Materiale scritto a nizza
[gapil.git] / prochand.tex
1 %% prochand.tex
2 %%
3 %% Copyright (C) 2000-2009 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione dei processi}
13 \label{cha:process_handling}
14
15 Come accennato nell'introduzione in un sistema Unix tutte le operazioni
16 vengono svolte tramite opportuni processi.  In sostanza questi ultimi vengono
17 a costituire l'unità base per l'allocazione e l'uso delle risorse del sistema.
18
19 Nel precedente capitolo abbiamo esaminato il funzionamento di un processo come
20 unità a se stante, in questo esamineremo il funzionamento dei processi
21 all'interno del sistema. Saranno cioè affrontati i dettagli della creazione e
22 della terminazione dei processi, della gestione dei loro attributi e
23 privilegi, e di tutte le funzioni a questo connesse. Infine nella sezione
24 finale introdurremo alcune problematiche generiche della programmazione in
25 ambiente multitasking.
26
27
28 \section{Introduzione}
29 \label{sec:proc_gen}
30
31 Inizieremo con un'introduzione generale ai concetti che stanno alla base della
32 gestione dei processi in un sistema unix-like. Introdurremo in questa sezione
33 l'architettura della gestione dei processi e le sue principali
34 caratteristiche, dando una panoramica sull'uso delle principali funzioni di
35 gestione.
36
37
38 \subsection{L'architettura della gestione dei processi}
39 \label{sec:proc_hierarchy}
40
41 A differenza di quanto avviene in altri sistemi (ad esempio nel VMS la
42 generazione di nuovi processi è un'operazione privilegiata) una delle
43 caratteristiche di Unix (che esamineremo in dettaglio più avanti) è che
44 qualunque processo può a sua volta generarne altri, detti processi figli
45 (\textit{child process}). Ogni processo è identificato presso il sistema da un
46 numero univoco, il cosiddetto \textit{process identifier} o, più brevemente,
47 \acr{pid}, assegnato in forma progressiva (vedi sez.~\ref{sec:proc_pid})
48 quando il processo viene creato.
49
50 Una seconda caratteristica di un sistema Unix è che la generazione di un
51 processo è un'operazione separata rispetto al lancio di un programma. In
52 genere la sequenza è sempre quella di creare un nuovo processo, il quale
53 eseguirà, in un passo successivo, il programma desiderato: questo è ad esempio
54 quello che fa la shell quando mette in esecuzione il programma che gli
55 indichiamo nella linea di comando.
56
57 Una terza caratteristica è che ogni processo è sempre stato generato da un
58 altro, che viene chiamato processo padre (\textit{parent process}). Questo
59 vale per tutti i processi, con una sola eccezione: dato che ci deve essere un
60 punto di partenza esiste un processo speciale (che normalmente è
61 \cmd{/sbin/init}), che viene lanciato dal kernel alla conclusione della fase
62 di avvio; essendo questo il primo processo lanciato dal sistema ha sempre il
63 \acr{pid} uguale a 1 e non è figlio di nessun altro processo.
64
65 Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far
66 partire tutti gli altri processi necessari al funzionamento del sistema,
67 inoltre \cmd{init} è essenziale per svolgere una serie di compiti
68 amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di
69 essi in sez.~\ref{sec:proc_termination}) e non può mai essere terminato. La
70 struttura del sistema comunque consente di lanciare al posto di \cmd{init}
71 qualunque altro programma, e in casi di emergenza (ad esempio se il file di
72 \cmd{init} si fosse corrotto) è ad esempio possibile lanciare una shell al suo
73 posto, passando la riga \cmd{init=/bin/sh} come parametro di avvio.
74
75 \begin{figure}[!htb]
76   \footnotesize
77 \begin{verbatim}
78 [piccardi@gont piccardi]$ pstree -n 
79 init-+-keventd
80      |-kapm-idled
81      |-kreiserfsd
82      |-portmap
83      |-syslogd
84      |-klogd
85      |-named
86      |-rpc.statd
87      |-gpm
88      |-inetd
89      |-junkbuster
90      |-master-+-qmgr
91      |        `-pickup
92      |-sshd
93      |-xfs
94      |-cron
95      |-bash---startx---xinit-+-XFree86
96      |                       `-WindowMaker-+-ssh-agent
97      |                                     |-wmtime
98      |                                     |-wmmon
99      |                                     |-wmmount
100      |                                     |-wmppp
101      |                                     |-wmcube
102      |                                     |-wmmixer
103      |                                     |-wmgtemp
104      |                                     |-wterm---bash---pstree
105      |                                     `-wterm---bash-+-emacs
106      |                                                    `-man---pager
107      |-5*[getty]
108      |-snort
109      `-wwwoffled
110 \end{verbatim} %$
111   \caption{L'albero dei processi, così come riportato dal comando
112     \cmd{pstree}.}
113   \label{fig:proc_tree}
114 \end{figure}
115
116 Dato che tutti i processi attivi nel sistema sono comunque generati da
117 \cmd{init} o da uno dei suoi figli\footnote{in realtà questo non è del tutto
118   vero, in Linux ci sono alcuni processi speciali che pur comparendo come
119   figli di \cmd{init}, o con \acr{pid} successivi, sono in realtà generati
120   direttamente dal kernel, (come \cmd{keventd}, \cmd{kswapd}, ecc.).} si
121 possono classificare i processi con la relazione padre/figlio in
122 un'organizzazione gerarchica ad albero, in maniera analoga a come i file sono
123 organizzati in un albero di directory (si veda
124 sez.~\ref{sec:file_organization}); in fig.~\ref{fig:proc_tree} si è mostrato il
125 risultato del comando \cmd{pstree} che permette di visualizzare questa
126 struttura, alla cui base c'è \cmd{init} che è progenitore di tutti gli altri
127 processi.
128
129 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
130 \itindex{process~table} \textit{process table}; per ciascun processo viene
131 mantenuta una voce, costituita da una struttura \struct{task\_struct}, nella
132 tabella dei processi che contiene tutte le informazioni rilevanti per quel
133 processo. Tutte le strutture usate a questo scopo sono dichiarate nell'header
134 file \file{linux/sched.h}, ed uno schema semplificato, che riporta la
135 struttura delle principali informazioni contenute nella \struct{task\_struct}
136 (che in seguito incontreremo a più riprese), è mostrato in
137 fig.~\ref{fig:proc_task_struct}.
138
139 \begin{figure}[htb]
140   \centering
141   \includegraphics[width=12cm]{img/task_struct}
142   \caption{Schema semplificato dell'architettura delle strutture usate dal
143     kernel nella gestione dei processi.}
144   \label{fig:proc_task_struct}
145 \end{figure}
146
147 % TODO la task_struct è cambiata per qualche dettaglio vedi anche
148 % http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
149
150 Come accennato in sez.~\ref{sec:intro_unix_struct} è lo \itindex{scheduler}
151 \textit{scheduler} che decide quale processo mettere in esecuzione; esso viene
152 eseguito ad ogni system call ed ad ogni interrupt,\footnote{più in una serie
153   di altre occasioni.}
154 % TODO completare questa parte su quando viene chiamato lo scheduler.
155 (ma può essere anche attivato esplicitamente). Il timer di sistema provvede
156 comunque a che esso sia invocato periodicamente; generando un interrupt
157 periodico secondo la frequenza specificata dalla costante
158 \const{HZ},\footnote{fino al kernel 2.4 il valore usuale di questa costante
159   era 100, per tutte le architetture eccetto l'alpha, per la quale era 1000,
160   nel 2.6 è stato portato a 1000 su tutte le architetture; occorre fare
161   attenzione a non confondere questo valore con quello dei
162   \itindex{clock~tick} \textit{clock tick} (vedi
163   sez.~\ref{sec:sys_unix_time}).} definita in \file{asm/param.h}, ed il cui
164 valore è espresso in Hertz.\footnote{a partire dal kernel 2.6.21 è stato
165   introdotto (a cura di Ingo Molnar) un meccanismo completamente diverso,
166   detto \textit{tickless}, in cui non c'è più una interruzione periodica con
167   frequenza prefissata, ma ad ogni chiamata del timer viene programmata
168   l'interruzione successiva sulla base di una stima; in questo modo si evita
169   di dover eseguire un migliaio di interruzioni al secondo anche su macchine
170   che non stanno facendo nulla, con un forte risparmio nell'uso dell'energia
171   da parte del processore che può essere messo in stato di sospensione anche
172   per lunghi periodi di tempo.}
173
174
175 Ogni volta che viene eseguito, lo \itindex{scheduler} \textit{scheduler}
176 effettua il calcolo delle priorità dei vari processi attivi (torneremo su
177 questo in sez.~\ref{sec:proc_priority}) e stabilisce quale di essi debba
178 essere posto in esecuzione fino alla successiva invocazione.
179
180
181 \subsection{Una panoramica sulle funzioni fondamentali}
182 \label{sec:proc_handling_intro}
183
184 In un sistema unix-like i processi vengono sempre creati da altri processi
185 tramite la funzione \func{fork}; il nuovo processo (che viene chiamato
186 \textsl{figlio}) creato dalla \func{fork} è una copia identica del processo
187 processo originale (detto \textsl{padre}), ma ha un nuovo \acr{pid} e viene
188 eseguito in maniera indipendente (le differenze fra padre e figlio sono
189 affrontate in dettaglio in sez.~\ref{sec:proc_fork}).
190
191 Se si vuole che il processo padre si fermi fino alla conclusione del processo
192 figlio questo deve essere specificato subito dopo la \func{fork} chiamando la
193 funzione \func{wait} o la funzione \func{waitpid} (si veda
194 sez.~\ref{sec:proc_wait}); queste funzioni restituiscono anche un'informazione
195 abbastanza limitata sulle cause della terminazione del processo figlio.
196
197 Quando un processo ha concluso il suo compito o ha incontrato un errore non
198 risolvibile esso può essere terminato con la funzione \func{exit} (si veda
199 quanto discusso in sez.~\ref{sec:proc_conclusion}). La vita del processo però
200 termina completamente solo quando la notifica della sua conclusione viene
201 ricevuta dal processo padre, a quel punto tutte le risorse allocate nel
202 sistema ad esso associate vengono rilasciate.
203
204 Avere due processi che eseguono esattamente lo stesso codice non è molto
205 utile, normalmente si genera un secondo processo per affidargli l'esecuzione
206 di un compito specifico (ad esempio gestire una connessione dopo che questa è
207 stata stabilita), o fargli eseguire (come fa la shell) un altro programma. Per
208 quest'ultimo caso si usa la seconda funzione fondamentale per programmazione
209 coi processi che è la \func{exec}.
210
211 Il programma che un processo sta eseguendo si chiama immagine del processo (o
212 \textit{process image}), le funzioni della famiglia \func{exec} permettono di
213 caricare un altro programma da disco sostituendo quest'ultimo all'immagine
214 corrente; questo fa sì che l'immagine precedente venga completamente
215 cancellata. Questo significa che quando il nuovo programma termina, anche il
216 processo termina, e non si può tornare alla precedente immagine.
217
218 Per questo motivo la \func{fork} e la \func{exec} sono funzioni molto
219 particolari con caratteristiche uniche rispetto a tutte le altre, infatti la
220 prima ritorna due volte (nel processo padre e nel figlio) mentre la seconda
221 non ritorna mai (in quanto con essa viene eseguito un altro programma).
222
223
224 \section{Le funzioni di base}% della gestione dei processi}
225 \label{sec:proc_handling}
226
227 In questa sezione tratteremo le problematiche della gestione dei processi
228 all'interno del sistema, illustrandone tutti i dettagli.  Inizieremo con le
229 funzioni elementari che permettono di leggerne gli identificatori, per poi
230 passare alla spiegazione delle funzioni base che si usano per la creazione e
231 la terminazione dei processi, e per la messa in esecuzione degli altri
232 programmi.
233
234
235 \subsection{Gli identificatori dei processi}
236 \label{sec:proc_pid}
237
238 Come accennato nell'introduzione, ogni processo viene identificato dal sistema
239 da un numero identificativo univoco, il \textit{process ID} o \acr{pid};
240 quest'ultimo è un tipo di dato standard, il \type{pid\_t} che in genere è un
241 intero con segno (nel caso di Linux e delle \acr{glibc} il tipo usato è
242 \ctyp{int}).
243
244 Il \acr{pid} viene assegnato in forma progressiva\footnote{in genere viene
245   assegnato il numero successivo a quello usato per l'ultimo processo creato,
246   a meno che questo numero non sia già utilizzato per un altro \acr{pid},
247   \acr{pgid} o \acr{sid} (vedi sez.~\ref{sec:sess_proc_group}).} ogni volta
248 che un nuovo processo viene creato, fino ad un limite che, essendo il
249 \acr{pid} un numero positivo memorizzato in un intero a 16 bit, arriva ad un
250 massimo di 32768.  Oltre questo valore l'assegnazione riparte dal numero più
251 basso disponibile a partire da un minimo di 300,\footnote{questi valori, fino
252   al kernel 2.4.x, sono definiti dalla macro \const{PID\_MAX} in
253   \file{threads.h} e direttamente in \file{fork.c}, con il kernel 2.5.x e la
254   nuova interfaccia per i \itindex{thread} \textit{thread} creata da Ingo
255   Molnar anche il meccanismo di allocazione dei \acr{pid} è stato modificato;
256   il valore massimo è impostabile attraverso il file
257   \procfile{/proc/sys/kernel/pid\_max} e di default vale 32768.} che serve a
258 riservare i \acr{pid} più bassi ai processi eseguiti direttamente dal kernel.
259 Per questo motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di
260 avvio (\cmd{init}) ha sempre il \acr{pid} uguale a uno.
261
262 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
263 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
264 \textit{parent process ID}).  Questi due identificativi possono essere
265 ottenuti usando le due funzioni \funcd{getpid} e \funcd{getppid}, i cui
266 prototipi sono:
267 \begin{functions}
268   \headdecl{sys/types.h} 
269   \headdecl{unistd.h} 
270   \funcdecl{pid\_t getpid(void)}
271   
272   Restituisce il \acr{pid} del processo corrente.  
273   
274   \funcdecl{pid\_t getppid(void)} 
275   
276   Restituisce il \acr{pid} del padre del processo corrente.
277
278 \bodydesc{Entrambe le funzioni non riportano condizioni di errore.}
279 \end{functions}
280 \noindent esempi dell'uso di queste funzioni sono riportati in
281 fig.~\ref{fig:proc_fork_code}, nel programma \file{ForkTest.c}.
282
283 Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende un
284 candidato per generare ulteriori indicatori associati al processo di cui
285 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
286 funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
287 \acr{pid} per generare un \itindex{pathname} \textit{pathname} univoco, che
288 non potrà essere replicato da un altro processo che usi la stessa funzione.
289
290 Tutti i processi figli dello stesso processo padre sono detti
291 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
292   sessione}, in cui si raggruppano i processi creati su uno stesso terminale,
293 o relativi allo stesso login. Torneremo su questo argomento in dettaglio in
294 cap.~\ref{cha:session}, dove esamineremo gli altri identificativi associati ad
295 un processo e le varie relazioni fra processi utilizzate per definire una
296 sessione.
297
298 Oltre al \acr{pid} e al \acr{ppid}, (e a quelli che vedremo in
299 sez.~\ref{sec:sess_proc_group}, relativi al controllo di sessione), ad ogni
300 processo vengono associati degli altri identificatori che vengono usati per il
301 controllo di accesso.  Questi servono per determinare se un processo può
302 eseguire o meno le operazioni richieste, a seconda dei privilegi e
303 dell'identità di chi lo ha posto in esecuzione; l'argomento è complesso e sarà
304 affrontato in dettaglio in sez.~\ref{sec:proc_perms}.
305
306
307 \subsection{La funzione \func{fork} e le funzioni di creazione dei processi}
308 \label{sec:proc_fork}
309
310 La funzione \funcd{fork} è la funzione fondamentale della gestione dei
311 processi: come si è detto l'unico modo di creare un nuovo processo è
312 attraverso l'uso di questa funzione, essa quindi riveste un ruolo centrale
313 tutte le volte che si devono scrivere programmi che usano il multitasking.  Il
314 prototipo della funzione è:
315 \begin{functions}
316   \headdecl{sys/types.h} 
317   \headdecl{unistd.h} 
318   \funcdecl{pid\_t fork(void)} 
319   Crea un nuovo processo.
320   
321   \bodydesc{In caso di successo restituisce il \acr{pid} del figlio al padre e
322     zero al figlio; ritorna -1 al padre (senza creare il figlio) in caso di
323     errore; \var{errno} può assumere i valori:
324   \begin{errlist}
325   \item[\errcode{EAGAIN}] non ci sono risorse sufficienti per creare un altro
326     processo (per allocare la tabella delle pagine e le strutture del task) o
327     si è esaurito il numero di processi disponibili.
328   \item[\errcode{ENOMEM}] non è stato possibile allocare la memoria per le
329     strutture necessarie al kernel per creare il nuovo processo.
330   \end{errlist}}
331 \end{functions}
332
333 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
334 il processo figlio continuano ad essere eseguiti normalmente a partire
335 dall'istruzione successiva alla \func{fork}; il processo figlio è però una
336 copia del padre, e riceve una copia dei \index{segmento!testo} segmenti di
337 testo, \itindex{stack} \textit{stack} e \index{segmento!dati} dati (vedi
338 sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del
339 padre. Si tenga presente però che la memoria è copiata, non condivisa,
340 pertanto padre e figlio vedono variabili diverse.
341
342 Per quanto riguarda la gestione della memoria, in generale il
343 \index{segmento!testo} segmento di testo, che è identico per i due processi, è
344 condiviso e tenuto in read-only per il padre e per i figli. Per gli altri
345 segmenti Linux utilizza la tecnica del \itindex{copy~on~write} \textit{copy on
346   write}; questa tecnica comporta che una pagina di memoria viene
347 effettivamente copiata per il nuovo processo solo quando ci viene effettuata
348 sopra una scrittura (e si ha quindi una reale differenza fra padre e figlio).
349 In questo modo si rende molto più efficiente il meccanismo della creazione di
350 un nuovo processo, non essendo più necessaria la copia di tutto lo spazio
351 degli indirizzi virtuali del padre, ma solo delle pagine di memoria che sono
352 state modificate, e solo al momento della modifica stessa.
353
354 La differenza che si ha nei due processi è che nel processo padre il valore di
355 ritorno della funzione \func{fork} è il \acr{pid} del processo figlio, mentre
356 nel figlio è zero; in questo modo il programma può identificare se viene
357 eseguito dal padre o dal figlio.  Si noti come la funzione \func{fork} ritorni
358 \textbf{due} volte: una nel padre e una nel figlio. 
359
360 La scelta di questi valori di ritorno non è casuale, un processo infatti può
361 avere più figli, ed il valore di ritorno di \func{fork} è l'unico modo che gli
362 permette di identificare quello appena creato; al contrario un figlio ha
363 sempre un solo padre (il cui \acr{pid} può sempre essere ottenuto con
364 \func{getppid}, vedi sez.~\ref{sec:proc_pid}) per cui si usa il valore nullo,
365 che non è il \acr{pid} di nessun processo.
366
367 \begin{figure}[!htb]
368   \footnotesize \centering
369   \begin{minipage}[c]{15cm}
370   \includecodesample{listati/ForkTest.c}
371   \end{minipage}
372   \normalsize
373   \caption{Esempio di codice per la creazione di nuovi processi.}
374   \label{fig:proc_fork_code}
375 \end{figure}
376
377 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni, o ci
378 sono già troppi processi nel sistema (il che di solito è sintomo che
379 qualcos'altro non sta andando per il verso giusto) o si è ecceduto il limite
380 sul numero totale di processi permessi all'utente (vedi
381 sez.~\ref{sec:sys_resource_limit}, ed in particolare
382 tab.~\ref{tab:sys_rlimit_values}).
383
384 L'uso di \func{fork} avviene secondo due modalità principali; la prima è
385 quella in cui all'interno di un programma si creano processi figli cui viene
386 affidata l'esecuzione di una certa sezione di codice, mentre il processo padre
387 ne esegue un'altra. È il caso tipico dei programmi server (il modello
388 \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}) in cui il
389 padre riceve ed accetta le richieste da parte dei programmi client, per
390 ciascuna delle quali pone in esecuzione un figlio che è incaricato di fornire
391 il servizio.
392
393 La seconda modalità è quella in cui il processo vuole eseguire un altro
394 programma; questo è ad esempio il caso della shell. In questo caso il processo
395 crea un figlio la cui unica operazione è quella di fare una \func{exec} (di
396 cui parleremo in sez.~\ref{sec:proc_exec}) subito dopo la \func{fork}.
397
398 Alcuni sistemi operativi (il VMS ad esempio) combinano le operazioni di questa
399 seconda modalità (una \func{fork} seguita da una \func{exec}) in un'unica
400 operazione che viene chiamata \textit{spawn}. Nei sistemi unix-like è stato
401 scelto di mantenere questa separazione, dato che, come per la prima modalità
402 d'uso, esistono numerosi scenari in cui si può usare una \func{fork} senza
403 aver bisogno di eseguire una \func{exec}. Inoltre, anche nel caso della
404 seconda modalità d'uso, avere le due funzioni separate permette al figlio di
405 cambiare gli attributi del processo (maschera dei segnali, redirezione
406 dell'output, identificatori) prima della \func{exec}, rendendo così
407 relativamente facile intervenire sulle le modalità di esecuzione del nuovo
408 programma.
409
410 In fig.~\ref{fig:proc_fork_code} è riportato il corpo del codice del programma
411 di esempio \cmd{forktest}, che permette di illustrare molte caratteristiche
412 dell'uso della funzione \func{fork}. Il programma crea un numero di figli
413 specificato da linea di comando, e prende anche alcune opzioni per indicare
414 degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
415 \func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
416 descrizione delle opzioni); il codice completo, compresa la parte che gestisce
417 le opzioni a riga di comando, è disponibile nel file \file{ForkTest.c},
418 distribuito insieme agli altri sorgenti degli esempi su
419 \href{http://gapil.truelite.it/gapil_source.tgz}
420 {\textsf{http://gapil.truelite.it/gapil\_source.tgz}}.
421
422 Decifrato il numero di figli da creare, il ciclo principale del programma
423 (\texttt{\small 24--40}) esegue in successione la creazione dei processi figli
424 controllando il successo della chiamata a \func{fork} (\texttt{\small
425   25--29}); ciascun figlio (\texttt{\small 31--34}) si limita a stampare il
426 suo numero di successione, eventualmente attendere il numero di secondi
427 specificato e scrivere un messaggio prima di uscire. Il processo padre invece
428 (\texttt{\small 36--38}) stampa un messaggio di creazione, eventualmente
429 attende il numero di secondi specificato, e procede nell'esecuzione del ciclo;
430 alla conclusione del ciclo, prima di uscire, può essere specificato un altro
431 periodo di attesa.
432
433 Se eseguiamo il comando\footnote{che è preceduto dall'istruzione \code{export
434     LD\_LIBRARY\_PATH=./} per permettere l'uso delle librerie dinamiche.}
435 senza specificare attese (come si può notare in (\texttt{\small 17--19}) i
436 valori predefiniti specificano di non attendere), otterremo come output sul
437 terminale:
438 \begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
439 [piccardi@selidor sources]$ export LD_LIBRARY_PATH=./; ./forktest 3
440 Process 1963: forking 3 child
441 Spawned 1 child, pid 1964 
442 Child 1 successfully executing
443 Child 1, parent 1963, exiting
444 Go to next child 
445 Spawned 2 child, pid 1965 
446 Child 2 successfully executing
447 Child 2, parent 1963, exiting
448 Go to next child 
449 Child 3 successfully executing
450 Child 3, parent 1963, exiting
451 Spawned 3 child, pid 1966 
452 Go to next child 
453 \end{Verbatim} 
454 %$
455
456 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
457 si può dire quale processo fra il padre ed il figlio venga eseguito per primo
458 dopo la chiamata a \func{fork}; dall'esempio si può notare infatti come nei
459 primi due cicli sia stato eseguito per primo il padre (con la stampa del
460 \acr{pid} del nuovo processo) per poi passare all'esecuzione del figlio
461 (completata con i due avvisi di esecuzione ed uscita), e tornare
462 all'esecuzione del padre (con la stampa del passaggio al ciclo successivo),
463 mentre la terza volta è stato prima eseguito il figlio (fino alla conclusione)
464 e poi il padre.
465
466 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
467 \itindex{scheduler} scheduling usato dal kernel, dalla particolare situazione
468 in cui si trova la macchina al momento della chiamata, risultando del tutto
469 impredicibile.  Eseguendo più volte il programma di prova e producendo un
470 numero diverso di figli, si sono ottenute situazioni completamente diverse,
471 compreso il caso in cui il processo padre ha eseguito più di una \func{fork}
472 prima che uno dei figli venisse messo in esecuzione.
473
474 Pertanto non si può fare nessuna assunzione sulla sequenza di esecuzione delle
475 istruzioni del codice fra padre e figli, né sull'ordine in cui questi potranno
476 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
477 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
478 rischio di incorrere nelle cosiddette \itindex{race~condition} \textit{race
479   condition} (vedi sez.~\ref{sec:proc_race_cond}).
480
481 In realtà a partire dal kernel 2.5.2-pre10 il nuovo \itindex{scheduler}
482 \textit{scheduler} di Ingo Molnar esegue sempre per primo il
483 figlio;\footnote{i risultati precedenti sono stati ottenuti usando un kernel
484   della serie 2.4.}  questa è una ottimizzazione che serve a evitare che il
485 padre, effettuando per primo una operazione di scrittura in memoria, attivi il
486 meccanismo del \itindex{copy~on~write} \textit{copy on write}. Questa
487 operazione infatti potrebbe risultare del tutto inutile qualora il figlio
488 fosse stato creato solo per eseguire una \func{exec}, in tal caso infatti si
489 invocherebbe un altro programma scartando completamente lo spazio degli
490 indirizzi, rendendo superflua la copia della memoria modificata dal padre.
491
492 Eseguendo sempre per primo il figlio la \func{exec} verrebbe effettuata subito
493 avendo così la certezza che il \itindex{copy~on~write} \textit{copy on write}
494 viene utilizzato solo quando necessario. Quanto detto in precedenza vale
495 allora soltanto per i kernel fino al 2.4; per mantenere la portabilità è però
496 opportuno non fare affidamento su questo comportamento, che non si riscontra
497 in altri Unix e nelle versioni del kernel precendenti a quella indicata.
498
499 Si noti inoltre che essendo i segmenti di memoria utilizzati dai singoli
500 processi completamente separati, le modifiche delle variabili nei processi
501 figli (come l'incremento di \var{i} in \texttt{\small 31}) sono visibili solo
502 a loro (ogni processo vede solo la propria copia della memoria), e non hanno
503 alcun effetto sul valore che le stesse variabili hanno nel processo padre (ed
504 in eventuali altri processi figli che eseguano lo stesso codice).
505
506 Un secondo aspetto molto importante nella creazione dei processi figli è
507 quello dell'interazione dei vari processi con i file; per illustrarlo meglio
508 proviamo a redirigere su un file l'output del nostro programma di test, quello
509 che otterremo è:
510 \begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
511 [piccardi@selidor sources]$ ./forktest 3 > output
512 [piccardi@selidor sources]$ cat output
513 Process 1967: forking 3 child
514 Child 1 successfully executing
515 Child 1, parent 1967, exiting
516 Test for forking 3 child
517 Spawned 1 child, pid 1968 
518 Go to next child 
519 Child 2 successfully executing
520 Child 2, parent 1967, exiting
521 Test for forking 3 child
522 Spawned 1 child, pid 1968 
523 Go to next child 
524 Spawned 2 child, pid 1969 
525 Go to next child 
526 Child 3 successfully executing
527 Child 3, parent 1967, exiting
528 Test for forking 3 child
529 Spawned 1 child, pid 1968 
530 Go to next child 
531 Spawned 2 child, pid 1969 
532 Go to next child 
533 Spawned 3 child, pid 1970 
534 Go to next child 
535 \end{Verbatim}
536 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
537
538 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
539 in gran dettaglio in cap.~\ref{cha:file_unix_interface} e in
540 cap.~\ref{cha:files_std_interface}. Qui basta accennare che si sono usate le
541 funzioni standard della libreria del C che prevedono l'output bufferizzato; e
542 questa bufferizzazione (trattata in dettaglio in sez.~\ref{sec:file_buffering})
543 varia a seconda che si tratti di un file su disco (in cui il buffer viene
544 scaricato su disco solo quando necessario) o di un terminale (nel qual caso il
545 buffer viene scaricato ad ogni carattere di a capo).
546
547 Nel primo esempio allora avevamo che ad ogni chiamata a \func{printf} il
548 buffer veniva scaricato, e le singole righe erano stampate a video subito dopo
549 l'esecuzione della \func{printf}. Ma con la redirezione su file la scrittura
550 non avviene più alla fine di ogni riga e l'output resta nel buffer. Dato che
551 ogni figlio riceve una copia della memoria del padre, esso riceverà anche
552 quanto c'è nel buffer delle funzioni di I/O, comprese le linee scritte dal
553 padre fino allora. Così quando il buffer viene scritto su disco all'uscita del
554 figlio, troveremo nel file anche tutto quello che il processo padre aveva
555 scritto prima della sua creazione. E alla fine del file (dato che in questo
556 caso il padre esce per ultimo) troveremo anche l'output completo del padre.
557
558 L'esempio ci mostra un altro aspetto fondamentale dell'interazione con i file,
559 valido anche per l'esempio precedente, ma meno evidente: il fatto cioè che non
560 solo processi diversi possono scrivere in contemporanea sullo stesso file
561 (l'argomento della condivisione dei file è trattato in dettaglio in
562 sez.~\ref{sec:file_sharing}), ma anche che, a differenza di quanto avviene per
563 le variabili, la posizione corrente sul file è condivisa fra il padre e tutti
564 i processi figli.
565
566 Quello che succede è che quando lo standard output del padre viene rediretto
567 come si è fatto nell'esempio, lo stesso avviene anche per tutti i figli; la
568 funzione \func{fork} infatti ha la caratteristica di duplicare nei processi
569 figli tutti i file descriptor aperti nel processo padre (allo stesso modo in
570 cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}), il che
571 comporta che padre e figli condividono le stesse voci della
572 \itindex{file~table} \textit{file table} (per la spiegazione di questi termini
573 si veda sez.~\ref{sec:file_sharing}) fra cui c'è anche la posizione corrente
574 nel file.
575
576 In questo modo se un processo scrive sul file aggiornerà la posizione corrente
577 sulla \itindex{file~table} \textit{file table}, e tutti gli altri processi,
578 che vedono la stessa \itindex{file~table} \textit{file table}, vedranno il
579 nuovo valore. In questo modo si evita, in casi come quello appena mostrato in
580 cui diversi processi scrivono sullo stesso file, che l'output successivo di un
581 processo vada a sovrapporsi a quello dei precedenti: l'output potrà risultare
582 mescolato, ma non ci saranno parti perdute per via di una sovrascrittura.
583
584 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
585 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
586 scrivono sullo stesso file; un caso tipico è la shell quando lancia un
587 programma, il cui output va sullo standard output.  In questo modo, anche se
588 l'output viene rediretto, il padre potrà sempre continuare a scrivere in coda
589 a quanto scritto dal figlio in maniera automatica; se così non fosse ottenere
590 questo comportamento sarebbe estremamente complesso necessitando di una
591 qualche forma di comunicazione fra i due processi per far riprendere al padre
592 la scrittura al punto giusto.
593
594 In generale comunque non è buona norma far scrivere più processi sullo stesso
595 file senza una qualche forma di sincronizzazione in quanto, come visto anche
596 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
597 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
598 i file dopo una \func{fork} sono sostanzialmente due:
599 \begin{enumerate}
600 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
601   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
602   della posizione corrente dopo eventuali operazioni di lettura e scrittura
603   effettuate dal figlio è automatica.
604 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
605   ciascuno dei due processi deve chiudere i file che non gli servono una volta
606   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
607 \end{enumerate}
608
609 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
610 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
611 comune dopo l'esecuzione di una \func{fork} è la seguente:
612 \begin{itemize*}
613 \item i file aperti e gli eventuali flag di \itindex{close-on-exec}
614   \textit{close-on-exec} impostati (vedi sez.~\ref{sec:proc_exec} e
615   sez.~\ref{sec:file_fcntl});
616 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
617     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
618   \textsl{group-ID effettivo} ed i \textit{group-ID supplementari} (vedi
619   sez.~\ref{sec:proc_access_id});
620 \item gli identificatori per il controllo di sessione: il
621   \itindex{process~group} \textit{process group-ID} e il \textit{session id}
622   ed il terminale di controllo (vedi sez.~\ref{sec:sess_proc_group});
623 \item la directory di lavoro e la directory radice (vedi
624   sez.~\ref{sec:file_work_dir} e sez.~\ref{sec:file_chroot});
625 \item la maschera dei permessi di creazione (vedi
626   sez.~\ref{sec:file_perm_management});
627 \item la maschera dei segnali bloccati (vedi sez.~\ref{sec:sig_sigmask}) e le
628   azioni installate (vedi sez.~\ref{sec:sig_gen_beha});
629 \item i segmenti di memoria condivisa agganciati al processo (vedi
630   sez.~\ref{sec:ipc_sysv_shm});
631 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
632 \item le priorità real-time e le affinità di processore (vedi
633   sez.~\ref{sec:proc_real_time} e sez.\ref{sec:proc_sched_multiprocess});
634 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
635 \end{itemize*}
636 Le differenze fra padre e figlio dopo la \func{fork} invece sono:
637 \begin{itemize*}
638 \item il valore di ritorno di \func{fork};
639 \item il \acr{pid} (\textit{process id});
640 \item il \acr{ppid} (\textit{parent process id}), quello del figlio viene
641   impostato al \acr{pid} del padre;
642 \item i valori dei tempi di esecuzione della struttura \struct{tms} (vedi
643   sez.~\ref{sec:sys_cpu_times}) che nel figlio sono posti a zero;
644 \item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}), che non
645   vengono ereditati dal figlio;
646 \item gli allarmi ed i segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
647   per il figlio vengono cancellati.
648 \end{itemize*}
649
650
651 Una seconda funzione storica usata per la creazione di un nuovo processo è
652 \func{vfork}, che è esattamente identica a \func{fork} ed ha la stessa
653 semantica e gli stessi errori; la sola differenza è che non viene creata la
654 tabella delle pagine né la struttura dei task per il nuovo processo. Il
655 processo padre è posto in attesa fintanto che il figlio non ha eseguito una
656 \func{execve} o non è uscito con una \func{\_exit}. Il figlio condivide la
657 memoria del padre (e modifiche possono avere effetti imprevedibili) e non deve
658 ritornare o uscire con \func{exit} ma usare esplicitamente \func{\_exit}.
659
660 Questa funzione è un rimasuglio dei vecchi tempi in cui eseguire una
661 \func{fork} comportava anche la copia completa del segmento dati del processo
662 padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
663 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
664 venne introdotta in BSD per migliorare le prestazioni.
665
666 Dato che Linux supporta il \itindex{copy~on~write} \textit{copy on write} la
667 perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
668 funzione (che resta un caso speciale della system call \func{\_\_clone}) è
669 deprecato; per questo eviteremo di trattarla ulteriormente.
670
671
672 \subsection{La conclusione di un processo}
673 \label{sec:proc_termination}
674
675 In sez.~\ref{sec:proc_conclusion} abbiamo già affrontato le modalità con cui
676 chiudere un programma, ma dall'interno del programma stesso; avendo a che fare
677 con un sistema multitasking resta da affrontare l'argomento dal punto di vista
678 di come il sistema gestisce la conclusione dei processi.
679
680 Abbiamo visto in sez.~\ref{sec:proc_conclusion} le tre modalità con cui un
681 programma viene terminato in maniera normale: la chiamata di \func{exit} (che
682 esegue le funzioni registrate per l'uscita e chiude gli stream), il ritorno
683 dalla funzione \func{main} (equivalente alla chiamata di \func{exit}), e la
684 chiamata ad \func{\_exit} (che passa direttamente alle operazioni di
685 terminazione del processo da parte del kernel).
686
687 Ma abbiamo accennato che oltre alla conclusione normale esistono anche delle
688 modalità di conclusione anomala; queste sono in sostanza due: il programma può
689 chiamare la funzione \func{abort} per invocare una chiusura anomala, o essere
690 terminato da un segnale (torneremo sui segnali in cap.~\ref{cha:signals}).  In
691 realtà anche la prima modalità si riconduce alla seconda, dato che
692 \func{abort} si limita a generare il segnale \const{SIGABRT}.
693
694 Qualunque sia la modalità di conclusione di un processo, il kernel esegue
695 comunque una serie di operazioni: chiude tutti i file aperti, rilascia la
696 memoria che stava usando, e così via; l'elenco completo delle operazioni
697 eseguite alla chiusura di un processo è il seguente:
698 \begin{itemize}
699 \item tutti i file descriptor sono chiusi;
700 \item viene memorizzato lo stato di terminazione del processo;
701 \item ad ogni processo figlio viene assegnato un nuovo padre (in genere
702   \cmd{init});
703 \item viene inviato il segnale \const{SIGCHLD} al processo padre (vedi
704   sez.~\ref{sec:sig_sigchld});
705 \item se il processo è un leader di sessione ed il suo terminale di controllo
706   è quello della sessione viene mandato un segnale di \const{SIGHUP} a tutti i
707   processi del gruppo di \textit{foreground} e il terminale di controllo viene
708   disconnesso (vedi sez.~\ref{sec:sess_ctrl_term});
709 \item se la conclusione di un processo rende orfano un \textit{process
710     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
711   inviati in successione i segnali \const{SIGHUP} e \const{SIGCONT}
712   (vedi ancora sez.~\ref{sec:sess_ctrl_term}).
713 \end{itemize}
714
715 Oltre queste operazioni è però necessario poter disporre di un meccanismo
716 ulteriore che consenta di sapere come la terminazione è avvenuta: dato che in
717 un sistema unix-like tutto viene gestito attraverso i processi, il meccanismo
718 scelto consiste nel riportare lo stato di terminazione (il cosiddetto
719 \textit{termination status}) al processo padre.
720
721 Nel caso di conclusione normale, abbiamo visto in
722 sez.~\ref{sec:proc_conclusion} che lo stato di uscita del processo viene
723 caratterizzato tramite il valore del cosiddetto \textit{exit status}, cioè il
724 valore passato alle funzioni \func{exit} o \func{\_exit} (o dal valore di
725 ritorno per \func{main}).  Ma se il processo viene concluso in maniera anomala
726 il programma non può specificare nessun \textit{exit status}, ed è il kernel
727 che deve generare autonomamente il \textit{termination status} per indicare le
728 ragioni della conclusione anomala.
729
730 Si noti la distinzione fra \textit{exit status} e \textit{termination status}:
731 quello che contraddistingue lo stato di chiusura del processo e viene
732 riportato attraverso le funzioni \func{wait} o \func{waitpid} (vedi
733 sez.~\ref{sec:proc_wait}) è sempre quest'ultimo; in caso di conclusione normale
734 il kernel usa il primo (nel codice eseguito da \func{\_exit}) per produrre il
735 secondo.
736
737 La scelta di riportare al padre lo stato di terminazione dei figli, pur
738 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
739 alla sua creazione è scontato che ogni nuovo processo ha un padre, non è detto
740 che sia così alla sua conclusione, dato che il padre potrebbe essere già
741 terminato (si potrebbe avere cioè quello che si chiama un processo
742 \textsl{orfano}). 
743
744 % TODO verificare il reparenting
745
746 Questa complicazione viene superata facendo in modo che il processo orfano
747 venga \textsl{adottato} da \cmd{init}. Come già accennato quando un processo
748 termina, il kernel controlla se è il padre di altri processi in esecuzione: in
749 caso positivo allora il \acr{ppid} di tutti questi processi viene sostituito
750 con il \acr{pid} di \cmd{init} (e cioè con 1); in questo modo ogni processo
751 avrà sempre un padre (nel caso possiamo parlare di un padre \textsl{adottivo})
752 cui riportare il suo stato di terminazione.  Come verifica di questo
753 comportamento possiamo eseguire il nostro programma \cmd{forktest} imponendo a
754 ciascun processo figlio due secondi di attesa prima di uscire, il risultato è:
755 \begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
756 [piccardi@selidor sources]$ ./forktest -c2 3
757 Process 1972: forking 3 child
758 Spawned 1 child, pid 1973 
759 Child 1 successfully executing
760 Go to next child 
761 Spawned 2 child, pid 1974 
762 Child 2 successfully executing
763 Go to next child 
764 Child 3 successfully executing
765 Spawned 3 child, pid 1975 
766 Go to next child 
767 [piccardi@selidor sources]$ Child 3, parent 1, exiting
768 Child 2, parent 1, exiting
769 Child 1, parent 1, exiting
770 \end{Verbatim}
771 come si può notare in questo caso il processo padre si conclude prima dei
772 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
773 secondi dopo viene stampato a video anche l'output dei tre figli che
774 terminano, e come si può notare in questo caso, al contrario di quanto visto
775 in precedenza, essi riportano 1 come \acr{ppid}.
776
777 Altrettanto rilevante è il caso in cui il figlio termina prima del padre,
778 perché non è detto che il padre possa ricevere immediatamente lo stato di
779 terminazione, quindi il kernel deve comunque conservare una certa quantità di
780 informazioni riguardo ai processi che sta terminando.
781
782 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
783 memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
784 dal processo (vedi sez.~\ref{sec:sys_unix_time}) e lo stato di terminazione,
785 mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. I
786 processi che sono terminati, ma il cui stato di terminazione non è stato
787 ancora ricevuto dal padre sono chiamati \index{zombie} \textit{zombie}, essi
788 restano presenti nella tabella dei processi ed in genere possono essere
789 identificati dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella
790 colonna che ne indica lo stato (vedi tab.~\ref{tab:proc_proc_states}). Quando
791 il padre effettuerà la lettura dello stato di uscita anche questa
792 informazione, non più necessaria, verrà scartata e la terminazione potrà dirsi
793 completamente conclusa.
794
795 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
796 condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
797 sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
798 secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso
799 terminale (prima dello scadere dei 10 secondi) otterremo:
800 \begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
801 [piccardi@selidor sources]$ ps T
802   PID TTY      STAT   TIME COMMAND
803   419 pts/0    S      0:00 bash
804   568 pts/0    S      0:00 ./forktest -e10 3
805   569 pts/0    Z      0:00 [forktest <defunct>]
806   570 pts/0    Z      0:00 [forktest <defunct>]
807   571 pts/0    Z      0:00 [forktest <defunct>]
808   572 pts/0    R      0:00 ps T
809 \end{Verbatim} 
810 %$
811 e come si vede, dato che non si è fatto nulla per riceverne lo
812 stato di terminazione, i tre processi figli sono ancora presenti pur essendosi
813 conclusi, con lo stato di \index{zombie} \textit{zombie} e l'indicazione che
814 sono stati terminati.
815
816 La possibilità di avere degli \index{zombie} \textit{zombie} deve essere
817 tenuta sempre presente quando si scrive un programma che deve essere mantenuto
818 in esecuzione a lungo e creare molti figli. In questo caso si deve sempre
819 avere cura di far leggere l'eventuale stato di uscita di tutti i figli (in
820 genere questo si fa attraverso un apposito \textit{signal handler}, che chiama
821 la funzione \func{wait}, vedi sez.~\ref{sec:sig_sigchld} e
822 sez.~\ref{sec:proc_wait}).  Questa operazione è necessaria perché anche se gli
823 \index{zombie} \textit{zombie} non consumano risorse di memoria o processore,
824 occupano comunque una voce nella tabella dei processi, che a lungo andare
825 potrebbe esaurirsi.
826
827 Si noti che quando un processo adottato da \cmd{init} termina, esso non
828 diviene uno \index{zombie} \textit{zombie}; questo perché una delle funzioni
829 di \cmd{init} è appunto quella di chiamare la funzione \func{wait} per i
830 processi cui fa da padre, completandone la terminazione. Questo è quanto
831 avviene anche quando, come nel caso del precedente esempio con \cmd{forktest},
832 il padre termina con dei figli in stato di \index{zombie} \textit{zombie}:
833 alla sua terminazione infatti tutti i suoi figli (compresi gli \index{zombie}
834 \textit{zombie}) verranno adottati da \cmd{init}, il quale provvederà a
835 completarne la terminazione.
836
837 Si tenga presente infine che siccome gli \index{zombie} \textit{zombie} sono
838 processi già usciti, non c'è modo di eliminarli con il comando \cmd{kill};
839 l'unica possibilità di cancellarli dalla tabella dei processi è quella di
840 terminare il processo che li ha generati, in modo che \cmd{init} possa
841 adottarli e provvedere a concluderne la terminazione.
842
843
844 \subsection{La funzione \func{waitpid} e le funzioni di ricezione degli stati
845   di uscita}
846 \label{sec:proc_wait}
847
848 Uno degli usi più comuni delle capacità multitasking di un sistema unix-like
849 consiste nella creazione di programmi di tipo server, in cui un processo
850 principale attende le richieste che vengono poi soddisfatte da una serie di
851 processi figli. Si è già sottolineato al paragrafo precedente come in questo
852 caso diventi necessario gestire esplicitamente la conclusione dei figli onde
853 evitare di riempire di \index{zombie} \textit{zombie} la tabella dei processi;
854 le funzioni deputate a questo compito sono principalmente due, \funcd{wait} e
855 \func{waitpid}. La prima, il cui prototipo è:
856 \begin{functions}
857 \headdecl{sys/types.h}
858 \headdecl{sys/wait.h}
859 \funcdecl{pid\_t wait(int *status)} 
860
861 Sospende il processo corrente finché un figlio non è uscito, o finché un
862 segnale termina il processo o chiama una funzione di gestione. 
863
864 \bodydesc{La funzione restituisce il \acr{pid} del figlio in caso di successo
865   e -1 in caso di errore; \var{errno} può assumere i valori:
866   \begin{errlist}
867   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
868   \end{errlist}}
869 \end{functions}
870 \noindent
871 è presente fin dalle prime versioni di Unix; la funzione ritorna non appena un
872 processo figlio termina. Se un figlio è già terminato la funzione ritorna
873 immediatamente, se più di un figlio è terminato occorre chiamare la funzione
874 più volte se si vuole recuperare lo stato di terminazione di tutti quanti.
875
876 Al ritorno della funzione lo stato di terminazione del figlio viene salvato
877 nella variabile puntata da \param{status} e tutte le risorse del kernel
878 relative al processo (vedi sez.~\ref{sec:proc_termination}) vengono rilasciate.
879 Nel caso un processo abbia più figli il valore di ritorno (il \acr{pid} del
880 figlio) permette di identificare qual è quello che è uscito.
881
882 Questa funzione ha il difetto di essere poco flessibile, in quanto ritorna
883 all'uscita di un qualunque processo figlio. Nelle occasioni in cui è
884 necessario attendere la conclusione di un processo specifico occorrerebbe
885 predisporre un meccanismo che tenga conto dei processi già terminati, e
886 provvedere a ripetere la chiamata alla funzione nel caso il processo cercato
887 sia ancora attivo.
888
889 Per questo motivo lo standard POSIX.1 ha introdotto la funzione
890 \funcd{waitpid} che effettua lo stesso servizio, ma dispone di una serie di
891 funzionalità più ampie, legate anche al controllo di sessione (si veda
892 sez.~\ref{sec:sess_job_control}).  Dato che è possibile ottenere lo stesso
893 comportamento di \func{wait}\footnote{in effetti il codice
894   \code{wait(\&status)} è del tutto equivalente a \code{waitpid(WAIT\_ANY,
895     \&status, 0)}.} si consiglia di utilizzare sempre questa funzione, il cui
896 prototipo è:
897 \begin{functions}
898 \headdecl{sys/types.h}
899 \headdecl{sys/wait.h}
900 \funcdecl{pid\_t waitpid(pid\_t pid, int *status, int options)} 
901 Attende la conclusione di un processo figlio.
902
903 \bodydesc{La funzione restituisce il \acr{pid} del processo che è uscito, 0 se
904   è stata specificata l'opzione \const{WNOHANG} e il processo non è uscito e
905   -1 per un errore, nel qual caso \var{errno} assumerà i valori:
906   \begin{errlist}
907   \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
908     la funzione è stata interrotta da un segnale.
909   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
910     non è figlio del processo chiamante.
911   \item[\errcode{EINVAL}] si è specificato un valore non valido per
912     l'argomento \param{options}.
913   \end{errlist}}
914 \end{functions}
915
916 La prima differenza fra le due funzioni è che con \func{waitpid} si può
917 specificare in maniera flessibile quale processo attendere, sulla base del
918 valore fornito dall'argomento \param{pid}, questo può assumere diversi valori,
919 secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}, dove si
920 sono riportate anche le costanti definite per indicare alcuni di essi.
921
922 \begin{table}[!htb]
923   \centering
924   \footnotesize
925   \begin{tabular}[c]{|c|c|p{8cm}|}
926     \hline
927     \textbf{Valore} & \textbf{Costante} &\textbf{Significato}\\
928     \hline
929     \hline
930     $<-1$& --               & Attende per un figlio il cui
931                               \itindex{process~group} \textit{process group}
932                               (vedi sez.~\ref{sec:sess_proc_group}) è uguale
933                               al valore assoluto di \param{pid}. \\ 
934     $-1$&\const{WAIT\_ANY}  & Attende per un figlio qualsiasi, usata in
935                               questa maniera senza specificare nessuna opzione
936                               è equivalente a \func{wait}.\\ 
937     $ 0$&\const{WAIT\_MYPGRP}&Attende per un figlio il cui
938                               \itindex{process~group} \textit{process group}
939                               (vedi sez.~\ref{sec:sess_proc_group}) è
940                               uguale a quello del processo chiamante. \\ 
941     $>0$& --                & Attende per un figlio il cui \acr{pid} è uguale
942                               al valore di \param{pid}.\\
943     \hline
944   \end{tabular}
945   \caption{Significato dei valori dell'argomento \param{pid} della funzione
946     \func{waitpid}.}
947   \label{tab:proc_waidpid_pid}
948 \end{table}
949
950 Il comportamento di \func{waitpid} può inoltre essere modificato passando alla
951 funzione delle opportune opzioni tramite l'argomento \param{options}; questo
952 deve essere specificato come maschera binaria dei flag riportati in
953 tab.~\ref{tab:proc_waitpid_options},\footnote{oltre a queste in Linux sono
954   previste del altre opzioni non standard, relative al comportamento con i
955   \itindex{thread} \textit{thread}, che riprenderemo in
956   sez.~\ref{sec:thread_xxx}.} che possono essere combinati fra loro con un OR
957 aritmetico.
958
959 L'uso dell'opzione \const{WNOHANG} consente di prevenire il blocco della
960 funzione qualora nessun figlio sia uscito (o non si siano verificate le altre
961 condizioni per l'uscita della funzione); in tal caso la funzione ritornerà un
962 valore nullo anziché positivo.\footnote{anche in questo caso un valore
963   positivo indicherà il \acr{pid} del processo di cui si è ricevuto lo stato
964   ed un valore negativo un errore.}
965
966 \begin{table}[!htb]
967   \centering
968   \footnotesize
969   \begin{tabular}[c]{|l|p{8cm}|}
970     \hline
971     \textbf{Macro} & \textbf{Descrizione}\\
972     \hline
973     \hline
974     \const{WNOHANG}   & La funzione ritorna immediatamente anche se non è
975                         terminato nessun processo figlio. \\
976     \const{WUNTRACED} & Ritorna anche se un processo figlio è stato fermato. \\
977     \const{WCONTINUED}& Ritorna anche quando un processo figlio che era stato
978                         fermato ha ripreso l'esecuzione.\footnotemark \\
979     \hline
980   \end{tabular}
981   \caption{Costanti che identificano i bit dell'argomento \param{options}
982     della funzione \func{waitpid}.} 
983   \label{tab:proc_waitpid_options}
984 \end{table}
985
986 \footnotetext{disponibile solo a partire dal kernel 2.6.10.}
987
988 Le altre due opzioni \const{WUNTRACED} e \const{WCONTINUED} consentono
989 rispettivamente di tracciare non la terminazione di un processo, ma il fatto
990 che esso sia stato fermato, o fatto ripartire, e sono utilizzate per la
991 gestione del controllo di sessione (vedi sez.~\ref{sec:sess_job_control}).
992
993 Nel caso di \const{WUNTRACED} la funzione ritorna, restituendone il \acr{pid},
994 quando un processo figlio entra nello stato \textit{stopped}\footnote{in
995   realtà viene notificato soltanto il caso in cui il processo è stato fermato
996   da un segnale di stop (vedi sez.~\ref{sec:sess_ctrl_term}), e non quello in
997   cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace} (vedi
998   sez.~\ref{sec:xxx_ptrace}).} (vedi tab.~\ref{tab:proc_proc_states}), mentre
999 con \const{WCONTINUED} la funzione ritorna quando un processo in stato
1000 \textit{stopped} riprende l'esecuzione per la ricezione del segnale
1001 \const{SIGCONT} (l'uso di questi segnali per il controllo di sessione è
1002 dettagliato in sez.~\ref{sec:sess_ctrl_term}). 
1003
1004 La terminazione di un processo figlio (così come gli altri eventi osservabili
1005 con \func{waitpid}) è chiaramente un evento asincrono rispetto all'esecuzione
1006 di un programma e può avvenire in un qualunque momento. Per questo motivo,
1007 come accennato nella sezione precedente, una delle azioni prese dal kernel
1008 alla conclusione di un processo è quella di mandare un segnale di
1009 \const{SIGCHLD} al padre. L'azione predefinita (si veda
1010 sez.~\ref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
1011 generazione costituisce il meccanismo di comunicazione asincrona con cui il
1012 kernel avverte il processo padre che uno dei suoi figli è terminato.
1013
1014 Il comportamento delle funzioni è però cambiato nel passaggio dal kernel 2.4
1015 al kernel 2.6, quest'ultimo infatti si è adeguato alle prescrizioni dello
1016 standard POSIX.1-2001,\footnote{una revisione del 2001 dello standard POSIX.1
1017   che ha aggiunto dei requisiti e delle nuove funzioni, come \func{waitid}.}
1018 e come da esso richiesto se \const{SIGCHLD} viene ignorato, o se si imposta il
1019 flag di \const{SA\_NOCLDSTOP} nella ricezione dello stesso (si veda
1020 sez.~\ref{sec:sig_sigaction}) i processi figli che terminano non diventano
1021 \textit{zombie} e sia \func{wait} che \func{waitpid} si bloccano fintanto che
1022 tutti i processi figli non sono terminati, dopo di che falliscono con un
1023 errore di \errcode{ENOCHLD}.\footnote{questo è anche il motivo per cui le
1024   opzioni \const{WUNTRACED} e \const{WCONTINUED} sono utilizzabili soltanto
1025   qualora non si sia impostato il flag di \const{SA\_NOCLDSTOP} per il segnale
1026   \const{SIGCHLD}.}
1027
1028 Con i kernel della serie 2.4 e tutti i kernel delle serie precedenti entrambe
1029 le funzioni di attesa ignorano questa prescrizione\footnote{lo standard POSIX.1
1030   originale infatti lascia indefinito il comportamento di queste funzioni
1031   quando \const{SIGCHLD} viene ignorato.} e si comportano sempre nello stesso
1032 modo, indipendentemente dal fatto \const{SIGCHLD} sia ignorato o meno:
1033 attendono la terminazione di un processo figlio e ritornano il relativo
1034 \acr{pid} e lo stato di terminazione nell'argomento \param{status}.
1035
1036 In generale in un programma non si vuole essere forzati ad attendere la
1037 conclusione di un processo figlio per proseguire l'esecuzione, specie se tutto
1038 questo serve solo per leggerne lo stato di chiusura (ed evitare eventualmente
1039 la presenza di \index{zombie} \textit{zombie}). Per questo la modalità più
1040 comune di chiamare queste funzioni è quella di utilizzarle all'interno di un
1041 \textit{signal handler} (vedremo un esempio di come gestire \const{SIGCHLD}
1042 con i segnali in sez.~\ref{sec:sig_example}). In questo caso infatti, dato che
1043 il segnale è generato dalla terminazione di un figlio, avremo la certezza che
1044 la chiamata a \func{waitpid} non si bloccherà.
1045
1046 Come accennato sia \func{wait} che \func{waitpid} restituiscono lo stato di
1047 terminazione del processo tramite il puntatore \param{status} (se non
1048 interessa memorizzare lo stato si può passare un puntatore nullo). Il valore
1049 restituito da entrambe le funzioni dipende dall'implementazione, ma
1050 tradizionalmente alcuni bit (in genere 8) sono riservati per memorizzare lo
1051 stato di uscita, e altri per indicare il segnale che ha causato la
1052 terminazione (in caso di conclusione anomala), uno per indicare se è stato
1053 generato un \itindex{core~dump} \textit{core dump}, ecc.\footnote{le
1054   definizioni esatte si possono trovare in \file{<bits/waitstatus.h>} ma
1055   questo file non deve mai essere usato direttamente, esso viene incluso
1056   attraverso \file{<sys/wait.h>}.}
1057
1058 Lo standard POSIX.1 definisce una serie di macro di preprocessore da usare per
1059 analizzare lo stato di uscita. Esse sono definite sempre in
1060 \file{<sys/wait.h>} ed elencate in tab.~\ref{tab:proc_status_macro} (si tenga
1061 presente che queste macro prendono come parametro la variabile di tipo
1062 \ctyp{int} puntata da \param{status}).
1063
1064 \begin{table}[!htb]
1065   \centering
1066   \footnotesize
1067   \begin{tabular}[c]{|l|p{10cm}|}
1068     \hline
1069     \textbf{Macro} & \textbf{Descrizione}\\
1070     \hline
1071     \hline
1072     \macro{WIFEXITED(s)}   & Condizione vera (valore non nullo) per un processo
1073                              figlio che sia terminato normalmente. \\
1074     \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello
1075                              stato di uscita del processo (passato attraverso
1076                              \func{\_exit}, \func{exit} o come valore di
1077                              ritorno di \func{main}); può essere valutata solo
1078                              se \val{WIFEXITED} ha restituito un valore non
1079                              nullo.\\ 
1080     \macro{WIFSIGNALED(s)} & Condizione vera se il processo figlio è terminato
1081                              in maniera anomala a causa di un segnale che non
1082                              è stato catturato (vedi
1083                              sez.~\ref{sec:sig_notification}).\\ 
1084     \macro{WTERMSIG(s)}    & Restituisce il numero del segnale che ha causato
1085                              la terminazione anomala del processo; può essere
1086                              valutata solo se \val{WIFSIGNALED} ha restituito
1087                              un valore non nullo.\\ 
1088     \macro{WCOREDUMP(s)}   & Vera se il processo terminato ha generato un
1089                              file di \itindex{core~dump} \textit{core
1090                                dump}; può essere valutata solo se
1091                              \val{WIFSIGNALED} ha restituito un valore non
1092                              nullo.\footnotemark \\
1093     \macro{WIFSTOPPED(s)}  & Vera se il processo che ha causato il ritorno di
1094                              \func{waitpid} è bloccato; l'uso è possibile solo
1095                              con \func{waitpid} avendo specificato l'opzione
1096                              \const{WUNTRACED}.\\
1097     \macro{WSTOPSIG(s)}    & Restituisce il numero del segnale che ha bloccato
1098                              il processo; può essere valutata solo se
1099                              \val{WIFSTOPPED} ha restituito un valore non
1100                              nullo. \\ 
1101     \macro{WIFCONTINUED(s)}& Vera se il processo che ha causato il ritorno è
1102                              stato riavviato da un
1103                              \const{SIGCONT}.\footnotemark  \\ 
1104     \hline
1105   \end{tabular}
1106   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
1107     verificare lo stato di terminazione \var{s} di un processo.}
1108   \label{tab:proc_status_macro}
1109 \end{table}
1110
1111 \footnotetext[18]{questa macro non è definita dallo standard POSIX.1-2001, ma è
1112   presente come estensione sia in Linux che in altri Unix, deve essere
1113   pertanto utilizzata con attenzione (ad esempio è il caso di usarla in un
1114   blocco \texttt{\#ifdef WCOREDUMP ... \#endif}.}
1115
1116 \footnotetext{è presente solo a partire dal kernel 2.6.10.}
1117
1118 Si tenga conto che nel caso di conclusione anomala il valore restituito da
1119 \val{WTERMSIG} può essere confrontato con le costanti definite in
1120 \file{signal.h} ed elencate in tab.~\ref{tab:sig_signal_list}, e stampato
1121 usando le apposite funzioni trattate in sez.~\ref{sec:sig_strsignal}.
1122
1123 A partire dal kernel 2.6.9, sempre in conformità allo standard POSIX.1-2001, è
1124 stata introdotta una nuova funzione di attesa che consente di avere un
1125 controllo molto più preciso sui possibili cambiamenti di stato dei processi
1126 figli e più dettagli sullo stato di uscita; la funzione è \funcd{waitid} ed il
1127 suo prototipo è:
1128 \begin{functions}
1129   \headdecl{sys/types.h} 
1130
1131   \headdecl{sys/wait.h}
1132   
1133   \funcdecl{int waitid(idtype\_t idtype, id\_t id, siginfo\_t *infop, int
1134     options)}    
1135
1136   Attende la conclusione di un processo figlio.
1137
1138   \bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore,
1139     nel qual caso \var{errno} assumerà i valori:
1140   \begin{errlist}
1141   \item[\errcode{EINTR}] se non è stata specificata l'opzione \const{WNOHANG} e
1142     la funzione è stata interrotta da un segnale.
1143   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
1144     non è figlio del processo chiamante.
1145   \item[\errcode{EINVAL}] si è specificato un valore non valido per
1146     l'argomento \param{options}.
1147   \end{errlist}}
1148 \end{functions}
1149
1150 La funzione prevede che si specifichi quali processi si intendono osservare
1151 usando i due argomenti \param{idtype} ed \param{id}; il primo indica se si
1152 vuole porsi in attesa su un singolo processo, un gruppo di processi o un
1153 processo qualsiasi, e deve essere specificato secondo uno dei valori di
1154 tab.~\ref{tab:proc_waitid_idtype}; il secondo indica, a seconda del valore del
1155 primo, quale processo o quale gruppo di processi selezionare.
1156
1157
1158 \begin{table}[!htb]
1159   \centering
1160   \footnotesize
1161   \begin{tabular}[c]{|l|p{8cm}|}
1162     \hline
1163     \textbf{Macro} & \textbf{Descrizione}\\
1164     \hline
1165     \hline
1166     \const{P\_PID} & Indica la richiesta di attendere per un processo figlio
1167                      il cui \acr{pid} corrisponda al valore dell'argomento
1168                      \param{id}.\\
1169     \const{P\_PGID}& Indica la richiesta di attendere per un processo figlio
1170                      appartenente al \textit{process group} (vedi
1171                      sez.~\ref{sec:sess_proc_group}) il cui \acr{pgid}
1172                      corrisponda al valore dell'argomento \param{id}.\\
1173     \const{P\_ALL} & Indica la richiesta di attendere per un processo figlio
1174                      generico, il valore dell'argomento \param{id} viene
1175                      ignorato.\\
1176     \hline
1177   \end{tabular}
1178   \caption{Costanti per i valori dell'argomento \param{idtype} della funzione
1179     \func{waitid}.}
1180   \label{tab:proc_waitid_idtype}
1181 \end{table}
1182
1183 Come per \func{waitpid} anche il comportamento di \func{waitid} viene
1184 controllato dall'argomento \param{options}, da specificare come maschera
1185 binaria dei valori riportati in tab.~\ref{tab:proc_waitid_options}. Benché
1186 alcuni di questi siano identici come significato ed effetto ai precedenti di
1187 tab.~\ref{tab:proc_waitpid_options}, ci sono delle differenze significative:
1188 in questo caso si dovrà specificare esplicitamente l'attesa della terminazione
1189 di un processo impostando l'opzione \const{WEXITED}, mentre il precedente
1190 \const{WUNTRACED} è sostituito da \const{WSTOPPED}.  Infine è stata aggiunta
1191 l'opzione \const{WNOWAIT} che consente una lettura dello stato mantenendo il
1192 processo in attesa di ricezione, così che una successiva chiamata possa di
1193 nuovo riceverne lo stato.
1194
1195 \begin{table}[!htb]
1196   \centering
1197   \footnotesize
1198   \begin{tabular}[c]{|l|p{8cm}|}
1199     \hline
1200     \textbf{Macro} & \textbf{Descrizione}\\
1201     \hline
1202     \hline
1203     \const{WEXITED}   & Ritorna quando un processo figlio è terminato.\\
1204     \const{WNOHANG}   & Ritorna immediatamente anche se non c'è niente da
1205                         notificare.\\ 
1206     \const{WSTOPPED} &  Ritorna quando un processo figlio è stato fermato.\\
1207     \const{WCONTINUED}& Ritorna quando un processo figlio che era stato
1208                         fermato ha ripreso l'esecuzione.\\
1209     \const{WNOWAIT}   & Lascia il processo ancora in attesa di ricezione, così
1210                         che una successiva chiamata possa di nuovo riceverne
1211                         lo stato.\\
1212     \hline
1213   \end{tabular}
1214   \caption{Costanti che identificano i bit dell'argomento \param{options}
1215     della funzione \func{waitid}.} 
1216   \label{tab:proc_waitid_options}
1217 \end{table}
1218
1219 La funzione \func{waitid} restituisce un valore nullo in caso di successo, e
1220 $-1$ in caso di errore; viene restituito un valore nullo anche se è stata
1221 specificata l'opzione \const{WNOHANG} e la funzione è ritornata immediatamente
1222 senza che nessun figlio sia terminato. Pertanto per verificare il motivo del
1223 ritorno della funzione occorre analizzare le informazioni che essa
1224 restituisce; queste, al contrario delle precedenti \func{wait} e
1225 \func{waitpid} che usavano un semplice valore numerico, sono ritornate in una
1226 struttura di tipo \struct{siginfo\_t} (vedi fig.~\ref{fig:sig_siginfo_t})
1227 all'indirizzo puntato dall'argomento \param{infop}.
1228
1229 Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
1230 suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
1231 basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
1232 campi:
1233 \begin{basedescript}{\desclabelwidth{2.0cm}}
1234 \item[\var{si\_pid}] con il \acr{pid} del figlio.
1235 \item[\var{si\_uid}] con l'user-ID reale (vedi sez.~\ref{sec:proc_perms}) del
1236   figlio.
1237 \item[\var{si\_signo}] con \const{SIGCHLD}.
1238 \item[\var{si\_status}] con lo stato di uscita del figlio o con il segnale che
1239   lo ha terminato, fermato o riavviato.
1240 \item[\var{si\_code}] con uno fra \const{CLD\_EXITED}, \const{CLD\_KILLED},
1241   \const{CLD\_STOPPED}, \const{CLD\_CONTINUED}, \const{CLD\_TRAPPED} e
1242   \const{CLD\_DUMPED} a indicare la ragione del ritorno della funzione,
1243   rispettivamente: uscita normale, terminazione da segnale, processo fermato,
1244   processo riavviato, processo terminato in \textit{core dump}.
1245 \end{basedescript}
1246
1247 %TODO mettere riferimento alla tabella giusta (vedere man credentials e man
1248 %     waitid)
1249
1250 Infine Linux, seguendo un'estensione di BSD, supporta altre due funzioni per
1251 la lettura dello stato di terminazione di un processo, analoghe alle
1252 precedenti ma che prevedono un ulteriore argomento attraverso il quale il
1253 kernel può restituire al padre informazioni sulle risorse (vedi
1254 sez.~\ref{sec:sys_res_limits}) usate dal processo terminato e dai vari figli.
1255 Le due funzioni sono \funcd{wait3} e \funcd{wait4}, che diventano accessibili
1256 definendo la macro \macro{\_USE\_BSD}; i loro prototipi sono:
1257 \begin{functions}
1258   \headdecl{sys/times.h} \headdecl{sys/types.h} \headdecl{sys/wait.h}
1259   \headdecl{sys/resource.h} 
1260   
1261   \funcdecl{pid\_t wait4(pid\_t pid, int *status, int options, struct rusage
1262     *rusage)}   
1263   È identica a \func{waitpid} sia per comportamento che per i valori degli
1264   argomenti, ma restituisce in \param{rusage} un sommario delle risorse usate
1265   dal processo.
1266
1267   \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)}
1268   Prima versione, equivalente a \code{wait4(-1, \&status, opt, rusage)} è
1269   ormai deprecata in favore di \func{wait4}.
1270 \end{functions}
1271 \noindent 
1272 la struttura \struct{rusage} è definita in \file{sys/resource.h}, e viene
1273 utilizzata anche dalla funzione \func{getrusage} (vedi
1274 sez.~\ref{sec:sys_resource_use}) per ottenere le risorse di sistema usate da un
1275 processo; la sua definizione è riportata in fig.~\ref{fig:sys_rusage_struct}.
1276
1277 \subsection{La funzione \func{exec} e le funzioni di esecuzione dei programmi}
1278 \label{sec:proc_exec}
1279
1280 Abbiamo già detto che una delle modalità principali con cui si utilizzano i
1281 processi in Unix è quella di usarli per lanciare nuovi programmi: questo viene
1282 fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un
1283 processo chiama una di queste funzioni esso viene completamente sostituito dal
1284 nuovo programma; il \acr{pid} del processo non cambia, dato che non viene
1285 creato un nuovo processo, la funzione semplicemente rimpiazza lo
1286 \itindex{stack} \textit{stack}, lo \itindex{heap} \textit{heap}, i
1287 \index{segmento!dati} dati ed il \index{segmento!testo} testo del processo
1288 corrente con un nuovo programma letto da disco.
1289
1290 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
1291 famiglia di funzioni) che possono essere usate per questo compito, in realtà
1292 (come mostrato in fig.~\ref{fig:proc_exec_relat}), sono tutte un front-end a
1293 \funcd{execve}. Il prototipo di quest'ultima è:
1294 \begin{prototype}{unistd.h}
1295 {int execve(const char *filename, char *const argv[], char *const envp[])}
1296   Esegue il programma contenuto nel file \param{filename}.
1297   
1298   \bodydesc{La funzione ritorna solo in caso di errore, restituendo -1; nel
1299     qual caso \var{errno} può assumere i valori:
1300   \begin{errlist}
1301   \item[\errcode{EACCES}] il file non è eseguibile, oppure il filesystem è
1302     montato in \cmd{noexec}, oppure non è un file regolare o un interprete.
1303   \item[\errcode{EPERM}] il file ha i bit \itindex{suid~bit} \acr{suid} o
1304     \itindex{sgid~bit} \acr{sgid}, l'utente non è root, il processo viene
1305     tracciato, o il filesystem è montato con l'opzione \cmd{nosuid}.
1306   \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
1307     riconosciuto come tale, o compilato per un'altra architettura.
1308   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
1309     necessari per eseguirlo non esistono.
1310   \item[\errcode{ETXTBSY}] l'eseguibile è aperto in scrittura da uno o più
1311     processi. 
1312   \item[\errcode{EINVAL}] l'eseguibile ELF ha più di un segmento
1313     \const{PF\_INTERP}, cioè chiede di essere eseguito da più di un
1314     interprete.
1315   \item[\errcode{ELIBBAD}] un interprete ELF non è in un formato
1316     riconoscibile.
1317   \item[\errcode{E2BIG}] la lista degli argomenti è troppo grande.
1318   \end{errlist}
1319   ed inoltre anche \errval{EFAULT}, \errval{ENOMEM}, \errval{EIO},
1320   \errval{ENAMETOOLONG}, \errval{ELOOP}, \errval{ENOTDIR}, \errval{ENFILE},
1321   \errval{EMFILE}.}
1322 \end{prototype}
1323
1324 La funzione \func{exec} esegue il file o lo script indicato da
1325 \param{filename}, passandogli la lista di argomenti indicata da \param{argv}
1326 e come ambiente la lista di stringhe indicata da \param{envp}; entrambe le
1327 liste devono essere terminate da un puntatore nullo. I vettori degli
1328 argomenti e dell'ambiente possono essere acceduti dal nuovo programma
1329 quando la sua funzione \func{main} è dichiarata nella forma
1330 \code{main(int argc, char *argv[], char *envp[])}.
1331
1332 Le altre funzioni della famiglia servono per fornire all'utente una serie di
1333 possibili diverse interfacce per la creazione di un nuovo processo. I loro
1334 prototipi sono:
1335 \begin{functions}
1336 \headdecl{unistd.h}
1337 \funcdecl{int execl(const char *path, const char *arg, ...)} 
1338 \funcdecl{int execv(const char *path, char *const argv[])} 
1339 \funcdecl{int execle(const char *path, const char *arg, ..., char 
1340 * const envp[])} 
1341 \funcdecl{int execlp(const char *file, const char *arg, ...)} 
1342 \funcdecl{int execvp(const char *file, char *const argv[])} 
1343
1344 Sostituiscono l'immagine corrente del processo con quella indicata nel primo
1345 argomento. Gli argomenti successivi consentono di specificare gli argomenti a
1346 linea di comando e l'ambiente ricevuti dal nuovo processo.
1347
1348 \bodydesc{Queste funzioni ritornano solo in caso di errore, restituendo -1;
1349   nel qual caso \var{errno} assumerà i valori visti in precedenza per
1350   \func{execve}.}
1351 \end{functions}
1352
1353 Per capire meglio le differenze fra le funzioni della famiglia si può fare
1354 riferimento allo specchietto riportato in tab.~\ref{tab:proc_exec_scheme}. La
1355 prima differenza riguarda le modalità di passaggio dei valori che poi andranno
1356 a costituire gli argomenti a linea di comando (cioè i valori di
1357 \param{argv} e \param{argc} visti dalla funzione \func{main} del programma
1358 chiamato).
1359
1360 Queste modalità sono due e sono riassunte dagli mnemonici \code{v} e \code{l}
1361 che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso
1362 gli argomenti sono passati tramite il vettore di puntatori \var{argv[]} a
1363 stringhe terminate con zero che costituiranno gli argomenti a riga di comando,
1364 questo vettore \emph{deve} essere terminato da un puntatore nullo.
1365
1366 Nel secondo caso le stringhe degli argomenti sono passate alla funzione come
1367 lista di puntatori, nella forma:
1368 \includecodesnip{listati/char_list.c}
1369 che deve essere terminata da un puntatore nullo.  In entrambi i casi vale la
1370 convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato
1371 per indicare il nome del file che contiene il programma che verrà eseguito.
1372
1373 \begin{table}[!htb]
1374   \footnotesize
1375   \centering
1376   \begin{tabular}[c]{|l|c|c|c||c|c|c|}
1377     \hline
1378     \multicolumn{1}{|c|}{\textbf{Caratteristiche}} & 
1379     \multicolumn{6}{|c|}{\textbf{Funzioni}} \\
1380     \hline
1381     &\func{execl}\texttt{ }&\func{execlp}&\func{execle}
1382     &\func{execv}\texttt{ }& \func{execvp}& \func{execve} \\
1383     \hline
1384     \hline
1385     argomenti a lista    &$\bullet$&$\bullet$&$\bullet$&&& \\
1386     argomenti a vettore  &&&&$\bullet$&$\bullet$&$\bullet$\\
1387     \hline
1388     filename completo     &$\bullet$&&$\bullet$&$\bullet$&&$\bullet$\\ 
1389     ricerca su \var{PATH} &&$\bullet$&&&$\bullet$& \\
1390     \hline
1391     ambiente a vettore   &&&$\bullet$&&&$\bullet$ \\
1392     uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\
1393     \hline
1394   \end{tabular}
1395   \caption{Confronto delle caratteristiche delle varie funzioni della 
1396     famiglia \func{exec}.}
1397   \label{tab:proc_exec_scheme}
1398 \end{table}
1399
1400 La seconda differenza fra le funzioni riguarda le modalità con cui si
1401 specifica il programma che si vuole eseguire. Con lo mnemonico \code{p} si
1402 indicano le due funzioni che replicano il comportamento della shell nello
1403 specificare il comando da eseguire; quando l'argomento \param{file} non
1404 contiene una ``\texttt{/}'' esso viene considerato come un nome di programma,
1405 e viene eseguita automaticamente una ricerca fra i file presenti nella lista
1406 di directory specificate dalla variabile di ambiente \var{PATH}. Il file che
1407 viene posto in esecuzione è il primo che viene trovato. Se si ha un errore
1408 relativo a permessi di accesso insufficienti (cioè l'esecuzione della
1409 sottostante \func{execve} ritorna un \errcode{EACCES}), la ricerca viene
1410 proseguita nelle eventuali ulteriori directory indicate in \var{PATH}; solo se
1411 non viene trovato nessun altro file viene finalmente restituito
1412 \errcode{EACCES}.
1413
1414 Le altre quattro funzioni si limitano invece a cercare di eseguire il file
1415 indicato dall'argomento \param{path}, che viene interpretato come il
1416 \itindex{pathname} \textit{pathname} del programma.
1417
1418 \begin{figure}[htb]
1419   \centering
1420   \includegraphics[width=15cm]{img/exec_rel}
1421   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
1422   \label{fig:proc_exec_relat}
1423 \end{figure}
1424
1425 La terza differenza è come viene passata la lista delle variabili di ambiente.
1426 Con lo mnemonico \texttt{e} vengono indicate quelle funzioni che necessitano
1427 di un vettore di parametri \var{envp[]} analogo a quello usato per gli
1428 argomenti a riga di comando (terminato quindi da un \val{NULL}), le altre
1429 usano il valore della variabile \var{environ} (vedi
1430 sez.~\ref{sec:proc_environ}) del processo di partenza per costruire
1431 l'ambiente.
1432
1433 Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da
1434 \func{exec} assume anche una serie di altre proprietà del processo chiamante;
1435 la lista completa è la seguente:
1436 \begin{itemize}
1437 \item il \textit{process id} (\acr{pid}) ed il \textit{parent process id}
1438   (\acr{ppid});
1439 \item l'\textsl{user-ID reale}, il \textit{group-ID reale} ed i
1440   \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id});
1441 \item il \textit{session ID} (\acr{sid}) ed il \itindex{process~group}
1442   \textit{process group ID} (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
1443 \item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term});
1444 \item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort});
1445 \item la directory radice e la directory di lavoro corrente (vedi
1446   sez.~\ref{sec:file_work_dir});
1447 \item la maschera di creazione dei file \itindex{umask} (\textit{umask}, vedi
1448   sez.~\ref{sec:file_perm_management}) ed i \textit{lock} sui file (vedi
1449   sez.~\ref{sec:file_locking});
1450 \item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda
1451   sez.~\ref{sec:sig_sigmask});
1452 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
1453 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
1454   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times}).
1455 \end{itemize}
1456
1457 Inoltre i segnali che sono stati impostati per essere ignorati nel processo
1458 chiamante mantengono la stessa impostazione pure nel nuovo programma, tutti
1459 gli altri segnali vengono impostati alla loro azione predefinita. Un caso
1460 speciale è il segnale \const{SIGCHLD} che, quando impostato a
1461 \const{SIG\_IGN}, può anche non essere reimpostato a \const{SIG\_DFL} (si veda
1462 sez.~\ref{sec:sig_gen_beha}).
1463
1464 La gestione dei file aperti dipende dal valore che ha il flag di
1465 \itindex{close-on-exec} \textit{close-on-exec} (vedi anche
1466 sez.~\ref{sec:file_fcntl}) per ciascun file descriptor. I file per cui è
1467 impostato vengono chiusi, tutti gli altri file restano aperti. Questo
1468 significa che il comportamento predefinito è che i file restano aperti
1469 attraverso una \func{exec}, a meno di una chiamata esplicita a \func{fcntl}
1470 che imposti il suddetto flag.  Per le directory, lo standard POSIX.1 richiede
1471 che esse vengano chiuse attraverso una \func{exec}, in genere questo è fatto
1472 dalla funzione \func{opendir} (vedi sez.~\ref{sec:file_dir_read}) che effettua
1473 da sola l'impostazione del flag di \itindex{close-on-exec}
1474 \textit{close-on-exec} sulle directory che apre, in maniera trasparente
1475 all'utente.
1476
1477 Abbiamo detto che l'\textsl{user-ID reale} ed il \textsl{group-ID reale}
1478 restano gli stessi all'esecuzione di \func{exec}; normalmente vale lo stesso
1479 anche per l'\textsl{user-ID effettivo} ed il \textsl{group-ID effettivo} (il
1480 significato di questi identificatori è trattato in
1481 sez.~\ref{sec:proc_access_id}), tranne quando il file di cui viene chiesta
1482 l'esecuzione ha o il \itindex{suid~bit} \acr{suid} bit o lo \itindex{sgid~bit}
1483 \acr{sgid} bit impostato, in questo caso l'\textsl{user-ID effettivo} ed il
1484 \textsl{group-ID effettivo} vengono impostati rispettivamente all'utente o al
1485 gruppo cui il file appartiene (per i dettagli di questo comportamento si veda
1486 sez.~\ref{sec:proc_perms}).
1487
1488 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
1489 condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
1490 del programma per caricare le librerie necessarie ed effettuare il link
1491 dell'eseguibile.\footnote{il formato è ormai in completo disuso, per cui è
1492   molto probabile che non il relativo supporto non sia disponibile.} Se il
1493 programma è in formato ELF per caricare le librerie dinamiche viene usato
1494 l'interprete indicato nel segmento \const{PT\_INTERP} previsto dal formato
1495 stesso, in genere questo è \sysfile{/lib/ld-linux.so.1} per programmi
1496 collegati con le \acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi
1497 collegati con le \acr{glibc}.
1498
1499 Infine nel caso il file sia uno script esso deve iniziare con una linea nella
1500 forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete indicato
1501 deve essere un programma valido (binario, non un altro script) che verrà
1502 chiamato come se si fosse eseguito il comando \cmd{interpreter [argomenti]
1503   filename}.\footnote{si tenga presente che con Linux quanto viene scritto
1504   come \texttt{argomenti} viene passato all'interprete come un unico argomento
1505   con una unica stringa di lunghezza massima di 127 caratteri e se questa
1506   dimensione viene ecceduta la stringa viene troncata; altri Unix hanno
1507   dimensioni massime diverse, e diversi comportamenti, ad esempio FreeBSD
1508   esegue la scansione della riga e la divide nei vari argomenti e se è troppo
1509   lunga restituisce un errore di \const{ENAMETOOLONG}, una comparazione dei
1510   vari comportamenti si trova su
1511   \href{http://www.in-ulm.de/~mascheck/various/shebang/}
1512   {\textsf{http://www.in-ulm.de/\tild mascheck/various/shebang/}}.}
1513
1514 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
1515 basata la gestione dei processi in Unix: con \func{fork} si crea un nuovo
1516 processo, con \func{exec} si lancia un nuovo programma, con \func{exit} e
1517 \func{wait} si effettua e verifica la conclusione dei processi. Tutte le
1518 altre funzioni sono ausiliarie e servono per la lettura e l'impostazione dei
1519 vari parametri connessi ai processi.
1520
1521
1522
1523 \section{Il controllo di accesso}
1524 \label{sec:proc_perms}
1525
1526 In questa sezione esamineremo le problematiche relative al controllo di
1527 accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
1528 usati, come questi possono essere modificati nella creazione e nel lancio di
1529 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
1530 problematiche connesse ad una gestione accorta dei privilegi.
1531
1532
1533 \subsection{Gli identificatori del controllo di accesso}
1534 \label{sec:proc_access_id}
1535
1536 Come accennato in sez.~\ref{sec:intro_multiuser} il modello base\footnote{in
1537   realtà già esistono estensioni di questo modello base, che lo rendono più
1538   flessibile e controllabile, come le \itindex{capabilities}
1539   \textit{capabilities} illustrate in sez.~\ref{sec:proc_capabilities}, le ACL
1540   per i file (vedi sez.~\ref{sec:file_ACL}) o il
1541   \itindex{Mandatory~Access~Control~(MAC)} \textit{Mandatory Access Control}
1542   di \index{SELinux} SELinux; inoltre basandosi sul lavoro effettuato con
1543   SELinux, a partire dal kernel 2.5.x, è iniziato lo sviluppo di una
1544   infrastruttura di sicurezza, i \itindex{Linux~Security~Modules}
1545   \textit{Linux Security Modules}, o LSM, in grado di fornire diversi agganci
1546   a livello del kernel per modularizzare tutti i possibili controlli di
1547   accesso.} di sicurezza di un sistema unix-like è fondato sui concetti di
1548 utente e gruppo, e sulla separazione fra l'amministratore (\textsl{root},
1549 detto spesso anche \textit{superuser}) che non è sottoposto a restrizioni, ed
1550 il resto degli utenti, per i quali invece vengono effettuati i vari controlli
1551 di accesso.
1552
1553 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
1554 identificatori univoci, lo user-ID ed il group-ID; questi servono al kernel per
1555 identificare uno specifico utente o un gruppo di utenti, per poi poter
1556 controllare che essi siano autorizzati a compiere le operazioni richieste.  Ad
1557 esempio in sez.~\ref{sec:file_access_control} vedremo come ad ogni file vengano
1558 associati un utente ed un gruppo (i suoi \textsl{proprietari}, indicati
1559 appunto tramite un \acr{uid} ed un \acr{gid}) che vengono controllati dal
1560 kernel nella gestione dei permessi di accesso.
1561
1562 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
1563 evidente che per poter implementare un controllo sulle operazioni occorre
1564 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
1565 anche a ciascun processo dovrà essere associato un utente e un gruppo.
1566
1567 Un semplice controllo di una corrispondenza fra identificativi non garantisce
1568 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
1569 disporre di privilegi diversi, o dover impersonare un altro utente per un
1570 limitato insieme di operazioni. Per questo motivo in generale tutti gli Unix
1571 prevedono che i processi abbiano almeno due gruppi di identificatori, chiamati
1572 rispettivamente \textit{real} ed \textit{effective} (cioè \textsl{reali} ed
1573 \textsl{effettivi}). Nel caso di Linux si aggiungono poi altri due gruppi, il
1574 \textit{saved} (\textsl{salvati}) ed il \textit{filesystem} (\textsl{di
1575   filesystem}), secondo la situazione illustrata in
1576 tab.~\ref{tab:proc_uid_gid}.
1577
1578 \begin{table}[htb]
1579   \footnotesize
1580   \centering
1581   \begin{tabular}[c]{|c|c|l|p{7.3cm}|}
1582     \hline
1583     \textbf{Suffisso} & \textbf{Gruppo} & \textbf{Denominazione} 
1584                                         & \textbf{Significato} \\ 
1585     \hline
1586     \hline
1587     \acr{uid}   & \textit{real} & \textsl{user-ID reale} 
1588                 & Indica l'utente che ha lanciato il programma.\\ 
1589     \acr{gid}   & '' &\textsl{group-ID reale} 
1590                 & Indica il gruppo principale dell'utente che ha lanciato 
1591                   il programma.\\ 
1592     \hline
1593     \acr{euid}  & \textit{effective} &\textsl{user-ID effettivo} 
1594                 & Indica l'utente usato nel controllo di accesso.\\ 
1595     \acr{egid}  & '' & \textsl{group-ID effettivo} 
1596                 & Indica il gruppo usato nel controllo di accesso.\\ 
1597     --          & -- & \textsl{group-ID supplementari} 
1598                 & Indicano gli ulteriori gruppi cui l'utente appartiene.\\ 
1599     \hline
1600     --          & \textit{saved} & \textsl{user-ID salvato} 
1601                 & È una copia dell'\acr{euid} iniziale.\\ 
1602     --          & '' & \textsl{group-ID salvato} 
1603                 & È una copia dell'\acr{egid} iniziale.\\ 
1604     \hline
1605     \acr{fsuid} & \textit{filesystem} &\textsl{user-ID di filesystem} 
1606                 & Indica l'utente effettivo per l'accesso al filesystem. \\ 
1607     \acr{fsgid} & '' & \textsl{group-ID di filesystem} 
1608                 & Indica il gruppo effettivo per l'accesso al filesystem.\\ 
1609     \hline
1610   \end{tabular}
1611   \caption{Identificatori di utente e gruppo associati a ciascun processo con
1612     indicazione dei suffissi usati dalle varie funzioni di manipolazione.}
1613   \label{tab:proc_uid_gid}
1614 \end{table}
1615
1616 Al primo gruppo appartengono l'\textsl{user-ID reale} ed il \textsl{group-ID
1617   reale}: questi vengono impostati al login ai valori corrispondenti
1618 all'utente con cui si accede al sistema (e relativo gruppo principale).
1619 Servono per l'identificazione dell'utente e normalmente non vengono mai
1620 cambiati. In realtà vedremo (in sez.~\ref{sec:proc_setuid}) che è possibile
1621 modificarli, ma solo ad un processo che abbia i privilegi di amministratore;
1622 questa possibilità è usata proprio dal programma \cmd{login} che, una volta
1623 completata la procedura di autenticazione, lancia una shell per la quale
1624 imposta questi identificatori ai valori corrispondenti all'utente che entra
1625 nel sistema.
1626
1627 Al secondo gruppo appartengono lo \textsl{user-ID effettivo} ed il
1628 \textsl{group-ID effettivo} (a cui si aggiungono gli eventuali \textsl{group-ID
1629   supplementari} dei gruppi dei quali l'utente fa parte).  Questi sono invece
1630 gli identificatori usati nelle verifiche dei permessi del processo e per il
1631 controllo di accesso ai file (argomento affrontato in dettaglio in
1632 sez.~\ref{sec:file_perm_overview}).
1633
1634 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
1635 \textit{real} tranne nel caso in cui, come accennato in
1636 sez.~\ref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i
1637 bit \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} impostati
1638 (il significato di questi bit è affrontato in dettaglio in
1639 sez.~\ref{sec:file_special_perm}). In questo caso essi saranno impostati
1640 all'utente e al gruppo proprietari del file. Questo consente, per programmi in
1641 cui ci sia necessità, di dare a qualunque utente normale privilegi o permessi
1642 di un altro (o dell'amministratore).
1643
1644 Come nel caso del \acr{pid} e del \acr{ppid}, anche tutti questi
1645 identificatori possono essere letti attraverso le rispettive funzioni:
1646 \funcd{getuid}, \funcd{geteuid}, \funcd{getgid} e \funcd{getegid}, i loro
1647 prototipi sono:
1648 \begin{functions}
1649   \headdecl{unistd.h}
1650   \headdecl{sys/types.h}  
1651   \funcdecl{uid\_t getuid(void)} Restituisce l'\textsl{user-ID reale} del
1652   processo corrente.
1653
1654   \funcdecl{uid\_t geteuid(void)} Restituisce l'\textsl{user-ID effettivo} del
1655   processo corrente.
1656
1657   \funcdecl{gid\_t getgid(void)} Restituisce il \textsl{group-ID reale} del
1658   processo corrente.
1659   
1660   \funcdecl{gid\_t getegid(void)} Restituisce il \textsl{group-ID effettivo}
1661   del processo corrente.
1662   
1663   \bodydesc{Queste funzioni non riportano condizioni di errore.}
1664 \end{functions}
1665
1666 In generale l'uso di privilegi superiori deve essere limitato il più
1667 possibile, per evitare abusi e problemi di sicurezza, per questo occorre anche
1668 un meccanismo che consenta ad un programma di rilasciare gli eventuali
1669 maggiori privilegi necessari, una volta che si siano effettuate le operazioni
1670 per i quali erano richiesti, e a poterli eventualmente recuperare in caso
1671 servano di nuovo.
1672
1673 Questo in Linux viene fatto usando altri due gruppi di identificatori, il
1674 \textit{saved} ed il \textit{filesystem}. Il primo gruppo è lo stesso usato in
1675 SVr4, e previsto dallo standard POSIX quando è definita la costante
1676 \macro{\_POSIX\_SAVED\_IDS},\footnote{in caso si abbia a cuore la portabilità
1677   del programma su altri Unix è buona norma controllare sempre la
1678   disponibilità di queste funzioni controllando se questa costante è
1679   definita.} il secondo gruppo è specifico di Linux e viene usato per
1680 migliorare la sicurezza con NFS.
1681
1682 L'\textsl{user-ID salvato} ed il \textsl{group-ID salvato} sono copie
1683 dell'\textsl{user-ID effettivo} e del \textsl{group-ID effettivo} del processo
1684 padre, e vengono impostati dalla funzione \func{exec} all'avvio del processo,
1685 come copie dell'\textsl{user-ID effettivo} e del \textsl{group-ID effettivo}
1686 dopo che questi sono stati impostati tenendo conto di eventuali
1687 \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid}.  Essi quindi
1688 consentono di tenere traccia di quale fossero utente e gruppo effettivi
1689 all'inizio dell'esecuzione di un nuovo programma.
1690
1691 L'\textsl{user-ID di filesystem} e il \textsl{group-ID di filesystem} sono
1692 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
1693 (torneremo sull'argomento in sez.~\ref{sec:proc_setuid}). Essi sono una
1694 replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
1695 quali si sostituiscono per tutte le operazioni di verifica dei permessi
1696 relativi ai file (trattate in sez.~\ref{sec:file_perm_overview}).  Ogni
1697 cambiamento effettuato sugli identificatori effettivi viene automaticamente
1698 riportato su di essi, per cui in condizioni normali si può tranquillamente
1699 ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
1700
1701
1702 \subsection{Le funzioni di gestione degli identificatori dei processi}
1703 \label{sec:proc_setuid}
1704
1705 Le due funzioni più comuni che vengono usate per cambiare identità (cioè
1706 utente e gruppo di appartenenza) ad un processo sono rispettivamente
1707 \funcd{setuid} e \funcd{setgid}; come accennato in
1708 sez.~\ref{sec:proc_access_id} in Linux esse seguono la semantica POSIX che
1709 prevede l'esistenza dell'\textit{user-ID salvato} e del \textit{group-ID
1710   salvato}; i loro prototipi sono:
1711 \begin{functions}
1712 \headdecl{unistd.h}
1713 \headdecl{sys/types.h}
1714
1715 \funcdecl{int setuid(uid\_t uid)} Imposta l'\textsl{user-ID} del processo
1716 corrente.
1717
1718 \funcdecl{int setgid(gid\_t gid)} Imposta il \textsl{group-ID} del processo
1719 corrente.
1720
1721 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
1722   di fallimento: l'unico errore possibile è \errval{EPERM}.}
1723 \end{functions}
1724
1725 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
1726 la prima; la seconda si comporta esattamente allo stesso modo facendo
1727 riferimento al \textsl{group-ID} invece che all'\textsl{user-ID}.  Gli
1728 eventuali \textsl{group-ID supplementari} non vengono modificati.
1729
1730 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
1731 l'\textsl{user-ID effettivo} è zero (cioè è quello dell'amministratore di
1732 sistema) allora tutti gli identificatori (\textit{real}, \textit{effective} e
1733 \textit{saved}) vengono impostati al valore specificato da \param{uid},
1734 altrimenti viene impostato solo l'\textsl{user-ID effettivo}, e soltanto se il
1735 valore specificato corrisponde o all'\textsl{user-ID reale} o
1736 all'\textsl{user-ID salvato}. Negli altri casi viene segnalato un errore (con
1737 \errcode{EPERM}).
1738
1739 Come accennato l'uso principale di queste funzioni è quello di poter
1740 consentire ad un programma con i bit \itindex{suid~bit} \acr{suid} o
1741 \itindex{sgid~bit} \acr{sgid} impostati (vedi sez.~\ref{sec:file_special_perm})
1742 di riportare l'\textsl{user-ID effettivo} a quello dell'utente che ha lanciato
1743 il programma, effettuare il lavoro che non necessita di privilegi aggiuntivi,
1744 ed eventualmente tornare indietro.
1745
1746 Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
1747 viene gestito l'accesso al file \sysfile{/var/log/utmp}.  In questo file viene
1748 registrato chi sta usando il sistema al momento corrente; chiaramente non può
1749 essere lasciato aperto in scrittura a qualunque utente, che potrebbe
1750 falsificare la registrazione. Per questo motivo questo file (e l'analogo
1751 \sysfile{/var/log/wtmp} su cui vengono registrati login e logout) appartengono
1752 ad un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad
1753 esempio tutti i programmi di terminale in X, o il programma \cmd{screen} che
1754 crea terminali multipli su una console) appartengono a questo gruppo ed hanno
1755 il bit \acr{sgid} impostato.
1756
1757 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato, la
1758 situazione degli identificatori è la seguente:
1759 \begin{eqnarray*}
1760   \label{eq:1}
1761   \textsl{group-ID reale}      &=& \textrm{\acr{gid} (del chiamante)} \\
1762   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1763   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp}}
1764 \end{eqnarray*}
1765 in questo modo, dato che il \textsl{group-ID effettivo} è quello giusto, il
1766 programma può accedere a \sysfile{/var/log/utmp} in scrittura ed aggiornarlo.
1767 A questo punto il programma può eseguire una \code{setgid(getgid())} per
1768 impostare il \textsl{group-ID effettivo} a quello dell'utente (e dato che il
1769 \textsl{group-ID reale} corrisponde la funzione avrà successo), in questo modo
1770 non sarà possibile lanciare dal terminale programmi che modificano detto file,
1771 in tal caso infatti la situazione degli identificatori sarebbe:
1772 \begin{eqnarray*}
1773   \label{eq:2}
1774   \textsl{group-ID reale}      &=& \textrm{\acr{gid} (invariato)}  \\
1775   \textsl{group-ID effettivo}  &=& \textrm{\acr{gid}} \\
1776   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1777 \end{eqnarray*}
1778 e ogni processo lanciato dal terminale avrebbe comunque \acr{gid} come
1779 \textsl{group-ID effettivo}. All'uscita dal terminale, per poter di nuovo
1780 aggiornare lo stato di \sysfile{/var/log/utmp} il programma eseguirà una
1781 \code{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
1782 \acr{utmp}, ottenuto ad esempio con una precedente \func{getegid}), dato che
1783 in questo caso il valore richiesto corrisponde al \textsl{group-ID salvato} la
1784 funzione avrà successo e riporterà la situazione a:
1785 \begin{eqnarray*}
1786   \label{eq:3}
1787   \textsl{group-ID reale}      &=& \textrm{\acr{gid} (invariato)}  \\
1788   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
1789   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
1790 \end{eqnarray*}
1791 consentendo l'accesso a \sysfile{/var/log/utmp}.
1792
1793 Occorre però tenere conto che tutto questo non è possibile con un processo con
1794 i privilegi di amministratore, in tal caso infatti l'esecuzione di una
1795 \func{setuid} comporta il cambiamento di tutti gli identificatori associati al
1796 processo, rendendo impossibile riguadagnare i privilegi di amministratore.
1797 Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
1798 crea una nuova shell per l'utente; ma quando si vuole cambiare soltanto
1799 l'\textsl{user-ID effettivo} del processo per cedere i privilegi occorre
1800 ricorrere ad altre funzioni.
1801
1802 Le due funzioni \funcd{setreuid} e \funcd{setregid} derivano da BSD che, non
1803 supportando\footnote{almeno fino alla versione 4.3+BSD.} gli identificatori
1804 del gruppo \textit{saved}, le usa per poter scambiare fra di loro
1805 \textit{effective} e \textit{real}. I rispettivi prototipi sono:
1806 \begin{functions}
1807 \headdecl{unistd.h}
1808 \headdecl{sys/types.h}
1809
1810 \funcdecl{int setreuid(uid\_t ruid, uid\_t euid)} Imposta l'\textsl{user-ID
1811   reale} e l'\textsl{user-ID effettivo} del processo corrente ai valori
1812 specificati da \param{ruid} e \param{euid}.
1813   
1814 \funcdecl{int setregid(gid\_t rgid, gid\_t egid)} Imposta il \textsl{group-ID
1815   reale} ed il \textsl{group-ID effettivo} del processo corrente ai valori
1816 specificati da \param{rgid} e \param{egid}.
1817
1818 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
1819   di fallimento: l'unico errore possibile è \errval{EPERM}.}
1820 \end{functions}
1821
1822 La due funzioni sono analoghe ed il loro comportamento è identico; quanto
1823 detto per la prima riguardo l'user-ID, si applica immediatamente alla seconda
1824 per il group-ID. I processi non privilegiati possono impostare solo i valori
1825 del loro user-ID effettivo o reale; valori diversi comportano il fallimento
1826 della chiamata; l'amministratore invece può specificare un valore qualunque.
1827 Specificando un argomento di valore -1 l'identificatore corrispondente verrà
1828 lasciato inalterato.
1829
1830 Con queste funzioni si possono scambiare fra loro gli user-ID reale e
1831 effettivo, e pertanto è possibile implementare un comportamento simile a
1832 quello visto in precedenza per \func{setgid}, cedendo i privilegi con un primo
1833 scambio, e recuperandoli, eseguito il lavoro non privilegiato, con un secondo
1834 scambio.
1835
1836 In questo caso però occorre porre molta attenzione quando si creano nuovi
1837 processi nella fase intermedia in cui si sono scambiati gli identificatori, in
1838 questo caso infatti essi avranno un user-ID reale privilegiato, che dovrà
1839 essere esplicitamente eliminato prima di porre in esecuzione un nuovo
1840 programma (occorrerà cioè eseguire un'altra chiamata dopo la \func{fork} e
1841 prima della \func{exec} per uniformare l'user-ID reale a quello effettivo) in
1842 caso contrario il nuovo programma potrebbe a sua volta effettuare uno scambio
1843 e riottenere privilegi non previsti.
1844
1845 Lo stesso problema di propagazione dei privilegi ad eventuali processi figli
1846 si pone per l'user-ID salvato: questa funzione deriva da un'implementazione che
1847 non ne prevede la presenza, e quindi non è possibile usarla per correggere la
1848 situazione come nel caso precedente. Per questo motivo in Linux tutte le volte
1849 che si imposta un qualunque valore diverso da quello dall'user-ID reale
1850 corrente, l'user-ID salvato viene automaticamente uniformato al valore
1851 dell'user-ID effettivo.
1852
1853 Altre due funzioni, \funcd{seteuid} e \funcd{setegid}, sono un'estensione
1854 dello standard POSIX.1, ma sono comunque supportate dalla maggior parte degli
1855 Unix; esse vengono usate per cambiare gli identificatori del gruppo
1856 \textit{effective} ed i loro prototipi sono:
1857 \begin{functions}
1858 \headdecl{unistd.h}
1859 \headdecl{sys/types.h}
1860
1861 \funcdecl{int seteuid(uid\_t uid)} Imposta l'user-ID effettivo del processo
1862 corrente a \param{uid}.
1863
1864 \funcdecl{int setegid(gid\_t gid)} Imposta il group-ID effettivo del processo
1865 corrente a \param{gid}.
1866
1867 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
1868   di fallimento: l'unico errore è \errval{EPERM}.}
1869 \end{functions}
1870
1871 Come per le precedenti le due funzioni sono identiche, per cui tratteremo solo
1872 la prima. Gli utenti normali possono impostare l'user-ID effettivo solo al
1873 valore dell'user-ID reale o dell'user-ID salvato, l'amministratore può
1874 specificare qualunque valore. Queste funzioni sono usate per permettere
1875 all'amministratore di impostare solo l'user-ID effettivo, dato che l'uso
1876 normale di \func{setuid} comporta l'impostazione di tutti gli identificatori.
1877  
1878
1879 Le due funzioni \funcd{setresuid} e \funcd{setresgid} sono invece
1880 un'estensione introdotta in Linux,\footnote{per essere precisi a partire dal
1881   kernel 2.1.44.}  e permettono un completo controllo su tutti e tre i gruppi
1882 di identificatori (\textit{real}, \textit{effective} e \textit{saved}), i loro
1883 prototipi sono:
1884 \begin{functions}
1885 \headdecl{unistd.h}
1886 \headdecl{sys/types.h}
1887
1888 \funcdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)} Imposta
1889 l'user-ID reale, l'user-ID effettivo e l'user-ID salvato del processo corrente
1890 ai valori specificati rispettivamente da \param{ruid}, \param{euid} e
1891 \param{suid}.
1892   
1893 \funcdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)} Imposta il
1894 group-ID reale, il group-ID effettivo ed il group-ID salvato del processo
1895 corrente ai valori specificati rispettivamente da \param{rgid}, \param{egid} e
1896 \param{sgid}.
1897
1898 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
1899   di fallimento: l'unico errore è \errval{EPERM}.}
1900 \end{functions}
1901
1902 Le due funzioni sono identiche, quanto detto per la prima riguardo gli user-ID
1903 si applica alla seconda per i group-ID. I processi non privilegiati possono
1904 cambiare uno qualunque degli user-ID solo ad un valore corrispondente o
1905 all'user-ID reale, o a quello effettivo o a quello salvato, l'amministratore
1906 può specificare i valori che vuole; un valore di -1 per un qualunque argomento
1907 lascia inalterato l'identificatore corrispondente.
1908
1909 Per queste funzioni esistono anche due controparti che permettono di leggere
1910 in blocco i vari identificatori: \funcd{getresuid} e \funcd{getresgid}; i loro
1911 prototipi sono: 
1912 \begin{functions}
1913 \headdecl{unistd.h}
1914 \headdecl{sys/types.h}
1915
1916 \funcdecl{int getresuid(uid\_t *ruid, uid\_t *euid, uid\_t *suid)} Legge
1917 l'user-ID reale, l'user-ID effettivo e l'user-ID salvato del processo corrente.
1918   
1919 \funcdecl{int getresgid(gid\_t *rgid, gid\_t *egid, gid\_t *sgid)} Legge il
1920 group-ID reale, il group-ID effettivo e il group-ID salvato del processo
1921 corrente.
1922
1923 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso di
1924   fallimento: l'unico errore possibile è \errval{EFAULT} se gli indirizzi delle
1925   variabili di ritorno non sono validi.}
1926 \end{functions}
1927
1928 Anche queste funzioni sono un'estensione specifica di Linux, e non richiedono
1929 nessun privilegio. I valori sono restituiti negli argomenti, che vanno
1930 specificati come puntatori (è un altro esempio di
1931 \itindex{value~result~argument} \textit{value result argument}). Si noti che
1932 queste funzioni sono le uniche in grado di leggere gli identificatori del
1933 gruppo \textit{saved}.
1934
1935
1936 Infine le funzioni \func{setfsuid} e \func{setfsgid} servono per impostare gli
1937 identificatori del gruppo \textit{filesystem} che sono usati da Linux per il
1938 controllo dell'accesso ai file.  Come già accennato in
1939 sez.~\ref{sec:proc_access_id} Linux definisce questo ulteriore gruppo di
1940 identificatori, che in circostanze normali sono assolutamente equivalenti a
1941 quelli del gruppo \textit{effective}, dato che ogni cambiamento di questi
1942 ultimi viene immediatamente riportato su di essi.
1943
1944 C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
1945 identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
1946 ovviare ad un problema di sicurezza che si presenta quando si deve
1947 implementare un server NFS. 
1948
1949 Il server NFS infatti deve poter cambiare l'identificatore con cui accede ai
1950 file per assumere l'identità del singolo utente remoto, ma se questo viene
1951 fatto cambiando l'user-ID effettivo o l'user-ID reale il server si espone alla
1952 ricezione di eventuali segnali ostili da parte dell'utente di cui ha
1953 temporaneamente assunto l'identità.  Cambiando solo l'user-ID di filesystem si
1954 ottengono i privilegi necessari per accedere ai file, mantenendo quelli
1955 originari per quanto riguarda tutti gli altri controlli di accesso, così che
1956 l'utente non possa inviare segnali al server NFS.
1957
1958 Le due funzioni usate per cambiare questi identificatori sono \funcd{setfsuid}
1959 e \funcd{setfsgid}, ovviamente sono specifiche di Linux e non devono essere
1960 usate se si intendono scrivere programmi portabili; i loro prototipi sono:
1961 \begin{functions}
1962 \headdecl{sys/fsuid.h}
1963
1964 \funcdecl{int setfsuid(uid\_t fsuid)} Imposta l'user-ID di filesystem del
1965 processo corrente a \param{fsuid}.
1966
1967 \funcdecl{int setfsgid(gid\_t fsgid)} Imposta il group-ID di filesystem del
1968 processo corrente a \param{fsgid}.
1969
1970 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
1971   di fallimento: l'unico errore possibile è \errval{EPERM}.}
1972 \end{functions}
1973 \noindent queste funzioni hanno successo solo se il processo chiamante ha i
1974 privilegi di amministratore o, per gli altri utenti, se il valore specificato
1975 coincide con uno dei di quelli del gruppo \textit{real}, \textit{effective} o
1976 \textit{saved}.
1977
1978
1979 \subsection{Le funzioni per la gestione dei gruppi associati a un processo}
1980 \label{sec:proc_setgroups}
1981
1982 Le ultime funzioni che esamineremo sono quelle che permettono di operare sui
1983 gruppi supplementari cui un utente può appartenere. Ogni processo può avere
1984 almeno \const{NGROUPS\_MAX} gruppi supplementari\footnote{il numero massimo di
1985   gruppi secondari può essere ottenuto con \func{sysconf} (vedi
1986   sez.~\ref{sec:sys_sysconf}), leggendo il parametro
1987   \texttt{\_SC\_NGROUPS\_MAX}.} in aggiunta al gruppo primario; questi vengono
1988 ereditati dal processo padre e possono essere cambiati con queste funzioni.
1989
1990 La funzione che permette di leggere i gruppi supplementari associati ad un
1991 processo è \funcd{getgroups}; questa funzione è definita nello standard
1992 POSIX.1, ed il suo prototipo è:
1993 \begin{functions}
1994   \headdecl{sys/types.h}
1995   \headdecl{unistd.h}
1996   
1997   \funcdecl{int getgroups(int size, gid\_t list[])} 
1998   
1999   Legge gli identificatori dei gruppi supplementari.
2000   
2001   \bodydesc{La funzione restituisce il numero di gruppi letti in caso di
2002     successo e -1 in caso di fallimento, nel qual caso \var{errno} assumerà
2003     i valori: 
2004     \begin{errlist}
2005     \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2006     \item[\errcode{EINVAL}] il valore di \param{size} è diverso da zero ma
2007       minore del numero di gruppi supplementari del processo.
2008     \end{errlist}}
2009 \end{functions}
2010
2011 La funzione legge gli identificatori dei gruppi supplementari del processo sul
2012 vettore \param{list} di dimensione \param{size}. Non è specificato se la
2013 funzione inserisca o meno nella lista il group-ID effettivo del processo. Se si
2014 specifica un valore di \param{size} uguale a 0 \param{list} non viene
2015 modificato, ma si ottiene il numero di gruppi supplementari.
2016
2017 Una seconda funzione, \funcd{getgrouplist}, può invece essere usata per
2018 ottenere tutti i gruppi a cui appartiene un certo utente; il suo prototipo è:
2019 \begin{functions}
2020   \headdecl{sys/types.h} 
2021   \headdecl{grp.h}
2022   
2023   \funcdecl{int getgrouplist(const char *user, gid\_t group, gid\_t *groups,
2024     int *ngroups)} Legge i gruppi supplementari.
2025   
2026   \bodydesc{La funzione legge fino ad un massimo di \param{ngroups} valori,
2027     restituisce 0 in caso di successo e -1 in caso di fallimento.}
2028 \end{functions}
2029
2030 La funzione legge i gruppi supplementari dell'utente specificato da
2031 \param{user}, eseguendo una scansione del database dei gruppi (si veda
2032 sez.~\ref{sec:sys_user_group}). Ritorna poi in \param{groups} la lista di
2033 quelli a cui l'utente appartiene. Si noti che \param{ngroups} è passato come
2034 puntatore perché, qualora il valore specificato sia troppo piccolo, la
2035 funzione ritorna -1, passando indietro il numero dei gruppi trovati.
2036
2037 Per impostare i gruppi supplementari di un processo ci sono due funzioni, che
2038 possono essere usate solo se si hanno i privilegi di amministratore. La prima
2039 delle due è \funcd{setgroups}, ed il suo prototipo è:
2040 \begin{functions}
2041   \headdecl{sys/types.h}
2042   \headdecl{grp.h}
2043   
2044   \funcdecl{int setgroups(size\_t size, gid\_t *list)} 
2045   
2046   Imposta i gruppi supplementari del processo.
2047
2048   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2049     fallimento, nel qual caso \var{errno} assumerà i valori:
2050     \begin{errlist}
2051     \item[\errcode{EFAULT}] \param{list} non ha un indirizzo valido.
2052     \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
2053     \item[\errcode{EINVAL}] il valore di \param{size} è maggiore del valore
2054     massimo consentito.
2055     \end{errlist}}
2056 \end{functions}
2057
2058 La funzione imposta i gruppi supplementari del processo corrente ai valori
2059 specificati nel vettore passato con l'argomento \param{list}, di dimensioni
2060 date dall'argomento \param{size}. Il numero massimo di gruppi supplementari è
2061 un parametro di sistema, che può essere ricavato con le modalità spiegate in
2062 sez.~\ref{sec:sys_characteristics}.
2063
2064 Se invece si vogliono impostare i gruppi supplementari del processo a quelli di
2065 un utente specifico, si può usare \funcd{initgroups} il cui prototipo è:
2066 \begin{functions}
2067   \headdecl{sys/types.h}
2068   \headdecl{grp.h}
2069
2070   \funcdecl{int initgroups(const char *user, gid\_t group)} 
2071   
2072   Inizializza la lista dei gruppi supplementari.
2073   
2074   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2075     fallimento, nel qual caso \var{errno} assumerà gli stessi valori di
2076     \func{setgroups} più \errval{ENOMEM} quando non c'è memoria sufficiente
2077     per allocare lo spazio per informazioni dei gruppi.}
2078 \end{functions}
2079
2080 La funzione esegue la scansione del database dei gruppi (usualmente
2081 \conffile{/etc/group}) cercando i gruppi di cui è membro l'utente \param{user}
2082 con cui costruisce una lista di gruppi supplementari, a cui aggiunge anche
2083 \param{group}, infine imposta questa lista per il processo corrente usando
2084 \func{setgroups}.  Si tenga presente che sia \func{setgroups} che
2085 \func{initgroups} non sono definite nello standard POSIX.1 e che pertanto non
2086 è possibile utilizzarle quando si definisce \macro{\_POSIX\_SOURCE} o si
2087 compila con il flag \cmd{-ansi}, è pertanto meglio evitarle se si vuole
2088 scrivere codice portabile.
2089
2090
2091 \subsection{La gestione delle \textit{capabilities}}
2092 \label{sec:proc_capabilities}
2093
2094 \itindbeg{capabilities} 
2095
2096 Come accennato in sez.~\ref{sec:proc_access_id} l'architettura classica della
2097 gestione dei privilegi in un sistema unix-like ha il sostanziale problema di
2098 fornire all'amministratore dei poteri troppo ampi, questo comporta che anche
2099 quando si siano predisposte delle misure di protezione per in essere in grado
2100 di difendersi dagli effetti di una eventuale compromissione del
2101 sistema,\footnote{come montare un filesystem in sola lettura per impedirne
2102   modifiche, o marcare un file come immutabile.} una volta che questa sia
2103 stata effettuata e si siano ottenuti i privilegi di amministratore, queste
2104 potranno essere comunque rimosse.\footnote{nei casi elencati nella precedente
2105   nota si potrà sempre rimontare il sistema in lettura-scrittura, o togliere
2106   la marcatura di immutabilità.}
2107
2108 Il problema consiste nel fatto che nell'architettura tradizionale di un
2109 sistema unix-like i controlli di accesso sono basati su un solo livello di
2110 separazione: per i processi normali essi sono posti in atto, mentre per i
2111 processi con i privilegi di amministratore essi non vengono neppure eseguiti;
2112 per questo motivo non era previsto alcun modo per evitare che un processo con
2113 diritti di amministratore non potesse eseguire certe operazioni, o per cedere
2114 definitivamente alcuni privilegi da un certo momento in poi.
2115
2116 Per ovviare a tutto ciò, a partire dai kernel della serie 2.2, è stato
2117 introdotto un meccanismo, detto \textit{capabilities}, che consentisse di
2118 suddividere i vari privilegi tradizionalmente associati all'amministratore in
2119 un insieme di \textsl{capacità} distinte.  L'idea era che queste capacità
2120 potessero essere abilitate e disabilitate in maniera indipendente per ciascun
2121 processo con privilegi di amministratore, permettendo così una granularità
2122 molto più fine nella distribuzione degli stessi che evitasse la originaria
2123 situazione di \textsl{tutto o nulla}.
2124
2125 Il meccanismo completo delle \textit{capabilities}\footnote{l'implementazione
2126   di Linux si rifà ad una bozza per quello che dovrebbe divenire lo standard
2127   POSIX.1e, che prevede questa funzionalità.} prevederebbe anche la
2128 possibilità di associare le stesse \textit{capabilities} anche ai singoli file
2129 eseguibili,\footnote{una descrizione sommaria di questa funzionalità è
2130   riportata nella pagina di manuale che descrive l'implementazione delle
2131   \textit{capabilities} con Linux (accessibile con \texttt{man capabilities}),
2132   ma non essendo implementata non ne tratteremo qui.} in modo da poter
2133 stabilire quali capacità possono essere utilizzate quando viene messo in
2134 esecuzione uno specifico programma; attualmente però questa funzionalità non è
2135 implementata.\footnote{per attualmente si intende fino al kernel 2.6.23;
2136   benché l'infrastruttura per crearla sia presente (vedi anche
2137   sez.~\ref{sec:file_xattr}) finora non è disponibile nessuna realizzazione
2138   delle specifiche POSIX.1e, esistono però dei patch di sicurezza del kernel,
2139   come LIDS (vedi \href{http://www.lids.org}{\textsf{http://www.lids.org/})}
2140   che realizzano qualcosa di simile.}
2141
2142 % TODO verificare per process capability bounding set, vedi:
2143 %  http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=3b7391de67da515c91f48aa371de77cb6cc5c07e
2144
2145 % TODO capire cosa cambia con i patch del 2.6.26, vedi
2146 % http://lwn.net/Articles/280279/  
2147
2148 \begin{table}[!h!bt]
2149   \centering
2150   \footnotesize
2151   \begin{tabular}{|l|p{12cm}|}
2152     \hline
2153     \textbf{Capacità}&\textbf{Descrizione}\\
2154     \hline
2155     \hline
2156 %
2157 % POSIX-draft defined capabilities.
2158 %
2159     \const{CAP\_CHOWN}      & La capacità di cambiare proprietario e gruppo
2160                               proprietario di un file (vedi
2161                               sez.~\ref{sec:file_ownership_management}).\\
2162     \const{CAP\_DAC\_OVERRIDE}& La capacità di evitare il controllo dei
2163                               permessi di lettura, scrittura ed esecuzione dei
2164                               file, (vedi sez.~\ref{sec:file_access_control})
2165                               caratteristici del modello classico del
2166                               controllo di accesso chiamato
2167                               \itindex{Discrectionary~Access~Control~(DAC)} 
2168                               \textit{Discrectionary Access Control} (da cui
2169                               il nome DAC).\\  
2170     \const{CAP\_DAC\_READ\_SEARCH}& La capacità di evitare il controllo dei
2171                               permessi di lettura, scrittura ed esecuzione per
2172                               le directory (vedi
2173                               sez.~\ref{sec:file_access_control}).\\
2174     \const{CAP\_FOWNER}     & La capacità di evitare il controllo che 
2175                               l'user-ID effettivo del processo (o meglio il
2176                               \textit{filesystem user-ID}, vedi
2177                               sez.~\ref{sec:proc_setuid}) coincida con
2178                               quello del proprietario di un file per tutte
2179                               le operazioni privilegiate non coperte dalle
2180                               precedenti \const{CAP\_DAC\_OVERRIDE} e
2181                               \const{CAP\_DAC\_READ\_SEARCH}. Queste
2182                               comprendono i cambiamenti dei permessi e dei
2183                               tempi del file (vedi
2184                               sez.~\ref{sec:file_perm_management} e 
2185                               sez.~\ref{sec:file_file_times}), le impostazioni 
2186                               degli attributi estesi (con il comando 
2187                               \cmd{chattr}) e delle ACL, poter ignorare lo
2188                               \itindex{sticky~bit} \textit{sticky bit} nella
2189                               cancellazione dei file (vedi
2190                               sez.~\ref{sec:file_special_perm}), la possibilità
2191                               di impostare il flag di \const{O\_NOATIME} con
2192                               \func{open} e \func{fcntl} (vedi
2193                               sez.~\ref{sec:file_open} e
2194                               sez.~\ref{sec:file_fcntl}).\\
2195     \const{CAP\_FSETID}     & La capacità di evitare la cancellazione
2196                               automatica dei bit \itindex{suid~bit} \acr{suid}
2197                               e \itindex{sgid~bit} \acr{sgid} quando un file
2198                               per i quali sono impostati viene modificato da
2199                               un processo senza questa capacità e la capacità
2200                               di impostare il bit \acr{sgid} su un file anche
2201                               quando questo è relativo ad un gruppo cui non si
2202                               appartiene (vedi
2203                               sez.~\ref{sec:file_perm_management}).\\ 
2204     \const{CAP\_KILL}       & La capacità di mandare segnali a qualunque
2205                               processo (vedi sez.~\ref{sec:sig_kill_raise}).\\
2206     \const{CAP\_SETGID}     & La capacità di manipolare i group ID dei
2207                               processi, sia il principale che i supplementari,
2208                               (vedi sez.~\ref{sec:proc_setgroups} che quelli
2209                               trasmessi tramite i socket \textit{unix domain}
2210                               (vedi sez.~\ref{sec:unix_socket}).\\
2211     \const{CAP\_SETUID}     & La capacità di manipolare gli user ID del
2212                               processo (con \func{setuid}, \func{setreuid},
2213                               \func{setresuid}, \func{setfsuid}) e di
2214                               trasmettere un valore arbitrario
2215                               dell'\textsl{uid} nel passaggio delle
2216                               credenziali coi socket \textit{unix domain} (vedi
2217                               sez.~\ref{sec:unix_socket}).\\ 
2218 %
2219 % Linux specific capabilities
2220 %
2221 \hline
2222     \const{CAP\_SETPCAP}    & La capacità di impostare o rimuovere una capacità
2223                               (limitatamente a quelle che il processo
2224                               chiamante ha nel suo insieme di capacità
2225                               permesse) da qualunque processo.\\
2226 % TODO cambiata nel 2.4.24 rc1 ?
2227     \const{CAP\_LINUX\_IMMUTABLE}& La capacità di impostare gli attributi
2228                               \textit{immutable} e \itindex{append~mode}
2229                               \textit{append only} per i file su un
2230                               filesystem che supporta questi 
2231                               attributi estesi.\\ 
2232     \const{CAP\_NET\_BIND\_SERVICE}& La capacità di porre in ascolto server
2233                               su porte riservate (vedi
2234                               sez.~\ref{sec:TCP_func_bind}).\\ 
2235     \const{CAP\_NET\_BROADCAST}& La capacità di consentire l'uso di socket in
2236                               \itindex{broadcast} \textit{broadcast} e
2237                               \itindex{multicast} \textit{multicast}.\\ 
2238     \const{CAP\_NET\_ADMIN} & La capacità di eseguire alcune operazioni
2239                               privilegiate sulla rete (impostare le opzioni
2240                               privilegiate dei socket, abilitare il
2241                               \itindex{multicast} \textit{multicasting},
2242                               impostare interfacce di rete e 
2243                               tabella di instradamento).\\
2244     \const{CAP\_NET\_RAW}   & La capacità di usare socket \texttt{RAW} e
2245                               \texttt{PACKET} (quelli che permettono di creare
2246                               pacchetti nei protocolli di basso livello).\\
2247     \const{CAP\_IPC\_LOCK}  & La capacità di effettuare il \textit{memory
2248                               locking} \itindex{memory~locking} con le
2249                               funzioni \func{mlock}, \func{mlockall},
2250                               \func{shmctl}, \func{mmap} (vedi
2251                               sez.~\ref{sec:proc_mem_lock} e 
2252                               sez.~\ref{sec:file_memory_map}). \\  
2253     \const{CAP\_IPC\_OWNER} & La capacità di evitare il controllo dei permessi
2254                               per le operazioni sugli oggetti di
2255                               intercomunicazione fra processi (vedi
2256                               sez.~\ref{sec:ipc_sysv}).\\  
2257     \const{CAP\_SYS\_MODULE}& La capacità di caricare e rimuovere moduli del
2258                               kernel. \\ 
2259     \const{CAP\_SYS\_RAWIO} & La capacità di eseguire operazioni sulle porte
2260                               di I/O con \func{ioperm} e \func{iopl} (vedi
2261                               sez.~\ref{sec:file_io_port}).\\
2262     \const{CAP\_SYS\_CHROOT}& La capacità di eseguire la funzione
2263                               \func{chroot} (vedi
2264                               sez.~\ref{sec:file_chroot}).\\
2265     \const{CAP\_SYS\_PTRACE}& Consente di tracciare qualunque processo con
2266                               \func{ptrace} (vedi 
2267                               sez.~\ref{sec:xxx_ptrace}).\\
2268     \const{CAP\_SYS\_PACCT} & La capacità di usare le funzioni di
2269                               \textit{accounting} dei processi (vedi
2270                               sez.~\ref{sec:sys_bsd_accounting}).\\ 
2271     \const{CAP\_SYS\_ADMIN} & La capacità di eseguire una serie di compiti
2272                               amministrativi (come impostare le quote,
2273                               attivare e disattivare la swap, montare,
2274                               rimontare e smontare filesystem, ecc.). \\
2275     \const{CAP\_SYS\_BOOT}  & La capacità di fare eseguire un riavvio del
2276                               sistema.\\
2277     \const{CAP\_SYS\_NICE}  & La capacità di modificare le priorità dei
2278                               processi (vedi sez.~\ref{sec:proc_priority}). \\ 
2279     \const{CAP\_SYS\_RESOURCE}& La capacità di superare le limitazioni sulle
2280                               risorse, aumentare le quote disco, usare lo
2281                               spazio disco riservato all'amministratore.\\ 
2282     \const{CAP\_SYS\_TIME}  & La capacità di modificare il tempo di sistema
2283                               (vedi sez.~\ref{sec:sys_time}).\\ 
2284     \const{CAP\_SYS\_TTY\_CONFIG}& La capacità di simulare un \textit{hangup}
2285                               della console, con la funzione
2286                               \func{vhangup}.\\
2287     \const{CAP\_MKNOD}      & La capacità di creare file di dispositivo con la
2288                               funzione \func{mknod} (vedi
2289                               sez.~\ref{sec:file_mknod}).\footnotemark\\ 
2290     \const{CAP\_LEASE}      & La capacità di creare dei \textit{file lease}
2291                               \index{file!lease} su di un file (vedi
2292                               sez.~\ref{sec:file_asyncronous_lease})
2293                               indipendentemente dalla proprietà dello
2294                               stesso.\footnotemark\\
2295     \const{CAP\_SETFCAP}    & La capacità di impostare le
2296                               \textit{capabilities} di un file (non
2297                               supportata).\\ 
2298     \hline
2299   \end{tabular}
2300   \caption{Le costanti che identificano le \textit{capabilities} presenti nel
2301     kernel.}
2302 \label{tab:proc_capabilities}
2303 \end{table}
2304
2305 \footnotetext[21]{questa capacità è presente soltanto a partire dai kernel
2306   della serie 2.4.x.}
2307
2308 \footnotetext{questa capacità è presente soltanto a partire dai kernel della
2309   serie 2.4.x.}
2310
2311 Per gestire questo nuovo meccanismo ciascun processo porta con sé tre distinti
2312 insiemi di \textit{capabilities}, che vengono denominati rispettivamente
2313 \textit{effective}, \textit{permitted} ed \textit{inherited}. Questi insiemi
2314 vengono mantenuti in forma di tre diverse maschere binarie,\footnote{il kernel
2315   li mantiene, come i vari identificatori di sez.~\ref{sec:proc_setuid},
2316   all'interno della \struct{task\_struct} di ciascun processo (vedi
2317   fig.~\ref{fig:proc_task_struct}), nei tre campi \texttt{cap\_effective},
2318   \texttt{cap\_inheritable}, \texttt{cap\_permitted} del tipo
2319   \texttt{kernel\_cap\_t}; questo è attualmente definito come intero a 32 bit,
2320   il che comporta un massimo di 32 \textit{capabilities} distinte.} in cui
2321 ciascun bit corrisponde ad una capacità diversa; se ne è riportato
2322 l'elenco,\footnote{si tenga presente che l'elenco delle \textit{capabilities}
2323   presentato questa tabella, ripreso dalla relativa pagina di manuale
2324   (accessibile con \texttt{man capabilities}) e dalle definizioni in
2325   \texttt{sys/capabilities.h}, è quello aggiornato al kernel 2.6.6.} con una
2326 breve descrizione, ed il nome delle costanti che identificano i singoli bit,
2327 in tab.~\ref{tab:proc_capabilities}; la tabella è divisa in due parti, la
2328 prima riporta le \textit{capabilities} previste nella bozza dello standard
2329 POSIX1.e, la seconda quelle specifiche di Linux.
2330
2331 L'utilizzo di tre distinti insiemi serve a fornire una interfaccia flessibile
2332 per l'uso delle \textit{capabilities}, con scopi analoghi a quelli per cui
2333 sono mantenuti i diversi insiemi di identificatori di
2334 sez.~\ref{sec:proc_setuid}; il loro significato è il seguente:
2335 \begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
2336 \item[\textit{effective}] l'insieme delle \textit{capabilities}
2337   ``\textsl{effettive}'', cioè di quelle che vengono effettivamente usate dal
2338   kernel quando deve eseguire il controllo di accesso per le varie operazioni
2339   compiute dal processo.
2340 \item[\textit{permitted}] l'insieme delle \textit{capabilities}
2341   ``\textsl{permesse}'', cioè l'insieme di quelle capacità che un processo
2342   \textsl{può} impostare come \textsl{effettive}. Se un processo cancella una
2343   capacità da questo insieme non potrà più riassumerla (almeno che non esegua
2344   un programma che è \acr{suid} di root).
2345 \item[\textit{inherited}] l'insieme delle \textit{capabilities}
2346   ``\textsl{ereditabili}'', cioè quelle che vengono trasmesse ad un nuovo
2347   programma eseguito attraverso una chiamata ad \func{exec} (con l'eccezione
2348   del caso che questo sia \acr{suid} di root).
2349 \label{sec:capabilities_set}
2350 \end{basedescript}
2351
2352 Oltre a questi tre insiemi, che sono relativi al singolo processo, il kernel
2353 mantiene un insieme generale valido per tutto il sistema, chiamato
2354 \itindex{capabilities~bounding~set} \textit{capabilities bounding set}. Ogni
2355 volta che un programma viene posto in esecuzione con \func{exec} il contenuto
2356 degli insiemi \textit{effective} e \textit{permitted} vengono mascherati con
2357 un \textsl{AND} binario del contenuto corrente del \textit{capabilities
2358   bounding set}, così che il nuovo processo potrà disporre soltanto delle
2359 capacità in esso elencate.
2360
2361 Il \textit{capabilities bounding set} è un parametro di sistema, accessibile
2362 attraverso il contenuto del file \procfile{/proc/sys/kernel/cap-bound}, che per
2363 questa sua caratteristica consente di impostare un limite generale alle
2364 capacità che possono essere accordate ai vari processi.  Questo valore può
2365 essere impostato ad un valore arbitrario esclusivamente dal primo processo
2366 eseguito nel sistema (di norma cioè da \texttt{/sbin/init}), ogni processo
2367 eseguito successivamente (cioè con \textsl{pid} diverso da 1) anche se
2368 eseguito con privilegi di amministratore potrà soltanto rimuovere uno dei bit
2369 già presenti dell'insieme: questo significa che una volta rimossa una
2370 \textit{capability} dal \textit{capabilities bounding set} essa non sarà più
2371 disponibile, neanche per l'amministratore, a meno di un riavvio.
2372
2373 Quando un programma viene messo in esecuzione\footnote{cioè quando viene
2374   eseguita la \func{execve} con cui lo si lancia; in corrispondenza di una
2375   \func{fork} le \textit{capabilities} non vengono modificate.} esso eredita
2376 (nel senso che assume negli insiemi \textit{effective} e \textit{permitted})
2377 le \textit{capabilities} mantenute nell'insieme \textit{inherited}, a meno che
2378 non sia eseguito un programma \acr{suid} di root o la \func{exec} sia stata
2379 eseguita da un programma con \textsl{uid} reale zero; in tal caso il programma
2380 ottiene tutte le \textit{capabilities} presenti nel \textit{capabilities
2381   bounding set}. In questo modo si può far si che ad un processo eseguito in
2382 un secondo tempo possano essere trasmesse solo un insieme limitato di
2383 capacità, impedendogli di recuperare quelle assenti nell'insieme
2384 \textit{inherited}. Si tenga presente invece che attraverso una \func{fork}
2385 vengono mantenute le stesse capacità del processo padre.
2386
2387 Per la gestione delle \textit{capabilities} il kernel mette a disposizione due
2388 funzioni che permettono rispettivamente di leggere ed impostare i valori dei
2389 tre insiemi illustrati in precedenza. Queste due funzioni sono \funcd{capget}
2390 e \funcd{capset} e costituiscono l'interfaccia di gestione basso livello; i
2391 loro rispettivi prototipi sono:
2392 \begin{functions}
2393   \headdecl{sys/capability.h}
2394
2395   \funcdecl{int capget(cap\_user\_header\_t hdrp, cap\_user\_data\_t datap)}
2396   Legge le \textit{capabilities}.
2397
2398   \funcdecl{int capset(cap\_user\_header\_t hdrp, const cap\_user\_data\_t
2399     datap)} 
2400   Imposta le \textit{capabilities}.
2401
2402   
2403   \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 in caso
2404     di errore, nel qual caso \var{errno} può assumere i valori:
2405     \begin{errlist}
2406     \item[\errcode{ESRCH}] si è fatto riferimento ad un processo inesistente.
2407     \item[\errcode{EPERM}] si è tentato di aggiungere una capacità
2408       nell'insieme delle \textit{capabilities} permesse, o di impostare una
2409       capacità non presente nell'insieme di quelle permesse negli insieme
2410       delle effettive o ereditate, o si è cercato di impostare una
2411       \textit{capability} di un altro processo senza avare
2412       \const{CAP\_SETPCAP}. 
2413   \end{errlist}
2414   ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
2415 }
2416
2417 \end{functions}
2418
2419 Queste due funzioni prendono come argomenti due tipi di dati dedicati,
2420 definiti come puntatori a due strutture specifiche di Linux, illustrate in
2421 fig.~\ref{fig:cap_kernel_struct}. Per poterle utilizzare occorre anche
2422 cancellare la macro \macro{\_POSIX\_SOURCE}.\footnote{per farlo occorre
2423   utilizzare la direttiva di preprocessore \direct{undef}; si dovrà cioè
2424   inserire una istruzione \texttt{\#undef \_POSIX\_SOURCE} prima di includere
2425   \texttt{sys/capability.h}.} Si tenga presente che le strutture di
2426 fig.~\ref{fig:cap_kernel_struct}, come i prototipi delle due funzioni
2427 \func{capget} e \func{capset}, sono soggette ad essere modificate con il
2428 cambiamento del kernel (in particolare i tipi di dati delle strutture) ed
2429 anche se finora l'interfaccia è risultata stabile, non c'è nessuna
2430 assicurazione che questa venga mantenuta.\footnote{anzi, visto lo scarso
2431   utilizzo di questa funzionalità ci sono state varie discussioni fra gli
2432   sviluppatori del kernel relative all'eliminarla o al modificarla
2433   radicalmente.} Pertanto se si vogliono scrivere programmi portabili che
2434 possano essere eseguiti su qualunque versione del kernel è opportuno
2435 utilizzare le interfacce di alto livello.
2436
2437 \begin{figure}[!htb]
2438   \footnotesize
2439   \centering
2440   \begin{minipage}[c]{15cm}
2441     \includestruct{listati/cap_user_header_t.h}
2442   \end{minipage} 
2443   \normalsize 
2444   \caption{Definizione delle strutture a cui fanno riferimento i puntatori
2445     \structd{cap\_user\_header\_t} e \structd{cap\_user\_data\_t} usati per
2446     l'interfaccia di gestione di basso livello delle \textit{capabilities}.}
2447   \label{fig:cap_kernel_struct}
2448 \end{figure}
2449
2450 La struttura a cui deve puntare l'argomento \param{hdrp} serve ad indicare,
2451 tramite il campo \var{pid}, il processo del quale si vogliono leggere o
2452 modificare le \textit{capabilities}. Il campo \var{version} deve essere
2453 impostato al valore della versione delle usata dal kernel (quello indicato
2454 dalla costante \const{\_LINUX\_CAPABILITY\_VERSION} di
2455 fig.~\ref{fig:cap_kernel_struct}) altrimenti le funzioni ritorneranno con un
2456 errore di \errcode{EINVAL}, restituendo nel campo stesso il valore corretto
2457 della versione in uso.  La struttura a cui deve puntare l'argomento
2458 \param{datap} invece conterrà i valori letti o da impostare per i tre insiemi
2459 delle capacità del processo.
2460
2461 Dato che le precedenti funzioni, oltre ad essere specifiche di Linux, non
2462 garantiscono la stabilità nell'interfaccia, è sempre opportuno effettuare la
2463 gestione delle \textit{capabilities} utilizzando le funzioni di libreria a
2464 questo dedicate. Queste funzioni, che seguono quanto previsto nelle bozze
2465 dello standard POSIX.1e, non fanno parte delle \acr{glibc} e sono fornite in
2466 una libreria a parte,\footnote{la libreria è \texttt{libcap2}, nel caso di
2467   Debian può essere installata con il pacchetto omonimo.} pertanto se un
2468 programma le utilizza si dovrà indicare esplicitamente l'uso della suddetta
2469 libreria attraverso l'opzione \texttt{-lcap} del compilatore.
2470
2471 Le funzioni dell'interfaccia delle bozze di POSIX.1e prevedono l'uso di uno
2472 tipo di dato opaco, \type{cap\_t}, come puntatore ai dati mantenuti nel
2473 cosiddetto \textit{capability state},\footnote{si tratta in sostanza di un
2474   puntatore ad una struttura interna utilizzata dalle librerie, i cui campi
2475   non devono mai essere acceduti direttamente.} in sono memorizzati tutti i
2476 dati delle \textit{capabilities}. In questo modo è possibile mascherare i
2477 dettagli della gestione di basso livello, che potranno essere modificati senza
2478 dover cambiare le funzioni dell'interfaccia, che faranno riferimento soltanto
2479 ad oggetti di questo tipo.  L'interfaccia pertanto non soltanto fornisce le
2480 funzioni per modificare e leggere le \textit{capabilities}, ma anche quelle
2481 per gestire i dati attraverso \type{cap\_t}.
2482
2483 La prima funzione dell'interfaccia è quella che permette di inizializzare un
2484 \textit{capability state}, allocando al contempo la memoria necessaria per i
2485 relativi dati. La funzione è \funcd{cap\_init} ed il suo prototipo è:
2486 \begin{functions}
2487   \headdecl{sys/capability.h}
2488
2489   \funcdecl{cap\_t cap\_init(void)} 
2490   Crea ed inizializza un \textit{capability state}.
2491   
2492   \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
2493     \macro{NULL} in caso di errore, nel qual caso \var{errno} assumerà il
2494     valore \errval{ENOMEM}.
2495   }
2496 \end{functions}
2497
2498 La funzione restituisce il puntatore \type{cap\_t} ad uno stato inizializzato
2499 con tutte le \textit{capabilities} azzerate. In caso di errore (cioè quando
2500 non c'è memoria sufficiente ad allocare i dati) viene restituito \macro{NULL}
2501 ed \var{errno} viene impostata a \errval{ENOMEM}.  La memoria necessaria a
2502 mantenere i dati viene automaticamente allocata da \func{cap\_init}, ma dovrà
2503 essere disallocata esplicitamente quando non è più necessaria utilizzando, per
2504 questo l'interfaccia fornisce una apposita funzione, \funcd{cap\_free}, il cui
2505 prototipo è:
2506 \begin{functions}
2507   \headdecl{sys/capability.h}
2508
2509   \funcdecl{int cap\_free(void *obj\_d)} 
2510   Disalloca la memoria allocata per i dati delle \textit{capabilities}.
2511   
2512   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
2513     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
2514   }
2515 \end{functions}
2516
2517 La funzione permette di liberare la memoria allocata dalle altre funzioni
2518 della libreria sia per un \textit{capability state}, nel qual caso l'argomento
2519 dovrà essere un dato di tipo \type{cap\_t}, che per una descrizione testuale
2520 dello stesso,\footnote{cioè quanto ottenuto tramite la funzione
2521   \func{cap\_to\_text}.} nel qual caso l'argomento dovrà essere un dato di
2522 tipo \texttt{char *}. Per questo l'argomento \param{obj\_d} è dichiarato come
2523 \texttt{void *} e deve sempre corrispondere ad un puntatore ottenuto tramite
2524 le altre funzioni della libreria, altrimenti la funzione fallirà con un errore
2525 di \errval{EINVAL}.
2526
2527 Infine si può creare una copia di un \textit{capability state} ottenuto in
2528 precedenza tramite la funzione \funcd{cap\_dup}, il cui prototipo è:
2529 \begin{functions}
2530   \headdecl{sys/capability.h}
2531
2532   \funcdecl{cap\_t cap\_dup(cap\_t cap\_p)} 
2533   Duplica un \textit{capability state} restituendone una copia.
2534   
2535   \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
2536     \macro{NULL} in caso di errore, nel qual caso \var{errno} potrà assumere i
2537     valori \errval{ENOMEM} o \errval{EINVAL}.  
2538   }
2539 \end{functions}
2540
2541 La funzione crea una copia del \textit{capability state} posto all'indirizzo
2542 \param{cap\_p} che si è passato come argomento, restituendo il puntatore alla
2543 copia, che conterrà gli stessi valori delle \textit{capabilities} presenti
2544 nell'originale. La memoria necessaria viene allocata automaticamente dalla
2545 funzione. Una volta effettuata la copia i due \textit{capability state}
2546 potranno essere modificati in maniera completamente
2547 indipendente.\footnote{alla fine delle operazioni si ricordi però di
2548   disallocare anche la copia, oltre all'originale. }
2549
2550 Una seconda classe di funzioni di servizio previste dall'interfaccia sono
2551 quelle per la gestione dei dati contenuti all'interno di un \textit{capability
2552   state}; la prima di queste è \funcd{cap\_clear}, il cui prototipo è:
2553 \begin{functions}
2554   \headdecl{sys/capability.h}
2555
2556   \funcdecl{int cap\_clear(cap\_t cap\_p)} 
2557   Inizializza un \textit{capability state} cancellando tutte le
2558   \textit{capabilities}.
2559   
2560   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
2561     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
2562   }
2563 \end{functions}
2564
2565 La funzione si limita ad azzerare tutte le \textit{capabilities} presenti nel
2566 \textit{capability state} all'indirizzo \param{cap\_p} passato come argomento,
2567 restituendo uno stato \textsl{vuoto}, analogo a quello che si ottiene nella
2568 creazione con \func{cap\_init}.
2569
2570 Per la gestione dei valori delle \textit{capabilities} presenti in un
2571 \textit{capability state} l'interfaccia prevede due funzioni,
2572 \funcd{cap\_get\_flag} e \funcd{cap\_set\_flag}, che permettono
2573 rispettivamente di leggere o impostare il valore di un flag delle
2574 \textit{capabilities}; i rispettivi prototipi sono:
2575 \begin{functions}
2576   \headdecl{sys/capability.h}
2577
2578   \funcdecl{int cap\_get\_flag(cap\_t cap\_p, cap\_value\_t cap, cap\_flag\_t
2579     flag, cap\_flag\_value\_t *value\_p)}
2580   Legge il valore di una \textit{capability}.
2581
2582   \funcdecl{int cap\_set\_flag(cap\_t cap\_p, cap\_flag\_t flag, int ncap,
2583     cap\_value\_t *caps, cap\_flag\_value\_t value)} 
2584   Imposta il valore di una \textit{capability}.
2585   
2586   \bodydesc{Le funzioni ritornano 0 in caso di successo e $-1$ in caso di
2587     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
2588 }
2589 \end{functions}
2590
2591 In entrambe le funzioni l'argomento \param{cap\_p} indica il puntatore al
2592 \textit{capability state} su cui operare, mentre l'argomento \param{flag}
2593 indica su quale dei tre insiemi illustrati a
2594 pag.~\pageref{sec:capabilities_set} si intende operare. Questi devono essere
2595 specificati con una variabile di tipo \type{cap\_flag\_t} che può assumere
2596 esclusivamente\footnote{si tratta in effetti di un tipo enumerato, come si può
2597   verificare dalla sua definizione che si trova in
2598   \texttt{/usr/include/sys/capability.h}.} uno dei valori illustrati in
2599 tab.~\ref{tab:cap_set_identifier}.
2600
2601 \begin{table}[htb]
2602   \centering
2603   \footnotesize
2604   \begin{tabular}[c]{|l|l|}
2605     \hline
2606     \textbf{Valore} & \textbf{Significato} \\
2607     \hline
2608     \hline
2609     \const{CAP\_EFFECTIVE}  & Capacità dell'insieme \textsl{effettivo}.\\
2610     \const{CAP\_PERMITTED}  & Capacità dell'insieme \textsl{permesso}.\\ 
2611     \const{CAP\_INHERITABLE}& Capacità dell'insieme \textsl{ereditabile}.\\
2612     \hline
2613   \end{tabular}
2614   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_t} che
2615     identifica gli insiemi delle \textit{capabilities}.}
2616   \label{tab:cap_set_identifier}
2617 \end{table}
2618
2619 La capacità che si intende controllare o impostare invece deve essere
2620 specificata attraverso una variabile di tipo \type{cap\_value\_t}, che può
2621 prendere come valore uno qualunque di quelli riportati in
2622 tab.~\ref{tab:proc_capabilities}, in questo caso però non è possibile
2623 combinare diversi valori in una maschera binaria, una variabile di tipo
2624 \type{cap\_value\_t} deve indicare una sola capacità.\footnote{nel file di
2625   header citato nella nota precedente il tipo \type{cap\_value\_t} è definito
2626   come \ctyp{int}, ma i valori validi sono soltanto quelli di
2627   tab.~\ref{tab:proc_capabilities}.}  
2628
2629 Infine lo stato di una capacità è descritto ad una variabile di tipo
2630 \type{cap\_flag\_value\_t}, che a sua volta può assumere soltanto
2631 uno\footnote{anche questo è un tipo enumerato.} dei valori di
2632 tab.~\ref{tab:cap_value_type}.
2633
2634 \begin{table}[htb]
2635   \centering
2636   \footnotesize
2637   \begin{tabular}[c]{|l|l|}
2638     \hline
2639     \textbf{Valore} & \textbf{Significato} \\
2640     \hline
2641     \hline
2642     \const{CAP\_CLEAR}& La capacità non è impostata.\\ 
2643     \const{CAP\_SET}  & La capacità è impostata.\\
2644     \hline
2645   \end{tabular}
2646   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_value\_t} che
2647     indica lo stato di una capacità.}
2648   \label{tab:cap_value_type}
2649 \end{table}
2650
2651 La funzione \func{cap\_get\_flag} legge lo stato della capacità indicata
2652 dall'argomento \param{cap} all'interno dell'insieme indicato dall'argomento
2653 \param{flag} e ne restituisce il valore nella variabile posta all'indirizzo
2654 puntato dall'argomento \param{value\_p}; è possibile cioè leggere soltanto uno
2655 stato di una capacità alla volta.
2656
2657 La funzione \func{cap\_set\_flag} può invece impostare in una sola chiamata
2658 più \textit{capabilities}, anche se solo all'interno dello stesso insieme. Per
2659 questo motivo essa prende un vettore di valori di tipo \type{cap\_value\_t}
2660 nell'argomento \param{caps}, la cui dimensione viene specificata dall'argomento
2661 \param{ncap}. Il tipo di impostazione da eseguire (cancellazione o
2662 impostazione) viene indicato dall'argomento \param{value}.
2663
2664 Per la visualizzazione dello stato delle \textit{capabilities} l'interfaccia
2665 prevede una funzione apposita, \funcd{cap\_to\_text}, il cui prototipo è:
2666 \begin{functions}
2667   \headdecl{sys/capability.h}
2668
2669   \funcdecl{char * cap\_to\_text(cap\_t caps, ssize\_t * length\_p)}
2670
2671   Genera una visualizzazione testuale delle \textit{capabilities}.
2672   
2673   \bodydesc{La funzione ritorna un puntatore alla stringa con la descrizione
2674     delle \textit{capabilities} in caso di successo e \val{NULL} in caso di
2675     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL} o
2676     \errval{ENOMEM}.
2677   }
2678 \end{functions}
2679
2680 La funzione ritorna l'indirizzo di una stringa contente la descrizione
2681 testuale del contenuto del \textit{capabilities state} \param{caps} passato
2682 come argomento, e, qualora l'argomento \param{length\_p} sia diverso da
2683 \val{NULL}, restituisce nella variabile intera da questo puntata la lunghezza
2684 della stringa. La stringa restituita viene allocata automaticamente dalla
2685 funzione e pertanto dovrà essere liberata con \func{cap\_free}.
2686
2687 Fin quei abbiamo trattato solo le funzioni di servizio relative alla
2688 manipolazione dei \textit{capabilities state}; l'interfaccia di gestione
2689 prevede però anche le funzioni per la gestione delle \textit{capabilities}
2690 stesse. La prima di queste è \funcd{cap\_get\_proc} che consente la lettura
2691 delle \textit{capabilities} del processo corrente, il suo prototipo è:
2692 \begin{functions}
2693   \headdecl{sys/capability.h}
2694
2695   \funcdecl{cap\_t cap\_get\_proc(void)}
2696   Legge le \textit{capabilities} del processo corrente.
2697   
2698   \bodydesc{La funzione ritorna un valore diverso da \val{NULL} in caso di
2699     successo e \val{NULL} in caso di errore, nel qual caso \var{errno} può
2700     assumere i valori \errval{EINVAL}, \errval{EPERM} o \errval{ENOMEM}.  }
2701 \end{functions}
2702
2703 La funzione legge il valore delle \textit{capabilities} associate al processo
2704 da cui viene invocata, restituendo il risultato tramite il puntatore ad un
2705 \textit{capabilities state} contenente tutti i dati che provvede ad allocare
2706 autonomamente e che di nuovo occorrerà liberare con \func{cap\_free} quando
2707 non sarà più utilizzato.
2708
2709 Se invece si vogliono leggere le \textit{capabilities} di un processo
2710 specifico occorre usare la funzione \funcd{capgetp}, il cui
2711 prototipo\footnote{su alcune pagine di manuale la funzione è descritta con un
2712   prototipo sbagliato, che prevede un valore di ritorno di tipo \type{cap\_t},
2713   ma il valore di ritorno è intero, come si può verificare anche dalla
2714   dichiarazione della stessa in \texttt{sys/capability.h}.} è:
2715 \begin{functions}
2716   \headdecl{sys/capability.h}
2717
2718   \funcdecl{int capgetp(pid\_t pid, cap\_t cap\_d)}
2719   Legge le \textit{capabilities} del processo indicato da \param{pid}.
2720   
2721   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
2722     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
2723     \errval{EPERM} o \errval{ENOMEM}.  
2724   }
2725 \end{functions}
2726 %TODO controllare e correggere i codici di errore!!!
2727
2728 La funzione legge il valore delle \textit{capabilities} del processo indicato
2729 con l'argomento \param{pid}, e restituisce il risultato nel
2730 \textit{capabilities state} posto all'indirizzo indicato con l'argomento
2731 \param{cap\_d}; a differenza della precedente in questo caso il
2732 \textit{capability state} deve essere stato creato in precedenza. Qualora il
2733 processo indicato non esista si avrà un errore di \errval{ESRCH}. Gli stessi
2734 valori possono essere letti direttamente nel filesystem \textit{proc}, nei
2735 file \texttt{/proc/<pid>/status}; ad esempio per \texttt{init} si otterrà
2736 qualcosa del tipo:
2737 \begin{Verbatim}
2738 ...
2739 CapInh: 0000000000000000
2740 CapPrm: 00000000fffffeff
2741 CapEff: 00000000fffffeff  
2742 ...
2743 \end{Verbatim}
2744
2745 Infine per impostare le \textit{capabilities} del processo corrente (non
2746 esiste una funzione che permetta di cambiare le \textit{capabilities} di un
2747 altro processo) si deve usare la funzione \funcd{cap\_set\_proc}, il cui
2748 prototipo è:
2749 \begin{functions}
2750   \headdecl{sys/capability.h}
2751
2752   \funcdecl{int cap\_set\_proc(cap\_t cap\_p)}
2753   Imposta le \textit{capabilities} del processo corrente.
2754   
2755   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
2756     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
2757     \errval{EPERM} o \errval{ENOMEM}.  
2758   }
2759 \end{functions}
2760
2761 La funzione modifica le \textit{capabilities} del processo corrente secondo
2762 quanto specificato con l'argomento \param{cap\_p}, posto che questo sia
2763 possibile nei termini spiegati in precedenza (non sarà ad esempio possibile
2764 impostare capacità non presenti nell'insieme di quelle permesse). In caso di
2765 successo i nuovi valori saranno effettivi al ritorno della funzione, in caso
2766 di fallimento invece lo stato delle capacità resterà invariato. Si tenga
2767 presente che \textsl{tutte} le capacità specificate tramite \param{cap\_p}
2768 devono essere permesse; se anche una sola non lo è la funzione fallirà, e per
2769 quanto appena detto, lo stato delle \textit{capabilities} non verrà modificato
2770 (neanche per le parti eventualmente permesse).
2771
2772 Come esempio di utilizzo di queste funzioni nei sorgenti allegati alla guida
2773 si è distribuito il programma \texttt{getcap.c}, che consente di leggere le
2774 \textit{capabilities} del processo corrente\footnote{vale a dire di sé stesso,
2775   quando lo si lancia, il che può sembrare inutile, ma serve a mostrarci quali
2776   sono le \textit{capabilities} standard che ottiene un processo lanciato
2777   dalla riga di comando.} o tramite l'opzione \texttt{-p}, quelle di un
2778 processo qualunque il cui pid viene passato come parametro dell'opzione.
2779
2780 \begin{figure}[htb]
2781   \footnotesize \centering
2782   \begin{minipage}[c]{15cm}
2783     \includecodesample{listati/getcap.c}
2784   \end{minipage} 
2785   \normalsize
2786   \caption{Corpo principale del programma \texttt{getcap.c}.}
2787   \label{fig:proc_getcap}
2788 \end{figure}
2789
2790 La sezione principale del programma è riportata in fig.~\ref{fig:proc_getcap},
2791 e si basa su una condizione sulla variabile \var{pid} che se si è usato
2792 l'opzione \texttt{-p} è impostata (nella sezione di gestione delle opzioni,
2793 che si è tralasciata) al valore del \textsl{pid} del processo di cui si vuole
2794 leggere le \textit{capabilities} e nulla altrimenti. Nel primo caso
2795 (\texttt{\small 1--6}) si utilizza direttamente (\texttt{\small 2})
2796 \func{cap\_get\_proc} per ottenere lo stato delle capacità del processo, nel
2797 secondo (\texttt{\small 7--14}) prima si inizializza (\texttt{\small 8}) uno
2798 stato vuoto e poi (\texttt{\small 9}) si legge il valore delle capacità del
2799 processo indicato.
2800
2801 Il passo successivo è utilizzare (\texttt{\small 16}) \func{cap\_to\_text} per
2802 tradurre in una stringa lo stato, e poi (\texttt{\small 17}) stamparlo; infine
2803 (\texttt{\small 19--20}) si libera la memoria allocata dalle precedenti
2804 funzioni con \func{cap\_free} per poi ritornare dal ciclo principale della
2805 funzione.
2806
2807 \itindend{capabilities}
2808
2809 % TODO vedi http://lwn.net/Articles/198557/ e 
2810 % http://www.madore.org/~david/linux/newcaps/
2811 % TODO documentare prctl ...
2812  
2813
2814 % TODO: rivedere alla luce degli aggiornamenti del 2.6 (man sched_setscheduler)
2815
2816 \section{La gestione della priorità di esecuzione}
2817 \label{sec:proc_priority}
2818
2819 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
2820 lo \itindex{scheduler} \textit{scheduler} assegna la CPU ai vari processi
2821 attivi.  In particolare prenderemo in esame i vari meccanismi con cui viene
2822 gestita l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
2823 gestione.
2824
2825
2826 \subsection{I meccanismi di \textit{scheduling}}
2827 \label{sec:proc_sched}
2828
2829 \itindbeg{scheduler}
2830
2831 La scelta di un meccanismo che sia in grado di distribuire in maniera efficace
2832 il tempo di CPU per l'esecuzione dei processi è sempre una questione delicata,
2833 ed oggetto di numerose ricerche; in generale essa dipende in maniera
2834 essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
2835 cui non esiste un meccanismo che sia valido per tutti gli usi.
2836
2837 La caratteristica specifica di un sistema multitasking come Linux è quella del
2838 cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
2839   multitasking}: questo significa che al contrario di altri sistemi (che usano
2840 invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
2841   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
2842 quando la CPU deve essere passata ad un altro processo. Come accennato in
2843 sez.~\ref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
2844 apposita del kernel, lo \textit{scheduler}, il cui scopo è quello di
2845 distribuire al meglio il tempo di CPU fra i vari processi.
2846
2847 La cosa è resa ancora più complicata dal fatto che con le architetture
2848 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
2849 utilizzare.\footnote{nei processori moderni la presenza di ampie cache può
2850   rendere poco efficiente trasferire l'esecuzione di un processo da una CPU ad
2851   un'altra, per cui effettuare la migliore scelta fra le diverse CPU non è
2852   banale.}  Tutto questo comunque appartiene alle sottigliezze
2853 dell'implementazione del kernel; dal punto di vista dei programmi che girano
2854 in user space, anche quando si hanno più processori (e dei processi che sono
2855 eseguiti davvero in contemporanea), le politiche di scheduling riguardano
2856 semplicemente l'allocazione della risorsa \textsl{tempo di esecuzione}, la cui
2857 assegnazione sarà governata dai meccanismi di scelta delle priorità che
2858 restano gli stessi indipendentemente dal numero di processori.
2859
2860 Si tenga conto poi che i processi non devono solo eseguire del codice: ad
2861 esempio molto spesso saranno impegnati in operazioni di I/O, o potranno
2862 venire bloccati da un comando dal terminale, o sospesi per un certo periodo di
2863 tempo.  In tutti questi casi la CPU diventa disponibile ed è compito dello
2864 kernel provvedere a mettere in esecuzione un altro processo.
2865
2866 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
2867 processo, in Linux un processo può trovarsi in uno degli stati riportati in
2868 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
2869 \textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
2870 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
2871 fintanto che esso si trova in uno qualunque degli altri stati.
2872
2873 \begin{table}[htb]
2874   \footnotesize
2875   \centering
2876   \begin{tabular}[c]{|p{2.8cm}|c|p{10cm}|}
2877     \hline
2878     \textbf{Stato} & \texttt{STAT} & \textbf{Descrizione} \\
2879     \hline
2880     \hline
2881     \textbf{Runnable}& \texttt{R} & Il processo è in esecuzione o è pronto ad
2882                                     essere eseguito (cioè è in attesa che gli
2883                                     venga assegnata la CPU). \\
2884     \textbf{Sleep}   & \texttt{S} & Il processo  è in attesa di un
2885                                     risposta dal sistema, ma può essere 
2886                                     interrotto da un segnale. \\
2887     \textbf{Uninterrutible Sleep}& \texttt{D} & Il  processo è in
2888                                     attesa di un risposta dal sistema (in 
2889                                     genere per I/O), e non può essere
2890                                     interrotto in nessuna circostanza. \\
2891     \textbf{Stopped} & \texttt{T} & Il processo è stato fermato con un
2892                                     \const{SIGSTOP}, o è tracciato.\\
2893     \textbf{Zombie}\index{zombie} & \texttt{Z} & Il processo è terminato ma il
2894                                     suo stato di terminazione non è ancora
2895                                     stato letto dal padre. \\
2896     \textbf{Killable}& \texttt{D} & Un nuovo stato introdotto con il kernel
2897                                     2.6.25, sostanzialmente identico
2898                                     all'\textbf{Uninterrutible Sleep} con la
2899                                     sola differenza che il processo può
2900                                     terminato (con \const{SIGKILL}). \\ 
2901     \hline
2902   \end{tabular}
2903   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
2904     \texttt{STAT} si è riportata la corrispondente lettera usata dal comando 
2905     \cmd{ps} nell'omonimo campo.}
2906   \label{tab:proc_proc_states}
2907 \end{table}
2908
2909 % TODO nel 2.6.25 è stato aggiunto TASK_KILLABLE, da capire dova va messo.
2910
2911 Si deve quindi tenere presente che l'utilizzo della CPU è soltanto una delle
2912 risorse che sono necessarie per l'esecuzione di un programma, e a seconda
2913 dello scopo del programma non è detto neanche che sia la più importante (molti
2914 programmi dipendono in maniera molto più critica dall'I/O). Per questo motivo
2915 non è affatto detto che dare ad un programma la massima priorità di esecuzione
2916 abbia risultati significativi in termini di prestazioni.
2917
2918 Il meccanismo tradizionale di scheduling di Unix (che tratteremo in
2919 sez.~\ref{sec:proc_sched_stand}) è sempre stato basato su delle
2920 \textsl{priorità dinamiche}, in modo da assicurare che tutti i processi, anche
2921 i meno importanti, possano ricevere un po' di tempo di CPU. In sostanza quando
2922 un processo ottiene la CPU la sua priorità viene diminuita. In questo modo
2923 alla fine, anche un processo con priorità iniziale molto bassa, finisce per
2924 avere una priorità sufficiente per essere eseguito.
2925
2926 Lo standard POSIX.1b però ha introdotto il concetto di \textsl{priorità
2927   assoluta}, (chiamata anche \textsl{priorità statica}, in contrapposizione
2928 alla normale priorità dinamica), per tenere conto dei sistemi
2929 real-time,\footnote{per sistema real-time si intende un sistema in grado di
2930   eseguire operazioni in un tempo ben determinato; in genere si tende a
2931   distinguere fra l'\textit{hard real-time} in cui è necessario che i tempi di
2932   esecuzione di un programma siano determinabili con certezza assoluta (come
2933   nel caso di meccanismi di controllo di macchine, dove uno sforamento dei
2934   tempi avrebbe conseguenze disastrose), e \textit{soft-real-time} in cui un
2935   occasionale sforamento è ritenuto accettabile.} in cui è vitale che i
2936 processi che devono essere eseguiti in un determinato momento non debbano
2937 aspettare la conclusione di altri che non hanno questa necessità.
2938
2939 Il concetto di priorità assoluta dice che quando due processi si contendono
2940 l'esecuzione, vince sempre quello con la priorità assoluta più alta.
2941 Ovviamente questo avviene solo per i processi che sono pronti per essere
2942 eseguiti (cioè nello stato \textit{runnable}).  La priorità assoluta viene in
2943 genere indicata con un numero intero, ed un valore più alto comporta una
2944 priorità maggiore. Su questa politica di scheduling torneremo in
2945 sez.~\ref{sec:proc_real_time}.
2946
2947 In generale quello che succede in tutti gli Unix moderni è che ai processi
2948 normali viene sempre data una priorità assoluta pari a zero, e la decisione di
2949 assegnazione della CPU è fatta solo con il meccanismo tradizionale della
2950 priorità dinamica. In Linux tuttavia è possibile assegnare anche una priorità
2951 assoluta, nel qual caso un processo avrà la precedenza su tutti gli altri di
2952 priorità inferiore, che saranno eseguiti solo quando quest'ultimo non avrà
2953 bisogno della CPU.
2954
2955
2956 \subsection{Il meccanismo di \textit{scheduling} standard}
2957 \label{sec:proc_sched_stand}
2958
2959 A meno che non si abbiano esigenze specifiche, l'unico meccanismo di
2960 scheduling con il quale si avrà a che fare è quello tradizionale, che prevede
2961 solo priorità dinamiche. È di questo che, di norma, ci si dovrà preoccupare
2962 nella programmazione.
2963
2964 Come accennato in Linux tutti i processi ordinari hanno la stessa priorità
2965 assoluta. Quello che determina quale, fra tutti i processi in attesa di
2966 esecuzione, sarà eseguito per primo, è la priorità dinamica, che è chiamata
2967 così proprio perché varia nel corso dell'esecuzione di un processo. Oltre a
2968 questo la priorità dinamica determina quanto a lungo un processo continuerà ad
2969 essere eseguito, e quando un processo potrà subentrare ad un altro
2970 nell'esecuzione.
2971
2972 Il meccanismo usato da Linux è piuttosto semplice,\footnote{in realtà nella
2973   serie 2.6.x lo scheduler è stato riscritto da zero e può usare diversi
2974   algoritmi, selezionabili sia in fase di compilazione, che, nelle versioni
2975   più recenti, all'avvio (addirittura è stato ideato un sistema modulare che
2976   permette di cambiare lo scheduler al volo, che comunque non è incluso nel
2977   kernel ufficiale).} ad ogni processo è assegnata una \textit{time-slice},
2978 cioè un intervallo di tempo (letteralmente una fetta) per il quale esso deve
2979 essere eseguito. Il valore della \textit{time-slice} è controllato dalla
2980 cosiddetta \textit{nice} (o \textit{niceness}) del processo.  Essa è contenuta
2981 nel campo \var{nice} di \struct{task\_struct}; tutti i processi vengono creati
2982 con lo stesso valore, ed essa specifica il valore della durata iniziale della
2983 \textit{time-slice} che viene assegnato ad un altro campo della struttura
2984 (\var{counter}) quando il processo viene eseguito per la prima volta e
2985 diminuito progressivamente ad ogni interruzione del timer.
2986
2987 Durante la sua esecuzione lo scheduler scandisce la coda dei processi in stato
2988 \textit{runnable} associando, in base al valore di \var{counter}, un peso ad
2989 ogni processo in attesa di esecuzione,\footnote{il calcolo del peso in realtà
2990   è un po' più complicato, ad esempio nei sistemi multiprocessore viene
2991   favorito un processo eseguito sulla stessa CPU, e a parità del valore di
2992   \var{counter} viene favorito chi ha una priorità più elevata.} chi ha il
2993 peso più alto verrà posto in esecuzione, ed il precedente processo sarà
2994 spostato in fondo alla coda.  Dato che ad ogni interruzione del timer il
2995 valore di \var{counter} del processo corrente viene diminuito, questo assicura
2996 che anche i processi con priorità più bassa verranno messi in esecuzione.
2997
2998 La priorità di un processo è così controllata attraverso il valore di
2999 \var{nice}, che stabilisce la durata della \textit{time-slice}; per il
3000 meccanismo appena descritto infatti un valore più lungo assicura una maggiore
3001 attribuzione di CPU.  L'origine del nome di questo parametro sta nel fatto che
3002 generalmente questo viene usato per diminuire la priorità di un processo, come
3003 misura di cortesia nei confronti degli altri.  I processi infatti vengono
3004 creati dal sistema con lo stesso valore di \var{nice} (nullo) e nessuno è
3005 privilegiato rispetto agli altri; il valore può essere modificato solo
3006 attraverso la funzione \funcd{nice}, il cui prototipo è:
3007 \begin{prototype}{unistd.h}
3008 {int nice(int inc)}
3009   Aumenta il valore di \var{nice} per il processo corrente.
3010   
3011   \bodydesc{La funzione ritorna zero o il nuovo valore di \var{nice} in caso
3012     di successo e -1 in caso di errore, nel qual caso \var{errno} può assumere
3013     i valori:
3014   \begin{errlist}
3015   \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
3016     specificato un valore di \param{inc} negativo.
3017   \end{errlist}}
3018 \end{prototype}
3019
3020 L'argomento \param{inc} indica l'incremento del valore di \var{nice}:
3021 quest'ultimo può assumere valori compresi fra \const{PRIO\_MIN} e
3022 \const{PRIO\_MAX} (che nel caso di Linux sono $-19$ e $20$), ma per
3023 \param{inc} si può specificare un valore qualunque, positivo o negativo, ed il
3024 sistema provvederà a troncare il risultato nell'intervallo consentito. Valori
3025 positivi comportano maggiore \textit{cortesia} e cioè una diminuzione della
3026 priorità, ogni utente può solo innalzare il valore di un suo processo. Solo
3027 l'amministratore può specificare valori negativi che permettono di aumentare
3028 la priorità di un processo.
3029
3030 Gli standard SUSv2 e POSIX.1 prevedono che la funzione ritorni il nuovo valore
3031 di \var{nice} del processo; tuttavia la system call di Linux non segue questa
3032 convenzione e restituisce sempre 0 in caso di successo, questo perché $-1$ è
3033 un valore di \var{nice} legittimo e questo comporta una confusione con una
3034 eventuale condizione di errore. 
3035
3036 Fino alle \acr{glibc} 2.2.4 la funzione di libreria riportava direttamente il
3037 valore ottenuto dalla system call, violando lo standard, per cui per ottenere
3038 il nuovo valore occorreva una successiva chiamata alla funzione
3039 \func{getpriority}. A partire dalla \acr{glibc} 2.2.4 \func{nice} è stata
3040 reimplementata come funzione di libreria, e restituisce il valore di
3041 \var{nice} come richiesto dallo standard.\footnote{questo viene fatto
3042   chiamando al suo interno \func{getpriority}, ed è questo il motivo delle due
3043   possibilità per i valori di ritorno citati nella descrizione del prototipo.}
3044 In questo caso l'unico modo per rilevare in maniera affidabile una condizione
3045 di errore è quello di azzerare \var{errno} prima della chiamata della funzione
3046 e verificarne il valore quando \func{nice} restituisce $-1$.
3047
3048
3049 Per leggere il valore di nice di un processo occorre usare la funzione
3050 \funcd{getpriority}, derivata da BSD; il suo prototipo è:
3051 \begin{prototype}{sys/resource.h}
3052 {int getpriority(int which, int who)}
3053   
3054 Restituisce il valore di \var{nice} per l'insieme dei processi specificati.
3055
3056   \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso di
3057     errore, nel qual caso \var{errno} può assumere i valori:
3058   \begin{errlist}
3059   \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
3060   \param{which} e \param{who}.
3061   \item[\errcode{EINVAL}] il valore di \param{which} non è valido.
3062   \end{errlist}}
3063 \end{prototype}
3064 \noindent nelle vecchie versioni può essere necessario includere anche
3065 \file{<sys/time.h>}, questo non è più necessario con versioni recenti delle
3066 librerie, ma è comunque utile per portabilità.
3067
3068 La funzione permette, a seconda del valore di \param{which}, di leggere la
3069 priorità di un processo, di un gruppo di processi (vedi
3070 sez.~\ref{sec:sess_proc_group}) o di un utente, specificando un corrispondente
3071 valore per \param{who} secondo la legenda di tab.~\ref{tab:proc_getpriority};
3072 un valore nullo di quest'ultimo indica il processo, il gruppo di processi o
3073 l'utente correnti.
3074
3075 \begin{table}[htb]
3076   \centering
3077   \footnotesize
3078   \begin{tabular}[c]{|c|c|l|}
3079     \hline
3080     \param{which} & \param{who} & \textbf{Significato} \\
3081     \hline
3082     \hline
3083     \const{PRIO\_PROCESS} & \type{pid\_t} & processo  \\
3084     \const{PRIO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
3085                                             \textit{process group}  \\ 
3086     \const{PRIO\_USER}    & \type{uid\_t} & utente \\
3087     \hline
3088   \end{tabular}
3089   \caption{Legenda del valore dell'argomento \param{which} e del tipo
3090     dell'argomento \param{who} delle funzioni \func{getpriority} e
3091     \func{setpriority} per le tre possibili scelte.}
3092   \label{tab:proc_getpriority}
3093 \end{table}
3094
3095 La funzione restituisce la priorità più alta (cioè il valore più basso) fra
3096 quelle dei processi specificati; di nuovo, dato che $-1$ è un valore
3097 possibile, per poter rilevare una condizione di errore è necessario cancellare
3098 sempre \var{errno} prima della chiamata alla funzione per verificare che essa
3099 resti uguale a zero.
3100
3101 Analoga a \func{getpriority} è la funzione \funcd{setpriority} che permette di
3102 impostare la priorità di uno o più processi; il suo prototipo è:
3103 \begin{prototype}{sys/resource.h}
3104 {int setpriority(int which, int who, int prio)}  
3105   Imposta la priorità per l'insieme dei processi specificati.
3106
3107   \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso di
3108     errore, nel qual caso \var{errno} può assumere i valori:
3109   \begin{errlist}
3110   \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
3111   \param{which} e \param{who}.
3112   \item[\errcode{EINVAL}] il valore di \param{which} non è valido.
3113   \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
3114     specificato un valore di \param{inc} negativo.
3115   \item[\errcode{EACCES}] un processo senza i privilegi di amministratore ha
3116     cercato di modificare la priorità di un processo di un altro utente.
3117   \end{errlist}}
3118 \end{prototype}
3119
3120 La funzione imposta la priorità al valore specificato da \param{prio} per
3121 tutti i processi indicati dagli argomenti \param{which} e \param{who}.  La
3122 gestione dei permessi dipende dalle varie implementazioni; in Linux, secondo
3123 le specifiche dello standard SUSv3, e come avviene per tutti i sistemi che
3124 derivano da SysV, è richiesto che l'user-ID reale o effettivo del processo
3125 chiamante corrispondano al real user-ID (e solo quello) del processo di cui si
3126 vuole cambiare la priorità; per i sistemi derivati da BSD invece (SunOS,
3127 Ultrix, *BSD) la corrispondenza può essere anche con l'user-ID effettivo.
3128
3129
3130
3131 \subsection{Il meccanismo di \textit{scheduling real-time}}
3132 \label{sec:proc_real_time}
3133
3134 Come spiegato in sez.~\ref{sec:proc_sched} lo standard POSIX.1b ha introdotto
3135 le priorità assolute per permettere la gestione di processi real-time. In
3136 realtà nel caso di Linux non si tratta di un vero hard real-time, in quanto in
3137 presenza di eventuali interrupt il kernel interrompe l'esecuzione di un
3138 processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
3139   siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
3140   ottenere un sistema effettivamente hard real-time. In tal caso infatti gli
3141   interrupt vengono intercettati dall'interfaccia real-time (o nel caso di
3142   Adeos gestiti dalle code del nano-kernel), in modo da poterli controllare
3143   direttamente qualora ci sia la necessità di avere un processo con priorità
3144   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
3145 \itindex{page~fault} \textit{page fault} si possono avere ritardi non
3146 previsti.  Se l'ultimo problema può essere aggirato attraverso l'uso delle
3147 funzioni di controllo della memoria virtuale (vedi
3148 sez.~\ref{sec:proc_mem_lock}), il primo non è superabile e può comportare
3149 ritardi non prevedibili riguardo ai tempi di esecuzione di qualunque processo.
3150
3151 Occorre usare le priorità assolute con molta attenzione: se si dà ad un
3152 processo una priorità assoluta e questo finisce in un loop infinito, nessun
3153 altro processo potrà essere eseguito, ed esso sarà mantenuto in esecuzione
3154 permanentemente assorbendo tutta la CPU e senza nessuna possibilità di
3155 riottenere l'accesso al sistema. Per questo motivo è sempre opportuno, quando
3156 si lavora con processi che usano priorità assolute, tenere attiva una shell
3157 cui si sia assegnata la massima priorità assoluta, in modo da poter essere
3158 comunque in grado di rientrare nel sistema.
3159
3160 Quando c'è un processo con priorità assoluta lo scheduler lo metterà in
3161 esecuzione prima di ogni processo normale. In caso di più processi sarà
3162 eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
3163 processi con la stessa priorità assoluta questi vengono tenuti in una coda e
3164 tocca al kernel decidere quale deve essere eseguito.  Il meccanismo con cui
3165 vengono gestiti questi processi dipende dalla politica di scheduling che si è
3166 scelta; lo standard ne prevede due:
3167 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
3168 \item[\textsf{FIFO}] \textit{First In First Out}. Il processo viene eseguito
3169   fintanto che non cede volontariamente la CPU (con \func{sched\_yield}), si
3170   blocca, finisce o viene interrotto da un processo a priorità più alta. Se il
3171   processo viene interrotto da uno a priorità più alta esso resterà in cima
3172   alla lista e sarà il primo ad essere eseguito quando i processi a priorità
3173   più alta diverranno inattivi. Se invece lo si blocca volontariamente sarà
3174   posto in coda alla lista (ed altri processi con la stessa priorità potranno
3175   essere eseguiti).
3176 \item[\textsf{RR}] \textit{Round Robin}. Il comportamento è del tutto analogo
3177   a quello precedente, con la sola differenza che ciascun processo viene
3178   eseguito al massimo per un certo periodo di tempo (la cosiddetta
3179   \textit{time slice}) dopo di che viene automaticamente posto in fondo alla
3180   coda dei processi con la stessa priorità. In questo modo si ha comunque una
3181   esecuzione a turno di tutti i processi, da cui il nome della politica. Solo
3182   i processi con la stessa priorità ed in stato \textit{runnable} entrano nel
3183   \textsl{girotondo}.
3184 \end{basedescript}
3185
3186 La funzione per impostare le politiche di scheduling (sia real-time che
3187 ordinarie) ed i relativi parametri è \funcd{sched\_setscheduler}; il suo
3188 prototipo è:
3189 \begin{prototype}{sched.h}
3190 {int sched\_setscheduler(pid\_t pid, int policy, const struct sched\_param *p)}
3191   Imposta priorità e politica di scheduling.
3192   
3193   \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso
3194     di errore, nel qual caso \var{errno} può assumere i valori:
3195     \begin{errlist}
3196     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3197     \item[\errcode{EINVAL}] il valore di \param{policy} non esiste o il
3198       relativo valore di \param{p} non è valido.
3199     \item[\errcode{EPERM}] il processo non ha i privilegi per attivare la
3200       politica richiesta.
3201   \end{errlist}}
3202 \end{prototype}
3203
3204 La funzione esegue l'impostazione per il processo specificato dall'argomento
3205 \param{pid}; un valore nullo esegue l'impostazione per il processo corrente.
3206 La politica di scheduling è specificata dall'argomento \param{policy} i cui
3207 possibili valori sono riportati in tab.~\ref{tab:proc_sched_policy}; un valore
3208 negativo per \param{policy} mantiene la politica di scheduling corrente.
3209 Solo un processo con i privilegi di amministratore può impostare priorità
3210 assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
3211
3212 \begin{table}[htb]
3213   \centering
3214   \footnotesize
3215   \begin{tabular}[c]{|l|l|}
3216     \hline
3217     \textbf{Policy}  & \textbf{Significato} \\
3218     \hline
3219     \hline
3220     \const{SCHED\_FIFO} & Scheduling real-time con politica \textit{FIFO}. \\
3221     \const{SCHED\_RR}   & Scheduling real-time con politica \textit{Round
3222       Robin}. \\
3223     \const{SCHED\_OTHER}& Scheduling ordinario.\\
3224     \const{SCHED\_BATCH}& Scheduling ordinario con l'assunzione ulteriore di
3225     lavoro \textit{CPU intensive}.\footnotemark\\
3226     \hline
3227   \end{tabular}
3228   \caption{Valori dell'argomento \param{policy} per la funzione
3229     \func{sched\_setscheduler}.}
3230   \label{tab:proc_sched_policy}
3231 \end{table}
3232
3233 \footnotetext{introdotto con il kernel 2.6.16.}
3234
3235 % TODO manca SCHED_IDLE
3236
3237 Il valore della priorità è passato attraverso la struttura
3238 \struct{sched\_param} (riportata in fig.~\ref{fig:sig_sched_param}), il cui
3239 solo campo attualmente definito è \var{sched\_priority}, che nel caso delle
3240 priorità assolute deve essere specificato nell'intervallo fra un valore
3241 massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99; il valore
3242 nullo è legale, ma indica i processi normali.
3243
3244 \begin{figure}[!bht]
3245   \footnotesize \centering
3246   \begin{minipage}[c]{15cm}
3247     \includestruct{listati/sched_param.c}
3248   \end{minipage} 
3249   \normalsize 
3250   \caption{La struttura \structd{sched\_param}.} 
3251   \label{fig:sig_sched_param}
3252 \end{figure}
3253
3254 Si tenga presente che quando si imposta una politica di scheduling real-time
3255 per un processo (o se ne cambia la priorità con \func{sched\_setparam}) questo
3256 viene messo in cima alla lista dei processi con la stessa priorità; questo
3257 comporta che verrà eseguito subito, interrompendo eventuali altri processi con
3258 la stessa priorità in quel momento in esecuzione.
3259
3260 Lo standard POSIX.1b prevede comunque che i due valori della massima e minima
3261 priorità statica possano essere ottenuti, per ciascuna delle politiche di
3262 scheduling \textit{real-time}, tramite le due funzioni
3263 \funcd{sched\_get\_priority\_max} e \funcd{sched\_get\_priority\_min}, i cui
3264 prototipi sono:
3265 \begin{functions}
3266   \headdecl{sched.h}
3267   
3268   \funcdecl{int sched\_get\_priority\_max(int policy)} Legge il valore
3269   massimo della priorità statica per la politica di scheduling \param{policy}.
3270
3271   
3272   \funcdecl{int sched\_get\_priority\_min(int policy)} Legge il valore minimo
3273   della priorità statica per la politica di scheduling \param{policy}.
3274   
3275   \bodydesc{La funzioni ritornano il valore della priorità in caso di successo
3276     e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
3277     \begin{errlist}
3278     \item[\errcode{EINVAL}] il valore di \param{policy} non è valido.
3279   \end{errlist}}
3280 \end{functions}
3281
3282
3283 I processi con politica di scheduling \const{SCHED\_OTHER} devono specificare
3284 un valore nullo (altrimenti si avrà un errore \errcode{EINVAL}), questo valore
3285 infatti non ha niente a che vedere con la priorità dinamica determinata dal
3286 valore di \var{nice}, che deve essere impostato con le funzioni viste in
3287 precedenza.
3288
3289 Il kernel mantiene i processi con la stessa priorità assoluta in una lista, ed
3290 esegue sempre il primo della lista, mentre un nuovo processo che torna in
3291 stato \textit{runnable} viene sempre inserito in coda alla lista. Se la
3292 politica scelta è \const{SCHED\_FIFO} quando il processo viene eseguito viene
3293 automaticamente rimesso in coda alla lista, e la sua esecuzione continua
3294 fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
3295 volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
3296 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
3297 nel caso che esso sia stato interrotto da un processo a priorità più alta.
3298
3299 Se si intende operare solo sulla priorità assoluta di un processo si possono
3300 usare le funzioni \funcd{sched\_setparam} e \funcd{sched\_getparam}, i cui
3301 prototipi sono:
3302 \begin{functions}
3303   \headdecl{sched.h}
3304
3305   \funcdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *p)}
3306   Imposta la priorità assoluta del processo \param{pid}.
3307
3308   \funcdecl{int sched\_getparam(pid\_t pid, struct sched\_param *p)}
3309   Legge la priorità assoluta del processo \param{pid}.
3310
3311   \bodydesc{La funzione ritorna la priorità  in caso di successo
3312     e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
3313     \begin{errlist}
3314     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3315     \item[\errcode{EINVAL}] il valore di \param{p} non ha senso per la
3316       politica scelta.
3317     \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
3318       eseguire l'operazione.
3319   \end{errlist}}
3320 \end{functions}
3321
3322 L'uso di \func{sched\_setparam} che è del tutto equivalente a
3323 \func{sched\_setscheduler} con \param{priority} uguale a -1. Come per
3324 \func{sched\_setscheduler} specificando 0 come valore di \param{pid} si opera
3325 sul processo corrente. La disponibilità di entrambe le funzioni può essere
3326 verificata controllando la macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è
3327 definita nell'header \file{sched.h}. 
3328
3329 Si tenga presente che per eseguire la funzione il processo chiamante deve
3330 avere un user-ID effettivo uguale all'user-ID reale o a quello effettivo del
3331 processo di cui vuole cambiare la priorità, oppure deve avere i privilegi di
3332 amministratore (con la capacità \const{CAP\_SYS\_NICE}).
3333
3334 La priorità assoluta può essere riletta indietro dalla funzione
3335 \funcd{sched\_getscheduler}, il cui prototipo è:
3336 \begin{prototype}{sched.h}
3337 {int sched\_getscheduler(pid\_t pid)}
3338   Legge la politica di scheduling per il processo \param{pid}.
3339   
3340   \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
3341     e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
3342     \begin{errlist}
3343     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3344     \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
3345   \end{errlist}}
3346 \end{prototype}
3347
3348 La funzione restituisce il valore (secondo quanto elencato in
3349 tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
3350 specificato; se \param{pid} è nullo viene restituito quello del processo
3351 chiamante.
3352
3353 L'ultima funzione che permette di leggere le informazioni relative ai processi
3354 real-time è \funcd{sched\_rr\_get\_interval}, che permette di ottenere la
3355 lunghezza della \textit{time slice} usata dalla politica \textit{round robin};
3356 il suo prototipo è:
3357 \begin{prototype}{sched.h}
3358   {int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)} Legge in
3359   \param{tp} la durata della \textit{time slice} per il processo \param{pid}.
3360   
3361   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
3362     nel qual caso \var{errno} può assumere i valori:
3363     \begin{errlist}
3364     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3365     \item[\errcode{ENOSYS}] la system call non è stata implementata.
3366   \end{errlist}}
3367 \end{prototype}
3368
3369 La funzione restituisce il valore dell'intervallo di tempo usato per la
3370 politica \textit{round robin} in una struttura \struct{timespec}, (la cui
3371 definizione si può trovare in fig.~\ref{fig:sys_timeval_struct}). In realtà
3372 dato che in Linux questo intervallo di tempo è prefissato e non modificabile,
3373 questa funzione ritorna sempre un valore di 150 millisecondi, e non importa
3374 specificare il PID di un processo reale.
3375
3376 Come accennato ogni processo che usa lo scheduling real-time può rilasciare
3377 volontariamente la CPU; questo viene fatto attraverso la funzione
3378 \funcd{sched\_yield}, il cui prototipo è:
3379 \begin{prototype}{sched.h}
3380   {int sched\_yield(void)} 
3381   
3382   Rilascia volontariamente l'esecuzione.
3383   
3384   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
3385     nel qual caso \var{errno} viene impostata opportunamente.}
3386 \end{prototype}
3387
3388 La funzione fa sì che il processo rilasci la CPU, in modo da essere rimesso in
3389 coda alla lista dei processi da eseguire, e permettere l'esecuzione di un
3390 altro processo; se però il processo è l'unico ad essere presente sulla coda
3391 l'esecuzione non sarà interrotta. In genere usano questa funzione i processi
3392 in modalità \textit{fifo}, per permettere l'esecuzione degli altri processi
3393 con pari priorità quando la sezione più urgente è finita.
3394
3395 % TODO: con il 2.6.23 il comportamento è stato leggermente modificato ed è
3396 % stato introdotto /proc/sys/kernel/sched_compat_yield da mettere a 1 per aver
3397 % la compatibilità con il precedente.
3398
3399 \subsection{Il controllo dello \textit{scheduler} per i sistemi
3400   multiprocessore}
3401 \label{sec:proc_sched_multiprocess}
3402
3403 Infine con il supporto dei sistemi multiprocessore sono state introdotte delle
3404 funzioni che permettono di controllare in maniera più dettagliata la scelta di
3405 quale processore utilizzare per eseguire un certo programma. Uno dei problemi
3406 che si pongono nei sistemi multiprocessore è infatti quello del cosiddetto
3407 \index{effetto~ping-pong} \textsl{effetto ping-pong}. Può accadere cioè che lo
3408 scheduler, quando riavvia un processo precedentemente interrotto scegliendo il
3409 primo processore disponibile, lo faccia eseguire da un processore diverso
3410 rispetto a quello su cui era stato eseguito in precedenza. Se il processo
3411 passa da un processore all'altro in questo modo (cosa che avveniva abbastanza
3412 di frequente con i kernel della seria 2.4.x) si ha l'\textsl{effetto
3413   ping-pong}.
3414
3415 Questo tipo di comportamento può generare dei seri problemi di prestazioni;
3416 infatti tutti i processori moderni utilizzano una memoria interna (la
3417 \textit{cache}) contenente i dati più usati, che permette di evitare di
3418 eseguire un accesso (molto più lento) alla memoria principale sulla scheda
3419 madre.  Chiaramente un processo sarà favorito se i suoi dati sono nella cache
3420 del processore, ma è ovvio che questo può essere vero solo per un processore
3421 alla volta, perché in presenza di più copie degli stessi dati su più
3422 processori, non si potrebbe determinare quale di questi ha la versione dei
3423 dati aggiornata rispetto alla memoria principale.
3424
3425 Questo comporta che quando un processore inserisce un dato nella sua cache,
3426 tutti gli altri processori che hanno lo stesso dato devono invalidarlo, e
3427 questa operazione è molto costosa in termini di prestazioni. Il problema
3428 diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
3429 infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
3430 e si ha una continua invalidazione della cache, che non diventa mai
3431 disponibile.
3432
3433 \itindbeg{CPU~affinity}
3434
3435 Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
3436   di processore} (o \textit{CPU affinity}); la possibilità cioè di far sì che
3437 un processo possa essere assegnato per l'esecuzione sempre allo stesso
3438 processore. Lo scheduler dei kernel della serie 2.4.x aveva una scarsa
3439 \textit{CPU affinity}, e \index{effetto~ping-pong} l'effetto ping-pong era
3440 comune; con il nuovo scheduler dei kernel della 2.6.x questo problema è stato
3441 risolto ed esso cerca di mantenere il più possibile ciascun processo sullo
3442 stesso processore.
3443
3444 In certi casi però resta l'esigenza di poter essere sicuri che un processo sia
3445 sempre eseguito dallo stesso processore,\footnote{quella che viene detta
3446   \textit{hard CPU affinity}, in contrasto con quella fornita dallo scheduler,
3447   detta \textit{soft CPU affinity}, che di norma indica solo una preferenza,
3448   non un requisito assoluto.} e per poter risolvere questo tipo di
3449 problematiche nei nuovi kernel\footnote{le due system call per la gestione
3450   della \textit{CPU affinity} sono state introdotte nel kernel 2.5.8, e le
3451   funzioni di libreria nelle \textsl{glibc} 2.3.} è stata introdotta
3452 l'opportuna infrastruttura ed una nuova system call che permette di impostare
3453 su quali processori far eseguire un determinato processo attraverso una
3454 \textsl{maschera di affinità}. La corrispondente funzione di libreria è
3455 \funcd{sched\_setaffinity} ed il suo prototipo è:
3456 \begin{prototype}{sched.h}
3457   {int sched\_setaffinity (pid\_t pid, unsigned int cpusetsize, const
3458     cpu\_set\_t *cpuset)} 
3459   Imposta la maschera di affinità del processo \param{pid}.
3460   
3461   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
3462     nel qual caso \var{errno} può assumere i valori:
3463     \begin{errlist}
3464     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3465     \item[\errcode{EINVAL}] il valore di \param{cpuset} contiene riferimenti a
3466       processori non esistenti nel sistema.
3467     \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
3468       eseguire l'operazione.
3469   \end{errlist} 
3470   ed inoltre anche \errval{EFAULT}.}
3471 \end{prototype}
3472
3473
3474 Questa funzione e la corrispondente \func{sched\_setaffinity} hanno una storia
3475 abbastanza complessa, la system call prevede l'uso di due ulteriori argomenti
3476 di tipo \texttt{unsigned int len} e \texttt{unsigned long *mask}, che
3477 corrispondono al fatto che la implementazione effettiva usa una semplice
3478 maschera binaria. Quando le funzioni vennero incluse nelle \acr{glibc}
3479 assunsero invece il prototipo appena mostrato. A complicare la cosa si
3480 aggiunge il fatto che nella versione 2.3.3 delle \acr{glibc} l'argomento
3481 \param{cpusetsize} è stato eliminato, per poi essere ripristinato nella
3482 versione 2.3.4.\footnote{pertanto se la vostra pagina di manuale non è
3483   aggiornata, o usate quella particolare versione delle \acr{glibc}, potrete
3484   trovare indicazioni diverse, il prototipo illustrato è quello riportato
3485   nella versione corrente (maggio 2008) delle pagine di manuale e
3486   corrispondente alla definizione presente in \file{sched.h}.}
3487
3488 La funzione imposta, con l'uso del valore contenuto all'indirizzo
3489 \param{cpuset}, l'insieme dei processori sui quali deve essere eseguito il
3490 processo identificato tramite il valore passato in \param{pid}. Come in
3491 precedenza il valore nullo di \param{pid} indica il processo corrente.  Per
3492 poter utilizzare questa funzione sono richiesti i privilegi di amministratore
3493 (è necessaria la capacità \const{CAP\_SYS\_NICE}) altrimenti essa fallirà con
3494 un errore di \errcode{EPERM}. Una volta impostata una maschera di affinità,
3495 questa viene ereditata attraverso una \func{fork}, in questo modo diventa
3496 possibile legare automaticamente un gruppo di processi ad un singolo
3497 processore.
3498
3499 Nell'uso comune, almeno con i kernel della serie 2.6.x, l'uso di questa
3500 funzione non è necessario, in quanto è lo scheduler stesso che provvede a
3501 mantenere al meglio l'affinità di processore. Esistono però esigenze
3502 particolari, ad esempio quando un processo (o un gruppo di processi) è
3503 utilizzato per un compito importante (ad esempio per applicazioni real-time o
3504 la cui risposta è critica) e si vuole la massima velocità, con questa
3505 interfaccia diventa possibile selezionare gruppi di processori utilizzabili in
3506 maniera esclusiva.  Lo stesso dicasi quando l'accesso a certe risorse (memoria
3507 o periferiche) può avere un costo diverso a seconda del processore (come
3508 avviene nelle architetture NUMA).
3509
3510 Infine se un gruppo di processi accede alle stesse risorse condivise (ad
3511 esempio una applicazione con più \itindex{thread} \textit{thread}) può avere
3512 senso usare lo stesso processore in modo da sfruttare meglio l'uso della sua
3513 cache; questo ovviamente riduce i benefici di un sistema multiprocessore
3514 nell'esecuzione contemporanea dei \itindex{thread} \textit{thread}, ma in
3515 certi casi (quando i \itindex{thread} \textit{thread} sono inerentemente
3516 serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
3517 nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
3518 di processore.
3519
3520 Per facilitare l'uso dell'argomento \param{cpuset} le \acr{glibc} hanno
3521 introdotto un apposito dato di tipo, \ctyp{cpu\_set\_t},\footnote{questa è una
3522   estensione specifica delle \acr{glibc}, da attivare definendo la macro
3523   \macro{\_GNU\_SOURCE}, non esiste infatti una standardizzazione per
3524   questo tipo di interfaccia e POSIX al momento non prevede nulla al
3525   riguardo.} che permette di identificare un insieme di processori. Il dato è
3526 una maschera binaria: in generale è un intero a 32 bit in cui ogni bit
3527 corrisponde ad un processore, ma dato che per architetture particolari il
3528 numero di bit di un intero può non essere sufficiente, è stata creata questa
3529 che è una interfaccia generica che permette di usare a basso livello un tipo
3530 di dato qualunque rendendosi indipendenti dal numero di bit e dalla loro
3531 disposizione.
3532
3533 Questa interfaccia, oltre alla definizione del tipo di dato apposito, prevede
3534 anche una serie di macro di preprocessore per la manipolazione dello stesso,
3535 che consentono di svuotare un insieme, aggiungere o togliere un processore da
3536 esso o verificare se vi è già presente:
3537 \begin{functions}
3538   \headdecl{sched.h}
3539   \funcdecl{void \macro{CPU\_ZERO}(cpu\_set\_t *set)}
3540   Inizializza l'insieme (vuoto).
3541
3542   \funcdecl{void \macro{CPU\_SET}(int cpu, cpu\_set\_t *set)}
3543   Inserisce il processore \param{cpu} nell'insieme.
3544
3545   \funcdecl{void \macro{CPU\_CLR}(int cpu, cpu\_set\_t *set)}
3546   Rimuove il processore \param{cpu} nell'insieme.
3547   
3548   \funcdecl{int \macro{CPU\_ISSET}(int cpu, cpu\_set\_t *set)}
3549   Controlla se il processore \param{cpu} è nell'insieme.
3550 \end{functions}
3551
3552 Oltre a queste macro, simili alle analoghe usate per gli insiemi di file
3553 descriptor (vedi sez.~\ref{sec:file_select}) è definita la costante
3554 \const{CPU\_SETSIZE} che indica il numero massimo di processori che possono
3555 far parte dell'insieme, e che costituisce un limite massimo al valore
3556 dell'argomento \param{cpu}.
3557
3558 In generale la maschera di affinità è preimpostata in modo che un processo
3559 possa essere eseguito su qualunque processore, se può comunque leggere il
3560 valore per un processo specifico usando la funzione
3561 \funcd{sched\_getaffinity}, il suo prototipo è:
3562 \begin{prototype}{sched.h}
3563   {int sched\_getaffinity (pid\_t pid, unsigned int cpusetsize, 
3564     const cpu\_set\_t *cpuset)} 
3565   Legge la maschera di affinità del processo \param{pid}.
3566   
3567   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
3568     nel qual caso \var{errno} può assumere i valori:
3569     \begin{errlist}
3570     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
3571     \item[\errcode{EFAULT}] il valore di \param{cpuset} non è un indirizzo
3572       valido. 
3573   \end{errlist} }
3574 \end{prototype}
3575
3576 La funzione restituirà all'indirizzo specificato da \param{cpuset} il valore
3577 della maschera di affinità del processo, così da poterla riutilizzare per una
3578 successiva reimpostazione. In questo caso non sono necessari privilegi
3579 particolari.  
3580
3581 È chiaro che queste funzioni per la gestione dell'affinità hanno significato
3582 soltanto su un sistema multiprocessore, esse possono comunque essere
3583 utilizzate anche in un sistema con un processore singolo, nel qual caso però
3584 non avranno alcun risultato effettivo.
3585
3586 \itindend{scheduler}
3587 \itindend{CPU~affinity}
3588
3589
3590
3591 \section{Problematiche di programmazione multitasking}
3592 \label{sec:proc_multi_prog}
3593
3594 Benché i processi siano strutturati in modo da apparire il più possibile come
3595 indipendenti l'uno dall'altro, nella programmazione in un sistema multitasking
3596 occorre tenere conto di una serie di problematiche che normalmente non
3597 esistono quando si ha a che fare con un sistema in cui viene eseguito un solo
3598 programma alla volta.
3599
3600 Pur essendo questo argomento di carattere generale, ci è parso opportuno
3601 introdurre sinteticamente queste problematiche, che ritroveremo a più riprese
3602 in capitoli successivi, in questa sezione conclusiva del capitolo in cui
3603 abbiamo affrontato la gestione dei processi.
3604
3605
3606 \subsection{Le operazioni atomiche}
3607 \label{sec:proc_atom_oper}
3608
3609 La nozione di \textsl{operazione atomica} deriva dal significato greco della
3610 parola atomo, cioè indivisibile; si dice infatti che un'operazione è atomica
3611 quando si ha la certezza che, qualora essa venga effettuata, tutti i passaggi
3612 che devono essere compiuti per realizzarla verranno eseguiti senza possibilità
3613 di interruzione in una fase intermedia.
3614
3615 In un ambiente multitasking il concetto è essenziale, dato che un processo può
3616 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
3617 altro processo o dalla ricezione di un segnale; occorre pertanto essere
3618 accorti nei confronti delle possibili \itindex{race~condition} \textit{race
3619   condition} (vedi sez.~\ref{sec:proc_race_cond}) derivanti da operazioni
3620 interrotte in una fase in cui non erano ancora state completate.
3621
3622 Nel caso dell'interazione fra processi la situazione è molto più semplice, ed
3623 occorre preoccuparsi della atomicità delle operazioni solo quando si ha a che
3624 fare con meccanismi di intercomunicazione (che esamineremo in dettaglio in
3625 cap.~\ref{cha:IPC}) o nelle operazioni con i file (vedremo alcuni esempi in
3626 sez.~\ref{sec:file_atomic}). In questi casi in genere l'uso delle appropriate
3627 funzioni di libreria per compiere le operazioni necessarie è garanzia
3628 sufficiente di atomicità in quanto le system call con cui esse sono realizzate
3629 non possono essere interrotte (o subire interferenze pericolose) da altri
3630 processi.
3631
3632 Nel caso dei segnali invece la situazione è molto più delicata, in quanto lo
3633 stesso processo, e pure alcune system call, possono essere interrotti in
3634 qualunque momento, e le operazioni di un eventuale \textit{signal handler}
3635 sono compiute nello stesso spazio di indirizzi del processo. Per questo, anche
3636 il solo accesso o l'assegnazione di una variabile possono non essere più
3637 operazioni atomiche (torneremo su questi aspetti in
3638 sez.~\ref{sec:sig_adv_control}).
3639
3640 In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t},
3641 il cui accesso è assicurato essere atomico.  In pratica comunque si può
3642 assumere che, in ogni piattaforma su cui è implementato Linux, il tipo
3643 \ctyp{int}, gli altri interi di dimensione inferiore ed i puntatori sono
3644 atomici. Non è affatto detto che lo stesso valga per interi di dimensioni
3645 maggiori (in cui l'accesso può comportare più istruzioni in assembler) o per
3646 le strutture. In tutti questi casi è anche opportuno marcare come
3647 \direct{volatile} le variabili che possono essere interessate ad accesso
3648 condiviso, onde evitare problemi con le ottimizzazioni del codice.
3649
3650
3651
3652 \subsection{Le \textit{race condition} ed i \textit{deadlock}}
3653 \label{sec:proc_race_cond}
3654
3655 \itindbeg{race~condition}
3656
3657 Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
3658 diversi operano su una risorsa comune, ed in cui il risultato viene a
3659 dipendere dall'ordine in cui essi effettuano le loro operazioni. Il caso
3660 tipico è quello di un'operazione che viene eseguita da un processo in più
3661 passi, e può essere compromessa dall'intervento di un altro processo che
3662 accede alla stessa risorsa quando ancora non tutti i passi sono stati
3663 completati.
3664
3665 Dato che in un sistema multitasking ogni processo può essere interrotto in
3666 qualunque momento per farne subentrare un altro in esecuzione, niente può
3667 assicurare un preciso ordine di esecuzione fra processi diversi o che una
3668 sezione di un programma possa essere eseguita senza interruzioni da parte di
3669 altri. Queste situazioni comportano pertanto errori estremamente subdoli e
3670 difficili da tracciare, in quanto nella maggior parte dei casi tutto
3671 funzionerà regolarmente, e solo occasionalmente si avranno degli errori. 
3672
3673 Per questo occorre essere ben consapevoli di queste problematiche, e del fatto
3674 che l'unico modo per evitarle è quello di riconoscerle come tali e prendere
3675 gli adeguati provvedimenti per far sì che non si verifichino. Casi tipici di
3676 \textit{race condition} si hanno quando diversi processi accedono allo stesso
3677 file, o nell'accesso a meccanismi di intercomunicazione come la memoria
3678 condivisa. In questi casi, se non si dispone della possibilità di eseguire
3679 atomicamente le operazioni necessarie, occorre che quelle parti di codice in
3680 cui si compiono le operazioni sulle risorse condivise (le cosiddette
3681 \index{sezione~critica} \textsl{sezioni critiche}) del programma, siano
3682 opportunamente protette da meccanismi di sincronizzazione (torneremo su queste
3683 problematiche di questo tipo in cap.~\ref{cha:IPC}).
3684
3685 \itindbeg{deadlock}
3686 Un caso particolare di \textit{race condition} sono poi i cosiddetti
3687 \textit{deadlock}, particolarmente gravi in quanto comportano spesso il blocco
3688 completo di un servizio, e non il fallimento di una singola operazione. Per
3689 definizione un \textit{deadlock} è una situazione in cui due o più processi
3690 non sono più in grado di proseguire perché ciascuno aspetta il risultato di
3691 una operazione che dovrebbe essere eseguita dall'altro.
3692
3693
3694 L'esempio tipico di una situazione che può condurre ad un
3695 \textit{deadlock} è quello in cui un flag di
3696 ``\textsl{occupazione}'' viene rilasciato da un evento asincrono (come un
3697 segnale o un altro processo) fra il momento in cui lo si è controllato
3698 (trovandolo occupato) e la successiva operazione di attesa per lo sblocco. In
3699 questo caso, dato che l'evento di sblocco del flag è avvenuto senza che ce ne
3700 accorgessimo proprio fra il controllo e la messa in attesa, quest'ultima
3701 diventerà perpetua (da cui il nome di \textit{deadlock}).
3702
3703 In tutti questi casi è di fondamentale importanza il concetto di atomicità
3704 visto in sez.~\ref{sec:proc_atom_oper}; questi problemi infatti possono essere
3705 risolti soltanto assicurandosi, quando essa sia richiesta, che sia possibile
3706 eseguire in maniera atomica le operazioni necessarie.
3707 \itindend{race~condition}
3708 \itindend{deadlock}
3709
3710
3711 \subsection{Le funzioni rientranti}
3712 \label{sec:proc_reentrant}
3713
3714 \index{funzioni!rientranti|(}
3715
3716 Si dice \textsl{rientrante} una funzione che può essere interrotta in
3717 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
3718 un altro \itindex{thread} \textit{thread} di esecuzione senza che questo
3719 comporti nessun problema nell'esecuzione della stessa. La problematica è
3720 comune nella programmazione \itindex{thread} \textit{multi-thread}, ma si
3721 hanno gli stessi problemi quando si vogliono chiamare delle funzioni
3722 all'interno dei gestori dei segnali.
3723
3724 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
3725 queste infatti vengono allocate nello \itindex{stack} \textit{stack}, ed
3726 un'altra invocazione non fa altro che allocarne un'altra copia. Una funzione
3727 può non essere rientrante quando opera su memoria che non è nello
3728 \itindex{stack} \textit{stack}.  Ad esempio una funzione non è mai rientrante
3729 se usa una variabile globale o statica.
3730
3731 Nel caso invece la funzione operi su un oggetto allocato dinamicamente, la
3732 cosa viene a dipendere da come avvengono le operazioni: se l'oggetto è creato
3733 ogni volta e ritornato indietro la funzione può essere rientrante, se invece
3734 esso viene individuato dalla funzione stessa due chiamate alla stessa funzione
3735 potranno interferire quando entrambe faranno riferimento allo stesso oggetto.
3736 Allo stesso modo una funzione può non essere rientrante se usa e modifica un
3737 oggetto che le viene fornito dal chiamante: due chiamate possono interferire
3738 se viene passato lo stesso oggetto; in tutti questi casi occorre molta cura da
3739 parte del programmatore.
3740
3741 In genere le funzioni di libreria non sono rientranti, molte di esse ad
3742 esempio utilizzano variabili statiche, le \acr{glibc} però mettono a
3743 disposizione due macro di compilatore,\footnote{si ricordi quanto illustrato
3744   in sez.~\ref{sec:intro_gcc_glibc_std}.} \macro{\_REENTRANT} e
3745 \macro{\_THREAD\_SAFE}, la cui definizione attiva le versioni rientranti di
3746 varie funzioni di libreria, che sono identificate aggiungendo il suffisso
3747 \code{\_r} al nome della versione normale.
3748
3749 \index{funzioni!rientranti|)}
3750
3751
3752 % LocalWords:  multitasking like VMS child process identifier pid sez shell fig
3753 % LocalWords:  parent kernel init pstree keventd kswapd table struct linux call
3754 % LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
3755 % LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
3756 % LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD
3757 % LocalWords:  void ForkTest tempnam pathname sibling cap errno EAGAIN ENOMEM
3758 % LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
3759 % LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
3760 % LocalWords:  close group session tms lock vfork execve BSD stream main abort
3761 % LocalWords:  SIGABRT SIGCHLD SIGHUP foreground SIGCONT termination signal ANY
3762 % LocalWords:  handler kill EINTR POSIX options WNOHANG ECHILD option WUNTRACED
3763 % LocalWords:  dump bits rusage getrusage heap const filename argv envp EACCES
3764 % LocalWords:  filesystem noexec EPERM suid sgid root nosuid ENOEXEC ENOENT ELF
3765 % LocalWords:  ETXTBSY EINVAL ELIBBAD BIG EFAULT EIO ENAMETOOLONG ELOOP ENOTDIR
3766 % LocalWords:  ENFILE EMFILE argc execl path execv execle execlp execvp vector
3767 % LocalWords:  list environ NULL umask pending utime cutime ustime fcntl linker
3768 % LocalWords:  opendir libc interpreter FreeBSD capabilities Mandatory Access
3769 % LocalWords:  Control MAC SELinux Security Modules LSM superuser uid gid saved
3770 % LocalWords:  effective euid egid dell' fsuid fsgid getuid geteuid getgid SVr
3771 % LocalWords:  getegid IDS NFS setuid setgid all' logout utmp screen xterm TODO
3772 % LocalWords:  setreuid setregid FIXME ruid rgid seteuid setegid setresuid size
3773 % LocalWords:  setresgid getresuid getresgid value result argument setfsuid DAC
3774 % LocalWords:  setfsgid NGROUPS sysconf getgroups getgrouplist groups ngroups
3775 % LocalWords:  setgroups initgroups patch LIDS CHOWN OVERRIDE Discrectionary PF
3776 % LocalWords:  SEARCH chattr sticky NOATIME socket domain immutable append mmap
3777 % LocalWords:  broadcast multicast multicasting memory locking mlock mlockall
3778 % LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
3779 % LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
3780 % LocalWords:  capability capget capset header ESRCH undef version obj clear PT
3781 % LocalWords:  pag ssize length proc capgetp preemptive cache runnable Stopped
3782 % LocalWords:  Uninterrutible SIGSTOP soft slice nice niceness counter which SC
3783 % LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO First
3784 % LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
3785 % LocalWords:  min getparam getscheduler interval robin ENOSYS fifo ping long
3786 % LocalWords:  affinity setaffinity unsigned mask cpu NUMA CLR ISSET SETSIZE RR
3787 % LocalWords:  getaffinity assembler deadlock REENTRANT SAFE tgz MYPGRP l'OR rr
3788 % LocalWords:  WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WCOREDUMP WIFSTOPPED
3789 % LocalWords:  WSTOPSIG opt char INTERP arg SIG IGN DFL mascheck grp FOWNER RAW
3790 % LocalWords:  FSETID SETPCAP BIND SERVICE ADMIN PACKET IPC OWNER MODULE RAWIO
3791 % LocalWords:  PACCT RESOURCE TTY CONFIG SETFCAP hdrp datap libcap lcap text tp
3792 % LocalWords:  get ncap caps CapInh CapPrm fffffeff CapEff getcap STAT dall'I
3793 % LocalWords:  inc PRIO SUSv PRGR prio SysV SunOS Ultrix sched timespec len sig
3794 % LocalWords:  cpusetsize cpuset atomic tickless redirezione WCONTINUED stopped
3795 % LocalWords:  waitid NOCLDSTOP ENOCHLD WIFCONTINUED ifdef endif idtype siginfo
3796 % LocalWords:  infop ALL WEXITED WSTOPPED WNOWAIT signo CLD EXITED KILLED page
3797 % LocalWords:  CONTINUED sources forking Spawned successfully executing exiting
3798
3799 %%% Local Variables: 
3800 %%% mode: latex
3801 %%% TeX-master: "gapil"
3802 %%% End: 
3803 % LocalWords:  next cat for COMMAND pts bash defunct