valore dell'eventuale segnale
3755   emesso alla terminazione del padre, salvato all'indirizzo
3756   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3757   partire dal kernel 2.3.15.
3758
3759 \item[\const{PR\_SET\_SECCOMP}] Imposta il cosiddetto
3760   \itindex{secure~computing~mode} \textit{secure computing mode} per il
3761   processo corrente. Prevede come unica possibilità che \param{arg2} sia
3762   impostato ad 1. Una volta abilitato il \itindex{secure~computing~mode}
3763   \textit{secure computing mode} il processo potrà utilizzare soltanto un
3764   insieme estremamente limitato di \textit{system call}: \func{read},
3765   \func{write}, \func{\_exit} e \funcm{sigreturn}. Ogni altra \textit{system
3766     call} porterà all'emissione di un \signal{SIGKILL} (vedi
3767   sez.~\ref{sec:sig_termination}).  Il \textit{secure computing mode} è stato
3768   ideato per fornire un supporto per l'esecuzione di codice esterno non fidato
3769   e non verificabile a scopo di calcolo;\footnote{lo scopo è quello di poter
3770     vendere la capacità di calcolo della proprio macchina ad un qualche
3771     servizio di calcolo distribuito senza comprometterne la sicurezza
3772     eseguendo codice non sotto il proprio controllo.} in genere i dati vengono
3773   letti o scritti grazie ad un socket o una pipe, e per evitare problemi di
3774   sicurezza non sono possibili altre operazioni se non quelle citate.
3775   Introdotta a partire dal kernel 2.6.23, disponibile solo se si è abilitato
3776   il supporto nel kernel con \texttt{CONFIG\_SECCOMP}.
3777
3778 \item[\const{PR\_GET\_SECCOMP}] Ottiene come valore di ritorno della funzione
3779   lo stato corrente del \textit{secure computing mode}, al momento attuale la
3780   funzione è totalmente inutile in quanto l'unico valore ottenibile è 0, dato
3781   che la chiamata di questa funzione in \itindex{secure~computing~mode}
3782   \textit{secure computing mode} comporterebbe l'emissione di
3783   \signal{SIGKILL}, è stata comunque definita per eventuali estensioni future.
3784   Introdotta a partire dal kernel 2.6.23.
3785
3786 \item[\const{PR\_SET\_SECUREBITS}] Imposta i \itindex{securebits}
3787   \textit{securebits} per il processo chiamante al valore indicato
3788   da \param{arg2}; per i dettagli sul significato dei \textit{securebits} si
3789   veda sez.~\ref{sec:proc_capabilities}, ed in particolare i valori di
3790   tab.~\ref{tab:securebits_values} e la relativa trattazione. L'operazione
3791   richiede i privilegi di amministratore (la \itindex{capabilities} capacità
3792   \const{CAP\_SETPCAP}), altrimenti la chiamata fallirà con un errore di
3793   \errval{EPERM}. Introdotta a partire dal kernel 2.6.26.
3794
3795 \item[\const{PR\_GET\_SECUREBITS}] Ottiene come valore di ritorno della
3796   funzione l'impostazione corrente per i \itindex{securebits}
3797   \textit{securebits}. Introdotta a partire dal kernel 2.6.26.
3798
3799 \item[\const{PR\_SET\_TIMING}] Imposta il metodo di temporizzazione del
3800   processo da indicare con il valore di \param{arg2}, attualmente i valori
3801   possibili sono due, con \const{PR\_TIMING\_STATISTICAL} si usa il metodo
3802   statistico tradizionale, con \const{PR\_TIMING\_TIMESTAMP} il più accurato
3803   basato su dei \textit{timestamp}, quest'ultimo però non è ancora
3804   implementato ed il suo uso comporta la restituzione di un errore di
3805   \errval{EINVAL}. Introdotta a partire dal kernel 2.6.0-test4.
3806
3807 \item[\const{PR\_GET\_TIMING}] Ottiene come valore di ritorno della funzione
3808   il metodo di temporizzazione del processo attualmente in uso (uno dei due
3809   valori citati per \const{PR\_SET\_TIMING}). Introdotta a partire dal kernel
3810   2.6.0-test4.
3811
3812 \item[\const{PR\_SET\_TSC}] Imposta il flag che indica se il processo
3813   chiamante può leggere il registro di processore contenente il contatore dei
3814   \textit{timestamp} (TSC, o \textit{Time Stamp Counter}) da indicare con il
3815   valore di \param{arg2}. Si deve specificare \const{PR\_TSC\_ENABLE} per
3816   abilitare la lettura o \const{PR\_TSC\_SIGSEGV} per disabilitarla con la
3817   generazione di un segnale di \signal{SIGSEGV} (vedi
3818   sez.~\ref{sec:sig_prog_error}). La lettura viene automaticamente
3819   disabilitata se si attiva il \itindex{secure~computing~mode} \textit{secure
3820     computing mode}.  Introdotta a partire dal kernel 2.6.26, solo su x86.
3821
3822 \item[\const{PR\_GET\_TSC}] Ottiene il valore del flag che controlla la
3823   lettura del contattore dei \textit{timestamp}, salvato all'indirizzo
3824   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3825   partire dal kernel 2.6.26, solo su x86.
3826 % articoli sul TSC e relativi problemi: http://lwn.net/Articles/209101/,
3827 % http://blog.cr0.org/2009/05/time-stamp-counter-disabling-oddities.html,
3828 % http://en.wikipedia.org/wiki/Time_Stamp_Counter 
3829
3830 \item[\const{PR\_SET\_UNALIGN}] Imposta la modalità di controllo per l'accesso
3831   a indirizzi di memoria non allineati, che in varie architetture risultano
3832   illegali, da indicare con il valore di \param{arg2}. Si deve specificare il
3833   valore \const{PR\_UNALIGN\_NOPRINT} per ignorare gli accessi non allineati,
3834   ed il valore \const{PR\_UNALIGN\_SIGBUS} per generare un segnale di
3835   \signal{SIGBUS} (vedi sez.~\ref{sec:sig_prog_error}) in caso di accesso non
3836   allineato.  Introdotta con diverse versioni su diverse architetture.
3837
3838 \item[\const{PR\_GET\_UNALIGN}] Ottiene il valore della modalità di controllo
3839   per l'accesso a indirizzi di memoria non allineati, salvato all'indirizzo
3840   puntato \param{arg2}, che deve essere di tipo \code{(int *)}. Introdotta con
3841   diverse versioni su diverse architetture.
3842 \item[\const{PR\_MCE\_KILL}] Imposta la politica di gestione degli errori
3843   dovuti a corruzione della memoria per problemi hardware. Questo tipo di
3844   errori vengono riportati dall'hardware di controllo della RAM e vengono
3845   gestiti dal kernel,\footnote{la funzionalità è disponibile solo sulle
3846     piattaforme più avanzate che hanno il supporto hardware per questo tipo di
3847     controlli.} ma devono essere opportunamente riportati ai processi che
3848   usano quella parte di RAM che presenta errori; nel caso specifico questo
3849   avviene attraverso l'emissione di un segnale di \signal{SIGBUS} (vedi
3850   sez.~\ref{sec:sig_prog_error}).\footnote{in particolare viene anche
3851     impostato il valore di \var{si\_code} in \struct{siginfo\_t} a
3852     \const{BUS\_MCEERR\_AO}; per il significato di tutto questo si faccia
3853     riferimento alla trattazione di sez.~\ref{sec:sig_sigaction}.}
3854
3855   Il comportamento di default prevede che per tutti i processi si applichi la
3856   politica generale di sistema definita nel file
3857   \sysctlfile{vm/memory\_failure\_early\_kill}, ma specificando
3858   per \param{arg2} il valore \const{PR\_MCE\_KILL\_SET} è possibile impostare
3859   con il contenuto di \param{arg3} una politica specifica del processo
3860   chiamante. Si può tornare alla politica di default del sistema utilizzando
3861   invece per \param{arg2} il valore \const{PR\_MCE\_KILL\_CLEAR}. In tutti i
3862   casi, per compatibilità con eventuali estensioni future, tutti i valori
3863   degli argomenti non utilizzati devono essere esplicitamente posti a zero,
3864   pena il fallimento della chiamata con un errore di \errval{EINVAL}.
3865   
3866   In caso di impostazione di una politica specifica del processo con
3867   \const{PR\_MCE\_KILL\_SET} i valori di \param{arg3} possono essere soltanto
3868   due, che corrispondono anche al valore che si trova nell'impostazione
3869   generale di sistema di \texttt{memory\_failure\_early\_kill}, con
3870   \const{PR\_MCE\_KILL\_EARLY} si richiede l'emissione immediata di
3871   \signal{SIGBUS} non appena viene rilevato un errore, mentre con
3872   \const{PR\_MCE\_KILL\_LATE} il segnale verrà inviato solo quando il processo
3873   tenterà un accesso alla memoria corrotta. Questi due valori corrispondono
3874   rispettivamente ai valori 1 e 0 di
3875   \texttt{memory\_failure\_early\_kill}.\footnote{in sostanza nel primo caso
3876     viene immediatamente inviato il segnale a tutti i processi che hanno la
3877     memoria corrotta mappata all'interno del loro spazio degli indirizzi, nel
3878     secondo caso prima la pagina di memoria viene tolta dallo spazio degli
3879     indirizzi di ciascun processo, mentre il segnale viene inviato solo quei
3880     processi che tentano di accedervi.} Si può usare per \param{arg3} anche un
3881   terzo valore, \const{PR\_MCE\_KILL\_DEFAULT}, che corrisponde a impostare
3882   per il processo la politica di default.\footnote{si presume la politica di
3883     default corrente, in modo da non essere influenzati da un eventuale
3884     successivo cambiamento della stessa.} Introdotta a partire dal kernel
3885   2.6.32.
3886 \item[\const{PR\_MCE\_KILL\_GET}] Ottiene come valore di ritorno della
3887   funzione la politica di gestione degli errori dovuti a corruzione della
3888   memoria. Tutti gli argomenti non utilizzati (al momento tutti) devono essere
3889   nulli pena la ricezione di un errore di \errval{EINVAL}. Introdotta a
3890   partire dal kernel 2.6.32.
3891 % TODO: verificare questa parte
3892 \item[PR\_SET\_CHILD\_SUBREAPER] Imposta il processo indicato con il \ids{PID}
3893   specificato da \param{arg2} come nuovo ``\textsl{genitore adottivo}'' per
3894   tutti i processi discendenti del chiamante che diventeranno orfani,
3895   sostituendo in questo ruolo \cmd{init} (si ricordi quanto illustrato in
3896   sez.~\ref{sec:proc_termination}). Introdotta a partire dal kernel 3.4.
3897 \item[PR\_GET\_CHILD\_SUBREAPER] Ottiene il \ids{PID} del processo a cui
3898   vengono assegnati come figli gli orfani del processo corrente. Introdotta a
3899   partire dal kernel 3.4.
3900 \label{sec:prctl_operation}
3901 \end{basedescript}
3902
3903
3904
3905 \subsection{La \textit{system call} \func{clone}}
3906 \label{sec:process_clone}
3907
3908 La funzione tradizionale con cui creare un nuovo processo in un sistema
3909 Unix-like, come illustrato in sez.~\ref{sec:proc_fork}, è \func{fork}, ma con
3910 l'introduzione del supporto del kernel per i \textit{thread} (vedi
3911 cap.~\ref{cha:threads}), si è avuta la necessità di una interfaccia che
3912 consentisse un maggiore controllo sulla modalità con cui vengono creati nuovi
3913 processi, che poi è stata utilizzata anche per fornire supporto per le
3914 tecnologie di virtualizzazione dei processi (i cosiddetti \textit{container}).
3915
3916 Per questo l'interfaccia per la creazione di un nuovo processo è stata
3917 delegata ad una nuova \textit{system call}, \funcm{sys\_clone}, che consente
3918 di reimplementare anche la tradizionale \func{fork}. In realtà in questo caso
3919 più che di nuovi processi si può parlare della creazioni di nuovi
3920 ``\textit{task}'' del kernel che possono assumere la veste sia di un processo
3921 classico isolato dagli altri come quelli trattati finora, che di un
3922 \textit{thread} in cui la memoria viene condivisa fra il processo chiamante ed
3923 il nuovo processo creato, come quelli che vedremo in
3924 sez.~\ref{sec:linux_thread}. Per evitare confusione fra \textit{thread} e
3925 processi ordinari, abbiamo deciso di usare la nomenclatura \textit{task} per
3926 indicare la unità di esecuzione generica messa a disposizione del kernel che
3927 \texttt{sys\_clone} permette di creare.
3928
3929 Oltre a questo la funzione consente, ad uso delle nuove funzionalità di
3930 virtualizzazione dei processi, di creare nuovi \textit{namespace} per una
3931 serie di proprietà generali dei processi (come l'elenco dei \ids{PID},
3932 l'albero dei file, i \itindex{mount~point} \textit{mount point}, la rete,
3933 ecc.), che consentono di creare gruppi di processi che vivono in una sorta di
3934 spazio separato dagli altri, che costituisce poi quello che viene chiamato un
3935 \textit{container}.
3936
3937 La \textit{system call} richiede soltanto due argomenti: il
3938 primo, \param{flags}, consente di controllare le modalità di creazione del
3939 nuovo \textit{task}, il secondo, \param{child\_stack}, imposta l'indirizzo
3940 dello \itindex{stack} \textit{stack} per il nuovo \textit{task}, e deve essere
3941 indicato quando si intende creare un \textit{thread}. L'esecuzione del
3942 programma creato da \func{sys\_clone} riprende, come per \func{fork}, da
3943 dopo l'esecuzione della stessa.
3944
3945 La necessità di avere uno \itindex{stack} \textit{stack} alternativo c'è solo
3946 quando si intende creare un \textit{thread}, in tal caso infatti il nuovo
3947 \textit{task} vede esattamente la stessa memoria del \textit{task}
3948 ``\textsl{padre}'',\footnote{in questo caso per padre si intende semplicemente
3949   il \textit{task} che ha eseguito \func{sys\_clone} rispetto al \textit{task}
3950   da essa creato, senza nessuna delle implicazioni che il concetto ha per i
3951   processi.} e nella sua esecuzione alla prima chiamata di una funzione
3952 andrebbe a scrivere sullo \textit{stack} usato anche dal padre (si ricordi
3953 quanto visto in sez.~\ref{sec:proc_mem_layout} riguardo all'uso dello
3954 \textit{stack}).
3955
3956 Per evitare di doversi garantire contro la evidente possibilità di
3957 \itindex{race~condition} \textit{race condition} che questa situazione
3958 comporta (vedi sez.~\ref{sec:proc_race_cond} per una spiegazione della
3959 problematica) è necessario che il chiamante allochi preventivamente un'area di
3960 memoria.  In genere lo si fa con una \func{malloc} che allochi un buffer che
3961 la funzione imposterà come \textit{stack} del nuovo processo, avendo
3962 ovviamente cura di non utilizzarlo direttamente nel processo chiamante.
3963
3964 In questo modo i due \textit{task} avranno degli \textit{stack} indipendenti e
3965 non si dovranno affrontare problematiche di \itindex{race~condition}
3966 \textit{race condition}.  Si tenga presente inoltre che in molte architetture
3967 di processore lo \textit{stack} cresce verso il basso, pertanto in tal caso
3968 non si dovrà specificare per \param{child\_stack} il puntatore restituito da
3969 \func{malloc}, ma un puntatore alla fine del buffer da essa allocato.
3970
3971 Dato che tutto ciò è necessario solo per i \textit{thread} che condividono la
3972 memoria, la \textit{system call}, a differenza della funzione di libreria che
3973 vedremo a breve, consente anche di passare per \param{child\_stack} il valore
3974 \val{NULL}, che non imposta un nuovo \textit{stack}. Se infatti si crea un
3975 processo, questo ottiene un suo nuovo spazio degli indirizzi,\footnote{è
3976   sottinteso cioè che non si stia usando il flag \const{CLONE\_VM} che vedremo
3977   a breve.} ed in questo caso si applica la semantica del
3978 \itindex{copy~on~write} \textit{copy on write} illustrata in
3979 sez.~\ref{sec:proc_fork}, per cui le pagine dello \textit{stack} verranno
3980 automaticamente copiate come le altre e il nuovo processo avrà un suo
3981 \textit{stack} totalmente indipendente da quello del padre.
3982
3983 Dato che l'uso principale della nuova \textit{system call} è quello relativo
3984 alla creazione dei \textit{thread}, la \acr{glibc} definisce una funzione di
3985 libreria con una sintassi diversa, orientata a questo scopo, e la
3986 \textit{system call} resta accessibile solo se invocata esplicitamente come
3987 visto in sez.~\ref{sec:proc_syscall}.\footnote{ed inoltre per questa
3988   \textit{system call} non è disponibile la chiamata veloce con
3989   \texttt{vsyscall}.} La funzione di libreria si chiama semplicemente
3990 \funcd{clone} ed il suo prototipo è:
3991
3992 \begin{funcproto}{ 
3993 \fhead{sched.h}
3994 \fdecl{int clone(int (*fn)(void *), void *child\_stack, int flags, void *arg,
3995   ...  \\
3996 \phantom{int clone(}/* pid\_t *ptid, struct user\_desc *tls, pid\_t *ctid */ )}
3997 \fdesc{Crea un nuovo processo o \textit{thread}.} 
3998 }
3999 {La funzione ritorna il \textit{Thread ID} assegnato al nuovo processo in caso
4000   di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
4001   valori: 
4002 \begin{errlist}
4003     \item[\errcode{EAGAIN}] sono già in esecuzione troppi processi.
4004     \item[\errcode{EINVAL}] si è usata una combinazione non valida di flag o
4005       un valore nullo per \param{child\_stack}.
4006     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare una nuova
4007       \struct{task\_struct} o per copiare le parti del contesto del chiamante
4008       necessarie al nuovo \textit{task}.
4009     \item[\errcode{EPERM}] non si hanno i privilegi di amministratore
4010       richiesti dai flag indicati.
4011 \end{errlist}}
4012 \end{funcproto}
4013
4014 % NOTE: una pagina con la descrizione degli argomenti:
4015 % * http://www.lindevdoc.org/wiki/Clone 
4016
4017 La funzione prende come primo argomento \param{fn} il puntatore alla funzione
4018 che verrà messa in esecuzione nel nuovo processo, che può avere un unico
4019 argomento di tipo puntatore a \ctyp{void}, il cui valore viene passato dal
4020 terzo argomento \param{arg}. Per quanto il precedente prototipo possa
4021 intimidire nella sua espressione, in realtà l'uso è molto semplice basterà
4022 definire una qualunque funzione \param{fn} che restituisce un intero ed ha
4023 come argomento un puntatore a \ctyp{void}, e \code{fn(arg)} sarà eseguita in
4024 un nuovo processo.
4025
4026 Il nuovo processo resterà in esecuzione fintanto che la funzione \param{fn}
4027 non ritorna, o esegue \func{exit} o viene terminata da un segnale. Il valore
4028 di ritorno della funzione (o quello specificato con \func{exit}) verrà
4029 utilizzato come stato di uscita della funzione. I tre
4030 argomenti \param{ptid}, \param{tls} e \param{ctid} sono opzionali e sono
4031 presenti solo a partire dal kernel 2.6 e sono stati aggiunti come supporto per
4032 le funzioni di gestione dei \textit{thread} (la \textit{Native Thread Posix
4033   Library}, vedi sez.~\ref{sec:linux_ntpl}) nella \acr{glibc}, essi vengono
4034 utilizzati soltanto se si sono specificati rispettivamente i flag
4035 \const{CLONE\_PARENT\_SETTID}, \const{CLONE\_SETTLS} e
4036 \const{CLONE\_CHILD\_SETTID}. 
4037
4038 La funzione ritorna un l'identificatore del nuovo \textit{task}, denominato
4039 \texttt{Thread ID} (da qui in avanti \ids{TID}) il cui significato è analogo
4040 al \ids{PID} dei normali processi e che a questo corrisponde qualora si crei
4041 un processo.
4042
4043 Il comportamento di \func{clone}, che si riflette sulle caratteristiche del
4044 nuovo processo da essa creato, è controllato principalmente
4045 dall'argomento \param{flags}, che deve essere specificato come maschera
4046 binaria, ottenuta con un OR aritmetico di una delle costanti del seguente
4047 elenco, che illustra quelle attualmente disponibili:\footnote{si fa
4048   riferimento al momento della stesura di questa sezione, cioè con il kernel
4049   3.2.}
4050
4051 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
4052
4053 \item[\const{CLONE\_CHILD\_CLEARTID}] cancella il valore del \ids{TID}
4054 \item[\const{CLONE\_CHILD\_SETTID}]
4055 \item[\const{CLONE\_FILES}]
4056 \item[\const{CLONE\_FS}]
4057 \item[\const{CLONE\_IO}]
4058 \item[\const{CLONE\_NEWIPC}]
4059 \item[\const{CLONE\_NEWNET}]
4060 \item[\const{CLONE\_NEWNS}]
4061 \item[\const{CLONE\_NEWPID}]
4062 \item[\const{CLONE\_NEWUTS}]
4063 \item[\const{CLONE\_PARENT}]
4064 \item[\const{CLONE\_PARENT\_SETTID}]
4065 \item[\const{CLONE\_PID}]
4066 \item[\const{CLONE\_PTRACE}]
4067 \item[\const{CLONE\_SETTLS}]
4068 \item[\const{CLONE\_SIGHAND}]
4069 \item[\const{CLONE\_STOPPED}]
4070 \item[\const{CLONE\_SYSVSEM}]
4071 \item[\const{CLONE\_THREAD}]
4072 \item[\const{CLONE\_UNTRACED}]
4073 \item[\const{CLONE\_VFORK}]
4074 \item[\const{CLONE\_VM}]
4075 \end{basedescript}
4076
4077
4078 %TODO trattare unshare
4079
4080
4081 \subsection{La funzione \func{ptrace}}
4082 \label{sec:process_ptrace}
4083
4084 Da fare
4085
4086 % TODO: trattare PTRACE_SEIZE, aggiunta con il kernel 3.1
4087
4088
4089 \subsection{La gestione delle operazioni in virgola mobile}
4090 \label{sec:process_fenv}
4091
4092 Da fare.
4093
4094 % TODO eccezioni ed arrotondamenti per la matematica in virgola mobile 
4095 % consultare la manpage di fenv, math_error, fpclassify, matherr, isgreater,
4096 % isnan, nan, INFINITY
4097
4098
4099 \subsection{L'accesso alle porte di I/O}
4100 \label{sec:process_io_port}
4101
4102 %
4103 % TODO l'I/O sulle porte di I/O 
4104 % consultare le manpage di ioperm, iopl e outb
4105 % non c'entra nulla qui, va trovato un altro posto (altri meccanismi di I/O in
4106 % fileintro ?)
4107
4108 Da fare
4109
4110
4111 %\subsection{La gestione di architetture a nodi multipli}
4112 %\label{sec:process_NUMA}
4113
4114 % TODO trattare i cpuset, che attiene anche a NUMA, e che possono essere usati
4115 % per associare l'uso di gruppi di processori a gruppi di processi (vedi
4116 % manpage omonima)
4117 % TODO trattare getcpu, che attiene anche a NUMA, mettere qui anche
4118 % sched_getcpu, che potrebbe essere indipendente ma richiama getcpu
4119
4120 %TODO trattare le funzionalità per il NUMA
4121 % vedi man numa e, mbind, get_mempolicy, set_mempolicy, 
4122 % le pagine di manuale relative
4123 % vedere anche dove metterle...
4124
4125
4126 \section{Problematiche di programmazione multitasking}
4127 \label{sec:proc_multi_prog}
4128
4129 Benché i processi siano strutturati in modo da apparire il più possibile come
4130 indipendenti l'uno dall'altro, nella programmazione in un sistema multitasking
4131 occorre tenere conto di una serie di problematiche che normalmente non
4132 esistono quando si ha a che fare con un sistema in cui viene eseguito un solo
4133 programma alla volta. 
4134
4135 Per questo motivo, essendo questo argomento di carattere generale, ci è parso
4136 opportuno introdurre sinteticamente queste problematiche, che ritroveremo a
4137 più riprese in capitoli successivi, in questa sezione conclusiva del capitolo
4138 in cui abbiamo affrontato la gestione dei processi, sottolineando come esse
4139 diventino cogenti quando invece si usano i \textit{thread}.
4140
4141
4142 \subsection{Le operazioni atomiche}
4143 \label{sec:proc_atom_oper}
4144
4145 La nozione di \textsl{operazione atomica} deriva dal significato greco della
4146 parola atomo, cioè indivisibile; si dice infatti che un'operazione è atomica
4147 quando si ha la certezza che, qualora essa venga effettuata, tutti i passaggi
4148 che devono essere compiuti per realizzarla verranno eseguiti senza possibilità
4149 di interruzione in una fase intermedia.
4150
4151 In un ambiente multitasking il concetto è essenziale, dato che un processo può
4152 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
4153 altro processo o dalla ricezione di un segnale. Occorre pertanto essere
4154 accorti nei confronti delle possibili \itindex{race~condition} \textit{race
4155   condition} (vedi sez.~\ref{sec:proc_race_cond}) derivanti da operazioni
4156 interrotte in una fase in cui non erano ancora state completate.
4157
4158 Nel caso dell'interazione fra processi la situazione è molto più semplice, ed
4159 occorre preoccuparsi della atomicità delle operazioni solo quando si ha a che
4160 fare con meccanismi di intercomunicazione (che esamineremo in dettaglio in
4161 cap.~\ref{cha:IPC}) o nelle operazioni con i file (vedremo alcuni esempi in
4162 sez.~\ref{sec:file_shared_access}). In questi casi in genere l'uso delle
4163 appropriate funzioni di libreria per compiere le operazioni necessarie è
4164 garanzia sufficiente di atomicità in quanto le \textit{system call} con cui
4165 esse sono realizzate non possono essere interrotte (o subire interferenze
4166 pericolose) da altri processi.
4167
4168 Nel caso dei segnali invece la situazione è molto più delicata, in quanto lo
4169 stesso processo, e pure alcune \textit{system call}, possono essere interrotti
4170 in qualunque momento, e le operazioni di un eventuale \textit{signal handler}
4171 sono compiute nello stesso spazio di indirizzi del processo. Per questo, anche
4172 il solo accesso o l'assegnazione di una variabile possono non essere più
4173 operazioni atomiche (torneremo su questi aspetti in
4174 sez.~\ref{sec:sig_adv_control}).
4175
4176 Qualora invece si usino i \textit{thread}, in cui lo spazio degli indirizzi è
4177 condiviso, il problema è sempre presente, perché qualunque \textit{thread} può
4178 interromperne un altro in qualunque momento e l'atomicità di qualunque
4179 operazione è messa in discussione, per cui l'assenza di eventuali
4180 \itindex{race~condition} \textit{race condition} deve essere sempre verificata
4181 nei minimi dettagli.
4182
4183 In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t},
4184 il cui accesso è assicurato essere atomico.  In pratica comunque si può
4185 assumere che, in ogni piattaforma su cui è implementato Linux, il tipo
4186 \ctyp{int}, gli altri interi di dimensione inferiore ed i puntatori sono
4187 atomici. Non è affatto detto che lo stesso valga per interi di dimensioni
4188 maggiori (in cui l'accesso può comportare più istruzioni in assembler) o per
4189 le strutture di dati. In tutti questi casi è anche opportuno marcare come
4190 \direct{volatile} le variabili che possono essere interessate ad accesso
4191 condiviso, onde evitare problemi con le ottimizzazioni del codice.
4192
4193
4194
4195 \subsection{Le \textit{race condition} ed i \textit{deadlock}}
4196 \label{sec:proc_race_cond}
4197
4198 \itindbeg{race~condition}
4199
4200 Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
4201 diversi operano su una risorsa comune, ed in cui il risultato viene a
4202 dipendere dall'ordine in cui essi effettuano le loro operazioni. Il caso
4203 tipico è quello di un'operazione che viene eseguita da un processo in più
4204 passi, e può essere compromessa dall'intervento di un altro processo che
4205 accede alla stessa risorsa quando ancora non tutti i passi sono stati
4206 completati.
4207
4208 Dato che in un sistema multitasking ogni processo può essere interrotto in
4209 qualunque momento per farne subentrare un altro in esecuzione, niente può
4210 assicurare un preciso ordine di esecuzione fra processi diversi o che una
4211 sezione di un programma possa essere eseguita senza interruzioni da parte di
4212 altri. Queste situazioni comportano pertanto errori estremamente subdoli e
4213 difficili da tracciare, in quanto nella maggior parte dei casi tutto
4214 funzionerà regolarmente, e solo occasionalmente si avranno degli errori. 
4215
4216 Per questo occorre essere ben consapevoli di queste problematiche, e del fatto
4217 che l'unico modo per evitarle è quello di riconoscerle come tali e prendere
4218 gli adeguati provvedimenti per far sì che non si verifichino. Casi tipici di
4219 \textit{race condition} si hanno quando diversi processi accedono allo stesso
4220 file, o nell'accesso a meccanismi di intercomunicazione come la memoria
4221 condivisa. 
4222
4223 In questi casi, se non si dispone della possibilità di eseguire atomicamente
4224 le operazioni necessarie, occorre che quelle parti di codice in cui si
4225 compiono le operazioni sulle risorse condivise (le cosiddette
4226 \index{sezione~critica} \textsl{sezioni critiche}) del programma, siano
4227 opportunamente protette da meccanismi di sincronizzazione (torneremo su queste
4228 problematiche di questo tipo in cap.~\ref{cha:IPC}).
4229
4230 Nel caso dei \textit{thread} invece la situazione è molto più delicata e
4231 sostanzialmente qualunque accesso in memoria (a buffer, variabili o altro) può
4232 essere soggetto a \textit{race condition} dato potrebbe essere interrotto in
4233 qualunque momento da un altro \textit{thread}. In tal caso occorre pianificare
4234 con estrema attenzione l'uso delle variabili ed utilizzare i vari meccanismi
4235 di sincronizzazione che anche in questo caso sono disponibili (torneremo su
4236 queste problematiche di questo tipo in cap.~\ref{sez:thread_xxx})
4237
4238 \itindbeg{deadlock} Un caso particolare di \textit{race condition} sono poi i
4239 cosiddetti \textit{deadlock} (traducibile in \textsl{condizione di stallo}),
4240 che particolarmente gravi in quanto comportano spesso il blocco completo di un
4241 servizio, e non il fallimento di una singola operazione. Per definizione un
4242 \textit{deadlock} è una situazione in cui due o più processi non sono più in
4243 grado di proseguire perché ciascuno aspetta il risultato di una operazione che
4244 dovrebbe essere eseguita dall'altro.
4245
4246 L'esempio tipico di una situazione che può condurre ad un
4247 \textit{deadlock} è quello in cui un flag di
4248 ``\textsl{occupazione}'' viene rilasciato da un evento asincrono (come un
4249 segnale o un altro processo) fra il momento in cui lo si è controllato
4250 (trovandolo occupato) e la successiva operazione di attesa per lo sblocco. In
4251 questo caso, dato che l'evento di sblocco del flag è avvenuto senza che ce ne
4252 accorgessimo proprio fra il controllo e la messa in attesa, quest'ultima
4253 diventerà perpetua (da cui il nome di \textit{deadlock}).
4254
4255 In tutti questi casi è di fondamentale importanza il concetto di atomicità
4256 visto in sez.~\ref{sec:proc_atom_oper}; questi problemi infatti possono essere
4257 risolti soltanto assicurandosi, quando essa sia richiesta, che sia possibile
4258 eseguire in maniera atomica le operazioni necessarie.
4259
4260 \itindend{race~condition}
4261 \itindend{deadlock}
4262
4263
4264 \subsection{Le funzioni rientranti}
4265 \label{sec:proc_reentrant}
4266
4267 \index{funzioni!rientranti|(}
4268
4269 Si dice \textsl{rientrante} una funzione che può essere interrotta in
4270 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
4271 un altro \itindex{thread} \textit{thread} di esecuzione senza che questo
4272 comporti nessun problema nell'esecuzione della stessa. La problematica è
4273 comune nella programmazione \itindex{thread} \textit{multi-thread}, ma si
4274 hanno gli stessi problemi quando si vogliono chiamare delle funzioni
4275 all'interno dei gestori dei segnali.
4276
4277 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
4278 queste infatti vengono allocate nello \itindex{stack} \textit{stack}, ed
4279 un'altra invocazione non fa altro che allocarne un'altra copia. Una funzione
4280 può non essere rientrante quando opera su memoria che non è nello
4281 \itindex{stack} \textit{stack}.  Ad esempio una funzione non è mai rientrante
4282 se usa una \index{variabili!globali} variabile globale o
4283 \index{variabili!statiche} statica.
4284
4285 Nel caso invece la funzione operi su un oggetto allocato dinamicamente, la
4286 cosa viene a dipendere da come avvengono le operazioni: se l'oggetto è creato
4287 ogni volta e ritornato indietro la funzione può essere rientrante, se invece
4288 esso viene individuato dalla funzione stessa due chiamate alla stessa funzione
4289 potranno interferire quando entrambe faranno riferimento allo stesso oggetto.
4290 Allo stesso modo una funzione può non essere rientrante se usa e modifica un
4291 oggetto che le viene fornito dal chiamante: due chiamate possono interferire
4292 se viene passato lo stesso oggetto; in tutti questi casi occorre molta cura da
4293 parte del programmatore.
4294
4295 In genere le funzioni di libreria non sono rientranti, molte di esse ad
4296 esempio utilizzano \index{variabili!statiche} variabili statiche, la
4297 \acr{glibc} però mette a disposizione due macro di compilatore,
4298 \macro{\_REENTRANT} e \macro{\_THREAD\_SAFE}, la cui definizione attiva le
4299 versioni rientranti di varie funzioni di libreria, che sono identificate
4300 aggiungendo il suffisso \code{\_r} al nome della versione normale.
4301
4302 \index{funzioni!rientranti|)}
4303
4304
4305 % LocalWords:  multitasking like VMS child process identifier pid sez shell fig
4306 % LocalWords:  parent kernel init pstree keventd kswapd table struct linux call
4307 % LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
4308 % LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
4309 % LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD threads
4310 % LocalWords:  void tempnam pathname sibling cap errno EAGAIN ENOMEM
4311 % LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
4312 % LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
4313 % LocalWords:  close group session tms lock vfork execve BSD stream main abort
4314 % LocalWords:  SIGABRT SIGCHLD SIGHUP foreground SIGCONT termination signal ANY
4315 % LocalWords:  handler kill EINTR POSIX options WNOHANG ECHILD option WUNTRACED
4316 % LocalWords:  dump bits rusage getrusage heap const filename argv envp EACCES
4317 % LocalWords:  filesystem noexec EPERM suid sgid root nosuid ENOEXEC ENOENT ELF
4318 % LocalWords:  ETXTBSY EINVAL ELIBBAD BIG EFAULT EIO ENAMETOOLONG ELOOP ENOTDIR
4319 % LocalWords:  ENFILE EMFILE argc execl path execv execle execlp execvp vector
4320 % LocalWords:  list environ NULL umask pending utime cutime ustime fcntl linker
4321 % LocalWords:  opendir libc interpreter FreeBSD capabilities mandatory access
4322 % LocalWords:  control MAC SELinux security modules LSM superuser uid gid saved
4323 % LocalWords:  effective euid egid dell' fsuid fsgid getuid geteuid getgid SVr
4324 % LocalWords:  getegid IDS NFS setuid setgid all' logout utmp screen xterm TODO
4325 % LocalWords:  setreuid setregid FIXME ruid rgid seteuid setegid setresuid size
4326 % LocalWords:  setresgid getresuid getresgid value result argument setfsuid DAC
4327 % LocalWords:  setfsgid NGROUPS sysconf getgroups getgrouplist groups ngroups
4328 % LocalWords:  setgroups initgroups patch LIDS CHOWN OVERRIDE Discrectionary PF
4329 % LocalWords:  SEARCH chattr sticky NOATIME socket domain immutable append mmap
4330 % LocalWords:  broadcast multicast multicasting memory locking mlock mlockall
4331 % LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
4332 % LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
4333 % LocalWords:  capability capget capset header ESRCH undef version obj clear PT
4334 % LocalWords:  pag ssize length proc capgetp preemptive cache runnable  contest
4335 % LocalWords:  SIGSTOP soft slice nice niceness counter which SC switch side
4336 % LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO  COUNT
4337 % LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
4338 % LocalWords:  min getparam getscheduler interval robin ENOSYS fifo ping long
4339 % LocalWords:  affinity setaffinity unsigned mask cpu NUMA CLR ISSET SETSIZE RR
4340 % LocalWords:  getaffinity assembler deadlock REENTRANT SAFE tgz MYPGRP l'OR rr
4341 % LocalWords:  WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WCOREDUMP WIFSTOPPED
4342 % LocalWords:  WSTOPSIG opt char INTERP arg SIG IGN DFL mascheck grp FOWNER RAW
4343 % LocalWords:  FSETID SETPCAP BIND SERVICE ADMIN PACKET IPC OWNER MODULE RAWIO
4344 % LocalWords:  PACCT RESOURCE TTY CONFIG SETFCAP hdrp datap libcap lcap text tp
4345 % LocalWords:  get ncap caps CapInh CapPrm fffffeff CapEff getcap STAT dall'I
4346 % LocalWords:  inc PRIO SUSv PRGR prio SysV SunOS Ultrix sched timespec len sig
4347 % LocalWords:  cpusetsize cpuset atomic tickless redirezione WCONTINUED stopped
4348 % LocalWords:  waitid NOCLDSTOP ENOCHLD WIFCONTINUED ifdef endif idtype siginfo
4349 % LocalWords:  infop ALL WEXITED WSTOPPED WNOWAIT signo CLD EXITED KILLED page
4350 % LocalWords:  CONTINUED sources forking Spawned successfully executing exiting
4351 % LocalWords:  next cat for COMMAND pts bash defunct TRAPPED DUMPED PR effects
4352 % LocalWords:  SIGKILL static RLIMIT preemption PREEMPT VOLUNTARY IDLE RTPRIO
4353 % LocalWords:  completely fair compat uniform CFQ queuing elevator dev cfq RT
4354 % LocalWords:  documentation block syscall ioprio IPRIO CLASS class best effort
4355 % LocalWords:  refresh semop dnotify MADV DONTFORK prctl WCLONE WALL big mount
4356 % LocalWords:  WNOTHREAD DUMPABLE KEEPCAPS IRIX CAPBSET endianness endian flags
4357 % LocalWords:  little PPC PowerPC FPEMU NOPRINT SIGFPE FPEXC point FP SW malloc
4358 % LocalWords:  exception EXC ENABLE OVF overflow UND underflow RES INV DISABLED
4359 % LocalWords:  NONRECOV ASYNC KEEP securebits NAME NUL PDEATHSIG SECCOMP VM FS
4360 % LocalWords:  secure computing sigreturn TIMING STATISTICAL TSC MCE conditions
4361 % LocalWords:  timestamp Stamp SIGSEGV UNALIGN SIGBUS MCEERR AO failure early
4362 % LocalWords:  namespace vsyscall SETTID FILES NEWIPC NEWNET NEWNS NEWPID ptid
4363 % LocalWords:  NEWUTS SETTLS SIGHAND SYSVSEM UNTRACED tls ctid CLEARTID panic
4364 % LocalWords:  loader EISDIR SIGTRAP uninterrutible killable EQUAL sizeof XOR
4365 % LocalWords:  destset srcset ALLOC num cpus setsize emacs pager getty TID
4366  
4367 %%% Local Variables: 
4368 %%% mode: latex
4369 %%% TeX-master: "gapil"
4370 %%% End: