Aggiunte nota di TODO su alcune {{{ioctl}}} dei file
[gapil.git] / fileunix.tex
1 %% fileunix.tex
2 %%
3 %% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{I file: l'interfaccia standard Unix}
13 \label{cha:file_unix_interface}
14
15
16 Esamineremo in questo capitolo la prima delle due interfacce di programmazione
17 per i file, quella dei \index{file!descriptor} \textit{file descriptor},
18 nativa di Unix. Questa è l'interfaccia di basso livello provvista direttamente
19 dalle system call, che non prevede funzionalità evolute come la
20 bufferizzazione o funzioni di lettura o scrittura formattata, e sulla quale è
21 costruita anche l'interfaccia definita dallo standard ANSI C che affronteremo
22 al cap.~\ref{cha:files_std_interface}.
23
24
25
26 \section{L'architettura di base}
27 \label{sec:file_base_arch}
28
29 In questa sezione faremo una breve introduzione sull'architettura su cui è
30 basata dell'interfaccia dei \textit{file descriptor}, che, sia pure con
31 differenze nella realizzazione pratica, resta sostanzialmente la stessa in
32 tutte le implementazione di un sistema unix-like.
33
34
35 \subsection{L'architettura dei \textit{file descriptor}}
36 \label{sec:file_fd}
37
38 \index{file!descriptor|(} 
39
40 Per poter accedere al contenuto di un file occorre creare un canale di
41 comunicazione con il kernel che renda possibile operare su di esso (si ricordi
42 quanto visto in sez.~\ref{sec:file_vfs_work}). Questo si fa aprendo il file
43 con la funzione \func{open} che provvederà a localizzare \index{inode} l'inode
44 del file e inizializzare i puntatori che rendono disponibili le funzioni che
45 il VFS mette a disposizione (riportate in
46 tab.~\ref{tab:file_file_operations}). Una volta terminate le operazioni, il
47 file dovrà essere chiuso, e questo chiuderà il canale di comunicazione
48 impedendo ogni ulteriore operazione.
49
50 All'interno di ogni processo i file aperti sono identificati da un intero non
51 negativo, chiamato appunto \textit{file descriptor}.
52 Quando un file viene aperto la funzione \func{open} restituisce questo numero,
53 tutte le ulteriori operazioni saranno compiute specificando questo stesso
54 valore come argomento alle varie funzioni dell'interfaccia.
55
56 Per capire come funziona il meccanismo occorre spiegare a grandi linee come il
57 kernel gestisce l'interazione fra processi e file.  Il kernel mantiene sempre
58 un elenco dei processi attivi nella cosiddetta \itindex{process~table}
59 \textit{process table} ed un elenco dei file aperti nella
60 \itindex{file~table} \textit{file table}.
61
62 La \itindex{process~table} \textit{process table} è una tabella che contiene
63 una voce per ciascun processo attivo nel sistema. In Linux ciascuna voce è
64 costituita da una struttura di tipo \struct{task\_struct} nella quale sono
65 raccolte tutte le informazioni relative al processo; fra queste informazioni
66 c'è anche il puntatore ad una ulteriore struttura di tipo
67 \struct{files\_struct}, in cui sono contenute le informazioni relative ai file
68 che il processo ha aperto, ed in particolare:
69 \begin{itemize*}
70 \item i flag relativi ai file descriptor.
71 \item il numero di file aperti.
72 \item una tabella che contiene un puntatore alla relativa voce nella
73   \itindex{file~table} \textit{file table} per ogni file aperto.
74 \end{itemize*}
75 il \textit{file descriptor} in sostanza è l'intero positivo che indicizza
76 quest'ultima tabella.
77
78 La \itindex{file~table} \textit{file table} è una tabella che contiene una
79 voce per ciascun file che è stato aperto nel sistema. In Linux è costituita da
80 strutture di tipo \struct{file}; in ciascuna di esse sono tenute varie
81 informazioni relative al file, fra cui:
82 \begin{itemize*}
83 \item lo stato del file (nel campo \var{f\_flags}).
84 \item il valore della posizione corrente (l'\textit{offset}) nel file (nel
85   campo \var{f\_pos}).
86 \item un puntatore \index{inode} all'inode\footnote{nel kernel 2.4.x si è in
87     realtà passati ad un puntatore ad una struttura \struct{dentry} che punta
88     a sua volta \index{inode} all'inode passando per la nuova struttura del
89     VFS.}  del file.
90 %\item un puntatore alla tabella delle funzioni \footnote{la struttura
91 %    \var{f\_op} descritta in sez.~\ref{sec:file_vfs_work}} che si possono usare
92 %  sul file.
93 \end{itemize*}
94
95 In fig.~\ref{fig:file_proc_file} si è riportato uno schema in cui è illustrata
96 questa architettura, ed in cui si sono evidenziate le interrelazioni fra le
97 varie strutture di dati sulla quale essa è basata.
98 Ritorneremo su questo schema più volte, dato che esso è fondamentale per
99 capire i dettagli del funzionamento dell'interfaccia dei \textit{file
100   descriptor}.  
101
102 \index{file!descriptor|)}
103
104 \begin{figure}[htb]
105   \centering
106   \includegraphics[width=13cm]{img/procfile}
107   \caption{Schema della architettura dell'accesso ai file attraverso
108   l'interfaccia dei \textit{file descriptor}.}
109   \label{fig:file_proc_file}
110 \end{figure}
111
112
113
114 \subsection{I file standard}
115 \label{sec:file_std_descr}
116
117 Come accennato i \textit{file descriptor} non sono altro che un indice nella
118 tabella dei file aperti di ciascun processo; per questo motivo essi vengono
119 assegnati in successione tutte le volte che si apre un nuovo file (se non ne è
120 stato chiuso nessuno in precedenza).
121
122 In tutti i sistemi unix-like esiste una convenzione generale per cui ogni
123 processo viene lanciato dalla shell con almeno tre file aperti. Questi, per
124 quanto appena detto, avranno come \index{file!descriptor} \textit{file
125   descriptor} i valori 0, 1 e 2.  Benché questa sia soltanto una convenzione,
126 essa è seguita dalla gran parte delle applicazioni, e non aderirvi potrebbe
127 portare a gravi problemi di interoperabilità.
128
129 Il primo file è sempre associato al cosiddetto \textit{standard input}; è cioè
130 il file da cui il processo si aspetta di ricevere i dati in ingresso. Il
131 secondo file è il cosiddetto \textit{standard output}, cioè quello su cui ci
132 si aspetta debbano essere inviati i dati in uscita. Il terzo è lo
133 \textit{standard error}, su cui viene inviata l'uscita relativa agli errori.
134 Nel caso della shell tutti questi file sono associati al terminale di
135 controllo, e corrispondono quindi alla lettura della tastiera per l'ingresso e
136 alla scrittura sul terminale per l'uscita.  Lo standard POSIX.1 provvede, al
137 posto dei valori numerici, tre costanti simboliche, definite in
138 tab.~\ref{tab:file_std_files}.
139
140 \begin{table}[htb]
141   \centering
142   \footnotesize
143   \begin{tabular}[c]{|l|l|}
144     \hline
145     \textbf{Costante} & \textbf{Significato} \\
146     \hline
147     \hline
148     \const{STDIN\_FILENO}  & \textit{file descriptor} dello \textit{standard
149       input} \\
150     \const{STDOUT\_FILENO} & \textit{file descriptor} dello \textit{standard
151       output} \\
152     \const{STDERR\_FILENO} & \textit{file descriptor} dello \textit{standard
153       error}\\
154     \hline
155   \end{tabular}
156   \caption{Costanti definite in \file{unistd.h} per i file standard aperti 
157     alla creazione di ogni processo.}
158   \label{tab:file_std_files}
159 \end{table}
160
161 In fig.~\ref{fig:file_proc_file} si è rappresentata una situazione diversa,
162 facendo riferimento ad un programma in cui lo \textit{standard input} è
163 associato ad un file mentre lo \textit{standard output} e lo \textit{standard
164   error} sono entrambi associati ad un altro file (e quindi utilizzano lo
165 stesso \index{inode} inode).
166
167 Nelle vecchie versioni di Unix (ed anche in Linux fino al kernel 2.0.x) il
168 numero di file aperti era anche soggetto ad un limite massimo dato dalle
169 dimensioni del vettore di puntatori con cui era realizzata la tabella dei file
170 descriptor dentro \struct{file\_struct}; questo limite intrinseco nei kernel
171 più recenti non sussiste più, dato che si è passati da un vettore ad una
172 lista, ma restano i limiti imposti dall'amministratore (vedi
173 sez.~\ref{sec:sys_limits}).
174
175
176
177 \section{Le funzioni base}
178 \label{sec:file_base_func}
179
180 L'interfaccia standard Unix per l'input/output sui file è basata su cinque
181 funzioni fondamentali: \func{open}, \func{read}, \func{write}, \func{lseek} e
182 \func{close}, usate rispettivamente per aprire, leggere, scrivere, spostarsi e
183 chiudere un file.  La gran parte delle operazioni sui file si effettua
184 attraverso queste cinque funzioni, esse vengono chiamate anche funzioni di I/O
185 non bufferizzato dato che effettuano le operazioni di lettura e scrittura
186 usando direttamente le system call del kernel.
187
188
189 \subsection{La funzione \func{open}}
190 \label{sec:file_open}
191
192 La funzione \funcd{open} è la funzione fondamentale per accedere ai file, ed è
193 quella che crea l'associazione fra un \itindex{pathname} \textit{pathname} ed
194 un \index{file!descriptor} file descriptor, il suo prototipo è:
195 \begin{functions}
196   \headdecl{sys/types.h}
197   \headdecl{sys/stat.h}
198   \headdecl{fcntl.h}
199   \funcdecl{int open(const char *pathname, int flags)}
200   \funcdecl{int open(const char *pathname, int flags, mode\_t mode)}
201   Apre il file indicato da \param{pathname} nella modalità indicata da
202   \param{flags}, e, nel caso il file sia creato, con gli eventuali permessi
203   specificati da \param{mode}.
204   
205   \bodydesc{La funzione ritorna il file descriptor in caso di successo e $-1$
206     in caso di errore. In questo caso la variabile \var{errno} assumerà uno
207     dei valori:
208   \begin{errlist}
209   \item[\errcode{EEXIST}] \param{pathname} esiste e si è specificato
210     \const{O\_CREAT} e \const{O\_EXCL}.  
211   \item[\errcode{EISDIR}] \param{pathname} indica una directory e si è tentato
212     l'accesso in scrittura. 
213   \item[\errcode{ENOTDIR}] si è specificato \const{O\_DIRECTORY} e
214     \param{pathname} non è una directory.
215   \item[\errcode{ENXIO}] si sono impostati \const{O\_NOBLOCK} o
216     \const{O\_WRONLY} ed il file è una fifo che non viene letta da nessun
217     processo o \param{pathname} è un file di dispositivo ma il dispositivo è
218     assente.
219   \item[\errcode{ENODEV}] \param{pathname} si riferisce a un file di
220     dispositivo che non esiste.
221   \item[\errcode{ETXTBSY}] si è cercato di accedere in scrittura all'immagine
222     di un programma in esecuzione.
223   \item[\errcode{ELOOP}] si sono incontrati troppi link simbolici nel
224     risolvere il \textit{pathname} o si è indicato \const{O\_NOFOLLOW} e
225     \param{pathname} è un link simbolico.
226   \end{errlist}
227   ed inoltre \errval{EACCES}, \errval{ENAMETOOLONG}, \errval{ENOENT},
228   \errval{EROFS}, \errval{EFAULT}, \errval{ENOSPC}, \errval{ENOMEM},
229   \errval{EMFILE} e \errval{ENFILE}.}
230 \end{functions}
231
232
233 La funzione apre il file usando il primo file descriptor libero, e crea
234 l'opportuna voce, cioè la struttura \struct{file}, nella \itindex{file~table}
235 \textit{file table} del processo.  Viene sempre restituito come valore di
236 ritorno il file descriptor con il valore più basso disponibile.
237
238 \footnotetext[2]{la pagina di manuale di \func{open} segnala che questa
239   opzione è difettosa su NFS, e che i programmi che la usano per stabilire un
240   \index{file!di lock} \textsl{file di lock} possono incorrere in una
241   \itindex{race~condition} \textit{race condition}.  Si consiglia come
242   alternativa di usare un file con un nome univoco e la funzione \func{link}
243   per verificarne l'esistenza (vedi sez.~\ref{sec:ipc_file_lock}).}
244
245 \begin{table}[!htb]
246   \centering
247   \footnotesize
248   \begin{tabular}[c]{|l|p{13cm}|}
249     \hline
250     \textbf{Flag} & \textbf{Descrizione} \\
251     \hline
252     \hline % modalità di accesso al file
253     \const{O\_RDONLY}  & Apre il file in sola lettura, le \acr{glibc}
254                          definiscono anche \const{O\_READ} come sinonimo. \\
255     \const{O\_WRONLY}  & Apre il file in sola scrittura, le \acr{glibc}
256                          definiscono anche \const{O\_WRITE} come sinonimo. \\
257     \const{O\_RDWR}    & Apre il file sia in lettura che in scrittura. \\
258     \hline % modalità di apertura del file
259     \hline
260     \const{O\_CREAT}   & Se il file non esiste verrà creato, con le regole di
261                          titolarità del file viste in
262                          sez.~\ref{sec:file_ownership_management}. Con questa
263                          opzione l'argomento \param{mode} deve essere
264                          specificato.\\ 
265     \const{O\_EXCL}    & Usato in congiunzione con \const{O\_CREAT} fa sì che
266                          la precedente esistenza del file diventi un
267                          errore\protect\footnotemark\ che fa fallire
268                          \func{open} con \errcode{EEXIST}.\\
269     \const{O\_NONBLOCK}& Apre il file in modalità non bloccante, e
270                          comporta che \func{open} ritorni immediatamente anche
271                          quando dovrebbe bloccarsi (l'opzione ha senso solo per
272                          le fifo, vedi sez.~\ref{sec:ipc_named_pipe}).\\
273     \const{O\_NOCTTY}  & Se \param{pathname} si riferisce ad un dispositivo di
274                          terminale, questo non diventerà il terminale di
275                          controllo, anche se il processo non ne ha ancora uno
276                          (si veda sez.~\ref{sec:sess_ctrl_term}).\\ 
277     \const{O\_SHLOCK}  & Apre il file con uno shared lock (vedi
278                          sez.~\ref{sec:file_locking}). Specifica di BSD, 
279                          assente in Linux.\\ 
280     \const{O\_EXLOCK}  & Apre il file con un lock esclusivo (vedi
281                          sez.~\ref{sec:file_locking}). Specifica di BSD, 
282                          assente in Linux.\\ 
283     \const{O\_TRUNC}   & Se usato su un file di dati aperto in scrittura,
284                          ne tronca la lunghezza a zero; con un terminale o una
285                          fifo viene ignorato, negli altri casi il
286                          comportamento non è specificato.\\ 
287     \const{O\_NOFOLLOW}& Se \param{pathname} è un link simbolico la chiamata
288                          fallisce. Questa è un'estensione BSD aggiunta in Linux
289                          dal kernel 2.1.126. Nelle versioni precedenti i link
290                          simbolici sono sempre seguiti, e questa opzione è
291                          ignorata.\\
292     \const{O\_DIRECTORY}&Se \param{pathname} non è una directory la chiamata
293                          fallisce. Questo flag è specifico di Linux ed è stato
294                          introdotto con il kernel 2.1.126 per evitare dei 
295                          \itindex{Denial~of~Service~(DoS)}
296                          \textit{DoS}\protect\footnotemark\ quando 
297                          \func{opendir} viene chiamata su una fifo o su un
298                          dispositivo associato ad una unità a nastri, non deve
299                          dispositivo a nastri; non deve essere utilizzato
300                          al di fuori dell'implementazione di \func{opendir}.\\
301     \const{O\_LARGEFILE}&Nel caso di sistemi a 32 bit che supportano file di
302                          grandi dimensioni consente di aprire file le cui
303                          dimensioni non possono essere rappresentate da numeri
304                          a 31 bit.\\
305     \hline
306     \hline  % modalità di operazione coi file
307     \const{O\_APPEND}  & Il file viene aperto in \itindex{append~mode}
308                          \textit{append mode}. Prima di ciascuna 
309                          scrittura la posizione corrente viene sempre impostata
310                          alla fine del file. Con NFS si può avere una
311                          corruzione del file se più di un processo scrive allo
312                          stesso tempo.\footnotemark\\ 
313     \const{O\_NONBLOCK}& Il file viene aperto in modalità non bloccante per
314                          le operazioni di I/O (che tratteremo in
315                          sez.~\ref{sec:file_noblocking}): questo significa il
316                          fallimento di \func{read} in assenza di dati da
317                          leggere e quello di \func{write} in caso di
318                          impossibilità di scrivere immediatamente. Questa
319                          modalità ha senso solo per le fifo e per alcuni file
320                          di dispositivo.\\ 
321     \const{O\_NDELAY}  & In Linux\footnotemark\ è sinonimo di 
322                          \const{O\_NONBLOCK}.\\
323     \const{O\_ASYNC}   & Apre il file per l'I/O in modalità asincrona (vedi
324                          sez.~\ref{sec:file_asyncronous_io}). Quando è
325                          impostato viene generato il segnale \const{SIGIO}
326                          tutte le volte che sono disponibili dati in input
327                          sul file.\\  
328     \const{O\_SYNC}    & Apre il file per l'input/output sincrono: ogni
329                          \func{write} bloccherà fino al completamento della
330                          scrittura di tutti i dati sull'hardware
331                          sottostante.\\  
332     \const{O\_FSYNC}   & Sinonimo di \const{O\_SYNC}, usato da BSD.\\
333     \const{O\_DSYNC}   & Variante di I/O sincrono definita da POSIX; presente
334                          dal kernel 2.1.130 come sinonimo di
335                          \const{O\_SYNC}.\\
336     \const{O\_RSYNC}   & Variante analoga alla precedente, trattata allo stesso
337                          modo.\\
338     \const{O\_NOATIME} & Blocca l'aggiornamento dei tempi di accesso dei
339                          file (vedi sez.~\ref{sec:file_file_times}). Per molti
340                          filesystem questa funzionalità non è disponibile per
341                          il singolo file ma come opzione generale da
342                          specificare in fase di montaggio.\\
343     \const{O\_DIRECT}  & Esegue l'I/O direttamente dai buffer in user space
344                          in maniera sincrona, in modo da scavalcare i
345                          meccanismi di caching del kernel. In genere questo
346                          peggiora le prestazioni tranne quando le
347                          applicazioni\footnotemark ottimizzano il proprio
348                          caching. Per i kernel della serie 2.4 si deve
349                          garantire che i buffer in user space siano allineati
350                          alle dimensioni dei blocchi del filesystem; per il
351                          kernel 2.6 basta che siano allineati a multipli di 512
352                          byte.\\
353     \const{O\_CLOEXEC} & Attiva la modalità di \textit{close-on-exec} (vedi
354                          sez.~\ref{sec:file_sharing} e
355                          \ref{sec:file_fcntl}).\footnotemark\\  
356     \hline
357   \end{tabular}
358   \caption{Valori e significato dei vari bit del \textit{file status flag}.}
359   \label{tab:file_open_flags}
360 \end{table}
361
362 \footnotetext[3]{acronimo di \itindex{Denial~of~Service~(DoS)} \textit{Denial
363     of Service}, si chiamano così attacchi miranti ad impedire un servizio
364   causando una qualche forma di carico eccessivo per il sistema, che resta
365   bloccato nelle risposte all'attacco.}
366
367 \footnotetext[4]{il problema è che NFS non supporta la scrittura in
368   \itindex{append~mode} \textit{append}, ed il kernel deve simularla, ma
369   questo comporta la possibilità di una \itindex{race~condition} \textit{race
370     condition}, vedi sez.~\ref{sec:file_atomic}.}
371
372 \footnotetext[5]{l'opzione origina da SVr4, dove però causava il ritorno da
373   una \func{read} con un valore nullo e non con un errore, questo introduce
374   un'ambiguità, dato che come vedremo in sez.~\ref{sec:file_read} il ritorno di
375   zero da parte di \func{read} ha il significato di una \textit{end-of-file}.}
376
377 \footnotetext[6]{l'opzione è stata introdotta dalla SGI in IRIX, e serve
378   sostanzialmente a permettere ad alcuni programmi (in genere database) la
379   gestione diretta della bufferizzazione dell'I/O in quanto essi sono in grado
380   di ottimizzarla al meglio per le loro prestazioni; l'opzione è presente
381   anche in FreeBSD, senza limiti di allineamento dei buffer. In Linux è stata
382   introdotta con il kernel 2.4.10, le versioni precedenti la ignorano.}
383
384 \footnotetext[7]{introdotto con il kernel 2.6.23, per evitare una \textit{race
385     condition} che si può verificare con i thread, fra l'apertura del file e
386   l'impostazione della suddetta modalità con \func{fcntl}.}
387
388 Questa caratteristica permette di prevedere qual è il valore del file
389 descriptor che si otterrà al ritorno di \func{open}, e viene talvolta usata da
390 alcune applicazioni per sostituire i file corrispondenti ai file standard
391 visti in sez.~\ref{sec:file_std_descr}: se ad esempio si chiude lo standard
392 input e si apre subito dopo un nuovo file questo diventerà il nuovo standard
393 input (avrà cioè il file descriptor 0).  
394
395 Il nuovo file descriptor non è condiviso con nessun altro processo (torneremo
396 sulla condivisione dei file, in genere accessibile dopo una \func{fork}, in
397 sez.~\ref{sec:file_sharing}) ed è impostato per restare aperto attraverso una
398 \func{exec} (come accennato in sez.~\ref{sec:proc_exec}); l'offset è impostato
399 all'inizio del file.
400
401 L'argomento \param{mode} indica i permessi con cui il file viene creato; i
402 valori possibili sono gli stessi già visti in sez.~\ref{sec:file_perm_overview}
403 e possono essere specificati come OR binario delle costanti descritte in
404 tab.~\ref{tab:file_bit_perm}. Questi permessi sono filtrati dal valore di
405 \var{umask} (vedi sez.~\ref{sec:file_perm_management}) per il processo.
406
407 La funzione prevede diverse opzioni, che vengono specificate usando vari bit
408 dell'argomento \param{flags}.  Alcuni di questi bit vanno anche a costituire
409 il flag di stato del file (o \textit{file status flag}), che è mantenuto nel
410 campo \var{f\_flags} della struttura \struct{file} (al solito si veda lo schema
411 di fig.~\ref{fig:file_proc_file}).  Essi sono divisi in tre categorie
412 principali:
413 \begin{itemize*}
414 \item \textsl{i bit delle modalità di accesso}: specificano con quale modalità
415   si accederà al file: i valori possibili sono lettura, scrittura o
416   lettura/scrittura.  Uno di questi bit deve essere sempre specificato quando
417   si apre un file.  Vengono impostati alla chiamata da \func{open}, e possono
418   essere riletti con \func{fcntl} (fanno parte del \textit{file status flag}),
419   ma non possono essere modificati.
420 \item \textsl{i bit delle modalità di apertura}: permettono di specificare
421   alcune delle caratteristiche del comportamento di \func{open} quando viene
422   eseguita. Hanno effetto solo al momento della chiamata della funzione e non
423   sono memorizzati né possono essere riletti.
424 \item \textsl{i bit delle modalità di operazione}: permettono di specificare
425   alcune caratteristiche del comportamento delle future operazioni sul file
426   (come \func{read} o \func{write}). Anch'essi fan parte del \textit{file
427     status flag}. Il loro valore è impostato alla chiamata di \func{open}, ma
428   possono essere riletti e modificati (insieme alle caratteristiche operative
429   che controllano) con una \func{fcntl}.
430 \end{itemize*}
431
432 In tab.~\ref{tab:file_open_flags} sono riportate, ordinate e divise fra loro
433 secondo le tre modalità appena elencate, le costanti mnemoniche associate a
434 ciascuno di questi bit. Dette costanti possono essere combinate fra loro con
435 un OR aritmetico per costruire il valore (in forma di maschera binaria)
436 dell'argomento \param{flags} da passare alla \func{open}. I due flag
437 \const{O\_NOFOLLOW} e \const{O\_DIRECTORY} sono estensioni specifiche di
438 Linux, e deve essere definita la macro \macro{\_GNU\_SOURCE} per poterli
439 usare.
440
441 Nelle prime versioni di Unix i valori di \param{flag} specificabili per
442 \func{open} erano solo quelli relativi alle modalità di accesso del file.  Per
443 questo motivo per creare un nuovo file c'era una system call apposita,
444 \funcd{creat}, il cui prototipo è:
445 \begin{prototype}{fcntl.h}
446   {int creat(const char *pathname, mode\_t mode)}
447   Crea un nuovo file vuoto, con i permessi specificati da \param{mode}. È del
448   tutto equivalente a \code{open(filedes, O\_CREAT|O\_WRONLY|O\_TRUNC, mode)}. 
449 \end{prototype}
450 \noindent adesso questa funzione resta solo per compatibilità con i vecchi 
451 programmi.
452
453
454 \subsection{La funzione \func{close}}
455 \label{sec:file_close}
456
457 La funzione \funcd{close} permette di chiudere un file, in questo modo il file
458 descriptor ritorna disponibile; il suo prototipo è:
459 \begin{prototype}{unistd.h}{int close(int fd)}
460   Chiude il descrittore \param{fd}. 
461   
462   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
463     errore, con \var{errno} che assume i valori:
464   \begin{errlist}
465     \item[\errcode{EBADF}]  \param{fd} non è un descrittore valido.
466     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
467   \end{errlist}
468   ed inoltre \errval{EIO}.}
469 \end{prototype}
470
471 La chiusura di un file rilascia ogni blocco (il \textit{file locking}
472 \index{file!locking} è trattato in sez.~\ref{sec:file_locking}) che il
473 processo poteva avere acquisito su di esso; se \param{fd} è l'ultimo
474 riferimento (di eventuali copie) ad un file aperto, tutte le risorse nella
475 \itindex{file~table} \textit{file table} vengono rilasciate. Infine se il file
476 descriptor era l'ultimo riferimento ad un file su disco quest'ultimo viene
477 cancellato.
478
479 Si ricordi che quando un processo termina anche tutti i suoi file descriptor
480 vengono chiusi, molti programmi sfruttano questa caratteristica e non usano
481 esplicitamente \func{close}. In genere comunque chiudere un file senza
482 controllarne lo stato di uscita è errore; infatti molti filesystem
483 implementano la tecnica del \textit{write-behind}, per cui una \func{write}
484 può avere successo anche se i dati non sono stati scritti, un eventuale errore
485 di I/O allora può sfuggire, ma verrà riportato alla chiusura del file: per
486 questo motivo non effettuare il controllo può portare ad una perdita di dati
487 inavvertita.\footnote{in Linux questo comportamento è stato osservato con NFS
488   e le quote su disco.}
489
490 In ogni caso una \func{close} andata a buon fine non garantisce che i dati
491 siano stati effettivamente scritti su disco, perché il kernel può decidere di
492 ottimizzare l'accesso a disco ritardandone la scrittura. L'uso della funzione
493 \func{sync} (vedi sez.~\ref{sec:file_sync}) effettua esplicitamente il
494 \emph{flush} dei dati, ma anche in questo caso resta l'incertezza dovuta al
495 comportamento dell'hardware (che a sua volta può introdurre ottimizzazioni
496 dell'accesso al disco che ritardano la scrittura dei dati, da cui l'abitudine
497 di ripetere tre volte il comando prima di eseguire lo shutdown).
498
499
500 \subsection{La funzione \func{lseek}}
501 \label{sec:file_lseek}
502
503 Come già accennato in sez.~\ref{sec:file_fd} a ciascun file aperto è associata
504 una \textsl{posizione corrente nel file} (il cosiddetto \textit{file offset},
505 mantenuto nel campo \var{f\_pos} di \struct{file}) espressa da un numero intero
506 positivo come numero di byte dall'inizio del file. Tutte le operazioni di
507 lettura e scrittura avvengono a partire da questa posizione che viene
508 automaticamente spostata in avanti del numero di byte letti o scritti.
509
510 In genere (a meno di non avere richiesto la modalità \itindex{append~mode}
511 \const{O\_APPEND}) questa posizione viene impostata a zero all'apertura del
512 file. È possibile impostarla ad un valore qualsiasi con la funzione
513 \funcd{lseek}, il cui prototipo è:
514 \begin{functions}
515   \headdecl{sys/types.h}
516   \headdecl{unistd.h}
517   \funcdecl{off\_t lseek(int fd, off\_t offset, int whence)}
518   Imposta la posizione attuale nel file. 
519   
520   \bodydesc{La funzione ritorna il valore della posizione corrente in caso di
521     successo e $-1$ in caso di errore nel qual caso \var{errno} assumerà uno
522     dei valori:
523   \begin{errlist}
524   \item[\errcode{ESPIPE}] \param{fd} è una pipe, un socket o una fifo.
525     \item[\errcode{EINVAL}] \param{whence} non è un valore valido.
526   \end{errlist}
527   ed inoltre \errval{EBADF}.}
528 \end{functions}
529
530 La nuova posizione è impostata usando il valore specificato da \param{offset},
531 sommato al riferimento dato da \param{whence}; quest'ultimo può assumere i
532 seguenti valori\footnote{per compatibilità con alcune vecchie notazioni
533   questi valori possono essere rimpiazzati rispettivamente con 0, 1 e 2 o con
534   \const{L\_SET}, \const{L\_INCR} e \const{L\_XTND}.}:
535 \begin{basedescript}{\desclabelwidth{2.0cm}}
536 \item[\const{SEEK\_SET}] si fa riferimento all'inizio del file: il valore
537   (sempre positivo) di \param{offset} indica direttamente la nuova posizione
538   corrente.
539 \item[\const{SEEK\_CUR}] si fa riferimento alla posizione corrente del file:
540   ad essa viene sommato \param{offset} (che può essere negativo e positivo)
541   per ottenere la nuova posizione corrente.
542 \item[\const{SEEK\_END}] si fa riferimento alla fine del file: alle dimensioni
543   del file viene sommato \param{offset} (che può essere negativo e positivo)
544   per ottenere la nuova posizione corrente.
545 \end{basedescript}
546
547 Come accennato in sez.~\ref{sec:file_file_size} con \func{lseek} è possibile
548 impostare la posizione corrente anche oltre la fine del file, e alla
549 successiva scrittura il file sarà esteso. La chiamata non causa nessun accesso
550 al file, si limita a modificare la posizione corrente (cioè il valore
551 \var{f\_pos} in \param{file}, vedi fig.~\ref{fig:file_proc_file}).  Dato che la
552 funzione ritorna la nuova posizione, usando il valore zero per \param{offset}
553 si può riottenere la posizione corrente nel file chiamando la funzione con
554 \code{lseek(fd, 0, SEEK\_CUR)}.
555
556 Si tenga presente inoltre che usare \const{SEEK\_END} non assicura affatto che
557 la successiva scrittura avvenga alla fine del file, infatti se questo è stato
558 aperto anche da un altro processo che vi ha scritto, la fine del file può
559 essersi spostata, ma noi scriveremo alla posizione impostata in precedenza
560 (questa è una potenziale sorgente di \itindex{race~condition} \textit{race
561   condition}, vedi sez.~\ref{sec:file_atomic}).
562
563 Non tutti i file supportano la capacità di eseguire una \func{lseek}, in
564 questo caso la funzione ritorna l'errore \errcode{ESPIPE}. Questo, oltre che
565 per i tre casi citati nel prototipo, vale anche per tutti quei dispositivi che
566 non supportano questa funzione, come ad esempio per i file di
567 terminale.\footnote{altri sistemi, usando \const{SEEK\_SET}, in questo caso
568   ritornano il numero di caratteri che vi sono stati scritti.} Lo standard
569 POSIX però non specifica niente in proposito. Infine alcuni file speciali, ad
570 esempio \file{/dev/null}, non causano un errore ma restituiscono un valore
571 indefinito.
572
573
574 \subsection{La funzione \func{read}}
575 \label{sec:file_read}
576
577
578 Una volta che un file è stato aperto (con il permesso in lettura) si possono
579 leggere i dati che contiene utilizzando la funzione \funcd{read}, il cui
580 prototipo è:
581 \begin{prototype}{unistd.h}{ssize\_t read(int fd, void * buf, size\_t count)}
582   
583   Cerca di leggere \param{count} byte dal file \param{fd} al buffer
584   \param{buf}.
585   
586   \bodydesc{La funzione ritorna il numero di byte letti in caso di successo e
587     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
588   \begin{errlist}
589   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
590     aver potuto leggere qualsiasi dato.
591   \item[\errcode{EAGAIN}] la funzione non aveva nessun dato da restituire e si
592     era aperto il file in modalità \const{O\_NONBLOCK}.
593   \end{errlist}
594   ed inoltre \errval{EBADF}, \errval{EIO}, \errval{EISDIR}, \errval{EBADF},
595   \errval{EINVAL} e \errval{EFAULT} ed eventuali altri errori dipendenti dalla
596   natura dell'oggetto connesso a \param{fd}.}
597 \end{prototype}
598
599 La funzione tenta di leggere \param{count} byte a partire dalla posizione
600 corrente nel file. Dopo la lettura la posizione sul file è spostata
601 automaticamente in avanti del numero di byte letti. Se \param{count} è zero la
602 funzione restituisce zero senza nessun altro risultato.  Si deve sempre tener
603 presente che non è detto che la funzione \func{read} restituisca sempre il
604 numero di byte richiesto, ci sono infatti varie ragioni per cui la funzione
605 può restituire un numero di byte inferiore; questo è un comportamento normale,
606 e non un errore, che bisogna sempre tenere presente.  
607
608 La prima e più ovvia di queste ragioni è che si è chiesto di leggere più byte
609 di quanto il file ne contenga. In questo caso il file viene letto fino alla
610 sua fine, e la funzione ritorna regolarmente il numero di byte letti
611 effettivamente. Raggiunta la fine del file, alla ripetizione di un'operazione
612 di lettura, otterremmo il ritorno immediato di \func{read} con uno zero.  La
613 condizione di raggiungimento della fine del file non è un errore, e viene
614 segnalata appunto da un valore di ritorno di \func{read} nullo. Ripetere
615 ulteriormente la lettura non avrebbe nessun effetto se non quello di
616 continuare a ricevere zero come valore di ritorno.
617
618 Con i \textsl{file regolari} questa è l'unica situazione in cui si può avere
619 un numero di byte letti inferiore a quello richiesto, ma questo non è vero
620 quando si legge da un terminale, da una fifo o da una pipe. In tal caso
621 infatti, se non ci sono dati in ingresso, la \func{read} si blocca (a meno di
622 non aver selezionato la modalità non bloccante, vedi
623 sez.~\ref{sec:file_noblocking}) e ritorna solo quando ne arrivano; se il numero
624 di byte richiesti eccede quelli disponibili la funzione ritorna comunque, ma
625 con un numero di byte inferiore a quelli richiesti.
626
627 Lo stesso comportamento avviene caso di lettura dalla rete (cioè su un socket,
628 come vedremo in sez.~\ref{sec:sock_io_behav}), o per la lettura da certi file
629 di dispositivo, come le unità a nastro, che restituiscono sempre i dati ad un
630 singolo blocco alla volta, o come le linee seriali, che restituiscono solo i
631 dati ricevuti fino al momento della lettura.
632
633 Infine anche le due condizioni segnalate dagli errori \errcode{EINTR} ed
634 \errcode{EAGAIN} non sono propriamente degli errori. La prima si verifica
635 quando la \func{read} è bloccata in attesa di dati in ingresso e viene
636 interrotta da un segnale; in tal caso l'azione da intraprendere è quella di
637 rieseguire la funzione.  Torneremo in dettaglio sull'argomento in
638 sez.~\ref{sec:sig_gen_beha}.  La seconda si verifica quando il file è aperto
639 in modalità non bloccante (vedi sez.~\ref{sec:file_noblocking}) e non ci sono
640 dati in ingresso: la funzione allora ritorna immediatamente con un errore
641 \errcode{EAGAIN}\footnote{in BSD si usa per questo errore la costante
642   \errcode{EWOULDBLOCK}, in Linux, con le \acr{glibc}, questa è sinonima di
643   \errcode{EAGAIN}.} che indica soltanto che non essendoci al momento dati
644 disponibili occorre provare a ripetere la lettura in un secondo tempo.
645
646 La funzione \func{read} è una delle system call fondamentali, esistenti fin
647 dagli albori di Unix, ma nella seconda versione delle \textit{Single Unix
648   Specification}\footnote{questa funzione, e l'analoga \func{pwrite} sono
649   state aggiunte nel kernel 2.1.60, il supporto nelle \acr{glibc}, compresa
650   l'emulazione per i vecchi kernel che non hanno la system call, è stato
651   aggiunto con la versione 2.1, in versioni precedenti sia del kernel che
652   delle librerie la funzione non è disponibile.} (quello che viene chiamato
653 normalmente Unix98, vedi sez.~\ref{sec:intro_opengroup}) è stata introdotta la
654 definizione di un'altra funzione di lettura, \funcd{pread}, il cui prototipo è:
655 \begin{prototype}{unistd.h}
656 {ssize\_t pread(int fd, void * buf, size\_t count, off\_t offset)}
657
658 Cerca di leggere \param{count} byte dal file \param{fd}, a partire dalla
659 posizione \param{offset}, nel buffer \param{buf}.
660   
661 \bodydesc{La funzione ritorna il numero di byte letti in caso di successo e
662   $-1$ in caso di errore, nel qual caso \var{errno} assumerà i valori già
663   visti per \func{read} e \func{lseek}.}
664 \end{prototype}
665
666 La funzione prende esattamente gli stessi argomenti di \func{read} con lo
667 stesso significato, a cui si aggiunge l'argomento \func{offset} che indica una
668 posizione sul file. Identico è il comportamento ed il valore di ritorno. La
669 funzione serve quando si vogliono leggere dati dal file senza modificare la
670 posizione corrente.
671
672 L'uso di \func{pread} è equivalente all'esecuzione di una \func{read} seguita
673 da una \func{lseek} che riporti al valore precedente la posizione corrente sul
674 file, ma permette di eseguire l'operazione atomicamente. Questo può essere
675 importante quando la posizione sul file viene condivisa da processi diversi
676 (vedi sez.~\ref{sec:file_sharing}).  Il valore di
677 \param{offset} fa sempre riferimento all'inizio del file.
678
679 La funzione \func{pread} è disponibile anche in Linux, però diventa
680 accessibile solo attivando il supporto delle estensioni previste dalle
681 \textit{Single Unix Specification} con la definizione della macro:
682 \begin{verbatim}
683 #define _XOPEN_SOURCE 500
684 \end{verbatim}
685 e si ricordi di definire questa macro prima dell'inclusione del file di
686 dichiarazioni \file{unistd.h}.
687
688
689
690 \subsection{La funzione \func{write}}
691 \label{sec:file_write}
692
693 Una volta che un file è stato aperto (con il permesso in scrittura) si può
694 scrivere su di esso utilizzando la funzione \funcd{write}, il cui prototipo è:
695 \begin{prototype}{unistd.h}{ssize\_t write(int fd, void * buf, size\_t count)}
696   
697   Scrive \param{count} byte dal buffer \param{buf} sul file \param{fd}.
698   
699   \bodydesc{La funzione ritorna il numero di byte scritti in caso di successo
700     e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei
701     valori:
702   \begin{errlist}
703   \item[\errcode{EINVAL}] \param{fd} è connesso ad un oggetto che non consente
704     la scrittura.
705   \item[\errcode{EFBIG}] si è cercato di scrivere oltre la dimensione massima
706     consentita dal filesystem o il limite per le dimensioni dei file del
707     processo o su una posizione oltre il massimo consentito.
708   \item[\errcode{EPIPE}] \param{fd} è connesso ad una pipe il cui altro capo è
709     chiuso in lettura; in questo caso viene anche generato il segnale
710     \const{SIGPIPE}, se questo viene gestito (o bloccato o ignorato) la
711     funzione ritorna questo errore.
712   \item[\errcode{EINTR}] si è stati interrotti da un segnale prima di aver
713     potuto scrivere qualsiasi dato.
714   \item[\errcode{EAGAIN}] ci si sarebbe bloccati, ma il file era aperto in
715     modalità \const{O\_NONBLOCK}.
716   \end{errlist}
717   ed inoltre \errval{EBADF}, \errval{EIO}, \errval{EISDIR}, \errval{EBADF},
718   \errval{ENOSPC}, \errval{EINVAL} e \errval{EFAULT} ed eventuali altri errori
719   dipendenti dalla natura dell'oggetto connesso a \param{fd}.}
720 \end{prototype}
721
722 Come nel caso di \func{read} la funzione tenta di scrivere \param{count} byte
723 a partire dalla posizione corrente nel file e sposta automaticamente la
724 posizione in avanti del numero di byte scritti. Se il file è aperto in
725 modalità \itindex{append~mode} \const{O\_APPEND} i dati vengono sempre scritti
726 alla fine del file.  Lo standard POSIX richiede che i dati scritti siano
727 immediatamente disponibili ad una \func{read} chiamata dopo che la
728 \func{write} che li ha scritti è ritornata; ma dati i meccanismi di caching
729 non è detto che tutti i filesystem supportino questa capacità.
730
731 Se \param{count} è zero la funzione restituisce zero senza fare nient'altro.
732 Per i file ordinari il numero di byte scritti è sempre uguale a quello
733 indicato da \param{count}, a meno di un errore. Negli altri casi si ha lo
734 stesso comportamento di \func{read}.
735
736 Anche per \func{write} lo standard Unix98 definisce un'analoga \funcd{pwrite}
737 per scrivere alla posizione indicata senza modificare la posizione corrente
738 nel file, il suo prototipo è:
739 \begin{prototype}{unistd.h}
740 {ssize\_t pwrite(int fd, void * buf, size\_t count, off\_t offset)}
741   
742 Cerca di scrivere sul file \param{fd}, a partire dalla posizione
743 \param{offset}, \param{count} byte dal buffer \param{buf}.
744   
745 \bodydesc{La funzione ritorna il numero di byte letti in caso di successo e
746   $-1$ in caso di errore, nel qual caso \var{errno} assumerà i valori già
747   visti per \func{write} e \func{lseek}.}
748 \end{prototype}
749 \noindent e per essa valgono le stesse considerazioni fatte per \func{pread}.
750
751
752 \section{Caratteristiche avanzate}
753 \label{sec:file_adv_func}
754
755 In questa sezione approfondiremo alcune delle caratteristiche più sottili
756 della gestione file in un sistema unix-like, esaminando in dettaglio il
757 comportamento delle funzioni base, inoltre tratteremo le funzioni che
758 permettono di eseguire alcune operazioni avanzate con i file (il grosso
759 dell'argomento sarà comunque affrontato in cap.~\ref{cha:file_advanced}).
760
761
762 \subsection{La condivisione dei files}
763 \label{sec:file_sharing}
764
765 In sez.~\ref{sec:file_fd} abbiamo descritto brevemente l'architettura
766 dell'interfaccia con i file da parte di un processo, mostrando in
767 fig.~\ref{fig:file_proc_file} le principali strutture usate dal kernel;
768 esamineremo ora in dettaglio le conseguenze che questa architettura ha nei
769 confronti dell'accesso allo stesso file da parte di processi diversi.
770
771 \begin{figure}[htb]
772   \centering
773   \includegraphics[width=15cm]{img/filemultacc}
774   \caption{Schema dell'accesso allo stesso file da parte di due processi 
775     diversi}
776   \label{fig:file_mult_acc}
777 \end{figure}
778
779 Il primo caso è quello in cui due processi diversi aprono lo stesso file su
780 disco; sulla base di quanto visto in sez.~\ref{sec:file_fd} avremo una
781 situazione come quella illustrata in fig.~\ref{fig:file_mult_acc}: ciascun
782 processo avrà una sua voce nella \textit{file table} referenziata da un
783 diverso file descriptor nella sua \struct{file\_struct}. Entrambe le voci
784 nella \itindex{file~table} \textit{file table} faranno però riferimento allo
785 stesso \index{inode} inode su disco.
786
787 Questo significa che ciascun processo avrà la sua posizione corrente sul file,
788 la sua modalità di accesso e versioni proprie di tutte le proprietà che
789 vengono mantenute nella sua voce della \itindex{file~table} \textit{file
790   table}. Questo ha conseguenze specifiche sugli effetti della possibile
791 azione simultanea sullo stesso file, in particolare occorre tenere presente
792 che:
793 \begin{itemize}
794 \item ciascun processo può scrivere indipendentemente; dopo ciascuna
795   \func{write} la posizione corrente sarà cambiata solo nel processo. Se la
796   scrittura eccede la dimensione corrente del file questo verrà esteso
797   automaticamente con l'aggiornamento del campo \var{i\_size} \index{inode}
798   nell'inode.
799 \item se un file è in modalità \itindex{append~mode} \const{O\_APPEND} tutte
800   le volte che viene effettuata una scrittura la posizione corrente viene
801   prima impostata alla dimensione corrente del file letta \index{inode}
802   dall'inode. Dopo la scrittura il file viene automaticamente esteso.
803 \item l'effetto di \func{lseek} è solo quello di cambiare il campo
804   \var{f\_pos} nella struttura \struct{file} della \itindex{file~table}
805   \textit{file table}, non c'è nessuna operazione sul file su disco. Quando la
806   si usa per porsi alla fine del file la posizione viene impostata leggendo la
807   dimensione corrente \index{inode} dall'inode.
808 \end{itemize}
809
810 \begin{figure}[htb]
811   \centering
812   \includegraphics[width=15cm]{img/fileshar}
813   \caption{Schema dell'accesso ai file da parte di un processo figlio}
814   \label{fig:file_acc_child}
815 \end{figure}
816
817 Il secondo caso è quello in cui due file descriptor di due processi diversi
818 puntino alla stessa voce nella \itindex{file~table} \textit{file table};
819 questo è ad esempio il caso dei file aperti che vengono ereditati dal processo
820 figlio all'esecuzione di una \func{fork} (si ricordi quanto detto in
821 sez.~\ref{sec:proc_fork}). La situazione è illustrata in
822 fig.~\ref{fig:file_acc_child}; dato che il processo figlio riceve una copia
823 dello spazio di indirizzi del padre, riceverà anche una copia di
824 \struct{file\_struct} e relativa tabella dei file aperti.
825
826 In questo modo padre e figlio avranno gli stessi file descriptor che faranno
827 riferimento alla stessa voce nella \textit{file table}, condividendo così la
828 posizione corrente sul file. Questo ha le conseguenze descritte a suo tempo in
829 sez.~\ref{sec:proc_fork}: in caso di scrittura contemporanea la posizione
830 corrente nel file varierà per entrambi i processi (in quanto verrà modificato
831 \var{f\_pos} che è lo stesso per entrambi).
832
833 Si noti inoltre che anche i flag di stato del file (quelli impostati
834 dall'argomento \param{flag} di \func{open}) essendo tenuti nella voce della
835 \textit{file table}\footnote{per la precisione nel campo \var{f\_flags} di
836   \struct{file}.}, vengono in questo caso condivisi. Ai file però sono
837 associati anche altri flag, dei quali l'unico usato al momento è
838 \const{FD\_CLOEXEC}, detti \textit{file descriptor flags}. Questi ultimi sono
839 tenuti invece in \struct{file\_struct}, e perciò sono specifici di ciascun
840 processo e non vengono modificati dalle azioni degli altri anche in caso di
841 condivisione della stessa voce della \textit{file table}.
842
843
844
845 \subsection{Operazioni atomiche con i file}
846 \label{sec:file_atomic}
847
848 Come si è visto in un sistema unix-like è sempre possibile per più processi
849 accedere in contemporanea allo stesso file, e che le operazioni di lettura e
850 scrittura possono essere fatte da ogni processo in maniera autonoma in base
851 ad una posizione corrente nel file che è locale a ciascuno di essi.
852
853 Se dal punto di vista della lettura dei dati questo non comporta nessun
854 problema, quando si andrà a scrivere le operazioni potranno mescolarsi in
855 maniera imprevedibile.  Il sistema però fornisce in alcuni casi la possibilità
856 di eseguire alcune operazioni di scrittura in maniera coordinata anche senza
857 utilizzare meccanismi di sincronizzazione più complessi (come il
858 \index{file!locking} \textit{file locking}, che esamineremo in
859 sez.~\ref{sec:file_locking}).
860
861 Un caso tipico di necessità di accesso condiviso in scrittura è quello in cui
862 vari processi devono scrivere alla fine di un file (ad esempio un file di
863 log). Come accennato in sez.~\ref{sec:file_lseek} impostare la posizione alla
864 fine del file e poi scrivere può condurre ad una \itindex{race~condition}
865 \textit{race condition}: infatti può succedere che un secondo processo scriva
866 alla fine del file fra la \func{lseek} e la \func{write}; in questo caso, come
867 abbiamo appena visto, il file sarà esteso, ma il nostro primo processo avrà
868 ancora la posizione corrente impostata con la \func{lseek} che non corrisponde
869 più alla fine del file, e la successiva \func{write} sovrascriverà i dati del
870 secondo processo.
871
872 Il problema è che usare due system call in successione non è un'operazione
873 atomica; il problema è stato risolto introducendo la modalità
874 \itindex{append~mode} \const{O\_APPEND}. In questo caso infatti, come abbiamo
875 descritto in precedenza, è il kernel che aggiorna automaticamente la posizione
876 alla fine del file prima di effettuare la scrittura, e poi estende il file.
877 Tutto questo avviene all'interno di una singola system call (la \func{write})
878 che non essendo interrompibile da un altro processo costituisce un'operazione
879 atomica.
880
881 Un altro caso tipico in cui è necessaria l'atomicità è quello in cui si vuole
882 creare un \textsl{file di lock} \index{file!di lock}, bloccandosi se il file
883 esiste. In questo caso la sequenza logica porterebbe a verificare prima
884 l'esistenza del file con una \func{stat} per poi crearlo con una \func{creat};
885 di nuovo avremmo la possibilità di una \itindex{race~condition} \textit{race
886   condition} da parte di un altro processo che crea lo stesso file fra il
887 controllo e la creazione.
888
889 Per questo motivo sono stati introdotti per \func{open} i due flag
890 \const{O\_CREAT} e \const{O\_EXCL}. In questo modo l'operazione di controllo
891 dell'esistenza del file (con relativa uscita dalla funzione con un errore) e
892 creazione in caso di assenza, diventa atomica essendo svolta tutta all'interno
893 di una singola system call (per i dettagli sull'uso di questa caratteristica
894 si veda sez.~\ref{sec:ipc_file_lock}).
895
896
897 \subsection{Le funzioni \func{sync} e \func{fsync}}
898 \label{sec:file_sync}
899
900 Come accennato in sez.~\ref{sec:file_close} tutte le operazioni di scrittura
901 sono in genere bufferizzate dal kernel, che provvede ad effettuarle in maniera
902 asincrona (ad esempio accorpando gli accessi alla stessa zona del disco) in un
903 secondo tempo rispetto al momento della esecuzione della \func{write}.
904
905 Per questo motivo, quando è necessaria una sincronizzazione dei dati, il
906 sistema mette a disposizione delle funzioni che provvedono a forzare lo
907 scarico dei dati dai buffer del kernel.\footnote{come già accennato neanche
908   questo dà la garanzia assoluta che i dati siano integri dopo la chiamata,
909   l'hardware dei dischi è in genere dotato di un suo meccanismo interno di
910   ottimizzazione per l'accesso al disco che può ritardare ulteriormente la
911   scrittura effettiva.} La prima di queste funzioni è \funcd{sync} il cui
912 prototipo è:
913 \begin{prototype}{unistd.h}{int sync(void)}
914   
915   Sincronizza il buffer della cache dei file col disco.
916   
917   \bodydesc{La funzione ritorna sempre zero.}
918 \end{prototype}
919 \noindent  i vari standard prevedono che la funzione si limiti a far partire
920 le operazioni, ritornando immediatamente; in Linux (dal kernel 1.3.20) invece
921 la funzione aspetta la conclusione delle operazioni di sincronizzazione del
922 kernel.
923
924 La funzione viene usata dal comando \cmd{sync} quando si vuole forzare
925 esplicitamente lo scarico dei dati su disco, o dal demone di sistema
926 \cmd{update} che esegue lo scarico dei dati ad intervalli di tempo fissi: il
927 valore tradizionale, usato da BSD, per l'update dei dati è ogni 30 secondi, ma
928 in Linux il valore utilizzato è di 5 secondi; con le nuove versioni\footnote{a
929   partire dal kernel 2.2.8} poi, è il kernel che si occupa direttamente di
930 tutto quanto attraverso il demone interno \cmd{bdflush}, il cui comportamento
931 può essere controllato attraverso il file \procfile{/proc/sys/vm/bdflush} (per
932 il significato dei valori si può leggere la documentazione allegata al kernel
933 in \file{Documentation/sysctl/vm.txt}).
934
935 Quando si vogliono scaricare soltanto i dati di un file (ad esempio essere
936 sicuri che i dati di un database sono stati registrati su disco) si possono
937 usare le due funzioni \funcd{fsync} e \funcd{fdatasync}, i cui prototipi sono:
938 \begin{functions}
939   \headdecl{unistd.h}
940   \funcdecl{int fsync(int fd)}
941   Sincronizza dati e metadati del file \param{fd}
942   \funcdecl{int fdatasync(int fd)}
943   Sincronizza i dati del file \param{fd}.
944   
945   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
946     errore, nel qual caso \var{errno} assume i valori:
947   \begin{errlist}
948   \item[\errcode{EINVAL}] \param{fd} è un file speciale che non supporta la
949     sincronizzazione.
950   \end{errlist}
951   ed inoltre \errval{EBADF}, \errval{EROFS} e \errval{EIO}.}
952 \end{functions}
953
954 Entrambe le funzioni forzano la sincronizzazione col disco di tutti i dati del
955 file specificato, ed attendono fino alla conclusione delle operazioni;
956 \func{fsync} forza anche la sincronizzazione dei metadati del file (che
957 riguardano sia le modifiche alle tabelle di allocazione dei settori, che gli
958 altri dati contenuti \index{inode} nell'inode che si leggono con \func{fstat},
959 come i tempi del file).
960
961 Si tenga presente che questo non comporta la sincronizzazione della
962 directory che contiene il file (e scrittura della relativa voce su
963 disco) che deve essere effettuata esplicitamente.\footnote{in realtà per
964   il filesystem \acr{ext2}, quando lo si monta con l'opzione \cmd{sync},
965   il kernel provvede anche alla sincronizzazione automatica delle voci
966   delle directory.}
967
968
969 \subsection{Le funzioni \func{dup} e \func{dup2}}
970 \label{sec:file_dup}
971
972 Abbiamo già visto in sez.~\ref{sec:file_sharing} come un processo figlio
973 condivida gli stessi file descriptor del padre; è possibile però ottenere un
974 comportamento analogo all'interno di uno stesso processo \textit{duplicando}
975 un file descriptor. Per far questo si usa la funzione \funcd{dup} il cui
976 prototipo è:
977 \begin{prototype}{unistd.h}{int dup(int oldfd)}
978   Crea una copia del file descriptor \param{oldfd}.
979   
980   \bodydesc{La funzione ritorna il nuovo file descriptor in caso di successo e
981     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei
982     valori:
983   \begin{errlist}
984   \item[\errcode{EBADF}] \param{oldfd} non è un file aperto.
985   \item[\errcode{EMFILE}] si è raggiunto il numero massimo consentito di file
986     descriptor aperti.
987   \end{errlist}}
988 \end{prototype}
989
990 La funzione ritorna, come \func{open}, il primo file descriptor libero. Il
991 file descriptor è una copia esatta del precedente ed entrambi possono essere
992 interscambiati nell'uso. Per capire meglio il funzionamento della funzione si
993 può fare riferimento a fig.~\ref{fig:file_dup}: l'effetto della funzione è
994 semplicemente quello di copiare il valore nella struttura
995 \struct{file\_struct}, cosicché anche il nuovo file descriptor fa riferimento
996 alla stessa voce nella \textit{file table}; per questo si dice che il nuovo
997 file descriptor è \textsl{duplicato}, da cui il nome della funzione.
998
999 \begin{figure}[htb]
1000   \centering \includegraphics[width=14cm]{img/filedup}
1001   \caption{Schema dell'accesso ai file duplicati}
1002   \label{fig:file_dup}
1003 \end{figure}
1004
1005 Si noti che per quanto illustrato in fig.~\ref{fig:file_dup} i file descriptor
1006 duplicati condivideranno eventuali lock, \textit{file status flag}, e
1007 posizione corrente. Se ad esempio si esegue una \func{lseek} per modificare la
1008 posizione su uno dei due file descriptor, essa risulterà modificata anche
1009 sull'altro (dato che quello che viene modificato è lo stesso campo nella voce
1010 della \textit{file table} a cui entrambi fanno riferimento). L'unica
1011 differenza fra due file descriptor duplicati è che ciascuno avrà il suo
1012 \textit{file descriptor flag}; a questo proposito va specificato che nel caso
1013 di \func{dup} il flag di \textit{close-on-exec}\itindex{close-on-exec} (vedi
1014 sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl}) viene sempre cancellato
1015 nella copia.
1016
1017 L'uso principale di questa funzione è per la redirezione dell'input e
1018 dell'output fra l'esecuzione di una \func{fork} e la successiva \func{exec};
1019 diventa così possibile associare un file (o una pipe) allo standard input o
1020 allo standard output (torneremo sull'argomento in sez.~\ref{sec:ipc_pipe_use},
1021 quando tratteremo le pipe). Per fare questo in genere occorre prima chiudere
1022 il file che si vuole sostituire, cosicché il suo file descriptor possa esser
1023 restituito alla chiamata di \func{dup}, come primo file descriptor
1024 disponibile.
1025
1026 Dato che questa è l'operazione più comune, è prevista una diversa versione
1027 della funzione, \funcd{dup2}, che permette di specificare esplicitamente
1028 qual è il valore di file descriptor che si vuole avere come duplicato; il suo
1029 prototipo è:
1030 \begin{prototype}{unistd.h}{int dup2(int oldfd, int newfd)}
1031   
1032   Rende \param{newfd} una copia del file descriptor \param{oldfd}.
1033   
1034   \bodydesc{La funzione ritorna il nuovo file descriptor in caso di successo e
1035     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1036   \begin{errlist}
1037   \item[\errcode{EBADF}] \param{oldfd} non è un file aperto o \param{newfd} ha
1038     un valore fuori dall'intervallo consentito per i file descriptor.
1039   \item[\errcode{EMFILE}] si è raggiunto il numero massimo consentito di file
1040     descriptor aperti.
1041   \end{errlist}}
1042 \end{prototype}
1043 \noindent e qualora il file descriptor \param{newfd} sia già aperto (come
1044 avviene ad esempio nel caso della duplicazione di uno dei file standard) esso
1045 sarà prima chiuso e poi duplicato (così che il file duplicato sarà connesso
1046 allo stesso valore per il file descriptor).
1047
1048 La duplicazione dei file descriptor può essere effettuata anche usando la
1049 funzione di controllo dei file \func{fcntl} (che esamineremo in
1050 sez.~\ref{sec:file_fcntl}) con il parametro \const{F\_DUPFD}.  L'operazione ha
1051 la sintassi \code{fcntl(oldfd, F\_DUPFD, newfd)} e se si usa 0 come valore per
1052 \param{newfd} diventa equivalente a \func{dup}. 
1053
1054 La sola differenza fra le due funzioni\footnote{a parte la sintassi ed i
1055   diversi codici di errore.} è che \func{dup2} chiude il file descriptor
1056 \param{newfd} se questo è già aperto, garantendo che la duplicazione sia
1057 effettuata esattamente su di esso, invece \func{fcntl} restituisce il primo
1058 file descriptor libero di valore uguale o maggiore di \param{newfd} (e se
1059 \param{newfd} è aperto la duplicazione avverrà su un altro file descriptor).
1060
1061
1062
1063 \subsection{Le funzioni \func{openat}, \func{mkdirat} e affini}
1064 \label{sec:file_openat}
1065
1066 Un problema che si pone con l'uso della funzione \func{open}, così come per
1067 molte altre funzioni che accettano come argomenti dei pathname relativi, è
1068 che, quando un pathname relativo non fa riferimento alla directory di lavoro
1069 corrente, è possibile che alcuni dei suoi componenti vengano modificati in
1070 parallelo alla chiamata a \func{open}, e questo lascia aperta la possibilità
1071 di una \itindex{race~condition} \textit{race condition}.
1072
1073 Inoltre come già accennato, la directory di lavoro corrente è una proprietà
1074 del singolo processo; questo significa che quando si lavora con i thread essa
1075 sarà la stessa per tutti, ma esistono molti casi in cui sarebbe invece utile
1076 che ogni singolo thread avesse la sua directory di lavoro. 
1077
1078 Per risolvere questi problemi, riprendendo una interfaccia già presente in
1079 Solaris, a fianco delle normali funzioni che operano sui file (come
1080 \func{open}, \func{mkdir}, ecc.) sono state introdotte delle ulteriori
1081 funzioni, contraddistinte dal suffisso \texttt{at}, che permettono che
1082 permettano l'apertura di un file (o le rispettive altre operazioni) usando un
1083 pathname relativo ad una directory specificata.\footnote{l'introduzione è
1084   avvenuta su proposta dello sviluppatore principale delle \acr{glibc} Urlich
1085   Drepper; le corrispondenti system call sono state inserite nel kernel
1086   ufficiale a partire dalla versione 2.6.16, in precedenza era disponibile una
1087   emulazione che, sia pure con prestazioni inferiori, funzionava facendo
1088   ricorso all'uso del filesystem \textit{proc} con l'apertura del file
1089   attraverso il riferimento a pathname del tipo di
1090   \texttt{/proc/self/fd/dirfd/relative\_path}.} Benché queste non siano
1091 funzioni standard esse sono disponibili anche su altri Unix\footnote{oltre al
1092   citato Solaris ne è prevista l'inclusione anche in BSD.} e sono state
1093 proposte per l'inclusione nello standard POSIX.1, nelle future revisioni dello
1094 stesso.
1095
1096 L'idea è che si apra prima la directory che si vuole usare come base dei
1097 pathname relativo, e si passi il file descriptor alla funzione che userà
1098 quella directory come punto di partenza per la risoluzione.\footnote{in questo
1099   modo, anche quando si lavora con i thread, si può mantenere anche una
1100   directory di lavoro diversa per ciascuno di essi.}  Con queste funzioni si
1101 possono anche ottenere grossi aumenti di prestazioni quando si devono eseguire
1102 operazioni su delle sezioni di albero dei file che prevedono gerarchie molto
1103 profonde e grandi quantità di file e directory, dato che basta eseguire la
1104 risoluzione di un pathname una sola volta (nell'apertura della directory) e
1105 non per ciascun file che essa contiene.
1106
1107 La sintassi generale di queste nuove funzioni è che esse prendano come primo
1108 argomento il file descriptor della directory da usare come base, mentre gli
1109 argomenti successivi restano identici a quelli della corrispondente funzione
1110 ordinaria; ad esempio nel caso di \funcd{openat} avremo che essa è definita
1111 come:
1112 \begin{functions}
1113   \headdecl{fcntl.h}
1114   \funcdecl{int openat(int dirfd, const char *pathname, int flags)}
1115   \funcdecl{int openat(int dirfd, const char *pathname, int flags,  mode\_t
1116     mode))} 
1117
1118   Apre un file usando come directory di lavoro corrente \param{dirfd}.
1119   
1120   \bodydesc{la funzione restituisce gli stessi valori e gli stessi codici di
1121     errore di \func{open}, ed in più:
1122   \begin{errlist}
1123   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
1124   \item[\errcode{ENOTDIR}] \param{pathname} è un pathname relativo, ma
1125     \param{dirfd} fa riferimento ad un file. 
1126   \end{errlist}}
1127 \end{functions}
1128
1129 In tab.~\ref{tab:file_atfunc_corr} si sono riportate le funzioni introdotte
1130 con questa nuova interfaccia, con a fianco la corrispondente funzione
1131 classica. Tranne che nel caso di \func{faccessat} e \func{unlinkat} tutti i
1132 loro prototipi seguono la convenzione appena vista per \func{openat}, in cui
1133 agli argomenti della corrispondente funzione classica viene anteposto
1134 l'argomento \param{dirfd}.\footnote{non staremo pertanto a riportarli uno per
1135   uno.} 
1136
1137 \begin{table}[htb]
1138   \centering
1139   \footnotesize
1140   \begin{tabular}[c]{|l|l|}
1141     \hline
1142     \textbf{Funzione} & \textbf{Corrispondente} \\
1143     \hline
1144     \hline
1145      \func{faccessat} &\func{access}  \\
1146      \func{fchmodat}  &\func{chmod}   \\
1147      \func{fchownat}  &\func{chown}   \\
1148      \func{fstatat}   &\func{stat}    \\
1149      \func{futimesat} &\func{utimes}  \\
1150      \func{linkat}    &\func{link}    \\
1151      \func{mkdirat}   &\func{mkdir}   \\
1152      \func{mknodat}   &\func{mknod}   \\
1153      \func{openat}    &\func{open}    \\
1154      \func{readlinkat}&\func{readlink}\\
1155      \func{renameat}  &\func{rename}  \\
1156      \func{symlinkat} &\func{symlink} \\
1157      \func{unlinkat}  &\func{unlink}  \\
1158      \func{mkfifoat}  &\func{mkfifo}  \\
1159     \hline
1160   \end{tabular}
1161   \caption{Corrispondenze fra le nuove funzioni ``\textit{at}'' e le
1162     corrispettive funzioni classiche.}
1163   \label{tab:file_atfunc_corr}
1164 \end{table}
1165
1166 % TODO documentare utimesat, introdotta in 2.6.22
1167 % http://kernelnewbies.org/Linux_2_6_22
1168
1169 Il comportamento delle nuove funzioni è del tutto analogo a quello delle
1170 corrispettive classiche, con la sola eccezione del fatto che se fra i loro
1171 argomenti si utilizza un pathname relativo questo sarà risolto rispetto alla
1172 directory indicata da \param{dirfd}; qualora invece si usi un pathname
1173 assoluto \param{dirfd} verrà semplicemente ignorato. Infine se per
1174 \param{dirfd} si usa il valore speciale \const{AT\_FDCWD}, la risoluzione sarà
1175 effettuata rispetto alla directory di lavoro corrente del processo.
1176
1177 Così come il comportamento, anche i valori di ritorno e le condizioni di
1178 errore delle nuove funzioni sono gli stessi delle funzioni classiche, agli
1179 errori si aggiungono però quelli dovuti a valori errati per \param{dirfd}; in
1180 particolare si avrà un errore di \errcode{EBADF} se esso non è un file
1181 descriptor valido, ed un errore di \errcode{ENOTDIR} se esso non fa riferimento
1182 ad una directory.\footnote{tranne il caso in cui si sia specificato un
1183   pathname assoluto, nel qual caso, come detto, il valore di \param{dirfd}
1184   sarà completamente ignorato.}
1185
1186 Come accennato ci sono due eccezioni alla precedente regola, \func{faccessat}
1187 e \func{unlinkat}, che tratteremo esplicitamente. Dette funzioni, oltre a
1188 prendere \param{dirfd} come primo argomento aggiuntivo, prendono un ulteriore
1189 argomento finale \param{flags}, utilizzato come maschera binaria. Nel caso di
1190 \funcd{faccessat} avremo cioè:
1191 \begin{functions}
1192   \headdecl{unistd.h}
1193   \funcdecl{int faccessat(int dirfd, const char *path, int mode, int flags)}
1194
1195   Controlla i permessi di accesso.
1196   
1197   \bodydesc{la funzione restituisce gli stessi valori e gli stessi codici di
1198     errore di \func{access}, ed in più:
1199   \begin{errlist}
1200   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
1201   \item[\errcode{ENOTDIR}] \param{pathname} è un pathname relativo, ma
1202     \param{dirfd} fa riferimento ad un file. 
1203   \end{errlist}}
1204 \end{functions}
1205
1206 La funzione esegue lo stesso controllo di accesso effettuabile con
1207 \func{access}, ma si può utilizzare l'argomento \param{flags} per modificarne
1208 il comportamento rispetto a quello ordinario di \func{access}; questo infatti
1209 può essere specificato come maschera binaria dei seguenti valori:
1210 \begin{basedescript}{\desclabelwidth{2.0cm}}
1211 \item[\const{AT\_EACCESS}] se impostato esegue il controllo dei permessi
1212   usando l'\textsl{user-ID effettivo} invece di quello reale (il comportamento
1213   di default, che riprende quello di \func{access}).
1214 \item[\const{AT\_SYMLINK\_NOFOLLOW}] se impostato non esegue la
1215   dereferenziazione del link simbolico (il comportamento di default, che
1216   riprende quello di \func{access}), ma effettua il controllo sui permessi del
1217   link simbolico stesso.
1218 \end{basedescript}
1219
1220 Nel caso di \func{unlinkat} l'ulteriore argomento \param{flags} viene inserito
1221 perché detta funzione può comportarsi sia come analogo di \func{unlink} che di
1222 \func{rmdir}; pertanto il suo prototipo è:
1223 \begin{functions}
1224   \headdecl{fcntl.h}
1225   \funcdecl{int unlinkat(int dirfd, const char *pathname, int flags)}
1226
1227   Rimuove una voce da una directory.
1228   
1229   \bodydesc{la funzione restituisce gli stessi valori e gli stessi codici di
1230     errore di \func{unlink} o di \func{rmdir} a seconda del valore di
1231     \param{flags}, ed in più:
1232   \begin{errlist}
1233   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
1234   \item[\errcode{ENOTDIR}] \param{pathname} è un pathname relativo, ma
1235     \param{dirfd} fa riferimento ad un file. 
1236   \end{errlist}}
1237 \end{functions}
1238
1239 Di default il comportamento di \func{unlinkat} è equivalente a quello che
1240 avrebbe \func{unlink} applicata a \param{pathname}, fallendo se questo è una
1241 directory, se però si imposta \param{flags} al valore di
1242 \const{AT\_REMOVEDIR},\footnote{anche se \param{flags} è una maschera binaria,
1243   essendo questo l'unico flag disponibile, lo si può assegnare direttamente.}
1244 essa si comporterà come \func{rmdir}.
1245
1246
1247 \subsection{La funzione \func{fcntl}}
1248 \label{sec:file_fcntl}
1249
1250 Oltre alle operazioni base esaminate in sez.~\ref{sec:file_base_func} esistono
1251 tutta una serie di operazioni ausiliarie che è possibile eseguire su un file
1252 descriptor, che non riguardano la normale lettura e scrittura di dati, ma la
1253 gestione sia delle loro proprietà, che di tutta una serie di ulteriori
1254 funzionalità che il kernel può mettere a disposizione.\footnote{ad esempio si
1255   gestiscono con questa funzione varie modalità di I/O asincrono (vedi
1256   sez.~\ref{sec:file_asyncronous_operation}) e il \index{file!locking}
1257   \textit{file locking} (vedi sez.~\ref{sec:file_locking}).}
1258
1259 Per queste operazioni di manipolazione e di controllo delle varie proprietà e
1260 caratteristiche di un file descriptor, viene usata la funzione \funcd{fcntl},
1261 il cui prototipo è:
1262 \begin{functions}
1263   \headdecl{unistd.h}
1264   \headdecl{fcntl.h}
1265   \funcdecl{int fcntl(int fd, int cmd)}
1266   \funcdecl{int fcntl(int fd, int cmd, long arg)}
1267   \funcdecl{int fcntl(int fd, int cmd, struct flock * lock)}
1268   Esegue una delle possibili operazioni specificate da \param{cmd}
1269   sul file \param{fd}.
1270   
1271   \bodydesc{La funzione ha valori di ritorno diversi a seconda
1272     dell'operazione. In caso di errore il valore di ritorno è sempre $-1$ ed
1273     il codice dell'errore è restituito nella variabile \var{errno}; i codici
1274     possibili dipendono dal tipo di operazione, l'unico valido in generale è:
1275   \begin{errlist}
1276   \item[\errcode{EBADF}] \param{fd} non è un file aperto.
1277   \end{errlist}}
1278 \end{functions}
1279
1280
1281 Il primo argomento della funzione è sempre il numero di file descriptor
1282 \var{fd} su cui si vuole operare. Il comportamento di questa funzione, il
1283 numero e il tipo degli argomenti, il valore di ritorno e gli eventuali errori
1284 sono determinati dal valore dell'argomento \param{cmd} che in sostanza
1285 corrisponde all'esecuzione di un determinato \textsl{comando}; in
1286 sez.~\ref{sec:file_dup} abbiamo incontrato un esempio dell'uso di \func{fcntl}
1287 per la duplicazione dei file descriptor, una lista di tutti i possibili valori
1288 per \var{cmd} è riportata di seguito:
1289 \begin{basedescript}{\desclabelwidth{2.0cm}}
1290 \item[\const{F\_DUPFD}] trova il primo file descriptor disponibile di valore
1291   maggiore o uguale ad \param{arg} e ne fa una copia di \param{fd}. Ritorna il
1292   nuovo file descriptor in caso di successo e $-1$ in caso di errore. Gli
1293   errori possibili sono \errcode{EINVAL} se \param{arg} è negativo o maggiore
1294   del massimo consentito o \errcode{EMFILE} se il processo ha già raggiunto il
1295   massimo numero di descrittori consentito.
1296 \item[\const{F\_SETFD}] imposta il valore del \textit{file descriptor flag} al
1297   valore specificato con \param{arg}. Al momento l'unico bit usato è quello di
1298   \itindex{close-on-exec} \textit{close-on-exec}, identificato dalla costante
1299   \const{FD\_CLOEXEC}, che serve a richiedere che il file venga chiuso nella
1300   esecuzione di una \func{exec} (vedi sez.~\ref{sec:proc_exec}).  Ritorna un
1301   valore nullo in caso di successo e $-1$ in caso di errore.
1302 \item[\const{F\_GETFD}] ritorna il valore del \textit{file descriptor flag} di
1303   \param{fd} o $-1$ in caso di errore; se \const{FD\_CLOEXEC} è impostato i
1304   file descriptor aperti vengono chiusi attraverso una \func{exec} altrimenti
1305   (il comportamento predefinito) restano aperti.
1306 \item[\const{F\_GETFL}] ritorna il valore del \textit{file status flag} in
1307   caso di successo o $-1$ in caso di errore; permette cioè di rileggere quei
1308   bit impostati da \func{open} all'apertura del file che vengono memorizzati
1309   (quelli riportati nella prima e terza sezione di
1310   tab.~\ref{tab:file_open_flags}).
1311 \item[\const{F\_SETFL}] imposta il \textit{file status flag} al valore
1312   specificato da \param{arg}, ritorna un valore nullo in caso di successo o
1313   $-1$ in caso di errore. Possono essere impostati solo i bit riportati nella
1314   terza sezione di tab.~\ref{tab:file_open_flags}.\footnote{la pagina di
1315     manuale riporta come impostabili solo \const{O\_APPEND},
1316     \const{O\_NONBLOCK} e \const{O\_ASYNC}.}
1317 \item[\const{F\_GETLK}] richiede un controllo sul file lock specificato da
1318   \param{lock}, sovrascrivendo la struttura da esso puntata con il risultato;
1319   ritorna un valore nullo in caso di successo o $-1$ in caso di errore.  Questa
1320   funzionalità è trattata in dettaglio in sez.~\ref{sec:file_posix_lock}.
1321 \item[\const{F\_SETLK}] richiede o rilascia un file lock a seconda di quanto
1322   specificato nella struttura puntata da \param{lock}. Se il lock è tenuto da
1323   qualcun altro ritorna immediatamente restituendo $-1$ e imposta \var{errno} a
1324   \errcode{EACCES} o \errcode{EAGAIN}, in caso di successo ritorna un valore
1325   nullo. Questa funzionalità è trattata in dettaglio in
1326   sez.~\ref{sec:file_posix_lock}.
1327 \item[\const{F\_SETLKW}] identica a \const{F\_SETLK} eccetto per il fatto che
1328   la funzione non ritorna subito ma attende che il blocco sia rilasciato. Se
1329   l'attesa viene interrotta da un segnale la funzione restituisce $-1$ e
1330   imposta \var{errno} a \errcode{EINTR}, in caso di successo ritorna un valore
1331   nullo.  Questa funzionalità è trattata in dettaglio in
1332   sez.~\ref{sec:file_posix_lock}.
1333 \item[\const{F\_GETOWN}] restituisce il \acr{pid} del processo o
1334   l'identificatore del \itindex{process~group} \textit{process
1335     group}\footnote{i \itindex{process~group} \textit{process group} sono
1336     (vedi sez.~\ref{sec:sess_proc_group}) raggruppamenti di processi usati nel
1337     controllo di sessione; a ciascuno di essi è associato un identificatore
1338     (un numero positivo analogo al \acr{pid}).}  che è preposto alla ricezione
1339   dei segnali \const{SIGIO} e \const{SIGURG} per gli eventi associati al file
1340   descriptor \param{fd}. Nel caso di un \textit{process group} viene
1341   restituito un valore negativo il cui valore assoluto corrisponde
1342   all'identificatore del \itindex{process~group} \textit{process group}.  In
1343   caso di errore viene restituito $-1$.
1344 \item[\const{F\_SETOWN}] imposta, con il valore dell'argomento \param{arg},
1345   l'identificatore del processo o del \itindex{process~group} \textit{process
1346     group} che riceverà i segnali \const{SIGIO} e \const{SIGURG} per gli
1347   eventi associati al file descriptor \param{fd}, ritorna un valore nullo in
1348   caso di successo o $-1$ in caso di errore.  Come per \const{F\_GETOWN}, per
1349   impostare un \itindex{process~group} \textit{process group} si deve usare
1350   per \param{arg} un valore negativo, il cui valore assoluto corrisponde
1351   all'identificatore del \itindex{process~group} \textit{process group}.
1352 \item[\const{F\_GETSIG}] restituisce il valore del segnale inviato quando ci
1353   sono dati disponibili in ingresso su un file descriptor aperto ed impostato
1354   per l'I/O asincrono (si veda sez.~\ref{sec:file_asyncronous_io}). Il valore 0
1355   indica il valore predefinito (che è \const{SIGIO}), un valore diverso da
1356   zero indica il segnale richiesto, (che può essere anche lo stesso
1357   \const{SIGIO}). In caso di errore ritorna $-1$.
1358 \item[\const{F\_SETSIG}] imposta il segnale da inviare quando diventa
1359   possibile effettuare I/O sul file descriptor in caso di I/O asincrono,
1360   ritorna un valore nullo in caso di successo o $-1$ in caso di errore. Il
1361   valore zero indica di usare il segnale predefinito, \const{SIGIO}. Un altro
1362   valore diverso da zero (compreso lo stesso \const{SIGIO}) specifica il
1363   segnale voluto; l'uso di un valore diverso da zero permette inoltre, se si è
1364   installato il gestore del segnale come \var{sa\_sigaction} usando
1365   \const{SA\_SIGINFO}, (vedi sez.~\ref{sec:sig_sigaction}), di rendere
1366   disponibili al gestore informazioni ulteriori riguardo il file che ha
1367   generato il segnale attraverso i valori restituiti in \struct{siginfo\_t}
1368   (come vedremo in sez.~\ref{sec:file_asyncronous_io}).\footnote{i due comandi
1369     \const{F\_SETSIG} e \const{F\_GETSIG} sono una estensione specifica di
1370     Linux.}
1371 \item[\const{F\_SETLEASE}] imposta o rimuove un \index{file!lease}
1372   \textit{file lease}\footnote{questa è una nuova funzionalità, specifica di
1373     Linux, e presente solo a partire dai kernel della serie 2.4.x, in cui il
1374     processo che detiene un \textit{lease} su un file riceve una notifica
1375     qualora un altro processo cerca di eseguire una \func{open} o una
1376     \func{truncate} su di esso.} sul file descriptor \var{fd} a seconda del
1377   valore del terzo argomento, che in questo caso è un \ctyp{int}, ritorna un
1378   valore nullo in caso di successo o $-1$ in caso di errore. Questa
1379   funzionalità avanzata è trattata in dettaglio in
1380   sez.~\ref{sec:file_asyncronous_lease}.
1381 \item[\const{F\_GETLEASE}] restituisce il tipo di \index{file!lease}
1382   \textit{file lease} che il processo detiene nei confronti del file
1383   descriptor \var{fd} o $-1$ in caso di errore. Con questo comando il terzo
1384   argomento può essere omesso. Questa funzionalità avanzata è trattata in
1385   dettaglio in sez.~\ref{sec:file_asyncronous_lease}.
1386 \item[\const{F\_NOTIFY}] attiva un meccanismo di notifica per cui viene
1387   riportata al processo chiamante, tramite il segnale \const{SIGIO} (o altro
1388   segnale specificato con \const{F\_SETSIG}) ogni modifica eseguita o
1389   direttamente sulla directory cui \var{fd} fa riferimento, o su uno dei file
1390   in essa contenuti; ritorna un valore nullo in caso di successo o $-1$ in caso
1391   di errore. Questa funzionalità avanzata, disponibile dai kernel della serie
1392   2.4.x, è trattata in dettaglio in sez.~\ref{sec:file_asyncronous_lease}.
1393 \end{basedescript}
1394
1395 La maggior parte delle funzionalità di \func{fcntl} sono troppo avanzate per
1396 poter essere affrontate in tutti i loro aspetti a questo punto; saranno
1397 pertanto riprese più avanti quando affronteremo le problematiche ad esse
1398 relative. In particolare le tematiche relative all'I/O asincrono e ai vari
1399 meccanismi di notifica saranno trattate in maniera esaustiva in
1400 sez.~\ref{sec:file_asyncronous_access} mentre quelle relative al
1401 \index{file!locking} \textit{file locking} saranno esaminate in
1402 sez.~\ref{sec:file_locking}). L'uso di questa funzione con i socket verrà
1403 trattato in sez.~\ref{sec:sock_ctrl_func}.
1404
1405 Si tenga presente infine che quando si usa la funzione per determinare le
1406 modalità di accesso con cui è stato aperto il file (attraverso l'uso del
1407 comando \const{F\_GETFL}) è necessario estrarre i bit corrispondenti nel
1408 \textit{file status flag} che si è ottenuto.  Infatti la definizione corrente
1409 di quest'ultimo non assegna bit separati alle tre diverse modalità
1410 \const{O\_RDONLY}, \const{O\_WRONLY} e \const{O\_RDWR}.\footnote{in Linux
1411   queste costanti sono poste rispettivamente ai valori 0, 1 e 2.} Per questo
1412 motivo il valore della modalità di accesso corrente si ottiene eseguendo un
1413 AND binario del valore di ritorno di \func{fcntl} con la maschera
1414 \const{O\_ACCMODE} (anch'essa definita in \file{fcntl.h}), che estrae i bit di
1415 accesso dal \textit{file status flag}.
1416
1417
1418
1419 \subsection{La funzione \func{ioctl}}
1420 \label{sec:file_ioctl}
1421
1422 Benché il concetto di \textit{everything is a file} si sia dimostrato molto
1423 valido anche per l'interazione con i dispositivi più vari, fornendo una
1424 interfaccia che permette di interagire con essi tramite le stesse funzioni
1425 usate per i normali file di dati, esisteranno sempre caratteristiche
1426 peculiari, specifiche dell'hardware e della funzionalità che ciascun
1427 dispositivo può provvedere, che non possono venire comprese in questa
1428 interfaccia astratta (un caso tipico è l'impostazione della velocità di una
1429 porta seriale, o le dimensioni di un framebuffer).
1430
1431 Per questo motivo nell'architettura del sistema è stata prevista l'esistenza
1432 di una funzione apposita, \funcd{ioctl}, con cui poter compiere le operazioni
1433 specifiche di ogni dispositivo particolare, usando come riferimento il solito
1434 file descriptor.  Il prototipo di questa funzione è:
1435 \begin{prototype}{sys/ioctl.h}{int ioctl(int fd, int request, ...)}  
1436
1437   Esegue l'operazione di controllo specificata da \param{request} sul file
1438   descriptor \param{fd}.
1439   
1440   \bodydesc{La funzione nella maggior parte dei casi ritorna 0, alcune
1441     operazioni usano però il valore di ritorno per restituire informazioni. In
1442     caso di errore viene sempre restituito $-1$ ed \var{errno} assumerà uno dei
1443     valori:
1444   \begin{errlist}
1445   \item[\errcode{ENOTTY}] il file \param{fd} non è associato con un
1446     dispositivo, o la richiesta non è applicabile all'oggetto a cui fa
1447     riferimento \param{fd}.
1448   \item[\errcode{EINVAL}] gli argomenti \param{request} o \param{argp} non sono
1449     validi.
1450   \end{errlist}
1451   ed inoltre \errval{EBADF} e \errval{EFAULT}.}
1452 \end{prototype}
1453
1454 La funzione serve in sostanza come meccanismo generico per fare tutte quelle
1455 operazioni che non rientrano nell'interfaccia ordinaria della gestione dei
1456 file e che non è possibile effettuare con le funzioni esaminate finora. La
1457 funzione richiede che si passi come primo argomento un file descriptor
1458 regolarmente aperto, e l'operazione da compiere viene selezionata attraverso
1459 il valore dell'argomento \param{request}. Il terzo argomento dipende
1460 dall'operazione prescelta; tradizionalmente è specificato come \code{char *
1461   argp}, da intendersi come puntatore ad un area di memoria
1462 generica,\footnote{all'epoca della creazione di questa funzione infatti ancora
1463   non era stato introdotto il tipo \ctyp{void}.} ma per certe operazioni può
1464 essere omesso, e per altre è un semplice intero.
1465
1466 Normalmente la funzione ritorna zero in caso di successo e $-1$ in caso di
1467 errore, ma per alcune operazione il valore di ritorno, che nel caso viene
1468 impostato ad un valore positivo, può essere utilizzato come parametro di
1469 uscita. È più comune comunque restituire i risultati all'indirizzo puntato dal
1470 terzo argomento.
1471
1472 Data la genericità dell'interfaccia non è possibile classificare in maniera
1473 sistematica le operazioni che si possono gestire con \func{ioctl}, un breve
1474 elenco di alcuni esempi di esse è il seguente:
1475 \begin{itemize*}
1476 \item il cambiamento dei font di un terminale.
1477 \item l'esecuzione di una traccia audio di un CDROM.
1478 \item i comandi di avanti veloce e riavvolgimento di un nastro.
1479 \item il comando di espulsione di un dispositivo rimovibile.
1480 \item l'impostazione della velocità trasmissione di una linea seriale.
1481 \item l'impostazione della frequenza e della durata dei suoni emessi dallo
1482   speaker.
1483 \item l'impostazione degli attributi dei file su un filesystem
1484   ext2.\footnote{i comandi \texttt{lsattr} e \texttt{chattr} fanno questo con
1485     delle \func{ioctl} dedicate, usabili solo su questo filesystem e derivati
1486     successivi (come ext3).}
1487 \end{itemize*}
1488
1489 In generale ogni dispositivo ha un suo insieme di operazioni specifiche
1490 effettuabili attraverso \func{ioctl}, tutte queste sono definite nell'header
1491 file \file{sys/ioctl.h}, e devono essere usate solo sui dispositivi cui fanno
1492 riferimento. Infatti anche se in genere i valori di \param{request} sono
1493 opportunamente differenziati a seconda del dispositivo\footnote{il kernel usa
1494   un apposito \textit{magic number} per distinguere ciascun dispositivo nella
1495   definizione delle macro da usare per \param{request}, in modo da essere
1496   sicuri che essi siano sempre diversi, ed il loro uso per dispositivi diversi
1497   causi al più un errore.  Si veda il capitolo quinto di \cite{LinDevDri} per
1498   una trattazione dettagliata dell'argomento.} così che la richiesta di
1499 operazioni relative ad altri dispositivi usualmente provoca il ritorno della
1500 funzione con una condizione di errore, in alcuni casi, relativi a valori
1501 assegnati prima che questa differenziazione diventasse pratica corrente, si
1502 potrebbero usare valori validi anche per il dispositivo corrente, con effetti
1503 imprevedibili o indesiderati.
1504
1505 Data la assoluta specificità della funzione, il cui comportamento varia da
1506 dispositivo a dispositivo, non è possibile fare altro che dare una descrizione
1507 sommaria delle sue caratteristiche; torneremo ad esaminare in
1508 seguito\footnote{per l'uso di \func{ioctl} con i socket si veda
1509   sez.~\ref{sec:sock_ctrl_func}.} quelle relative ad alcuni casi specifici (ad
1510 esempio la gestione dei terminali è effettuata attraverso \func{ioctl} in
1511 quasi tutte le implementazioni di Unix), qui riportiamo solo l'elenco delle
1512 operazioni che sono predefinite per qualunque file,\footnote{in particolare
1513   queste operazioni sono definite nel kernel a livello generale, e vengono
1514   sempre interpretate per prime, per cui, come illustrato in \cite{LinDevDri},
1515   eventuali operazioni specifiche che usino lo stesso valore verrebbero
1516   ignorate.}  caratterizzate dal prefisso \texttt{FIO}:
1517 \begin{basedescript}{\desclabelwidth{2.0cm}}
1518 \item[\const{FIOCLEX}] imposta il flag di \itindex{close-on-exec}
1519   \textit{close-on-exec} sul file, in questo caso, essendo usata come
1520   operazione logica, \func{ioctl} non richiede un terzo argomento, il cui
1521   eventuale valore viene ignorato.
1522 \item[\const{FIONCLEX}] cancella il flag di \itindex{close-on-exec}
1523   \textit{close-on-exec} sul file, in questo caso, essendo usata come
1524   operazione logica, \func{ioctl} non richiede un terzo argomento, il cui
1525   eventuale valore viene ignorato.
1526 \item[\const{FIOASYNC}] abilita o disabilita la modalità di I/O asincrono sul
1527   file (vedi sez.~\ref{sec:file_asyncronous_operation}); il terzo argomento
1528   deve essere un puntatore ad un intero (cioè di tipo \texttt{const int *})
1529   che contiene un valore logico (un valore nullo disabilita, un valore non
1530   nullo abilita).
1531 \item[\const{FIONBIO}] abilita o disabilita sul file l'I/O in modalità non
1532   bloccante; il terzo argomento deve essere un puntatore ad un intero (cioè di
1533   tipo \texttt{const int *}) che contiene un valore logico (un valore nullo
1534   disabilita, un valore non nullo abilita).
1535 \item[\const{FIOSETOWN}] imposta il processo che riceverà i segnali
1536   \const{SIGURG} e \const{SIGIO} generati sul file; il terzo argomento deve
1537   essere un puntatore ad un intero (cioè di tipo \texttt{const int *}) il cui
1538   valore specifica il PID del processo.
1539 \item[\const{FIOGETOWN}] legge il processo che riceverà i segnali
1540   \const{SIGURG} e \const{SIGIO} generati sul file; il terzo argomento deve
1541   essere un puntatore ad un intero (cioè di tipo \texttt{int *}) su cui sarà
1542   scritto il PID del processo.
1543 \item[\const{FIONREAD}] legge il numero di byte disponibili in lettura sul
1544   file descriptor;\footnote{questa operazione è disponibile solo su alcuni
1545     file descriptor, in particolare sui socket (vedi
1546     sez.~\ref{sec:sock_ioctl_IP}) o sui file descriptor di \textit{epoll}
1547     (vedi sez.~\ref{sec:file_epoll}).} il terzo argomento deve essere un
1548   puntatore ad un intero (cioè di tipo \texttt{int *}) su cui sarà restituito
1549   il valore.
1550 \item[\const{FIOQSIZE}] restituisce la dimensione corrente di un file o di una
1551   directory, mentre se applicata ad un dispositivo fallisce con un errore di
1552   \errcode{ENOTTY}; il terzo argomento deve essere un puntatore ad un intero
1553   (cioè di tipo \texttt{int *}) su cui sarà restituito il valore.
1554 \end{basedescript}
1555
1556 % TODO aggiungere FIBMAP e FIEMAP, vedi http://lwn.net/Articles/260832
1557
1558
1559 Si noti però come la gran parte di queste operazioni specifiche dei file (per
1560 essere precisi le prime sei dell'elenco) siano effettuabili in maniera
1561 generica anche tramite l'uso di \func{fcntl}. Le due funzioni infatti sono
1562 molto simili e la presenza di questa sovrapposizione è principalmente dovuta
1563 al fatto che alle origini di Unix i progettisti considerarono che era
1564 necessario trattare diversamente rispetto alle operazione di controllo delle
1565 modalità di I/O file e dispositivi usando \func{fcntl} per i primi e
1566 \func{ioctl} per i secondi;\footnote{all'epoca tra l'altro i dispositivi che
1567   usavano \func{ioctl} erano sostanzialmente solo i terminali, il che spiega
1568   l'uso comune di \errcode{ENOTTY} come codice di errore.} oggi non è più così
1569 ma le due funzioni sono rimaste.
1570
1571
1572 % LocalWords:  descriptor system call cap like kernel sez l'inode inode VFS tab
1573 % LocalWords:  process table struct files flags pos all'inode dentry fig shell
1574 % LocalWords:  error POSIX STDIN FILENO STDOUT STDERR unistd read write lseek
1575 % LocalWords:  close pathname sys fcntl int const char errno EEXIST CREAT EXCL
1576 % LocalWords:  EISDIR ENOTDIR ENXIO NOBLOCK WRONLY fifo ENODEV ETXTBSY ELOOP of
1577 % LocalWords:  NOFOLLOW EACCES ENAMETOOLONG ENOENT EROFS EFAULT ENOSPC ENOMEM
1578 % LocalWords:  EMFILE ENFILE NFS lock race condition Denial Service DoS RDONLY
1579 % LocalWords:  glibc RDWR NONBLOCK NOCTTY SHLOCK shared BSD EXLOCK TRUNC device
1580 % LocalWords:  opendir LARGEFILE APPEND append NDELAY ASYNC l'I SIGIO SYNC SVr
1581 % LocalWords:  DSYNC RSYNC filesystem DIRECT caching SGI IRIX dell'I FreeBSD fd
1582 % LocalWords:  fork exec umask SOURCE creat filedes EBADF EINTR EIO locking off
1583 % LocalWords:  behind sync flush shutdown whence ESPIPE socket EINVAL INCR XTND
1584 % LocalWords:  SEEK CUR EPIPE ssize void buf size count EAGAIN EWOULDBLOCK log
1585 % LocalWords:  Specification pwrite pread EFBIG SIGPIPE nell'inode dall'inode
1586 % LocalWords:  CLOEXEC stat fsync cache update l'update bdflush Documentation
1587 % LocalWords:  fdatasync fstat ext dup oldfd newfd DUPFD cmd long arg flock pid
1588 % LocalWords:  SETFD GETFD GETFL SETFL GETLK SETLK SETLKW GETOWN group SIGURG
1589 % LocalWords:  SETOWN GETSIG SETSIG sigaction SIGINFO siginfo SETLEASE lease is
1590 % LocalWords:  truncate GETLEASE NOTIFY AND ACCMODE ioctl everything argp all'I
1591 % LocalWords:  framebuffer request ENOTTY CDROM nell'header magic number openat
1592 % LocalWords:  FIOCLEX FIONCLEX FIOASYNC FIONBIO NOATIME redirezione FIOSETOWN
1593 % LocalWords:  FIOGETOWN FIONREAD mkdirat thread Solaris mkdir at Urlich proc
1594 % LocalWords:  Drepper path dirfd faccessat unlinkat access fchmodat chmod Di
1595 % LocalWords:  fchownat chown fstatat futimesat utimes linkat mknodat mknod
1596 % LocalWords:  readlinkat readlink renameat rename symlinkat symlink unlink
1597 % LocalWords:  mkfifoat mkfifo FDCWD EACCESS dereferenziazione rmdir REMOVEDIR
1598 % LocalWords:  epoll lsattr chattr FIOQSIZE
1599
1600 %%% Local Variables: 
1601 %%% mode: latex
1602 %%% TeX-master: "gapil"
1603 %%% End: