Iniziato esempio Mutex
[gapil.git] / ipprot.tex
1 \chapter{Il protocollo IP}
2 \label{cha:ip_protocol}
3
4 L'attuale Internet Protocol (IPv4) viene standardizzato nel 1981
5 dall'RFC~719; esso nasce per disaccoppiare le applicazioni della struttura
6 hardware delle reti di trasmissione, e creare una interfaccia di trasmissione
7 dei dati indipendente dal sottostante substrato di rete, che può essere
8 realizzato con le tecnologie più disparate (Ethernet, Token Ring, FDDI,
9 etc.).
10
11
12 \section{Introduzione}
13 \label{sec:IP_intro}
14
15 Il compito di IP è pertanto quello di trasmettere i pacchetti da un computer
16 all'altro della rete; le caratteristiche essenziali con cui questo viene
17 realizzato in IPv4 sono due:
18
19 \begin{itemize}
20 \item \textit{Universal addressing} la comunicazione avviene fra due host
21   identificati univocamente con un indirizzo a 32 bit che può appartenere ad
22   una sola interfaccia di rete.
23 \item \textit{Best effort} viene assicurato il massimo impegno nella
24   trasmissione, ma non c'è nessuna garanzia per i livelli superiori né
25   sulla percentuale di successo né sul tempo di consegna dei pacchetti di
26   dati.
27 \end{itemize}
28
29 Per effettuare la comunicazione e l'instradamento dei pacchetti fra le varie
30 reti di cui è composta Internet IPv4 organizza gli indirizzi in una
31 gerarchia a due livelli, in cui una parte dei 32 bit dell'indirizzo indica il
32 numero di rete, e un'altra l'host al suo interno.  Il numero di rete serve
33 ai router per stabilire a quale rete il pacchetto deve essere inviato, il
34 numero di host indica la macchina di destinazione finale all'interno di detta
35 rete.
36
37 Per garantire l'unicità dell'indirizzo Internet esiste un'autorità
38 centrale (la IANA, \textit{Internet Assigned Number Authority}) che assegna i
39 numeri di rete alle organizzazioni che ne fanno richiesta; è poi compito di
40 quest'ultime assegnare i numeri dei singoli host.  
41
42 Per venire incontro alle diverse esigenze gli indirizzi di rete sono stati
43 originariamente organizzati in \textit{classi}, (rappresentate in
44 \tabref{tab:IP_ipv4class}), per consentire dispiegamenti di reti di dimensioni
45 diverse.
46
47
48 \begin{table}[htb]
49   \centering
50   \footnotesize
51   \begin{tabular} {c@{\hspace{1mm}\vrule}
52       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
53       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
54       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
55       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
56       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
57       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
58       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
59       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
60     \omit&\omit& \multicolumn{7}{c}{7 bit}&\multicolumn{24}{c}{24 bit} \\
61     \cline{2-33}
62     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
63     classe A &\centering 0&
64     \multicolumn{7}{@{}c@{\vrule}}{\parbox[c]{21mm}{\centering net Id}} &
65     \multicolumn{24}{@{}c@{\vrule}}{\parbox[c]{72mm}{\centering host Id}} \\
66     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
67     \cline{2-33}
68     \multicolumn{33}{c}{ } \\
69     \omit&\omit&\omit& 
70     \multicolumn{14}{c}{14 bit}&\multicolumn{16}{c}{16 bit} \\
71     \cline{2-33}
72     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
73     classe B&\centering 1&\centering 0& 
74     \multicolumn{14}{@{}c@{\vrule}}{\parbox{42mm}{\centering net Id}} &
75     \multicolumn{16}{@{}c@{\vrule}}{\parbox{48mm}{\centering host Id}} \\
76     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
77     \cline{2-33}
78    
79     \multicolumn{33}{c}{ } \\
80     \omit&\omit&\omit& 
81     \multicolumn{21}{c}{21 bit}&\multicolumn{8}{c}{8 bit} \\
82     \cline{2-33}
83     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
84     classe C&\centering 1&\centering 1&\centering 0&
85     \multicolumn{21}{@{}c@{\vrule}}{\parbox{63mm}{\centering net Id}} &
86     \multicolumn{8}{@{}c@{\vrule}}{\parbox{24mm}{\centering host Id}} \\
87     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
88     \cline{2-33}
89
90
91     \multicolumn{33}{c}{ } \\
92     \omit&\omit&\omit&\omit& 
93     \multicolumn{28}{c}{28 bit} \\
94     \cline{2-33}
95     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
96     classe D&\centering 1&\centering 1&\centering 1&\centering 0&
97     \multicolumn{28}{@{}c@{\vrule}}{\parbox{63mm}{\centering 
98         multicast group Id}} \\
99     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
100     \cline{2-33}
101
102     \multicolumn{33}{c}{ } \\
103     \omit&\omit&\omit&\omit&\omit&
104     \multicolumn{27}{c}{27 bit} \\
105     \cline{2-33}
106     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
107     classe E&\centering 1&\centering 1&\centering 1&\centering 1&\centering 0&
108     \multicolumn{27}{@{}c@{\vrule}}{\parbox{59mm}{\centering 
109         reserved for future use}} \\
110     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
111     \cline{2-33}
112
113 \end{tabular}
114 \caption{Le classi di indirizzi secondo IPv4.}
115 \label{tab:IP_ipv4class}
116 \end{table}
117
118 Le classi usate per il dispiegamento delle reti sono le prime tre; la classe D
119 è destinata al (non molto usato) \textit{multicast} mentre la classe E è
120 riservata per usi sperimentali e non viene impiegata.
121
122 Come si può notare però la suddivisione riportata in \tabref{tab:IP_ipv4class}
123 è largamente inefficiente in quanto se ad un utente necessita anche solo un
124 indirizzo in più dei 256 disponibili con una classe A occorre passare a una
125 classe B, con un conseguente spreco di numeri.
126
127 Inoltre, in particolare per le reti di classe C, la presenza di tanti
128 indirizzi di rete diversi comporta una crescita enorme delle tabelle di
129 instradamento che ciascun router dovrebbe tenere in memoria per sapere dove
130 inviare il pacchetto, con conseguente crescita dei tempi di processo da parte
131 di questi ultimi ed inefficienza nel trasporto.
132
133 \begin{table}[htb]
134   \centering
135   \footnotesize
136   \begin{tabular} {c@{\hspace{1mm}\vrule}
137       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
138       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
139       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
140       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
141       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
142       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
143       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
144       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
145     \omit&
146     \multicolumn{12}{c}{$n$ bit}&\multicolumn{20}{c}{$32-n$ bit} \\
147     \cline{2-33}
148     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
149     CIDR &
150     \multicolumn{12}{@{}c@{\vrule}}{\parbox[c]{36mm}{\centering net Id}} &
151     \multicolumn{20}{@{}c@{\vrule}}{\parbox[c]{60mm}{\centering host Id}} \\
152     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
153     \cline{2-33}
154 \end{tabular}
155 \caption{Uno esempio di indirizzamento CIDR.}
156 \label{tab:IP_ipv4cidr}
157 \end{table}
158
159 Per questo nel 1992 è stato introdotto un indirizzamento senza classi (il
160 CIDR, \textit{Classless Inter-Domain Routing}) in cui il limite fra i bit
161 destinati a indicare il numero di rete e quello destinati a indicare l'host
162 finale può essere piazzato in qualunque punto (vedi \tabref{tab:IP_ipv4cidr}),
163 permettendo di accorpare più classi A su un'unica rete o suddividere una
164 classe B e diminuendo al contempo il numero di indirizzi di rete da inserire
165 nelle tabelle di instradamento dei router.
166
167
168 \section{I motivi della transizione}
169 \label{sec:IP_whyipv6}
170
171 Negli ultimi anni la crescita vertiginosa del numero di macchine connesse a
172 internet ha iniziato a far emergere i vari limiti di IPv4; in particolare si
173 è iniziata a delineare la possibilità di arrivare a una carenza di
174 indirizzi disponibili.
175
176 In realtà il problema non è propriamente legato al numero di indirizzi
177 disponibili; infatti con 32 bit si hanno $2^{32}$, cioè circa 4 miliardi,
178 numeri diversi possibili, che sono molti di più dei computer attualmente
179 esistenti.
180
181 Il punto è che la suddivisione di questi numeri nei due livelli rete/host e
182 l'utilizzo delle classi di indirizzamento mostrate in precedenza, ha
183 comportato che, nella sua evoluzione storica, il dispiegamento delle reti e
184 l'allocazione degli indirizzi siano stati inefficienti; neanche l'uso del CIDR
185 ha permesso di eliminare le inefficienze che si erano formate, dato che il
186 ridispiegamento degli indirizzi comporta cambiamenti complessi a tutti i
187 livelli e la riassegnazione di tutti gli indirizzi dei computer di ogni
188 sottorete.
189
190 Diventava perciò necessario progettare un nuovo protocollo che permettesse
191 di risolvere questi problemi, e garantisse flessibilità sufficiente per
192 poter continuare a funzionare a lungo termine; in particolare necessitava un
193 nuovo schema di indirizzamento che potesse rispondere alle seguenti
194 necessità:
195
196 \begin{itemize}
197 \item un maggior numero di numeri disponibili che consentisse di non restare
198   più a corto di indirizzi
199 \item un'organizzazione gerarchica più flessibile dell'attuale 
200 \item uno schema di assegnazione degli indirizzi in grado di minimizzare le
201   dimensioni delle tabelle di instradamento
202 \item uno spazio di indirizzi che consentisse un passaggio automatico dalle
203   reti locali a internet
204 \end{itemize}
205
206
207 \section{Principali caratteristiche di IPv6}
208 \label{sec:IP_ipv6over}
209
210 Per rispondere alle esigenze descritte in \secref{sec:IP_whyipv6} IPv6 nasce
211 come evoluzione di IPv4, mantendone inalterate le funzioni che si sono
212 dimostrate valide, eliminando quelle inutili e aggiungendone poche altre
213 ponendo al contempo una grande attenzione a mantenere il protocollo il più
214 snello e veloce possibile.
215
216 I cambiamenti apportati sono comunque notevoli e possono essere riassunti a
217 grandi linee nei seguenti punti:
218 \begin{itemize}
219 \item l'espansione delle capacità di indirizzamento e instradamento, per
220   supportare una gerarchia con più livelli di indirizzamento, un numero di
221   nodi indirizzabili molto maggiore e una autoconfigurazione degli indirizzi
222 \item l'introduzione un nuovo tipo di indirizzamento, l'\textit{anycast} che
223   si aggiungono agli usuali \textit{unycast} e \textit{multicast}
224 \item la semplificazione del formato dell'intestazione, eliminando o rendendo
225   opzionali alcuni dei campi di IPv4, per eliminare la necessità di
226   riprocessamento della stessa da parte dei router e contenere l'aumento di
227   dimensione dovuto ai nuovi indirizzi
228 \item un supporto per le opzioni migliorato, per garantire una trasmissione
229   più efficiente del traffico normale, limiti meno stringenti sulle
230   dimensioni delle opzioni, e la flessibilità necessaria per introdurne di
231   nuove in futuro
232 \item il supporto per delle capacità di qualità di servizio (QoS) che
233   permetta di identificare gruppi di dati per i quali si può provvedere un
234   trattamento speciale (in vista dell'uso di internet per applicazioni
235   multimediali e/o ``real-time'')
236 \end{itemize}
237
238
239 \section{L'intestazione di IPv6}
240 \label{sec:IP_ipv6head}
241
242 Per capire le caratteristiche di IPv6 partiamo dall'intestazione usata dal
243 protocollo per gestire la trasmissione dei pacchetti; in
244 \figref{fig:IP_ipv6head} è riportato il formato dell'intestazione di IPv6 da
245 confrontare con quella di IPv4 in \figref{fig:IP_ipv4_head}. La spiegazione del
246 significato dei vari campi delle due intestazioni è riportato rispettivamente
247 in \tabref{tab:IP_ipv6field} e \tabref{tab:IP_ipv4field})
248
249 % \begin{table}[htb]
250 %   \footnotesize
251 %   \begin{center}
252 %     \begin{tabular}{@{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
253 %         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
254 %         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule} }
255 %     \multicolumn{8}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
256 %     \hline
257 %     \centering version&\centering priority& 
258 %     \multicolumn{6}{@{}p{96mm}@{\vrule}}{\centering flow label} \\
259 %     \hline
260 %     \multicolumn{4}{@{\vrule}p{64mm}@{\vrule}}{\centering payload length} & 
261 %     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering next header} & 
262 %     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering hop limit}\\
263 %     \hline
264 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
265 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{
266 %       source} \\
267 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{
268 %       IP address} \\
269 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
270 %     \hline
271 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
272 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{
273 %       destination} \\
274 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{
275 %      IP address} \\
276 %     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
277 %     \hline
278 %     \end{tabular}
279 %     \caption{L'intestazione o \textit{header} di IPv6}
280 %     \label{tab:IP_ipv6head}
281 %   \end{center}
282 % \end{table}
283
284 \begin{figure}[htb]
285   \centering
286   \includegraphics[width=10cm]{img/ipv6_head}
287   \caption{L'intestazione o \textit{header} di IPv6.}
288   \label{fig:IP_ipv6head}
289 \end{figure}
290
291
292 Come si può notare l'intestazione di IPv6 diventa di dimensione fissa, pari a
293 40 byte, contro una dimensione (minima, in assenza di opzioni) di 20 byte per
294 IPv4; un semplice raddoppio nonostante lo spazio destinato agli indirizzi sia
295 quadruplicato, questo grazie a una notevole semplificazione che ha ridotto il
296 numero dei campi da 12 a 8.
297
298 \begin{table}[htb]
299   \begin{center}
300   \footnotesize
301     \begin{tabular}{|l|c|p{8cm}|}
302       \hline
303       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
304       \hline
305       \hline
306       \textit{version}       &  4 bit & 
307       \textsl{versione}, nel caso specifico vale sempre 6\\
308       \textit{priority}      &  4 bit & 
309       \textsl{priorità}, vedi Sez.~\ref{sec:prio} \\
310       \textit{flow label}    & 24 bit & 
311       \textsl{etichetta di flusso}, vedi Sez.~\ref{sec:IP_ipv6_flow}\\
312       \textit{payload length} & 16 bit & 
313       \textsl{lunghezza del carico}, cioè del corpo dei dati che segue 
314       l'intestazione, in byte. \\
315       \textit{next header}   &  8 bit & \textsl{intestazione successiva}, 
316       identifica il tipo di pacchetto che segue l'intestazione di IPv6, usa 
317       gli stessi valori del campo protocollo nell'intestazione di IPv4\\
318       \textit{hop limit}     &  8 bit & \textsl{limite di salti},
319       stesso significato del \textit{time to live} nell'intestazione di IPv4, 
320       è decrementato di uno ogni volta che un nodo ritrasmette il
321       pacchetto, se arriva a zero il pacchetto viene scartato \\
322       \textit{source IP}     & 128 bit & \textsl{indirizzo di origine} \\
323       \textit{destination IP}& 128 bit & \textsl{indirizzo di destinazione}\\
324       \hline
325     \end{tabular}
326     \caption{Legenda per il significato dei campi dell'intestazione di IPv6}
327     \label{tab:IP_ipv6field}
328   \end{center}
329 \end{table}
330
331 Abbiamo già anticipato in \secref{sec:IP_ipv6over} uno dei criteri principali
332 nella progettazione di IPv6 è stato quello di ridurre al minimo il tempo di
333 processamento dei pacchetti da parte dei router, un confronto con
334 l'intestazione di IPv4 (vedi \figref{fig:IP_ipv4_head}) mostra le seguenti
335 differenze:
336
337 \begin{itemize}
338 \item è stato eliminato il campo \textit{header length} in quanto le opzioni
339   sono state tolte dall'intestazione che ha così dimensione fissa; ci possono
340   essere più intestazioni opzionali (\textsl{intestazioni di estensione}, vedi
341   \secref{sec:IP_ipv6_extens}), ciascuna delle quali avrà un suo campo di
342   lunghezza all'interno.
343 \item l'intestazione e gli indirizzi sono allineati a 64 bit, questo rende più
344   veloce il processo da parte di computer con processori a 64 bit.
345 \item i campi per gestire la frammentazione (\textit{identification},
346   \textit{flag} e \textit{fragment offset}) sono stati eliminati; questo
347   perché la  frammentazione è un'eccezione che non deve rallentare il
348   processo dei pacchetti nel caso normale.
349 \item è stato eliminato il campo \textit{checksum} in quanto tutti i
350   protocolli di livello superiore (TCP, UDP e ICMPv6) hanno un campo di
351   checksum che include, oltre alla loro intestazione e ai dati, pure i campi
352   \textit{payload length}, \textit{next header}, e gli indirizzi di origine e
353   di destinazione; una checksum esiste anche per la gran parte protocolli di
354   livello inferiore (anche se quelli che non lo hanno, come SLIP, non possono
355   essere usati con grande affidabilità); con questa scelta si è ridotto di
356   molti tempo di riprocessamento dato che i router non hanno più la
357   necessità di ricalcolare la checksum ad ogni passaggio di un pacchetto per
358   il cambiamento del campo \textit{hop limit}.
359 \item è stato eliminato il campo \textit{type of service}, che praticamente
360   non è mai stato utilizzato; una parte delle funzionalità ad esso delegate
361   sono state reimplementate (vedi il campo \textit{priority} al prossimo
362   punto) con altri metodi.
363 \item è stato introdotto un nuovo campo \textit{flow label}, che viene usato,
364   insieme al campo \textit{priority} (che recupera i bit di precedenza del
365   campo \textit{type of service}) per implementare la gestione di una
366   ``qualità di servizio'' (vedi \secref{sec:IP_ipv6_qos}) che permette di
367   identificare i pacchetti appartenenti a un ``flusso'' di dati per i quali si
368   può provvedere un trattamento speciale.
369 \end{itemize}
370
371
372 \begin{figure}[htb]
373   \centering
374   \includegraphics[width=10cm]{img/ipv4_head}
375   \caption{L'intestazione o \textit{header} di IPv4.}
376   \label{fig:IP_ipv4_head}
377 \end{figure}
378
379 \begin{table}[htb]
380   \footnotesize
381   \begin{center}
382     \begin{tabular}{|l|c|p{9cm}|}
383       \hline
384       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
385       \hline
386       \hline
387       \textit{version}          &  4 bit & \textsl{versione}, nel caso 
388       specifico vale sempre 4\\
389       \textit{head length}      &  4 bit &\textsl{lunghezza dell'intestazione},
390       in multipli di 32 bit\\
391       \textit{type of service}  &  8 bit & \textsl{tipo di servizio}, 
392       consiste in: 3 bit di precedenza, 
393       correntemente ignorati; un bit non usato a 0;  4 bit che identificano
394       il tipo di servizio richiesto, uno solo dei quali può essere 1\\
395       \textit{total length}     & 16 bit & \textsl{lunghezza totale}, indica 
396       la dimensione del pacchetto IP in byte\\
397       \textit{identification}   & 16 bit & \textsl{identificazione}, 
398       assegnato alla creazione, è aumentato di uno all'origine della 
399       trasmissione di ciascun pacchetto, ma resta lo stesso per i 
400       pacchetti frammentati\\
401       \textit{flag}             &  3 bit & 
402       \textsl{flag} bit di frammentazione, uno indica se un
403       pacchetto è frammentato, un'altro se ci sono ulteriori frammenti, e 
404       un'altro se il pacchetto non può essere frammentato. \\
405       \textit{fragmentation offset} & 13 bit& \textsl{offset di frammento},
406       indica la posizione del frammento rispetto al pacchetto originale\\
407       \textit{time to live}    & 16 bit & \textsl{tempo di vita},
408       ha lo stesso significato di
409       \textit{hop limit}, vedi Tab.~\ref{tab:IP_ipv6field}\\
410       \textit{protocol}        &  8 bit & \textsl{protocollo} 
411       identifica il tipo di pacchetto che segue
412       l'intestazione di IPv4\\
413       \textit{header checksum} & 16 bit & \textsl{checksum di intestazione}, 
414       somma di controllo per l'intestazione\\
415       \textit{source IP}       & 32 bit & \textsl{indirizzo di origine}\\
416       \textit{destination IP}  & 32 bit & \textsl{indirizzo di destinazione}\\
417       \hline
418     \end{tabular}
419     \caption{Legenda per il significato dei campi dell'intestazione di IPv4}
420     \label{tab:IP_ipv4field}
421   \end{center}
422 \end{table}
423
424 Oltre alle differenze precedenti, relative ai singoli campi nell'intestazione,
425 ulteriori caratteristiche che diversificano il comportamento di IPv4 da
426 quello di IPv6 sono le seguenti:
427
428 \begin{itemize}
429 \item il broadcasting non è previsto in IPv6, le applicazioni che lo usano
430   dovono essere reimplementate usando il multicasting (vedi
431   \secref{sec:IP_ipv6_multicast}), che da opzionale diventa obbligatorio.
432 \item è stato introdotto un nuovo tipo di indirizzi, gli \textit{anycast}.
433 \item i router non possono più frammentare i pacchetti lungo il cammino, la
434   frammentazione di pacchetti troppo grandi potrà essere gestita solo ai
435   capi della comunicazione (usando un'apposita estensione vedi
436   \secref{sec:IP_ipv6_extens}).
437 \item IPv6 richiede il supporto per il \textit{path MTU discovery} (cioè il
438   protocollo per la selezione della massima lunghezza del pacchetto); seppure
439   questo sia in teoria opzionale, senza di esso non sarà possibile inviare
440   pacchetti più larghi della dimensione minima (576 byte).
441 \end{itemize}
442
443 \section{Gli indirizzi di IPv6}
444 \label{sec:IP_ipv6_addr}
445
446 Come già abbondantemente anticipato la principale novità di IPv6 è
447 costituita dall'ampliamento dello spazio degli indirizzi, che consente di avere
448 indirizzi disponibili in un numero dell'ordine di quello degli atomi che
449 costituiscono la terra. 
450
451 In realtà l'allocazione di questi indirizzi deve tenere conto della
452 necessità di costruire delle gerarchie che consentano un instradamento
453 rapido ed efficiente dei pacchetti, e flessibilità nel dispiegamento delle
454 reti, il che comporta una riduzione drastica dei numeri utilizzabili; uno
455 studio sull'efficienza dei vari sistemi di allocazione usati in altre
456 architetture (come i sistemi telefonici) è comunque giunto alla conclusione
457 che anche nella peggiore delle ipotesi IPv6 dovrebbe essere in grado di
458 fornire più di un migliaio di indirizzi per ogni metro quadro della
459 superficie terrestre.
460
461
462 \subsection{La notazione}
463 \label{sec:IP_ipv6_notation}
464 Con un numero di bit quadruplicato non è più possibile usare la notazione
465 coi numeri decimali di IPv4 per rappresentare un numero IP. Per questo gli
466 indirizzi di IPv6 sono in genere scritti come sequenze di otto numeri
467 esadecimali di 4 cifre (cioè a gruppi di 16 bit) usando i due punti come
468 separatore; cioè qualcosa del tipo
469 \texttt{5f1b:df00:ce3e:e200:0020:0800:2078:e3e3}.
470
471
472 Visto che la notazione resta comunque piuttosto pesante esistono alcune
473 abbreviazioni; si può evitare di scrivere gli zeri iniziali per cui si
474 può scrivere \texttt{1080:0:0:0:8:800:ba98:2078:e3e3}; se poi un intero è
475 zero si può omettere del tutto, così come un insieme di zeri (ma questo
476 solo una volta per non generare ambiguità) per cui il precedente indirizzo
477 si può scrivere anche come \texttt{1080::8:800:ba98:2078:e3e3}.
478
479 Infine per scrivere un indirizzo IPv4 all'interno di un indirizzo IPv6 si
480 può usare la vecchia notazione con i punti, per esempio
481 \texttt{::192.84.145.138}.
482
483 \begin{table}[htb]
484   \centering 
485   \footnotesize
486   \begin{tabular}{|l|l|l|}
487     \hline
488     \centering \textbf{Tipo di indirizzo}
489     & \centering \textbf{Prefisso} & {\centering \textbf{Frazione}} \\
490     \hline
491     \hline
492     riservato & \texttt{0000 0000} & 1/256 \\
493     non assegnato  & \texttt{0000 0001} & 1/256 \\
494     \hline
495     riservato per NSAP & \texttt{0000 001} & 1/128\\
496     riservato per IPX & \texttt{0000 010} & 1/128\\
497     \hline
498     non assegnato  & \texttt{0000 011} & 1/128 \\
499     non assegnato  & \texttt{0000 1} & 1/32 \\
500     non assegnato  & \texttt{0001} & 1/16 \\
501     \hline
502     provider-based & \texttt{001} & 1/8\\
503     \hline
504     non assegnato  & \texttt{010} & 1/8 \\
505     non assegnato  & \texttt{011} & 1/8 \\
506     geografic-based& \texttt{100} & 1/8 \\
507     non assegnato  & \texttt{101} & 1/8 \\
508     non assegnato  & \texttt{110} & 1/8 \\
509     non assegnato  & \texttt{1110} & 1/16 \\
510     non assegnato  & \texttt{1111 0} & 1/32 \\
511     non assegnato  & \texttt{1111 10} & 1/64 \\
512     non assegnato  & \texttt{1111 110} & 1/128 \\
513     non assegnato  & \texttt{1111 1100 0} & 1/512 \\
514     \hline
515     unicast link-local & \texttt{1111 1100 10} & 1/1024 \\
516     unicast site-local & \texttt{1111 1100 11} & 1/1024 \\
517     \hline
518     \hline
519     multicast & \texttt{1111 1111} & 1/256 \\
520     \hline
521   \end{tabular}
522   \caption{Classificazione degli indirizzi IPv6 a seconda dei bit più 
523     significativi}
524   \label{tab:IP_ipv6addr}
525 \end{table}
526
527
528 \subsection{La architettura degli indirizzi di IPv6}
529 \label{sec:IP_ipv6_addr_arch}
530
531 Come per IPv4 gli indirizzi sono identificatori per una singola (indirizzi
532 \textit{unicast}) o per un insieme (indirizzi \textit{multicast} e
533 \textit{anycast}) di interfacce di rete.  
534
535 Gli indirizzi sono sempre assegnati all'interfaccia, non al nodo che la
536 ospita; dato che ogni interfaccia appartiene ad un nodo quest'ultimo può
537 essere identificato attraverso uno qualunque degli indirizzi unicast delle sue
538 interfacce. A una interfaccia possono essere associati anche più indirizzi.
539
540 IPv6 presenta tre tipi diversi di indirizzi: due di questi, gli indirizzi
541 \textit{unicast} e \textit{multicast} hanno le stesse caratteristiche che in
542 IPv4, un terzo tipo, gli indirizzi \textit{anycast} è completamente nuovo.
543 In IPv6 non esistono più gli indirizzi \textit{broadcast}, la funzione di
544 questi ultimi deve essere reimplementata con gli indirizzi \textit{multicast}.
545
546 Gli indirizzi \textit{unicast} identificano una singola interfaccia: i
547 pacchetti mandati ad un tale indirizzo verranno inviati a quella interfaccia,
548 gli indirizzi \textit{anycast} identificano un gruppo di interfacce tale che
549 un pacchetto mandato a uno di questi indirizzi viene inviato alla più vicina
550 (nel senso di distanza di routing) delle interfacce del gruppo, gli indirizzi
551 \textit{multicast} identificano un gruppo di interfacce tale che un pacchetto
552 mandato a uno di questi indirizzi viene inviato a tutte le interfacce del
553 gruppo.
554
555 In IPv6 non ci sono più le classi ma i bit più significativi indicano il tipo
556 di indirizzo; in \tabref{tab:IP_ipv6addr} sono riportati i valori di detti
557 bit e il tipo di indirizzo che loro corrispondente.  I bit più significativi
558 costituiscono quello che viene chiamato il \textit{format prefix} ed è sulla
559 base di questo che i vari tipi di indirizzi vengono identificati.  Come si
560 vede questa architettura di allocazione supporta l'allocazione di indirizzi
561 per i provider, per uso locale e per il multicast; inoltre è stato riservato
562 lo spazio per indirizzi NSAP, IPX e per le connessioni; gran parte dello
563 spazio (più del 70\%) è riservato per usi futuri.
564
565 Si noti infine che gli indirizzi \textit{anycast} non sono riportati in
566 \tabref{tab:IP_ipv6addr} in quanto allocati al di fuori dello spazio di
567 allocazione degli indirizzi unicast.
568
569 \subsection{Indirizzi unicast \textit{provider-based}}
570 \label{sec:IP_ipv6_unicast}
571
572 Gli indirizzi \textit{provider-based} sono gli indirizzi usati per le
573 comunicazioni globali, questi sono definiti nell'RFC 2073 e sono gli
574 equivalenti degli attuali indirizzi delle classi da A a C.
575
576 L'autorità che presiede all'allocazione di questi indirizzi è la IANA; per
577 evitare i problemi di crescita delle tabelle di instradamento e una procedura
578 efficiente di allocazione la struttura di questi indirizzi è organizzata fin
579 dall'inizio in maniera gerarchica; pertanto lo spazio di questi indirizzi è
580 stato suddiviso in una serie di campi secondo lo schema riportato in
581 \tabref{tab:IP_ipv6_unicast}.
582
583 \begin{table}[htb]
584   \centering
585   \footnotesize
586   \begin{tabular} {@{\vrule}p{6mm}
587       @{\vrule}p{16mm}@{\vrule}p{24mm}
588       @{\vrule}p{30mm}@{\vrule}c@{\vrule}}
589     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
590     \multicolumn{1}{c}{$n$ bit}&\multicolumn{1}{c}{$56-n$ bit}&
591     \multicolumn{1}{c}{64 bit} \\
592     \hline
593     \omit\vrule\hfill\vrule&\hspace{16mm} & & &\omit\hspace{76mm}\hfill\vrule\\ 
594     \centering 010&
595     \centering \textsl{Registry Id}&
596     \centering \textsl{Provider Id}& 
597     \centering \textsl{Subscriber Id}& 
598     \textsl{Intra-Subscriber} \\
599     \omit\vrule\hfill\vrule& & & &\omit\hspace{6mm}\hfill\vrule\\ 
600     \hline
601   \end{tabular}
602 \caption{Formato di un indirizzo unicast \textit{provider-based}.}
603 \label{tab:IP_ipv6_unicast}
604 \end{table}
605
606 Al livello più alto la IANA può delegare l'allocazione a delle autorità
607 regionali (i Regional Register) assegnando ad esse dei blocchi di indirizzi; a
608 queste autorità regionali è assegnato un Registry Id che deve seguire
609 immediatamente il prefisso di formato. Al momento sono definite tre registri
610 regionali (INTERNIC, RIPE NCC e APNIC), inoltre la IANA si è riservata la
611 possibilità di allocare indirizzi su base regionale; pertanto sono previsti
612 i seguenti possibili valori per il \textsl{Registry Id};
613 gli altri valori restano riservati per la IANA.
614 \begin{table}[htb]
615   \begin{center}
616     \begin{tabular}{|l|l|l|}
617       \hline
618       \textbf{Regione} & \textbf{Registro} & \textbf{Id} \\
619       \hline
620       \hline
621       Nord America &INTERNIC & \texttt{11000} \\
622       Europa & RIPE NCC & \texttt{01000} \\
623       Asia & APNIC & \texttt{00100} \\
624       Multi-regionale & IANA &\texttt{10000} \\
625       \hline
626     \end{tabular}
627     \caption{Valori dell'identificativo dei 
628       Regional Register allocati ad oggi.}
629     \label{tab:IP_ipv6_regid}
630   \end{center}
631 \end{table}
632
633 L'organizzazione degli indirizzi prevede poi che i due livelli successivi, di
634 suddivisione fra \textit{Provider Id}, che identifica i grandi fornitori di
635 servizi, e \textit{Subscriber Id}, che identifica i fruitori, sia gestita dai
636 singoli registri regionali. Questi ultimi dovranno definire come dividere lo
637 spazio di indirizzi assegnato a questi due campi (che ammonta a un totale di
638 56~bit), definendo lo spazio da assegnare al \textit{Provider Id} e
639 al \textit{Subscriber Id}, ad essi spetterà inoltre anche l'allocazione dei
640 numeri di \textit{Provider Id} ai singoli fornitori, ai quali sarà delegata
641 l'autorità di allocare i \textit{Subscriber Id} al loro interno.
642
643 L'ultimo livello è quello \textit{Intra-subscriber} che è lasciato alla
644 gestione dei singoli fruitori finali, gli indirizzi \textit{provider-based}
645 lasciano normalmente gli ultimi 64~bit a disposizione per questo livello, la
646 modalità più immediata è quella di usare uno schema del tipo mostrato in
647 \tabref{tab:IP_ipv6_uninterf} dove l'\textit{Interface Id} è dato dal
648 MAC-address a 48~bit dello standard Ethernet, scritto in genere nell'hardware
649 delle scheda di rete, e si usano i restanti 16~bit per indicare la sottorete.
650
651 \begin{table}[htb]
652   \centering
653   \footnotesize
654   \begin{tabular} {@{\vrule}p{64mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
655     \multicolumn{1}{c}{64 bit}&\multicolumn{1}{c}{16 bit}&
656     \multicolumn{1}{c}{48 bit}\\
657     \hline
658     \omit\vrule\hfill\vrule&\hspace{16mm}&\omit\hspace{48mm}\hfill\vrule\\ 
659     \centering \textsl{Subscriber Prefix}& 
660     \centering \textsl{Subnet Id}&
661     \textsl{Interface Id}\\
662     \omit\vrule\hfill\vrule& &\omit\hspace{6mm}\hfill\vrule\\ 
663     \hline
664   \end{tabular}
665 \caption{Formato del campo \textit{Intra-subscriber} per un indirizzo unicast
666   \textit{provider-based}.}
667 \label{tab:IP_ipv6_uninterf}
668 \end{table}
669
670 Qualora si dovesse avere a che fare con una necessità di un numero più
671 elevato di sottoreti, il precedente schema andrebbe modificato, per evitare
672 l'enorme spreco dovuto all'uso dei MAC-address, a questo scopo si possono
673 usare le capacità di autoconfigurazione di IPv6 per assegnare indirizzi
674 generici con ulteriori gerarchie per sfruttare efficacemente tutto lo spazio
675 di indirizzi.
676
677 Un registro regionale può introdurre un ulteriore livello nella gerarchia
678 degli indirizzi, allocando dei blocchi per i quali delegare l'autorità a dei
679 registri nazionali, quest'ultimi poi avranno il compito di gestire la
680 attribuzione degli indirizzi per i fornitori di servizi nell'ambito del/i
681 paese coperto dal registro nazionale con le modalità viste in precedenza.
682 Una tale ripartizione andrà effettuata all'interno dei soliti 56~bit come
683 mostrato in \tabref{tab:IP_ipv6_uninaz}.
684
685 \begin{table}[htb]
686   \centering
687   \footnotesize
688   \begin{tabular} {@{\vrule}p{3mm}
689       @{\vrule}p{10mm}@{\vrule}p{12mm}@{\vrule}p{18mm}
690       @{\vrule}p{18mm}@{\vrule}c@{\vrule}}
691     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
692     \multicolumn{1}{c}{n bit}&\multicolumn{1}{c}{m bit}&
693     \multicolumn{1}{c}{56-n-m bit}&\multicolumn{1}{c}{64 bit} \\
694     \hline
695     \omit\vrule\hfill\vrule& & & & &\omit\hspace{64mm}\hfill\vrule\\
696     \centering \texttt{3}&
697     \centering \textsl{Reg.}&
698     \centering \textsl{Naz.}&
699     \centering \textsl{Prov.}& 
700     \centering \textsl{Subscr.}& 
701     \textsl{Intra-Subscriber} \\
702     \omit\vrule\hfill\vrule &&&&&\\ 
703     \hline
704   \end{tabular}
705 \caption{Formato di un indirizzo unicast \textit{provider-based} che prevede
706       un registro nazionale.}
707 \label{tab:IP_ipv6_uninaz}
708 \end{table}
709
710
711 \subsection{Indirizzi ad uso locale}
712 \label{sec:IP_ipv6_linksite}
713
714 Gli indirizzi ad uso locale sono indirizzi unicast che sono instradabili solo
715 localmente (all'interno di un sito o di una sottorete), e possono avere una
716 unicità locale o globale.
717
718 Questi indirizzi sono pensati per l'uso all'interno di un sito per mettere su
719 una comunicazione locale immediata, o durante le fasi di autoconfigurazione
720 prima di avere un indirizzo globale.
721
722 \begin{table}[htb]
723   \centering
724   \footnotesize
725   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{54mm}@{\vrule}c@{\vrule}}
726     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{54 bit} & 
727     \multicolumn{1}{c}{64 bit} \\
728     \hline
729     \omit\vrule\hfill\vrule & & \omit\hspace{64mm}\hfill\vrule\\
730     \centering \texttt{FE80}& 
731     \centering\texttt{0000 .   .   .   .   . 0000} &
732     Interface Id \\
733     \omit\vrule\hfill\vrule & &\\
734     \hline
735 \end{tabular}
736 \caption{Formato di un indirizzo \textit{link-local}.}
737 \label{tab:IP_ipv6_linklocal}
738 \end{table}
739
740 Ci sono due tipi di indirizzi, \textit{link-local} e \textit{site-local}. Il
741 primo è usato per un singolo link; la struttura è mostrata in
742 \tabref{tab:IP_ipv6_linklocal}, questi indirizzi iniziano sempre per
743 \texttt{FE80} e vengono in genere usati per la configurazione automatica
744 dell'indirizzo al bootstrap e per la ricerca dei vicini (vedi
745 \ref{sec:IP_ipv6_autoconf}); un pacchetto che abbia tale indirizzo come
746 sorgente o destinazione non deve venire ritrasmesso dai router.
747
748 Un indirizzo \textit{site-local} invece è usato per l'indirizzamento
749 all'interno di un sito che non necessita di un prefisso globale; la struttura
750 è mostrata in \tabref{tab:IP_ipv6_sitelocal}, questi indirizzi iniziano sempre
751 per \texttt{FEC0} e non devono venire ritrasmessi dai router all'esterno del
752 sito stesso; sono in sostanza gli equivalenti degli indirizzi riservati per
753 reti private definiti su IPv4.  Per entrambi gli indirizzi il campo
754 \textit{Interface Id} è un identificatore che deve essere unico nel dominio in
755 cui viene usato, un modo immediato per costruirlo è quello di usare il
756 MAC-address delle schede di rete.
757  
758 \begin{table}[!h]
759   \centering
760   \footnotesize
761   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{38mm}@{\vrule}p{16mm}
762       @{\vrule}c@{\vrule}}
763     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{38 bit} & 
764     \multicolumn{1}{c}{16 bit} &\multicolumn{1}{c}{64 bit} \\
765     \hline
766     \omit\vrule\hfill\vrule& & & \omit\hspace{64mm}\hfill\vrule\\
767     \centering \texttt{FEC0}& 
768     \centering \texttt{0000 .   .   . 0000}& 
769     \centering Subnet Id &
770     Interface Id\\
771     \omit\vrule\hfill\vrule& & &\\
772     \hline
773 \end{tabular}
774 \caption{Formato di un indirizzo \textit{site-local}.}
775 \label{tab:IP_ipv6_sitelocal}
776 \end{table}
777
778 Gli indirizzi di uso locale consentono ad una organizzazione che non è
779 (ancora) connessa ad Internet di operare senza richiedere un prefisso globale,
780 una volta che in seguito l'organizzazione venisse connessa a Internet
781 potrebbe continuare a usare la stessa suddivisione effettuata con gli
782 indirizzi \textit{site-local} utilizzando un prefisso globale e la
783 rinumerazione degli indirizzi delle singole macchine sarebbe automatica.
784
785 \subsection{Indirizzi riservati}
786 \label{sec:IP_ipv6_reserved}
787
788 Alcuni indirizzi sono riservati per scopi speciali, in particolare per scopi
789 di compatibilità.
790
791 Un primo tipo sono gli indirizzi \textit{IPv4 mappati su IPv6} (mostrati in
792 \tabref{tab:IP_ipv6_map}), questo sono indirizzi unicast che vengono usati per
793 consentire ad applicazioni IPv6 di comunicare con host capaci solo di IPv4;
794 questi sono ad esempio gli indirizzi generati da un DNS quando l'host
795 richiesto supporta solo IPv4; l'uso di un tale indirizzo in un socket IPv6
796 comporta la generazione di un pacchetto IPv4 (ovviamente occorre che sia IPv4
797 che IPv6 siano supportati sull'host di origine).
798
799 \begin{table}[!htb]
800   \centering
801   \footnotesize
802   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
803     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
804     \multicolumn{1}{c}{32 bit} \\
805     \hline
806     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
807     \centering
808     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
809     \centering\texttt{FFFF} &
810     IPv4 address \\
811     \omit\vrule\hfill\vrule& &\\ 
812     \hline
813 \end{tabular}
814 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
815 \label{tab:IP_ipv6_map}
816 \end{table}
817
818 Un secondo tipo di indirizzi di compatibilità sono gli \textit{IPv4
819   compatibili IPv6} (vedi \tabref{tab:IP_ipv6_comp}) usati nella transizione
820 da IPv4 a IPv6: quando un nodo che supporta sia IPv6 che IPv4 non ha un router
821 IPv6 deve usare nel DNS un indirizzo di questo tipo, ogni pacchetto IPv6
822 inviato a un tale indirizzo verrà automaticamente incapsulato in IPv4.
823
824 \begin{table}[htb]
825   \centering
826   \footnotesize
827   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}p{32mm}@{\vrule}}
828     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
829     \multicolumn{1}{c}{32 bit} \\
830     \hline
831     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
832     \centering
833     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
834     \centering\texttt{0000} &
835     \parbox{32mm}{\centering IPv4 address} \\
836     \omit\vrule\hfill\vrule& &\\ 
837     \hline
838 \end{tabular}
839 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
840 \label{tab:IP_ipv6_comp}
841 \end{table}
842
843 Altri indirizzi speciali sono il \textit{loopback address}, costituito da 127
844 zeri ed un uno (cioè \texttt{::1}) e l'\textsl{indirizzo generico}
845 costituito da tutti zeri (scritto come \texttt{0::0} o ancora più
846 semplicemente come \texttt{:}) usato in genere quando si vuole indicare
847 l'accettazione di una connessione da qualunque host.
848
849 \subsection{Multicasting}
850 \label{sec:IP_ipv6_multicast}
851
852 Gli indirizzi \textit{multicast} sono usati per inviare un pacchetto a un
853 gruppo di interfacce; l'indirizzo identifica uno specifico gruppo di multicast
854 e il pacchetto viene inviato a tutte le interfacce di detto gruppo.
855 Un'interfaccia può appartenere ad un numero qualunque numero di gruppi di
856 multicast. Il formato degli indirizzi \textit{multicast} è riportato in
857 \tabref{tab:IP_ipv6_multicast}:
858
859 \begin{table}[htb]
860   \centering
861   \footnotesize
862   \begin{tabular} {@{\vrule}p{12mm}
863       @{\vrule}p{6mm}@{\vrule}p{6mm}@{\vrule}c@{\vrule}}
864     \multicolumn{1}{c}{8}&\multicolumn{1}{c}{4}&
865     \multicolumn{1}{c}{4}&\multicolumn{1}{c}{112 bit} \\
866     \hline
867     \omit\vrule\hfill\vrule& & & \omit\hspace{104mm}\hfill\vrule\\
868     \centering\texttt{FF}& 
869     \centering flag &
870     \centering scop& 
871     Group Id\\
872     \omit\vrule\hfill\vrule &&&\\ 
873     \hline
874   \end{tabular}
875 \caption{Formato di un indirizzo \textit{multicast}.}
876 \label{tab:IP_ipv6_multicast}
877 \end{table}
878
879 Il prefisso di formato per tutti gli indirizzi \textit{multicast} è
880 \texttt{FF}, ad esso seguono i due campi il cui significato è il seguente:
881
882 \begin{itemize}
883 \item \textsl{flag}: un insieme di 4 bit, di cui i primi tre sono riservati e
884   posti a zero, l'ultimo è zero se l'indirizzo è permanente (cioè un
885   indirizzo noto, assegnato dalla IANA), ed è uno se invece l'indirizzo è
886   transitorio.
887 \item \textsl{scop} è un numero di quattro bit che indica il raggio di
888   validità dell'indirizzo, i valori assegnati per ora sono riportati in
889   \tabref{tab:IP_ipv6_multiscope}.
890 \end{itemize}
891
892
893
894 \begin{table}[!htb]
895   \centering 
896   \footnotesize
897   \begin{tabular}[c]{|c|l|c|l|}
898     \hline
899     \multicolumn{4}{|c|}{\bf Gruppi di multicast} \\
900     \hline
901     \hline
902     0 & riservato & 8 & organizzazione locale \\
903     1 & nodo locale & 9 & non assegnato \\
904     2 & collegamento locale & A & non assegnato \\
905     3 & non assegnato & B & non assegnato \\
906     4 & non assegnato & C & non assegnato \\ 
907     5 & sito locale & D & non assegnato \\
908     6 & non assegnato & E & globale \\
909     7 & non assegnato & F & riservato \\
910     \hline
911   \end{tabular}
912 \caption{Possibili valori del campo \textsl{scop} di un indirizzo multicast.}
913 \label{tab:IP_ipv6_multiscope}
914 \end{table}
915
916 Infine l'ultimo campo identifica il gruppo di multicast, sia permanente che
917 transitorio, all'interno del raggio di validità del medesimo. Alcuni
918 indirizzi multicast, riportati in \tabref{tab:multiadd} sono già riservati
919 per il funzionamento della rete.
920
921 \begin{table}[!htb]
922   \centering 
923   \footnotesize
924   \begin{tabular}[c]{l l r}
925     \hline
926     \textbf{Uso}& \textbf{Indirizzi riservati} & \textbf{Definizione}\\
927     \hline 
928     \hline 
929     all-nodes & \texttt{FFxx:0:0:0:0:0:0:1} & RFC 1970\\
930     all-routers & \texttt{FFxx:0:0:0:0:0:0:2} & RFC 1970\\
931     all-rip-routers & \texttt{FFxx:0:0:0:0:0:0:9} & RFC 2080\\
932     all-cbt-routers & \texttt{FFxx:0:0:0:0:0:0:10} &\\
933     reserved &  \texttt{FFxx:0:0:0:0:0:1:0} & IANA \\
934     link-name &  \texttt{FFxx:0:0:0:0:0:1:1} &  \\
935     all-dhcp-agents & \texttt{FFxx:0:0:0:0:0:1:2} & \\
936     all-dhcp-servers & \texttt{FFxx:0:0:0:0:0:1:3} & \\
937     all-dhcp-relays & \texttt{FFxx:0:0:0:0:0:1:4} & \\
938     solicited-nodes &  \texttt{FFxx:0:0:0:0:1:0:0} & RFC 1970\\
939     \hline
940   \end{tabular}
941 \caption{Gruppi multicast predefiniti.}
942 \label{tab:multiadd}
943 \end{table}
944
945 L'utilizzo del campo di \textit{scope} e di questi indirizzi predefiniti serve
946 a recuperare le funzionalità del broadcasting (ad esempio inviando un
947 pacchetto all'indirizzo \texttt{FF02:0:0:0:0:0:0:1} si raggiungono tutti i
948 nodi locali).
949
950
951 \subsection{Indirizzi \textit{anycast}}
952 \label{sec:IP_anycast}
953
954 Gli indirizzi \textit{anycast} sono indirizzi che vengono assegnati ad un
955 gruppo di interfacce: un pacchetto indirizzato a questo tipo di indirizzo
956 viene inviato al componente del gruppo più ``vicino'' secondo la distanza di
957 instradamento calcolata dai router.
958
959 Questi indirizzi sono allocati nello stesso spazio degli indirizzi unicast,
960 usando uno dei formati disponibili, e per questo, sono da essi assolutamente
961 indistinguibili. Quando un indirizzo unicast viene assegnato a più interfacce
962 (trasformandolo in un anycast) il computer su cui è l'interfaccia deve essere
963 configurato per tener conto del fatto.
964
965 Gli indirizzi anycast consentono a un nodo sorgente di inviare pacchetti a una
966 destinazione su un gruppo di possibili interfacce selezionate. La sorgente non
967 deve curarsi di come scegliere l'interfaccia più vicina, compito che tocca al
968 sistema di instradamento (in sostanza la sorgente non ha nessun controllo
969 sulla selezione).
970
971 Gli indirizzi anycast, quando vengono usati come parte di una sequenza di
972 instradamento, consentono ad esempio ad un nodo di scegliere quale fornitore
973 vuole usare (configurando gli indirizzi anycast per identificare i router di
974 uno stesso provider).
975
976 Questi indirizzi pertanto possono essere usati come indirizzi intermedi in una
977 intestazione di instradamento o per identificare insiemi di router connessi a
978 una particolare sottorete, o che forniscono l'accesso a un certo sotto
979 dominio.
980
981 L'idea alla base degli indirizzi anycast è perciò quella di utilizzarli per
982 poter raggiungere il fornitore di servizio più vicino; ma restano aperte tutta
983 una serie di problematiche, visto che una connessione con uno di questi
984 indirizzi non è possibile, dato che per una variazione delle distanze di
985 routing non è detto che due pacchetti successivi finiscano alla stessa
986 interfaccia.
987
988 La materia è pertanto ancora controversa e in via di definizione.
989
990
991 \section{Le estensioni}
992 \label{sec:IP_ipv6_extens}
993
994 Come già detto in precedenza IPv6 ha completamente cambiato il trattamento
995 delle opzioni; queste ultime infatti sono state tolte dall'intestazione del
996 pacchetto, e poste in apposite \textsl{intestazioni di estensione} (o
997 \textit{extension header}) poste fra l'intestazione di IPv6 e l'intestazione
998 del protocollo di trasporto.
999
1000 Per aumentare la velocità di processo, sia dei dati del livello seguente che
1001 di ulteriori opzioni, ciascuna estensione deve avere una lunghezza multipla di
1002 8 byte per mantenere l'allineamento a 64~bit di tutti le intestazioni
1003 seguenti.
1004
1005 Dato che la maggior parte di queste estensioni non sono esaminate dai router
1006 durante l'instradamento e la trasmissione dei pacchetti, ma solo all'arrivo
1007 alla destinazione finale, questa scelta ha consentito un miglioramento delle
1008 prestazioni rispetto a IPv4 dove la presenza di un'opzione comportava l'esame
1009 di tutte quante.
1010
1011 Un secondo miglioramento è che rispetto a IPv4 le opzioni possono essere di
1012 lunghezza arbitraria e non limitate a 40 byte; questo, insieme al modo in cui
1013 vengono trattate, consente di utilizzarle per scopi come l'autenticazione e la
1014 sicurezza, improponibili con IPv4.
1015
1016 Le estensioni definite al momento sono le seguenti:
1017 \begin{itemize}
1018 \item \textbf{Hop by hop} devono seguire immediatamente l'intestazione
1019   principale; indicano le opzioni che devono venire processate ad ogni
1020   passaggio da un router, fra di esse è da menzionare la \textit{jumbo
1021     payload} che segnala la presenza di un pacchetto di dati di dimensione
1022   superiore a 65535 byte.
1023 \item \textbf{Destination options} opzioni che devono venire esaminate al nodo
1024   di ricevimento, nessuna di esse è tuttora definita.
1025 \item \textbf{Routing} definisce una \textit{source route} (come la analoga
1026   opzione di IPv4) cioè una lista di indirizzi IP di nodi per i quali il
1027   pacchetto deve passare. 
1028 \item \textbf{Fragmentation} viene generato automaticamente quando un host
1029   vuole frammentare un pacchetto, ed è riprocessato automaticamente alla
1030   destinazione che riassembla i frammenti.
1031 \item \textbf{Authentication} gestisce l'autenticazione e il controllo di
1032   integrità dei pacchetti; è documentato dall'RFC 162.
1033 \item \textbf{Encapsulation} serve a gestire la segretezza del contenuto
1034   trasmesso; è documentato dall'RFC 1827.
1035 \end{itemize}
1036
1037 La presenza di opzioni è rilevata dal valore del campo \textit{next header}
1038 che indica qual'è l'intestazione successiva a quella di IPv6; in assenza di
1039 opzioni questa sarà l'intestazione di un protocollo di trasporto del livello
1040 superiore, per cui il campo assumerà lo stesso valore del campo
1041 \textit{protocol} di IPv4, altrimenti assumerà il valore dell'opzione
1042 presente; i valori possibili sono riportati in \tabref{tab:IP_ipv6_nexthead}.
1043
1044 \begin{table}[htb]
1045   \begin{center}
1046     \footnotesize
1047     \begin{tabular}{|c|l|l|}
1048       \hline
1049       \textbf{Valore} & \textbf{Keyword} & \textbf{Tipo di protocollo} \\
1050       \hline
1051       \hline
1052       0  &      & riservato\\
1053          & HBH  & Hop by Hop \\
1054       1  & ICMP & Internet Control Message (IPv4 o IPv6) \\
1055       2  & ICMP & Internet Group Management (IPv4) \\
1056       3  & GGP  & Gateway-to-Gateway \\
1057       4  & IP   & IP in IP (IPv4 encapsulation) \\
1058       5  & ST   & Stream \\
1059       6  & TCP  & Trasmission Control \\
1060       17 & UDP  & User Datagram \\
1061       43 & RH   & Routing Header (IPv6) \\
1062       44 & FH   & Fragment Header (IPv6) \\
1063       45 & IDRP & Inter Domain Routing \\
1064       51 & AH   & Authentication Header (IPv6) \\
1065       52 & ESP  & Encrypted Security Payload (IPv6) \\
1066       59 & Null & No next header (IPv6) \\
1067       88 & IGRP & Internet Group Routing \\
1068       89 & OSPF & Open Short Path First \\
1069       255&      & riservato \\
1070     \hline
1071     \end{tabular}
1072     \caption{Tipi di protocolli e intestazioni di estensione}
1073     \label{tab:IP_ipv6_nexthead}
1074   \end{center}
1075 \end{table}
1076
1077 Questo meccanismo permette la presenza di più opzioni in successione prima
1078 del pacchetto del protocollo di trasporto; l'ordine raccomandato per le
1079 estensioni è quello riportato nell'elenco precedente con la sola differenza
1080 che le opzioni di destinazione sono inserite nella posizione ivi indicata solo
1081 se, come per il tunnelling, devono essere esaminate dai router, quelle che
1082 devono essere esaminate solo alla destinazione finale vanno in coda.
1083
1084
1085 \section{Qualità di servizio}
1086 \label{sec:IP_ipv6_qos}
1087
1088 Una delle caratteristiche innovative di IPv6 è quella di avere introdotto un
1089 supporto per la qualità di servizio che è importante per applicazioni come
1090 quelle multimediali o ``real-time'' che richiedono un qualche grado di
1091 controllo sulla stabilità della banda di trasmissione, sui ritardi o la
1092 dispersione dei temporale del flusso dei pacchetti.
1093
1094
1095 \subsection{Etichette di flusso}
1096 \label{sec:IP_ipv6_flow}
1097 L'introduzione del campo \textit{flow label} può essere usata dall'origine
1098 della comunicazione per etichettare quei pacchetti per i quali si vuole un
1099 trattamento speciale da parte dei router come un una garanzia di banda minima
1100 assicurata o un tempo minimo di instradamento/trasmissione garantito.
1101
1102 Questo aspetto di IPv6 è ancora sperimentale per cui i router che non
1103 supportino queste funzioni devono porre a zero il \textit{flow label} per i
1104 pacchetti da loro originanti e lasciare invariato il campo per quelli in
1105 transito.
1106
1107 Un flusso è una sequenza di pacchetti da una particolare origine a una
1108 particolare destinazione per il quale l'origine desidera un trattamento
1109 speciale da parte dei router che lo manipolano; la natura di questo
1110 trattamento può essere comunicata ai router in vari modi (come un protocollo
1111 di controllo o con opzioni del tipo \textit{hop-by-hop}). 
1112
1113 Ci possono essere più flussi attivi fra un'origine e una destinazione, come
1114 del traffico non assegnato a nessun flusso, un flusso viene identificato
1115 univocamente dagli indirizzi di origine e destinazione e da una etichetta di
1116 flusso diversa da zero, il traffico normale deve avere l'etichetta di flusso
1117 posta a zero.
1118
1119 L'etichetta di flusso è assegnata dal nodo di origine, i valori devono
1120 essere scelti in maniera (pseudo)casuale nel range fra 1 e FFFFFF in modo da
1121 rendere utilizzabile un qualunque sottoinsieme dei bit come chiavi di hash per
1122 i router.
1123
1124 \subsection{Priorità}
1125 \label{sec:prio}
1126
1127 Il campo di priorità consente di indicare il livello di priorità dei
1128 pacchetti relativamente agli altri pacchetti provenienti dalla stessa
1129 sorgente. I valori sono divisi in due intervalli, i valori da 0 a 7 sono usati
1130 per specificare la priorità del traffico per il quale la sorgente provvede
1131 un controllo di congestione cioè per il traffico che può essere ``tirato
1132 indietro'' in caso di congestione come quello di TCP, i valori da 8 a 15 sono
1133 usati per i pacchetti che non hanno questa caratteristica, come i pacchetti
1134 ``real-time'' inviati a ritmo costante.
1135
1136 Per il traffico con controllo di congestione sono raccomandati i seguenti
1137 valori di priorità a seconda del tipo di applicazione:
1138
1139 \begin{table}[htb]
1140   \centering
1141   \footnotesize
1142   \begin{tabular}{|c|l|}
1143     \hline
1144     \textbf{Valore} & \textbf{Tipo di traffico} \\
1145     \hline
1146     \hline
1147     0 & traffico generico \\
1148     1 & traffico di riempimento (es. news) \\
1149     2 & trasferimento dati non interattivo (es. e-mail)\\
1150     3 & riservato \\
1151     4 & trasferimento dati interattivo (es. FTP, HTTP, NFS) \\
1152     5 & riservato \\
1153     \hline
1154 \end{tabular}
1155 \caption{Formato di un indirizzo \textit{site-local}.}
1156 \label{tab:priority}
1157 \end{table}
1158
1159 Per il traffico senza controllo di congestione la priorità più bassa
1160 dovrebbe essere usata per quei pacchetti che si preferisce siano scartati
1161 più facilmente in caso di congestione.
1162
1163
1164 \section{Sicurezza a livello IP}
1165 \label{sec:security}
1166
1167 La attuale implementazione di Internet presenta numerosi problemi di
1168 sicurezza, in particolare i dati presenti nelle intestazioni dei vari
1169 protocolli sono assunti essere corretti, il che da adito alla possibilità di
1170 varie tipologie di attacco forgiando pacchetti false, inoltre tutti questi
1171 dati passano in chiaro sulla rete e sono esposti all'osservazione di chiunque
1172 si trovi in mezzo.
1173
1174 Con IPv4 non è possibile realizzare un meccanismo di autenticazione e
1175 riservatezza a un livello inferiore al primo (quello di applicazione), con
1176 IPv6 è stato progettata la possibilità di intervenire al livello di rete (il
1177 terzo) prevedendo due apposite estensioni che possono essere usate per fornire
1178 livelli di sicurezza a seconda degli utenti. La codifica generale di questa
1179 architettura è riportata nell'RFC 2401.
1180
1181 Il meccanismo in sostanza si basa su due estensioni:
1182 \begin{itemize}
1183 \item una intestazione di sicurezza (\textit{authentication header}) che
1184   garantisce al destinatario l'autenticità del pacchetto
1185 \item un carico di sicurezza (\textit{Encrypted Security Payload}) che
1186   assicura che solo il legittimo ricevente può leggere il pacchetto.
1187 \end{itemize}
1188
1189 Perché tutto questo funzioni le stazioni sorgente e destinazione devono
1190 usare una stessa chiave crittografica e gli stessi algoritmi, l'insieme degli
1191 accordi fra le due stazioni per concordare chiavi e algoritmi usati va sotto
1192 il nome di associazione di sicurezza.
1193
1194 I pacchetti autenticati e crittografati portano un indice dei parametri di
1195 sicurezza (SPI, \textit{Security Parameter Index}) che viene negoziato prima
1196 di ogni comunicazione ed è definito dalla stazione sorgente. Nel caso di
1197 multicast dovrà essere lo stesso per tutte le stazioni del gruppo.
1198
1199 \subsection{Autenticazione}
1200 \label{sec:auth} 
1201
1202 Il primo meccanismo di sicurezza è quello dell'intestazione di autenticazione
1203 (\textit{authentication header}) che fornisce l'autenticazione e il controllo
1204 di integrità (ma senza riservatezza) dei pacchetti IP.
1205
1206 L'intestazione di autenticazione ha il formato descritto in
1207 \tabref{tab:autent_head}: il campo \textit{Next Header} indica l'intestazione
1208 successiva, con gli stessi valori del campo omonimo nell'intestazione
1209 principale di IPv6, il campo \textit{Length} indica la lunghezza
1210 dell'intestazione di autenticazione in numero di parole a 32 bit, il campo
1211 riservato deve essere posto a zero, seguono poi l'indice di sicurezza,
1212 stabilito nella associazione di sicurezza, e un numero di sequenza che la
1213 stazione sorgente deve incrementare di pacchetto in pacchetto.
1214
1215 Completano l'intestazione i dati di autenticazione che contengono un valore di
1216 controllo di integrità (ICV, \textit{Integrity Check Value}), che deve essere
1217 di dimensione pari a un multiplo intero di 32 bit e può contenere un padding
1218 per allineare l'intestazione a 64 bit. Tutti gli algoritmi di autenticazione
1219 devono provvedere questa capacità.
1220
1221 \renewcommand\arraystretch{1.2}
1222 \begin{table}[htb]
1223   \footnotesize
1224   \begin{center}
1225     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}
1226         @{\vrule}p{48mm}@{\vrule} }
1227     \multicolumn{3}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1228     \hline
1229     \centering Next Header&\centering Length&
1230     \centering Reserved \tabularnewline
1231     \hline
1232     \multicolumn{3}{@{\vrule}c@{\vrule}}
1233     {\centering Security Parameter Index (SPI)}\\  
1234     \hline
1235     \multicolumn{3}{@{\vrule}c@{\vrule}}
1236     {\centering Sequence Number}\\  
1237     \hline
1238     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1239     \multicolumn{3}{@{\vrule}c@{\vrule}}{Authentication Data} \\
1240     \multicolumn{3}{@{\vrule}c@{\vrule}}
1241     {\centering ... } \\
1242     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1243     \hline
1244     \end{tabular}
1245     \caption{Formato dell'intestazione dell'estensione di autenticazione}
1246     \label{tab:autent_estens}
1247   \end{center}
1248 \end{table}
1249 \renewcommand\arraystretch{1} %default
1250
1251
1252 L'intestazione di autenticazione può essere impiegata in due modi diverse
1253 modalità: modalità trasporto e modalità tunnel.
1254
1255 La modalità trasporto è utilizzabile solo per comunicazioni fra stazioni
1256 singole che supportino l'autenticazione. In questo caso l'intestazione di
1257 autenticazione è inserita dopo tutte le altre intestazioni di estensione
1258 eccezion fatta per la \textit{Destination Option} che può comparire sia
1259 prima che dopo. 
1260
1261 \begin{table}[htb]
1262   \footnotesize
1263   \begin{center}
1264     \begin{tabular*}{90mm}{|c|c|c|c|c|c|}
1265     \hline
1266     & & & & & \\
1267     IP Head &
1268     \parbox[c]{28mm}{hop by hop, dest., \\
1269       routing, fragment}& AH & 
1270     dest.opt & TCP & data \\
1271     & & & & & \\
1272     \hline
1273     \end{tabular*}
1274     \caption{Formato dell'intestazione dell'estensione di autenticazione}
1275     \label{tab:autent_head}
1276   \end{center}
1277 \end{table}
1278 \begin{center}
1279     \begin{pspicture}(0,0)(9,0.8)
1280       \pnode(0,0){A}
1281       \pnode(9,0.4){B}
1282       \ncline{<->}{A}{B}\ncput{copertura dell'autenticazione}
1283     \end{pspicture}
1284 \end{center}
1285
1286 La modalità tunnel può essere utilizzata sia per comunicazioni fra stazioni
1287 singole che con un gateway di sicurezza; in questa modalità 
1288
1289
1290 L'intestazione di autenticazione è una intestazione di estensione inserita
1291 dopo l'intestazione principale e prima del carico dei dati. La sua presenza
1292 non ha perciò alcuna influenza sui livelli superiori dei protocolli di
1293 trasmissione come il TCP.
1294
1295
1296 La procedura di autenticazione cerca di garantire l'autenticità del pacchetto
1297 nella massima estensione possibile, ma dato che alcuni campi dell'intestazione
1298 di IP possono variare in maniera impredicibile alla sorgente, il loro valore
1299 non può essere protetto dall'autenticazione.
1300
1301 Il calcolo dei dati di autenticazione viene effettuato alla sorgente su una
1302 versione speciale del pacchetto in cui il numero di salti nell'intestazione
1303 principale è impostato a zero, così come le opzioni che possono essere
1304 modificate nella trasmissione, e l'intestazione di routing (se usata) è posta
1305 ai valori che deve avere all'arrivo.
1306
1307 L'estensione è indipendente dall'algoritmo particolare, e il protocollo è
1308 ancora in fase di definizione; attualmente è stato suggerito l'uso di una
1309 modifica dell'MD5 chiamata \textit{keyed MD5} che combina alla codifica anche
1310 una chiave che viene inserita all'inizio e alla fine degli altri campi.
1311
1312
1313 \subsection{Riservatezza}
1314 \label{sec:ecry}
1315
1316 Per garantire una trasmissione riservata dei dati, è stata previsto la
1317 possibilità di trasmettere pacchetti con i dati criptati: il cosiddetto ESP,
1318 \textit{Encripted Security Payload}. Questo viene realizzato usando con una
1319 apposita opzione che deve essere sempre l'ultima delle intestazioni di
1320 estensione; ad essa segue il carico del pacchetto che viene criptato.
1321
1322 Un pacchetto crittografato pertanto viene ad avere una struttura del tipo di
1323 quella mostrata in Tab~.\ref{tab:criptopack}, tutti i campi sono in chiaro
1324 fino al vettore di inizializzazione, il resto è crittografato.
1325
1326 \renewcommand\arraystretch{1.2}
1327 \begin{table}[htb]
1328   \footnotesize
1329   \begin{center}
1330     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}@{\vrule}
1331         p{24mm}@{\vrule}p{24mm}@{\vrule}}
1332     \multicolumn{4}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1333     \hline
1334     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1335     \multicolumn{4}{@{\vrule}c@{\vrule}}{Intestazione Principale}\\
1336     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1337     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1338     \hline
1339     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1340     \multicolumn{4}{@{\vrule}c@{\vrule}}{Intestazioni di estensione}\\
1341     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1342     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1343     \hline
1344     \multicolumn{4}{@{\vrule}c@{\vrule}}
1345     {\centering Security Parameter Index}\\  
1346     \hline
1347     \multicolumn{4}{@{\vrule}c@{\vrule}}
1348     {\centering Vettore}\\  
1349     \multicolumn{4}{@{\vrule}c@{\vrule}}
1350     {\centering di inizializzazione}\\  
1351     \hline   
1352     \multicolumn{4}{@{\vrule}c@{\vrule}}{carico}\\ 
1353     \multicolumn{4}{@{\vrule}c@{\vrule}}{crittografato}\\ 
1354     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1355     \cline{2-4}
1356     & \multicolumn{3}{c@{\vrule}}{}\\
1357     \cline{1-1}
1358     \cline{3-4}
1359     \multicolumn{1}{@{\vrule}c}{}&
1360     \centering \raisebox{2mm}[0pt][0pt]{riempimento} &
1361     \centering lunghezza pad &\centering tipo carico\tabularnewline
1362     \hline
1363     \end{tabular}
1364     \caption{Schema di pacchetto crittografato}
1365     \label{tab:criptopack}
1366   \end{center}
1367 \end{table}
1368 \renewcommand\arraystretch{1} %default
1369
1370
1371 \section{Autoconfigurazione}
1372 \label{sec:IP_ipv6_autoconf}
1373
1374 Una delle caratteristiche salienti di IPv6 è quella dell'autoconfigurazione,
1375 il protocollo infatti fornisce la possibilità ad un nodo di scoprire
1376 automaticamente il suo indirizzo acquisendo i parametri necessari per potersi
1377 connettere a internet. 
1378
1379 L'autoconfigurazione sfrutta gli indirizzi link-local; qualora sul nodo sia
1380 presente una scheda di rete che supporta lo standard IEEE802 (ethernet) questo
1381 garantisce la presenza di un indirizzo fisico a 48 bit unico; pertanto il nodo
1382 può assumere automaticamente senza pericoli di collisione l'indirizzo
1383 link-local \texttt{FE80::xxxx:xxxx:xxxx} dove \texttt{xxxx:xxxx:xxxx} è
1384 l'indirizzo hardware della scheda di rete. 
1385
1386 Nel caso in cui non sia presente una scheda che supporta lo standard IEEE802
1387 allora il nodo assumerà ugualmente un indirizzo link-local della forma
1388 precedente, ma il valore di \texttt{xxxx:xxxx:xxxx} sarà generato
1389 casualmente; in questo caso la probabilità di collisione è di 1 su 300
1390 milioni. In ogni caso per prevenire questo rischio il nodo invierà un
1391 messaggio ICMP \textit{Solicitation} all'indirizzo scelto attendendo un certo
1392 lasso di tempo; in caso di risposta l'indirizzo è duplicato e il
1393 procedimento dovrà essere ripetuto con un nuovo indirizzo (o interrotto
1394 richiedendo assistenza).
1395
1396 Una volta ottenuto un indirizzo locale valido diventa possibile per il nodo
1397 comunicare con la rete locale; sono pertanto previste due modalità di
1398 autoconfigurazione, descritte nelle seguenti sezioni. In ogni caso
1399 l'indirizzo link-local resta valido.
1400
1401 \subsection{Autoconfigurazione stateless}
1402 \label{sec:stateless}
1403
1404 Questa è la forma più semplice di autoconfigurazione, possibile quando
1405 l'indirizzo globale può essere ricavato dall'indirizzo link-local cambiando
1406 semplicemente il prefisso a quello assegnato dal provider per ottenere un
1407 indirizzo globale.
1408
1409 La procedura di configurazione è la seguente: all'avvio tutti i nodi IPv6
1410 iniziano si devono aggregare al gruppo multicast \textit{all-nodes}
1411 programmando la propria interfaccia per ricevere i messaggi dall'indirizzo
1412 multicast \texttt{FF02::1} (vedi \secref{sec:IP_ipv6_multicast}); a questo
1413 punto devono inviare un messaggio ICMP \textit{Router solicitation} a tutti i
1414 router locali usando l'indirizzo multicast \texttt{FF02::2} usando come
1415 sorgente il proprio indirizzo link-local.
1416
1417 Il router risponderà con un messaggio ICMP \textit{Router Advertisement} che
1418 fornisce il prefisso e la validità nel tempo del medesimo, questo tipo di
1419 messaggio può essere trasmesso anche a intervalli regolari. Il messaggio
1420 contiene anche l'informazione che autorizza un nodo a autocostruire
1421 l'indirizzo, nel qual caso, se il prefisso unito all'indirizzo link-local non
1422 supera i 128 bit, la stazione ottiene automaticamente il suo indirizzo
1423 globale.
1424
1425 \subsection{Autoconfigurazione stateful}
1426 \label{sec:stateful}
1427
1428 Benché estremamente semplice l'autoconfigurazione stateless presenta alcuni
1429 problemi; il primo è che l'uso degli indirizzi delle schede di rete è
1430 molto inefficiente; nel caso in cui ci siano esigenze di creare una gerarchia
1431 strutturata su parecchi livelli possono non restare 48~bit per l'indirizzo
1432 della singola stazione; il secondo problema è di sicurezza, dato che basta
1433 introdurre in una rete una stazione autoconfigurante per ottenere un accesso
1434 legale.
1435
1436 Per questi motivi è previsto anche un protocollo stateful basato su un
1437 server che offra una versione IPv6 del DHCP; un apposito gruppo di multicast
1438 \texttt{FF02::1:0} è stato riservato per questi server; in questo caso il
1439 nodo interrogherà il server su questo indirizzo di multicast con l'indirizzo
1440 link-local e riceverà un indirizzo unicast globale.
1441
1442
1443
1444 %%% Local Variables: 
1445 %%% mode: latex
1446 %%% TeX-master: "gapil"
1447 %%% End: