Prosegue la risistemazione degli indici. Trattata CLONE_FS.
[gapil.git] / prochand.tex
1 %% prochand.tex
2 %%
3 %% Copyright (C) 2000-2015 by Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione dei processi}
13 \label{cha:process_handling}
14
15 Come accennato nell'introduzione in un sistema unix-like tutte le operazioni
16 vengono svolte tramite opportuni processi.  In sostanza questi ultimi vengono
17 a costituire l'unità base per l'allocazione e l'uso delle risorse del sistema.
18
19 Nel precedente capitolo abbiamo esaminato il funzionamento di un processo come
20 unità a se stante, in questo esamineremo il funzionamento dei processi
21 all'interno del sistema. Saranno cioè affrontati i dettagli della creazione e
22 della terminazione dei processi, della gestione dei loro attributi e
23 privilegi, e di tutte le funzioni a questo connesse. Infine nella sezione
24 finale introdurremo alcune problematiche generiche della programmazione in
25 ambiente multitasking.
26
27
28 \section{Le funzioni di base della gestione dei processi}
29 \label{sec:proc_handling}
30
31 In questa sezione tratteremo le problematiche della gestione dei processi
32 all'interno del sistema, illustrandone tutti i dettagli.  Inizieremo con una
33 panoramica dell'architettura dei processi, tratteremo poi le funzioni
34 elementari che permettono di leggerne gli identificatori, per poi passare alla
35 spiegazione delle funzioni base che si usano per la creazione e la
36 terminazione dei processi, e per la messa in esecuzione degli altri programmi.
37
38
39 \subsection{L'architettura della gestione dei processi}
40 \label{sec:proc_hierarchy}
41
42 A differenza di quanto avviene in altri sistemi, ad esempio nel VMS la
43 generazione di nuovi processi è un'operazione privilegiata, una delle
44 caratteristiche fondanti di Unix, che esamineremo in dettaglio più avanti, è
45 che qualunque processo può a sua volta generarne altri. Ogni processo è
46 identificato presso il sistema da un numero univoco, il cosiddetto
47 \itindex{Process~ID~(PID)} \textit{Process ID} o, più brevemente, \ids{PID},
48 assegnato in forma progressiva (vedi sez.~\ref{sec:proc_pid}) quando il
49 processo viene creato.
50
51 Una seconda caratteristica di un sistema unix-like è che la generazione di un
52 processo è un'operazione separata rispetto al lancio di un programma. In
53 genere la sequenza è sempre quella di creare un nuovo processo, il quale
54 eseguirà, in un passo successivo, il programma desiderato: questo è ad esempio
55 quello che fa la shell quando mette in esecuzione il programma che gli
56 indichiamo nella linea di comando.
57
58 Una terza caratteristica del sistema è che ogni processo è sempre stato
59 generato da un altro processo, il processo generato viene chiamato
60 \textit{processo figlio} (\textit{child process}) mentre quello che lo ha
61 viene chiamato \textsl{processo padre} (\textit{parent process}). Questo vale
62 per tutti i processi, con una sola eccezione, dato che ci deve essere un punto
63 di partenza esiste un processo speciale (che normalmente è \cmd{/sbin/init}),
64 che come abbiamo accennato in sez.~\ref{sec:intro_kern_and_sys} viene lanciato
65 dal kernel alla conclusione della fase di avvio. Essendo questo il primo
66 processo lanciato dal sistema ha sempre il \ids{PID} uguale a 1 e non è figlio
67 di nessun altro processo.
68
69 Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far
70 partire tutti gli altri processi necessari al funzionamento del sistema,
71 inoltre \cmd{init} è essenziale per svolgere una serie di compiti
72 amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di
73 essi in sez.~\ref{sec:proc_termination}) e non può mai essere terminato. La
74 struttura del sistema comunque consente di lanciare al posto di \cmd{init}
75 qualunque altro programma, e in casi di emergenza (ad esempio se il file di
76 \cmd{init} si fosse corrotto) è ad esempio possibile lanciare una shell al suo
77 posto.\footnote{la cosa si fa passando la riga \cmd{init=/bin/sh} come
78   parametro di avvio del kernel, l'argomento è di natura sistemistica e
79   trattato in sez.~5.3 di \cite{AGL}.}
80
81 \begin{figure}[!htb]
82   \footnotesize
83 \begin{Console}
84 [piccardi@gont piccardi]$ \textbf{pstree -n} 
85 init-+-keventd
86      |-kapm-idled
87      |-kreiserfsd
88      |-portmap
89      |-syslogd
90      |-klogd
91      |-named
92      |-rpc.statd
93      |-gpm
94      |-inetd
95      |-junkbuster
96      |-master-+-qmgr
97      |        `-pickup
98      |-sshd
99      |-xfs
100      |-cron
101      |-bash---startx---xinit-+-XFree86
102      |                       `-WindowMaker-+-ssh-agent
103      |                                     |-wmtime
104      |                                     |-wmmon
105      |                                     |-wmmount
106      |                                     |-wmppp
107      |                                     |-wmcube
108      |                                     |-wmmixer
109      |                                     |-wmgtemp
110      |                                     |-wterm---bash---pstree
111      |                                     `-wterm---bash-+-emacs
112      |                                                    `-man---pager
113      |-5*[getty]
114      |-snort
115      `-wwwoffled
116 \end{Console}
117 %$
118   \caption{L'albero dei processi, così come riportato dal comando
119     \cmd{pstree}.}
120   \label{fig:proc_tree}
121 \end{figure}
122
123 Dato che tutti i processi attivi nel sistema sono comunque generati da
124 \cmd{init} o da uno dei suoi figli si possono classificare i processi con la
125 relazione padre/figlio in un'organizzazione gerarchica ad albero. In
126 fig.~\ref{fig:proc_tree} si è mostrato il risultato del comando \cmd{pstree}
127 che permette di visualizzare questa struttura, alla cui base c'è \cmd{init}
128 che è progenitore di tutti gli altri processi.\footnote{in realtà questo non è
129   del tutto vero, in Linux, specialmente nelle versioni più recenti del
130   kernel, ci sono alcuni processi speciali (come \cmd{keventd}, \cmd{kswapd},
131   ecc.) che pur comparendo nei comandi come figli di \cmd{init}, o con
132   \ids{PID} successivi ad uno, sono in realtà processi interni al kernel e che
133   non rientrano in questa classificazione.}
134
135 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
136 \itindex{process~table} \textit{process table}. Per ciascun processo viene
137 mantenuta una voce in questa tabella, costituita da una struttura
138 \kstruct{task\_struct}, che contiene tutte le informazioni rilevanti per quel
139 processo. Tutte le strutture usate a questo scopo sono dichiarate
140 nell'\textit{header file} \file{linux/sched.h}, ed uno schema semplificato,
141 che riporta la struttura delle principali informazioni contenute nella
142 \struct{task\_struct} (che in seguito incontreremo a più riprese), è mostrato
143 in fig.~\ref{fig:proc_task_struct}.
144
145 \begin{figure}[!htb]
146   \centering \includegraphics[width=14cm]{img/task_struct}
147   \caption{Schema semplificato dell'architettura delle strutture usate dal
148     kernel nella gestione dei processi.}
149   \label{fig:proc_task_struct}
150 \end{figure}
151
152 % TODO la task_struct è cambiata per qualche dettaglio vedi anche
153 % http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
154 % TODO completare la parte su quando viene chiamato lo scheduler.
155
156 \itindbeg{scheduler}
157
158 Come accennato in sez.~\ref{sec:intro_unix_struct} è lo \textit{scheduler} che
159 decide quale processo mettere in esecuzione; esso viene eseguito in occasione
160 di dell'invocazione di ogni \textit{system call} ed per ogni interrupt
161 dall'hardware oltre che in una serie di altre occasioni, e può essere anche
162 attivato esplicitamente. Il timer di sistema provvede comunque a che esso sia
163 invocato periodicamente, generando un interrupt periodico secondo una
164 frequenza predeterminata, specificata dalla costante \const{HZ} del kernel
165 (torneremo su questo argomento in sez.~\ref{sec:sys_unix_time}), che assicura
166 che lo \textit{scheduler} venga comunque eseguito ad intervalli regolari e
167 possa prendere le sue decisioni.
168
169 A partire dal kernel 2.6.21 è stato introdotto anche un meccanismo
170 completamente diverso, detto \textit{tickless}, in cui non c'è più una
171 interruzione periodica con frequenza prefissata, ma ad ogni chiamata del timer
172 viene programmata l'interruzione successiva sulla base di una stima; in questo
173 modo si evita di dover eseguire un migliaio di interruzioni al secondo anche
174 su macchine che non stanno facendo nulla, con un forte risparmio nell'uso
175 dell'energia da parte del processore che può essere messo in stato di
176 sospensione anche per lunghi periodi di tempo.
177
178 Indipendentemente dalle motivazioni per cui questo avviene, ogni volta che
179 viene eseguito lo \textit{scheduler} effettua il calcolo delle priorità dei
180 vari processi attivi (torneremo su questo in sez.~\ref{sec:proc_priority}) e
181 stabilisce quale di essi debba essere posto in esecuzione fino alla successiva
182 invocazione.
183
184 \itindend{scheduler}
185
186 \subsection{Gli identificatori dei processi}
187 \label{sec:proc_pid}
188
189 Come accennato nella sezione precedente ogni processo viene identificato dal
190 sistema da un numero identificativo univoco, il \textit{process ID} o
191 \ids{PID}. Questo è un tipo di dato standard, \type{pid\_t} che in genere è un
192 intero con segno (nel caso di Linux e della \acr{glibc} il tipo usato è
193 \ctyp{int}).
194
195 Il \ids{PID} viene assegnato in forma progressiva ogni volta che un nuovo
196 processo viene creato,\footnote{in genere viene assegnato il numero successivo
197   a quello usato per l'ultimo processo creato, a meno che questo numero non
198   sia già utilizzato per un altro \ids{PID}, \acr{pgid} o \acr{sid} (vedi
199   sez.~\ref{sec:sess_proc_group}).} fino ad un limite che, essendo il
200 tradizionalmente il \ids{PID} un numero positivo memorizzato in un intero a 16
201 bit, arriva ad un massimo di 32768.  Oltre questo valore l'assegnazione
202 riparte dal numero più basso disponibile a partire da un minimo di
203 300,\footnote{questi valori, fino al kernel 2.4.x, erano definiti dalla macro
204   \const{PID\_MAX} nei file \file{threads.h} e \file{fork.c} dei sorgenti del
205   kernel, con il 2.6.x e la nuova interfaccia per i \itindex{thread}
206   \textit{thread} anche il meccanismo di allocazione dei \ids{PID} è stato
207   modificato ed il valore massimo è impostabile attraverso il file
208   \sysctlfile{kernel/pid\_max} e di default vale 32768.} che serve a
209 riservare i \ids{PID} più bassi ai processi eseguiti direttamente dal kernel.
210 Per questo motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di
211 avvio (\cmd{init}) ha sempre il \ids{PID} uguale a uno.
212
213 Tutti i processi inoltre memorizzano anche il \ids{PID} del genitore da cui
214 sono stati creati, questo viene chiamato in genere \ids{PPID} (da
215 \itindex{Parent~Process~ID~(PPID)} \textit{Parent Process ID}).  Questi due
216 identificativi possono essere ottenuti usando le due funzioni di sistema
217 \funcd{getpid} e \funcd{getppid}, i cui prototipi sono:
218
219 \begin{funcproto}{ 
220 \fhead{sys/types.h}
221 \fhead{unistd.h}
222 \fdecl{pid\_t getpid(void)}
223 \fdesc{Restituisce il \ids{PID} del processo corrente..} 
224 \fdecl{pid\_t getppid(void)}
225 \fdesc{Restituisce il \ids{PID} del padre del processo corrente.} 
226 }
227 {Entrambe le funzioni non riportano condizioni di errore.}   
228 \end{funcproto}
229
230 \noindent esempi dell'uso di queste funzioni sono riportati in
231 fig.~\ref{fig:proc_fork_code}, nel programma \file{fork\_test.c}.
232
233 Il fatto che il \ids{PID} sia un numero univoco per il sistema lo rende un
234 candidato per generare ulteriori indicatori associati al processo di cui
235 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
236 funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
237 \ids{PID} per generare un \textit{pathname} univoco, che non potrà essere
238 replicato da un altro processo che usi la stessa funzione. Questo utilizzo
239 però può risultare pericoloso, un \ids{PID} infatti è univoco solo fintanto
240 che un processo è attivo, una volta terminato esso potrà essere riutilizzato
241 da un processo completamente diverso, e di questo bisogna essere ben
242 consapevoli.
243
244 Tutti i processi figli dello stesso processo padre sono detti
245 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
246   sessione}, in cui si raggruppano i processi creati su uno stesso terminale,
247 o relativi allo stesso login. Torneremo su questo argomento in dettaglio in
248 cap.~\ref{cha:session}, dove esamineremo gli altri identificativi associati ad
249 un processo e le varie relazioni fra processi utilizzate per definire una
250 sessione.
251
252 Oltre al \ids{PID} e al \ids{PPID}, e a quelli che vedremo in
253 sez.~\ref{sec:sess_proc_group}, relativi al controllo di sessione, ad ogni
254 processo vengono associati degli ulteriori identificatori ed in particolare
255 quelli che vengono usati per il controllo di accesso.  Questi servono per
256 determinare se un processo può eseguire o meno le operazioni richieste, a
257 seconda dei privilegi e dell'identità di chi lo ha posto in esecuzione;
258 l'argomento è complesso e sarà affrontato in dettaglio in
259 sez.~\ref{sec:proc_perms}.
260
261
262 \subsection{La funzione \func{fork} e le funzioni di creazione dei processi}
263 \label{sec:proc_fork}
264
265 La funzione di sistema \funcd{fork} è la funzione fondamentale della gestione
266 dei processi: come si è detto tradizionalmente l'unico modo di creare un nuovo
267 processo era attraverso l'uso di questa funzione,\footnote{in realtà oggi la
268   \textit{system call} usata da Linux per creare nuovi processi è \func{clone}
269   (vedi \ref{sec:process_clone}), anche perché a partire dalla \acr{glibc}
270   2.3.3 non viene più usata la \textit{system call} originale, ma la stessa
271   \func{fork} viene implementata tramite \func{clone}, cosa che consente una
272   migliore interazione coi \textit{thread}.} essa quindi riveste un ruolo
273 centrale tutte le volte che si devono scrivere programmi che usano il
274 multitasking.\footnote{oggi questa rilevanza, con la diffusione dell'uso dei
275   \textit{thread} che tratteremo al cap.~\ref{cha:threads}, è in parte minore,
276   ma \func{fork} resta comunque la funzione principale per la creazione di
277   processi.} Il prototipo della funzione è:
278
279 \begin{funcproto}{ 
280 \fhead{unistd.h}
281 \fdecl{pid\_t fork(void)}
282 \fdesc{Crea un nuovo processo.} 
283 }
284 {La funzione ritorna il \ids{PID} del figlio al padre e $0$ al figlio in caso 
285   di successo e $-1$ al padre senza creare il figlio per un errore,
286   nel qual caso \var{errno} assumerà uno dei valori: 
287   \begin{errlist}
288   \item[\errcode{EAGAIN}] non ci sono risorse sufficienti per creare un altro
289     processo (per allocare la tabella delle pagine e le strutture del task) o
290     si è esaurito il numero di processi disponibili.
291   \item[\errcode{ENOMEM}] non è stato possibile allocare la memoria per le
292     strutture necessarie al kernel per creare il nuovo processo.
293   \end{errlist}}
294 \end{funcproto}
295
296 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
297 il processo figlio continuano ad essere eseguiti normalmente a partire
298 dall'istruzione successiva alla \func{fork}. Il processo figlio è una copia
299 del padre, e riceve una copia dei segmenti di testo, dati e dello
300 \textit{stack} (vedi sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo
301 stesso codice del padre. Si tenga presente però che la memoria è copiata e non
302 condivisa, pertanto padre e figlio vedranno variabili diverse e le eventuali
303 modifiche saranno totalmente indipendenti.
304
305 Per quanto riguarda la gestione della memoria, in generale il
306 \index{segmento!testo} segmento di testo, che è identico per i due processi, è
307 condiviso e tenuto in sola lettura per il padre e per i figli. Per gli altri
308 segmenti Linux utilizza la tecnica del \itindex{copy~on~write} \textit{copy on
309   write}. Questa tecnica comporta che una pagina di memoria viene
310 effettivamente copiata per il nuovo processo solo quando ci viene effettuata
311 sopra una scrittura, e si ha quindi una reale differenza fra padre e figlio.
312 In questo modo si rende molto più efficiente il meccanismo della creazione di
313 un nuovo processo, non essendo più necessaria la copia di tutto lo spazio
314 degli indirizzi virtuali del padre, ma solo delle pagine di memoria che sono
315 state modificate, e solo al momento della modifica stessa.
316
317 La differenza che si ha nei due processi è che nel processo padre il valore di
318 ritorno della funzione \func{fork} è il \ids{PID} del processo figlio, mentre
319 nel figlio è zero; in questo modo il programma può identificare se viene
320 eseguito dal padre o dal figlio.  Si noti come la funzione \func{fork} ritorni
321 due volte, una nel padre e una nel figlio.
322
323 La scelta di questi valori di ritorno non è casuale, un processo infatti può
324 avere più figli, ed il valore di ritorno di \func{fork} è l'unico modo che gli
325 permette di identificare quello appena creato. Al contrario un figlio ha
326 sempre un solo padre, il cui \ids{PID} può sempre essere ottenuto con
327 \func{getppid}, come spiegato in sez.~\ref{sec:proc_pid}, per cui si usa il
328 valore nullo, che non è il \ids{PID} di nessun processo.
329
330 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni: o ci
331 sono già troppi processi nel sistema, il che di solito è sintomo che
332 qualcos'altro non sta andando per il verso giusto, o si è ecceduto il limite
333 sul numero totale di processi permessi all'utente, argomento che tratteremo in
334 dettaglio in sez.~\ref{sec:sys_resource_limit}.
335
336 L'uso di \func{fork} avviene secondo due modalità principali; la prima è
337 quella in cui all'interno di un programma si creano processi figli cui viene
338 affidata l'esecuzione di una certa sezione di codice, mentre il processo padre
339 ne esegue un'altra. È il caso tipico dei programmi server (il modello
340 \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}) in cui il
341 padre riceve ed accetta le richieste da parte dei programmi client, per
342 ciascuna delle quali pone in esecuzione un figlio che è incaricato di fornire
343 il servizio.
344
345 La seconda modalità è quella in cui il processo vuole eseguire un altro
346 programma; questo è ad esempio il caso della shell. In questo caso il processo
347 crea un figlio la cui unica operazione è quella di fare una \func{exec} (di
348 cui parleremo in sez.~\ref{sec:proc_exec}) subito dopo la \func{fork}.
349
350 Alcuni sistemi operativi (il VMS ad esempio) combinano le operazioni di questa
351 seconda modalità (una \func{fork} seguita da una \func{exec}) in un'unica
352 operazione che viene chiamata \textit{spawn}. Nei sistemi unix-like è stato
353 scelto di mantenere questa separazione, dato che, come per la prima modalità
354 d'uso, esistono numerosi scenari in cui si può usare una \func{fork} senza
355 aver bisogno di eseguire una \func{exec}. 
356
357 Inoltre, anche nel caso della seconda modalità d'uso, avere le due funzioni
358 separate permette al figlio di cambiare alcune caratteristiche del processo
359 (maschera dei segnali, redirezione dell'output, utente per conto del cui viene
360 eseguito, e molto altro su cui torneremo in seguito) prima della \func{exec},
361 rendendo così relativamente facile intervenire sulle le modalità di esecuzione
362 del nuovo programma.
363
364 \begin{figure}[!htb]
365   \footnotesize \centering
366   \begin{minipage}[c]{\codesamplewidth}
367   \includecodesample{listati/fork_test.c}
368   \end{minipage}
369   \normalsize
370   \caption{Esempio di codice per la creazione di nuovi processi (da
371     \file{fork\_test.c}).}
372   \label{fig:proc_fork_code}
373 \end{figure}
374
375 In fig.~\ref{fig:proc_fork_code} è riportato il corpo del codice del programma
376 di esempio \cmd{forktest}, che permette di illustrare molte caratteristiche
377 dell'uso della funzione \func{fork}. Il programma crea un numero di figli
378 specificato da linea di comando, e prende anche alcune opzioni per indicare
379 degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
380 \func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
381 descrizione delle opzioni). Il codice completo, compresa la parte che gestisce
382 le opzioni a riga di comando, è disponibile nel file \file{fork\_test.c},
383 distribuito insieme agli altri sorgenti degli esempi su
384 \url{http://gapil.truelite.it/gapil_source.tgz}.
385
386 Decifrato il numero di figli da creare, il ciclo principale del programma
387 (\texttt{\small 24-40}) esegue in successione la creazione dei processi figli
388 controllando il successo della chiamata a \func{fork} (\texttt{\small
389   25-29}); ciascun figlio (\texttt{\small 31-34}) si limita a stampare il
390 suo numero di successione, eventualmente attendere il numero di secondi
391 specificato e scrivere un messaggio prima di uscire. Il processo padre invece
392 (\texttt{\small 36-38}) stampa un messaggio di creazione, eventualmente
393 attende il numero di secondi specificato, e procede nell'esecuzione del ciclo;
394 alla conclusione del ciclo, prima di uscire, può essere specificato un altro
395 periodo di attesa.
396
397 Se eseguiamo il comando, che è preceduto dall'istruzione \code{export
398   LD\_LIBRARY\_PATH=./} per permettere l'uso delle librerie dinamiche, senza
399 specificare attese (come si può notare in (\texttt{\small 17-19}) i valori
400 predefiniti specificano di non attendere), otterremo come risultato sul
401 terminale:
402 \begin{Console}
403 [piccardi@selidor sources]$ \textbf{export LD_LIBRARY_PATH=./; ./forktest 3}
404 Process 1963: forking 3 child
405 Spawned 1 child, pid 1964 
406 Child 1 successfully executing
407 Child 1, parent 1963, exiting
408 Go to next child 
409 Spawned 2 child, pid 1965 
410 Child 2 successfully executing
411 Child 2, parent 1963, exiting
412 Go to next child 
413 Child 3 successfully executing
414 Child 3, parent 1963, exiting
415 Spawned 3 child, pid 1966 
416 Go to next child 
417 \end{Console}
418 %$
419
420 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
421 si può dire quale processo fra il padre ed il figlio venga eseguito per primo
422 dopo la chiamata a \func{fork}; dall'esempio si può notare infatti come nei
423 primi due cicli sia stato eseguito per primo il padre (con la stampa del
424 \ids{PID} del nuovo processo) per poi passare all'esecuzione del figlio
425 (completata con i due avvisi di esecuzione ed uscita), e tornare
426 all'esecuzione del padre (con la stampa del passaggio al ciclo successivo),
427 mentre la terza volta è stato prima eseguito il figlio (fino alla conclusione)
428 e poi il padre.
429
430 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
431 \textit{scheduling} usato dal kernel, dalla particolare situazione in cui si
432 trova la macchina al momento della chiamata, risultando del tutto
433 impredicibile.  Eseguendo più volte il programma di prova e producendo un
434 numero diverso di figli, si sono ottenute situazioni completamente diverse,
435 compreso il caso in cui il processo padre ha eseguito più di una \func{fork}
436 prima che uno dei figli venisse messo in esecuzione.
437
438 Pertanto non si può fare nessuna assunzione sulla sequenza di esecuzione delle
439 istruzioni del codice fra padre e figli, né sull'ordine in cui questi potranno
440 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
441 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
442 rischio di incorrere nelle cosiddette \itindex{race~condition} \textit{race
443   condition} (vedi sez.~\ref{sec:proc_race_cond}).
444
445 In realtà con l'introduzione dei kernel della serie 2.6 lo \textit{scheduler}
446 è stato modificato per eseguire sempre per primo il figlio.\footnote{i
447   risultati precedenti infatti sono stati ottenuti usando un kernel della
448   serie 2.4.}  Questa è una ottimizzazione adottata per evitare che il padre,
449 effettuando per primo una operazione di scrittura in memoria, attivasse il
450 meccanismo del \itindex{copy~on~write} \textit{copy on write}, operazione
451 inutile qualora il figlio venga creato solo per eseguire una \func{exec} su
452 altro programma che scarta completamente lo spazio degli indirizzi e rende
453 superflua la copia della memoria modificata dal padre. Eseguendo sempre per
454 primo il figlio la \func{exec} verrebbe effettuata subito, con la certezza di
455 utilizzare \itindex{copy~on~write} \textit{copy on write} solo quando
456 necessario.
457
458 Con il kernel 2.6.32 però il comportamento è stato nuovamente cambiato,
459 stavolta facendo eseguire per primo sempre il padre. Si è realizzato infatti
460 che l'eventualità prospettata per la scelta precedente era comunque molto
461 improbabile, mentre l'esecuzione immediata del padre presenta sempre il
462 vantaggio di poter utilizzare immediatamente tutti i dati che sono nella cache
463 della CPU e nella unità di gestione della memoria virtuale senza doverli
464 invalidare, cosa che per i processori moderni, che hanno linee di cache
465 interne molto profonde, avrebbe un forte impatto sulle prestazioni.
466
467 Allora anche se quanto detto in precedenza vale come comportamento effettivo
468 dei programmi soltanto per i kernel fino alla serie 2.4, per mantenere la
469 portabilità con altri kernel unix-like, e con i diversi comportamenti adottati
470 dalle Linux nelle versioni successive, è opportuno non fare affidamento su
471 nessun tipo comportamento predefinito e non dare per assunta l'esecuzione
472 preventiva del padre o del figlio.
473
474 Si noti poi come dopo la \func{fork}, essendo i segmenti di memoria utilizzati
475 dai singoli processi completamente indipendenti, le modifiche delle variabili
476 nei processi figli, come l'incremento di \var{i} in (\texttt{\small 31}), sono
477 visibili solo a loro, (ogni processo vede solo la propria copia della
478 memoria), e non hanno alcun effetto sul valore che le stesse variabili hanno
479 nel processo padre ed in eventuali altri processi figli che eseguano lo stesso
480 codice.
481
482 Un secondo aspetto molto importante nella creazione dei processi figli è
483 quello dell'interazione dei vari processi con i file. Ne parleremo qui anche
484 se buona parte dei concetti relativi ai file verranno trattati più avanti
485 (principalmente in sez.~\ref{sec:file_unix_interface}). Per illustrare meglio
486 quello che avviene si può redirigere su un file l'output del programma di
487 test, quello che otterremo è:
488 \begin{Console}
489 [piccardi@selidor sources]$ \textbf{./forktest 3 > output}
490 [piccardi@selidor sources]$ \textbf{cat output}
491 Process 1967: forking 3 child
492 Child 1 successfully executing
493 Child 1, parent 1967, exiting
494 Test for forking 3 child
495 Spawned 1 child, pid 1968 
496 Go to next child 
497 Child 2 successfully executing
498 Child 2, parent 1967, exiting
499 Test for forking 3 child
500 Spawned 1 child, pid 1968 
501 Go to next child 
502 Spawned 2 child, pid 1969 
503 Go to next child 
504 Child 3 successfully executing
505 Child 3, parent 1967, exiting
506 Test for forking 3 child
507 Spawned 1 child, pid 1968 
508 Go to next child 
509 Spawned 2 child, pid 1969 
510 Go to next child 
511 Spawned 3 child, pid 1970 
512 Go to next child 
513 \end{Console}
514 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
515
516 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
517 in gran dettaglio in sez.~\ref{sec:file_unix_interface} per l'interfaccia
518 nativa Unix ed in sez.~\ref{sec:files_std_interface} per la standardizzazione
519 adottata nelle librerie del linguaggio C e valida per qualunque sistema
520 operativo. 
521
522 Qui basta accennare che si sono usate le funzioni standard della libreria del
523 C che prevedono l'output bufferizzato. Il punto è che questa bufferizzazione
524 (che tratteremo in dettaglio in sez.~\ref{sec:file_buffering}) varia a seconda
525 che si tratti di un file su disco, in cui il buffer viene scaricato su disco
526 solo quando necessario, o di un terminale, in cui il buffer viene scaricato ad
527 ogni carattere di a capo.
528
529 Nel primo esempio allora avevamo che, essendovi un a capo nella stringa
530 stampata, ad ogni chiamata a \func{printf} il buffer veniva scaricato, per cui
531 le singole righe comparivano a video subito dopo l'esecuzione della
532 \func{printf}. Ma con la redirezione su file la scrittura non avviene più alla
533 fine di ogni riga e l'output resta nel buffer. 
534
535 Dato che ogni figlio riceve una copia della memoria del padre, esso riceverà
536 anche quanto c'è nel buffer delle funzioni di I/O, comprese le linee scritte
537 dal padre fino allora. Così quando il buffer viene scritto su disco all'uscita
538 del figlio, troveremo nel file anche tutto quello che il processo padre aveva
539 scritto prima della sua creazione. E alla fine del file (dato che in questo
540 caso il padre esce per ultimo) troveremo anche l'output completo del padre.
541
542 L'esempio ci mostra un altro aspetto fondamentale dell'interazione con i file,
543 valido anche per l'esempio precedente, ma meno evidente: il fatto cioè che non
544 solo processi diversi possono scrivere in contemporanea sullo stesso file
545 (l'argomento dell'accesso concorrente ai file è trattato in dettaglio in
546 sez.~\ref{sec:file_shared_access}), ma anche che, a differenza di quanto
547 avviene per le variabili in memoria, la posizione corrente sul file è
548 condivisa fra il padre e tutti i processi figli.
549
550 Quello che succede è che quando lo \textit{standard output}\footnote{si chiama
551   così il file su cui di default un programma scrive i suoi dati in uscita,
552   tratteremo l'argomento in dettaglio in sez.~\ref{sec:file_fd}.} del padre
553 viene rediretto come si è fatto nell'esempio, lo stesso avviene anche per
554 tutti i figli. La funzione \func{fork} infatti ha la caratteristica di
555 duplicare nei processi figli tutti i \textit{file descriptor} (vedi
556 sez.~\ref{sec:file_fd}) dei file aperti nel processo padre (allo stesso modo
557 in cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}), il
558 che comporta che padre e figli condividono le stesse voci della
559 \itindex{file~table} \textit{file table} (tratteremo in dettaglio questi
560 termini in sez.~\ref{sec:file_shared_access}) fra cui c'è anche la posizione
561 corrente nel file.
562
563 In questo modo se un processo scrive su un file aggiornerà la posizione
564 corrente sulla \itindex{file~table} \textit{file table}, e tutti gli altri
565 processi, che vedono la stessa \itindex{file~table} \textit{file table},
566 vedranno il nuovo valore. In questo modo si evita, in casi come quello appena
567 mostrato in cui diversi processi scrivono sullo stesso file, che l'output
568 successivo di un processo vada a sovrapporsi a quello dei precedenti: l'output
569 potrà risultare mescolato, ma non ci saranno parti perdute per via di una
570 sovrascrittura.
571
572 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
573 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
574 scrivono sullo stesso file. Un caso tipico di questo comportamento è la shell
575 quando lancia un programma.  In questo modo, anche se lo standard output viene
576 rediretto, il padre potrà sempre continuare a scrivere in coda a quanto
577 scritto dal figlio in maniera automatica; se così non fosse ottenere questo
578 comportamento sarebbe estremamente complesso necessitando di una qualche forma
579 di comunicazione fra i due processi per far riprendere al padre la scrittura
580 al punto giusto.
581
582 In generale comunque non è buona norma far scrivere più processi sullo stesso
583 file senza una qualche forma di sincronizzazione in quanto, come visto anche
584 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
585 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
586 i file dopo una \func{fork} sono sostanzialmente due:
587 \begin{enumerate*}
588 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
589   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
590   della posizione corrente dopo eventuali operazioni di lettura e scrittura
591   effettuate dal figlio è automatica.
592 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
593   ciascuno dei due processi deve chiudere i file che non gli servono una volta
594   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
595 \end{enumerate*}
596
597 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
598 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
599 comune dopo l'esecuzione di una \func{fork} è la seguente:
600 \begin{itemize*}
601 \item i file aperti e gli eventuali flag di \textit{close-on-exec} impostati
602   (vedi sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl_ioctl});
603 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
604     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
605   \textsl{group-ID effettivo} ed i \textsl{group-ID supplementari} (vedi
606   sez.~\ref{sec:proc_access_id});
607 \item gli identificatori per il controllo di sessione: il
608   \itindex{process~group} \textit{process group-ID} e il \textit{session id}
609   ed il terminale di controllo (vedi sez.~\ref{sec:sess_proc_group});
610 \item la directory di lavoro (vedi sez.~\ref{sec:file_work_dir}) e la
611   directory radice (vedi sez.~\ref{sec:file_chroot});
612 \item la maschera dei permessi di creazione dei file (vedi
613   sez.~\ref{sec:file_perm_management});
614 \item la maschera dei segnali bloccati (vedi
615   sez.~\ref{sec:sig_sigmask}) e le azioni installate (vedi
616   sez.~\ref{sec:sig_gen_beha});
617 \item i segmenti di memoria condivisa agganciati al processo (vedi
618   sez.~\ref{sec:ipc_sysv_shm});
619 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
620 \item il valori di \textit{nice}, le priorità \textit{real-time} e le affinità
621   di processore (vedi sez.~\ref{sec:proc_sched_stand},
622   sez.~\ref{sec:proc_real_time} e sez.~\ref{sec:proc_sched_multiprocess});
623 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
624 \item l'insieme dei descrittori associati alle code di messaggi POSIX (vedi
625   sez.~\ref{sec:ipc_posix_mq}) che vengono copiate come i \textit{file
626     descriptor}, questo significa che entrambi condivideranno gli stessi flag.
627 \end{itemize*}
628
629 Oltre a quelle relative ad un diverso spazio degli indirizzi (e una memoria
630 totalmente indipendente) le differenze fra padre e figlio dopo l'esecuzione di
631 una \func{fork} invece sono:\footnote{a parte le ultime quattro, relative a
632   funzionalità specifiche di Linux, le altre sono esplicitamente menzionate
633   dallo standard POSIX.1-2001.}
634 \begin{itemize*}
635 \item il valore di ritorno di \func{fork};
636 \item il \ids{PID} (\textit{process id}), quello del figlio viene assegnato ad
637   un nuovo valore univoco;
638 \item il \ids{PPID} (\textit{parent process id}), quello del figlio viene
639   impostato al \ids{PID} del padre;
640 \item i valori dei tempi di esecuzione (vedi sez.~\ref{sec:sys_cpu_times}) e
641   delle risorse usate (vedi sez.~\ref{sec:sys_resource_use}), che nel figlio
642   sono posti a zero;
643 \item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}) e sulla
644   memoria (vedi sez.~\ref{sec:proc_mem_lock}), che non vengono ereditati dal
645   figlio;
646 \item gli allarmi, i timer (vedi sez.~\ref{sec:sig_alarm_abort}) ed i segnali
647   pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che per il figlio vengono
648   cancellati.
649 \item le operazioni di I/O asincrono in corso (vedi
650   sez.~\ref{sec:file_asyncronous_io}) che non vengono ereditate dal figlio;
651 \item gli aggiustamenti fatti dal padre ai semafori con \func{semop} (vedi
652   sez.~\ref{sec:ipc_sysv_sem}).
653 \item le notifiche sui cambiamenti delle directory con \textit{dnotify} (vedi
654   sez.~\ref{sec:sig_notification}), che non vengono ereditate dal figlio;
655 \item le mappature di memoria marcate come \const{MADV\_DONTFORK} (vedi
656   sez.~\ref{sec:file_memory_map}) che non vengono ereditate dal figlio;
657 \item l'impostazione con \func{prctl} (vedi sez.~\ref{sec:process_prctl}) che
658   notifica al figlio la terminazione del padre viene cancellata se presente
659   nel padre;
660 \item il segnale di terminazione del figlio è sempre \signal{SIGCHLD} anche
661   qualora nel padre fosse stato modificato (vedi sez.~\ref{sec:process_clone}). 
662 \end{itemize*}
663
664 Una seconda funzione storica usata per la creazione di un nuovo processo è
665 \funcm{vfork}, che è esattamente identica a \func{fork} ed ha la stessa
666 semantica e gli stessi errori; la sola differenza è che non viene creata la
667 tabella delle pagine né la struttura dei task per il nuovo processo. Il
668 processo padre è posto in attesa fintanto che il figlio non ha eseguito una
669 \func{execve} o non è uscito con una \func{\_exit}. Il figlio condivide la
670 memoria del padre (e modifiche possono avere effetti imprevedibili) e non deve
671 ritornare o uscire con \func{exit} ma usare esplicitamente \func{\_exit}.
672
673 Questa funzione è un rimasuglio dei vecchi tempi in cui eseguire una
674 \func{fork} comportava anche la copia completa del segmento dati del processo
675 padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
676 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
677 venne introdotta in BSD per migliorare le prestazioni.
678
679 Dato che Linux supporta il \itindex{copy~on~write} \textit{copy on write} la
680 perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
681 funzione, che resta un caso speciale della \textit{system call} \func{clone}
682 (che tratteremo in dettaglio in sez.~\ref{sec:process_clone}) è deprecato; per
683 questo eviteremo di trattarla ulteriormente.
684
685
686 \subsection{La conclusione di un processo}
687 \label{sec:proc_termination}
688
689 In sez.~\ref{sec:proc_conclusion} abbiamo già affrontato le modalità con cui
690 chiudere un programma, ma dall'interno del programma stesso. Avendo a che fare
691 con un sistema \textit{multitasking} resta da affrontare l'argomento dal punto
692 di vista di come il sistema gestisce la conclusione dei processi.
693
694 Abbiamo visto in sez.~\ref{sec:proc_conclusion} le tre modalità con cui un
695 programma viene terminato in maniera normale: la chiamata di \func{exit}, che
696 esegue le funzioni registrate per l'uscita e chiude gli \textit{stream} e poi
697 esegue \func{\_exit}, il ritorno dalla funzione \code{main} equivalente alla
698 chiamata di \func{exit}, e la chiamata diretta a \func{\_exit}, che passa
699 direttamente alle operazioni di terminazione del processo da parte del kernel.
700
701 Ma abbiamo accennato che oltre alla conclusione normale esistono anche delle
702 modalità di conclusione anomala. Queste sono in sostanza due: il programma può
703 chiamare la funzione \func{abort} (vedi sez.~\ref{sec:sig_alarm_abort}) per
704 invocare una chiusura anomala, o essere terminato da un segnale (torneremo sui
705 segnali in cap.~\ref{cha:signals}).  In realtà anche la prima modalità si
706 riconduce alla seconda, dato che \func{abort} si limita a generare il segnale
707 \signal{SIGABRT}.
708
709 Qualunque sia la modalità di conclusione di un processo, il kernel esegue
710 comunque una serie di operazioni di terminazione: chiude tutti i file aperti,
711 rilascia la memoria che stava usando, e così via; l'elenco completo delle
712 operazioni eseguite alla chiusura di un processo è il seguente:
713 \begin{itemize*}
714 \item tutti i \textit{file descriptor} (vedi sez.~\ref{sec:file_fd}) sono
715   chiusi;
716 \item viene memorizzato lo stato di terminazione del processo;
717 \item ad ogni processo figlio viene assegnato un nuovo padre (in genere
718   \cmd{init});
719 \item viene inviato il segnale \signal{SIGCHLD} al processo padre (vedi
720   sez.~\ref{sec:sig_sigchld});
721 \item se il processo è un leader di sessione ed il suo terminale di controllo
722   è quello della sessione viene mandato un segnale di \signal{SIGHUP} a tutti i
723   processi del gruppo di \textit{foreground} e il terminale di controllo viene
724   disconnesso (vedi sez.~\ref{sec:sess_ctrl_term});
725 \item se la conclusione di un processo rende orfano un \textit{process
726     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
727   inviati in successione i segnali \signal{SIGHUP} e \signal{SIGCONT}
728   (vedi ancora sez.~\ref{sec:sess_ctrl_term}).
729 \end{itemize*}
730
731 \itindbeg{termination~status} 
732
733 Oltre queste operazioni è però necessario poter disporre di un meccanismo
734 ulteriore che consenta di sapere come la terminazione è avvenuta: dato che in
735 un sistema unix-like tutto viene gestito attraverso i processi, il meccanismo
736 scelto consiste nel riportare lo \itindex{termination~status} \textsl{stato di
737   terminazione} (il cosiddetto \textit{termination status}) al processo padre.
738
739 Nel caso di conclusione normale, abbiamo visto in
740 sez.~\ref{sec:proc_conclusion} che lo stato di uscita del processo viene
741 caratterizzato tramite il valore del cosiddetto \textit{exit status}, cioè il
742 valore passato come argomento alle funzioni \func{exit} o \func{\_exit} o il
743 valore di ritorno per \code{main}.  Ma se il processo viene concluso in
744 maniera anomala il programma non può specificare nessun \textit{exit status},
745 ed è il kernel che deve generare autonomamente il \textit{termination status}
746 per indicare le ragioni della conclusione anomala.
747
748 Si noti la distinzione fra \textit{exit status} e \textit{termination status}:
749 quello che contraddistingue lo stato di chiusura del processo e viene
750 riportato attraverso le funzioni \func{wait} o \func{waitpid} (vedi
751 sez.~\ref{sec:proc_wait}) è sempre quest'ultimo; in caso di conclusione
752 normale il kernel usa il primo (nel codice eseguito da \func{\_exit}) per
753 produrre il secondo.
754
755 La scelta di riportare al padre lo stato di terminazione dei figli, pur
756 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
757 alla sua creazione è scontato che ogni nuovo processo abbia un padre, non è
758 detto che sia così alla sua conclusione, dato che il padre potrebbe essere già
759 terminato; si potrebbe avere cioè quello che si chiama un processo
760 \textsl{orfano}.
761
762 Questa complicazione viene superata facendo in modo che il processo orfano
763 venga \textsl{adottato} da \cmd{init}, o meglio dal processo con \ids{PID} 1,
764 cioè quello lanciato direttamente dal kernel all'avvio, che sta alla base
765 dell'albero dei processi visto in sez.~\ref{sec:proc_hierarchy} e che anche
766 per questo motivo ha un ruolo essenziale nel sistema e non può mai
767 terminare.\footnote{almeno non senza un blocco completo del sistema, in caso
768   di terminazione o di non esecuzione di \cmd{init} infatti il kernel si
769   blocca con un cosiddetto \textit{kernel panic}, dato che questo è un errore
770   fatale.}
771
772 Come già accennato quando un processo termina, il kernel controlla se è il
773 padre di altri processi in esecuzione: in caso positivo allora il \ids{PPID}
774 di tutti questi processi verrà sostituito dal kernel con il \ids{PID} di
775 \cmd{init}, cioè con 1. In questo modo ogni processo avrà sempre un padre (nel
776 caso possiamo parlare di un padre \textsl{adottivo}) cui riportare il suo
777 stato di terminazione.  
778
779 Come verifica di questo comportamento possiamo eseguire il nostro programma
780 \cmd{forktest} imponendo a ciascun processo figlio due secondi di attesa prima
781 di uscire, il risultato è:
782 \begin{Console}
783 [piccardi@selidor sources]$ \textbf{./forktest -c2 3}
784 Process 1972: forking 3 child
785 Spawned 1 child, pid 1973 
786 Child 1 successfully executing
787 Go to next child 
788 Spawned 2 child, pid 1974 
789 Child 2 successfully executing
790 Go to next child 
791 Child 3 successfully executing
792 Spawned 3 child, pid 1975 
793 Go to next child 
794
795 [piccardi@selidor sources]$ Child 3, parent 1, exiting
796 Child 2, parent 1, exiting
797 Child 1, parent 1, exiting
798 \end{Console}
799 come si può notare in questo caso il processo padre si conclude prima dei
800 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
801 secondi dopo viene stampato a video anche l'output dei tre figli che
802 terminano, e come si può notare in questo caso, al contrario di quanto visto
803 in precedenza, essi riportano 1 come \ids{PPID}.
804
805 Altrettanto rilevante è il caso in cui il figlio termina prima del padre,
806 perché non è detto che il padre possa ricevere immediatamente lo stato di
807 terminazione, quindi il kernel deve comunque conservare una certa quantità di
808 informazioni riguardo ai processi che sta terminando.
809
810 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
811 memorizzando alcuni dati essenziali, come il \ids{PID}, i tempi di CPU usati
812 dal processo (vedi sez.~\ref{sec:sys_unix_time}) e lo stato di terminazione,
813 mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. 
814
815 I processi che sono terminati, ma il cui stato di terminazione non è stato
816 ancora ricevuto dal padre sono chiamati \itindex{zombie} \textit{zombie}, essi
817 restano presenti nella tabella dei processi ed in genere possono essere
818 identificati dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella
819 colonna che ne indica lo stato (vedi tab.~\ref{tab:proc_proc_states}). Quando
820 il padre effettuerà la lettura dello stato di terminazione anche questa
821 informazione, non più necessaria, verrà scartata ed il processo potrà
822 considerarsi completamente concluso.
823
824 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
825 condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
826 sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
827 secondi prima di uscire. In questo caso, usando \cmd{ps} sullo stesso
828 terminale (prima dello scadere dei 10 secondi) otterremo:
829 \begin{Console}
830 [piccardi@selidor sources]$ \textbf{ps T}
831   PID TTY      STAT   TIME COMMAND
832   419 pts/0    S      0:00 bash
833   568 pts/0    S      0:00 ./forktest -e10 3
834   569 pts/0    Z      0:00 [forktest <defunct>]
835   570 pts/0    Z      0:00 [forktest <defunct>]
836   571 pts/0    Z      0:00 [forktest <defunct>]
837   572 pts/0    R      0:00 ps T
838 \end{Console}
839 %$
840 e come si vede, dato che non si è fatto nulla per riceverne lo stato di
841 terminazione, i tre processi figli sono ancora presenti pur essendosi
842 conclusi, con lo stato di \itindex{zombie} \textit{zombie} e l'indicazione che
843 sono terminati (la scritta \texttt{defunct}).
844
845 La possibilità di avere degli \itindex{zombie} \textit{zombie} deve essere
846 tenuta sempre presente quando si scrive un programma che deve essere mantenuto
847 in esecuzione a lungo e creare molti processi figli. In questo caso si deve
848 sempre avere cura di far leggere al programma l'eventuale stato di uscita di
849 tutti i figli. Una modalità comune di farlo è attraverso l'utilizzo di un
850 apposito \textit{signal handler} che chiami la funzione \func{wait}, (vedi
851 sez.~\ref{sec:proc_wait}), ne esamineremo in dettaglio un esempio
852 (fig.~\ref{fig:sig_sigchld_handl}) in sez.~\ref{sec:sig_sigchld}.
853
854 La lettura degli stati di uscita è necessaria perché anche se gli
855 \itindex{zombie} \textit{zombie} non consumano risorse di memoria o
856 processore, occupano comunque una voce nella tabella dei processi e se li si
857 lasciano accumulare a lungo quest'ultima potrebbe esaurirsi, con la
858 conseguente impossibilità di lanciare nuovi processi.
859
860 Si noti tuttavia che quando un processo adottato da \cmd{init} termina, non
861 diviene mai uno \itindex{zombie} \textit{zombie}. Questo perché una delle
862 funzioni di \cmd{init} è appunto quella di chiamare la funzione \func{wait}
863 per i processi a cui fa da padre, completandone la terminazione. Questo è
864 quanto avviene anche quando, come nel caso del precedente esempio con
865 \cmd{forktest}, il padre termina con dei figli in stato di \itindex{zombie}
866 \textit{zombie}. Questi scompaiono quando, alla terminazione del padre dopo i
867 secondi programmati, tutti figli che avevamo generato, e che erano diventati
868 \itindex{zombie} \textit{zombie}, vengono adottati da \cmd{init}, il quale
869 provvede a completarne la terminazione.
870
871 Si tenga presente infine che siccome gli \itindex{zombie} \textit{zombie} sono
872 processi già terminati, non c'è modo di eliminarli con il comando \cmd{kill} o
873 inviandogli un qualunque segnale di terminazione (l'argomento è trattato in
874 sez.~\ref{sec:sig_termination}). Qualora ci si trovi in questa situazione
875 l'unica possibilità di cancellarli dalla tabella dei processi è quella di
876 terminare il processo che li ha generati e che non sta facendo il suo lavoro,
877 in modo che \cmd{init} possa adottarli e concluderne correttamente la
878 terminazione. 
879
880 Si tenga anche presente che la presenza di \textit{zombie} nella tabella dei
881 processi non è sempre indice di un qualche malfunzionamento, in una macchina
882 con molto carico infatti può esservi una presenza temporanea dovuta al fatto
883 che il processo padre ancora non ha avuto il tempo di gestirli. 
884
885 \subsection{Le funzioni di attesa e ricezione degli stati di uscita}
886 \label{sec:proc_wait}
887
888 Uno degli usi più comuni delle capacità multitasking di un sistema unix-like
889 consiste nella creazione di programmi di tipo server, in cui un processo
890 principale attende le richieste che vengono poi soddisfatte da una serie di
891 processi figli. 
892
893 Si è già sottolineato al paragrafo precedente come in questo caso diventi
894 necessario gestire esplicitamente la conclusione dei figli onde evitare di
895 riempire di \itindex{zombie} \textit{zombie} la tabella dei
896 processi. Tratteremo in questa sezione le funzioni di sistema deputate a
897 questo compito; la prima è \funcd{wait} ed il suo prototipo è:
898
899 \begin{funcproto}{ 
900 \fhead{sys/types.h}
901 \fhead{sys/wait.h}
902 \fdecl{pid\_t wait(int *status)}
903 \fdesc{Attende la terminazione di un processo.} 
904 }
905 {La funzione ritorna il \ids{PID} del figlio in caso di successo e $-1$ per un
906   errore, nel qual caso \var{errno} assumerà uno dei valori:
907   \begin{errlist}
908   \item[\errcode{ECHILD}] il processo non ha nessun figlio di cui attendere
909     uno stato di terminazione.
910   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
911   \end{errlist}}
912 \end{funcproto}
913
914 Questa funzione è presente fin dalle prime versioni di Unix ed è quella usata
915 tradizionalmente per attendere la terminazione dei figli. La funzione sospende
916 l'esecuzione del processo corrente e ritorna non appena un qualunque processo
917 figlio termina. Se un figlio è già terminato prima della sua chiamata la
918 funzione ritorna immediatamente, se più processi figli sono già terminati
919 occorrerà continuare a chiamare la funzione più volte fintanto che non si è
920 recuperato lo stato di terminazione di tutti quanti.
921
922 Al ritorno della funzione lo stato di terminazione del figlio viene salvato
923 (come \textit{value result argument}) nella variabile puntata
924 da \param{status} e tutte le risorse del kernel relative al processo (vedi
925 sez.~\ref{sec:proc_termination}) vengono rilasciate.  Nel caso un processo
926 abbia più figli il valore di ritorno della funzione sarà impostato al
927 \ids{PID} del processo di cui si è ricevuto lo stato di terminazione, cosa che
928 permette di identificare qual è il figlio che è terminato.
929
930 \itindend{termination~status} 
931
932 Questa funzione ha il difetto di essere poco flessibile, in quanto ritorna
933 all'uscita di un qualunque processo figlio. Nelle occasioni in cui è
934 necessario attendere la conclusione di uno specifico processo fra tutti quelli
935 esistenti occorre predisporre un meccanismo che tenga conto di tutti processi
936 che sono terminati, e provveda a ripetere la chiamata alla funzione nel caso
937 il processo cercato non risulti fra questi. Se infatti il processo cercato è
938 già terminato e se è già ricevuto lo stato di uscita senza registrarlo, la
939 funzione non ha modo di accorgersene, e si continuerà a chiamarla senza
940 accorgersi che quanto interessava è già accaduto.
941
942 Per questo motivo lo standard POSIX.1 ha introdotto una seconda funzione che
943 effettua lo stesso servizio, ma dispone di una serie di funzionalità più
944 ampie, legate anche al controllo di sessione (si veda
945 sez.~\ref{sec:sess_job_control}).  Dato che è possibile ottenere lo stesso
946 comportamento di \func{wait}\footnote{in effetti il codice
947   \code{wait(\&status)} è del tutto equivalente a \code{waitpid(WAIT\_ANY,
948     \&status, 0)}.} si consiglia di utilizzare sempre questa nuova funzione di
949 sistema, \funcd{waitpid}, il cui prototipo è:
950
951 \begin{funcproto}{ 
952 \fhead{sys/types.h}
953 \fhead{sys/wait.h}
954 \fdecl{pid\_t waitpid(pid\_t pid, int *status, int options)}
955 \fdesc{Attende il cambiamento di stato di un processo figlio.} 
956 }
957 {La funzione ritorna il \ids{PID} del processo che ha cambiato stato in caso
958   di successo, o 0 se è stata specificata l'opzione \const{WNOHANG} e il
959   processo non è uscito e $-1$ per un errore, nel qual caso \var{errno}
960   assumerà uno dei valori:
961   \begin{errlist}
962   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
963     non è figlio del processo chiamante.
964   \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
965     la funzione è stata interrotta da un segnale.
966   \item[\errcode{EINVAL}] si è specificato un valore non valido per
967     l'argomento \param{options}.
968   \end{errlist}}
969 \end{funcproto}
970
971 La prima differenza fra le due funzioni è che con \func{waitpid} si può
972 specificare in maniera flessibile quale processo attendere, sulla base del
973 valore fornito dall'argomento \param{pid}, questo può assumere diversi valori,
974 secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}, dove si
975 sono riportate anche le costanti definite per indicare alcuni di essi. 
976
977 \begin{table}[!htb]
978   \centering
979   \footnotesize
980   \begin{tabular}[c]{|c|c|p{8cm}|}
981     \hline
982     \textbf{Valore} & \textbf{Costante} &\textbf{Significato}\\
983     \hline
984     \hline
985     $<-1$& --               & Attende per un figlio il cui
986                               \itindex{process~group} \textit{process group}
987                               (vedi sez.~\ref{sec:sess_proc_group}) è uguale
988                               al valore assoluto di \param{pid}.\\ 
989     $-1$&\const{WAIT\_ANY}  & Attende per un figlio qualsiasi, usata in
990                               questa maniera senza specificare nessuna opzione
991                               è equivalente a \func{wait}.\\ 
992     $ 0$&\const{WAIT\_MYPGRP}&Attende per un figlio il cui
993                               \itindex{process~group} \textit{process group}
994                               (vedi sez.~\ref{sec:sess_proc_group}) è
995                               uguale a quello del processo chiamante.\\ 
996     $>0$& --                & Attende per un figlio il cui \ids{PID} è uguale
997                               al valore di \param{pid}.\\
998     \hline
999   \end{tabular}
1000   \caption{Significato dei valori dell'argomento \param{pid} della funzione
1001     \func{waitpid}.}
1002   \label{tab:proc_waidpid_pid}
1003 \end{table}
1004
1005 Il comportamento di \func{waitpid} può inoltre essere modificato passando alla
1006 funzione delle opportune opzioni tramite l'argomento \param{options}; questo
1007 deve essere specificato come maschera binaria delle costanti riportati nella
1008 prima parte in tab.~\ref{tab:proc_waitpid_options} che possono essere
1009 combinate fra loro con un OR aritmetico. Nella seconda parte della stessa
1010 tabella si sono riportati anche alcune opzioni non standard specifiche di
1011 Linux, che consentono un controllo più dettagliato per i processi creati con
1012 la \textit{system call} generica \func{clone} (vedi
1013 sez.~\ref{sec:process_clone}) e che vengono usati principalmente per la
1014 gestione della terminazione dei \itindex{thread} \textit{thread} (vedi
1015 sez.~\ref{sec:thread_xxx}).
1016
1017 \begin{table}[!htb]
1018   \centering
1019   \footnotesize
1020   \begin{tabular}[c]{|l|p{8cm}|}
1021     \hline
1022     \textbf{Costante} & \textbf{Descrizione}\\
1023     \hline
1024     \hline
1025     \const{WNOHANG}   & La funzione ritorna immediatamente anche se non è
1026                         terminato nessun processo figlio.\\
1027     \const{WUNTRACED} & Ritorna anche quando un processo figlio è stato
1028                         fermato.\\ 
1029     \const{WCONTINUED}& Ritorna anche quando un processo figlio che era stato
1030                         fermato ha ripreso l'esecuzione (disponibile solo a
1031                         partire dal kernel 2.6.10).\\
1032     \hline
1033     \const{\_\_WCLONE}& Attende solo per i figli creati con \func{clone} 
1034                         (vedi sez.~\ref{sec:process_clone}), vale a dire
1035                         processi che non emettono nessun segnale 
1036                         o emettono un segnale diverso da \signal{SIGCHLD} alla
1037                         terminazione, il default è attendere soltanto i
1038                         processi figli ordinari ignorando quelli creati da
1039                         \func{clone}.\\
1040     \const{\_\_WALL}  & Attende per qualunque figlio, sia ordinario che creato
1041                         con  \func{clone}, se specificata insieme a
1042                         \const{\_\_WCLONE} quest'ultima viene ignorata. \\
1043     \const{\_\_WNOTHREAD}& Non attende per i figli di altri \textit{thread}
1044                         dello stesso \textit{thread group}, questo era il
1045                         comportamento di default del kernel 2.4 che non
1046                         supportava la possibilità, divenuta il default a
1047                         partire dal 2.6, di attendere un qualunque figlio
1048                         appartenente allo stesso \textit{thread group}. \\
1049     \hline
1050   \end{tabular}
1051   \caption{Costanti che identificano i bit dell'argomento \param{options}
1052     della funzione \func{waitpid}.} 
1053   \label{tab:proc_waitpid_options}
1054 \end{table}
1055
1056
1057 L'uso dell'opzione \const{WNOHANG} consente di prevenire il blocco della
1058 funzione qualora nessun figlio sia uscito o non si siano verificate le altre
1059 condizioni per l'uscita della funzione. in tal caso. In tal caso la funzione,
1060 invece di restituire il \ids{PID} del processo (che è sempre un intero
1061 positivo) ritornerà un valore nullo.
1062
1063 Le altre due opzioni, \const{WUNTRACED} e \const{WCONTINUED}, consentono
1064 rispettivamente di tracciare non la terminazione di un processo, ma il fatto
1065 che esso sia stato fermato, o fatto ripartire, e sono utilizzate per la
1066 gestione del controllo di sessione (vedi sez.~\ref{sec:sess_job_control}).
1067
1068 Nel caso di \const{WUNTRACED} la funzione ritorna, restituendone il \ids{PID},
1069 quando un processo figlio entra nello stato \textit{stopped}\footnote{in
1070   realtà viene notificato soltanto il caso in cui il processo è stato fermato
1071   da un segnale di stop (vedi sez.~\ref{sec:sess_ctrl_term}), e non quello in
1072   cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace} (vedi
1073   sez.~\ref{sec:process_ptrace}).} (vedi tab.~\ref{tab:proc_proc_states}),
1074 mentre con \const{WCONTINUED} la funzione ritorna quando un processo in stato
1075 \textit{stopped} riprende l'esecuzione per la ricezione del segnale
1076 \signal{SIGCONT} (l'uso di questi segnali per il controllo di sessione è
1077 trattato in sez.~\ref{sec:sess_ctrl_term}).
1078
1079 La terminazione di un processo figlio (così come gli altri eventi osservabili
1080 con \func{waitpid}) è chiaramente un evento asincrono rispetto all'esecuzione
1081 di un programma e può avvenire in un qualunque momento. Per questo motivo,
1082 come accennato nella sezione precedente, una delle azioni prese dal kernel
1083 alla conclusione di un processo è quella di mandare un segnale di
1084 \signal{SIGCHLD} al padre. L'azione predefinita (si veda
1085 sez.~\ref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
1086 generazione costituisce il meccanismo di comunicazione asincrona con cui il
1087 kernel avverte il processo padre che uno dei suoi figli è terminato.
1088
1089 Il comportamento delle funzioni è però cambiato nel passaggio dal kernel 2.4
1090 al kernel 2.6, quest'ultimo infatti si è adeguato alle prescrizioni dello
1091 standard POSIX.1-2001 e come da esso richiesto se \signal{SIGCHLD} viene
1092 ignorato, o se si imposta il flag di \const{SA\_NOCLDSTOP} nella ricezione
1093 dello stesso (si veda sez.~\ref{sec:sig_sigaction}) i processi figli che
1094 terminano non diventano \textit{zombie} e sia \func{wait} che \func{waitpid}
1095 si bloccano fintanto che tutti i processi figli non sono terminati, dopo di
1096 che falliscono con un errore di \errcode{ENOCHLD}.\footnote{questo è anche il
1097   motivo per cui le opzioni \const{WUNTRACED} e \const{WCONTINUED} sono
1098   utilizzabili soltanto qualora non si sia impostato il flag di
1099   \const{SA\_NOCLDSTOP} per il segnale \signal{SIGCHLD}.}
1100
1101 Con i kernel della serie 2.4 e tutti i kernel delle serie precedenti entrambe
1102 le funzioni di attesa ignorano questa prescrizione e si comportano sempre
1103 nello stesso modo,\footnote{lo standard POSIX.1 originale infatti lascia
1104   indefinito il comportamento di queste funzioni quando \signal{SIGCHLD} viene
1105   ignorato.} indipendentemente dal fatto \signal{SIGCHLD} sia ignorato o meno:
1106 attendono la terminazione di un processo figlio e ritornano il relativo
1107 \ids{PID} e lo stato di terminazione nell'argomento \param{status}.
1108
1109 In generale in un programma non si vuole essere forzati ad attendere la
1110 conclusione di un processo figlio per proseguire l'esecuzione, specie se tutto
1111 questo serve solo per leggerne lo stato di chiusura (ed evitare eventualmente
1112 la presenza di \itindex{zombie} \textit{zombie}).  Per questo la modalità più
1113 comune di chiamare queste funzioni è quella di utilizzarle all'interno di un
1114 \textit{signal handler} (vedremo un esempio di come gestire \signal{SIGCHLD}
1115 con i segnali in sez.~\ref{sec:sig_example}). In questo caso infatti, dato che
1116 il segnale è generato dalla terminazione di un figlio, avremo la certezza che
1117 la chiamata a \func{waitpid} non si bloccherà.
1118
1119 Come accennato sia \func{wait} che \func{waitpid} restituiscono lo stato di
1120 terminazione del processo tramite il puntatore \param{status}, e se non
1121 interessa memorizzare lo stato si può passare un puntatore nullo. Il valore
1122 restituito da entrambe le funzioni dipende dall'implementazione, ma
1123 tradizionalmente gli 8 bit meno significativi sono riservati per memorizzare
1124 lo stato di uscita del processo, e gli altri per indicare il segnale che ha
1125 causato la terminazione (in caso di conclusione anomala), uno per indicare se
1126 è stato generato un \textit{core dump} (vedi sez.~\ref{sec:sig_standard}),
1127 ecc.\footnote{le definizioni esatte si possono trovare in
1128   \file{<bits/waitstatus.h>} ma questo file non deve mai essere usato
1129   direttamente, esso viene incluso attraverso \file{<sys/wait.h>}.}
1130
1131 \begin{table}[!htb]
1132   \centering
1133   \footnotesize
1134   \begin{tabular}[c]{|l|p{10cm}|}
1135     \hline
1136     \textbf{Macro} & \textbf{Descrizione}\\
1137     \hline
1138     \hline
1139     \macro{WIFEXITED}\texttt{(s)}   & Condizione vera (valore non nullo) per
1140                                       un processo figlio che sia terminato
1141                                       normalmente. \\ 
1142     \macro{WEXITSTATUS}\texttt{(s)} & Restituisce gli otto bit meno
1143                                       significativi dello stato di uscita del
1144                                       processo (passato attraverso
1145                                       \func{\_exit}, \func{exit} o come valore
1146                                       di ritorno di \code{main}); può essere
1147                                       valutata solo se \val{WIFEXITED} ha
1148                                       restituito un valore non nullo.\\ 
1149     \macro{WIFSIGNALED}\texttt{(s)} & Condizione vera se il processo figlio è
1150                                       terminato in maniera anomala a causa di
1151                                       un segnale che non è stato catturato
1152                                       (vedi sez.~\ref{sec:sig_notification}).\\ 
1153     \macro{WTERMSIG}\texttt{(s)}    & Restituisce il numero del segnale che ha
1154                                       causato la terminazione anomala del
1155                                       processo; può essere valutata solo se
1156                                       \val{WIFSIGNALED} ha restituito un
1157                                       valore non nullo.\\
1158     \macro{WCOREDUMP}\texttt{(s)}   & Vera se il processo terminato ha
1159                                       generato un file di 
1160                                       \textit{core dump}; può essere valutata
1161                                       solo se \val{WIFSIGNALED} ha restituito
1162                                       un valore non nullo.\footnotemark \\
1163     \macro{WIFSTOPPED}\texttt{(s)}  & Vera se il processo che ha causato il
1164                                       ritorno di \func{waitpid} è bloccato;
1165                                       l'uso è possibile solo con
1166                                       \func{waitpid} avendo specificato
1167                                       l'opzione \const{WUNTRACED}.\\
1168     \macro{WSTOPSIG}\texttt{(s)}    & Restituisce il numero del segnale che ha
1169                                       bloccato il processo; può essere
1170                                       valutata solo se \val{WIFSTOPPED} ha
1171                                       restituito un valore non nullo. \\ 
1172     \macro{WIFCONTINUED}\texttt{(s)}& Vera se il processo che ha causato il
1173                                       ritorno è stato riavviato da un
1174                                       \signal{SIGCONT} (disponibile solo a
1175                                       partire dal kernel 2.6.10).\\
1176     \hline
1177   \end{tabular}
1178   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
1179     verificare lo stato di terminazione \var{s} di un processo.}
1180   \label{tab:proc_status_macro}
1181 \end{table}
1182
1183 \footnotetext{questa macro non è definita dallo standard POSIX.1-2001, ma è
1184   presente come estensione sia in Linux che in altri Unix, deve essere
1185   pertanto utilizzata con attenzione (ad esempio è il caso di usarla in un
1186   blocco \texttt{\#ifdef WCOREDUMP ... \#endif}.}
1187
1188 Lo standard POSIX.1 definisce una serie di macro di preprocessore da usare per
1189 analizzare lo stato di uscita. Esse sono definite sempre in
1190 \file{<sys/wait.h>} ed elencate in tab.~\ref{tab:proc_status_macro}. Si tenga
1191 presente che queste macro prevedono che gli si passi come parametro la
1192 variabile di tipo \ctyp{int} puntata dall'argomento \param{status} restituito
1193 da \func{wait} o \func{waitpid}.
1194
1195 Si tenga conto che nel caso di conclusione anomala il valore restituito da
1196 \val{WTERMSIG} può essere confrontato con le costanti che identificano i
1197 segnali definite in \headfile{signal.h} ed elencate in
1198 tab.~\ref{tab:sig_signal_list}, e stampato usando le apposite funzioni
1199 trattate in sez.~\ref{sec:sig_strsignal}.
1200
1201 A partire dal kernel 2.6.9, sempre in conformità allo standard POSIX.1-2001, è
1202 stata introdotta una nuova funzione di attesa che consente di avere un
1203 controllo molto più preciso sui possibili cambiamenti di stato dei processi
1204 figli e più dettagli sullo stato di uscita; la funzione di sistema è
1205 \funcd{waitid} ed il suo prototipo è:
1206
1207 \begin{funcproto}{ 
1208 \fhead{sys/types.h}
1209 \fhead{sys/wait.h}
1210 \fdecl{int waitid(idtype\_t idtype, id\_t id, siginfo\_t *infop, int options)}
1211 \fdesc{Attende il cambiamento di stato di un processo figlio.} 
1212 }
1213 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1214   caso \var{errno} assumerà uno dei valori:
1215   \begin{errlist}
1216   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
1217     non è figlio del processo chiamante.
1218   \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
1219     la funzione è stata interrotta da un segnale.
1220   \item[\errcode{EINVAL}] si è specificato un valore non valido per
1221     l'argomento \param{options}.
1222   \end{errlist}}
1223 \end{funcproto}
1224
1225 La funzione prevede che si specifichi quali processi si intendono osservare
1226 usando i due argomenti \param{idtype} ed \param{id}; il primo indica se ci si
1227 vuole porre in attesa su un singolo processo, un gruppo di processi o un
1228 processo qualsiasi, e deve essere specificato secondo uno dei valori di
1229 tab.~\ref{tab:proc_waitid_idtype}; il secondo indica, a seconda del valore del
1230 primo, quale processo o quale gruppo di processi selezionare.
1231
1232 \begin{table}[!htb]
1233   \centering
1234   \footnotesize
1235   \begin{tabular}[c]{|l|p{8cm}|}
1236     \hline
1237     \textbf{Valore} & \textbf{Descrizione}\\
1238     \hline
1239     \hline
1240     \const{P\_PID} & Indica la richiesta di attendere per un processo figlio
1241                      il cui \ids{PID} corrisponda al valore dell'argomento
1242                      \param{id}.\\
1243     \const{P\_PGID}& Indica la richiesta di attendere per un processo figlio
1244                      appartenente al \textit{process group} (vedi
1245                      sez.~\ref{sec:sess_proc_group}) il cui \acr{pgid}
1246                      corrisponda al valore dell'argomento \param{id}.\\
1247     \const{P\_ALL} & Indica la richiesta di attendere per un processo figlio
1248                      generico, il valore dell'argomento \param{id} viene
1249                      ignorato.\\
1250     \hline
1251   \end{tabular}
1252   \caption{Costanti per i valori dell'argomento \param{idtype} della funzione
1253     \func{waitid}.}
1254   \label{tab:proc_waitid_idtype}
1255 \end{table}
1256
1257 Come per \func{waitpid} anche il comportamento di \func{waitid} è
1258 controllato dall'argomento \param{options}, da specificare come maschera
1259 binaria dei valori riportati in tab.~\ref{tab:proc_waitid_options}. Benché
1260 alcuni di questi siano identici come significato ed effetto ai precedenti di
1261 tab.~\ref{tab:proc_waitpid_options}, ci sono delle differenze significative:
1262 in questo caso si dovrà specificare esplicitamente l'attesa della terminazione
1263 di un processo impostando l'opzione \const{WEXITED}, mentre il precedente
1264 \const{WUNTRACED} è sostituito da \const{WSTOPPED}.  Infine è stata aggiunta
1265 l'opzione \const{WNOWAIT} che consente una lettura dello stato mantenendo il
1266 processo in attesa di ricezione, così che una successiva chiamata possa di
1267 nuovo riceverne lo stato.
1268
1269 \begin{table}[!htb]
1270   \centering
1271   \footnotesize
1272   \begin{tabular}[c]{|l|p{8cm}|}
1273     \hline
1274     \textbf{Valore} & \textbf{Descrizione}\\
1275     \hline
1276     \hline
1277     \const{WEXITED}   & Ritorna quando un processo figlio è terminato.\\
1278     \const{WNOHANG}   & Ritorna immediatamente anche se non c'è niente da
1279                         notificare.\\ 
1280     \const{WSTOPPED} &  Ritorna quando un processo figlio è stato fermato.\\
1281     \const{WCONTINUED}& Ritorna quando un processo figlio che era stato
1282                         fermato ha ripreso l'esecuzione.\\
1283     \const{WNOWAIT}   & Lascia il processo ancora in attesa di ricezione, così
1284                         che una successiva chiamata possa di nuovo riceverne
1285                         lo stato.\\
1286     \hline
1287   \end{tabular}
1288   \caption{Costanti che identificano i bit dell'argomento \param{options}
1289     della funzione \func{waitid}.} 
1290   \label{tab:proc_waitid_options}
1291 \end{table}
1292
1293 La funzione \func{waitid} restituisce un valore nullo in caso di successo, e
1294 $-1$ in caso di errore; viene restituito un valore nullo anche se è stata
1295 specificata l'opzione \const{WNOHANG} e la funzione è ritornata immediatamente
1296 senza che nessun figlio sia terminato. Pertanto per verificare il motivo del
1297 ritorno della funzione occorre analizzare le informazioni che essa
1298 restituisce; queste, al contrario delle precedenti \func{wait} e
1299 \func{waitpid} che usavano un semplice valore numerico, sono ritornate in una
1300 struttura di tipo \struct{siginfo\_t} (vedi fig.~\ref{fig:sig_siginfo_t})
1301 all'indirizzo puntato dall'argomento \param{infop}.
1302
1303 Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
1304 suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
1305 basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
1306 campi:
1307 \begin{basedescript}{\desclabelwidth{2.0cm}}
1308 \item[\var{si\_pid}] con il \ids{PID} del figlio.
1309 \item[\var{si\_uid}] con l'\textsl{user-ID reale} (vedi
1310   sez.~\ref{sec:proc_perms}) del figlio.
1311 \item[\var{si\_signo}] con \signal{SIGCHLD}.
1312 \item[\var{si\_status}] con lo stato di uscita del figlio o con il segnale che
1313   lo ha terminato, fermato o riavviato.
1314 \item[\var{si\_code}] con uno fra \const{CLD\_EXITED}, \const{CLD\_KILLED},
1315   \const{CLD\_STOPPED}, \const{CLD\_CONTINUED}, \const{CLD\_TRAPPED} e
1316   \const{CLD\_DUMPED} a indicare la ragione del ritorno della funzione, il cui
1317   significato è, nell'ordine: uscita normale, terminazione da segnale,
1318   processo fermato, processo riavviato, processo terminato in
1319   \textit{core dump} (vedi sez.~\ref{sec:sig_standard}).
1320 \end{basedescript}
1321
1322 Infine Linux, seguendo un'estensione di BSD, supporta altre due funzioni per
1323 la lettura dello stato di terminazione di un processo, analoghe alle
1324 precedenti ma che prevedono un ulteriore argomento attraverso il quale il
1325 kernel può restituire al padre informazioni sulle risorse (vedi
1326 sez.~\ref{sec:sys_res_limits}) usate dal processo terminato e dai vari figli.
1327 Le due funzioni di sistema sono \funcd{wait3} e \funcd{wait4}, che diventano
1328 accessibili definendo la macro \macro{\_USE\_BSD}, i loro prototipi sono:
1329
1330 \begin{funcproto}{ 
1331 \fhead{sys/types.h}
1332 \fhead{sys/times.h}
1333 \fhead{sys/resource.h}
1334 \fhead{sys/wait.h}
1335 \fdecl{int wait3(int *status, int options, struct rusage *rusage)}
1336 \fdecl{int wait4(pid\_t pid, int *status, int options, struct rusage *rusage)}
1337 \fdesc{Attende il cambiamento di stato di un processo figlio, riportando l'uso
1338   delle risorse.} 
1339 }
1340 {La funzione ha gli stessi valori di ritorno e codici di errore di
1341   \func{waitpid}. }
1342 \end{funcproto}
1343
1344 La funzione \func{wait4} è identica \func{waitpid} sia nel comportamento che
1345 per i valori dei primi tre argomenti, ma in più restituisce nell'argomento
1346 aggiuntivo \param{rusage} un sommario delle risorse usate dal processo. Questo
1347 argomento è una struttura di tipo \struct{rusage} definita in
1348 \headfile{sys/resource.h}, che viene utilizzata anche dalla funzione
1349 \func{getrusage} per ottenere le risorse di sistema usate da un processo. La
1350 sua definizione è riportata in fig.~\ref{fig:sys_rusage_struct} e ne
1351 tratteremo in dettaglio il significato sez.~\ref{sec:sys_resource_use}. La
1352 funzione \func{wait3} è semplicemente un caso particolare di (e con Linux
1353 viene realizzata con la stessa \textit{system call}), ed è equivalente a
1354 chiamare \code{wait4(-1, \&status, opt, rusage)}, per questo motivo è ormai
1355 deprecata in favore di \func{wait4}.
1356
1357
1358
1359 \subsection{La famiglia delle funzioni \func{exec} per l'esecuzione dei
1360   programmi}
1361 \label{sec:proc_exec}
1362
1363 Abbiamo già detto che una delle modalità principali con cui si utilizzano i
1364 processi in Unix è quella di usarli per lanciare nuovi programmi: questo viene
1365 fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un
1366 processo chiama una di queste funzioni esso viene completamente sostituito dal
1367 nuovo programma, il \ids{PID} del processo non cambia, dato che non viene
1368 creato un nuovo processo, la funzione semplicemente rimpiazza lo
1369 \textit{stack}, i dati ed il testo del processo corrente con un nuovo
1370 programma letto da disco, eseguendo il \textit{link-loader} con gli effetti
1371 illustrati in sez.~\ref{sec:proc_main}.
1372
1373 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
1374 famiglia di funzioni) che possono essere usate per questo compito, in realtà
1375 (come mostrato in fig.~\ref{fig:proc_exec_relat}), tutte queste funzioni sono
1376 tutte varianti che consentono di invocare in modi diversi, semplificando il
1377 passaggio degli argomenti, la funzione di sistema \funcd{execve}, il cui
1378 prototipo è:
1379
1380 \begin{funcproto}{ 
1381 \fhead{unistd.h}
1382 \fdecl{int execve(const char *filename, char *const argv[], char *const envp[])}
1383 \fdesc{Esegue un programma.} 
1384 }
1385 {La funzione ritorna solo in caso di errore, restituendo $-1$, nel qual
1386  caso \var{errno} assumerà uno dei valori:
1387 \begin{errlist}
1388   \item[\errcode{EACCES}] il file o l'interprete non file ordinari, o non sono
1389     eseguibili, o il file è su un filesystem montato con l'opzione
1390     \cmd{noexec}, o manca  il permesso di attraversamento di una delle
1391     directory del \textit{pathname}.
1392   \item[\errcode{EINVAL}] l'eseguibile ELF ha più di un segmento
1393     \const{PF\_INTERP}, cioè chiede di essere eseguito da più di un
1394     interprete.
1395   \item[\errcode{ELIBBAD}] un interprete ELF non è in un formato
1396     riconoscibile.
1397   \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
1398     riconosciuto come tale, o compilato per un'altra architettura.
1399   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
1400     necessari per eseguirlo non esistono.
1401   \item[\errcode{EPERM}] il file ha i bit \itindex{suid~bit} \acr{suid} o
1402     \itindex{sgid~bit} \acr{sgid} e l'utente non è root, ed il processo viene
1403     tracciato, oppure il filesystem è montato con l'opzione \cmd{nosuid}.
1404   \item[\errcode{ETXTBSY}] l'eseguibile è aperto in scrittura da uno o più
1405     processi. 
1406   \item[\errcode{E2BIG}] la lista degli argomenti è troppo grande.
1407   \end{errlist}
1408   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{EISDIR}, \errval{ELOOP},
1409   \errval{EMFILE}, \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOMEM},
1410   \errval{ENOTDIR} nel loro significato generico.  }
1411 \end{funcproto}
1412
1413 La funzione \func{execve} esegue il programma o lo script indicato dal
1414 \textit{pathname} \param{filename}, passandogli la lista di argomenti indicata
1415 da \param{argv} e come ambiente la lista di stringhe indicata
1416 da \param{envp}. Entrambe le liste devono essere terminate da un puntatore
1417 nullo. I vettori degli argomenti e dell'ambiente possono essere acceduti dal
1418 nuovo programma quando la sua funzione \code{main} è dichiarata nella forma
1419 \code{main(int argc, char *argv[], char *envp[])}. Si tenga presente per il
1420 passaggio degli argomenti e dell'ambiente esistono comunque dei limiti, su cui
1421 torneremo in sez.~\ref{sec:sys_res_limits}).
1422 % TODO aggiungere la parte sul numero massimo di argomenti, da man execve
1423
1424 In caso di successo la funzione non ritorna, in quanto al posto del programma
1425 chiamante viene eseguito il nuovo programma indicato da \param{filename}. Se
1426 il processo corrente è tracciato con \func{ptrace} (vedi
1427 sez.~\ref{sec:process_ptrace}) in caso di successo viene emesso il segnale
1428 \signal{SIGTRAP}.
1429
1430 Le altre funzioni della famiglia (\funcd{execl}, \funcd{execv},
1431 \funcd{execle}, \funcd{execlp}, \funcd{execvp}) servono per fornire all'utente
1432 una serie di possibili diverse interfacce nelle modalità di passaggio degli
1433 argomenti all'esecuzione del nuovo programma. I loro prototipi sono:
1434
1435 \begin{funcproto}{ 
1436 \fhead{unistd.h}
1437 \fdecl{int execl(const char *path, const char *arg, ...)}
1438 \fdecl{int execv(const char *path, char *const argv[])}
1439 \fdecl{int execle(const char *path, const char *arg, ..., char * const envp[])}
1440 \fdecl{int execlp(const char *file, const char *arg, ...)}
1441 \fdecl{int execvp(const char *file, char *const argv[])}
1442 \fdesc{Eseguono un programma.} 
1443 }
1444 {Le funzioni ritornano solo in caso di errore, restituendo $-1$, i codici di
1445   errore sono gli stessi di \func{execve}.
1446 }
1447 \end{funcproto}
1448
1449 Tutte le funzioni mettono in esecuzione nel processo corrente il programma
1450 indicati nel primo argomento. Gli argomenti successivi consentono di
1451 specificare gli argomenti e l'ambiente che saranno ricevuti dal nuovo
1452 processo. Per capire meglio le differenze fra le funzioni della famiglia si può
1453 fare riferimento allo specchietto riportato in
1454 tab.~\ref{tab:proc_exec_scheme}. La relazione fra le funzioni è invece
1455 illustrata in fig.~\ref{fig:proc_exec_relat}.
1456
1457 \begin{table}[!htb]
1458   \footnotesize
1459   \centering
1460   \begin{tabular}[c]{|l|c|c|c||c|c|c|}
1461     \hline
1462     \multicolumn{1}{|c|}{\textbf{Caratteristiche}} & 
1463     \multicolumn{6}{|c|}{\textbf{Funzioni}} \\
1464     \hline
1465     &\func{execl}\texttt{ }&\func{execlp}&\func{execle}
1466     &\func{execv}\texttt{ }& \func{execvp}& \func{execve} \\
1467     \hline
1468     \hline
1469     argomenti a lista    &$\bullet$&$\bullet$&$\bullet$&&& \\
1470     argomenti a vettore  &&&&$\bullet$&$\bullet$&$\bullet$\\
1471     \hline
1472     filename completo     &$\bullet$&&$\bullet$&$\bullet$&&$\bullet$\\ 
1473     ricerca su \var{PATH} &&$\bullet$&&&$\bullet$& \\
1474     \hline
1475     ambiente a vettore   &&&$\bullet$&&&$\bullet$ \\
1476     uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\
1477     \hline
1478   \end{tabular}
1479   \caption{Confronto delle caratteristiche delle varie funzioni della 
1480     famiglia \func{exec}.}
1481   \label{tab:proc_exec_scheme}
1482 \end{table}
1483
1484 La prima differenza fra le funzioni riguarda le modalità di passaggio dei
1485 valori che poi andranno a costituire gli argomenti a linea di comando (cioè i
1486 valori di \param{argv} e \param{argc} visti dalla funzione \code{main} del
1487 programma chiamato). Queste modalità sono due e sono riassunte dagli mnemonici
1488 ``\texttt{v}'' e ``\texttt{l}'' che stanno rispettivamente per \textit{vector}
1489 e \textit{list}.
1490
1491 Nel primo caso gli argomenti sono passati tramite il vettore di puntatori
1492 \var{argv[]} a stringhe terminate con zero che costituiranno gli argomenti a
1493 riga di comando, questo vettore \emph{deve} essere terminato da un puntatore
1494 nullo. Nel secondo caso le stringhe degli argomenti sono passate alla funzione
1495 come lista di puntatori, nella forma:
1496 \includecodesnip{listati/char_list.c}
1497 che deve essere terminata da un puntatore nullo.  In entrambi i casi vale la
1498 convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato
1499 per indicare il nome del file che contiene il programma che verrà eseguito.
1500
1501 \begin{figure}[!htb]
1502   \centering \includegraphics[width=9cm]{img/exec_rel}
1503   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
1504   \label{fig:proc_exec_relat}
1505 \end{figure}
1506
1507 La seconda differenza fra le funzioni riguarda le modalità con cui si
1508 specifica il programma che si vuole eseguire. Con lo mnemonico ``\texttt{p}''
1509 si indicano le due funzioni che replicano il comportamento della shell nello
1510 specificare il comando da eseguire; quando l'argomento \param{file} non
1511 contiene una ``\texttt{/}'' esso viene considerato come un nome di programma,
1512 e viene eseguita automaticamente una ricerca fra i file presenti nella lista
1513 di directory specificate dalla variabile di ambiente \envvar{PATH}. Il file
1514 che viene posto in esecuzione è il primo che viene trovato. Se si ha un errore
1515 relativo a permessi di accesso insufficienti (cioè l'esecuzione della
1516 sottostante \func{execve} ritorna un \errcode{EACCES}), la ricerca viene
1517 proseguita nelle eventuali ulteriori directory indicate in \envvar{PATH}; solo
1518 se non viene trovato nessun altro file viene finalmente restituito
1519 \errcode{EACCES}.  Le altre quattro funzioni si limitano invece a cercare di
1520 eseguire il file indicato dall'argomento \param{path}, che viene interpretato
1521 come il \textit{pathname} del programma.
1522
1523 La terza differenza è come viene passata la lista delle variabili di ambiente.
1524 Con lo mnemonico ``\texttt{e}'' vengono indicate quelle funzioni che
1525 necessitano di un vettore di parametri \var{envp[]} analogo a quello usato per
1526 gli argomenti a riga di comando (terminato quindi da un \val{NULL}), le altre
1527 usano il valore della variabile \var{environ} (vedi
1528 sez.~\ref{sec:proc_environ}) del processo di partenza per costruire
1529 l'ambiente.
1530
1531 Oltre a mantenere lo stesso \ids{PID}, il nuovo programma fatto partire da una
1532 delle funzioni della famiglia \func{exec} mantiene la gran parte delle
1533 proprietà del processo chiamante; una lista delle più significative è la
1534 seguente:
1535 \begin{itemize*}
1536 \item il \textit{process id} (\ids{PID}) ed il \textit{parent process id}
1537   (\ids{PPID});
1538 \item l'\textsl{user-ID reale}, il \textsl{group-ID reale} ed i
1539   \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id});
1540 \item la directory radice (vedi sez.~\ref{sec:file_chroot}) e la directory di
1541   lavoro corrente (vedi sez.~\ref{sec:file_work_dir});
1542 \item la maschera di creazione dei file (\textit{umask}, vedi
1543   sez.~\ref{sec:file_perm_management}) ed i \textit{lock} sui file (vedi
1544   sez.~\ref{sec:file_locking});
1545 \item il valori di \textit{nice}, le priorità real-time e le affinità di
1546   processore (vedi sez.~\ref{sec:proc_sched_stand};
1547   sez.~\ref{sec:proc_real_time} e sez.~\ref{sec:proc_sched_multiprocess});
1548 \item il \textit{session ID} (\acr{sid}) ed il \itindex{process~group}
1549   \textit{process group ID} (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
1550 \item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term});
1551 \item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort});
1552 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
1553 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime};
1554   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times});
1555 % TODO ===========Importante=============
1556 % TODO questo sotto è incerto, verificare
1557 % TODO ===========Importante=============
1558 \item la maschera dei segnali (si veda sez.~\ref{sec:sig_sigmask}).
1559 \end{itemize*}
1560
1561 Una serie di proprietà del processo originale, che non avrebbe senso mantenere
1562 in un programma che esegue un codice completamente diverso in uno spazio di
1563 indirizzi totalmente indipendente e ricreato da zero, vengono perse con
1564 l'esecuzione di una \func{exec}. Lo standard POSIX.1-2001 prevede che le
1565 seguenti proprietà non vengano preservate:
1566 \begin{itemize*}
1567 \item l'insieme dei segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
1568   viene cancellato;
1569 \item gli eventuali stack alternativi per i segnali (vedi
1570   sez.~\ref{sec:sig_specific_features});
1571 \item i \textit{directory stream} (vedi sez.~\ref{sec:file_dir_read}), che
1572   vengono chiusi;
1573 \item le mappature dei file in memoria (vedi sez.~\ref{sec:file_memory_map});
1574 \item i segmenti di memoria condivisa SysV (vedi sez.~\ref{sec:ipc_sysv_shm})
1575   e POSIX (vedi sez.~\ref{sec:ipc_posix_shm});
1576 \item i \textit{memory lock} (vedi sez.~\ref{sec:proc_mem_lock});
1577 \item le funzioni registrate all'uscita (vedi sez.~\ref{sec:proc_atexit});
1578 \item i semafori e le code di messaggi POSIX (vedi
1579   sez.~\ref{sec:ipc_posix_sem} e sez.~\ref{sec:ipc_posix_mq});
1580 \item i timer POSIX (vedi sez.~\ref{sec:sig_timer_adv}).
1581 \end{itemize*}
1582
1583 Inoltre i segnali che sono stati impostati per essere ignorati nel processo
1584 chiamante mantengono la stessa impostazione pure nel nuovo programma, ma tutti
1585 gli altri segnali, ed in particolare quelli per i quali è stato installato un
1586 gestore vengono impostati alla loro azione predefinita (vedi
1587 sez.~\ref{sec:sig_gen_beha}). Un caso speciale è il segnale \signal{SIGCHLD}
1588 che, quando impostato a \const{SIG\_IGN}, potrebbe anche essere reimpostato a
1589 \const{SIG\_DFL}. Lo standard POSIX.1-2001 prevede che questo comportamento
1590 sia deciso dalla singola implementazione, quella di Linux è di non modificare
1591 l'impostazione precedente.
1592
1593 Oltre alle precedenti, che sono completamente generali e disponibili anche su
1594 altri sistemi unix-like, esistono altre proprietà dei processi, attinenti alle
1595 caratteristiche specifiche di Linux, che non vengono preservate
1596 nell'esecuzione della funzione \func{exec}, queste sono:
1597 \begin{itemize*}
1598 \item le operazioni di I/O asincrono (vedi sez.~\ref{sec:file_asyncronous_io})
1599   pendenti vengono cancellate;
1600 \item le \textit{capabilities} vengono modificate come
1601   illustrato in sez.~\ref{sec:proc_capabilities};
1602 \item tutti i \textit{thread} tranne il chiamante (vedi
1603   sez.~\ref{sec:thread_xxx}) sono cancellati e tutti gli oggetti ad essi
1604   relativi (vedi sez.~\ref{sec:thread_xxx}) rimossi;
1605 \item viene impostato il flag \const{PR\_SET\_DUMPABLE} di \func{prctl} (vedi
1606   sez.~\ref{sec:process_prctl}) a meno che il programma da eseguire non sia
1607   \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} (vedi
1608   sez.~\ref{sec:proc_access_id});
1609 \item il flag \const{PR\_SET\_KEEPCAPS} di \func{prctl} (vedi
1610   sez.~\ref{sec:process_prctl}) viene cancellato;
1611 \item il nome del processo viene impostato al nome del file contenente il
1612   programma messo in esecuzione;
1613 \item il segnale di terminazione viene reimpostato a \signal{SIGCHLD};
1614 \item l'ambiente viene reinizializzato impostando le variabili attinenti alla
1615   localizzazione al valore di default POSIX. 
1616 \end{itemize*}
1617
1618 \itindbeg{close-on-exec}
1619
1620 La gestione dei file aperti nel passaggio al nuovo programma lanciato con
1621 \func{exec} dipende dal valore che ha il flag di \textit{close-on-exec} (vedi
1622 sez.~\ref{sec:file_fcntl_ioctl}) per ciascun \textit{file descriptor}. I file
1623 per cui è impostato vengono chiusi, tutti gli altri file restano
1624 aperti. Questo significa che il comportamento predefinito è che i file restano
1625 aperti attraverso una \func{exec}, a meno di una chiamata esplicita a
1626 \func{fcntl} che imposti il suddetto flag.  Per le directory, lo standard
1627 POSIX.1 richiede che esse vengano chiuse attraverso una \func{exec}, in genere
1628 questo è fatto dalla funzione \func{opendir} (vedi
1629 sez.~\ref{sec:file_dir_read}) che effettua da sola l'impostazione del flag di
1630 \textit{close-on-exec} sulle directory che apre, in maniera trasparente
1631 all'utente.
1632
1633 \itindend{close-on-exec}
1634
1635
1636 Il comportamento della funzione in relazione agli identificatori relativi al
1637 controllo di accesso verrà trattato in dettaglio in sez.~\ref{sec:proc_perms},
1638 qui è sufficiente anticipare (si faccia riferimento a
1639 sez.~\ref{sec:proc_access_id} per la definizione di questi identificatori)
1640 come l'\textsl{user-ID reale} ed il \textsl{group-ID reale} restano sempre gli
1641 stessi, mentre l'\textsl{user-ID salvato} ed il \textsl{group-ID salvato}
1642 vengono impostati rispettivamente all'\textsl{user-ID effettivo} ed il
1643 \textsl{group-ID effettivo}. Questi ultimi normalmente non vengono modificati,
1644 a meno che il file di cui viene chiesta l'esecuzione non abbia o il
1645 \itindex{suid~bit} \acr{suid} bit o lo \itindex{sgid~bit} \acr{sgid} bit
1646 impostato, in questo caso l'\textsl{user-ID effettivo} ed il \textsl{group-ID
1647   effettivo} vengono impostati rispettivamente all'utente o al gruppo cui il
1648 file appartiene.
1649
1650 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
1651 condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
1652 del programma per caricare le librerie necessarie ed effettuare il link
1653 dell'eseguibile; il formato è ormai in completo disuso, per cui è molto
1654 probabile che non il relativo supporto non sia disponibile. Se il programma è
1655 in formato ELF per caricare le librerie dinamiche viene usato l'interprete
1656 indicato nel segmento \const{PT\_INTERP} previsto dal formato stesso, in
1657 genere questo è \sysfile{/lib/ld-linux.so.1} per programmi collegati con la
1658 \acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi collegati con la
1659 \acr{glibc}.
1660
1661 Infine nel caso il programma che si vuole eseguire sia uno script e non un
1662 binario, questo deve essere un file di testo che deve iniziare con una linea
1663 nella forma:
1664 \begin{Example}
1665 #!/path/to/interpreter [argomenti]
1666 \end{Example}
1667 dove l'interprete indicato deve essere un eseguibile binario e non un altro
1668 script, che verrà chiamato come se si fosse eseguito il comando
1669 \cmd{interpreter [argomenti] filename}. 
1670
1671 Si tenga presente che con Linux quanto viene scritto come \texttt{argomenti}
1672 viene passato all'interprete come un unico argomento con una unica stringa di
1673 lunghezza massima di 127 caratteri e se questa dimensione viene ecceduta la
1674 stringa viene troncata; altri Unix hanno dimensioni massime diverse, e diversi
1675 comportamenti, ad esempio FreeBSD esegue la scansione della riga e la divide
1676 nei vari argomenti e se è troppo lunga restituisce un errore di
1677 \const{ENAMETOOLONG}; una comparazione dei vari comportamenti sui diversi
1678 sistemi unix-like si trova su
1679 \url{http://www.in-ulm.de/~mascheck/various/shebang/}.
1680
1681 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
1682 basata la gestione tradizionale dei processi in Unix: con \func{fork} si crea
1683 un nuovo processo, con \func{exec} si lancia un nuovo programma, con
1684 \func{exit} e \func{wait} si effettua e verifica la conclusione dei
1685 processi. Tutte le altre funzioni sono ausiliarie e servono per la lettura e
1686 l'impostazione dei vari parametri connessi ai processi.
1687
1688
1689
1690 \section{Il controllo di accesso}
1691 \label{sec:proc_perms}
1692
1693 In questa sezione esamineremo le problematiche relative al controllo di
1694 accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
1695 usati, come questi possono essere modificati nella creazione e nel lancio di
1696 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
1697 problematiche connesse ad una gestione accorta dei privilegi.
1698
1699
1700 \subsection{Gli identificatori del controllo di accesso}
1701 \label{sec:proc_access_id}
1702
1703 Come accennato in sez.~\ref{sec:intro_multiuser} il modello base\footnote{in
1704   realtà già esistono estensioni di questo modello base, che lo rendono più
1705   flessibile e controllabile, come le \textit{capabilities} illustrate in
1706   sez.~\ref{sec:proc_capabilities}, le ACL per i file (vedi
1707   sez.~\ref{sec:file_ACL}) o il \textit{Mandatory Access Control} di
1708   \textit{SELinux}; inoltre basandosi sul lavoro effettuato con
1709   \textit{SELinux}, a partire dal kernel 2.5.x, è iniziato lo sviluppo di una
1710   infrastruttura di sicurezza, i \textit{Linux Security Modules}, o LSM, in
1711   grado di fornire diversi agganci a livello del kernel per modularizzare
1712   tutti i possibili controlli di accesso, cosa che ha permesso di realizzare
1713   diverse alternative a \textit{SELinux}.} 
1714 di sicurezza di un sistema unix-like è fondato sui concetti di utente e
1715 gruppo, e sulla separazione fra l'amministratore (\textsl{root}, detto spesso
1716 anche \textit{superuser}) che non è sottoposto a restrizioni, ed il resto
1717 degli utenti, per i quali invece vengono effettuati i vari controlli di
1718 accesso.
1719
1720 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
1721 identificatori univoci, lo \itindex{User~ID~(PID)} \textsl{User-ID}
1722 (abbreviato in \ids{UID}) ed il \itindex{Group~ID~(PID)} \textsl{Group-ID}
1723 (abbreviato in \ids{GID}). Questi servono al kernel per identificare uno
1724 specifico utente o un gruppo di utenti, per poi poter controllare che essi
1725 siano autorizzati a compiere le operazioni richieste.  Ad esempio in
1726 sez.~\ref{sec:file_access_control} vedremo come ad ogni file vengano associati
1727 un utente ed un gruppo (i suoi \textsl{proprietari}, indicati appunto tramite
1728 un \ids{UID} ed un \ids{GID}) che vengono controllati dal kernel nella
1729 gestione dei permessi di accesso.
1730
1731 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
1732 evidente che per poter implementare un controllo sulle operazioni occorre
1733 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
1734 anche a ciascun processo dovrà essere associato un utente e un gruppo.
1735
1736 Un semplice controllo di una corrispondenza fra identificativi non garantisce
1737 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
1738 disporre di privilegi diversi, o dover impersonare un altro utente per un
1739 limitato insieme di operazioni. Per questo motivo in generale tutti i sistemi
1740 unix-like prevedono che i processi abbiano almeno due gruppi di
1741 identificatori, chiamati rispettivamente \textit{real} ed \textit{effective}
1742 (cioè \textsl{reali} ed \textsl{effettivi}). Nel caso di Linux si aggiungono
1743 poi altri due gruppi, il \textit{saved} (\textsl{salvati}) ed il
1744 \textit{filesystem} (\textsl{di filesystem}), secondo la situazione illustrata
1745 in tab.~\ref{tab:proc_uid_gid}.
1746
1747 \begin{table}[htb]
1748   \footnotesize
1749   \centering
1750   \begin{tabular}[c]{|c|c|l|p{7cm}|}
1751     \hline
1752     \textbf{Suffisso} & \textbf{Gruppo} & \textbf{Denominazione} 
1753                                         & \textbf{Significato} \\ 
1754     \hline
1755     \hline
1756     \texttt{uid} & \textit{real} & \textsl{user-ID reale} 
1757                  & Indica l'utente che ha lanciato il programma.\\ 
1758     \texttt{gid} & '' &\textsl{group-ID reale} 
1759                  & Indica il gruppo principale dell'utente che ha lanciato 
1760                    il programma.\\ 
1761     \hline
1762     \texttt{euid}& \textit{effective} &\textsl{user-ID effettivo} 
1763                  & Indica l'utente usato nel controllo di accesso.\\ 
1764     \texttt{egid}& '' & \textsl{group-ID effettivo} 
1765                  & Indica il gruppo usato nel controllo di accesso.\\ 
1766     --           & -- & \textsl{group-ID supplementari} 
1767                  & Indicano gli ulteriori gruppi cui l'utente appartiene.\\ 
1768     \hline
1769     --           & \textit{saved} & \textsl{user-ID salvato} 
1770                  & Mantiene una copia dell'\acr{euid} iniziale.\\ 
1771     --           & '' & \textsl{group-ID salvato} 
1772                  & Mantiene una copia dell'\acr{egid} iniziale.\\ 
1773     \hline
1774     \texttt{fsuid}& \textit{filesystem} &\textsl{user-ID di filesystem} 
1775                  & Indica l'utente effettivo per l'accesso al filesystem. \\ 
1776     \texttt{fsgid}& '' & \textsl{group-ID di filesystem} 
1777                  & Indica il gruppo effettivo per l'accesso al filesystem.\\ 
1778     \hline
1779   \end{tabular}
1780   \caption{Identificatori di utente e gruppo associati a ciascun processo con
1781     indicazione dei suffissi usati dalle varie funzioni di manipolazione.}
1782   \label{tab:proc_uid_gid}
1783 \end{table}
1784
1785 Al primo gruppo appartengono l'\ids{UID} \textsl{reale} ed il \ids{GID}
1786 \textsl{reale}: questi vengono impostati al login ai valori corrispondenti
1787 all'utente con cui si accede al sistema (e relativo gruppo principale).
1788 Servono per l'identificazione dell'utente e normalmente non vengono mai
1789 cambiati. In realtà vedremo (in sez.~\ref{sec:proc_setuid}) che è possibile
1790 modificarli, ma solo ad un processo che abbia i privilegi di amministratore;
1791 questa possibilità è usata proprio dal programma \cmd{login} che, una volta
1792 completata la procedura di autenticazione, lancia una shell per la quale
1793 imposta questi identificatori ai valori corrispondenti all'utente che entra
1794 nel sistema.
1795
1796 Al secondo gruppo appartengono l'\ids{UID} \textsl{effettivo} e il \ids{GID}
1797 \textsl{effettivo}, a cui si aggiungono gli eventuali \ids{GID}
1798 \textsl{supplementari} dei gruppi dei quali l'utente fa parte.  Questi sono
1799 invece gli identificatori usati nelle verifiche dei permessi del processo e
1800 per il controllo di accesso ai file (argomento affrontato in dettaglio in
1801 sez.~\ref{sec:file_perm_overview}).
1802
1803 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
1804 \textit{real} tranne nel caso in cui, come accennato in
1805 sez.~\ref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i
1806 bit \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} impostati
1807 (il significato di questi bit è affrontato in dettaglio in
1808 sez.~\ref{sec:file_special_perm}). In questo caso essi saranno impostati
1809 all'utente e al gruppo proprietari del file. Questo consente, per programmi in
1810 cui ci sia questa necessità, di dare a qualunque utente i privilegi o i
1811 permessi di un altro, compreso l'amministratore.
1812
1813 Come nel caso del \ids{PID} e del \ids{PPID}, anche tutti questi
1814 identificatori possono essere ottenuti da un programma attraverso altrettante
1815 funzioni di sistema dedicate alla loro lettura, queste sono \funcd{getuid},
1816 \funcd{geteuid}, \funcd{getgid} e \funcd{getegid}, ed i loro prototipi sono:
1817
1818 \begin{funcproto}{ 
1819 \fhead{unistd.h}
1820 \fhead{sys/types.h}
1821 \fdecl{uid\_t getuid(void)}
1822 \fdesc{Legge l'\ids{UID} reale del processo corrente.} 
1823 \fdecl{uid\_t geteuid(void)}
1824 \fdesc{Legge l'\ids{UID} effettivo del processo corrente.} 
1825 \fdecl{gid\_t getgid(void)}
1826 \fdesc{Legge il \ids{GID} reale del processo corrente.} 
1827 \fdecl{gid\_t getegid(void)}
1828 \fdesc{Legge il \ids{GID} effettivo del processo corrente.}
1829 }
1830 {Le funzioni ritornano i rispettivi identificativi del processo corrente, e
1831   non sono previste condizioni di errore.}
1832 \end{funcproto}
1833
1834 In generale l'uso di privilegi superiori, ottenibile con un \ids{UID}
1835 \textsl{effettivo} diverso da quello reale, deve essere limitato il più
1836 possibile, per evitare abusi e problemi di sicurezza, per questo occorre anche
1837 un meccanismo che consenta ad un programma di rilasciare gli eventuali
1838 maggiori privilegi necessari, una volta che si siano effettuate le operazioni
1839 per i quali erano richiesti, e a poterli eventualmente recuperare in caso
1840 servano di nuovo.
1841
1842 Questo in Linux viene fatto usando altri due gruppi di identificatori, il
1843 \textit{saved} ed il \textit{filesystem}. Il primo gruppo è lo stesso usato in
1844 SVr4, e previsto dallo standard POSIX quando è definita la costante
1845 \macro{\_POSIX\_SAVED\_IDS},\footnote{in caso si abbia a cuore la portabilità
1846   del programma su altri Unix è buona norma controllare sempre la
1847   disponibilità di queste funzioni controllando se questa costante è
1848   definita.} il secondo gruppo è specifico di Linux e viene usato per
1849 migliorare la sicurezza con NFS (il \textit{Network File System}, protocollo
1850 che consente di accedere ai file via rete).
1851
1852 L'\ids{UID} \textsl{salvato} ed il \ids{GID} \textsl{salvato} sono copie
1853 dell'\ids{UID} \textsl{effettivo} e del \ids{GID} \textsl{effettivo} del
1854 processo padre, e vengono impostati dalla funzione \func{exec} all'avvio del
1855 processo, come copie dell'\ids{UID} \textsl{effettivo} e del \ids{GID}
1856 \textsl{effettivo} dopo che questi sono stati impostati tenendo conto di
1857 eventuali \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid}.  Essi
1858 quindi consentono di tenere traccia di quale fossero utente e gruppo effettivi
1859 all'inizio dell'esecuzione di un nuovo programma.
1860
1861 L'\ids{UID} \textsl{di filesystem} e il \ids{GID} \textsl{di filesystem} sono
1862 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
1863 (torneremo sull'argomento in sez.~\ref{sec:proc_setuid}). Essi sono una
1864 replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
1865 quali si sostituiscono per tutte le operazioni di verifica dei permessi
1866 relativi ai file (trattate in sez.~\ref{sec:file_perm_overview}).  Ogni
1867 cambiamento effettuato sugli identificatori effettivi viene automaticamente
1868 riportato su di essi, per cui in condizioni normali si può tranquillamente
1869 ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
1870
1871
1872 \subsection{Le funzioni di gestione degli identificatori dei processi}
1873 \label{sec:proc_setuid}
1874
1875 Le funzioni di sistema più comuni che vengono usate per cambiare identità
1876 (cioè utente e gruppo di appartenenza) ad un processo, e che come accennato in
1877 sez.~\ref{sec:proc_access_id} seguono la semantica POSIX che prevede
1878 l'esistenza dell'\ids{UID} salvato e del \ids{GID} salvato, sono
1879 rispettivamente \funcd{setuid} e \funcd{setgid}; i loro prototipi sono:
1880
1881 \begin{funcproto}{ 
1882 \fhead{unistd.h}
1883 \fhead{sys/types.h}
1884 \fdecl{int setuid(uid\_t uid)}
1885 \fdesc{Imposta l'\ids{UID} del processo corrente.} 
1886 \fdecl{int setgid(gid\_t gid)}
1887 \fdesc{Imposta il \ids{GID} del processo corrente.} 
1888 }
1889 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1890 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
1891 }
1892 \end{funcproto}
1893
1894 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
1895 la prima, la seconda si comporta esattamente allo stesso modo facendo
1896 riferimento al \ids{GID} invece che all'\ids{UID}.  Gli eventuali \ids{GID}
1897 supplementari non vengono modificati.
1898
1899 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
1900 l'\ids{UID} effettivo è zero (cioè è quello dell'amministratore di sistema)
1901 allora tutti gli identificatori (\textit{real}, \textit{effective} e
1902 \textit{saved}) vengono impostati al valore specificato da \param{uid},
1903 altrimenti viene impostato solo l'\ids{UID} effettivo, e soltanto se il valore
1904 specificato corrisponde o all'\ids{UID} reale o all'\ids{UID} salvato. Negli
1905 altri casi viene segnalato un errore con \errcode{EPERM}.
1906
1907 Come accennato l'uso principale di queste funzioni è quello di poter
1908 consentire ad un programma con i bit \itindex{suid~bit} \acr{suid} o
1909 \itindex{sgid~bit} \acr{sgid} impostati (vedi
1910 sez.~\ref{sec:file_special_perm}) di riportare l'\ids{UID} effettivo a quello
1911 dell'utente che ha lanciato il programma, effettuare il lavoro che non
1912 necessita di privilegi aggiuntivi, ed eventualmente tornare indietro.
1913
1914 Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
1915 viene gestito l'accesso al file \sysfile{/var/run/utmp}.  In questo file viene
1916 registrato chi sta usando il sistema al momento corrente; chiaramente non può
1917 essere lasciato aperto in scrittura a qualunque utente, che potrebbe
1918 falsificare la registrazione. Per questo motivo questo file (e l'analogo
1919 \sysfile{/var/log/wtmp} su cui vengono registrati login e logout) appartengono
1920 ad un gruppo dedicato (in genere \acr{utmp}) ed i programmi che devono
1921 accedervi (ad esempio tutti i programmi di terminale in X, o il programma
1922 \cmd{screen} che crea terminali multipli su una console) appartengono a questo
1923 gruppo ed hanno il bit \acr{sgid} impostato.
1924
1925 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato, la
1926 situazione degli identificatori è la seguente:
1927 \begin{eqnarray*}
1928   \label{eq:1}
1929   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (del chiamante)} \\
1930   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1931   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp}}
1932 \end{eqnarray*}
1933 in questo modo, dato che il \textsl{group-ID effettivo} è quello giusto, il
1934 programma può accedere a \sysfile{/var/run/utmp} in scrittura ed aggiornarlo.
1935 A questo punto il programma può eseguire una \code{setgid(getgid())} per
1936 impostare il \textsl{group-ID effettivo} a quello dell'utente (e dato che il
1937 \textsl{group-ID reale} corrisponde la funzione avrà successo), in questo modo
1938 non sarà possibile lanciare dal terminale programmi che modificano detto file,
1939 in tal caso infatti la situazione degli identificatori sarebbe:
1940 \begin{eqnarray*}
1941   \label{eq:2}
1942   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (invariato)}  \\
1943   \textsl{group-ID effettivo}  &=& \textrm{\ids{GID}} \\
1944   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1945 \end{eqnarray*}
1946 e ogni processo lanciato dal terminale avrebbe comunque \ids{GID} come
1947 \textsl{group-ID effettivo}. All'uscita dal terminale, per poter di nuovo
1948 aggiornare lo stato di \sysfile{/var/run/utmp} il programma eseguirà una
1949 \code{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
1950 \acr{utmp}, ottenuto ad esempio con una precedente \func{getegid}), dato che
1951 in questo caso il valore richiesto corrisponde al \textsl{group-ID salvato} la
1952 funzione avrà successo e riporterà la situazione a:
1953 \begin{eqnarray*}
1954   \label{eq:3}
1955   \textsl{group-ID reale}      &=& \textrm{\ids{GID} (invariato)}  \\
1956   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1957   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1958 \end{eqnarray*}
1959 consentendo l'accesso a \sysfile{/var/run/utmp}.
1960
1961 Occorre però tenere conto che tutto questo non è possibile con un processo con
1962 i privilegi di amministratore, in tal caso infatti l'esecuzione di una
1963 \func{setuid} comporta il cambiamento di tutti gli identificatori associati al
1964 processo, rendendo impossibile riguadagnare i privilegi di amministratore.
1965 Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
1966 crea una nuova shell per l'utente, ma quando si vuole cambiare soltanto
1967 l'\ids{UID} effettivo del processo per cedere i privilegi occorre
1968 ricorrere ad altre funzioni.
1969
1970 Le due funzioni di sistema \funcd{setreuid} e \funcd{setregid} derivano da BSD
1971 che, non supportando (almeno fino alla versione 4.3+BSD) gli identificatori
1972 del gruppo \textit{saved}, le usa per poter scambiare fra di loro
1973 \textit{effective} e \textit{real}; i rispettivi prototipi sono:
1974
1975 \begin{funcproto}{ 
1976 \fhead{unistd.h}
1977 \fhead{sys/types.h}
1978 \fdecl{int setreuid(uid\_t ruid, uid\_t euid)}
1979 \fdesc{Imposta \ids{UID} reale e \ids{UID} effettivo del processo corrente.} 
1980 \fdecl{int setregid(gid\_t rgid, gid\_t egid)}
1981 \fdesc{Imposta \ids{GID} reale e \ids{GID} effettivo del processo corrente.} 
1982 }
1983 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1984 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
1985 }
1986 \end{funcproto}
1987
1988 Le due funzioni sono identiche, quanto diremo per la prima riguardo gli
1989 \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
1990 \func{setreuid} imposta rispettivamente l'\ids{UID} reale e l'\ids{UID}
1991 effettivo del processo corrente ai valori specificati da \param{ruid}
1992 e \param{euid}.  I processi non privilegiati possono impostare solo valori che
1993 corrispondano o al loro \ids{UID} effettivo o a quello reale o a quello
1994 salvato, valori diversi comportano il fallimento della chiamata.
1995 L'amministratore invece può specificare un valore qualunque.  Specificando un
1996 argomento di valore $-1$ l'identificatore corrispondente verrà lasciato
1997 inalterato.
1998
1999 Con queste funzioni si possono scambiare fra loro gli \ids{UID} reale ed
2000 effettivo, e pertanto è possibile implementare un comportamento simile a
2001 quello visto in precedenza per \func{setgid}, cedendo i privilegi con un primo
2002 scambio, e recuperandoli, una volta eseguito il lavoro non privilegiato, con
2003 un secondo scambio.
2004
2005 In questo caso però occorre porre molta attenzione quando si creano nuovi
2006 processi nella fase intermedia in cui si sono scambiati gli identificatori, in
2007 questo caso infatti essi avranno un \ids{UID} reale privilegiato, che dovrà
2008 essere esplicitamente eliminato prima di porre in esecuzione un nuovo
2009 programma, occorrerà cioè eseguire un'altra chiamata dopo la \func{fork} e
2010 prima della \func{exec} per uniformare l'\ids{UID} reale a quello effettivo,
2011 perché in caso contrario il nuovo programma potrebbe a sua volta effettuare
2012 uno scambio e riottenere dei privilegi non previsti.
2013
2014 Lo stesso problema di propagazione dei privilegi ad eventuali processi figli
2015 si pone anche per l'\ids{UID} salvato. Ma la funzione \func{setreuid} deriva
2016 da un'implementazione di sistema che non ne prevede la presenza, e quindi non
2017 è possibile usarla per correggere la situazione come nel caso precedente. Per
2018 questo motivo in Linux tutte le volte che si imposta un qualunque valore
2019 diverso da quello dall'\ids{UID} reale corrente, l'\ids{UID} salvato viene
2020 automaticamente uniformato al valore dell'\ids{UID} effettivo.
2021
2022 Altre due funzioni di sistema, \funcd{seteuid} e \funcd{setegid}, sono
2023 un'estensione dello standard POSIX.1, ma sono comunque supportate dalla
2024 maggior parte degli Unix, esse vengono usate per cambiare gli identificatori
2025 del gruppo \textit{effective} ed i loro prototipi sono:
2026
2027 \begin{funcproto}{ 
2028 \fhead{unistd.h}
2029 \fhead{sys/types.h}
2030 \fdecl{int seteuid(uid\_t uid)}
2031 \fdesc{Imposta l'\ids{UID} effettivo del processo corrente.} 
2032 \fdecl{int setegid(gid\_t gid)}
2033 \fdesc{Imposta il \ids{GID} effettivo del processo corrente.} 
2034 }
2035 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2036 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
2037 }
2038 \end{funcproto}
2039
2040 Ancora una volta le due funzioni sono identiche, e quanto diremo per la prima
2041 riguardo gli \ids{UID} si applica allo stesso modo alla seconda per i
2042 \ids{GID}. Con \func{seteuid} gli utenti normali possono impostare l'\ids{UID}
2043 effettivo solo al valore dell'\ids{UID} reale o dell'\ids{UID} salvato,
2044 l'amministratore può specificare qualunque valore. Queste funzioni sono usate
2045 per permettere all'amministratore di impostare solo l'\ids{UID} effettivo,
2046 dato che l'uso normale di \func{setuid} comporta l'impostazione di tutti gli
2047 identificatori.
2048  
2049 Le due funzioni di sistema \funcd{setresuid} e \funcd{setresgid} sono invece
2050 un'estensione introdotta in Linux (a partire dal kernel 2.1.44) e permettono
2051 un completo controllo su tutti e tre i gruppi di identificatori
2052 (\textit{real}, \textit{effective} e \textit{saved}), i loro prototipi sono:
2053
2054 \begin{funcproto}{ 
2055 \fhead{unistd.h}
2056 \fhead{sys/types.h}
2057 \fdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)}
2058 \fdesc{Imposta l'\ids{UID} reale, effettivo e salvato del processo corrente.} 
2059 \fdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)}
2060 \fdesc{Imposta il \ids{GID} reale, effettivo e salvato del processo corrente.} 
2061 }
2062 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2063 caso \var{errno} può assumere solo il valore \errcode{EPERM}.
2064 }
2065 \end{funcproto}
2066
2067 Di nuovo le due funzioni sono identiche e quanto detto per la prima riguardo
2068 gli \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
2069 \func{setresuid} imposta l'\ids{UID} reale, l'\ids{UID} effettivo e
2070 l'\ids{UID} salvato del processo corrente ai valori specificati
2071 rispettivamente dagli argomenti \param{ruid}, \param{euid} e \param{suid}.  I
2072 processi non privilegiati possono cambiare uno qualunque degli\ids{UID} solo
2073 ad un valore corrispondente o all'\ids{UID} reale, o a quello effettivo o a
2074 quello salvato, l'amministratore può specificare i valori che vuole. Un valore
2075 di $-1$ per un qualunque argomento lascia inalterato l'identificatore
2076 corrispondente.
2077
2078 Per queste funzioni di sistema esistono anche due controparti,
2079 \funcd{getresuid} e \funcd{getresgid},\footnote{le funzioni non sono standard,
2080   anche se appaiono in altri kernel, su Linux sono presenti dal kernel 2.1.44
2081   e con le versioni della \acr{glibc} a partire dalla 2.3.2, definendo la
2082   macro \macro{\_GNU\_SOURCE}.} che permettono di leggere in blocco i vari
2083 identificatori; i loro prototipi sono:
2084
2085 \begin{funcproto}{ 
2086 \fhead{unistd.h}
2087 \fhead{sys/types.h}
2088 \fdecl{int getresuid(uid\_t *ruid, uid\_t *euid, uid\_t *suid)}
2089 \fdesc{Legge l'\ids{UID} reale, effettivo e salvato del processo corrente.} 
2090 \fdecl{int getresgid(gid\_t *rgid, gid\_t *egid, gid\_t *sgid)}
2091 \fdesc{Legge il \ids{GID} reale, effettivo e salvato del processo corrente.} 
2092 }
2093 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2094   caso \var{errno} può assumere solo il valore \errcode{EFAULT} se gli
2095   indirizzi delle variabili di ritorno non sono validi.  }
2096 \end{funcproto}
2097
2098 Anche queste funzioni sono un'estensione specifica di Linux, e non richiedono
2099 nessun privilegio. I valori sono restituiti negli argomenti, che vanno
2100 specificati come puntatori (è un altro esempio di \textit{value result
2101   argument}). Si noti che queste funzioni sono le uniche in grado di leggere
2102 gli identificatori del gruppo \textit{saved}.
2103
2104 Infine le funzioni \func{setfsuid} e \func{setfsgid} servono per impostare gli
2105 identificatori del gruppo \textit{filesystem} che sono usati da Linux per il
2106 controllo dell'accesso ai file.  Come già accennato in
2107 sez.~\ref{sec:proc_access_id} Linux definisce questo ulteriore gruppo di
2108 identificatori, che in circostanze normali sono assolutamente equivalenti a
2109 quelli del gruppo \textit{effective}, dato che ogni cambiamento di questi
2110 ultimi viene immediatamente riportato su di essi.
2111
2112 C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
2113 identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
2114 ovviare ad un problema di sicurezza che si presenta quando si deve
2115 implementare un server NFS. 
2116
2117 Il server NFS infatti deve poter cambiare l'identificatore con cui accede ai
2118 file per assumere l'identità del singolo utente remoto, ma se questo viene
2119 fatto cambiando l'\ids{UID} effettivo o l'\ids{UID} reale il server si espone
2120 alla ricezione di eventuali segnali ostili da parte dell'utente di cui ha
2121 temporaneamente assunto l'identità.  Cambiando solo l'\ids{UID} di filesystem
2122 si ottengono i privilegi necessari per accedere ai file, mantenendo quelli
2123 originari per quanto riguarda tutti gli altri controlli di accesso, così che
2124 l'utente non possa inviare segnali al server NFS.
2125
2126 Le due funzioni di sistema usate per cambiare questi identificatori sono
2127 \funcd{setfsuid} e \funcd{setfsgid}, ed ovviamente sono specifiche di Linux e
2128 non devono essere usate se si intendono scrivere programmi portabili; i loro
2129 prototipi sono:
2130
2131 \begin{funcproto}{ 
2132 \fhead{sys/fsuid.h}
2133 \fdecl{int setfsuid(uid\_t fsuid)}
2134 \fdesc{Imposta l'\ids{UID} di filesystem del processo corrente.} 
2135 \fdecl{int setfsgid(gid\_t fsgid)}
2136 \fdesc{Legge il \ids{GID} di filesystem del processo corrente.} 
2137 }
2138 {Le funzioni restituiscono il nuovo valore dell'identificativo in caso di
2139   successo e quello corrente per un errore, in questo caso non viene però
2140   impostato nessun codice di errore in \var{errno}.}
2141 \end{funcproto}
2142
2143 Le due funzioni sono analoghe ed usano il valore passato come argomento per
2144 effettuare l'impostazione dell'identificativo.  Le funzioni hanno successo
2145 solo se il processo chiamante ha i privilegi di amministratore o, per gli
2146 altri utenti, se il valore specificato coincide con uno dei di quelli del
2147 gruppo \textit{real}, \textit{effective} o \textit{saved}.
2148
2149
2150 \subsection{Le funzioni per la gestione dei gruppi associati a un processo}
2151 \label{sec:proc_setgroups}
2152
2153 Le ultime funzioni che esamineremo sono quelle che permettono di operare sui
2154 gruppi supplementari cui un utente può appartenere. Ogni processo può avere
2155 almeno \const{NGROUPS\_MAX} gruppi supplementari\footnote{il numero massimo di
2156   gruppi secondari può essere ottenuto con \func{sysconf} (vedi
2157   sez.~\ref{sec:sys_limits}), leggendo il parametro
2158   \texttt{\_SC\_NGROUPS\_MAX}.} in aggiunta al gruppo primario; questi vengono
2159 ereditati dal processo padre e possono essere cambiati con queste funzioni.
2160
2161 La funzione di sistema che permette di leggere i gruppi supplementari
2162 associati ad un processo è \funcd{getgroups}; questa funzione è definita nello
2163 standard POSIX.1, ed il suo prototipo è:
2164
2165 \begin{funcproto}{ 
2166 \fhead{sys/types.h}
2167 \fhead{unistd.h}
2168 \fdecl{int getgroups(int size, gid\_t list[])}
2169 \fdesc{Legge gli identificatori dei gruppi supplementari.} 
2170 }
2171 {La funzione ritorna il numero di gruppi letti in caso di successo e $-1$ per
2172   un errore, nel qual caso \var{errno} assumerà uno dei valori:
2173 \begin{errlist}
2174 \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2175 \item[\errcode{EINVAL}] il valore di \param{size} è diverso da zero ma
2176   minore del numero di gruppi supplementari del processo.
2177 \end{errlist}}
2178 \end{funcproto}
2179
2180 La funzione legge gli identificatori dei gruppi supplementari del processo sul
2181 vettore \param{list} che deve essere di dimensione pari a \param{size}. Non è
2182 specificato se la funzione inserisca o meno nella lista il \ids{GID} effettivo
2183 del processo. Se si specifica un valore di \param{size} uguale a $0$ allora
2184 l'argomento \param{list} non viene modificato, ma si ottiene il numero di
2185 gruppi supplementari.
2186
2187 Una seconda funzione, \funcd{getgrouplist}, può invece essere usata per
2188 ottenere tutti i gruppi a cui appartiene utente identificato per nome; il suo
2189 prototipo è:
2190
2191 \begin{funcproto}{ 
2192 \fhead{grp.h}
2193 \fdecl{int getgrouplist(const char *user, gid\_t group, gid\_t *groups, int
2194   *ngroups)} 
2195 \fdesc{Legge i gruppi cui appartiene un utente.} 
2196 }
2197 {La funzione ritorna il numero di gruppi ottenuto in caso di successo e $-1$
2198   per un errore, che avviene solo quando il numero di gruppi è maggiore di
2199   quelli specificati con \param{ngroups}.}
2200 \end{funcproto}
2201
2202 La funzione esegue una scansione del database dei gruppi (si veda
2203 sez.~\ref{sec:sys_user_group}) per leggere i gruppi supplementari dell'utente
2204 specificato per nome (e non con un \ids{UID}) nella stringa passata con
2205 l'argomento \param{user}. Ritorna poi nel vettore \param{groups} la lista dei
2206 \ids{GID} dei gruppi a cui l'utente appartiene. Si noti che \param{ngroups},
2207 che in ingresso deve indicare la dimensione di \param{group}, è passato come
2208 \textit{value result argument} perché, qualora il valore specificato sia
2209 troppo piccolo, la funzione ritorna $-1$, passando comunque indietro il numero
2210 dei gruppi trovati, in modo da poter ripetere la chiamata con un vettore di
2211 dimensioni adeguate.
2212
2213 Infine per impostare i gruppi supplementari di un processo ci sono due
2214 funzioni, che possono essere usate solo se si hanno i privilegi di
2215 amministratore.\footnote{e più precisamente se si ha la \textit{capability}
2216   \macro{CAP\_SETGID}.} La prima delle due è la funzione di sistema
2217 \funcd{setgroups},\footnote{la funzione è definita in BSD e SRv4, ma a
2218   differenza di \func{getgroups} non è stata inclusa in POSIX.1-2001, per
2219   poterla utilizzare deve essere definita la macro \macro{\_BSD\_SOURCE}.} ed
2220 il suo prototipo è:
2221
2222 \begin{funcproto}{ 
2223 \fhead{grp.h}
2224 \fdecl{int setgroups(size\_t size, gid\_t *list)}
2225 \fdesc{Imposta i gruppi supplementari del processo.} 
2226 }
2227 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2228 caso \var{errno} assumerà uno dei valori:
2229 \begin{errlist}
2230 \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2231 \item[\errcode{EINVAL}] il valore di \param{size} è maggiore del valore
2232     massimo consentito di gruppi supplementari.
2233 \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
2234 \end{errlist}}
2235 \end{funcproto}
2236
2237 La funzione imposta i gruppi supplementari del processo corrente ai valori
2238 specificati nel vettore passato con l'argomento \param{list}, di dimensioni
2239 date dall'argomento \param{size}. Il numero massimo di gruppi supplementari
2240 che si possono impostare è un parametro di sistema, che può essere ricavato
2241 con le modalità spiegate in sez.~\ref{sec:sys_characteristics}.
2242
2243 Se invece si vogliono impostare i gruppi supplementari del processo a quelli
2244 di un utente specifico, si può usare la funzione \funcd{initgroups} il cui
2245 prototipo è:
2246
2247 \begin{funcproto}{ 
2248 \fhead{sys/types.h}
2249 \fhead{grp.h}
2250 \fdecl{int initgroups(const char *user, gid\_t group)}
2251 \fdesc{Inizializza la lista dei gruppi supplementari.} 
2252 }
2253 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2254 caso \var{errno} assumerà uno dei valori:
2255 \begin{errlist}
2256 \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare lo spazio per
2257   informazioni dei gruppi.
2258 \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
2259 \end{errlist}}
2260 \end{funcproto}
2261
2262 La funzione esegue la scansione del database dei gruppi (usualmente
2263 \conffile{/etc/group}) cercando i gruppi di cui è membro l'utente \param{user}
2264 (di nuovo specificato per nome e non per \ids{UID}) con cui costruisce una
2265 lista di gruppi supplementari, a cui aggiunge anche
2266 \param{group}, infine imposta questa lista per il processo corrente usando
2267 \func{setgroups}.  Si tenga presente che sia \func{setgroups} che
2268 \func{initgroups} non sono definite nello standard POSIX.1 e che pertanto non
2269 è possibile utilizzarle quando si definisce \macro{\_POSIX\_SOURCE} o si
2270 compila con il flag \cmd{-ansi}, è pertanto meglio evitarle se si vuole
2271 scrivere codice portabile.
2272
2273  
2274 \section{La gestione della priorità dei processi}
2275 \label{sec:proc_priority}
2276
2277 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
2278 lo \textit{scheduler} assegna la CPU ai vari processi attivi.  In particolare
2279 prenderemo in esame i vari meccanismi con cui viene gestita l'assegnazione del
2280 tempo di CPU, ed illustreremo le varie funzioni di gestione. Tratteremo infine
2281 anche le altre priorità dei processi (come quelle per l'accesso a disco)
2282 divenute disponibili con i kernel più recenti.
2283
2284
2285 \subsection{I meccanismi di \textit{scheduling}}
2286 \label{sec:proc_sched}
2287
2288 \itindbeg{scheduler}
2289
2290 La scelta di un meccanismo che sia in grado di distribuire in maniera efficace
2291 il tempo di CPU per l'esecuzione dei processi è sempre una questione delicata,
2292 ed oggetto di numerose ricerche; in generale essa dipende in maniera
2293 essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
2294 cui non esiste un meccanismo che sia valido per tutti gli usi.
2295
2296 La caratteristica specifica di un sistema multitasking come Linux è quella del
2297 cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
2298   multitasking}: questo significa che al contrario di altri sistemi (che usano
2299 invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
2300   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
2301 quando la CPU deve essere passata ad un altro processo. Come accennato in
2302 sez.~\ref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
2303 apposita del kernel, lo \textit{scheduler}, il cui scopo è quello di
2304 distribuire al meglio il tempo di CPU fra i vari processi.
2305
2306 La cosa è resa ancora più complicata dal fatto che con le architetture
2307 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
2308 utilizzare.\footnote{nei processori moderni la presenza di ampie cache può
2309   rendere poco efficiente trasferire l'esecuzione di un processo da una CPU ad
2310   un'altra, per cui effettuare la migliore scelta fra le diverse CPU non è
2311   banale.}  Tutto questo comunque appartiene alle sottigliezze
2312 dell'implementazione del kernel; dal punto di vista dei programmi che girano
2313 in \textit{user space}, anche quando si hanno più processori (e dei processi
2314 che sono eseguiti davvero in contemporanea), le politiche di
2315 \textit{scheduling} riguardano semplicemente l'allocazione della risorsa
2316 \textsl{tempo di esecuzione}, la cui assegnazione sarà governata dai
2317 meccanismi di scelta delle priorità che restano gli stessi indipendentemente
2318 dal numero di processori.
2319
2320 Si tenga conto poi che i processi non devono solo eseguire del codice: ad
2321 esempio molto spesso saranno impegnati in operazioni di I/O, o potranno
2322 venire bloccati da un comando dal terminale, o sospesi per un certo periodo di
2323 tempo.  In tutti questi casi la CPU diventa disponibile ed è compito dello
2324 kernel provvedere a mettere in esecuzione un altro processo.
2325
2326 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
2327 processo, in Linux un processo può trovarsi in uno degli stati riportati in
2328 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
2329 \textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
2330 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
2331 fintanto che esso si trova in uno qualunque degli altri stati.
2332
2333 \begin{table}[htb]
2334   \footnotesize
2335   \centering
2336   \begin{tabular}[c]{|p{2.4cm}|c|p{9cm}|}
2337     \hline
2338     \textbf{Stato} & \texttt{STAT} & \textbf{Descrizione} \\
2339     \hline
2340     \hline
2341     \textit{runnable}& \texttt{R} & Il processo è in esecuzione o è pronto ad
2342                                     essere eseguito (cioè è in attesa che gli
2343                                     venga assegnata la CPU).\\
2344     \textit{sleep}   & \texttt{S} & Il processo  è in attesa di un
2345                                     risposta dal sistema, ma può essere 
2346                                     interrotto da un segnale.\\
2347     \textit{uninterrutible sleep}& \texttt{D} & Il  processo è in
2348                                     attesa di un risposta dal sistema (in 
2349                                     genere per I/O), e non può essere
2350                                     interrotto in nessuna circostanza.\\
2351     \textit{stopped} & \texttt{T} & Il processo è stato fermato con un
2352                                     \signal{SIGSTOP}, o è tracciato.\\
2353     \textit{zombie}\itindex{zombie}& \texttt{Z} & Il processo è terminato ma il
2354                                     suo stato di terminazione non è ancora
2355                                     stato letto dal padre.\\
2356     \textit{killable}& \texttt{D} & Un nuovo stato introdotto con il kernel
2357                                     2.6.25, sostanzialmente identico
2358                                     all'\textit{uninterrutible sleep} con la
2359                                     sola differenza che il processo può
2360                                     terminato con \signal{SIGKILL} (usato per
2361                                     lo più per NFS).\\ 
2362     \hline
2363   \end{tabular}
2364   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
2365     \texttt{STAT} si è riportata la corrispondente lettera usata dal comando 
2366     \cmd{ps} nell'omonimo campo.}
2367   \label{tab:proc_proc_states}
2368 \end{table}
2369
2370 Si deve quindi tenere presente che l'utilizzo della CPU è soltanto una delle
2371 risorse che sono necessarie per l'esecuzione di un programma, e a seconda
2372 dello scopo del programma non è detto neanche che sia la più importante, dato
2373 che molti programmi dipendono in maniera molto più critica dall'I/O. Per
2374 questo motivo non è affatto detto che dare ad un programma la massima priorità
2375 di esecuzione abbia risultati significativi in termini di prestazioni.
2376
2377 Il meccanismo tradizionale di \textit{scheduling} di Unix (che tratteremo in
2378 sez.~\ref{sec:proc_sched_stand}) è sempre stato basato su delle
2379 \textsl{priorità dinamiche}, in modo da assicurare che tutti i processi, anche
2380 i meno importanti, potessero ricevere un po' di tempo di CPU. In sostanza
2381 quando un processo ottiene la CPU la sua priorità viene diminuita. In questo
2382 modo alla fine, anche un processo con priorità iniziale molto bassa, finisce
2383 per avere una priorità sufficiente per essere eseguito.
2384
2385 Lo standard POSIX.1b però ha introdotto il concetto di \textsl{priorità
2386   assoluta}, (chiamata anche \textsl{priorità statica}, in contrapposizione
2387 alla normale priorità dinamica), per tenere conto dei sistemi
2388 \textit{real-time},\footnote{per sistema \textit{real-time} si intende un
2389   sistema in grado di eseguire operazioni in un tempo ben determinato; in
2390   genere si tende a distinguere fra l'\textit{hard real-time} in cui è
2391   necessario che i tempi di esecuzione di un programma siano determinabili con
2392   certezza assoluta (come nel caso di meccanismi di controllo di macchine,
2393   dove uno sforamento dei tempi avrebbe conseguenze disastrose), e
2394   \textit{soft-real-time} in cui un occasionale sforamento è ritenuto
2395   accettabile.} in cui è vitale che i processi che devono essere eseguiti in
2396 un determinato momento non debbano aspettare la conclusione di altri che non
2397 hanno questa necessità.
2398
2399 Il concetto di priorità assoluta dice che quando due processi si contendono
2400 l'esecuzione, vince sempre quello con la priorità assoluta più alta.
2401 Ovviamente questo avviene solo per i processi che sono pronti per essere
2402 eseguiti (cioè nello stato \textit{runnable}).  La priorità assoluta viene in
2403 genere indicata con un numero intero, ed un valore più alto comporta una
2404 priorità maggiore. Su questa politica di \textit{scheduling} torneremo in
2405 sez.~\ref{sec:proc_real_time}.
2406
2407 In generale quello che succede in tutti gli Unix moderni è che ai processi
2408 normali viene sempre data una priorità assoluta pari a zero, e la decisione di
2409 assegnazione della CPU è fatta solo con il meccanismo tradizionale della
2410 priorità dinamica. In Linux tuttavia è possibile assegnare anche una priorità
2411 assoluta, nel qual caso un processo avrà la precedenza su tutti gli altri di
2412 priorità inferiore, che saranno eseguiti solo quando quest'ultimo non avrà
2413 bisogno della CPU.
2414
2415
2416 \subsection{Il meccanismo di \textit{scheduling} standard}
2417 \label{sec:proc_sched_stand}
2418
2419 A meno che non si abbiano esigenze specifiche,\footnote{per alcune delle quali
2420   sono state introdotte delle varianti specifiche.} l'unico meccanismo di
2421 \textit{scheduling} con il quale si avrà a che fare è quello tradizionale, che
2422 prevede solo priorità dinamiche. È di questo che, di norma, ci si dovrà
2423 preoccupare nella programmazione.  Come accennato in Linux i processi ordinari
2424 hanno tutti una priorità assoluta nulla; quello che determina quale, fra tutti
2425 i processi in attesa di esecuzione, sarà eseguito per primo, è la cosiddetta
2426 \textsl{priorità dinamica},\footnote{quella che viene mostrata nella colonna
2427   \texttt{PR} del comando \texttt{top}.} che è chiamata così proprio perché
2428 varia nel corso dell'esecuzione di un processo.
2429
2430 Il meccanismo usato da Linux è in realtà piuttosto complesso,\footnote{e
2431   dipende strettamente dalla versione di kernel; in particolare a partire
2432   dalla serie 2.6.x lo \textit{scheduler} è stato riscritto completamente, con
2433   molte modifiche susseguitesi per migliorarne le prestazioni, per un certo
2434   periodo ed è stata anche introdotta la possibilità di usare diversi
2435   algoritmi, selezionabili sia in fase di compilazione, che, nelle versioni
2436   più recenti, all'avvio (addirittura è stato ideato un sistema modulare che
2437   permette di cambiare lo \textit{scheduler} a sistema attivo).} ma a grandi
2438 linee si può dire che ad ogni processo è assegnata una \textit{time-slice},
2439 cioè un intervallo di tempo (letteralmente una fetta) per il quale, a meno di
2440 eventi esterni, esso viene eseguito senza essere interrotto.  Inoltre la
2441 priorità dinamica viene calcolata dallo \textit{scheduler} a partire da un
2442 valore iniziale che viene \textsl{diminuito} tutte le volte che un processo è
2443 in stato \textit{runnable} ma non viene posto in esecuzione.\footnote{in
2444   realtà il calcolo della priorità dinamica e la conseguente scelta di quale
2445   processo mettere in esecuzione avviene con un algoritmo molto più
2446   complicato, che tiene conto anche della \textsl{interattività} del processo,
2447   utilizzando diversi fattori, questa è una brutale semplificazione per
2448   rendere l'idea del funzionamento, per una trattazione più dettagliata, anche
2449   se non aggiornatissima, dei meccanismi di funzionamento dello
2450   \textit{scheduler} si legga il quarto capitolo di \cite{LinKernDev}.} Lo
2451 \textit{scheduler} infatti mette sempre in esecuzione, fra tutti i processi in
2452 stato \textit{runnable}, quello che ha il valore di priorità dinamica più
2453 basso.\footnote{con le priorità dinamiche il significato del valore numerico
2454   ad esse associato è infatti invertito, un valore più basso significa una
2455   priorità maggiore.} Il fatto che questo valore venga diminuito quando un
2456 processo non viene posto in esecuzione pur essendo pronto, significa che la
2457 priorità dei processi che non ottengono l'uso del processore viene
2458 progressivamente incrementata, così che anche questi alla fine hanno la
2459 possibilità di essere eseguiti.
2460
2461 Sia la dimensione della \textit{time-slice} che il valore di partenza della
2462 priorità dinamica sono determinate dalla cosiddetta \textit{nice} (o
2463 \textit{niceness}) del processo.\footnote{questa è una delle tante proprietà
2464   che ciascun processo si porta dietro, essa viene ereditata dai processi
2465   figli e mantenuta attraverso una \func{exec}; fino alla serie 2.4 essa era
2466   mantenuta nell'omonimo campo \texttt{nice} della \texttt{task\_struct}, con
2467   la riscrittura dello \textit{scheduler} eseguita nel 2.6 viene mantenuta nel
2468   campo \texttt{static\_prio} come per le priorità statiche.} L'origine del
2469 nome di questo parametro sta nel fatto che generalmente questo viene usato per
2470 \textsl{diminuire} la priorità di un processo, come misura di cortesia nei
2471 confronti degli altri.  I processi infatti vengono creati dal sistema con un
2472 valore nullo e nessuno è privilegiato rispetto agli altri. Specificando un
2473 valore di \textit{nice} positivo si avrà una \textit{time-slice} più breve ed
2474 un valore di priorità dinamica iniziale più alto, mentre un valore negativo
2475 darà una \textit{time-slice} più lunga ed un valore di priorità dinamica
2476 iniziale più basso.
2477
2478 Esistono diverse funzioni che consentono di indicare un valore di
2479 \textit{nice} di un processo; la più semplice è \funcd{nice}, che opera sul
2480 processo corrente, il suo prototipo è:
2481
2482 \begin{funcproto}{ 
2483 \fhead{unistd.h}
2484 \fdecl{int nice(int inc)}
2485 \fdesc{Aumenta il valore di \textit{nice} del processo corrente.} 
2486 }
2487 {La funzione ritorna il nuovo valore di \textit{nice} in caso di successo e
2488   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2489 \begin{errlist}
2490   \item[\errcode{EPERM}] non si ha il permesso di specificare un valore
2491     di \param{inc} negativo. 
2492 \end{errlist}}
2493 \end{funcproto}
2494
2495 L'argomento \param{inc} indica l'incremento da effettuare rispetto al valore
2496 di \textit{nice} corrente, che può assumere valori compresi fra
2497 \const{PRIO\_MIN} e \const{PRIO\_MAX}; nel caso di Linux sono fra $-20$ e
2498 $19$,\footnote{in realtà l'intervallo varia a seconda delle versioni di
2499   kernel, ed è questo a partire dal kernel 1.3.43, anche se oggi si può avere
2500   anche l'intervallo fra $-20$ e $20$.} ma per \param{inc} si può specificare
2501 un valore qualunque, positivo o negativo, ed il sistema provvederà a troncare
2502 il risultato nell'intervallo consentito. Valori positivi comportano maggiore
2503 \textit{cortesia} e cioè una diminuzione della priorità, valori negativi
2504 comportano invece un aumento della priorità. Con i kernel precedenti il 2.6.12
2505 solo l'amministratore\footnote{o un processo con la \textit{capability}
2506   \const{CAP\_SYS\_NICE}, vedi sez.~\ref{sec:proc_capabilities}.} può
2507 specificare valori negativi di \param{inc} che permettono di aumentare la
2508 priorità di un processo, a partire da questa versione è consentito anche agli
2509 utenti normali alzare (entro certi limiti, che vedremo in
2510 sez.~\ref{sec:sys_resource_limit}) la priorità dei propri processi.
2511
2512 Gli standard SUSv2 e POSIX.1 prevedono che la funzione ritorni il nuovo valore
2513 di \textit{nice} del processo; tuttavia la \textit{system call} di Linux non
2514 segue questa convenzione e restituisce sempre $0$ in caso di successo e $-1$
2515 in caso di errore; questo perché $-1$ è anche un valore di \textit{nice}
2516 legittimo e questo comporta una confusione con una eventuale condizione di
2517 errore. La \textit{system call} originaria inoltre non consente, se non dotati
2518 di adeguati privilegi, di diminuire un valore di \textit{nice} precedentemente
2519 innalzato.
2520  
2521 Fino alla \acr{glibc} 2.2.4 la funzione di libreria riportava direttamente il
2522 risultato dalla \textit{system call}, violando lo standard, per cui per
2523 ottenere il nuovo valore occorreva una successiva chiamata alla funzione
2524 \func{getpriority}. A partire dalla \acr{glibc} 2.2.4 \func{nice} è stata
2525 reimplementata e non viene più chiamata la omonima \textit{system call}, con
2526 questa versione viene restituito come valore di ritorno il valore di
2527 \textit{nice}, come richiesto dallo standard.\footnote{questo viene fatto
2528   chiamando al suo interno \func{setpriority}, che tratteremo a breve.}  In
2529 questo caso l'unico modo per rilevare in maniera affidabile una condizione di
2530 errore è quello di azzerare \var{errno} prima della chiamata della funzione e
2531 verificarne il valore quando \func{nice} restituisce $-1$.
2532
2533 Per leggere il valore di \textit{nice} di un processo occorre usare la
2534 funzione di sistema \funcd{getpriority}, derivata da BSD; il suo prototipo è:
2535
2536 \begin{funcproto}{ 
2537 \fhead{sys/time.h}
2538 \fhead{sys/resource.h}
2539 \fdecl{int getpriority(int which, int who)}
2540 \fdesc{Legge un valore di \textit{nice}.} 
2541 }
2542 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2543 caso \var{errno} assumerà uno dei valori:
2544 \begin{errlist}
2545 \item[\errcode{EINVAL}] il valore di \param{which} non è uno di quelli
2546     elencati in tab.~\ref{tab:proc_getpriority}.
2547 \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
2548   \param{which} e \param{who}.
2549 \end{errlist}}
2550 \end{funcproto}
2551
2552 La funzione permette, a seconda di quanto specificato
2553 nell'argomento \param{which}, di leggere il valore di \textit{nice} di un
2554 processo, di un gruppo di processi (vedi sez.~\ref{sec:sess_proc_group}) o di
2555 un utente indicato dall'argomento \param{who}. Nelle vecchie versioni può
2556 essere necessario includere anche \headfile{sys/time.h}, questo non è più
2557 necessario con versioni recenti delle librerie, ma è comunque utile per
2558 portabilità.
2559
2560 I valori possibili per \param{which}, ed il tipo di valore che occorre usare
2561 in corrispondenza per \param{who} solo elencati nella legenda di
2562 tab.~\ref{tab:proc_getpriority} insieme ai relativi significati. Usare un
2563 valore nullo per \param{who} indica, a seconda della corrispondente
2564 indicazione usata per \param{which} il processo, il gruppo di processi o
2565 l'utente correnti.
2566
2567 \begin{table}[htb]
2568   \centering
2569   \footnotesize
2570   \begin{tabular}[c]{|c|c|l|}
2571     \hline
2572     \param{which} & \param{who} & \textbf{Significato} \\
2573     \hline
2574     \hline
2575     \const{PRIO\_PROCESS} & \type{pid\_t} & processo  \\
2576     \const{PRIO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
2577                                             \textit{process group}\\ 
2578     \const{PRIO\_USER}    & \type{uid\_t} & utente \\
2579     \hline
2580   \end{tabular}
2581   \caption{Legenda del valore dell'argomento \param{which} e del tipo
2582     dell'argomento \param{who} delle funzioni \func{getpriority} e
2583     \func{setpriority} per le tre possibili scelte.}
2584   \label{tab:proc_getpriority}
2585 \end{table}
2586
2587 In caso di una indicazione che faccia riferimento a più processi, la funzione
2588 restituisce la priorità più alta (cioè il valore più basso) fra quelle dei
2589 processi corrispondenti. Come per \func{nice} $-1$ è un valore possibile
2590 corretto, per cui di nuovo per poter rilevare una condizione di errore è
2591 necessario cancellare sempre \var{errno} prima della chiamata alla funzione e
2592 quando si ottiene un valore di ritorno uguale a $-1$ per verificare che essa
2593 resti uguale a zero.
2594
2595 Analoga a \func{getpriority} è la funzione di sistema \funcd{setpriority} che
2596 permette di impostare la priorità di uno o più processi; il suo prototipo è:
2597
2598 \begin{funcproto}{ 
2599 \fhead{sys/time.h}
2600 \fhead{sys/resource.h}
2601 \fdecl{int setpriority(int which, int who, int prio)}
2602 \fdesc{Imposta un valore di \textit{nice}.} 
2603 }
2604 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2605 caso \var{errno} assumerà uno dei valori:
2606 \begin{errlist}
2607 \item[\errcode{EACCES}] si è richiesto un aumento di priorità senza avere
2608   sufficienti privilegi.
2609 \item[\errcode{EINVAL}] il valore di \param{which} non è uno di quelli
2610   elencati in tab.~\ref{tab:proc_getpriority}.
2611 \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
2612   cercato di modificare la priorità di un processo di un altro utente.
2613 \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
2614   \param{which} e \param{who}.
2615 \end{errlist}}
2616 \end{funcproto}
2617
2618 La funzione imposta la priorità dinamica al valore specificato da \param{prio}
2619 per tutti i processi indicati dagli argomenti \param{which} e \param{who}, per
2620 i quali valgono le stesse considerazioni fatte per \func{getpriority} e lo
2621 specchietto di tab.~\ref{tab:proc_getpriority}. 
2622
2623 In questo caso come valore di \param{prio} deve essere specificato il valore
2624 di \textit{nice} da assegnare, e non un incremento (positivo o negativo) come
2625 nel caso di \func{nice}, nell'intervallo fra \const{PRIO\_MIN} ($-20$) e
2626 \const{PRIO\_MAX} ($19$). La funzione restituisce il valore di \textit{nice}
2627 assegnato in caso di successo e $-1$ in caso di errore, e come per \func{nice}
2628 anche in questo caso per rilevare un errore occorre sempre porre a zero
2629 \var{errno} prima della chiamata della funzione, essendo $-1$ un valore di
2630 \textit{nice} valido.
2631
2632 Si tenga presente che solo l'amministratore\footnote{o più precisamente un
2633   processo con la \textit{capability} \const{CAP\_SYS\_NICE}, vedi
2634   sez.~\ref{sec:proc_capabilities}.} ha la possibilità di modificare
2635 arbitrariamente le priorità di qualunque processo. Un utente normale infatti
2636 può modificare solo la priorità dei suoi processi ed in genere soltanto
2637 diminuirla.  Fino alla versione di kernel 2.6.12 Linux ha seguito le
2638 specifiche dello standard SUSv3, e come per tutti i sistemi derivati da SysV
2639 veniva richiesto che l'\ids{UID} reale o quello effettivo del processo
2640 chiamante corrispondessero all'\ids{UID} reale (e solo a quello) del processo
2641 di cui si intendeva cambiare la priorità. A partire dalla versione 2.6.12 è
2642 stata adottata la semantica in uso presso i sistemi derivati da BSD (SunOS,
2643 Ultrix, *BSD), in cui la corrispondenza può essere anche con l'\ids{UID}
2644 effettivo.
2645
2646 Sempre a partire dal kernel 2.6.12 è divenuto possibile anche per gli utenti
2647 ordinari poter aumentare la priorità dei propri processi specificando un
2648 valore di \param{prio} negativo. Questa operazione non è possibile però in
2649 maniera indiscriminata, ed in particolare può essere effettuata solo
2650 nell'intervallo consentito dal valore del limite \const{RLIMIT\_NICE}
2651 (torneremo su questo in sez.~\ref{sec:sys_resource_limit}).
2652
2653 Infine nonostante i valori siano sempre rimasti gli stessi, il significato del
2654 valore di \textit{nice} è cambiato parecchio nelle progressive riscritture
2655 dello \textit{scheduler} di Linux, ed in particolare a partire dal kernel
2656 2.6.23 l'uso di diversi valori di \textit{nice} ha un impatto molto più forte
2657 nella distribuzione della CPU ai processi. Infatti se viene comunque calcolata
2658 una priorità dinamica per i processi che non ricevono la CPU così che anche
2659 essi possano essere messi in esecuzione, un alto valore di \textit{nice}
2660 corrisponde comunque ad una \textit{time-slice} molto piccola che non cresce
2661 comunque, per cui un processo a bassa priorità avrà davvero scarse possibilità
2662 di essere eseguito in presenza di processi attivi a priorità più alta.
2663
2664
2665
2666 \subsection{Il meccanismo di \textit{scheduling real-time}}
2667 \label{sec:proc_real_time}
2668
2669 Come spiegato in sez.~\ref{sec:proc_sched} lo standard POSIX.1b ha introdotto
2670 le priorità assolute per permettere la gestione di processi real-time. In
2671 realtà nel caso di Linux non si tratta di un vero \textit{hard real-time}, in
2672 quanto in presenza di eventuali interrupt il kernel interrompe l'esecuzione di
2673 un processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
2674   siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
2675   ottenere un sistema effettivamente \textit{hard real-time}. In tal caso
2676   infatti gli interrupt vengono intercettati dall'interfaccia
2677   \textit{real-time} (o nel caso di Adeos gestiti dalle code del nano-kernel),
2678   in modo da poterli controllare direttamente qualora ci sia la necessità di
2679   avere un processo con priorità più elevata di un \textit{interrupt
2680     handler}.} mentre con l'incorrere in un \textit{page fault} si possono
2681 avere ritardi non previsti.  Se l'ultimo problema può essere aggirato
2682 attraverso l'uso delle funzioni di controllo della memoria virtuale (vedi
2683 sez.~\ref{sec:proc_mem_lock}), il primo non è superabile e può comportare
2684 ritardi non prevedibili riguardo ai tempi di esecuzione di qualunque processo.
2685
2686 Nonostante questo, ed in particolare con una serie di miglioramenti che sono
2687 stati introdotti nello sviluppo del kernel,\footnote{in particolare a partire
2688   dalla versione 2.6.18 sono stati inserite nel kernel una serie di modifiche
2689   che consentono di avvicinarsi sempre di più ad un vero e proprio sistema
2690   \textit{real-time} estendendo il concetto di \textit{preemption} alle
2691   operazioni dello stesso kernel; esistono vari livelli a cui questo può
2692   essere fatto, ottenibili attivando in fase di compilazione una fra le
2693   opzioni \texttt{CONFIG\_PREEMPT\_NONE}, \texttt{CONFIG\_PREEMPT\_VOLUNTARY}
2694   e \texttt{CONFIG\_PREEMPT\_DESKTOP}.} si può arrivare ad una ottima
2695 approssimazione di sistema \textit{real-time} usando le priorità assolute.
2696 Occorre farlo però con molta attenzione: se si dà ad un processo una priorità
2697 assoluta e questo finisce in un loop infinito, nessun altro processo potrà
2698 essere eseguito, ed esso sarà mantenuto in esecuzione permanentemente
2699 assorbendo tutta la CPU e senza nessuna possibilità di riottenere l'accesso al
2700 sistema. Per questo motivo è sempre opportuno, quando si lavora con processi
2701 che usano priorità assolute, tenere attiva una shell cui si sia assegnata la
2702 massima priorità assoluta, in modo da poter essere comunque in grado di
2703 rientrare nel sistema.
2704
2705 Quando c'è un processo con priorità assoluta lo \textit{scheduler} lo metterà
2706 in esecuzione prima di ogni processo normale. In caso di più processi sarà
2707 eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
2708 processi con la stessa priorità assoluta questi vengono tenuti in una coda e
2709 tocca al kernel decidere quale deve essere eseguito.  Il meccanismo con cui
2710 vengono gestiti questi processi dipende dalla politica di \textit{scheduling}
2711 che si è scelta; lo standard ne prevede due:
2712 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
2713 \item[\textit{First In First Out} (FIFO)] Il processo viene eseguito
2714   fintanto che non cede volontariamente la CPU (con la funzione
2715   \func{sched\_yield}), si blocca, finisce o viene interrotto da un processo a
2716   priorità più alta. Se il processo viene interrotto da uno a priorità più
2717   alta esso resterà in cima alla lista e sarà il primo ad essere eseguito
2718   quando i processi a priorità più alta diverranno inattivi. Se invece lo si
2719   blocca volontariamente sarà posto in coda alla lista (ed altri processi con
2720   la stessa priorità potranno essere eseguiti).
2721 \item[\textit{Round Robin} (RR)] Il comportamento è del tutto analogo a quello
2722   precedente, con la sola differenza che ciascun processo viene eseguito al
2723   massimo per un certo periodo di tempo (la cosiddetta \textit{time-slice})
2724   dopo di che viene automaticamente posto in fondo alla coda dei processi con
2725   la stessa priorità. In questo modo si ha comunque una esecuzione a turno di
2726   tutti i processi, da cui il nome della politica. Solo i processi con la
2727   stessa priorità ed in stato \textit{runnable} entrano nel
2728   \textsl{girotondo}.
2729 \end{basedescript}
2730
2731 Lo standard POSIX.1-2001 prevede una funzione che consenta sia di modificare
2732 le politiche di \textit{scheduling}, passando da \textit{real-time} a
2733 ordinarie o viceversa, che di specificare, in caso di politiche
2734 \textit{real-time}, la eventuale priorità statica; la funzione di sistema è
2735 \funcd{sched\_setscheduler} ed il suo prototipo è:
2736
2737 \begin{funcproto}{ 
2738 \fhead{sched.h}
2739 \fdecl{int sched\_setscheduler(pid\_t pid, int policy, const struct
2740   sched\_param *p)}
2741 \fdesc{Imposta priorità e politica di \textit{scheduling}.} 
2742 }
2743 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2744 caso \var{errno} assumerà uno dei valori:
2745 \begin{errlist}
2746     \item[\errcode{EINVAL}] il valore di \param{policy} non esiste o il
2747       relativo valore di \param{p} non è valido per la politica scelta.
2748     \item[\errcode{EPERM}] il processo non ha i privilegi per attivare la
2749       politica richiesta.
2750     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2751  \end{errlist}}
2752 \end{funcproto}
2753
2754 La funzione esegue l'impostazione per il processo specificato dall'argomento
2755 \param{pid}, un valore nullo di questo argomento esegue l'impostazione per il
2756 processo corrente.  La politica di \textit{scheduling} è specificata
2757 dall'argomento \param{policy} i cui possibili valori sono riportati in
2758 tab.~\ref{tab:proc_sched_policy}; la parte alta della tabella indica le
2759 politiche \textit{real-time}, quella bassa le politiche ordinarie. Un valore
2760 negativo per \param{policy} mantiene la politica di \textit{scheduling}
2761 corrente.
2762
2763 \begin{table}[htb]
2764   \centering
2765   \footnotesize
2766   \begin{tabular}[c]{|l|p{6cm}|}
2767     \hline
2768     \textbf{Politica}  & \textbf{Significato} \\
2769     \hline
2770     \hline
2771     \const{SCHED\_FIFO} & \textit{Scheduling real-time} con politica
2772                           \textit{FIFO}. \\
2773     \const{SCHED\_RR}   & \textit{Scheduling real-time} con politica
2774                           \textit{Round Robin}. \\ 
2775     \hline
2776     \const{SCHED\_OTHER}& \textit{Scheduling} ordinario.\\
2777     \const{SCHED\_BATCH}& \textit{Scheduling} ordinario con l'assunzione
2778                           ulteriore di lavoro \textit{CPU
2779                             intensive} (dal kernel 2.6.16).\\ 
2780     \const{SCHED\_IDLE} & \textit{Scheduling} di priorità estremamente
2781                           bassa (dal kernel 2.6.23).\\
2782     \hline
2783   \end{tabular}
2784   \caption{Valori dell'argomento \param{policy} per la funzione
2785     \func{sched\_setscheduler}.}
2786   \label{tab:proc_sched_policy}
2787 \end{table}
2788
2789 % TODO Aggiungere SCHED_DEADLINE, sulla nuova politica di scheduling aggiunta
2790 % con il kernel 3.14, vedi anche Documentation/scheduler/sched-deadline.txt e
2791 % http://lwn.net/Articles/575497/
2792
2793 Con le versioni più recenti del kernel sono state introdotte anche delle
2794 varianti sulla politica di \textit{scheduling} tradizionale per alcuni carichi
2795 di lavoro specifici, queste due nuove politiche sono specifiche di Linux e non
2796 devono essere usate se si vogliono scrivere programmi portabili.
2797
2798 La politica \const{SCHED\_BATCH} è una variante della politica ordinaria con
2799 la sola differenza che i processi ad essa soggetti non ottengono, nel calcolo
2800 delle priorità dinamiche fatto dallo \textit{scheduler}, il cosiddetto bonus
2801 di interattività che mira a favorire i processi che si svegliano dallo stato
2802 di \textit{sleep}.\footnote{cosa che accade con grande frequenza per i
2803   processi interattivi, dato che essi sono per la maggior parte del tempo in
2804   attesa di dati in ingresso da parte dell'utente.} La si usa pertanto, come
2805 indica il nome, per processi che usano molta CPU (come programmi di calcolo)
2806 che in questo modo sono leggermente sfavoriti rispetto ai processi interattivi
2807 che devono rispondere a dei dati in ingresso, pur non perdendo il loro valore
2808 di \textit{nice}.
2809
2810 La politica \const{SCHED\_IDLE} invece è una politica dedicata ai processi che
2811 si desidera siano eseguiti con la più bassa priorità possibile, ancora più
2812 bassa di un processo con il minimo valore di \textit{nice}. In sostanza la si
2813 può utilizzare per processi che devono essere eseguiti se non c'è niente altro
2814 da fare. Va comunque sottolineato che anche un processo \const{SCHED\_IDLE}
2815 avrà comunque una sua possibilità di utilizzo della CPU, sia pure in
2816 percentuale molto bassa.
2817
2818 Qualora si sia richiesta una politica \textit{real-time} il valore della
2819 priorità statica viene impostato attraverso la struttura
2820 \struct{sched\_param}, riportata in fig.~\ref{fig:sig_sched_param}, il cui
2821 solo campo attualmente definito è \var{sched\_priority}. Il campo deve
2822 contenere il valore della priorità statica da assegnare al processo; lo
2823 standard prevede che questo debba essere assegnato all'interno di un
2824 intervallo fra un massimo ed un minimo che nel caso di Linux sono
2825 rispettivamente 1 e 99.
2826
2827 \begin{figure}[!htbp]
2828   \footnotesize \centering
2829   \begin{minipage}[c]{0.5\textwidth}
2830     \includestruct{listati/sched_param.c}
2831   \end{minipage} 
2832   \normalsize 
2833   \caption{La struttura \structd{sched\_param}.} 
2834   \label{fig:sig_sched_param}
2835 \end{figure}
2836
2837 I processi con politica di \textit{scheduling} ordinaria devono sempre
2838 specificare un valore nullo di \var{sched\_priority} altrimenti si avrà un
2839 errore \errcode{EINVAL}, questo valore infatti non ha niente a che vedere con
2840 la priorità dinamica determinata dal valore di \textit{nice}, che deve essere
2841 impostato con le funzioni viste in precedenza.
2842
2843 Lo standard POSIX.1b prevede inoltre che l'intervallo dei valori delle
2844 priorità statiche possa essere ottenuto con le funzioni di sistema
2845 \funcd{sched\_get\_priority\_max} e \funcd{sched\_get\_priority\_min}, i cui
2846 prototipi sono:
2847
2848 \begin{funcproto}{ 
2849 \fhead{sched.h}
2850 \fdecl{int sched\_get\_priority\_max(int policy)}
2851 \fdesc{Legge il valore massimo di una priorità statica.} 
2852 \fdecl{int sched\_get\_priority\_min(int policy)}
2853 \fdesc{Legge il valore minimo di una priorità statica.} 
2854 }
2855 {Le funzioni ritornano il valore della priorità in caso di successo e $-1$ per
2856   un errore, nel qual caso \var{errno} assumerà il valore:
2857 \begin{errlist}
2858 \item[\errcode{EINVAL}] il valore di \param{policy} non è valido.
2859 \end{errlist}}
2860 \end{funcproto}
2861
2862 Le funzioni ritornano rispettivamente i due valori della massima e minima
2863 priorità statica possano essere ottenuti per una delle politiche di
2864 \textit{scheduling} \textit{real-time} indicata dall'argomento \param{policy}.
2865
2866 Si tenga presente che quando si imposta una politica di \textit{scheduling}
2867 real-time per un processo o se ne cambia la priorità statica questo viene
2868 messo in cima alla lista dei processi con la stessa priorità; questo comporta
2869 che verrà eseguito subito, interrompendo eventuali altri processi con la
2870 stessa priorità in quel momento in esecuzione.
2871
2872 Il kernel mantiene i processi con la stessa priorità assoluta in una lista, ed
2873 esegue sempre il primo della lista, mentre un nuovo processo che torna in
2874 stato \textit{runnable} viene sempre inserito in coda alla lista. Se la
2875 politica scelta è \const{SCHED\_FIFO} quando il processo viene eseguito viene
2876 automaticamente rimesso in coda alla lista, e la sua esecuzione continua
2877 fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
2878 volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
2879 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
2880 nel caso che esso sia stato interrotto da un processo a priorità più alta.
2881
2882 Solo un processo con i privilegi di amministratore\footnote{più precisamente
2883   con la capacità \const{CAP\_SYS\_NICE}, vedi
2884   sez.~\ref{sec:proc_capabilities}.} può impostare senza restrizioni priorità
2885 assolute diverse da zero o politiche \const{SCHED\_FIFO} e
2886 \const{SCHED\_RR}. Un utente normale può modificare solo le priorità di
2887 processi che gli appartengono; è cioè richiesto che l'\ids{UID} effettivo del
2888 processo chiamante corrisponda all'\ids{UID} reale o effettivo del processo
2889 indicato con \param{pid}.
2890
2891 Fino al kernel 2.6.12 gli utenti normali non potevano impostare politiche
2892 \textit{real-time} o modificare la eventuale priorità statica di un loro
2893 processo. A partire da questa versione è divenuto possibile anche per gli
2894 utenti normali usare politiche \textit{real-time} fintanto che la priorità
2895 assoluta che si vuole impostare è inferiore al limite \const{RLIMIT\_RTPRIO}
2896 (vedi sez.~\ref{sec:sys_resource_limit}) ad essi assegnato. 
2897
2898 Unica eccezione a questa possibilità sono i processi \const{SCHED\_IDLE}, che
2899 non possono cambiare politica di \textit{scheduling} indipendentemente dal
2900 valore di \const{RLIMIT\_RTPRIO}. Inoltre, in caso di processo già sottoposto
2901 ad una politica \textit{real-time}, un utente può sempre, indipendentemente
2902 dal valore di \const{RLIMIT\_RTPRIO}, diminuirne la priorità o portarlo ad una
2903 politica ordinaria.
2904
2905 Se si intende operare solo sulla priorità statica di un processo si possono
2906 usare le due funzioni di sistema \funcd{sched\_setparam} e
2907 \funcd{sched\_getparam} che consentono rispettivamente di impostarne e
2908 leggerne il valore, i loro prototipi sono:
2909
2910 \begin{funcproto}{
2911 \fhead{sched.h}
2912 \fdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *param)}
2913 \fdesc{Imposta la priorità statica di un processo.} 
2914 \fdecl{int sched\_getparam(pid\_t pid, struct sched\_param *param)}
2915 \fdesc{Legge la priorità statica di un processo.} 
2916 }
2917 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
2918 caso \var{errno} assumerà uno dei valori:
2919 \begin{errlist}
2920 \item[\errcode{EINVAL}] il valore di \param{param} non ha senso per la
2921   politica usata dal processo.
2922 \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
2923   l'operazione.
2924 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2925 \end{errlist}}
2926 \end{funcproto}
2927
2928 Le funzioni richiedono di indicare nell'argomento \param{pid} il processo su
2929 cui operare e usano l'argomento \param{param} per mantenere il valore della
2930 priorità dinamica. Questo è ancora una struttura \struct{sched\_param} ed
2931 assume gli stessi valori già visti per \func{sched\_setscheduler}.
2932
2933 L'uso di \func{sched\_setparam}, compresi i controlli di accesso che vi si
2934 applicano, è del tutto equivalente a quello di \func{sched\_setscheduler} con
2935 argomento \param{policy} uguale a $-1$. Come per \func{sched\_setscheduler}
2936 specificando $0$ come valore dell'argomento \param{pid} si opera sul processo
2937 corrente. Benché la funzione sia utilizzabile anche con processi sottoposti a
2938 politica ordinaria essa ha senso soltanto per quelli \textit{real-time}, dato
2939 che per i primi la priorità statica può essere soltanto nulla.  La
2940 disponibilità di entrambe le funzioni può essere verificata controllando la
2941 macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è definita nell'\textit{header
2942   file} \headfile{sched.h}.
2943
2944 Se invece si vuole sapere quale è politica di \textit{scheduling} di un
2945 processo si può usare la funzione di sistema \funcd{sched\_getscheduler}, il
2946 cui prototipo è:
2947
2948 \begin{funcproto}{ 
2949 \fhead{sched.h}
2950 \fdecl{int sched\_getscheduler(pid\_t pid)}
2951 \fdesc{Legge la politica di \textit{scheduling}.} 
2952 }
2953 {La funzione ritorna la politica di \textit{scheduling}  in caso di successo e
2954   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2955 \begin{errlist}
2956     \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
2957       l'operazione.
2958     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2959 \end{errlist}}
2960 \end{funcproto}
2961
2962 La funzione restituisce il valore, secondo quanto elencato in
2963 tab.~\ref{tab:proc_sched_policy}, della politica di \textit{scheduling} per il
2964 processo specificato dall'argomento \param{pid}, se questo è nullo viene
2965 restituito il valore relativo al processo chiamante.
2966
2967 L'ultima funzione di sistema che permette di leggere le informazioni relative
2968 ai processi real-time è \funcd{sched\_rr\_get\_interval}, che permette di
2969 ottenere la lunghezza della \textit{time-slice} usata dalla politica
2970 \textit{round robin}; il suo prototipo è:
2971
2972 \begin{funcproto}{ 
2973 \fhead{sched.h}
2974 \fdecl{int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)}
2975 \fdesc{Legge la durata della \textit{time-slice} per lo \textit{scheduling}
2976   \textit{round robin}.}  
2977 }
2978 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2979 caso \var{errno} assumerà uno dei valori:
2980 \begin{errlist}
2981 \item[\errcode{EINVAL}] l'argomento \param{pid} non è valido. 
2982 \item[\errcode{ENOSYS}] la \textit{system call} non è presente (solo per
2983   kernel arcaici).
2984 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2985 \end{errlist}
2986 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
2987 \end{funcproto}
2988
2989 La funzione restituisce nell'argomento \param{tp} come una struttura
2990 \struct{timespec}, (la cui definizione si può trovare in
2991 fig.~\ref{fig:sys_timeval_struct}) il valore dell'intervallo di tempo usato
2992 per la politica \textit{round robin} dal processo indicato da \ids{PID}. Il
2993 valore dipende dalla versione del kernel, a lungo infatti questo intervallo di
2994 tempo era prefissato e non modificabile ad un valore di 150 millisecondi,
2995 restituito indipendentemente dal \ids{PID} indicato. 
2996
2997 Con kernel recenti però è possibile ottenere una variazione della
2998 \textit{time-slice}, modificando il valore di \textit{nice} del processo
2999 (anche se questo non incide assolutamente sulla priorità statica) che come
3000 accennato in precedenza modifica il valore assegnato alla \textit{time-slice}
3001 di un processo ordinario, che però viene usato anche dai processi
3002 \textit{real-time}.
3003
3004 Come accennato ogni processo può rilasciare volontariamente la CPU in modo da
3005 consentire agli altri processi di essere eseguiti; la funzione di sistema che
3006 consente di fare tutto questo è \funcd{sched\_yield}, il cui prototipo è:
3007
3008 \begin{funcproto}{ 
3009 \fhead{sched.h}
3010 \fdecl{int sched\_yield(void)}
3011 \fdesc{Rilascia volontariamente l'esecuzione.} 
3012 }
3013 {La funzione ritorna $0$ in caso di successo e teoricamente $-1$ per un
3014   errore, ma su Linux ha sempre successo.}
3015 \end{funcproto}
3016
3017
3018 Questa funzione ha un utilizzo effettivo soltanto quando si usa lo
3019 \textit{scheduling} \textit{real-time}, e serve a far sì che il processo
3020 corrente rilasci la CPU, in modo da essere rimesso in coda alla lista dei
3021 processi con la stessa priorità per permettere ad un altro di essere eseguito;
3022 se però il processo è l'unico ad essere presente sulla coda l'esecuzione non
3023 sarà interrotta. In genere usano questa funzione i processi con politica
3024 \const{SCHED\_FIFO}, per permettere l'esecuzione degli altri processi con pari
3025 priorità quando la sezione più urgente è finita.
3026
3027 La funzione può essere utilizzata anche con processi che usano lo
3028 \textit{scheduling} ordinario, ma in questo caso il comportamento non è ben
3029 definito, e dipende dall'implementazione. Fino al kernel 2.6.23 questo
3030 comportava che i processi venissero messi in fondo alla coda di quelli attivi,
3031 con la possibilità di essere rimessi in esecuzione entro breve tempo, con
3032 l'introduzione del \textit{Completely Fair Scheduler} questo comportamento è
3033 cambiato ed un processo che chiama la funzione viene inserito nella lista dei
3034 processi inattivo, con un tempo molto maggiore.\footnote{è comunque possibile
3035   ripristinare un comportamento analogo al precedente scrivendo il valore 1
3036   nel file \sysctlfile{kernel/sched\_compat\_yield}.}
3037
3038 L'uso delle funzione nella programmazione ordinaria può essere utile e
3039 migliorare le prestazioni generali del sistema quando si è appena rilasciata
3040 una risorsa contesa con altri processi, e si vuole dare agli altri una
3041 possibilità di approfittarne mettendoli in esecuzione, ma chiamarla senza
3042 necessità, specie se questo avviene ripetutamente all'interno di un qualche
3043 ciclo, può avere invece un forte impatto negativo per la generazione di
3044 \itindex{contest~switch} \textit{contest switch} inutili.
3045
3046
3047 \subsection{Il controllo dello \textit{scheduler} per i sistemi
3048   multiprocessore}
3049 \label{sec:proc_sched_multiprocess}
3050
3051 Con il supporto dei sistemi multiprocessore sono state introdotte delle
3052 funzioni che permettono di controllare in maniera più dettagliata la scelta di
3053 quale processore utilizzare per eseguire un certo programma. Uno dei problemi
3054 che si pongono nei sistemi multiprocessore è infatti quello del cosiddetto
3055 \index{effetto~ping-pong} \textsl{effetto ping-pong}. Può accadere cioè che lo
3056 \textit{scheduler}, quando riavvia un processo precedentemente interrotto
3057 scegliendo il primo processore disponibile, lo faccia eseguire da un
3058 processore diverso rispetto a quello su cui era stato eseguito in
3059 precedenza. Se il processo passa da un processore all'altro in questo modo,
3060 cosa che avveniva abbastanza di frequente con i kernel della seria 2.4.x, si
3061 ha l'\textsl{effetto ping-pong}.
3062
3063 Questo tipo di comportamento può generare dei seri problemi di prestazioni;
3064 infatti tutti i processori moderni utilizzano una memoria interna (la
3065 \textit{cache}) contenente i dati più usati, che permette di evitare di
3066 eseguire un accesso (molto più lento) alla memoria principale sulla scheda
3067 madre.  Chiaramente un processo sarà favorito se i suoi dati sono nella cache
3068 del processore, ma è ovvio che questo può essere vero solo per un processore
3069 alla volta, perché in presenza di più copie degli stessi dati su più
3070 processori, non si potrebbe determinare quale di questi ha la versione dei
3071 dati aggiornata rispetto alla memoria principale.
3072
3073 Questo comporta che quando un processore inserisce un dato nella sua cache,
3074 tutti gli altri processori che hanno lo stesso dato devono invalidarlo, e
3075 questa operazione è molto costosa in termini di prestazioni. Il problema
3076 diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
3077 infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
3078 e si ha una continua invalidazione della cache, che non diventa mai
3079 disponibile.
3080
3081 \itindbeg{CPU~affinity}
3082
3083 Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
3084   di processore} (o \textit{CPU affinity}); la possibilità cioè di far sì che
3085 un processo possa essere assegnato per l'esecuzione sempre allo stesso
3086 processore. Lo \textit{scheduler} dei kernel della serie 2.4.x aveva una
3087 scarsa \textit{CPU affinity}, e \index{effetto~ping-pong} l'effetto ping-pong
3088 era comune; con il nuovo \textit{scheduler} dei kernel della 2.6.x questo
3089 problema è stato risolto ed esso cerca di mantenere il più possibile ciascun
3090 processo sullo stesso processore.
3091
3092 In certi casi però resta l'esigenza di poter essere sicuri che un processo sia
3093 sempre eseguito dallo stesso processore,\footnote{quella che viene detta
3094   \textit{hard CPU affinity}, in contrasto con quella fornita dallo
3095   \textit{scheduler}, detta \textit{soft CPU affinity}, che di norma indica
3096   solo una preferenza, non un requisito assoluto.} e per poter risolvere
3097 questo tipo di problematiche nei nuovi kernel\footnote{le due \textit{system
3098     call} per la gestione della \textit{CPU affinity} sono state introdotte
3099   nel kernel 2.5.8, e le corrispondenti funzioni di sistema nella
3100   \textsl{glibc} 2.3.} è stata introdotta l'opportuna infrastruttura ed una
3101 nuova \textit{system call} che permette di impostare su quali processori far
3102 eseguire un determinato processo attraverso una \textsl{maschera di
3103   affinità}. La corrispondente funzione di sistema è
3104 \funcd{sched\_setaffinity} ed il suo prototipo è:
3105
3106 \index{insieme~di~processori|(}
3107
3108 \begin{funcproto}{ 
3109 \fhead{sched.h}
3110 \fdecl{int sched\_setaffinity(pid\_t pid, size\_t setsize, 
3111   cpu\_set\_t *mask)}
3112 \fdesc{Imposta la maschera di affinità di un processo.} 
3113 }
3114 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3115 caso \var{errno} assumerà uno dei valori:
3116 \begin{errlist}
3117 \item[\errcode{EINVAL}] il valore di \param{mask} contiene riferimenti a
3118   processori non esistenti nel sistema o a cui non è consentito l'accesso.
3119 \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
3120   eseguire l'operazione.
3121 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3122 \end{errlist}
3123 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
3124 \end{funcproto}
3125
3126 Questa funzione e la corrispondente \func{sched\_getaffinity} hanno una storia
3127 abbastanza complessa, la sottostante \textit{system call} infatti prevede
3128 l'uso di due soli argomenti (per il pid e l'indicazione della maschera dei
3129 processori), che corrispondono al fatto che l'implementazione effettiva usa
3130 una semplice maschera binaria. Quando le funzioni vennero incluse nella
3131 \acr{glibc} assunsero invece un prototipo simile a quello mostrato però con il
3132 secondo argomento di tipo \ctyp{unsigned int}. A complicare la cosa si
3133 aggiunge il fatto che nella versione 2.3.3 della \acr{glibc} detto argomento
3134 venne stato eliminato, per poi essere ripristinato nella versione 2.3.4 nella
3135 forma attuale.\footnote{pertanto se la vostra pagina di manuale non è
3136   aggiornata, o usate quella particolare versione della \acr{glibc}, potrete
3137   trovare indicazioni diverse, il prototipo illustrato è quello riportato
3138   nella versione corrente (maggio 2008) delle pagine di manuale e
3139   corrispondente alla definizione presente in \headfile{sched.h}.}
3140
3141 La funzione imposta, con l'uso del valore contenuto all'indirizzo
3142 \param{mask}, l'insieme dei processori sui quali deve essere eseguito il
3143 processo identificato tramite il valore passato in \param{pid}. Come in
3144 precedenza il valore nullo di \param{pid} indica il processo corrente.  Per
3145 poter utilizzare questa funzione sono richiesti i privilegi di amministratore
3146 (è necessaria la capacità \const{CAP\_SYS\_NICE}) altrimenti essa fallirà con
3147 un errore di \errcode{EPERM}. Una volta impostata una maschera di affinità,
3148 questa viene ereditata attraverso una \func{fork}, in questo modo diventa
3149 possibile legare automaticamente un gruppo di processi ad un singolo
3150 processore.
3151
3152 Nell'uso comune, almeno con i kernel successivi alla serie 2.6.x, l'uso di
3153 questa funzione non è necessario, in quanto è lo \textit{scheduler} stesso che
3154 provvede a mantenere al meglio l'affinità di processore. Esistono però
3155 esigenze particolari, ad esempio quando un processo (o un gruppo di processi)
3156 è utilizzato per un compito importante (ad esempio per applicazioni
3157 \textit{real-time} o la cui risposta è critica) e si vuole la massima
3158 velocità, e con questa interfaccia diventa possibile selezionare gruppi di
3159 processori utilizzabili in maniera esclusiva.  Lo stesso dicasi quando
3160 l'accesso a certe risorse (memoria o periferiche) può avere un costo diverso a
3161 seconda del processore, come avviene nelle architetture NUMA
3162 (\textit{Non-Uniform Memory Access}).
3163
3164 Infine se un gruppo di processi accede alle stesse risorse condivise (ad
3165 esempio una applicazione con più \itindex{thread} \textit{thread}) può avere
3166 senso usare lo stesso processore in modo da sfruttare meglio l'uso della sua
3167 cache; questo ovviamente riduce i benefici di un sistema multiprocessore
3168 nell'esecuzione contemporanea dei \itindex{thread} \textit{thread}, ma in
3169 certi casi (quando i \itindex{thread} \textit{thread} sono inerentemente
3170 serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
3171 nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
3172 di processore.
3173
3174 Dato che il numero di processori può variare a seconda delle architetture, per
3175 semplificare l'uso dell'argomento \param{mask} la \acr{glibc} ha introdotto un
3176 apposito dato di tipo, \type{cpu\_set\_t},\footnote{questa è una estensione
3177   specifica della \acr{glibc}, da attivare definendo la macro
3178   \macro{\_GNU\_SOURCE}, non esiste infatti una standardizzazione per questo
3179   tipo di interfaccia e POSIX al momento non prevede nulla al riguardo.} che
3180 permette di identificare un insieme di processori. Il dato è normalmente una
3181 maschera binaria: nei casi più comuni potrebbe bastare un intero a 32 bit, in
3182 cui ogni bit corrisponde ad un processore, ma oggi esistono architetture in
3183 cui questo numero può non essere sufficiente, e per questo è stato creato
3184 questo tipo opaco e una interfaccia di gestione che permette di usare a basso
3185 livello un tipo di dato qualunque rendendosi indipendenti dal numero di bit e
3186 dalla loro disposizione.  Per questo le funzioni richiedono anche che oltre
3187 all'insieme di processori si indichi anche la dimensione dello stesso con
3188 l'argomento \param{setsize}, per il quale, se non si usa l'allocazione
3189 dinamica che vedremo a breve, ed è in genere sufficiente passare il valore
3190 \code{sizeof(cpu\_set\_t)}.
3191
3192 L'interfaccia di gestione degli insiemi di processori, oltre alla definizione
3193 del tipo \type{cpu\_set\_t}, prevede una serie di macro di preprocessore per
3194 la manipolazione degli stessi. Quelle di base, che consentono rispettivamente
3195 di svuotare un insieme, di aggiungere o togliere un processore o di verificare
3196 se esso è già presente in un insieme, sono le seguenti:
3197
3198 {\centering
3199 \vspace{3pt}
3200 \begin{funcbox}{ 
3201 \fhead{sched.h}
3202 \fdecl{void \macro{CPU\_ZERO}(cpu\_set\_t *set)}
3203 \fdesc{Inizializza un insieme di processori vuoto \param{set}.} 
3204 \fdecl{void \macro{CPU\_SET}(int cpu, cpu\_set\_t *set)}
3205 \fdesc{Inserisce il processore \param{cpu} nell'insieme di processori \param{set}.} 
3206 \fdecl{void \macro{CPU\_CLR}(int cpu, cpu\_set\_t *set)}
3207 \fdesc{Rimuove il processore \param{cpu} nell'insieme di processori \param{set}.} 
3208 \fdecl{int \macro{CPU\_ISSET}(int cpu, cpu\_set\_t *set)}
3209 \fdesc{Controlla se il processore \param{cpu} è nell'insieme di processori \param{set}.} 
3210 }
3211 \end{funcbox}}
3212
3213 Queste macro che sono ispirate dalle analoghe usate per gli insiemi di
3214 \textit{file descriptor} (vedi sez.~\ref{sec:file_select}) e sono state
3215 introdotte con la versione 2.3.3 della \acr{glibc}. Tutte richiedono che si
3216 specifichi il numero di una CPU nell'argomento \param{cpu}, ed un insieme su
3217 cui operare. L'unica che ritorna un risultato è \macro{CPU\_ISSET}, che
3218 restituisce un intero da usare come valore logico (zero se la CPU non è
3219 presente, diverso da zero se è presente).
3220
3221 Si tenga presente che trattandosi di macro l'argomento \param{cpu} può essere
3222 valutato più volte. Questo significa ad esempio che non si può usare al suo
3223 posto una funzione o un'altra macro, altrimenti queste verrebbero eseguite più
3224 volte, l'argomento cioè non deve avere \textsl{effetti collaterali} (in gergo
3225 \itindex{side~effects} \textit{side effects}).\footnote{nel linguaggio C si
3226   parla appunto di \textit{side effects} quando si usano istruzioni la cui
3227   valutazione comporta effetti al di fuori dell'istruzione stessa, come il
3228   caso indicato in cui si passa una funzione ad una macro che usa l'argomento
3229   al suo interno più volte, o si scrivono espressioni come \code{a=a++} in cui
3230   non è chiaro se prima avvenga l'incremento e poi l'assegnazione, ed il cui
3231   risultato dipende dall'implementazione del compilatore.}
3232
3233 Le CPU sono numerate da zero (che indica la prima disponibile) fino ad
3234 un numero massimo che dipende dalla architettura hardware. La costante
3235 \const{CPU\_SETSIZE} indica il numero massimo di processori che possono far
3236 parte di un insieme (al momento vale sempre 1024), e costituisce un limite
3237 massimo al valore dell'argomento \param{cpu}.
3238 Dalla versione 2.6 della \acr{glibc} alle precedenti macro è stata aggiunta,
3239 per contare il numero di processori in un insieme, l'ulteriore:
3240
3241 {\centering
3242 \vspace{3pt}
3243 \begin{funcbox}{ 
3244 \fhead{sched.h}
3245 \fdecl{int \macro{CPU\_COUNT}(cpu\_set\_t *set)}
3246 \fdesc{Conta il numero di processori presenti nell'insieme \param{set}.} 
3247 }
3248 \end{funcbox}}
3249
3250 A partire dalla versione 2.7 della \acr{glibc} sono state introdotte altre
3251 macro che consentono ulteriori manipolazioni, in particolare si possono
3252 compiere delle operazioni logiche sugli insiemi di processori con:
3253
3254 {\centering
3255 \vspace{3pt}
3256 \begin{funcbox}{ 
3257 \fhead{sched.h}
3258 \fdecl{void \macro{CPU\_AND}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3259 \fdesc{Esegue l'AND logico di due insiemi di processori.} 
3260 \fdecl{void \macro{CPU\_OR}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3261 \fdesc{Esegue l'OR logico di due insiemi di processori.} 
3262 \fdecl{void \macro{CPU\_XOR}(cpu\_set\_t *destset, cpu\_set\_t *srcset1, cpu\_set\_t *srcset2)}
3263 \fdesc{Esegue lo XOR logico di due insiemi di processori.} 
3264 \fdecl{int \macro{CPU\_EQUAL}(cpu\_set\_t *set1, cpu\_set\_t *set2)}
3265 \fdesc{Verifica se due insiemi di processori sono uguali.} 
3266 }
3267 \end{funcbox}}
3268
3269 Le prime tre macro richiedono due insiemi di partenza, \param{srcset1}
3270 e \param{srcset2} e forniscono in un terzo insieme \param{destset} (che può
3271 essere anche lo stesso di uno dei precedenti) il risultato della rispettiva
3272 operazione logica sui contenuti degli stessi. In sostanza con \macro{CPU\_AND}
3273 si otterrà come risultato l'insieme che contiene le CPU presenti in entrambi
3274 gli insiemi di partenza, con \macro{CPU\_OR} l'insieme che contiene le CPU
3275 presenti in uno qualunque dei due insiemi di partenza, e con \macro{CPU\_XOR}
3276 l'insieme che contiene le CPU presenti presenti in uno solo dei due insiemi di
3277 partenza. Infine \macro{CPU\_EQUAL} confronta due insiemi ed è l'unica che
3278 restituisce un intero, da usare come valore logico che indica se sono
3279 identici o meno.
3280
3281 Inoltre, sempre a partire dalla versione 2.7 della \acr{glibc}, è stata
3282 introdotta la possibilità di una allocazione dinamica degli insiemi di
3283 processori, per poterli avere di dimensioni corrispondenti al numero di CPU
3284 effettivamente in gioco, senza dover fare riferimento necessariamente alla
3285 precedente dimensione preimpostata di 1024. Per questo motivo sono state
3286 definite tre ulteriori macro, che consentono rispettivamente di allocare,
3287 disallocare ed ottenere la dimensione in byte di un insieme di processori:
3288
3289 {\centering
3290 \vspace{3pt}
3291 \begin{funcbox}{ 
3292 \fhead{sched.h}
3293 \fdecl{cpu\_set\_t * \macro{CPU\_ALLOC}(num\_cpus)}
3294 \fdesc{Alloca dinamicamente un insieme di processori di dimensione voluta.} 
3295 \fdecl{void \macro{CPU\_FREE}(cpu\_set\_t *set)}
3296 \fdesc{Disalloca un insieme di processori allocato dinamicamente.} 
3297 \fdecl{size\_t \macro{CPU\_ALLOC\_SIZE}(num\_cpus)}
3298 \fdesc{Ritorna la dimensione di un insieme di processori allocato dinamicamente.} 
3299 }
3300 \end{funcbox}}
3301
3302 La prima macro, \macro{CPU\_ALLOC}, restituisce il puntatore ad un insieme di
3303 processori in grado di contenere almeno \param{num\_cpus} che viene allocato
3304 dinamicamente. Ogni insieme così allocato dovrà essere disallocato con
3305 \macro{CPU\_FREE} passandogli un puntatore ottenuto da una precedente
3306 \macro{CPU\_ALLOC}. La terza macro, \macro{CPU\_ALLOC\_SIZE}, consente di
3307 ottenere la dimensione in byte di un insieme allocato dinamicamente che
3308 contenga \param{num\_cpus} processori.
3309
3310 Dato che le dimensioni effettive possono essere diverse le macro di gestione e
3311 manipolazione che abbiamo trattato in precedenza non si applicano agli insiemi
3312 allocati dinamicamente, per i quali dovranno sono state definite altrettante
3313 macro equivalenti contraddistinte dal suffisso \texttt{\_S}, che effettuano le
3314 stesse operazioni, ma richiedono in più un argomento
3315 aggiuntivo \param{setsize} che deve essere assegnato al valore ottenuto con
3316 \macro{CPU\_ALLOC\_SIZE}. Questo stesso valore deve essere usato per l'omonimo
3317 argomento delle funzioni \func{sched\_setaffinity} o \func{sched\_getaffinity}
3318 quando si vuole usare per l'argomento che indica la maschera di affinità un
3319 insieme di processori allocato dinamicamente.
3320
3321 \index{insieme~di~processori|)}
3322
3323 A meno di non aver utilizzato \func{sched\_setaffinity}, in condizioni
3324 ordinarie la maschera di affinità di un processo è preimpostata dal sistema in
3325 modo che esso possa essere eseguito su qualunque processore. Se ne può
3326 comunque ottenere il valore corrente usando la funzione di sistema
3327 \funcd{sched\_getaffinity}, il cui prototipo è:
3328
3329 \begin{funcproto}{ 
3330 \fhead{sched.h}
3331 \fdecl{int sched\_getaffinity (pid\_t pid, size\_t setsize, 
3332   cpu\_set\_t *mask)}
3333 \fdesc{Legge la maschera di affinità di un processo.} 
3334 }
3335 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3336 caso \var{errno} assumerà uno dei valori:
3337 \begin{errlist}
3338 \item[\errcode{EINVAL}] \param{setsize} è più piccolo delle dimensioni
3339   della maschera di affinità usata dal kernel.
3340 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3341 \end{errlist}
3342 ed inoltre anche \errval{EFAULT} nel suo significato generico.}
3343 \end{funcproto}
3344
3345 La funzione restituirà all'indirizzo specificato da \param{mask} il valore
3346 della maschera di affinità del processo indicato dall'argomento \param{pid}
3347 (al solito un valore nullo indica il processo corrente) così da poterla
3348 riutilizzare per una successiva reimpostazione.
3349
3350 È chiaro che queste funzioni per la gestione dell'affinità hanno significato
3351 soltanto su un sistema multiprocessore, esse possono comunque essere
3352 utilizzate anche in un sistema con un processore singolo, nel qual caso però
3353 non avranno alcun risultato effettivo.
3354
3355 \itindend{scheduler}
3356 \itindend{CPU~affinity}
3357
3358
3359 \subsection{Le priorità per le operazioni di I/O}
3360 \label{sec:io_priority}
3361
3362 A lungo l'unica priorità usata per i processi è stata quella relativa
3363 all'assegnazione dell'uso del processore. Ma il processore non è l'unica
3364 risorsa che i processi devono contendersi, un'altra, altrettanto importante
3365 per le prestazioni, è quella dell'accesso a disco. Per questo motivo nello
3366 sviluppo del kernel sono stati introdotti diversi \textit{I/O scheduler} in
3367 grado di distribuire in maniera opportuna questa risorsa ai vari processi.
3368
3369 Fino al kernel 2.6.17 era possibile soltanto differenziare le politiche
3370 generali di gestione, scegliendo di usare un diverso \textit{I/O scheduler}. A
3371 partire da questa versione, con l'introduzione dello \textit{scheduler} CFQ
3372 (\textit{Completely Fair Queuing}) è divenuto possibile, qualora si usi questo
3373 \textit{scheduler}, impostare anche delle diverse priorità di accesso per i
3374 singoli processi.\footnote{al momento (kernel 2.6.31), le priorità di I/O sono
3375   disponibili soltanto per questo \textit{scheduler}.}
3376
3377 La scelta di uno \textit{scheduler} di I/O si può fare in maniera generica per
3378 tutto il sistema all'avvio del kernel con il parametro di avvio
3379 \texttt{elevator},\footnote{per la trattazione dei parametri di avvio del
3380   kernel si rimanda al solito alla sez.~5.3 di \cite{AGL}.} cui assegnare il
3381 nome dello \textit{scheduler}, ma se ne può anche indicare uno specifico per
3382 l'accesso al singolo disco scrivendo nel file
3383 \texttt{/sys/block/\textit{<dev>}/queue/scheduler} (dove
3384 \texttt{\textit{<dev>}} è il nome del dispositivo associato al disco).
3385
3386 Gli \textit{scheduler} disponibili sono mostrati dal contenuto dello stesso
3387 file che riporta fra parentesi quadre quello attivo, il default in tutti i
3388 kernel recenti è proprio il \texttt{cfq},\footnote{nome con cui si indica
3389   appunto lo \textit{scheduler} CFQ.} che supporta le priorità. Per i dettagli
3390 sulle caratteristiche specifiche degli altri \textit{scheduler}, la cui
3391 discussione attiene a problematiche di ambito sistemistico, si consulti la
3392 documentazione nella directory \texttt{Documentation/block/} dei sorgenti del
3393 kernel.
3394
3395 Una volta che si sia impostato lo \textit{scheduler} CFQ ci sono due
3396 specifiche \textit{system call}, specifiche di Linux, che consentono di
3397 leggere ed impostare le priorità di I/O.\footnote{se usate in corrispondenza
3398   ad uno \textit{scheduler} diverso il loro utilizzo non avrà alcun effetto.}
3399 Dato che non esiste una interfaccia diretta nella \acr{glibc} per queste due
3400 funzioni\footnote{almeno al momento della scrittura di questa sezione, con la
3401   versione 2.11 della \acr{glibc}.} occorrerà invocarle tramite la funzione
3402 \func{syscall} (come illustrato in sez.~\ref{sec:proc_syscall}). Le due
3403 \textit{system call} sono \funcd{ioprio\_get} ed \funcd{ioprio\_set}; i
3404 rispettivi prototipi sono:
3405
3406 \begin{funcproto}{ 
3407 \fhead{linux/ioprio.h}
3408 \fdecl{int ioprio\_get(int which, int who)}
3409 \fdesc{Legge la priorità di I/O di un processo.} 
3410 \fdecl{int ioprio\_set(int which, int who, int ioprio)}
3411 \fdesc{Imposta la priorità di I/O di un processo.} 
3412 }
3413 {Le funzioni ritornano rispettivamente un intero positivo o 0 in caso di
3414   successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
3415   valori:
3416 \begin{errlist}
3417 \item[\errcode{EINVAL}] i valori di \param{which} o di \param{ioprio} non
3418   sono validi. 
3419 \item[\errcode{EPERM}] non si hanno i privilegi per eseguire
3420   l'impostazione (solo per \func{ioprio\_set}). 
3421 \item[\errcode{ESRCH}] non esiste un processo corrispondente alle indicazioni.
3422 \end{errlist}}
3423 \end{funcproto}
3424
3425 Le funzioni leggono o impostano la priorità di I/O sulla base dell'indicazione
3426 dei due argomenti \param{which} e \param{who} che hanno lo stesso significato
3427 già visto per gli omonimi argomenti di \func{getpriority} e
3428 \func{setpriority}. Anche in questo caso si deve specificare il valore
3429 di \param{which} tramite le opportune costanti riportate in
3430 tab.~\ref{tab:ioprio_args} che consentono di indicare un singolo processo, i
3431 processi di un \textit{process group} (tratteremo questo argomento in
3432 sez.~\ref{sec:sess_proc_group}) o tutti i processi di un utente.
3433
3434 \begin{table}[htb]
3435   \centering
3436   \footnotesize
3437   \begin{tabular}[c]{|c|c|l|}
3438     \hline
3439     \param{which} & \param{who} & \textbf{Significato} \\
3440     \hline
3441     \hline
3442     \const{IPRIO\_WHO\_PROCESS} & \type{pid\_t} & processo\\
3443     \const{IPRIO\_WHO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
3444                                                   \textit{process group}\\ 
3445     \const{IPRIO\_WHO\_USER}    & \type{uid\_t} & utente\\
3446     \hline
3447   \end{tabular}
3448   \caption{Legenda del valore dell'argomento \param{which} e del tipo
3449     dell'argomento \param{who} delle funzioni \func{ioprio\_get} e
3450     \func{ioprio\_set} per le tre possibili scelte.}
3451   \label{tab:ioprio_args}
3452 \end{table}
3453
3454 In caso di successo \func{ioprio\_get} restituisce un intero positivo che
3455 esprime il valore della priorità di I/O, questo valore è una maschera binaria
3456 composta da due parti, una che esprime la \textsl{classe} di
3457 \textit{scheduling} di I/O del processo, l'altra che esprime, quando la classe
3458 di \textit{scheduling} lo prevede, la priorità del processo all'interno della
3459 classe stessa. Questo stesso formato viene utilizzato per indicare il valore
3460 della priorità da impostare con l'argomento \param{ioprio} di
3461 \func{ioprio\_set}.
3462 \begin{table}[htb]
3463   \centering
3464   \footnotesize
3465   \begin{tabular}[c]{|l|p{8cm}|}
3466     \hline
3467     \textbf{Macro} & \textbf{Significato}\\
3468     \hline
3469     \hline
3470     \macro{IOPRIO\_PRIO\_CLASS}\texttt{(\textit{value})}
3471                                 & Dato il valore di una priorità come
3472                                   restituito da \func{ioprio\_get} estrae il
3473                                   valore della classe.\\
3474     \macro{IOPRIO\_PRIO\_DATA}\texttt{(\textit{value})}
3475                                 & Dato il valore di una priorità come
3476                                   restituito da \func{ioprio\_get} estrae il
3477                                   valore della priorità.\\
3478     \macro{IOPRIO\_PRIO\_VALUE}\texttt{(\textit{class},\textit{prio})}
3479                                 & Dato un valore di priorità ed una classe
3480                                   ottiene il valore numerico da passare a
3481                                   \func{ioprio\_set}.\\
3482     \hline
3483   \end{tabular}
3484   \caption{Le macro per la gestione dei valori numerici .}
3485   \label{tab:IOsched_class_macro}
3486 \end{table}
3487
3488
3489 Per la gestione dei valori che esprimono le priorità di I/O sono state
3490 definite delle opportune macro di preprocessore, riportate in
3491 tab.~\ref{tab:IOsched_class_macro}. I valori delle priorità si ottengono o si
3492 impostano usando queste macro.  Le prime due si usano con il valore restituito
3493 da \func{ioprio\_get} e per ottenere rispettivamente la classe di
3494 \textit{scheduling}\footnote{restituita dalla macro con i valori di
3495   tab.~\ref{tab:IOsched_class}.} e l'eventuale valore della priorità. La terza
3496 macro viene invece usata per creare un valore di priorità da usare come
3497 argomento di \func{ioprio\_set} per eseguire una impostazione.
3498
3499 \begin{table}[htb]
3500   \centering
3501   \footnotesize
3502   \begin{tabular}[c]{|l|l|}
3503     \hline
3504     \textbf{Classe}  & \textbf{Significato} \\
3505     \hline
3506     \hline
3507     \const{IOPRIO\_CLASS\_RT}  & \textit{Scheduling} di I/O \textit{real-time}.\\ 
3508     \const{IOPRIO\_CLASS\_BE}  & \textit{Scheduling} di I/O ordinario.\\ 
3509     \const{IOPRIO\_CLASS\_IDLE}& \textit{Scheduling} di I/O di priorità minima.\\
3510     \hline
3511   \end{tabular}
3512   \caption{Costanti che identificano le classi di \textit{scheduling} di I/O.}
3513   \label{tab:IOsched_class}
3514 \end{table}
3515
3516 Le classi di \textit{scheduling} previste dallo \textit{scheduler} CFQ sono
3517 tre, e ricalcano tre diverse modalità di distribuzione delle risorse analoghe
3518 a quelle già adottate anche nel funzionamento dello \textit{scheduler} del
3519 processore. Ciascuna di esse è identificata tramite una opportuna costante,
3520 secondo quanto riportato in tab.~\ref{tab:IOsched_class}.
3521
3522 La classe di priorità più bassa è \const{IOPRIO\_CLASS\_IDLE}; i processi in
3523 questa classe riescono ad accedere a disco soltanto quando nessun altro
3524 processo richiede l'accesso. Occorre pertanto usarla con molta attenzione,
3525 perché un processo in questa classe può venire completamente bloccato quando
3526 ci sono altri processi in una qualunque delle altre due classi che stanno
3527 accedendo al disco. Quando si usa questa classe non ha senso indicare un
3528 valore di priorità, dato che in questo caso non esiste nessuna gerarchia e la
3529 priorità è identica, la minima possibile, per tutti i processi.
3530
3531 La seconda classe di priorità di I/O è \const{IOPRIO\_CLASS\_BE} (il nome sta
3532 per \textit{best-effort}) che è quella usata ordinariamente da tutti
3533 processi. In questo caso esistono priorità diverse che consentono di
3534 assegnazione di una maggiore banda passante nell'accesso a disco ad un
3535 processo rispetto agli altri, con meccanismo simile a quello dei valori di
3536 \textit{nice} in cui si evita che un processo a priorità più alta possa
3537 bloccare indefinitamente quelli a priorità più bassa. In questo caso però le
3538 diverse priorità sono soltanto otto, indicate da un valore numerico fra 0 e 7
3539 e come per \textit{nice} anche in questo caso un valore più basso indica una
3540 priorità maggiore. 
3541
3542
3543 Infine la classe di priorità di I/O \textit{real-time}
3544 \const{IOPRIO\_CLASS\_RT} ricalca le omonime priorità di processore: un
3545 processo in questa classe ha sempre la precedenza nell'accesso a disco
3546 rispetto a tutti i processi delle altre classi e di un processo nella stessa
3547 classe ma con priorità inferiore, ed è pertanto in grado di bloccare
3548 completamente tutti gli altri. Anche in questo caso ci sono 8 priorità diverse
3549 con un valore numerico fra 0 e 7, con una priorità più elevata per valori più
3550 bassi.
3551
3552 In generale nel funzionamento ordinario la priorità di I/O di un processo
3553 viene impostata in maniera automatica nella classe \const{IOPRIO\_CLASS\_BE}
3554 con un valore ottenuto a partire dal corrispondente valore di \textit{nice}
3555 tramite la formula: $\mathtt{\mathit{prio}}=(\mathtt{\mathit{nice}}+20)/5$. Un
3556 utente ordinario può modificare con \func{ioprio\_set} soltanto le priorità
3557 dei processi che gli appartengono,\footnote{per la modifica delle priorità di
3558   altri processi occorrono privilegi amministrativi, ed in particolare la
3559   capacità \const{CAP\_SYS\_NICE} (vedi sez.~\ref{sec:proc_capabilities}).}
3560 cioè quelli il cui \ids{UID} reale corrisponde all'\ids{UID} reale o effettivo
3561 del chiamante. Data la possibilità di ottenere un blocco totale del sistema,
3562 solo l'amministratore\footnote{o un processo con la capacità
3563   \const{CAP\_SYS\_ADMIN} (vedi sez.~\ref{sec:proc_capabilities}).} può
3564 impostare un processo ad una priorità di I/O nella classe
3565 \const{IOPRIO\_CLASS\_RT}, lo stesso privilegio era richiesto anche per la
3566 classe \const{IOPRIO\_CLASS\_IDLE} fino al kernel 2.6.24, ma dato che in
3567 questo caso non ci sono effetti sugli altri processi questo limite è stato
3568 rimosso a partire dal kernel 2.6.25.
3569
3570 %TODO verificare http://lwn.net/Articles/355987/
3571
3572 \section{Funzioni di gestione avanzata}
3573 \label{sec:proc_advanced_control}
3574
3575 Nelle precedenti sezioni si sono trattate la gran parte delle funzioni che
3576 attengono alla gestione ordinaria dei processi e delle loro proprietà più
3577 comuni. Tratteremo qui alcune \textit{system call} dedicate alla gestione di
3578 funzionalità dei processi molto specifiche ed avanzate, il cui uso è in genere
3579 piuttosto ridotto. Trattandosi di problematiche abbastanza complesse, che
3580 spesso presuppongono la conoscenza di altri argomenti trattati nel seguito
3581 della guida, si può saltare questa sezione in una prima lettura, tornando su
3582 di essa in un secondo tempo.
3583
3584
3585 \subsection{La funzione \func{prctl}}
3586 \label{sec:process_prctl}
3587
3588 Benché la gestione ordinaria possa essere effettuata attraverso le funzioni
3589 che abbiamo già esaminato nelle sezioni precedenti, esistono una serie di
3590 proprietà e caratteristiche particolari dei processi non coperte da esse, per
3591 la cui gestione è stata predisposta una apposita \textit{system call} che
3592 fornisce una interfaccia generica per tutte le operazioni specialistiche. La
3593 funzione di sistema è \funcd{prctl} ed il suo prototipo è:\footnote{la
3594   funzione non è standardizzata ed è specifica di Linux, anche se ne esiste
3595   una analoga in IRIX; è stata introdotta con il kernel 2.1.57.}
3596
3597 \begin{funcproto}{ 
3598 \fhead{sys/prctl.h}
3599 \fdecl{int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned
3600   long arg4, \\
3601 \phantom{int prctl(}unsigned long arg5)}
3602 \fdesc{Esegue una operazione speciale sul processo corrente.} 
3603 }
3604 {La funzione ritorna $0$ o un valore positivo dipendente dall'operazione in
3605   caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
3606   valori diversi a seconda del tipo di operazione richiesta (in genere
3607   \errval{EINVAL} o \errval{EPERM}).}
3608 \end{funcproto}
3609
3610 La funzione ritorna un valore nullo o positivo in caso di successo e $-1$ in
3611 caso di errore; il significato degli argomenti della funzione successivi al
3612 primo, il valore di ritorno in caso di successo, il tipo di errore restituito
3613 in \var{errno} dipendono dall'operazione eseguita, indicata tramite il primo
3614 argomento, \param{option}. Questo è un valore intero che identifica
3615 l'operazione, e deve essere specificato con l'uso di una delle costanti
3616 predefinite del seguente elenco, che illustra quelle disponibili al
3617 momento:\footnote{alla stesura di questa sezione, cioè con il kernel 3.2.}
3618
3619 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
3620 \item[\const{PR\_CAPBSET\_READ}] Controlla la disponibilità di una delle
3621   \textit{capability} (vedi sez.~\ref{sec:proc_capabilities}). La funzione
3622   ritorna 1 se la capacità specificata nell'argomento \param{arg2} (con una
3623   delle costanti di tab.~\ref{tab:proc_capabilities}) è presente nel
3624   \textit{capabilities bounding set} del processo e zero altrimenti,
3625   se \param{arg2} non è un valore valido si avrà un errore di \errval{EINVAL}.
3626   Introdotta a partire dal kernel 2.6.25.
3627
3628 \item[\const{PR\_CAPBSET\_DROP}] Rimuove permanentemente una delle
3629   \textit{capabilities} (vedi sez.~\ref{sec:proc_capabilities}) dal processo e
3630   da tutti i suoi discendenti. La funzione cancella la capacità specificata
3631   nell'argomento \param{arg2} con una delle costanti di
3632   tab.~\ref{tab:proc_capabilities} dal \textit{capabilities bounding set} del
3633   processo. L'operazione richiede i privilegi di amministratore (la capacità
3634   \const{CAP\_SETPCAP}), altrimenti la chiamata fallirà con un errore di
3635   \errcode{EPERM}; se il valore di \param{arg2} non è valido o se il supporto
3636   per le \textit{file capabilities} non è stato compilato nel kernel la
3637   chiamata fallirà con un errore di \errval{EINVAL}. Introdotta a partire dal
3638   kernel 2.6.25.
3639
3640 \item[\const{PR\_SET\_DUMPABLE}] Imposta il flag che determina se la
3641   terminazione di un processo a causa di un segnale per il quale è prevista la
3642   generazione di un file di \textit{core dump} (vedi
3643   sez.~\ref{sec:sig_standard}) lo genera effettivamente. In genere questo flag
3644   viene attivato automaticamente, ma per evitare problemi di sicurezza (la
3645   generazione di un file da parte di processi privilegiati può essere usata
3646   per sovrascriverne altri) viene cancellato quando si mette in esecuzione un
3647   programma con i bit \acr{suid} e \acr{sgid} attivi (vedi
3648   sez.~\ref{sec:file_special_perm}) o con l'uso delle funzioni per la modifica
3649   degli \ids{UID} dei processi (vedi sez.~\ref{sec:proc_setuid}).
3650
3651   L'operazione è stata introdotta a partire dal kernel 2.3.20, fino al kernel
3652   2.6.12 e per i kernel successivi al 2.6.17 era possibile usare solo un
3653   valore 0 di \param{arg2} per disattivare il flag ed un valore 1 per
3654   attivarlo. Nei kernel dal 2.6.13 al 2.6.17 è stato supportato anche il
3655   valore 2, che causava la generazione di un \textit{core dump} leggibile solo
3656   dall'amministratore, ma questa funzionalità è stata rimossa per motivi di
3657   sicurezza, in quanto consentiva ad un utente normale di creare un file di
3658   \textit{core dump} appartenente all'amministratore in directory dove
3659   l'utente avrebbe avuto permessi di accesso.
3660
3661 \item[\const{PR\_GET\_DUMPABLE}] Ottiene come valore di ritorno della funzione
3662   lo stato corrente del flag che controlla la effettiva generazione dei
3663   \textit{core dump}. Introdotta a partire dal kernel 2.3.20.
3664
3665 \item[\const{PR\_SET\_ENDIAN}] Imposta la \textit{endianness} del processo
3666   chiamante secondo il valore fornito in \param{arg2}. I valori possibili sono
3667   sono: \const{PR\_ENDIAN\_BIG} (\textit{big endian}),
3668   \const{PR\_ENDIAN\_LITTLE} (\textit{little endian}), e
3669   \const{PR\_ENDIAN\_PPC\_LITTLE} (lo pseudo \textit{little endian} del
3670   PowerPC). Introdotta a partire dal kernel 2.6.18, solo per architettura
3671   PowerPC.
3672
3673 \item[\const{PR\_GET\_ENDIAN}] Ottiene il valore della \textit{endianness} del
3674   processo chiamante, salvato sulla variabile puntata da \param{arg2} che deve
3675   essere passata come di tipo ``\ctyp{int *}''. Introdotta a partire dal
3676   kernel 2.6.18, solo su PowerPC.
3677
3678 \item[\const{PR\_SET\_FPEMU}] Imposta i bit di controllo per l'emulazione
3679   della virgola mobile su architettura ia64, secondo il valore
3680   di \param{arg2}, si deve passare \const{PR\_FPEMU\_NOPRINT} per emulare in
3681   maniera trasparente l'accesso alle operazioni in virgola mobile, o
3682   \const{PR\_FPEMU\_SIGFPE} per non emularle ed inviare il segnale
3683   \signal{SIGFPE} (vedi sez.~\ref{sec:sig_prog_error}). Introdotta a partire
3684   dal kernel 2.4.18, solo su architettura ia64.
3685
3686 \item[\const{PR\_GET\_FPEMU}] Ottiene il valore dei flag di controllo
3687   dell'emulazione della virgola mobile, salvato all'indirizzo puntato
3688   da \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3689   partire dal kernel 2.4.18, solo su architettura ia64.
3690
3691 \item[\const{PR\_SET\_FPEXC}] Imposta la modalità delle eccezioni in virgola
3692   mobile (\textit{floating-point exception mode}) al valore di \param{arg2}.
3693   I valori possibili sono: 
3694   \begin{itemize*}
3695   \item \const{PR\_FP\_EXC\_SW\_ENABLE} per usare FPEXC per le eccezioni,
3696   \item \const{PR\_FP\_EXC\_DIV} per la divisione per zero in virgola mobile,
3697   \item \const{PR\_FP\_EXC\_OVF} per gli overflow,
3698   \item \const{PR\_FP\_EXC\_UND} per gli underflow,
3699   \item \const{PR\_FP\_EXC\_RES} per risultati non esatti,
3700   \item \const{PR\_FP\_EXC\_INV} per operazioni invalide,
3701   \item \const{PR\_FP\_EXC\_DISABLED} per disabilitare le eccezioni,
3702   \item \const{PR\_FP\_EXC\_NONRECOV} per usare la modalità di eccezione
3703     asincrona non recuperabile,
3704   \item \const{PR\_FP\_EXC\_ASYNC} per usare la modalità di eccezione
3705     asincrona recuperabile,
3706   \item \const{PR\_FP\_EXC\_PRECISE} per la modalità precisa di
3707     eccezione.\footnote{trattasi di gestione specialistica della gestione
3708       delle eccezioni dei calcoli in virgola mobile che, i cui dettagli al
3709       momento vanno al di là dello scopo di questo testo.}
3710   \end{itemize*}
3711 Introdotta a partire dal kernel 2.4.21, solo su PowerPC.
3712
3713 \item[\const{PR\_GET\_FPEXC}] Ottiene il valore della modalità delle eccezioni
3714   delle operazioni in virgola mobile, salvata all'indirizzo
3715   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''.  Introdotta
3716   a partire dal kernel 2.4.21, solo su PowerPC.
3717
3718 \item[\const{PR\_SET\_KEEPCAPS}] Consente di controllare quali
3719   \textit{capabilities} vengono cancellate quando si esegue un cambiamento di
3720   \ids{UID} del processo (per i dettagli si veda
3721   sez.~\ref{sec:proc_capabilities}, in particolare quanto illustrato a
3722   pag.~\pageref{sec:capability-uid-transition}). Un valore nullo (il default)
3723   per \param{arg2} comporta che vengano cancellate, il valore 1 che vengano
3724   mantenute, questo valore viene sempre cancellato attraverso una \func{exec}.
3725   L'uso di questo flag è stato sostituito, a partire dal kernel 2.6.26, dal
3726   flag \const{SECURE\_KEEP\_CAPS} dei \itindex{securebits} \textit{securebits}
3727   (vedi l'uso di \const{PR\_SET\_SECUREBITS} più avanti). Introdotta a partire
3728   dal kernel 2.2.18.
3729
3730 \item[\const{PR\_GET\_KEEPCAPS}] Ottiene come valore di ritorno della funzione
3731   il valore del flag di controllo delle \textit{capabilities} impostato con
3732   \const{PR\_SET\_KEEPCAPS}. Introdotta a partire dal kernel 2.2.18.
3733
3734 \item[\const{PR\_SET\_NAME}] Imposta il nome del processo chiamante alla
3735   stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}''. Il
3736   nome può essere lungo al massimo 16 caratteri, e la stringa deve essere
3737   terminata da NUL se più corta.  Introdotta a partire dal kernel 2.6.9.
3738
3739 \item[\const{PR\_GET\_NAME}] Ottiene il nome del processo chiamante nella
3740   stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}'';
3741   si devono allocare per questo almeno 16 byte, e il nome sarà terminato da
3742   NUL se più corto. Introdotta a partire dal kernel 2.6.9.
3743
3744 \item[\const{PR\_SET\_PDEATHSIG}] Consente di richiedere l'emissione di un
3745   segnale, che sarà ricevuto dal processo chiamante, in occorrenza della
3746   terminazione del proprio processo padre; in sostanza consente di invertire
3747   il ruolo di \signal{SIGCHLD}. Il valore di \param{arg2} deve indicare il
3748   numero del segnale, o 0 per disabilitare l'emissione. Il valore viene
3749   automaticamente cancellato per un processo figlio creato con \func{fork}.
3750   Introdotta a partire dal kernel 2.1.57.
3751
3752 \item[\const{PR\_GET\_PDEATHSIG}] Ottiene il valore dell'eventuale segnale
3753   emesso alla terminazione del padre, salvato all'indirizzo
3754   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3755   partire dal kernel 2.3.15.
3756
3757 \item[\const{PR\_SET\_SECCOMP}] Imposta il cosiddetto
3758   \itindex{secure~computing~mode} \textit{secure computing mode} per il
3759   processo corrente. Prevede come unica possibilità che \param{arg2} sia
3760   impostato ad 1. Una volta abilitato il \itindex{secure~computing~mode}
3761   \textit{secure computing mode} il processo potrà utilizzare soltanto un
3762   insieme estremamente limitato di \textit{system call}: \func{read},
3763   \func{write}, \func{\_exit} e \funcm{sigreturn}. Ogni altra \textit{system
3764     call} porterà all'emissione di un \signal{SIGKILL} (vedi
3765   sez.~\ref{sec:sig_termination}).  Il \textit{secure computing mode} è stato
3766   ideato per fornire un supporto per l'esecuzione di codice esterno non fidato
3767   e non verificabile a scopo di calcolo;\footnote{lo scopo è quello di poter
3768     vendere la capacità di calcolo della proprio macchina ad un qualche
3769     servizio di calcolo distribuito senza comprometterne la sicurezza
3770     eseguendo codice non sotto il proprio controllo.} in genere i dati vengono
3771   letti o scritti grazie ad un socket o una \textit{pipe}, e per evitare
3772   problemi di sicurezza non sono possibili altre operazioni se non quelle
3773   citate.  Introdotta a partire dal kernel 2.6.23, disponibile solo se si è
3774   abilitato il supporto nel kernel con \texttt{CONFIG\_SECCOMP}.
3775
3776 % TODO a partire dal kernel 3.5 è stato introdotto la possibilità di usare un
3777 % terzo argomento se il secondo è SECCOMP_MODE_FILTER, vedi
3778 % Documentation/prctl/seccomp_filter.txt 
3779 % vedi anche http://lwn.net/Articles/600250/
3780
3781 % TODO a partire dal kernel 3.17 è stata introdotta la nuova syscall seccomp,
3782 % vedi http://lwn.net/Articles/600250/ e http://lwn.net/Articles/603321/
3783
3784 \item[\const{PR\_GET\_SECCOMP}] Ottiene come valore di ritorno della funzione
3785   lo stato corrente del \textit{secure computing mode}, al momento attuale la
3786   funzione è totalmente inutile in quanto l'unico valore ottenibile è 0, dato
3787   che la chiamata di questa funzione in \itindex{secure~computing~mode}
3788   \textit{secure computing mode} comporterebbe l'emissione di
3789   \signal{SIGKILL}, è stata comunque definita per eventuali estensioni future.
3790   Introdotta a partire dal kernel 2.6.23.
3791
3792 \item[\const{PR\_SET\_SECUREBITS}] Imposta i \itindex{securebits}
3793   \textit{securebits} per il processo chiamante al valore indicato
3794   da \param{arg2}; per i dettagli sul significato dei \textit{securebits} si
3795   veda sez.~\ref{sec:proc_capabilities}, ed in particolare i valori di
3796   tab.~\ref{tab:securebits_values} e la relativa trattazione. L'operazione
3797   richiede i privilegi di amministratore (la capacità \const{CAP\_SETPCAP}),
3798   altrimenti la chiamata fallirà con un errore di \errval{EPERM}. Introdotta a
3799   partire dal kernel 2.6.26.
3800
3801 \item[\const{PR\_GET\_SECUREBITS}] Ottiene come valore di ritorno della
3802   funzione l'impostazione corrente per i \itindex{securebits}
3803   \textit{securebits}. Introdotta a partire dal kernel 2.6.26.
3804
3805 \item[\const{PR\_SET\_TIMING}] Imposta il metodo di temporizzazione del
3806   processo da indicare con il valore di \param{arg2}, attualmente i valori
3807   possibili sono due, con \const{PR\_TIMING\_STATISTICAL} si usa il metodo
3808   statistico tradizionale, con \const{PR\_TIMING\_TIMESTAMP} il più accurato
3809   basato su dei \textit{timestamp}, quest'ultimo però non è ancora
3810   implementato ed il suo uso comporta la restituzione di un errore di
3811   \errval{EINVAL}. Introdotta a partire dal kernel 2.6.0-test4.
3812
3813 \item[\const{PR\_GET\_TIMING}] Ottiene come valore di ritorno della funzione
3814   il metodo di temporizzazione del processo attualmente in uso (uno dei due
3815   valori citati per \const{PR\_SET\_TIMING}). Introdotta a partire dal kernel
3816   2.6.0-test4.
3817
3818 \item[\const{PR\_SET\_TSC}] Imposta il flag che indica se il processo
3819   chiamante può leggere il registro di processore contenente il contatore dei
3820   \textit{timestamp} (TSC, o \textit{Time Stamp Counter}) da indicare con il
3821   valore di \param{arg2}. Si deve specificare \const{PR\_TSC\_ENABLE} per
3822   abilitare la lettura o \const{PR\_TSC\_SIGSEGV} per disabilitarla con la
3823   generazione di un segnale di \signal{SIGSEGV} (vedi
3824   sez.~\ref{sec:sig_prog_error}). La lettura viene automaticamente
3825   disabilitata se si attiva il \itindex{secure~computing~mode} \textit{secure
3826     computing mode}.  Introdotta a partire dal kernel 2.6.26, solo su x86.
3827
3828 \item[\const{PR\_GET\_TSC}] Ottiene il valore del flag che controlla la
3829   lettura del contattore dei \textit{timestamp}, salvato all'indirizzo
3830   puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
3831   partire dal kernel 2.6.26, solo su x86.
3832 % articoli sul TSC e relativi problemi: http://lwn.net/Articles/209101/,
3833 % http://blog.cr0.org/2009/05/time-stamp-counter-disabling-oddities.html,
3834 % http://en.wikipedia.org/wiki/Time_Stamp_Counter 
3835
3836 \item[\const{PR\_SET\_UNALIGN}] Imposta la modalità di controllo per l'accesso
3837   a indirizzi di memoria non allineati, che in varie architetture risultano
3838   illegali, da indicare con il valore di \param{arg2}. Si deve specificare il
3839   valore \const{PR\_UNALIGN\_NOPRINT} per ignorare gli accessi non allineati,
3840   ed il valore \const{PR\_UNALIGN\_SIGBUS} per generare un segnale di
3841   \signal{SIGBUS} (vedi sez.~\ref{sec:sig_prog_error}) in caso di accesso non
3842   allineato.  Introdotta con diverse versioni su diverse architetture.
3843
3844 \item[\const{PR\_GET\_UNALIGN}] Ottiene il valore della modalità di controllo
3845   per l'accesso a indirizzi di memoria non allineati, salvato all'indirizzo
3846   puntato \param{arg2}, che deve essere di tipo \code{(int *)}. Introdotta con
3847   diverse versioni su diverse architetture.
3848 \item[\const{PR\_MCE\_KILL}] Imposta la politica di gestione degli errori
3849   dovuti a corruzione della memoria per problemi hardware. Questo tipo di
3850   errori vengono riportati dall'hardware di controllo della RAM e vengono
3851   gestiti dal kernel,\footnote{la funzionalità è disponibile solo sulle
3852     piattaforme più avanzate che hanno il supporto hardware per questo tipo di
3853     controlli.} ma devono essere opportunamente riportati ai processi che
3854   usano quella parte di RAM che presenta errori; nel caso specifico questo
3855   avviene attraverso l'emissione di un segnale di \signal{SIGBUS} (vedi
3856   sez.~\ref{sec:sig_prog_error}).\footnote{in particolare viene anche
3857     impostato il valore di \var{si\_code} in \struct{siginfo\_t} a
3858     \const{BUS\_MCEERR\_AO}; per il significato di tutto questo si faccia
3859     riferimento alla trattazione di sez.~\ref{sec:sig_sigaction}.}
3860
3861   Il comportamento di default prevede che per tutti i processi si applichi la
3862   politica generale di sistema definita nel file
3863   \sysctlfile{vm/memory\_failure\_early\_kill}, ma specificando
3864   per \param{arg2} il valore \const{PR\_MCE\_KILL\_SET} è possibile impostare
3865   con il contenuto di \param{arg3} una politica specifica del processo
3866   chiamante. Si può tornare alla politica di default del sistema utilizzando
3867   invece per \param{arg2} il valore \const{PR\_MCE\_KILL\_CLEAR}. In tutti i
3868   casi, per compatibilità con eventuali estensioni future, tutti i valori
3869   degli argomenti non utilizzati devono essere esplicitamente posti a zero,
3870   pena il fallimento della chiamata con un errore di \errval{EINVAL}.
3871   
3872   In caso di impostazione di una politica specifica del processo con
3873   \const{PR\_MCE\_KILL\_SET} i valori di \param{arg3} possono essere soltanto
3874   due, che corrispondono anche al valore che si trova nell'impostazione
3875   generale di sistema di \texttt{memory\_failure\_early\_kill}, con
3876   \const{PR\_MCE\_KILL\_EARLY} si richiede l'emissione immediata di
3877   \signal{SIGBUS} non appena viene rilevato un errore, mentre con
3878   \const{PR\_MCE\_KILL\_LATE} il segnale verrà inviato solo quando il processo
3879   tenterà un accesso alla memoria corrotta. Questi due valori corrispondono
3880   rispettivamente ai valori 1 e 0 di
3881   \texttt{memory\_failure\_early\_kill}.\footnote{in sostanza nel primo caso
3882     viene immediatamente inviato il segnale a tutti i processi che hanno la
3883     memoria corrotta mappata all'interno del loro spazio degli indirizzi, nel
3884     secondo caso prima la pagina di memoria viene tolta dallo spazio degli
3885     indirizzi di ciascun processo, mentre il segnale viene inviato solo quei
3886     processi che tentano di accedervi.} Si può usare per \param{arg3} anche un
3887   terzo valore, \const{PR\_MCE\_KILL\_DEFAULT}, che corrisponde a impostare
3888   per il processo la politica di default.\footnote{si presume la politica di
3889     default corrente, in modo da non essere influenzati da un eventuale
3890     successivo cambiamento della stessa.} Introdotta a partire dal kernel
3891   2.6.32.
3892 \item[\const{PR\_MCE\_KILL\_GET}] Ottiene come valore di ritorno della
3893   funzione la politica di gestione degli errori dovuti a corruzione della
3894   memoria. Tutti gli argomenti non utilizzati (al momento tutti) devono essere
3895   nulli pena la ricezione di un errore di \errval{EINVAL}. Introdotta a
3896   partire dal kernel 2.6.32.
3897 \itindbeg{child reaper}
3898 \item[\const{PR\_SET\_CHILD\_SUBREAPER}] Se \param{arg2} è diverso da zero
3899   imposta l'attributo di \textit{child reaper} per il processo, se nullo lo
3900   cancella. Lo stato di \textit{child reaper} è una funzionalità, introdotta
3901   con il kernel 3.4, che consente di far svolgere al processo che ha questo
3902   attributo il ruolo di ``\textsl{genitore adottivo}'' per tutti i processi
3903   suoi ``\textsl{discendenti}'' che diventano orfani, in questo modo il
3904   processo potrà ricevere gli stati di terminazione alla loro uscita,
3905   sostituendo in questo ruolo \cmd{init} (si ricordi quanto illustrato in
3906   sez.~\ref{sec:proc_termination}). Il meccanismo è stato introdotto ad uso
3907   dei programmi di gestione dei servizi, per consentire loro di ricevere gli
3908   stati di terminazione di tutti i processi che lanciano, anche se questi
3909   eseguono una doppia \func{fork}; nel comportamento ordinario infatti questi
3910   verrebbero adottati da \cmd{init} ed il programma che li ha lanciati non
3911   sarebbe più in grado di riceverne lo stato di terminazione. Se un processo
3912   con lo stato di \textit{child reaper} termina prima dei suoi discendenti,
3913   svolgerà questo ruolo il più prossimo antenato ad avere lo stato di
3914   \textit{child reaper}, 
3915 \item[\const{PR\_GET\_CHILD\_SUBREAPER}] Ottiene l'impostazione relativa allo
3916   lo stato di \textit{child reaper} del processo chiamante, salvata come
3917   \textit{value result} all'indirizzo puntato da \param{arg2} (da indicare
3918   come di tipo \code{int *}). Il valore viene letto come valore logico, se
3919   diverso da 0 lo stato di \textit{child reaper} è attivo altrimenti è
3920   disattivo. Introdotta a partire dal kernel 3.4.
3921 \itindend{child reaper}
3922
3923
3924 % TODO documentare PR_SET_SECCOMP introdotto a partire dal kernel 3.5. Vedi:
3925 % * Documentation/prctl/seccomp_filter.txt
3926 % * http://lwn.net/Articles/475043/
3927
3928 % TODO documentare PR_MPX_INIT e PR_MPX_RELEASE, vedi
3929 % http://lwn.net/Articles/582712/ 
3930
3931 % TODO documentare PR_SET_MM_MAP aggiunta con il kernel 3.18, per impostare i
3932 % parametri di base del layout dello spazio di indirizzi di un processo (area
3933 % codice e dati, stack, brack pointer ecc. vedi
3934 % http://git.kernel.org/linus/f606b77f1a9e362451aca8f81d8f36a3a112139e 
3935
3936
3937 \label{sec:prctl_operation}
3938 \end{basedescript}
3939
3940
3941
3942 \subsection{La \textit{system call} \func{clone}}
3943 \label{sec:process_clone}
3944
3945 La funzione tradizionale con cui creare un nuovo processo in un sistema
3946 Unix-like, come illustrato in sez.~\ref{sec:proc_fork}, è \func{fork}, ma con
3947 l'introduzione del supporto del kernel per i \textit{thread} (vedi
3948 cap.~\ref{cha:threads}), si è avuta la necessità di una interfaccia che
3949 consentisse un maggiore controllo sulla modalità con cui vengono creati nuovi
3950 processi, che poi è stata utilizzata anche per fornire supporto per le
3951 tecnologie di virtualizzazione dei processi (i cosiddetti \textit{container}).
3952
3953 Per questo l'interfaccia per la creazione di un nuovo processo è stata
3954 delegata ad una nuova \textit{system call}, \funcm{sys\_clone}, che consente
3955 di reimplementare anche la tradizionale \func{fork}. In realtà in questo caso
3956 più che di nuovi processi si può parlare della creazioni di nuovi
3957 ``\textit{task}'' del kernel che possono assumere la veste sia di un processo
3958 classico isolato dagli altri come quelli trattati finora, che di un
3959 \textit{thread} in cui la memoria viene condivisa fra il processo chiamante ed
3960 il nuovo processo creato, come quelli che vedremo in
3961 sez.~\ref{sec:linux_thread}. Per evitare confusione fra \textit{thread} e
3962 processi ordinari, abbiamo deciso di usare la nomenclatura \textit{task} per
3963 indicare la unità di esecuzione generica messa a disposizione del kernel che
3964 \texttt{sys\_clone} permette di creare.
3965
3966 Oltre a questo la funzione consente, ad uso delle nuove funzionalità di
3967 virtualizzazione dei processi, di creare nuovi \textit{namespace} per una
3968 serie di proprietà generali dei processi (come l'elenco dei \ids{PID},
3969 l'albero dei file, i \itindex{mount~point} \textit{mount point}, la rete,
3970 ecc.), che consentono di creare gruppi di processi che vivono in una sorta di
3971 spazio separato dagli altri, che costituisce poi quello che viene chiamato un
3972 \textit{container}.
3973
3974 La \textit{system call} richiede soltanto due argomenti: il
3975 primo, \param{flags}, consente di controllare le modalità di creazione del
3976 nuovo \textit{task}, il secondo, \param{child\_stack}, imposta l'indirizzo
3977 dello \textit{stack} per il nuovo \textit{task}, e deve essere indicato quando
3978 si intende creare un \textit{thread}. L'esecuzione del programma creato da
3979 \func{sys\_clone} riprende, come per \func{fork}, da dopo l'esecuzione della
3980 stessa.
3981
3982 La necessità di avere uno \textit{stack} alternativo c'è solo quando si
3983 intende creare un \textit{thread}, in tal caso infatti il nuovo \textit{task}
3984 vede esattamente la stessa memoria del \textit{task}
3985 ``\textsl{padre}'',\footnote{in questo caso per padre si intende semplicemente
3986   il \textit{task} che ha eseguito \func{sys\_clone} rispetto al \textit{task}
3987   da essa creato, senza nessuna delle implicazioni che il concetto ha per i
3988   processi.} e nella sua esecuzione alla prima chiamata di una funzione
3989 andrebbe a scrivere sullo \textit{stack} usato anche dal padre (si ricordi
3990 quanto visto in sez.~\ref{sec:proc_mem_layout} riguardo all'uso dello
3991 \textit{stack}).
3992
3993 Per evitare di doversi garantire contro la evidente possibilità di
3994 \itindex{race~condition} \textit{race condition} che questa situazione
3995 comporta (vedi sez.~\ref{sec:proc_race_cond} per una spiegazione della
3996 problematica) è necessario che il chiamante allochi preventivamente un'area di
3997 memoria.  In genere lo si fa con una \func{malloc} che allochi un buffer che
3998 la funzione imposterà come \textit{stack} del nuovo processo, avendo
3999 ovviamente cura di non utilizzarlo direttamente nel processo chiamante.
4000
4001 In questo modo i due \textit{task} avranno degli \textit{stack} indipendenti e
4002 non si dovranno affrontare problematiche di \itindex{race~condition}
4003 \textit{race condition}.  Si tenga presente inoltre che in molte architetture
4004 di processore lo \textit{stack} cresce verso il basso, pertanto in tal caso
4005 non si dovrà specificare per \param{child\_stack} il puntatore restituito da
4006 \func{malloc}, ma un puntatore alla fine del buffer da essa allocato.
4007
4008 Dato che tutto ciò è necessario solo per i \textit{thread} che condividono la
4009 memoria, la \textit{system call}, a differenza della funzione di libreria che
4010 vedremo a breve, consente anche di passare per \param{child\_stack} il valore
4011 \val{NULL}, che non imposta un nuovo \textit{stack}. Se infatti si crea un
4012 processo, questo ottiene un suo nuovo spazio degli indirizzi (è sottinteso
4013 cioè che non si stia usando il flag \const{CLONE\_VM} che vedremo a breve) ed
4014 in questo caso si applica la semantica del \itindex{copy~on~write}
4015 \textit{copy on write} illustrata in sez.~\ref{sec:proc_fork}, per cui le
4016 pagine dello \textit{stack} verranno automaticamente copiate come le altre e
4017 il nuovo processo avrà un suo \textit{stack} totalmente indipendente da quello
4018 del padre.
4019
4020 Dato che l'uso principale della nuova \textit{system call} è quello relativo
4021 alla creazione dei \textit{thread}, la \acr{glibc} definisce una funzione di
4022 libreria con una sintassi diversa, orientata a questo scopo, e la
4023 \textit{system call} resta accessibile solo se invocata esplicitamente come
4024 visto in sez.~\ref{sec:proc_syscall}.\footnote{ed inoltre per questa
4025   \textit{system call} non è disponibile la chiamata veloce con
4026   \texttt{vsyscall}.} La funzione di libreria si chiama semplicemente
4027 \funcd{clone} ed il suo prototipo è:
4028
4029 \begin{funcproto}{ 
4030 \fhead{sched.h}
4031 \fdecl{int clone(int (*fn)(void *), void *child\_stack, int flags, void *arg,
4032   ...  \\
4033 \phantom{int clone(}/* pid\_t *ptid, struct user\_desc *tls, pid\_t *ctid */ )}
4034 \fdesc{Crea un nuovo processo o \textit{thread}.} 
4035 }
4036 {La funzione ritorna il \textit{Thread ID} assegnato al nuovo processo in caso
4037   di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
4038   valori: 
4039 \begin{errlist}
4040     \item[\errcode{EAGAIN}] sono già in esecuzione troppi processi.
4041     \item[\errcode{EINVAL}] si è usata una combinazione non valida di flag o
4042       un valore nullo per \param{child\_stack}.
4043     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare una nuova
4044       \struct{task\_struct} o per copiare le parti del contesto del chiamante
4045       necessarie al nuovo \textit{task}.
4046     \item[\errcode{EPERM}] non si hanno i privilegi di amministratore
4047       richiesti dai flag indicati.
4048 \end{errlist}}
4049 \end{funcproto}
4050
4051 % NOTE: una pagina con la descrizione degli argomenti:
4052 % * http://www.lindevdoc.org/wiki/Clone 
4053
4054 La funzione prende come primo argomento \param{fn} il puntatore alla funzione
4055 che verrà messa in esecuzione nel nuovo processo, che può avere un unico
4056 argomento di tipo puntatore a \ctyp{void}, il cui valore viene passato dal
4057 terzo argomento \param{arg}. Per quanto il precedente prototipo possa
4058 intimidire nella sua espressione, in realtà l'uso è molto semplice basterà
4059 definire una qualunque funzione \param{fn} che restituisce un intero ed ha
4060 come argomento un puntatore a \ctyp{void}, e \code{fn(arg)} sarà eseguita in
4061 un nuovo processo.
4062
4063 Il nuovo processo resterà in esecuzione fintanto che la funzione \param{fn}
4064 non ritorna, o esegue \func{exit} o viene terminata da un segnale. Il valore
4065 di ritorno della funzione (o quello specificato con \func{exit}) verrà
4066 utilizzato come stato di uscita della funzione. I tre
4067 argomenti \param{ptid}, \param{tls} e \param{ctid} sono opzionali e sono
4068 presenti solo a partire dal kernel 2.6 e sono stati aggiunti come supporto per
4069 le funzioni di gestione dei \textit{thread} (la \textit{Native Thread Posix
4070   Library}, vedi sez.~\ref{sec:linux_ntpl}) nella \acr{glibc}, essi vengono
4071 utilizzati soltanto se si sono specificati rispettivamente i flag
4072 \const{CLONE\_PARENT\_SETTID}, \const{CLONE\_SETTLS} e
4073 \const{CLONE\_CHILD\_SETTID}. 
4074
4075 La funzione ritorna un l'identificatore del nuovo \textit{task}, denominato
4076 \texttt{Thread ID} (da qui in avanti \ids{TID}) il cui significato è analogo
4077 al \ids{PID} dei normali processi e che a questo corrisponde qualora si crei
4078 un processo ordinario e non un \textit{thread}.
4079
4080 Il comportamento di \func{clone}, che si riflette sulle caratteristiche del
4081 nuovo processo da essa creato, è controllato principalmente
4082 dall'argomento \param{flags}, che deve essere specificato come maschera
4083 binaria, ottenuta con un OR aritmetico di una delle costanti del seguente
4084 elenco, che illustra quelle attualmente disponibili:\footnote{si fa
4085   riferimento al momento della stesura di questa sezione, cioè con il kernel
4086   3.2.}
4087
4088 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
4089
4090 \item[\const{CLONE\_CHILD\_CLEARTID}] cancella il valore del \ids{TID}
4091   all'indirizzo dato dall'argomento \param{ctid}, eseguendo un riattivazione
4092   del \textit{futex} (vedi sez.~\ref{sec:xxx_futex}) a quell'indirizzo; questo
4093   flag viene utilizzato dalla librerie di gestione dei \textit{thread}.
4094 \item[\const{CLONE\_CHILD\_SETTID}] scrive il \ids{TID} del \textit{thread}
4095   figlio all'indirizzo dato dall'argomento \param{ctid}. Questo flag viene
4096   utilizzato dalla librerie di gestione dei \textit{thread}.
4097 \item[\const{CLONE\_FILES}] se impostato il nuovo processo condividerà con il
4098   padre la \itindex{file~descriptor~table} \textit{file descriptor table}
4099   (vedi sez.~\ref{sec:file_fd}), questo significa che ogni \textit{file
4100     descriptor} aperto da un processo verrà visto anche dall'altro e che ogni
4101   chiusura o cambiamento dei \textit{file descriptor flag} di un \textit{file
4102     descriptor} verrà per entrambi.
4103
4104   Se non viene impostato il processo figlio eredita una copia della
4105   \itindex{file~descriptor~table} \textit{file descriptor table} del padre e
4106   vale la semantica classica della gestione dei \textit{file descriptor}, che
4107   costituisce il comportamento ordinario di un sistema unix-like e che
4108   illustreremo in dettaglio in sez.~\ref{sec:file_shared_access}.
4109
4110 \item[\const{CLONE\_FS}] se questo flag viene impostato il nuovo processo
4111   condividerà con il padre le informazioni relative all'albero dei file, ed in
4112   particolare avrà la stessa radice (vedi sez.~\ref{sec:file_chroot}), la
4113   stessa directory di lavoro (vedi sez.~\ref{sec:file_work_dir}) e la stessa
4114   \textit{umask} (sez.~\ref{sec:file_perm_management}). Una modifica di una
4115   qualunque di queste caratteristiche in un processo, avrà effetto anche
4116   sull'altro. Se assente il nuovo processo riceverà una copia delle precedenti
4117   informazioni, che saranno così indipendenti per i due processi.
4118
4119 \item[\const{CLONE\_IO}]
4120 \item[\const{CLONE\_NEWIPC}]
4121 \item[\const{CLONE\_NEWNET}]
4122 \item[\const{CLONE\_NEWNS}]
4123 \item[\const{CLONE\_NEWPID}]
4124 \item[\const{CLONE\_NEWUTS}]
4125 \item[\const{CLONE\_PARENT}]
4126 \item[\const{CLONE\_PARENT\_SETTID}]
4127 \item[\const{CLONE\_PID}]
4128 \item[\const{CLONE\_PTRACE}]
4129 \item[\const{CLONE\_SETTLS}]
4130 \item[\const{CLONE\_SIGHAND}]
4131 \item[\const{CLONE\_STOPPED}]
4132 \item[\const{CLONE\_SYSVSEM}]
4133 \item[\const{CLONE\_THREAD}]
4134 \item[\const{CLONE\_UNTRACED}]
4135 \item[\const{CLONE\_VFORK}]
4136 \item[\const{CLONE\_VM}]
4137 \end{basedescript}
4138
4139
4140 %TODO trattare unshare, vedi anche http://lwn.net/Articles/532748/
4141
4142
4143 %TODO trattare kcmp aggiunta con il kernel 3.5, vedi
4144 % https://lwn.net/Articles/478111/
4145
4146 \subsection{La funzione \func{ptrace}}
4147 \label{sec:process_ptrace}
4148
4149 Da fare
4150
4151 % TODO: trattare PTRACE_SEIZE, aggiunta con il kernel 3.1
4152 % TODO: trattare PTRACE_O_EXITKILL, aggiunta con il kernel 3.8 (vedi
4153 % http://lwn.net/Articles/529060/) 
4154 % TODO: trattare PTRACE_GETSIGMASK e PTRACE_SETSIGMASK introdotte con il
4155 % kernel 3.11
4156 % TODO: trattare PTRACE_O_SUSPEND_SECCOMP, aggiunta con il kernel 4.3, vedi
4157 % http://lwn.net/Articles/656675/ 
4158
4159 \subsection{La gestione delle operazioni in virgola mobile}
4160 \label{sec:process_fenv}
4161
4162 Da fare.
4163
4164 % TODO eccezioni ed arrotondamenti per la matematica in virgola mobile 
4165 % consultare la manpage di fenv, math_error, fpclassify, matherr, isgreater,
4166 % isnan, nan, INFINITY
4167
4168
4169 \subsection{L'accesso alle porte di I/O}
4170 \label{sec:process_io_port}
4171
4172 %
4173 % TODO l'I/O sulle porte di I/O 
4174 % consultare le manpage di ioperm, iopl e outb
4175 % non c'entra nulla qui, va trovato un altro posto (altri meccanismi di I/O in
4176 % fileintro ?)
4177
4178 Da fare
4179
4180
4181 %\subsection{La gestione di architetture a nodi multipli}
4182 %\label{sec:process_NUMA}
4183
4184 % TODO trattare i cpuset, che attiene anche a NUMA, e che possono essere usati
4185 % per associare l'uso di gruppi di processori a gruppi di processi (vedi
4186 % manpage omonima)
4187 % TODO trattare getcpu, che attiene anche a NUMA, mettere qui anche
4188 % sched_getcpu, che potrebbe essere indipendente ma richiama getcpu
4189
4190 %TODO trattare le funzionalità per il NUMA
4191 % vedi man numa e, mbind, get_mempolicy, set_mempolicy, 
4192 % le pagine di manuale relative
4193 % vedere anche dove metterle...
4194
4195 % \subsection{La gestione dei moduli}
4196 % \label{sec:kernel_modules}
4197
4198 % da fare
4199
4200 %TODO trattare init_module e finit_module (quest'ultima introdotta con il
4201 %kernel 3.8)
4202
4203 %%%% Altre cose di cui non è chiara la collocazione:
4204
4205 %TODO trattare membarrier, introdotta con il kernel 4.3
4206 % vedi http://lwn.net/Articles/369567/ http://lwn.net/Articles/369640/
4207 % http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=5b25b13ab08f616efd566347d809b4ece54570d1 
4208
4209 \section{Problematiche di programmazione multitasking}
4210 \label{sec:proc_multi_prog}
4211
4212 Benché i processi siano strutturati in modo da apparire il più possibile come
4213 indipendenti l'uno dall'altro, nella programmazione in un sistema multitasking
4214 occorre tenere conto di una serie di problematiche che normalmente non
4215 esistono quando si ha a che fare con un sistema in cui viene eseguito un solo
4216 programma alla volta. 
4217
4218 Per questo motivo, essendo questo argomento di carattere generale, ci è parso
4219 opportuno introdurre sinteticamente queste problematiche, che ritroveremo a
4220 più riprese in capitoli successivi, in questa sezione conclusiva del capitolo
4221 in cui abbiamo affrontato la gestione dei processi, sottolineando come esse
4222 diventino cogenti quando invece si usano i \textit{thread}.
4223
4224
4225 \subsection{Le operazioni atomiche}
4226 \label{sec:proc_atom_oper}
4227
4228 La nozione di \textsl{operazione atomica} deriva dal significato greco della
4229 parola atomo, cioè indivisibile; si dice infatti che un'operazione è atomica
4230 quando si ha la certezza che, qualora essa venga effettuata, tutti i passaggi
4231 che devono essere compiuti per realizzarla verranno eseguiti senza possibilità
4232 di interruzione in una fase intermedia.
4233
4234 In un ambiente multitasking il concetto è essenziale, dato che un processo può
4235 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
4236 altro processo o dalla ricezione di un segnale. Occorre pertanto essere
4237 accorti nei confronti delle possibili \itindex{race~condition} \textit{race
4238   condition} (vedi sez.~\ref{sec:proc_race_cond}) derivanti da operazioni
4239 interrotte in una fase in cui non erano ancora state completate.
4240
4241 Nel caso dell'interazione fra processi la situazione è molto più semplice, ed
4242 occorre preoccuparsi della atomicità delle operazioni solo quando si ha a che
4243 fare con meccanismi di intercomunicazione (che esamineremo in dettaglio in
4244 cap.~\ref{cha:IPC}) o nelle operazioni con i file (vedremo alcuni esempi in
4245 sez.~\ref{sec:file_shared_access}). In questi casi in genere l'uso delle
4246 appropriate funzioni di libreria per compiere le operazioni necessarie è
4247 garanzia sufficiente di atomicità in quanto le \textit{system call} con cui
4248 esse sono realizzate non possono essere interrotte (o subire interferenze
4249 pericolose) da altri processi.
4250
4251 Nel caso dei segnali invece la situazione è molto più delicata, in quanto lo
4252 stesso processo, e pure alcune \textit{system call}, possono essere interrotti
4253 in qualunque momento, e le operazioni di un eventuale \textit{signal handler}
4254 sono compiute nello stesso spazio di indirizzi del processo. Per questo, anche
4255 il solo accesso o l'assegnazione di una variabile possono non essere più
4256 operazioni atomiche (torneremo su questi aspetti in
4257 sez.~\ref{sec:sig_adv_control}).
4258
4259 Qualora invece si usino i \textit{thread}, in cui lo spazio degli indirizzi è
4260 condiviso, il problema è sempre presente, perché qualunque \textit{thread} può
4261 interromperne un altro in qualunque momento e l'atomicità di qualunque
4262 operazione è messa in discussione, per cui l'assenza di eventuali
4263 \itindex{race~condition} \textit{race condition} deve essere sempre verificata
4264 nei minimi dettagli.
4265
4266 In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t},
4267 il cui accesso è assicurato essere atomico.  In pratica comunque si può
4268 assumere che, in ogni piattaforma su cui è implementato Linux, il tipo
4269 \ctyp{int}, gli altri interi di dimensione inferiore ed i puntatori sono
4270 atomici. Non è affatto detto che lo stesso valga per interi di dimensioni
4271 maggiori (in cui l'accesso può comportare più istruzioni in assembler) o per
4272 le strutture di dati. In tutti questi casi è anche opportuno marcare come
4273 \direct{volatile} le variabili che possono essere interessate ad accesso
4274 condiviso, onde evitare problemi con le ottimizzazioni del codice.
4275
4276
4277
4278 \subsection{Le \textit{race condition} ed i \textit{deadlock}}
4279 \label{sec:proc_race_cond}
4280
4281 \itindbeg{race~condition}
4282
4283 Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
4284 diversi operano su una risorsa comune, ed in cui il risultato viene a
4285 dipendere dall'ordine in cui essi effettuano le loro operazioni. Il caso
4286 tipico è quello di un'operazione che viene eseguita da un processo in più
4287 passi, e può essere compromessa dall'intervento di un altro processo che
4288 accede alla stessa risorsa quando ancora non tutti i passi sono stati
4289 completati.
4290
4291 Dato che in un sistema multitasking ogni processo può essere interrotto in
4292 qualunque momento per farne subentrare un altro in esecuzione, niente può
4293 assicurare un preciso ordine di esecuzione fra processi diversi o che una
4294 sezione di un programma possa essere eseguita senza interruzioni da parte di
4295 altri. Queste situazioni comportano pertanto errori estremamente subdoli e
4296 difficili da tracciare, in quanto nella maggior parte dei casi tutto
4297 funzionerà regolarmente, e solo occasionalmente si avranno degli errori. 
4298
4299 Per questo occorre essere ben consapevoli di queste problematiche, e del fatto
4300 che l'unico modo per evitarle è quello di riconoscerle come tali e prendere
4301 gli adeguati provvedimenti per far sì che non si verifichino. Casi tipici di
4302 \textit{race condition} si hanno quando diversi processi accedono allo stesso
4303 file, o nell'accesso a meccanismi di intercomunicazione come la memoria
4304 condivisa. 
4305
4306 \index{sezione~critica|(}
4307
4308 In questi casi, se non si dispone della possibilità di eseguire atomicamente
4309 le operazioni necessarie, occorre che quelle parti di codice in cui si
4310 compiono le operazioni sulle risorse condivise, quelle che in genere vengono
4311 denominate ``\textsl{sezioni critiche}'' del programma, siano opportunamente
4312 protette da meccanismi di sincronizzazione (vedremo alcune problematiche di
4313 questo tipo in cap.~\ref{cha:IPC}).
4314
4315 \index{sezione~critica|)}
4316
4317 Nel caso dei \textit{thread} invece la situazione è molto più delicata e
4318 sostanzialmente qualunque accesso in memoria (a buffer, variabili o altro) può
4319 essere soggetto a \textit{race condition} dato potrebbe essere interrotto in
4320 qualunque momento da un altro \textit{thread}. In tal caso occorre pianificare
4321 con estrema attenzione l'uso delle variabili ed utilizzare i vari meccanismi
4322 di sincronizzazione che anche in questo caso sono disponibili (torneremo su
4323 queste problematiche di questo tipo in cap.~\ref{sez:thread_xxx})
4324
4325 \itindbeg{deadlock} 
4326
4327 Un caso particolare di \textit{race condition} sono poi i cosiddetti
4328 \textit{deadlock} (traducibile in \textsl{condizione di stallo}), che
4329 particolarmente gravi in quanto comportano spesso il blocco completo di un
4330 servizio, e non il fallimento di una singola operazione. Per definizione un
4331 \textit{deadlock} è una situazione in cui due o più processi non sono più in
4332 grado di proseguire perché ciascuno aspetta il risultato di una operazione che
4333 dovrebbe essere eseguita dall'altro.
4334
4335 L'esempio tipico di una situazione che può condurre ad un
4336 \textit{deadlock} è quello in cui un flag di
4337 ``\textsl{occupazione}'' viene rilasciato da un evento asincrono (come un
4338 segnale o un altro processo) fra il momento in cui lo si è controllato
4339 (trovandolo occupato) e la successiva operazione di attesa per lo sblocco. In
4340 questo caso, dato che l'evento di sblocco del flag è avvenuto senza che ce ne
4341 accorgessimo proprio fra il controllo e la messa in attesa, quest'ultima
4342 diventerà perpetua (da cui il nome di \textit{deadlock}).
4343
4344 In tutti questi casi è di fondamentale importanza il concetto di atomicità
4345 visto in sez.~\ref{sec:proc_atom_oper}; questi problemi infatti possono essere
4346 risolti soltanto assicurandosi, quando essa sia richiesta, che sia possibile
4347 eseguire in maniera atomica le operazioni necessarie.
4348
4349 \itindend{race~condition}
4350 \itindend{deadlock}
4351
4352
4353 \subsection{Le funzioni rientranti}
4354 \label{sec:proc_reentrant}
4355
4356 \index{funzioni!rientranti|(}
4357
4358 Si dice \textsl{rientrante} una funzione che può essere interrotta in
4359 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
4360 un altro \textit{thread} di esecuzione senza che questo comporti nessun
4361 problema nell'esecuzione della stessa. La problematica è comune nella
4362 programmazione \textit{multi-thread}, ma si hanno gli stessi problemi quando
4363 si vogliono chiamare delle funzioni all'interno dei gestori dei segnali.
4364
4365 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
4366 queste infatti vengono allocate nello \textit{stack}, ed un'altra invocazione
4367 non fa altro che allocarne un'altra copia. Una funzione può non essere
4368 rientrante quando opera su memoria che non è nello \textit{stack}.  Ad esempio
4369 una funzione non è mai rientrante se usa una variabile globale o statica.
4370
4371 Nel caso invece la funzione operi su un oggetto allocato dinamicamente, la
4372 cosa viene a dipendere da come avvengono le operazioni: se l'oggetto è creato
4373 ogni volta e ritornato indietro la funzione può essere rientrante, se invece
4374 esso viene individuato dalla funzione stessa due chiamate alla stessa funzione
4375 potranno interferire quando entrambe faranno riferimento allo stesso oggetto.
4376 Allo stesso modo una funzione può non essere rientrante se usa e modifica un
4377 oggetto che le viene fornito dal chiamante: due chiamate possono interferire
4378 se viene passato lo stesso oggetto; in tutti questi casi occorre molta cura da
4379 parte del programmatore.
4380
4381 In genere le funzioni di libreria non sono rientranti, molte di esse ad
4382 esempio utilizzano variabili statiche, la \acr{glibc} però mette a
4383 disposizione due macro di compilatore, \macro{\_REENTRANT} e
4384 \macro{\_THREAD\_SAFE}, la cui definizione attiva le versioni rientranti di
4385 varie funzioni di libreria, che sono identificate aggiungendo il suffisso
4386 \code{\_r} al nome della versione normale.
4387
4388 \index{funzioni!rientranti|)}
4389
4390
4391 % LocalWords:  multitasking like VMS child process identifier pid sez shell fig
4392 % LocalWords:  parent kernel init pstree keventd kswapd table struct linux call
4393 % LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
4394 % LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
4395 % LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD threads
4396 % LocalWords:  void tempnam pathname sibling cap errno EAGAIN ENOMEM
4397 % LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
4398 % LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
4399 % LocalWords:  close group session tms lock vfork execve BSD stream main abort
4400 % LocalWords:  SIGABRT SIGCHLD SIGHUP foreground SIGCONT termination signal ANY
4401 % LocalWords:  handler kill EINTR POSIX options WNOHANG ECHILD option WUNTRACED
4402 % LocalWords:  dump bits rusage getrusage heap const filename argv envp EACCES
4403 % LocalWords:  filesystem noexec EPERM suid sgid root nosuid ENOEXEC ENOENT ELF
4404 % LocalWords:  ETXTBSY EINVAL ELIBBAD BIG EFAULT EIO ENAMETOOLONG ELOOP ENOTDIR
4405 % LocalWords:  ENFILE EMFILE argc execl path execv execle execlp execvp vector
4406 % LocalWords:  list environ NULL umask utime cutime ustime fcntl linker
4407 % LocalWords:  opendir libc interpreter FreeBSD capabilities mandatory access
4408 % LocalWords:  control MAC SELinux security modules LSM superuser uid gid saved
4409 % LocalWords:  effective euid egid dell' fsuid fsgid getuid geteuid getgid SVr
4410 % LocalWords:  getegid IDS NFS setuid setgid all' logout utmp screen xterm TODO
4411 % LocalWords:  setreuid setregid FIXME ruid rgid seteuid setegid setresuid size
4412 % LocalWords:  setresgid getresuid getresgid value result argument setfsuid DAC
4413 % LocalWords:  setfsgid NGROUPS sysconf getgroups getgrouplist groups ngroups
4414 % LocalWords:  setgroups initgroups patch LIDS CHOWN OVERRIDE Discrectionary PF
4415 % LocalWords:  SEARCH chattr sticky NOATIME socket domain immutable append mmap
4416 % LocalWords:  broadcast multicast multicasting memory locking mlock mlockall
4417 % LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
4418 % LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
4419 % LocalWords:  capability capget capset header ESRCH undef version obj clear PT
4420 % LocalWords:  pag ssize length proc capgetp preemptive cache runnable  contest
4421 % LocalWords:  SIGSTOP soft slice nice niceness counter which SC switch side
4422 % LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO  COUNT
4423 % LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
4424 % LocalWords:  min getparam getscheduler interval robin ENOSYS fifo ping long
4425 % LocalWords:  affinity setaffinity unsigned mask cpu NUMA CLR ISSET SETSIZE RR
4426 % LocalWords:  getaffinity assembler deadlock REENTRANT SAFE tgz MYPGRP l'OR rr
4427 % LocalWords:  WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WCOREDUMP WIFSTOPPED
4428 % LocalWords:  WSTOPSIG opt char INTERP arg SIG IGN DFL mascheck grp FOWNER RAW
4429 % LocalWords:  FSETID SETPCAP BIND SERVICE ADMIN PACKET IPC OWNER MODULE RAWIO
4430 % LocalWords:  PACCT RESOURCE TTY CONFIG SETFCAP hdrp datap libcap lcap text tp
4431 % LocalWords:  get ncap caps CapInh CapPrm fffffeff CapEff getcap STAT dall'I
4432 % LocalWords:  inc PRIO SUSv PRGR prio SysV SunOS Ultrix sched timespec len sig
4433 % LocalWords:  cpusetsize cpuset atomic tickless redirezione WCONTINUED stopped
4434 % LocalWords:  waitid NOCLDSTOP ENOCHLD WIFCONTINUED ifdef endif idtype siginfo
4435 % LocalWords:  infop ALL WEXITED WSTOPPED WNOWAIT signo CLD EXITED KILLED page
4436 % LocalWords:  CONTINUED sources forking Spawned successfully executing exiting
4437 % LocalWords:  next cat for COMMAND pts bash defunct TRAPPED DUMPED PR effects
4438 % LocalWords:  SIGKILL static RLIMIT preemption PREEMPT VOLUNTARY IDLE RTPRIO
4439 % LocalWords:  completely fair compat uniform CFQ queuing elevator dev cfq RT
4440 % LocalWords:  documentation block syscall ioprio IPRIO CLASS class best effort
4441 % LocalWords:  refresh semop dnotify MADV DONTFORK prctl WCLONE WALL big mount
4442 % LocalWords:  WNOTHREAD DUMPABLE KEEPCAPS IRIX CAPBSET endianness endian flags
4443 % LocalWords:  little PPC PowerPC FPEMU NOPRINT SIGFPE FPEXC point FP SW malloc
4444 % LocalWords:  exception EXC ENABLE OVF overflow UND underflow RES INV DISABLED
4445 % LocalWords:  NONRECOV ASYNC KEEP securebits NAME NUL PDEATHSIG SECCOMP VM FS
4446 % LocalWords:  secure computing sigreturn TIMING STATISTICAL TSC MCE conditions
4447 % LocalWords:  timestamp Stamp SIGSEGV UNALIGN SIGBUS MCEERR AO failure early
4448 % LocalWords:  namespace vsyscall SETTID FILES NEWIPC NEWNET NEWNS NEWPID ptid
4449 % LocalWords:  NEWUTS SETTLS SIGHAND SYSVSEM UNTRACED tls ctid CLEARTID panic
4450 % LocalWords:  loader EISDIR SIGTRAP uninterrutible killable EQUAL sizeof XOR
4451 % LocalWords:  destset srcset ALLOC num cpus setsize emacs pager getty TID
4452  
4453 %%% Local Variables: 
4454 %%% mode: latex
4455 %%% TeX-master: "gapil"
4456 %%% End: