Materuale vario, correzioni e aggiornamenti sulla code di messaggi
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2014 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione avanzata dei file}
13 \label{cha:file_advanced}
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \itindbeg{file~locking}
28
29 In sez.~\ref{sec:file_shared_access} abbiamo preso in esame le modalità in cui
30 un sistema unix-like gestisce l'accesso concorrente ai file da parte di
31 processi diversi. In quell'occasione si è visto come, con l'eccezione dei file
32 aperti in \itindex{append~mode} \textit{append mode}, quando più processi
33 scrivono contemporaneamente sullo stesso file non è possibile determinare la
34 sequenza in cui essi opereranno.
35
36 Questo causa la possibilità di una \itindex{race~condition} \textit{race
37   condition}; in generale le situazioni più comuni sono due: l'interazione fra
38 un processo che scrive e altri che leggono, in cui questi ultimi possono
39 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
40 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
41 output sul file.
42
43 In tutti questi casi il \textit{file locking} è la tecnica che permette di
44 evitare le \itindex{race~condition} \textit{race condition}, attraverso una
45 serie di funzioni che permettono di bloccare l'accesso al file da parte di
46 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
47 delle operazioni di lettura o scrittura.
48
49
50 \subsection{L'\textit{advisory locking}}
51 \label{sec:file_record_locking}
52
53 La prima modalità di \textit{file locking} che è stata implementata nei
54 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
55   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
56   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
57   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
58     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
59   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
60     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
61   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
62   riferimento al concetto di \textit{record}, alla fine si è scelto di
63   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
64 processi, e non il sistema, che si incaricano di asserire e verificare se
65 esistono delle condizioni di blocco per l'accesso ai file. 
66
67 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
68 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
69 pertanto è sempre compito dei vari processi che intendono usare il
70 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
71 prima di accedervi, utilizzando le relative funzioni.
72
73 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
74   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
75   nomenclatura inglese di \textit{file lock}, o più brevemente con
76   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
77   processo (cioè la condizione in cui il processo viene posto in stato di
78   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
79 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
80 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
81 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
82 richiedere contemporaneamente uno \textit{shared lock} su un file per
83 proteggere il loro accesso in lettura.
84
85 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
86 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
87 lettura che in scrittura) da parte di altri processi mentre lo si sta
88 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
89 processo alla volta può richiedere un \textit{exclusive lock} su un file per
90 proteggere il suo accesso in scrittura.
91
92 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
93   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
94 \func{flock}, la seconda è quella recepita dallo standard POSIX.1 (che è
95 derivata dall'interfaccia usata in System V), che è basata sulla funzione
96 \func{fcntl}.  I \textit{file lock} sono implementati in maniera completamente
97 indipendente nelle due interfacce,\footnote{in realtà con Linux questo avviene
98   solo dalla serie 2.0 dei kernel.}  che pertanto possono coesistere senza
99 interferenze.
100
101 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
102 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
103 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
104 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
105 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
106 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
107 le operazioni sul file si deve provvedere a rimuovere il blocco. 
108
109 La situazione delle varie possibilità che si possono verificare è riassunta in
110 tab.~\ref{tab:file_file_lock}, dove si sono riportati, a seconda delle varie
111 tipologie di blocco già presenti su un file, il risultato che si avrebbe in
112 corrispondenza di una ulteriore richiesta da parte di un processo di un blocco
113 nelle due tipologie di \textit{file lock} menzionate, con un successo o meno
114 della richiesta.
115
116 \begin{table}[htb]
117   \centering
118   \footnotesize
119    \begin{tabular}[c]{|l|c|c|c|}
120     \hline
121     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
122     \cline{2-4}
123                 &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
124     \hline
125     \hline
126     \textit{Read lock} & SI & SI & NO \\
127     \textit{Write lock}& SI & NO & NO \\
128     \hline    
129   \end{tabular}
130   \caption{Tipologie di \textit{file locking}.}
131   \label{tab:file_file_lock}
132 \end{table}
133
134 Si tenga presente infine che il controllo di accesso e la gestione dei
135 permessi viene effettuata quando si apre un file, l'unico controllo residuo
136 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
137 si vuole ottenere su un file deve essere compatibile con le modalità di
138 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
139 un \textit{write lock}).
140
141 %%  Si ricordi che
142 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
143 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
144 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
145
146
147 \subsection{La funzione \func{flock}} 
148 \label{sec:file_flock}
149
150 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
151 permette di eseguire un blocco solo su un intero file; la funzione usata per
152 richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il suo
153 prototipo è:
154 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
155   
156   Applica o rimuove un \textit{file lock} sul file \param{fd}.
157   
158   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
159     errore, nel qual caso \var{errno} assumerà uno dei valori:
160     \begin{errlist}
161     \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
162       specificato \const{LOCK\_NB}.
163     \end{errlist}
164   }
165 \end{prototype}
166
167 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
168 a seconda di quanto specificato tramite il valore dell'argomento
169 \param{operation}; questo viene interpretato come maschera binaria, e deve
170 essere passato costruendo il valore con un OR aritmetico delle costanti
171 riportate in tab.~\ref{tab:file_flock_operation}.
172
173 \begin{table}[htb]
174   \centering
175   \footnotesize
176   \begin{tabular}[c]{|l|p{6cm}|}
177     \hline
178     \textbf{Valore} & \textbf{Significato} \\
179     \hline
180     \hline
181     \const{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
182     \const{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
183     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
184     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
185                        richiesta di un \textit{file lock}.\\
186     \hline    
187   \end{tabular}
188   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
189   \label{tab:file_flock_operation}
190 \end{table}
191
192 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
193 richiedere un \textit{file lock} rispettivamente condiviso o esclusivo, ed
194 ovviamente non possono essere usati insieme. Se con essi si specifica anche
195 \const{LOCK\_NB} la funzione non si bloccherà qualora il \textit{file lock}
196 non possa essere acquisito, ma ritornerà subito con un errore di
197 \errcode{EWOULDBLOCK}. Per rilasciare un \textit{file lock} si dovrà invece
198 usare direttamente const{LOCK\_UN}.
199
200 Si tenga presente che non esiste una modalità per eseguire atomicamente un
201 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
202   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
203 possibile che nel frattempo abbia successo un'altra richiesta pendente,
204 facendo fallire la riacquisizione.
205
206 Si tenga presente infine che \func{flock} non è supportata per i file
207 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
208 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
209 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
210 NFS, a condizione ovviamente che sia il client che il server supportino questa
211 funzionalità.
212
213 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
214 \textit{file locking} POSIX, in particolare per quanto riguarda il
215 comportamento dei \textit{file lock} nei confronti delle due funzioni
216 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
217 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
218 per entrambe le interfacce.
219
220 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
221 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
222 fondamentale da capire è che un \textit{file lock}, qualunque sia
223 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
224 agisce sempre su di un file; perciò le informazioni relative agli eventuali
225 \textit{file lock} sono mantenute dal kernel a livello di
226 inode\itindex{inode},\footnote{in particolare, come accennato in
227   fig.~\ref{fig:file_flock_struct}, i \textit{file lock} sono mantenuti in una
228   \itindex{linked~list} \textit{linked list} di strutture
229   \kstruct{file\_lock}. La lista è referenziata dall'indirizzo di partenza
230   mantenuto dal campo \var{i\_flock} della struttura \kstruct{inode} (per le
231   definizioni esatte si faccia riferimento al file \file{include/linux/fs.h}
232   nei sorgenti del kernel).  Un bit del campo \var{fl\_flags} di specifica se
233   si tratta di un lock in semantica BSD (\const{FL\_FLOCK}) o POSIX
234   (\const{FL\_POSIX}).}  dato che questo è l'unico riferimento in comune che
235 possono avere due processi diversi che aprono lo stesso file.
236
237 \begin{figure}[!htb]
238   \centering
239   \includegraphics[width=15.5cm]{img/file_flock}
240   \caption{Schema dell'architettura del \textit{file locking}, nel caso
241     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
242   \label{fig:file_flock_struct}
243 \end{figure}
244
245 La richiesta di un \textit{file lock} prevede una scansione della lista per
246 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
247 un nuovo elemento.\footnote{cioè una nuova struttura \kstruct{file\_lock}.}
248 Nel caso dei blocchi creati con \func{flock} la semantica della funzione
249 prevede che sia \func{dup} che \func{fork} non creino ulteriori istanze di un
250 \textit{file lock} quanto piuttosto degli ulteriori riferimenti allo
251 stesso. Questo viene realizzato dal kernel secondo lo schema di
252 fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file lock}
253 un puntatore\footnote{il puntatore è mantenuto nel campo \var{fl\_file} di
254   \kstruct{file\_lock}, e viene utilizzato solo per i \textit{file lock} creati
255   con la semantica BSD.} alla voce nella \itindex{file~table} \textit{file
256   table} da cui si è richiesto il blocco, che così ne identifica il titolare.
257
258 Questa struttura prevede che, quando si richiede la rimozione di un
259 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
260 file descriptor che fa riferimento ad una voce nella \itindex{file~table}
261 \textit{file table} corrispondente a quella registrata nel blocco.  Allora se
262 ricordiamo quanto visto in sez.~\ref{sec:file_dup} e
263 sez.~\ref{sec:file_shared_access}, e cioè che i file descriptor duplicati e
264 quelli ereditati in un processo figlio puntano sempre alla stessa voce nella
265 \itindex{file~table} \textit{file table}, si può capire immediatamente quali
266 sono le conseguenze nei confronti delle funzioni \func{dup} e \func{fork}.
267
268 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
269 dei file descriptor che fanno riferimento alla stessa voce nella
270 \itindex{file~table} \textit{file table}, anche se questo è diverso da quello
271 con cui lo si è creato,\footnote{attenzione, questo non vale se il file
272   descriptor fa riferimento allo stesso file, ma attraverso una voce diversa
273   della \itindex{file~table} \textit{file table}, come accade tutte le volte
274   che si apre più volte lo stesso file.} o se si esegue la rimozione in un
275 processo figlio. Inoltre una volta tolto un \textit{file lock} su un file, la
276 rimozione avrà effetto su tutti i file descriptor che condividono la stessa
277 voce nella \itindex{file~table} \textit{file table}, e quindi, nel caso di
278 file descriptor ereditati attraverso una \func{fork}, anche per processi
279 diversi.
280
281 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
282 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
283 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
284 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
285 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
286 fintanto che non viene rilasciata la relativa voce nella \itindex{file~table}
287 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
288 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
289 siano duplicati o processi figli che mantengono ancora aperto un file
290 descriptor, il \textit{file lock} non viene rilasciato.
291  
292
293 \subsection{Il \textit{file locking} POSIX}
294 \label{sec:file_posix_lock}
295
296 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
297 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
298 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
299 sez.~\ref{sec:file_fcntl_ioctl}. Quando la si impiega per il \textit{file
300   locking} essa viene usata solo secondo il seguente prototipo:
301 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
302   
303   Applica o rimuove un \textit{file lock} sul file \param{fd}.
304   
305   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
306     errore, nel qual caso \var{errno} assumerà uno dei valori:
307     \begin{errlist}
308     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
309       \textit{file lock} da parte di altri processi.
310     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
311       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
312       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
313     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
314       bloccata da un altro processo che è a sua volta in attesa dello sblocco
315       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
316       un \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
317       riconosca sempre questa situazione.
318     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
319       di poter acquisire un \textit{file lock}.
320     \end{errlist}
321     ed inoltre \errval{EBADF}, \errval{EFAULT}.
322   }
323 \end{prototype}
324
325 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
326 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
327 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
328 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
329 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
330 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
331 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
332 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
333 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
334 con un'altra regione bloccata.
335
336 \begin{figure}[!htb]
337   \footnotesize \centering
338   \begin{minipage}[c]{\textwidth}
339     \includestruct{listati/flock.h}
340   \end{minipage} 
341   \normalsize 
342   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
343     \textit{file locking}.}
344   \label{fig:struct_flock}
345 \end{figure}
346
347
348 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
349 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
350 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
351 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
352 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
353 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
354 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
355 relative descrizioni in sez.~\ref{sec:file_lseek}).
356
357 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
358 regione al di là della corrente fine del file, così che una eventuale
359 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
360 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
361 dimensione massima del file; in questo modo è possibile bloccare una qualunque
362 regione a partire da un certo punto fino alla fine del file, coprendo
363 automaticamente quanto eventualmente aggiunto in coda allo stesso.
364
365 \begin{table}[htb]
366   \centering
367   \footnotesize
368   \begin{tabular}[c]{|l|l|}
369     \hline
370     \textbf{Valore} & \textbf{Significato} \\
371     \hline
372     \hline
373     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
374     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
375     \const{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
376     \hline    
377   \end{tabular}
378   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
379   \label{tab:file_flock_type}
380 \end{table}
381
382 Il tipo di \textit{file lock} richiesto viene specificato dal campo
383 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
384 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
385 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
386 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
387 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
388 \const{F\_GETLK}, e riporta il \ids{PID} del processo che detiene il
389 \textit{file lock}.
390
391 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
392 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
393 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl_ioctl},
394 specifica l'azione da compiere; i valori relativi al \textit{file locking}
395 sono tre:
396 \begin{basedescript}{\desclabelwidth{2.0cm}}
397 \item[\const{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
398   struttura puntata da \param{lock} può essere acquisito: in caso negativo
399   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
400   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
401   campo \var{l\_type} con il valore \const{F\_UNLCK}.
402 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
403   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
404   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia. Nel
405   caso la richiesta non possa essere soddisfatta a causa di un blocco
406   preesistente la funzione ritorna immediatamente con un errore di
407   \errcode{EACCES} o di \errcode{EAGAIN}.
408 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
409   non può essere soddisfatta per la presenza di un altro blocco, mette il
410   processo in stato di attesa fintanto che il blocco precedente non viene
411   rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
412   con un errore di \errcode{EINTR}.
413 \end{basedescript}
414
415 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
416 una presenza generica di blocco su un file, perché se ne esistono altri
417 compatibili con quello richiesto, la funzione ritorna comunque impostando
418 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
419 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
420 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
421 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
422 impedisce l'acquisizione di quello richiesto (basta che le regioni si
423 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
424 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
425 per indicare quale è la regione bloccata.
426
427 Infine si tenga presente che effettuare un controllo con il comando
428 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
429 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
430 chiamate) per cui si deve sempre verificare il codice di ritorno di
431 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
432   è comunque una buona norma di programmazione, che permette di evitare un
433   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
434 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
435 stato effettivamente acquisito.
436
437 \begin{figure}[!htb]
438   \centering \includegraphics[width=9cm]{img/file_lock_dead}
439   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
440   \label{fig:file_flock_dead}
441 \end{figure}
442
443 Non operando a livello di interi file, il \textit{file locking} POSIX
444 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
445 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
446 processo B la regione 2. Supponiamo che successivamente il processo A richieda
447 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
448 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
449 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
450 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
451 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
452 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
453 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
454 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
455 cerca di acquisire un blocco che porterebbe ad un \itindex{deadlock}
456 \textit{deadlock}.
457
458 Per capire meglio il funzionamento del \textit{file locking} in semantica
459 POSIX (che differisce alquanto rispetto da quello di BSD, visto
460 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
461 kernel. Lo schema delle strutture utilizzate è riportato in
462 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
463 di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
464   sono evidenziati solo i campi di \kstruct{file\_lock} significativi per la
465   semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
466   \ids{PID} del processo in \var{fl\_pid}, la sezione di file che viene
467   bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
468   comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
469   impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
470   usato.} il blocco è sempre associato \itindex{inode} all'inode, solo che in
471 questo caso la titolarità non viene identificata con il riferimento ad una
472 voce nella \itindex{file~table} \textit{file table}, ma con il valore del
473 \ids{PID} del processo.
474
475 \begin{figure}[!htb]
476   \centering \includegraphics[width=12cm]{img/file_posix_lock}
477   \caption{Schema dell'architettura del \textit{file locking}, nel caso
478     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
479   \label{fig:file_posix_lock}
480 \end{figure}
481
482 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
483 tutti i blocchi presenti sul file\footnote{scandisce cioè la
484   \itindex{linked~list} \textit{linked list} delle strutture
485   \kstruct{file\_lock}, scartando automaticamente quelle per cui
486   \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
487   ben separate.}  per verificare se la regione richiesta non si sovrappone ad
488 una già bloccata, in caso affermativo decide in base al tipo di blocco, in
489 caso negativo il nuovo blocco viene comunque acquisito ed aggiunto alla lista.
490
491 Nel caso di rimozione invece questa viene effettuata controllando che il
492 \ids{PID} del processo richiedente corrisponda a quello contenuto nel blocco.
493 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
494 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
495 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
496 figlio avrà un \ids{PID} diverso, mentre passa indenne attraverso una
497 \func{exec} in quanto il \ids{PID} resta lo stesso.  Questo comporta che, al
498 contrario di quanto avveniva con la semantica BSD, quando un processo termina
499 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
500
501 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
502 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
503 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
504 un blocco, dato che quello che conta è solo il \ids{PID} del processo. Da
505 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
506 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
507 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
508 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
509 fossero stati creati usando altri file descriptor che restano aperti.
510
511 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
512 \ids{PID} del processo, possiamo anche prendere in considerazione un altro
513 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
514 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
515 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
516 solo sul \ids{PID} del processo che chiama la funzione, queste richieste
517 avranno sempre successo.
518
519 Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
520 accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
521   cioè si richiede più volte lo stesso \textit{file lock}, o più blocchi sulla
522   stessa sezione di file, le richieste non si cumulano e basta una sola
523   richiesta di rilascio per cancellare il blocco.}  la cosa non ha alcun
524 effetto; la funzione ritorna con successo, senza che il kernel debba
525 modificare la lista dei \textit{file lock}.  In questo caso invece si possono
526 avere una serie di situazioni diverse: ad esempio è possibile rimuovere con
527 una sola chiamata più \textit{file lock} distinti (indicando in una regione
528 che si sovrapponga completamente a quelle di questi ultimi), o rimuovere solo
529 una parte di un blocco preesistente (indicando una regione contenuta in quella
530 di un altro blocco), creando un buco, o coprire con un nuovo blocco altri
531 \textit{file lock} già ottenuti, e così via, a secondo di come si
532 sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
533 comportamento seguito in questo caso che la funzione ha successo ed esegue
534 l'operazione richiesta sulla regione indicata; è compito del kernel
535 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
536   lock} per far si che le regioni bloccate da essa risultanti siano coerenti
537 con quanto necessario a soddisfare l'operazione richiesta.
538
539 \begin{figure}[!htbp]
540   \footnotesize \centering
541   \begin{minipage}[c]{\codesamplewidth}
542     \includecodesample{listati/Flock.c}
543   \end{minipage} 
544   \normalsize 
545   \caption{Sezione principale del codice del programma \file{Flock.c}.}
546   \label{fig:file_flock_code}
547 \end{figure}
548
549 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
550 permette di bloccare una sezione di un file usando la semantica POSIX, o un
551 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
552 riportata il corpo principale del codice del programma, (il testo completo è
553 allegato nella directory dei sorgenti, nel file \texttt{Flock.c}).
554
555 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
556 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
557 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
558 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
559 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
560 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
561   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
562 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
563 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
564 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
565 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
566 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
567 \cmd{-b}.
568
569 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
570 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
571   15--18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
572 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
573 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
574 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
575 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
576 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
577 modalità bloccante.
578
579 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
580 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
581 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
582 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
583 aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
584 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
585 invece che si sia scelta la semantica POSIX le operazioni sono molto più
586 immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
587 esegue (\texttt{\small 41}).
588
589 In entrambi i casi dopo aver richiesto il blocco viene controllato il
590 risultato uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un
591 messaggio (\texttt{\small 47--49}) in caso di successo. Infine il programma si
592 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
593 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
594 tutti i blocchi vengono rilasciati.
595
596 Con il programma possiamo fare varie verifiche sul funzionamento del
597 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
598 file, ad esempio usando all'interno di un terminale il seguente comando:
599
600 \vspace{1mm}
601 \begin{minipage}[c]{12cm}
602 \begin{verbatim}
603 [piccardi@gont sources]$ ./flock -r Flock.c
604 Lock acquired
605 \end{verbatim}%$
606 \end{minipage}\vspace{1mm}
607 \par\noindent
608 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
609 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
610 riguardo alla sezione che si vuole bloccare sono stati usati i valori
611 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
612 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
613 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
614
615 \vspace{1mm}
616 \begin{minipage}[c]{12cm}
617 \begin{verbatim}
618 [piccardi@gont sources]$ ./flock -w Flock.c
619 Failed lock: Resource temporarily unavailable
620 \end{verbatim}%$
621 \end{minipage}\vspace{1mm}
622 \par\noindent
623 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
624 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
625 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
626 del file con il comando:
627
628 \vspace{1mm}
629 \begin{minipage}[c]{12cm}
630 \begin{verbatim}
631 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
632 Failed lock: Resource temporarily unavailable
633 \end{verbatim}%$
634 \end{minipage}\vspace{1mm}
635 \par\noindent
636 se invece blocchiamo una regione con: 
637
638 \vspace{1mm}
639 \begin{minipage}[c]{12cm}
640 \begin{verbatim}
641 [piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
642 Lock acquired
643 \end{verbatim}%$
644 \end{minipage}\vspace{1mm}
645 \par\noindent
646 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
647 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
648 regioni si sovrappongono avremo che:
649
650 \vspace{1mm}
651 \begin{minipage}[c]{12cm}
652 \begin{verbatim}
653 [piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
654 Failed lock: Resource temporarily unavailable
655 \end{verbatim}%$
656 \end{minipage}\vspace{1mm}
657 \par\noindent
658 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
659 avremo che:
660
661 \vspace{1mm}
662 \begin{minipage}[c]{12cm}
663 \begin{verbatim}
664 [piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
665 Lock acquired
666 \end{verbatim}%$
667 \end{minipage}\vspace{1mm}
668 \par\noindent
669 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
670 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
671
672 \vspace{1mm}
673 \begin{minipage}[c]{12cm}
674 \begin{verbatim}
675 [piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
676 Failed lock: Resource temporarily unavailable
677 \end{verbatim}%$
678 \end{minipage}\vspace{1mm}
679 \par\noindent
680 come ci aspettiamo questo non sarà consentito.
681
682 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
683 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
684 bloccante, riproviamo allora a ripetere le prove precedenti con questa
685 opzione:
686
687 \vspace{1mm}
688 \begin{minipage}[c]{12cm}
689 \begin{verbatim}
690 [piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
691 \end{verbatim}%$
692 \end{minipage}\vspace{1mm}
693 \par\noindent
694 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
695 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
696 essere acquisito otterremo:
697
698 \vspace{1mm}
699 \begin{minipage}[c]{12cm}
700 \begin{verbatim}
701 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
702 \end{verbatim}%$
703 \end{minipage}\vspace{1mm}
704 \par\noindent
705 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
706 punto rilasciamo il precedente blocco (terminando il primo comando un
707 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
708 blocco viene acquisito, con la comparsa di una nuova riga:
709
710 \vspace{1mm}
711 \begin{minipage}[c]{12cm}
712 \begin{verbatim}
713 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
714 Lock acquired
715 \end{verbatim}%$
716 \end{minipage}\vspace{3mm}
717 \par\noindent
718
719 Un'altra cosa che si può controllare con il nostro programma è l'interazione
720 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
721 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
722 succede quando si cerca di ottenere un blocco in scrittura con la semantica
723 BSD:
724
725 \vspace{1mm}
726 \begin{minipage}[c]{12cm}
727 \begin{verbatim}
728 [root@gont sources]# ./flock -f -w Flock.c
729 Lock acquired
730 \end{verbatim}
731 \end{minipage}\vspace{1mm}
732 \par\noindent
733 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
734 questo motivo occorre sempre tenere presente quale fra le due semantiche
735 disponibili stanno usando i programmi con cui si interagisce, dato che i
736 blocchi applicati con l'altra non avrebbero nessun effetto.
737
738
739
740 \subsection{La funzione \func{lockf}}
741 \label{sec:file_lockf}
742
743 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
744 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
745 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
746 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
747 che utilizza la funzione \funcd{lockf}, il cui prototipo è:
748 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
749   
750   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
751   
752   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
753     errore, nel qual caso \var{errno} assumerà uno dei valori:
754     \begin{errlist}
755     \item[\errcode{EWOULDBLOCK}] non è possibile acquisire il lock, e si è
756       selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
757       file è mappato in memoria.
758     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
759       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
760       dei \textit{file lock}.
761     \end{errlist}
762     ed inoltre \errval{EBADF}, \errval{EINVAL}.
763   }
764 \end{prototype}
765
766 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
767 che specifica quale azione eseguire; i valori possibili sono riportati in
768 tab.~\ref{tab:file_lockf_type}.
769
770 \begin{table}[htb]
771   \centering
772   \footnotesize
773   \begin{tabular}[c]{|l|p{7cm}|}
774     \hline
775     \textbf{Valore} & \textbf{Significato} \\
776     \hline
777     \hline
778     \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
779                       mantenere un blocco condiviso sullo stesso file.\\
780     \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
781                       alla volta può mantenere un blocco esclusivo su un file.\\
782     \const{LOCK\_UN}& Sblocca il file.\\
783     \const{LOCK\_NB}& Non blocca la funzione quando il blocco non è disponibile,
784                       si specifica sempre insieme ad una delle altre operazioni
785                       con un OR aritmetico dei valori.\\ 
786     \hline    
787   \end{tabular}
788   \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
789   \label{tab:file_lockf_type}
790 \end{table}
791
792 Qualora il blocco non possa essere acquisito, a meno di non aver specificato
793 \const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
794 Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
795 delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
796 affatto equivalente a \func{flock}).
797
798
799
800 \subsection{Il \textit{mandatory locking}}
801 \label{sec:file_mand_locking}
802
803 \itindbeg{mandatory~locking}
804
805 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
806 per introdurre un \textit{file locking} che, come dice il nome, fosse
807 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
808 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
809 direttamente al sistema, così che, anche qualora non si predisponessero le
810 opportune verifiche nei processi, questo verrebbe comunque rispettato.
811
812 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
813 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
814 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
815 utilizzato per cambiare il \ids{GID} effettivo con cui viene eseguito un
816 programma, ed è pertanto sempre associato alla presenza del permesso di
817 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
818 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
819 quest'ultimo venga attivato per il file in questione. In questo modo una
820 combinazione dei permessi originariamente non contemplata, in quanto senza
821 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
822   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
823   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
824   cancellato (come misura di sicurezza) quando di scrive su un file, questo
825   non vale quando esso viene utilizzato per attivare il \textit{mandatory
826     locking}.}
827
828 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
829 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
830 un processo che blocchi un file cruciale può renderlo completamente
831 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
832   problema si potrebbe risolvere rimuovendo il bit \itindex{sgid~bit}
833   \acr{sgid}, ma non è detto che sia così facile fare questa operazione con un
834   sistema bloccato.}  inoltre con il \textit{mandatory locking} si può
835 bloccare completamente un server NFS richiedendo una lettura su un file su cui
836 è attivo un blocco. Per questo motivo l'abilitazione del \textit{mandatory
837   locking} è di norma disabilitata, e deve essere attivata filesystem per
838 filesystem in fase di montaggio (specificando l'apposita opzione di
839 \func{mount} riportata in sez.~\ref{sec:filesystem_mounting}), o con l'opzione
840 \code{-o mand} per il comando omonimo).
841
842 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
843 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
844 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
845 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
846 per \func{fcntl}.
847
848 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
849 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
850 \textit{mandatory lock} attivato non è più necessario controllare la
851 disponibilità di accesso al file, ma si potranno usare direttamente le
852 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
853 direttamente il \textit{file locking}.
854
855 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
856 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
857 fino al rilascio del blocco, a meno di non aver aperto il file con
858 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
859 di \errcode{EAGAIN}.
860
861 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
862 scrivere sulla regione del file bloccata fermeranno il processo fino al
863 rilascio del blocco, a meno che il file non sia stato aperto con
864 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
865 con l'errore di \errcode{EAGAIN}.
866
867 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
868 sole ad operare sui contenuti di un file, e che sia \func{creat} che
869 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
870 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
871 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
872 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
873 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
874 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
875 dimensioni del file vada a sovrapporsi ad una regione bloccata).
876
877 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
878 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
879 abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso
880 infatti, quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si
881 ha un accesso al contenuto del file. Lo standard SVID prevede che sia
882 impossibile eseguire il memory mapping di un file su cui sono presenti dei
883 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
884   impediscono anche in caso di \textit{advisory locking}, anche se questo
885   comportamento non ha molto senso, dato che comunque qualunque accesso
886   diretto al file è consentito.} in Linux è stata però fatta la scelta
887 implementativa\footnote{per i dettagli si possono leggere le note relative
888   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
889   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
890 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
891 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
892 possibilità di modificare il file.
893
894 \itindend{file~locking}
895
896 \itindend{mandatory~locking}
897
898
899 \section{L'\textit{I/O multiplexing}}
900 \label{sec:file_multiplexing}
901
902
903 Uno dei problemi che si presentano quando si deve operare contemporaneamente
904 su molti file usando le funzioni illustrate in
905 sez.~\ref{sec:file_unix_interface} e sez.~\ref{sec:files_std_interface} è che
906 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
907 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
908 problema. In questa sezione forniremo una introduzione a questa problematica
909 ed analizzeremo le varie funzioni usate per implementare questa modalità di
910 I/O.
911
912
913 \subsection{La problematica dell'\textit{I/O multiplexing}}
914 \label{sec:file_noblocking}
915
916 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
917 \textit{fast} e \textit{slow} \textit{system call},\index{system~call~lente}
918 che in certi casi le funzioni di I/O possono bloccarsi
919 indefinitamente.\footnote{si ricordi però che questo può accadere solo per le
920   pipe, i socket ed alcuni file di dispositivo\index{file!di~dispositivo}; sui
921   file normali le funzioni di lettura e scrittura ritornano sempre subito.}
922 Ad esempio le operazioni di lettura possono bloccarsi quando non ci sono dati
923 disponibili sul descrittore su cui si sta operando.
924
925 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
926 affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
927 più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
928 possibile prevedere quando questo può avvenire (il caso più classico è quello
929 di un server in attesa di dati in ingresso da vari client). Quello che può
930 accadere è di restare bloccati nell'eseguire una operazione su un file
931 descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
932 altro disponibile. Questo comporta nel migliore dei casi una operazione
933 ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
934 nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
935 da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
936 potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
937
938 Abbiamo già accennato in sez.~\ref{sec:file_open_close} che è possibile
939 prevenire questo tipo di comportamento delle funzioni di I/O aprendo un file
940 in \textsl{modalità non-bloccante}, attraverso l'uso del flag
941 \const{O\_NONBLOCK} nella chiamata di \func{open}. In questo caso le funzioni
942 di input/output eseguite sul file che si sarebbero bloccate, ritornano
943 immediatamente, restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa
944 modalità di I/O permette di risolvere il problema controllando a turno i vari
945 file descriptor, in un ciclo in cui si ripete l'accesso fintanto che esso non
946 viene garantito.  Ovviamente questa tecnica, detta \itindex{polling}
947 \textit{polling}, è estremamente inefficiente: si tiene costantemente
948 impiegata la CPU solo per eseguire in continuazione delle \textit{system call}
949 che nella gran parte dei casi falliranno.
950
951 Per superare questo problema è stato introdotto il concetto di \textit{I/O
952   multiplexing}, una nuova modalità di operazioni che consente di tenere sotto
953 controllo più file descriptor in contemporanea, permettendo di bloccare un
954 processo quando le operazioni volute non sono possibili, e di riprenderne
955 l'esecuzione una volta che almeno una di quelle richieste sia effettuabile, in
956 modo da poterla eseguire con la sicurezza di non restare bloccati.
957
958 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
959 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
960 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
961 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
962 ulteriori dettagli e qualche esempio di utilizzo concreto in
963 sez.~\ref{sec:TCP_sock_multiplexing}.
964
965
966 \subsection{Le funzioni \func{select} e \func{pselect}}
967 \label{sec:file_select}
968
969 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
970   multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
971   BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
972   supportano i socket, compreso le varianti di System V.}  con la funzione
973 \funcd{select}, il cui prototipo è:
974 \begin{functions}
975   \headdecl{sys/time.h}
976   \headdecl{sys/types.h}
977   \headdecl{unistd.h}
978   \funcdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
979     *exceptfds, struct timeval *timeout)}
980   
981   Attende che uno dei file descriptor degli insiemi specificati diventi
982   attivo.
983   
984   \bodydesc{La funzione in caso di successo restituisce il numero di file
985     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
986     caso \var{errno} assumerà uno dei valori:
987   \begin{errlist}
988   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
989     degli insiemi.
990   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
991   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
992     o un valore non valido per \param{timeout}.
993   \end{errlist}
994   ed inoltre \errval{ENOMEM}.
995 }
996 \end{functions}
997
998 La funzione mette il processo in stato di \textit{sleep} (vedi
999 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
1000 degli insiemi specificati (\param{readfds}, \param{writefds} e
1001 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
1002 \param{timeout}.
1003
1004 \itindbeg{file~descriptor~set} 
1005
1006 Per specificare quali file descriptor si intende selezionare la funzione usa
1007 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1008 \type{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1009 maniera analoga a come un \itindex{signal~set} \textit{signal set} (vedi
1010 sez.~\ref{sec:sig_sigset}) identifica un insieme di segnali. Per la
1011 manipolazione di questi \textit{file descriptor set} si possono usare delle
1012 opportune macro di preprocessore:
1013 \begin{functions}
1014   \headdecl{sys/time.h}
1015   \headdecl{sys/types.h}
1016   \headdecl{unistd.h}
1017   \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
1018   Inizializza l'insieme (vuoto).
1019
1020   \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
1021   Inserisce il file descriptor \param{fd} nell'insieme.
1022
1023   \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
1024   Rimuove il file descriptor \param{fd} dall'insieme.
1025   
1026   \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
1027   Controlla se il file descriptor \param{fd} è nell'insieme.
1028 \end{functions}
1029
1030 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1031 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1032 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
1033   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
1034 quando, come nelle versioni più recenti del kernel, questo limite è stato
1035 rimosso, esso indica le dimensioni massime dei numeri usati nei \textit{file
1036   descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
1037   1003.1-2001, è definito in \headfile{sys/select.h}, ed è pari a 1024.}
1038
1039 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1040 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1041 inizializzato può dar luogo a comportamenti non prevedibili; allo stesso modo
1042 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1043 eccede \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1044
1045 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1046 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1047 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1048   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1049   bloccante, quindi anche in caso di \textit{end-of-file}; inoltre con Linux
1050   possono verificarsi casi particolari, ad esempio quando arrivano dati su un
1051   socket dalla rete che poi risultano corrotti e vengono scartati, può
1052   accadere che \func{select} riporti il relativo file descriptor come
1053   leggibile, ma una successiva \func{read} si blocchi.} il secondo,
1054 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1055 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i
1056 dati urgenti \itindex{out-of-band} su un socket, vedi
1057 sez.~\ref{sec:TCP_urgent_data}).
1058
1059 Dato che in genere non si tengono mai sotto controllo fino a
1060 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
1061 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1062 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1063 e far controllare al kernel una quantità di memoria superiore a quella
1064 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1065 deve corrispondere al valore massimo aumentato di uno.\footnote{si ricordi che
1066   i file descriptor sono numerati progressivamente a partire da zero, ed il
1067   valore indica il numero più alto fra quelli da tenere sotto controllo;
1068   dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore
1069   comune.}  
1070
1071 Infine l'argomento \param{timeout}, espresso con una struttura di tipo
1072 \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un tempo
1073 massimo di attesa prima che la funzione ritorni; se impostato a \val{NULL} la
1074 funzione attende indefinitamente. Si può specificare anche un tempo nullo
1075 (cioè una struttura \struct{timeval} con i campi impostati a zero), qualora si
1076 voglia semplicemente controllare lo stato corrente dei file descriptor.
1077
1078 La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
1079   il comportamento previsto dallo standard, ma la standardizzazione della
1080   funzione è recente, ed esistono ancora alcune versioni di Unix che non si
1081   comportano in questo modo.}  e ciascun insieme viene sovrascritto per
1082 indicare quali sono i file descriptor pronti per le operazioni ad esso
1083 relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
1084 ha un timeout viene restituito un valore nullo e gli insiemi non vengono
1085 modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
1086 insiemi sono indefiniti e non si può fare nessun affidamento sul loro
1087 contenuto.
1088
1089 \itindend{file~descriptor~set}
1090
1091 Una volta ritornata la funzione si potrà controllare quali sono i file
1092 descriptor pronti ed operare su di essi, si tenga presente però che si tratta
1093 solo di un suggerimento, esistono infatti condizioni\footnote{ad esempio
1094   quando su un socket arrivano dei dati che poi vengono scartati perché
1095   corrotti.} in cui \func{select} può riportare in maniera spuria che un file
1096 descriptor è pronto in lettura, quando una successiva lettura si bloccherebbe.
1097 Per questo quando si usa \textit{I/O multiplexing} è sempre raccomandato l'uso
1098 delle funzioni di lettura e scrittura in modalità non bloccante.
1099
1100 In Linux \func{select} modifica anche il valore di \param{timeout},
1101 impostandolo al tempo restante, quando la funzione viene interrotta da un
1102 segnale. In tal caso infatti si ha un errore di \errcode{EINTR}, ed occorre
1103 rilanciare la funzione; in questo modo non è necessario ricalcolare tutte le
1104 volte il tempo rimanente. Questo può causare problemi di portabilità sia
1105 quando si usa codice scritto su Linux che legge questo valore, sia quando si
1106 usano programmi scritti per altri sistemi che non dispongono di questa
1107 caratteristica e ricalcolano \param{timeout} tutte le volte.\footnote{in
1108   genere questa caratteristica è disponibile nei sistemi che derivano da
1109   System V e non è disponibile per quelli che derivano da BSD; lo standard
1110   POSIX.1-2001 non permette questo comportamento.}
1111
1112 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1113 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1114 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1115 tale valore, e per capire quali sono i file descriptor da tenere sotto
1116 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1117 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1118 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1119
1120 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1121 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1122 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1123 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1124 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1125 estesa, con ulteriori perdite di prestazioni. 
1126
1127 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1128   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1129 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1130 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1131 vengano dichiarate nell'header \headfile{sys/select.h}, che sostituisce i
1132 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1133 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1134   l'header \headfile{sys/select.h}, compaiono in Linux a partire dalle
1135   \acr{glibc} 2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header,
1136   le \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
1137   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1138   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1139   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1140   maggiore di 600.} il cui prototipo è:
1141 \begin{prototype}{sys/select.h}
1142   {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
1143     struct timespec *timeout, sigset\_t *sigmask)}
1144   
1145   Attende che uno dei file descriptor degli insiemi specificati diventi
1146   attivo.
1147   
1148   \bodydesc{La funzione in caso di successo restituisce il numero di file
1149     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
1150     caso \var{errno} assumerà uno dei valori:
1151   \begin{errlist}
1152   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1153     degli insiemi.
1154   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1155   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1156     o un valore non valido per \param{timeout}.
1157   \end{errlist}
1158   ed inoltre \errval{ENOMEM}.}
1159 \end{prototype}
1160
1161 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1162 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1163 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1164 caso di interruzione.\footnote{in realtà la \textit{system call} di Linux
1165   aggiorna il valore al tempo rimanente, ma la funzione fornita dalle
1166   \acr{glibc} modifica questo comportamento passando alla \textit{system call}
1167   una variabile locale, in modo da mantenere l'aderenza allo standard POSIX
1168   che richiede che il valore di \param{timeout} non sia modificato.} Inoltre
1169 prende un argomento aggiuntivo \param{sigmask} che è il puntatore ad una
1170 \index{maschera~dei~segnali} maschera di segnali (si veda
1171 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
1172 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
1173 funzione.
1174
1175 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1176 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
1177 attesa sia di un segnale che di dati. La tecnica classica è quella di
1178 utilizzare il gestore per impostare una \index{variabili!globali} variabile
1179 globale e controllare questa nel corpo principale del programma; abbiamo visto
1180 in sez.~\ref{sec:sig_example} come questo lasci spazio a possibili
1181 \itindex{race~condition} \textit{race condition}, per cui diventa essenziale
1182 utilizzare \func{sigprocmask} per disabilitare la ricezione del segnale prima
1183 di eseguire il controllo e riabilitarlo dopo l'esecuzione delle relative
1184 operazioni, onde evitare l'arrivo di un segnale immediatamente dopo il
1185 controllo, che andrebbe perso.
1186
1187 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
1188 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1189 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1190 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1191 alla gestione dati con un ciclo del tipo:
1192 \includecodesnip{listati/select_race.c} 
1193 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
1194 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
1195 interrotta, e la ricezione del segnale non sarà rilevata.
1196
1197 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1198 \param{sigmask} permette di riabilitare la ricezione il segnale
1199 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1200   kernel 2.6.16, non era presente la relativa \textit{system call}, e la
1201   funzione era implementata nelle \acr{glibc} attraverso \func{select} (vedi
1202   \texttt{man select\_tut}) per cui la possibilità di \itindex{race~condition}
1203   \textit{race condition} permaneva; in tale situazione si può ricorrere ad
1204   una soluzione alternativa, chiamata \itindex{self-pipe trick}
1205   \textit{self-pipe trick}, che consiste nell'aprire una pipe (vedi
1206   sez.~\ref{sec:ipc_pipes}) ed usare \func{select} sul capo in lettura della
1207   stessa; si può indicare l'arrivo di un segnale scrivendo sul capo in
1208   scrittura all'interno del gestore dello stesso; in questo modo anche se il
1209   segnale va perso prima della chiamata di \func{select} questa lo riconoscerà
1210   comunque dalla presenza di dati sulla pipe.} ribloccandolo non appena essa
1211 ritorna, così che il precedente codice potrebbe essere riscritto nel seguente
1212 modo:
1213 \includecodesnip{listati/pselect_norace.c} 
1214 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1215 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1216 interruzione si potranno eseguire le relative operazioni.
1217
1218
1219 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1220 \label{sec:file_poll}
1221
1222 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1223 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
1224 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
1225   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
1226   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
1227 cui prototipo è:
1228 \begin{prototype}{sys/poll.h}
1229   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
1230   
1231   La funzione attende un cambiamento di stato su un insieme di file
1232   descriptor.
1233   
1234   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1235     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1236     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1237   \begin{errlist}
1238   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1239     degli insiemi.
1240   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1241   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1242     \const{RLIMIT\_NOFILE}.
1243   \end{errlist}
1244   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1245 \end{prototype}
1246
1247 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1248 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1249 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1250 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1251 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1252 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1253 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
1254 \textsl{non-bloccante}).
1255
1256 Per ciascun file da controllare deve essere inizializzata una struttura
1257 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1258 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1259 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1260 descriptor da controllare, in \var{events} deve essere specificata una
1261 maschera binaria di flag che indichino il tipo di evento che si vuole
1262 controllare, mentre in \var{revents} il kernel restituirà il relativo
1263 risultato.  Usando un valore negativo per \param{fd} la corrispondente
1264 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
1265 tutto indipendenti da quelli in uscita (che vengono restituiti in
1266 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1267 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1268
1269 \begin{figure}[!htb]
1270   \footnotesize \centering
1271   \begin{minipage}[c]{\textwidth}
1272     \includestruct{listati/pollfd.h}
1273   \end{minipage} 
1274   \normalsize 
1275   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1276     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1277   \label{fig:file_pollfd}
1278 \end{figure}
1279
1280 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1281 binarie dei campi \var{events} e \var{revents} sono riportati in
1282 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1283 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
1284 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
1285 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
1286 nel campo \var{revents} per notificare delle condizioni di errore. 
1287
1288 \begin{table}[htb]
1289   \centering
1290   \footnotesize
1291   \begin{tabular}[c]{|l|l|}
1292     \hline
1293     \textbf{Flag}  & \textbf{Significato} \\
1294     \hline
1295     \hline
1296     \const{POLLIN}    & È possibile la lettura.\\
1297     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1298     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1299     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
1300                         urgenti.\\ 
1301     \hline
1302     \const{POLLOUT}   & È possibile la scrittura immediata.\\
1303     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1304     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1305     \hline
1306     \const{POLLERR}   & C'è una condizione di errore.\\
1307     \const{POLLHUP}   & Si è verificato un hung-up.\\
1308     \const{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1309                         socket.\footnotemark\\ 
1310     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
1311     \hline
1312     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
1313     \hline    
1314   \end{tabular}
1315   \caption{Costanti per l'identificazione dei vari bit dei campi
1316     \var{events} e \var{revents} di \struct{pollfd}.}
1317   \label{tab:file_pollfd_flags}
1318 \end{table}
1319
1320 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1321   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1322   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1323   socket, situazione che si viene chiamata appunto \itindex{half-close}
1324   \textit{half-close} (\textsl{mezza chiusura}) su cui torneremo con maggiori
1325   dettagli in sez.~\ref{sec:TCP_shutdown}.}
1326
1327 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1328 compatibilità con l'implementazione di SysV che usa gli
1329 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
1330   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
1331   delle librerie standard del C.} è da questi che derivano i nomi di alcune
1332 costanti, in quanto per essi sono definite tre classi di dati:
1333 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
1334 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
1335 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
1336 reagisce alle varie condizioni dei socket torneremo in
1337 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
1338
1339 Si tenga conto comunque che le costanti relative ai diversi tipi di dati
1340 normali e prioritari, vale a dire \const{POLLRDNORM}, \const{POLLWRNORM},
1341 \const{POLLRDBAND} e \const{POLLWRBAND} fanno riferimento alle implementazioni
1342 in stile SysV (in particolare le ultime due non vengono usate su Linux), e
1343 sono utilizzabili soltanto qualora si sia definita la macro
1344 \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
1345   file, definirla soltanto prima di includere \headfile{sys/poll.h} non è
1346   sufficiente.}
1347
1348 In caso di successo funzione ritorna restituendo il numero di file (un valore
1349 positivo) per i quali si è verificata una delle condizioni di attesa richieste
1350 o per i quali si è verificato un errore, nel qual caso vengono utilizzati i
1351 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}. Un
1352 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
1353 indica un errore nella chiamata, il cui codice viene riportato al solito
1354 tramite \var{errno}.
1355
1356 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1357 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1358 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1359 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
1360 \textit{file descriptor set} e la dimensione dei dati passati al kernel
1361 dipende solo dal numero dei file descriptor che si vogliono controllare, non
1362 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
1363     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
1364   qualora si debba osservare un solo file descriptor con un valore molto alto
1365   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
1366   memoria.}
1367
1368 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
1369   descriptor set} è usato sia in ingresso che in uscita, e questo significa
1370 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
1371 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
1372 da tenere sotto osservazione sono molti, non è invece necessaria con
1373 \func{poll}.
1374
1375 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1376 variante di \func{select} che consente di gestire correttamente la ricezione
1377 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1378 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1379 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1380
1381 In questo caso si tratta di una estensione che è specifica di Linux e non è
1382 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1383 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1384 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1385 prototipo è:
1386 \begin{prototype}{sys/poll.h}
1387   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
1388     const sigset\_t *sigmask)}
1389   
1390   La funzione attende un cambiamento di stato su un insieme di file
1391   descriptor.
1392   
1393   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1394     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1395     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1396   \begin{errlist}
1397   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1398     degli insiemi.
1399   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1400   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1401     \const{RLIMIT\_NOFILE}.
1402   \end{errlist}
1403   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1404 \end{prototype}
1405
1406 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1407 specificare, con l'argomento \param{sigmask}, il puntatore ad una
1408 \index{maschera~dei~segnali} maschera di segnali; questa sarà la maschera
1409 utilizzata per tutto il tempo che la funzione resterà in attesa, all'uscita
1410 viene ripristinata la maschera originale.  L'uso di questa funzione è cioè
1411 equivalente, come illustrato nella pagina di manuale, all'esecuzione atomica
1412 del seguente codice:
1413 \includecodesnip{listati/ppoll_means.c} 
1414
1415 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1416 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1417 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1418 risultati illustrati in precedenza. Come nel caso di \func{pselect} la system
1419 call che implementa \func{ppoll} restituisce, se la funzione viene interrotta
1420 da un segnale, il tempo mancante in \param{timeout}, e come per \func{pselect}
1421 la funzione di libreria fornita dalle \acr{glibc} maschera questo
1422 comportamento non modificando mai il valore di \param{timeout}.\footnote{anche
1423   se in questo caso non esiste nessuno standard che richiede questo
1424   comportamento.}
1425
1426
1427 \subsection{L'interfaccia di \textit{epoll}}
1428 \label{sec:file_epoll}
1429
1430 \itindbeg{epoll}
1431
1432 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1433 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1434 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1435   viene scartata a priori, perché può avvenire che il numero di file
1436   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
1437   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
1438 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
1439 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
1440 numero di file descriptor osservati, non a quelli che presentano attività.
1441
1442 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1443 eventi al secondo,\footnote{il caso classico è quello di un server web di un
1444   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
1445 trasferire avanti ed indietro da user space a kernel space la lunga lista
1446 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1447 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1448 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1449 per determinare quali di essi (in genere una piccola percentuale) sono
1450 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1451 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1452 bottiglia che degrada irrimediabilmente le prestazioni.
1453
1454 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1455 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
1456   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
1457 informazioni relative ai file descriptor osservati che presentano una
1458 attività, evitando così le problematiche appena illustrate. In genere queste
1459 prevedono che si registrino una sola volta i file descriptor da tenere sotto
1460 osservazione, e forniscono un meccanismo che notifica quali di questi
1461 presentano attività.
1462
1463 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1464 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1465   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1466   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1467   nell'elettronica digitale.} In questa modalità vengono notificati i file
1468 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1469 avviene indipendentemente dalle operazioni che possono essere state fatte su
1470 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1471 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1472 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1473 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1474 \textit{level triggered} questo sarà nuovamente notificato come
1475 \textsl{pronto}.
1476
1477 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1478 vengano notificati solo i file descriptor che hanno subito una transizione da
1479 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1480 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1481 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1482 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1483 byte. Solo una volta che si saranno esauriti tutti i dati disponibili, e che
1484 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1485 ulteriore notifica qualora ritornasse pronto.
1486
1487 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1488 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
1489   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
1490   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
1491 discussione altre interfacce con le quali si potranno effettuare lo stesso
1492 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
1493   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
1494   fornisce un sistema di notifica di eventi generico in grado di fornire le
1495   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
1496   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
1497 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
1498
1499 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
1500 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1501 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
1502   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
1503   file.} ma poi si è passati all'uso di apposite \textit{system call}.  Il
1504 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello
1505 ottenere detto file descriptor chiamando una delle funzioni
1506 \funcd{epoll\_create} e \funcd{epoll\_create1},\footnote{l'interfaccia di
1507   \textit{epoll} è stata inserita nel kernel a partire dalla versione 2.5.44,
1508   ed il supporto è stato aggiunto alle \acr{glibc} 2.3.2.} i cui prototipi
1509 sono:
1510 \begin{functions}
1511   \headdecl{sys/epoll.h}
1512
1513   \funcdecl{int epoll\_create(int size)}
1514   \funcdecl{int epoll\_create1(int flags)}
1515   
1516   Apre un file descriptor per \textit{epoll}.
1517   
1518   \bodydesc{Le funzioni restituiscono un file descriptor per \textit{epoll} in
1519     caso di successo, o $-1$ in caso di errore, nel qual caso \var{errno}
1520     assumerà uno dei valori:
1521   \begin{errlist}
1522   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1523     positivo o non valido per \param{flags}.
1524   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1525     nel sistema.
1526   \item[\errcode{EMFILE}] si è raggiunto il limite sul numero massimo di
1527     istanze di \textit{epoll} per utente stabilito da
1528     \sysctlfile{fs/epoll/max\_user\_instances}.
1529   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1530     l'istanza.
1531   \end{errlist}
1532 }
1533 \end{functions}
1534
1535 Entrambe le funzioni restituiscono un file descriptor speciale,\footnote{esso
1536   non è associato a nessun file su disco, inoltre a differenza dei normali
1537   file descriptor non può essere inviato ad un altro processo attraverso un
1538   socket locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche
1539 \textit{epoll descriptor}, che viene associato alla infrastruttura utilizzata
1540 dal kernel per gestire la notifica degli eventi. Nel caso di
1541 \func{epoll\_create} l'argomento \param{size} serviva a dare l'indicazione del
1542 numero di file descriptor che si vorranno tenere sotto controllo, e costituiva
1543 solo un suggerimento per semplificare l'allocazione di risorse sufficienti,
1544 non un valore massimo.\footnote{ma a partire dal kernel 2.6.8 esso viene
1545   totalmente ignorato e l'allocazione è sempre dinamica.}
1546
1547 La seconda versione della funzione, \func{epoll\_create1} è stata
1548 introdotta\footnote{è disponibile solo a partire dal kernel 2.6.27.} come
1549 estensione della precedente, per poter passare dei flag di controllo come
1550 maschera binaria in fase di creazione del file descriptor. Al momento l'unico
1551 valore legale per \param{flags} (a parte lo zero) è \const{EPOLL\_CLOEXEC},
1552 che consente di impostare in maniera atomica sul file descriptor il flag di
1553 \itindex{close-on-exec} \textit{close-on-exec} (si veda il significato di
1554 \const{O\_CLOEXEC} in sez.~\ref{sec:file_open_close}), senza che sia
1555 necessaria una successiva chiamata a \func{fcntl}.
1556
1557 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1558 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1559 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
1560 \funcd{epoll\_ctl}, il cui prototipo è:
1561 \begin{prototype}{sys/epoll.h}
1562   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1563   
1564   Esegue le operazioni di controllo di \textit{epoll}.
1565   
1566   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
1567     errore, nel qual caso \var{errno} assumerà uno dei valori:
1568   \begin{errlist}
1569   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
1570     validi.
1571   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1572     \param{fd} è già stato inserito in \param{epfd}.
1573   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1574     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1575     l'operazione richiesta con \param{op} non è supportata.
1576   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1577     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1578   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1579     l'operazione richiesta.
1580   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
1581   \item[\errcode{ENOSPC}] si è raggiunto il limite massimo di registrazioni
1582     per utente di file descriptor da osservare imposto da
1583     \sysctlfile{fs/epoll/max\_user\_watches}.
1584   \end{errlist}
1585 }
1586 \end{prototype}
1587
1588 Il comportamento della funzione viene controllato dal valore dall'argomento
1589 \param{op} che consente di specificare quale operazione deve essere eseguita.
1590 Le costanti che definiscono i valori utilizzabili per \param{op}
1591 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1592 delle operazioni cui fanno riferimento.
1593
1594 \begin{table}[htb]
1595   \centering
1596   \footnotesize
1597   \begin{tabular}[c]{|l|p{8cm}|}
1598     \hline
1599     \textbf{Valore}  & \textbf{Significato} \\
1600     \hline
1601     \hline
1602     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1603                              \param{fd} alla lista dei file descriptor
1604                              controllati tramite \param{epfd}, in
1605                              \param{event} devono essere specificate le
1606                              modalità di osservazione.\\
1607     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1608                              descriptor \param{fd} secondo il contenuto di
1609                              \param{event}.\\
1610     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1611                              dei file controllati tramite \param{epfd}.\\
1612     \hline    
1613   \end{tabular}
1614   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1615     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1616   \label{tab:epoll_ctl_operation}
1617 \end{table}
1618
1619 % aggiunta EPOLL_CTL_DISABLE con il kernel 3.7, vedi
1620 % http://lwn.net/Articles/520012/ e http://lwn.net/Articles/520198/
1621
1622 La funzione prende sempre come primo argomento un file descriptor di
1623 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
1624 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
1625 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
1626 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
1627 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1628
1629 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1630 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1631 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1632 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1633 sotto controllo.  L'argomento viene ignorato con l'operazione
1634 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1635   che questo fosse un puntatore valido, anche se poi veniva ignorato; a
1636   partire dal 2.6.9 si può specificare anche un valore \val{NULL} ma se si
1637   vuole mantenere la compatibilità con le versioni precedenti occorre usare un
1638   puntatore valido.}
1639
1640 \begin{figure}[!htb]
1641   \footnotesize \centering
1642   \begin{minipage}[c]{\textwidth}
1643     \includestruct{listati/epoll_event.h}
1644   \end{minipage} 
1645   \normalsize 
1646   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1647     gli eventi associati ad un file descriptor controllato con
1648     \textit{epoll}.}
1649   \label{fig:epoll_event}
1650 \end{figure}
1651
1652 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1653 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1654 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1655 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1656 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1657
1658 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1659 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1660 deve essere specificato come OR aritmetico delle costanti riportate in
1661 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, è una \direct{union}
1662 che serve a identificare il file descriptor a cui si intende fare riferimento,
1663 ed in astratto può contenere un valore qualsiasi (specificabile in diverse
1664 forme) che ne permetta una indicazione univoca. Il modo più comune di usarlo
1665 però è quello in cui si specifica il terzo argomento di \func{epoll\_ctl}
1666 nella forma \var{event.data.fd}, assegnando come valore di questo campo lo
1667 stesso valore dell'argomento \param{fd}, cosa che permette una immediata
1668 identificazione del file descriptor.
1669
1670 \begin{table}[htb]
1671   \centering
1672   \footnotesize
1673   \begin{tabular}[c]{|l|p{8cm}|}
1674     \hline
1675     \textbf{Valore}  & \textbf{Significato} \\
1676     \hline
1677     \hline
1678     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1679                           (analogo di \const{POLLIN}).\\
1680     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1681                           (analogo di \const{POLLOUT}).\\
1682     \const{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1683                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1684                           ha chiuso la connessione o il capo in scrittura
1685                           della stessa (vedi
1686                           sez.~\ref{sec:TCP_shutdown}).\footnotemark\\
1687     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
1688                           disponibili in lettura (analogo di
1689                           \const{POLLPRI}); questa condizione viene comunque
1690                           riportata in uscita, e non è necessaria impostarla
1691                           in ingresso.\\ 
1692     \const{EPOLLERR}    & Si è verificata una condizione di errore 
1693                           (analogo di \const{POLLERR}); questa condizione
1694                           viene comunque riportata in uscita, e non è
1695                           necessaria impostarla in ingresso.\\
1696     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up; questa
1697                           condizione viene comunque riportata in uscita, e non
1698                           è necessaria impostarla in ingresso.\\
1699     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1700                             triggered} per il file descriptor associato.\\ 
1701     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1702                           descriptor associato.\footnotemark\\
1703     \hline    
1704   \end{tabular}
1705   \caption{Costanti che identificano i bit del campo \param{events} di
1706     \struct{epoll\_event}.}
1707   \label{tab:epoll_events}
1708 \end{table}
1709
1710 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.17,
1711   ed è utile per riconoscere la chiusura di una connessione dall'altro capo
1712   quando si lavora in modalità \textit{edge triggered}.}
1713
1714 \footnotetext[48]{questa modalità è disponibile solo a partire dal kernel
1715   2.6.2.}
1716
1717 % TODO aggiunto EPOLLWAKEUP con il 3.5
1718
1719
1720 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1721 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
1722 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
1723 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
1724   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
1725   una perdita di prestazioni qualora il numero di file descriptor sia molto
1726   grande; per questo è stato proposto di introdurre come estensione una
1727   funzione \code{epoll\_ctlv} che consenta di effettuare con una sola chiamata
1728   le impostazioni per un blocco di file descriptor.} L'uso di
1729 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1730 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1731 osservazione.
1732
1733 % TODO verificare se prima o poi epoll_ctlv verrà introdotta
1734
1735 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1736 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1737 descriptor non si sia impostata la modalità \textit{edge triggered},
1738 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
1739 presente che è possibile tenere sotto osservazione uno stesso file descriptor
1740 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
1741 notifiche, anche se questa pratica è sconsigliata.
1742
1743 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
1744 si può rimuovere dalla lista associata a \param{epfd} con
1745 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
1746 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
1747 non è necessario usare \const{EPOLL\_CTL\_DEL}.
1748
1749 Infine una particolare modalità di notifica è quella impostata con
1750 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1751 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1752 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
1753   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
1754 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
1755 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
1756   logica \textit{edge triggered}.} 
1757
1758 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1759 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1760 notifica di un evento viene effettuata una sola volta, dopo di che il file
1761 descriptor osservato, pur restando nella lista di osservazione, viene
1762 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
1763   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
1764 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
1765 chiamata con \const{EPOLL\_CTL\_MOD}.
1766
1767 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1768 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
1769 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1770 \begin{prototype}{sys/epoll.h}
1771   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
1772     timeout)}
1773   
1774   Attende che uno dei file descriptor osservati sia pronto.
1775   
1776   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1777     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1778     assumerà uno dei valori:
1779   \begin{errlist}
1780   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1781   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1782   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1783     della scadenza di \param{timeout}.
1784   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1785     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1786   \end{errlist}
1787 }
1788 \end{prototype}
1789
1790 La funzione si blocca in attesa di un evento per i file descriptor registrati
1791 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1792 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1793 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1794 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1795 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1796 con l'argomento \param{maxevents}.
1797
1798 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1799 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1800 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1801 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
1802   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
1803 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
1804 un intero positivo.
1805
1806 Come accennato la funzione restituisce i suoi risultati nel vettore di
1807 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1808 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1809 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1810 stato impostato per il file descriptor per cui si è verificato l'evento quando
1811 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1812 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1813 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
1814   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
1815
1816 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1817 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1818 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1819 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1820 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1821 presenti eventi non ancora notificati, e si effettuasse una modifica
1822 dell'osservazione con \const{EPOLL\_CTL\_MOD}, questi verrebbero riletti alla
1823 luce delle modifiche.
1824
1825 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1826 il ritorno di \func{epoll\_wait} indica che un file descriptor è pronto e
1827 resterà tale fintanto che non si sono completamente esaurite le operazioni su
1828 di esso.  Questa condizione viene generalmente rilevata dall'occorrere di un
1829 errore di \errcode{EAGAIN} al ritorno di una \func{read} o una
1830 \func{write},\footnote{è opportuno ricordare ancora una volta che l'uso
1831   dell'\textit{I/O multiplexing} richiede di operare sui file in modalità non
1832   bloccante.} ma questa non è la sola modalità possibile, ad esempio la
1833 condizione può essere riconosciuta anche per il fatto che sono stati
1834 restituiti meno dati di quelli richiesti.
1835
1836 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1837 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1838 contemporaneamente per le osservazioni fatte in sez.~\ref{sec:file_select},
1839 per fare questo di nuovo è necessaria una variante della funzione di attesa
1840 che consenta di reimpostare all'uscita una \index{maschera~dei~segnali}
1841 maschera di segnali, analoga alle estensioni \func{pselect} e \func{ppoll} che
1842 abbiamo visto in precedenza per \func{select} e \func{poll}; in questo caso la
1843 funzione si chiama \funcd{epoll\_pwait}\footnote{la funziona è stata
1844   introdotta a partire dal kernel 2.6.19, ed è come tutta l'interfaccia di
1845   \textit{epoll}, specifica di Linux.} ed il suo prototipo è:
1846 \begin{prototype}{sys/epoll.h} 
1847   {int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1848     int timeout, const sigset\_t *sigmask)}
1849
1850   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1851   segnali. 
1852
1853   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1854     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1855     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1856 }
1857 \end{prototype}
1858
1859 La funzione è del tutto analoga \funcd{epoll\_wait}, soltanto che alla sua
1860 uscita viene ripristinata la \index{maschera~dei~segnali} maschera di segnali
1861 originale, sostituita durante l'esecuzione da quella impostata con
1862 l'argomento \param{sigmask}; in sostanza la chiamata a questa funzione è
1863 equivalente al seguente codice, eseguito però in maniera atomica:
1864 \includecodesnip{listati/epoll_pwait_means.c} 
1865
1866 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
1867 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
1868 prevalentemente con i server di rete, quando si devono tenere sotto
1869 osservazione un gran numero di socket; per questo motivo rimandiamo anche in
1870 questo caso la trattazione di un esempio concreto a quando avremo esaminato in
1871 dettaglio le caratteristiche dei socket; in particolare si potrà trovare un
1872 programma che utilizza questa interfaccia in sez.~\ref{sec:TCP_serv_epoll}.
1873
1874 \itindend{epoll}
1875
1876
1877 \subsection{La notifica di eventi tramite file descriptor}
1878 \label{sec:sig_signalfd_eventfd}
1879
1880 Abbiamo visto in sez.~\ref{sec:file_select} come il meccanismo classico delle
1881 notifiche di eventi tramite i segnali, presente da sempre nei sistemi
1882 unix-like, porti a notevoli problemi nell'interazione con le funzioni per
1883 l'\textit{I/O multiplexing}, tanto che per evitare possibili
1884 \itindex{race~condition} \textit{race condition} sono state introdotte
1885 estensioni dello standard POSIX e funzioni apposite come \func{pselect},
1886 \func{ppoll} e \funcd{epoll\_pwait}.
1887
1888 Benché i segnali siano il meccanismo più usato per effettuare notifiche ai
1889 processi, la loro interfaccia di programmazione, che comporta l'esecuzione di
1890 una funzione di gestione in maniera asincrona e totalmente scorrelata
1891 dall'ordinario flusso di esecuzione del processo, si è però dimostrata quasi
1892 subito assai problematica. Oltre ai limiti relativi ai limiti al cosa si può
1893 fare all'interno della funzione del gestore di segnali (quelli illustrati in
1894 sez.~\ref{sec:sig_signal_handler}), c'è il problema più generale consistente
1895 nel fatto che questa modalità di funzionamento cozza con altre interfacce di
1896 programmazione previste dal sistema in cui si opera in maniera
1897 \textsl{sincrona}, come quelle dell'I/O multiplexing appena illustrate.
1898
1899 In questo tipo di interfacce infatti ci si aspetta che il processo gestisca
1900 gli eventi a cui vuole rispondere in maniera sincrona generando le opportune
1901 risposte, mentre con l'arrivo di un segnale si possono avere interruzioni
1902 asincrone in qualunque momento.  Questo comporta la necessità di dover
1903 gestire, quando si deve tener conto di entrambi i tipi di eventi, le
1904 interruzioni delle funzioni di attesa sincrone, ed evitare possibili
1905 \itindex{race~condition} \textit{race conditions}.\footnote{in sostanza se non
1906   fossero per i segnali non ci sarebbe da doversi preoccupare, fintanto che si
1907   effettuano operazioni all'interno di un processo, della non atomicità delle
1908   \index{system~call~lente} \textit{system call} lente che vengono interrotte
1909   e devono essere riavviate.}
1910
1911 Abbiamo visto però in sez.~\ref{sec:sig_real_time} che insieme ai segnali
1912 \textit{real-time} sono state introdotte anche delle interfacce di gestione
1913 sincrona dei segnali con la funzione \func{sigwait} e le sue affini. Queste
1914 funzioni consentono di gestire i segnali bloccando un processo fino alla
1915 avvenuta ricezione e disabilitando l'esecuzione asincrona rispetto al resto
1916 del programma del gestore del segnale. Questo consente di risolvere i problemi
1917 di atomicità nella gestione degli eventi associati ai segnali, avendo tutto il
1918 controllo nel flusso principale del programma, ottenendo così una gestione
1919 simile a quella dell'\textit{I/O multiplexing}, ma non risolve i problemi
1920 delle interazioni con quest'ultimo, perché o si aspetta la ricezione di un
1921 segnale o si aspetta che un file descriptor sia accessibile e nessuna delle
1922 rispettive funzioni consente di fare contemporaneamente entrambe le cose.
1923
1924 Per risolvere questo problema nello sviluppo del kernel si è pensato di
1925 introdurre un meccanismo alternativo per la notifica dei segnali (esteso anche
1926 ad altri eventi generici) che, ispirandosi di nuovo alla filosofia di Unix per
1927 cui tutto è un file, consentisse di eseguire la notifica con l'uso di
1928 opportuni file descriptor.\footnote{ovviamente si tratta di una funzionalità
1929   specifica di Linux, non presente in altri sistemi unix-like, e non prevista
1930   da nessuno standard, per cui va evitata se si ha a cuore la portabilità.}
1931
1932 In sostanza, come per \func{sigwait}, si può disabilitare l'esecuzione di un
1933 gestore in occasione dell'arrivo di un segnale, e rilevarne l'avvenuta
1934 ricezione leggendone la notifica tramite l'uso di uno speciale file
1935 descriptor. Trattandosi di un file descriptor questo potrà essere tenuto sotto
1936 osservazione con le ordinarie funzioni dell'\textit{I/O multiplexing} (vale a
1937 dire con le solite \func{select}, \func{poll} e \funcd{epoll\_wait}) allo
1938 stesso modo di quelli associati a file o socket, per cui alla fine si potrà
1939 attendere in contemporanea sia l'arrivo del segnale che la disponibilità di
1940 accesso ai dati relativi a questi ultimi.
1941
1942 La funzione che permette di abilitare la ricezione dei segnali tramite file
1943 descriptor è \funcd{signalfd},\footnote{in realtà quella riportata è
1944   l'interfaccia alla funzione fornita dalle \acr{glibc}, esistono infatti due
1945   versioni diverse della \textit{system call}; una prima versione,
1946   \func{signalfd}, introdotta nel kernel 2.6.22 e disponibile con le
1947   \acr{glibc} 2.8 che non supporta l'argomento \texttt{flags}, ed una seconda
1948   versione, \funcm{signalfd4}, introdotta con il kernel 2.6.27 e che è quella
1949   che viene sempre usata a partire dalle \acr{glibc} 2.9, che prende un
1950   argomento aggiuntivo \code{size\_t sizemask} che indica la dimensione della
1951   \index{maschera~dei~segnali} maschera dei segnali, il cui valore viene
1952   impostato automaticamente dalle \acr{glibc}.}  il cui prototipo è:
1953 \begin{prototype}{sys/signalfd.h} 
1954   {int signalfd(int fd, const sigset\_t *mask, int flags)}
1955
1956   Crea o modifica un file descriptor per la ricezione dei segnali. 
1957
1958   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
1959     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
1960     dei valori:
1961   \begin{errlist}
1962   \item[\errcode{EBADF}] il valore \param{fd} non indica un file descriptor.
1963   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
1964     con \func{signalfd} o il valore di \param{flags} non è valido.
1965   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
1966     descriptor di \func{signalfd}.
1967   \item[\errcode{ENODEV}] il kernel non può montare internamente il
1968     dispositivo per la gestione anonima degli inode associati al file
1969     descriptor.
1970   \end{errlist}
1971   ed inoltre \errval{EMFILE} e \errval{ENFILE}.  
1972 }
1973 \end{prototype}
1974
1975 La funzione consente di creare o modificare le caratteristiche di un file
1976 descriptor speciale su cui ricevere le notifiche della ricezione di
1977 segnali. Per creare ex-novo uno di questi file descriptor è necessario passare
1978 $-1$ come valore per l'argomento \param{fd}, ogni altro valore positivo verrà
1979 invece interpretato come il numero del file descriptor (che deve esser stato
1980 precedentemente creato sempre con \func{signalfd}) di cui si vogliono
1981 modificare le caratteristiche. Nel primo caso la funzione ritornerà il valore
1982 del nuovo file descriptor e nel secondo caso il valore indicato
1983 con \param{fd}, in caso di errore invece verrà restituito $-1$.
1984
1985 L'elenco dei segnali che si vogliono gestire con \func{signalfd} deve essere
1986 specificato tramite l'argomento \param{mask}. Questo deve essere passato come
1987 puntatore ad una \index{maschera~dei~segnali} maschera di segnali creata con
1988 l'uso delle apposite macro già illustrate in sez.~\ref{sec:sig_sigset}. La
1989 maschera deve indicare su quali segnali si intende operare con
1990 \func{signalfd}; l'elenco può essere modificato con una successiva chiamata a
1991 \func{signalfd}. Dato che \signal{SIGKILL} e \signal{SIGSTOP} non possono
1992 essere intercettati (e non prevedono neanche la possibilità di un gestore) un
1993 loro inserimento nella maschera verrà ignorato senza generare errori.
1994
1995 L'argomento \param{flags} consente di impostare direttamente in fase di
1996 creazione due flag per il file descriptor analoghi a quelli che si possono
1997 impostare con una creazione ordinaria con \func{open}, evitando una
1998 impostazione successiva con \func{fcntl}.\footnote{questo è un argomento
1999   aggiuntivo, introdotto con la versione fornita a partire dal kernel 2.6.27,
2000   per kernel precedenti il valore deve essere nullo.} L'argomento deve essere
2001 specificato come maschera binaria dei valori riportati in
2002 tab.~\ref{tab:signalfd_flags}.
2003
2004 \begin{table}[htb]
2005   \centering
2006   \footnotesize
2007   \begin{tabular}[c]{|l|p{8cm}|}
2008     \hline
2009     \textbf{Valore}  & \textbf{Significato} \\
2010     \hline
2011     \hline
2012     \const{SFD\_NONBLOCK}& imposta sul file descriptor il flag di
2013                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2014     \const{SFD\_CLOEXEC}&  imposta il flag di \const{O\_CLOEXEC} per la
2015                            chiusura automatica del file descriptor nella
2016                            esecuzione di \func{exec}.\\
2017     \hline    
2018   \end{tabular}
2019   \caption{Valori dell'argomento \param{flags} per la funzione \func{signalfd}
2020     che consentono di impostare i flag del file descriptor.} 
2021   \label{tab:signalfd_flags}
2022 \end{table}
2023
2024 Si tenga presente che la chiamata a \func{signalfd} non disabilita la gestione
2025 ordinaria dei segnali indicati da \param{mask}; questa, se si vuole effettuare
2026 la ricezione tramite il file descriptor, dovrà essere disabilitata
2027 esplicitamente bloccando gli stessi segnali con \func{sigprocmask}, altrimenti
2028 verranno comunque eseguite le azioni di default (o un eventuale gestore
2029 installato in precedenza).\footnote{il blocco non ha invece nessun effetto sul
2030   file descriptor restituito da \func{signalfd}, dal quale sarà possibile
2031   pertanto ricevere qualunque segnale, anche se questo risultasse bloccato.}
2032 Si tenga presente inoltre che la lettura di una struttura
2033 \struct{signalfd\_siginfo} relativa ad un segnale pendente è equivalente alla
2034 esecuzione di un gestore, vale a dire che una volta letta il segnale non sarà
2035 più pendente e non potrà essere ricevuto, qualora si ripristino le normali
2036 condizioni di gestione, né da un gestore né dalla funzione \func{sigwaitinfo}.
2037
2038 Come anticipato, essendo questo lo scopo principale della nuova interfaccia,
2039 il file descriptor può essere tenuto sotto osservazione tramite le funzioni
2040 dell'\textit{I/O multiplexing} (vale a dire con le solite \func{select},
2041 \func{poll} e \funcd{epoll\_wait}), e risulterà accessibile in lettura quando
2042 uno o più dei segnali indicati tramite \param{mask} sarà pendente.
2043
2044 La funzione può essere chiamata più volte dallo stesso processo, consentendo
2045 così di tenere sotto osservazione segnali diversi tramite file descriptor
2046 diversi. Inoltre è anche possibile tenere sotto osservazione lo stesso segnale
2047 con più file descriptor, anche se la pratica è sconsigliata; in tal caso la
2048 ricezione del segnale potrà essere effettuata con una lettura da uno qualunque
2049 dei file descriptor a cui è associato, ma questa potrà essere eseguita
2050 soltanto una volta.\footnote{questo significa che tutti i file descriptor su
2051   cui è presente lo stesso segnale risulteranno pronti in lettura per le
2052   funzioni di \textit{I/O multiplexing}, ma una volta eseguita la lettura su
2053   uno di essi il segnale sarà considerato ricevuto ed i relativi dati non
2054   saranno più disponibili sugli altri file descriptor, che (a meno di una
2055   ulteriore occorrenza del segnale nel frattempo) di non saranno più pronti.}
2056
2057 Quando il file descriptor per la ricezione dei segnali non serve più potrà
2058 essere chiuso con \func{close} liberando tutte le risorse da esso allocate. In
2059 tal caso qualora vi fossero segnali pendenti questi resteranno tali, e
2060 potranno essere ricevuti normalmente una volta che si rimuova il blocco
2061 imposto con \func{sigprocmask}.
2062
2063 Oltre che con le funzioni dell'\textit{I/O multiplexing} l'uso del file
2064 descriptor restituito da \func{signalfd} cerca di seguire la semantica di un
2065 sistema unix-like anche con altre \textit{system call}; in particolare esso
2066 resta aperto (come ogni altro file descriptor) attraverso una chiamata ad
2067 \func{exec}, a meno che non lo si sia creato con il flag di
2068 \const{SFD\_CLOEXEC} o si sia successivamente impostato il
2069 \textit{close-on-exec} con \func{fcntl}. Questo comportamento corrisponde
2070 anche alla ordinaria semantica relativa ai segnali bloccati, che restano
2071 pendenti attraverso una \func{exec}.
2072
2073 Analogamente il file descriptor resta sempre disponibile attraverso una
2074 \func{fork} per il processo figlio, che ne riceve una copia; in tal caso però
2075 il figlio potrà leggere dallo stesso soltanto i dati relativi ai segnali
2076 ricevuti da lui stesso. Nel caso di \textit{thread} viene nuovamente seguita
2077 la semantica ordinaria dei segnali, che prevede che un singolo \textit{thread}
2078 possa ricevere dal file descriptor solo le notifiche di segnali inviati
2079 direttamente a lui o al processo in generale, e non quelli relativi ad altri
2080 \textit{thread} appartenenti allo stesso processo.
2081
2082 L'interfaccia fornita da \func{signalfd} prevede che la ricezione dei segnali
2083 sia eseguita leggendo i dati relativi ai segnali pendenti dal file descriptor
2084 restituito dalla funzione con una normalissima \func{read}.  Qualora non vi
2085 siano segnali pendenti la \func{read} si bloccherà a meno di non aver
2086 impostato la modalità di I/O non bloccante sul file descriptor, o direttamente
2087 in fase di creazione con il flag \const{SFD\_NONBLOCK}, o in un momento
2088 successivo con \func{fcntl}.  
2089
2090 \begin{figure}[!htb]
2091   \footnotesize \centering
2092   \begin{minipage}[c]{\textwidth}
2093     \includestruct{listati/signalfd_siginfo.h}
2094   \end{minipage} 
2095   \normalsize 
2096   \caption{La struttura \structd{signalfd\_siginfo}, restituita in lettura da
2097     un file descriptor creato con \func{signalfd}.}
2098   \label{fig:signalfd_siginfo}
2099 \end{figure}
2100
2101 I dati letti dal file descriptor vengono scritti sul buffer indicato come
2102 secondo argomento di \func{read} nella forma di una sequenza di una o più
2103 strutture \struct{signalfd\_siginfo} (la cui definizione si è riportata in
2104 fig.~\ref{fig:signalfd_siginfo}) a seconda sia della dimensione del buffer che
2105 del numero di segnali pendenti. Per questo motivo il buffer deve essere almeno
2106 di dimensione pari a quella di \struct{signalfd\_siginfo}, qualora sia di
2107 dimensione maggiore potranno essere letti in unica soluzione i dati relativi
2108 ad eventuali più segnali pendenti, fino al numero massimo di strutture
2109 \struct{signalfd\_siginfo} che possono rientrare nel buffer.
2110
2111 Il contenuto di \struct{signalfd\_siginfo} ricalca da vicino quella della
2112 analoga struttura \struct{siginfo\_t} (illustrata in
2113 fig.~\ref{fig:sig_siginfo_t}) usata dall'interfaccia ordinaria dei segnali, e
2114 restituisce dati simili. Come per \struct{siginfo\_t} i campi che vengono
2115 avvalorati dipendono dal tipo di segnale e ricalcano i valori che abbiamo già
2116 illustrato in sez.~\ref{sec:sig_sigaction}.\footnote{si tenga presente però
2117   che per un bug i kernel fino al 2.6.25 non avvalorano correttamente i campi
2118   \var{ssi\_ptr} e \var{ssi\_int} per segnali inviati con \func{sigqueue}.}
2119
2120 Come esempio di questa nuova interfaccia ed anche come esempio di applicazione
2121 della interfaccia di \itindex{epoll} \textit{epoll}, si è scritto un programma
2122 elementare che stampi sullo standard output sia quanto viene scritto da terzi
2123 su una \textit{named fifo}, che l'avvenuta ricezione di alcuni segnali.  Il
2124 codice completo si trova al solito nei sorgenti allegati alla guida (nel file
2125 \texttt{FifoReporter.c}).
2126
2127 In fig.~\ref{fig:fiforeporter_code_init} si è riportata la parte iniziale del
2128 programma in cui vengono effettuate le varie inizializzazioni necessarie per
2129 l'uso di \itindex{epoll} \textit{epoll} e \func{signalfd}, a partire
2130 (\texttt{\small 12--16}) dalla definizione delle varie variabili e strutture
2131 necessarie. Al solito si è tralasciata la parte dedicata alla decodifica delle
2132 opzioni che consentono ad esempio di cambiare il nome del file associato alla
2133 fifo.
2134
2135 \begin{figure}[!htbp]
2136   \footnotesize \centering
2137   \begin{minipage}[c]{\codesamplewidth}
2138     \includecodesample{listati/FifoReporter-init.c}
2139   \end{minipage} 
2140   \normalsize 
2141   \caption{Sezione di inizializzazione del codice del programma
2142     \file{FifoReporter.c}.}
2143   \label{fig:fiforeporter_code_init}
2144 \end{figure}
2145
2146 Il primo passo (\texttt{\small 19--20}) è la crezione di un file descriptor
2147 \texttt{epfd} di \itindex{epoll} \textit{epoll} con \func{epoll\_create} che è
2148 quello che useremo per il controllo degli altri.  É poi necessario
2149 disabilitare la ricezione dei segnali (nel caso \signal{SIGINT},
2150 \signal{SIGQUIT} e \signal{SIGTERM}) per i quali si vuole la notifica tramite
2151 file descriptor. Per questo prima li si inseriscono (\texttt{\small 22--25})
2152 in una \index{maschera~dei~segnali} maschera di segnali \texttt{sigmask} che
2153 useremo con (\texttt{\small 26}) \func{sigprocmask} per disabilitarli.  Con la
2154 stessa maschera si potrà per passare all'uso (\texttt{\small 28--29}) di
2155 \func{signalfd} per abilitare la notifica sul file descriptor
2156 \var{sigfd}. Questo poi (\texttt{\small 30--33}) dovrà essere aggiunto con
2157 \func{epoll\_ctl} all'elenco di file descriptor controllati con \texttt{epfd}.
2158
2159 Occorrerà infine (\texttt{\small 35--38}) creare la \textit{named fifo} se
2160 questa non esiste ed aprirla per la lettura (\texttt{\small 39--40}); una
2161 volta fatto questo sarà necessario aggiungere il relativo file descriptor
2162 (\var{fifofd}) a quelli osservati da \itindex{epoll} \textit{epoll} in maniera
2163 del tutto analoga a quanto fatto con quello relativo alla notifica dei
2164 segnali.
2165
2166 \begin{figure}[!htbp]
2167   \footnotesize \centering
2168   \begin{minipage}[c]{\codesamplewidth}
2169     \includecodesample{listati/FifoReporter-main.c}
2170   \end{minipage} 
2171   \normalsize 
2172   \caption{Ciclo principale del codice del programma \file{FifoReporter.c}.}
2173   \label{fig:fiforeporter_code_body}
2174 \end{figure}
2175
2176 Una volta completata l'inizializzazione verrà eseguito indefinitamente il
2177 ciclo principale del programma (\texttt{\small 2--45}) che si è riportato in
2178 fig.~\ref{fig:fiforeporter_code_body}, fintanto che questo non riceva un
2179 segnale di \signal{SIGINT} (ad esempio con la pressione di \texttt{C-c}). Il
2180 ciclo prevede che si attenda (\texttt{\small 2--3}) la presenza di un file
2181 descriptor pronto in lettura con \func{epoll\_wait},\footnote{si ricordi che
2182   entrambi i file descriptor \var{fifofd} e \var{sigfd} sono stati posti in
2183   osservazioni per eventi di tipo \const{EPOLLIN}.} che si bloccherà fintanto
2184 che non siano stati scritti dati sulla fifo o che non sia arrivato un
2185 segnale.\footnote{per semplificare il codice non si è trattato il caso in cui
2186   \func{epoll\_wait} viene interrotta da un segnale, assumendo che tutti
2187   quelli che possano interessare siano stati predisposti per la notifica
2188   tramite file descriptor, per gli altri si otterrà semplicemente l'uscita dal
2189   programma.}
2190
2191 Anche se in questo caso i file descriptor pronti possono essere al più due, si
2192 è comunque adottato un approccio generico in cui questi verranno letti
2193 all'interno di un opportuno ciclo (\texttt{\small 5--44}) sul numero
2194 restituito da \func{epoll\_wait}, esaminando i risultati presenti nel vettore
2195 \var{events} all'interno di una catena di condizionali alternativi sul valore
2196 del file descriptor riconosciuto come pronto.\footnote{controllando cioè a
2197   quale dei due file descriptor possibili corrisponde il campo relativo,
2198   \var{events[i].data.fd}.}
2199
2200 Il primo condizionale (\texttt{\small 6--24}) è relativo al caso che si sia
2201 ricevuto un segnale e che il file descriptor pronto corrisponda
2202 (\texttt{\small 6}) a \var{sigfd}. Dato che in generale si possono ricevere
2203 anche notifiche relativi a più di un singolo segnale, si è scelto di leggere
2204 una struttura \struct{signalfd\_siginfo} alla volta, eseguendo la lettura
2205 all'interno di un ciclo (\texttt{\small 8--24}) che prosegue fintanto che vi
2206 siano dati da leggere.
2207
2208 Per questo ad ogni lettura si esamina (\texttt{\small 9--14}) se il valore di
2209 ritorno della funzione \func{read} è negativo, uscendo dal programma
2210 (\texttt{\small 11}) in caso di errore reale, o terminando il ciclo
2211 (\texttt{\small 13}) con un \texttt{break} qualora si ottenga un errore di
2212 \errcode{EAGAIN} per via dell'esaurimento dei dati.\footnote{si ricordi come
2213   sia la fifo che il file descriptor per i segnali siano stati aperti in
2214   modalità non-bloccante, come previsto per l’\textit{I/O multiplexing},
2215   pertanto ci si aspetta di ricevere un errore di \errcode{EAGAIN} quando non
2216   vi saranno più dati da leggere.}
2217
2218 In presenza di dati invece il programma proseguirà l'esecuzione stampando
2219 (\texttt{\small 19--20}) il nome del segnale ottenuto all'interno della
2220 struttura \struct{signalfd\_siginfo} letta in \var{siginf}\footnote{per la
2221   stampa si è usato il vettore \var{sig\_names} a ciascun elemento del quale
2222   corrisponde il nome del segnale avente il numero corrispondente, la cui
2223   definizione si è omessa dal codice di fig.~\ref{fig:fiforeporter_code_init}
2224   per brevità.} ed il \textit{pid} del processo da cui lo ha ricevuto; inoltre
2225 (\texttt{\small 21--24}) si controllerà anche se il segnale ricevuto è
2226 \signal{SIGINT}, che si è preso come segnale da utilizzare per la terminazione
2227 del programma, che verrà eseguita dopo aver rimosso il file della \textit{name
2228   fifo}.
2229  
2230 Il secondo condizionale (\texttt{\small 26--39}) è invece relativo al caso in
2231 cui ci siano dati pronti in lettura sulla fifo e che il file descriptor pronto
2232 corrisponda (\texttt{\small 26}) a \var{fifofd}. Di nuovo si effettueranno le
2233 letture in un ciclo (\texttt{\small 28--39}) ripetendole fin tanto che la
2234 funzione \func{read} non resituisce un errore di \errcode{EAGAIN}
2235 (\texttt{\small 29--35}).\footnote{il procedimento è lo stesso adottato per il
2236   file descriptor associato al segnale, in cui si esce dal programma in caso
2237   di errore reale, in questo caso però alla fine dei dati prima di uscire si
2238   stampa anche (\texttt{\small 32}) un messaggio di chiusura.} Se invece vi
2239 sono dati validi letti dalla fifo si inserirà (\texttt{\small 36}) una
2240 terminazione di stringa sul buffer e si stamperà il tutto (\texttt{\small
2241   37--38}) sullo \textit{standard output}. L'ultimo condizionale
2242 (\texttt{\small 40--44}) è semplicemente una condizione di cattura per una
2243 eventualità che comunque non dovrebbe mai verificarsi, e che porta alla uscita
2244 dal programma con una opportuna segnalazione di errore.
2245
2246 A questo punto si potrà eseguire il comando lanciandolo su un terminale, ed
2247 osservarne le reazioni agli eventi generati da un altro terminale; lanciando
2248 il programma otterremo qualcosa del tipo:
2249 \begin{Verbatim}
2250 piccardi@hain:~/gapil/sources$ ./a.out 
2251 FifoReporter starting, pid 4568
2252 \end{Verbatim}
2253 %$
2254 e scrivendo qualcosa sull'altro terminale con:
2255 \begin{Verbatim}
2256 root@hain:~# echo prova > /tmp/reporter.fifo  
2257 \end{Verbatim}
2258 si otterrà:
2259 \begin{Verbatim}
2260 Message from fifo:
2261 prova
2262 end message
2263 \end{Verbatim}
2264 mentre inviando un segnale:
2265 \begin{Verbatim}
2266 root@hain:~# kill 4568
2267 \end{Verbatim}
2268 si avrà:
2269 \begin{Verbatim}
2270 Signal received:
2271 Got SIGTERM       
2272 From pid 3361
2273 \end{Verbatim}
2274 ed infine premendo \texttt{C-\bslash} sul terminale in cui è in esecuzione si
2275 vedrà:
2276 \begin{Verbatim}
2277 ^\Signal received:
2278 Got SIGQUIT       
2279 From pid 0
2280 \end{Verbatim}
2281 e si potrà far uscire il programma con \texttt{C-c} ottenendo:
2282 \begin{Verbatim}
2283 ^CSignal received:
2284 Got SIGINT        
2285 From pid 0
2286 SIGINT means exit
2287 \end{Verbatim}
2288
2289
2290 Lo stesso paradigma di notifica tramite file descriptor usato per i segnali è
2291 stato adottato anche per i timer. In questo caso, rispetto a quanto visto in
2292 sez.~\ref{sec:sig_timer_adv}, la scadenza di un timer potrà essere letta da un
2293 file descriptor senza dover ricorrere ad altri meccanismi di notifica come un
2294 segnale o un \textit{thread}. Di nuovo questo ha il vantaggio di poter
2295 utilizzare le funzioni dell'\textit{I/O multiplexing} per attendere allo
2296 stesso tempo la disponibilità di dati o la ricezione della scadenza di un
2297 timer.\footnote{in realtà per questo sarebbe già sufficiente \func{signalfd}
2298   per ricevere i segnali associati ai timer, ma la nuova interfaccia
2299   semplifica notevolmente la gestione e consente di fare tutto con una sola
2300   \textit{system call}.}
2301
2302 Le funzioni di questa nuova interfaccia ricalcano da vicino la struttura delle
2303 analoghe versioni ordinarie introdotte con lo standard POSIX.1-2001, che
2304 abbiamo già illustrato in sez.~\ref{sec:sig_timer_adv}.\footnote{questa
2305   interfaccia è stata introdotta in forma considerata difettosa con il kernel
2306   2.6.22, per cui è stata immediatamente tolta nel successivo 2.6.23 e
2307   reintrodotta in una forma considerata adeguata nel kernel 2.6.25, il
2308   supporto nelle \acr{glibc} è stato introdotto a partire dalla versione
2309   2.8.6, la versione del kernel 2.6.22, presente solo su questo kernel, non è
2310   supportata e non deve essere usata.} La prima funzione prevista, quella che
2311 consente di creare un timer, è \funcd{timerfd\_create}, il cui prototipo è:
2312 \begin{prototype}{sys/timerfd.h} 
2313   {int timerfd\_create(int clockid, int flags)}
2314
2315   Crea un timer associato ad un file descriptor per la notifica. 
2316
2317   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2318     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2319     dei valori:
2320   \begin{errlist}
2321   \item[\errcode{EINVAL}] l'argomento \param{clockid} non è
2322     \const{CLOCK\_MONOTONIC} o \const{CLOCK\_REALTIME}, o
2323     l'argomento \param{flag} non è valido, o è diverso da zero per kernel
2324     precedenti il 2.6.27.
2325   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
2326     descriptor di \func{signalfd}.
2327   \item[\errcode{ENODEV}] il kernel non può montare internamente il
2328     dispositivo per la gestione anonima degli inode associati al file
2329     descriptor.
2330   \end{errlist}
2331   ed inoltre \errval{EMFILE} e \errval{ENFILE}.  
2332 }
2333 \end{prototype}
2334
2335 La funzione prende come primo argomento un intero che indica il tipo di
2336 orologio a cui il timer deve fare riferimento, i valori sono gli stessi delle
2337 funzioni dello standard POSIX-1.2001 già illustrati in
2338 tab.~\ref{tab:sig_timer_clockid_types}, ma al momento i soli utilizzabili sono
2339 \const{CLOCK\_REALTIME} e \const{CLOCK\_MONOTONIC}. L'argomento \param{flags},
2340 come l'analogo di \func{signalfd}, consente di impostare i flag per l'I/O non
2341 bloccante ed il \textit{close-on-exec} sul file descriptor
2342 restituito,\footnote{esso è stato introdotto a partire dal kernel 2.6.27, per
2343   le versioni precedenti deve essere passato un valore nullo.} e deve essere
2344 specificato come una maschera binaria delle costanti riportate in
2345 tab.~\ref{tab:timerfd_flags}.
2346
2347 \begin{table}[htb]
2348   \centering
2349   \footnotesize
2350   \begin{tabular}[c]{|l|p{8cm}|}
2351     \hline
2352     \textbf{Valore}  & \textbf{Significato} \\
2353     \hline
2354     \hline
2355     \const{TFD\_NONBLOCK}& imposta sul file descriptor il flag di
2356                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2357     \const{TFD\_CLOEXEC}&  imposta il flag di \const{O\_CLOEXEC} per la
2358                            chiusura automatica del file descriptor nella
2359                            esecuzione di \func{exec}.\\
2360     \hline    
2361   \end{tabular}
2362   \caption{Valori dell'argomento \param{flags} per la funzione
2363     \func{timerfd\_create} che consentono di impostare i flag del file
2364     descriptor.}  
2365   \label{tab:timerfd_flags}
2366 \end{table}
2367
2368 In caso di successo la funzione restituisce un file descriptor sul quale
2369 verranno notificate le scadenze dei timer. Come per quelli restituiti da
2370 \func{signalfd} anche questo file descriptor segue la semantica dei sistemi
2371 unix-like, in particolare resta aperto attraverso una \func{exec},\footnote{a
2372   meno che non si sia impostato il flag di \textit{close-on exec} con
2373   \const{TFD\_CLOEXEC}.} e viene duplicato attraverso una \func{fork}; questa
2374 ultima caratteristica comporta però che anche il figlio può utilizzare i dati
2375 di un timer creato nel padre, a differenza di quanto avviene invece con i
2376 timer impostati con le funzioni ordinarie.\footnote{si ricordi infatti che,
2377   come illustrato in sez.~\ref{sec:proc_fork}, allarmi, timer e segnali
2378   pendenti nel padre vengono cancellati per il figlio dopo una \func{fork}.}
2379
2380 Una volta creato il timer con \func{timerfd\_create} per poterlo utilizzare
2381 occorre \textsl{armarlo} impostandone un tempo di scadenza ed una eventuale
2382 periodicità di ripetizione, per farlo si usa la funzione omologa di
2383 \func{timer\_settime} per la nuova interfaccia; questa è
2384 \funcd{timerfd\_settime} ed il suo prototipo è:
2385 \begin{prototype}{sys/timerfd.h} 
2386   {int timerfd\_settime(int fd, int flags,
2387                            const struct itimerspec *new\_value,
2388                            struct itimerspec *old\_value)}
2389
2390   Crea un timer associato ad un file descriptor per la notifica. 
2391
2392   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2393     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2394     dei valori:
2395   \begin{errlist}
2396   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2397     descriptor. 
2398   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2399     con \func{timerfd\_create}, o i valori di \param{flag} o dei campi
2400     \var{tv\_nsec} in \param{new\_value} non sono validi.
2401   \item[\errcode{EFAULT}] o \param{new\_value} o \param{old\_value} non sono
2402     puntatori validi.
2403   \end{errlist}
2404 }
2405 \end{prototype}
2406
2407 In questo caso occorre indicare su quale timer si intende operare specificando
2408 come primo argomento il file descriptor ad esso associato, che deve essere
2409 stato ottenuto da una precedente chiamata a \func{timerfd\_create}. I restanti
2410 argomenti sono del tutto analoghi a quelli della omologa funzione
2411 \func{timer\_settime}, e prevedono l'uso di strutture \struct{itimerspec}
2412 (vedi fig.~\ref{fig:struct_itimerspec}) per le indicazioni di temporizzazione.
2413
2414 I valori ed il significato di questi argomenti sono gli stessi che sono già
2415 stati illustrati in dettaglio in sez.~\ref{sec:sig_timer_adv} e non staremo a
2416 ripetere quanto detto in quell'occasione;\footnote{per brevità si ricordi che
2417   con \param{new\_value.it\_value} si indica la prima scadenza del timer e
2418   con \param{new\_value.it\_interval} la sua periodicità.}  l'unica differenza
2419 riguarda l'argomento \param{flags} che serve sempre ad indicare se il tempo di
2420 scadenza del timer è da considerarsi relativo o assoluto rispetto al valore
2421 corrente dell'orologio associato al timer, ma che in questo caso ha come
2422 valori possibili rispettivamente soltanto $0$ e
2423 \const{TFD\_TIMER\_ABSTIME}.\footnote{anche questo valore, che è l'analogo di
2424   \const{TIMER\_ABSTIME} è l'unico attualmente possibile per \param{flags}.}
2425
2426 L'ultima funzione prevista dalla nuova interfaccia è \funcd{timerfd\_gettime},
2427 che è l'analoga di \func{timer\_gettime}, il suo prototipo è:
2428 \begin{prototype}{sys/timerfd.h} 
2429   {int timerfd\_gettime(int fd, struct itimerspec *curr\_value)}
2430
2431   Crea un timer associato ad un file descriptor per la notifica. 
2432
2433   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2434     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2435     dei valori:
2436   \begin{errlist}
2437   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2438     descriptor. 
2439   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2440     con \func{timerfd\_create}.
2441   \item[\errcode{EFAULT}] o \param{curr\_value} non è un puntatore valido.
2442   \end{errlist}
2443 }
2444 \end{prototype}
2445
2446
2447
2448
2449
2450 Questo infatti diverrà pronto in lettura per tutte le varie funzioni dell'I/O
2451 multiplexing in presenza di una o più scadenze del timer ad esso associato.
2452
2453 Inoltre sarà possibile ottenere il numero di volte che il timer è scaduto
2454 dalla ultima impostazione
2455
2456 che può essere
2457 usato per leggere le notifiche delle scadenze dei timer. Queste possono essere
2458 ottenute leggendo in maniera ordinaria il file descriptor con una \func{read}, 
2459
2460
2461
2462
2463 % TODO trattare qui eventfd, timerfd introdotte con il 2.6.22 
2464 % timerfd è stata tolta nel 2.6.23 e rifatta per bene nel 2.6.25
2465 % vedi: http://lwn.net/Articles/233462/
2466 %       http://lwn.net/Articles/245533/
2467 %       http://lwn.net/Articles/267331/
2468
2469
2470 \section{L'accesso \textsl{asincrono} ai file}
2471 \label{sec:file_asyncronous_operation}
2472
2473 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
2474 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
2475 debba operare su più file contemporaneamente, esistono altre modalità di
2476 gestione delle stesse problematiche. In particolare sono importanti in questo
2477 contesto le modalità di accesso ai file eseguibili in maniera
2478 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
2479 attesa della disponibilità dell'accesso al file, ma può proseguire
2480 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
2481 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
2482 \textit{inotify}), per essere avvisato della possibilità di eseguire le
2483 operazioni di I/O volute.
2484
2485
2486 \subsection{Il \textit{Signal driven I/O}}
2487 \label{sec:signal_driven_io}
2488
2489 \itindbeg{signal~driven~I/O}
2490
2491 Abbiamo accennato in sez.~\ref{sec:file_open_close} che è definito un flag
2492 \const{O\_ASYNC}, che consentirebbe di aprire un file in modalità asincrona,
2493 anche se in realtà è opportuno attivare in un secondo tempo questa modalità
2494 impostando questo flag attraverso l'uso di \func{fcntl} con il comando
2495 \const{F\_SETFL} (vedi sez.~\ref{sec:file_fcntl_ioctl}).\footnote{l'uso del
2496   flag di \const{O\_ASYNC} e dei comandi \const{F\_SETOWN} e \const{F\_GETOWN}
2497   per \func{fcntl} è specifico di Linux e BSD.}  In realtà parlare di apertura
2498 in modalità asincrona non significa che le operazioni di lettura o scrittura
2499 del file vengono eseguite in modo asincrono (tratteremo questo, che è ciò che
2500 più propriamente viene chiamato \textsl{I/O asincrono}, in
2501 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
2502 notifica asincrona delle variazione dello stato del file descriptor aperto in
2503 questo modo.
2504
2505 Quello che succede è che per tutti i file posti in questa modalità\footnote{si
2506   tenga presente però che essa non è utilizzabile con i file ordinari ma solo
2507   con socket, file di terminale o pseudo terminale, ed anche, a partire dal
2508   kernel 2.6, anche per fifo e pipe.} il sistema genera un apposito segnale,
2509 \signal{SIGIO}, tutte le volte che diventa possibile leggere o scrivere dal
2510 file descriptor che si è posto in questa modalità. Inoltre è possibile, come
2511 illustrato in sez.~\ref{sec:file_fcntl_ioctl}, selezionare con il comando
2512 \const{F\_SETOWN} di \func{fcntl} quale processo o quale gruppo di processi
2513 dovrà ricevere il segnale. In questo modo diventa possibile effettuare le
2514 operazioni di I/O in risposta alla ricezione del segnale, e non ci sarà più la
2515 necessità di restare bloccati in attesa della disponibilità di accesso ai
2516 file.
2517
2518 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
2519
2520 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
2521 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
2522 modalità di gestione dell'I/O, alternativa all'uso di \itindex{epoll}
2523 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
2524   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
2525   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
2526   ottenendo comunque prestazioni superiori a quelle che si hanno con
2527   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
2528 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
2529 quando vengono usate con un numero molto grande di file descriptor, non hanno
2530 buone prestazioni.
2531
2532 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
2533 presenta notevoli problemi, dato che non è possibile determinare, quando i
2534 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
2535 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
2536 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
2537 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
2538 verrebbero notificati una volta sola.
2539
2540 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
2541 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
2542 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
2543 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
2544 estesa \var{sa\_sigaction} del gestore installata con il flag
2545 \const{SA\_SIGINFO} (si riveda quanto illustrato in
2546 sez.~\ref{sec:sig_sigaction}).
2547
2548 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
2549 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
2550 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
2551 I/O asincrono (il segnale predefinito è \signal{SIGIO}). In questo caso il
2552 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del campo
2553 \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia il
2554   segnale che si è associato all'I/O, ed indica appunto che il segnale è stato
2555   generato a causa di attività di I/O.} di \struct{siginfo\_t}, troverà nel
2556 campo \var{si\_fd} il valore del file descriptor che ha generato il segnale.
2557
2558 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
2559 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
2560 file descriptor; inoltre sarà possibile stabilire delle priorità nella
2561 risposta a seconda del segnale usato, dato che i segnali real-time supportano
2562 anche questa funzionalità. In questo modo si può identificare immediatamente
2563 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
2564 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
2565 la coda.
2566
2567 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
2568 più assicurare il comportamento corretto per un segnale real-time, invierà al
2569 suo posto un solo \signal{SIGIO}, su cui si saranno accumulati tutti i segnali
2570 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
2571 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
2572 impostare la lunghezza della coda dei segnali real-time ad una dimensione
2573 identica al valore massimo del numero di file descriptor
2574 utilizzabili.\footnote{vale a dire impostare il contenuto di
2575   \sysctlfile{kernel/rtsig-max} allo stesso valore del contenuto di
2576   \sysctlfile{fs/file-max}.}
2577
2578 % TODO fare esempio che usa O_ASYNC
2579
2580 \itindend{signal~driven~I/O}
2581
2582
2583
2584 \subsection{I meccanismi di notifica asincrona.}
2585 \label{sec:file_asyncronous_lease}
2586
2587 Una delle domande più frequenti nella programmazione in ambiente unix-like è
2588 quella di come fare a sapere quando un file viene modificato. La
2589 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
2590   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
2591     Question}.} è che nell'architettura classica di Unix questo non è
2592 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
2593 classico non prevedeva alcun meccanismo per cui un processo possa essere
2594 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
2595 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
2596 modo\footnote{in genere questo vien fatto inviandogli un segnale di
2597   \signal{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
2598   programmi, causa la rilettura della configurazione.} se il loro file di
2599 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
2600 modifiche.
2601
2602 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
2603 generico per qualunque file comporterebbe un notevole aumento di complessità
2604 dell'architettura della gestione dei file, il tutto per fornire una
2605 funzionalità che serve soltanto in alcuni casi particolari. Dato che
2606 all'origine di Unix i soli programmi che potevano avere una tale esigenza
2607 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
2608 era di far fare al kernel solo le operazioni strettamente necessarie e
2609 lasciare tutto il resto a processi in user space, non era stata prevista
2610 nessuna funzionalità di notifica.
2611
2612 Visto però il crescente interesse nei confronti di una funzionalità di questo
2613 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
2614 interfaccia grafica, quando si deve presentare all'utente lo stato del
2615 filesystem, sono state successivamente introdotte delle estensioni che
2616 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
2617 soluzione disponibile con l'interfaccia tradizionale, che è quella del
2618 \itindex{polling} \textit{polling}.
2619
2620 Queste nuove funzionalità sono delle estensioni specifiche, non
2621 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
2622 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
2623 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
2624 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
2625 sez.~\ref{sec:file_fcntl_ioctl}), che divengono disponibili soltanto se si è
2626 definita la macro \macro{\_GNU\_SOURCE} prima di includere \headfile{fcntl.h}.
2627
2628 \itindbeg{file~lease} 
2629
2630 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
2631 questo è un meccanismo che consente ad un processo, detto \textit{lease
2632   holder}, di essere notificato quando un altro processo, chiamato a sua volta
2633 \textit{lease breaker}, cerca di eseguire una \func{open} o una
2634 \func{truncate} sul file del quale l'\textit{holder} detiene il
2635 \textit{lease}.
2636 La notifica avviene in maniera analoga a come illustrato in precedenza per
2637 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
2638 il segnale \signal{SIGIO}, ma questo segnale può essere modificato usando il
2639 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
2640   può rispecificare lo stesso \signal{SIGIO}.} Se si è fatto questo\footnote{è
2641   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
2642   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
2643 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
2644 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
2645 questo modo un processo può mantenere anche più di un \textit{file lease}.
2646
2647 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
2648 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
2649 un altro processo esegue l'apertura del file in scrittura o usa
2650 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
2651 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
2652 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
2653
2654 Come accennato in sez.~\ref{sec:file_fcntl_ioctl} il comando di \func{fcntl}
2655 che consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che
2656 viene utilizzato anche per rilasciarlo. In tal caso il file
2657 descriptor \param{fd} passato a \func{fcntl} servirà come riferimento per il
2658 file su cui si vuole operare, mentre per indicare il tipo di operazione
2659 (acquisizione o rilascio) occorrerà specificare come valore
2660 dell'argomento \param{arg} di \func{fcntl} uno dei tre valori di
2661 tab.~\ref{tab:file_lease_fctnl}.
2662
2663 \begin{table}[htb]
2664   \centering
2665   \footnotesize
2666   \begin{tabular}[c]{|l|l|}
2667     \hline
2668     \textbf{Valore}  & \textbf{Significato} \\
2669     \hline
2670     \hline
2671     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
2672     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
2673     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2674     \hline    
2675   \end{tabular}
2676   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2677     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2678     \const{F\_GETLEASE}.} 
2679   \label{tab:file_lease_fctnl}
2680 \end{table}
2681
2682 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2683 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2684 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2685 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2686 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2687 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2688
2689 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2690 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2691 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
2692 può ottenere un \textit{lease} soltanto per un file appartenente ad un
2693 \ids{UID} corrispondente a quello del processo. Soltanto un processo con
2694 privilegi di amministratore (cioè con la \itindex{capabilities} capability
2695 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
2696 \textit{lease} su qualunque file.
2697
2698 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2699 esegue una \func{truncate} o una \func{open} che confligge con
2700 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2701   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2702     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
2703   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
2704   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
2705   holder}, così che questo possa completare le sue operazioni sul file e
2706 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
2707 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
2708 altro processo, mentre con un \textit{write lease} si rilevano anche i
2709 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
2710 notifica avvengono solo in fase di apertura del file e non sulle singole
2711 operazioni di lettura e scrittura.
2712
2713 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2714 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2715 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2716 esso. In genere un \textit{lease holder} che riceve una notifica deve
2717 provvedere a completare le necessarie operazioni (ad esempio scaricare
2718 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2719 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2720 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2721 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2722 operazione di lettura, declassando il \textit{lease} a lettura con
2723 \const{F\_RDLCK}.
2724
2725 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2726 il numero di secondi specificato dal parametro di sistema mantenuto in
2727 \sysctlfile{fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
2728 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
2729   evitare che un processo blocchi indefinitamente l'accesso ad un file
2730   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
2731 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
2732 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
2733 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
2734
2735 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2736 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2737 risolvere il problema di rilevare automaticamente quando un file o una
2738 directory vengono modificati,\footnote{questa funzionalità venne aggiunta
2739   principalmente ad uso di Samba per poter facilitare l'emulazione del
2740   comportamento di Windows sui file, ma ad oggi viene considerata una
2741   interfaccia mal progettata ed il suo uso è fortemente sconsigliato a favore
2742   di \textit{inotify}.} che è quanto necessario ad esempio ai programma di
2743 gestione dei file dei vari desktop grafici.
2744
2745 \itindbeg{dnotify}
2746
2747 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2748 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2749   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2750   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2751   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2752 che consente di richiedere una notifica quando una directory, o uno qualunque
2753 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2754 la notifica avviene di default attraverso il segnale \signal{SIGIO}, ma se ne
2755 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
2756   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
2757 come in precedenza, si potrà ottenere nel gestore del segnale il file
2758 descriptor che è stato modificato tramite il contenuto della struttura
2759 \struct{siginfo\_t}.
2760
2761 \itindend{file~lease}
2762
2763 \begin{table}[htb]
2764   \centering
2765   \footnotesize
2766   \begin{tabular}[c]{|l|p{8cm}|}
2767     \hline
2768     \textbf{Valore}  & \textbf{Significato} \\
2769     \hline
2770     \hline
2771     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2772                          \func{read}, \func{pread}, \func{readv}.\\ 
2773     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2774                          fra \func{write}, \func{pwrite}, \func{writev}, 
2775                          \func{truncate}, \func{ftruncate}.\\ 
2776     \const{DN\_CREATE} & È stato creato un file nella directory, con
2777                          l'esecuzione di una fra \func{open}, \func{creat},
2778                          \func{mknod}, \func{mkdir}, \func{link},
2779                          \func{symlink}, \func{rename} (da un'altra
2780                          directory).\\
2781     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
2782                          l'esecuzione di una fra \func{unlink}, \func{rename}
2783                          (su un'altra directory), \func{rmdir}.\\
2784     \const{DN\_RENAME} & È stato rinominato un file all'interno della
2785                          directory (con \func{rename}).\\
2786     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
2787                          l'esecuzione di una fra \func{chown}, \func{chmod},
2788                          \func{utime}.\\ 
2789     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2790                          eventi.\\ 
2791     \hline    
2792   \end{tabular}
2793   \caption{Le costanti che identificano le varie classi di eventi per i quali
2794     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2795   \label{tab:file_notify}
2796 \end{table}
2797
2798 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2799 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2800 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2801 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2802 eventi si vuole ricevere la notifica, e prende come valore una maschera
2803 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2804 tab.~\ref{tab:file_notify}.
2805
2806 A meno di non impostare in maniera esplicita una notifica permanente usando il
2807 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2808 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2809 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2810 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2811 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2812 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2813 specificate in chiamate successive vengono aggiunte a quelle già impostate
2814 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2815 specificare un valore nullo.
2816
2817 \itindbeg{inotify}
2818
2819 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2820 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2821 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2822 quando la directory che si controlla è all'interno di un dispositivo
2823 rimovibile, mantenere il relativo file descriptor aperto comporta
2824 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2825 complica notevolmente la gestione dell'uso di questi dispositivi.
2826
2827 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2828 tenere sotto controllo il contenuto di una directory; la modifica di un file
2829 viene segnalata, ma poi è necessario verificare di quale file si tratta
2830 (operazione che può essere molto onerosa quando una directory contiene un gran
2831 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
2832 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
2833 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
2834 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
2835 problematica ed il suo uso oggi è fortemente sconsigliato.
2836
2837 \itindend{dnotify}
2838
2839 Per risolvere i problemi appena illustrati è stata introdotta una nuova
2840 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
2841 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
2842   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
2843 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
2844 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
2845 notifica degli eventi associata ad un singolo file descriptor, il che permette
2846 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
2847 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
2848 prototipo è:
2849 \begin{prototype}{sys/inotify.h}
2850   {int inotify\_init(void)}
2851   
2852   Inizializza una istanza di \textit{inotify}.
2853   
2854   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
2855     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2856   \begin{errlist}
2857   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
2858     \textit{inotify} consentite all'utente.
2859   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
2860     nel sistema.
2861   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
2862     l'istanza.
2863   \end{errlist}
2864 }
2865 \end{prototype}
2866
2867 La funzione non prende alcun argomento; inizializza una istanza di
2868 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
2869 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
2870   di sistema è previsto che un utente possa utilizzare un numero limitato di
2871   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
2872   questo valore può essere cambiato con \func{sysctl} o usando il file
2873   \sysctlfile{fs/inotify/max\_user\_instances}.} si tratta di un file
2874 descriptor speciale che non è associato a nessun file su disco, e che viene
2875 utilizzato solo per notificare gli eventi che sono stati posti in
2876 osservazione. Dato che questo file descriptor non è associato a nessun file o
2877 directory reale, l'inconveniente di non poter smontare un filesystem i cui
2878 file sono tenuti sotto osservazione viene completamente
2879 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
2880   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
2881   su cui si trova il file o la directory osservata è stato smontato.}
2882
2883 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
2884 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
2885 con l'interfaccia di \textit{epoll};\footnote{ed a partire dal kernel 2.6.25 è
2886   stato introdotto anche il supporto per il \itindex{signal~driven~I/O}
2887   \texttt{signal-driven I/O} trattato in sez.~\ref{sec:signal_driven_io}.}
2888 siccome gli eventi vengono notificati come dati disponibili in lettura, dette
2889 funzioni ritorneranno tutte le volte che si avrà un evento di notifica. Così,
2890 invece di dover utilizzare i segnali,\footnote{considerati una pessima scelta
2891   dal punto di vista dell'interfaccia utente.} si potrà gestire l'osservazione
2892 degli eventi con una qualunque delle modalità di \textit{I/O multiplexing}
2893 illustrate in sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare
2894 l'osservazione, sarà sufficiente chiudere il file descriptor e tutte le
2895 risorse allocate saranno automaticamente rilasciate.
2896
2897 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
2898 osservazione, oltre che una directory, anche singoli file.  Una volta creata
2899 la coda di notifica si devono definire gli eventi da tenere sotto
2900 osservazione; questo viene fatto attraverso una \textsl{lista di osservazione}
2901 (o \textit{watch list}) che è associata alla coda. Per gestire la lista di
2902 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
2903 \funcd{inotify\_add\_watch}, il cui prototipo è:
2904 \begin{prototype}{sys/inotify.h}
2905   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
2906
2907   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
2908
2909   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
2910     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2911   \begin{errlist}
2912   \item[\errcode{EACCES}] non si ha accesso in lettura al file indicato.
2913   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
2914     non è un file descriptor di \textit{inotify}.
2915   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
2916     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
2917   \end{errlist}
2918   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
2919 \end{prototype}
2920
2921 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
2922 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
2923 deve essere indicata specificando il file descriptor ad essa associato
2924 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
2925   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
2926 porre sotto osservazione vengono invece indicati per nome, da passare
2927 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
2928 indica che tipo di eventi devono essere tenuti sotto osservazione e le
2929 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
2930 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
2931   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
2932   valore può essere cambiato con \func{sysctl} o usando il file
2933   \sysctlfile{fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
2934 un solo file descriptor.
2935
2936 Il tipo di evento che si vuole osservare deve essere specificato
2937 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
2938 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
2939 singoli bit della maschera ed il relativo significato. In essa si sono marcati
2940 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
2941 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
2942 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
2943 flag della prima parte.
2944
2945 \begin{table}[htb]
2946   \centering
2947   \footnotesize
2948   \begin{tabular}[c]{|l|c|p{10cm}|}
2949     \hline
2950     \textbf{Valore}  & & \textbf{Significato} \\
2951     \hline
2952     \hline
2953     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
2954                                           lettura.\\  
2955     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
2956                                           dell'inode (o sugli attributi
2957                                           estesi, vedi
2958                                           sez.~\ref{sec:file_xattr}).\\ 
2959     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
2960                                           scrittura.\\  
2961     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
2962                                           sola lettura.\\
2963     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
2964                                           directory in una directory sotto
2965                                           osservazione.\\  
2966     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
2967                                           directory in una directory sotto
2968                                           osservazione.\\ 
2969     \const{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
2970                                           directory) sotto osservazione.\\ 
2971     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
2972     \const{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
2973                                           directory) sotto osservazione.\\ 
2974     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
2975                                           directory sotto osservazione.\\ 
2976     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
2977                                           directory sotto osservazione.\\ 
2978     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
2979     \hline    
2980     \const{IN\_CLOSE}         &         & Combinazione di
2981                                           \const{IN\_CLOSE\_WRITE} e
2982                                           \const{IN\_CLOSE\_NOWRITE}.\\  
2983     \const{IN\_MOVE}          &         & Combinazione di
2984                                           \const{IN\_MOVED\_FROM} e
2985                                           \const{IN\_MOVED\_TO}.\\
2986     \const{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
2987                                           possibili.\\
2988     \hline    
2989   \end{tabular}
2990   \caption{Le costanti che identificano i bit della maschera binaria
2991     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
2992     tipo di evento da tenere sotto osservazione.} 
2993   \label{tab:inotify_event_watch}
2994 \end{table}
2995
2996 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
2997 evento da osservare e che vengono utilizzati anche in uscita per indicare il
2998 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
2999 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
3000   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
3001   usa la versione 2.4 è necessario definirli a mano.}  riportati in
3002 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
3003 osservazione (da passare sempre nell'argomento \param{mask}) e che al
3004 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
3005
3006 \begin{table}[htb]
3007   \centering
3008   \footnotesize
3009   \begin{tabular}[c]{|l|p{10cm}|}
3010     \hline
3011     \textbf{Valore}  & \textbf{Significato} \\
3012     \hline
3013     \hline
3014     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
3015                               link simbolico.\\
3016     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
3017                               nell'argomento \param{mask}, invece di
3018                               sovrascriverli.\\
3019     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
3020                               sola volta, rimuovendolo poi dalla \textit{watch
3021                                 list}.\\ 
3022     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
3023                               soltanto gli eventi ad essa relativi e non
3024                               quelli per i file che contiene.\\ 
3025     \hline    
3026   \end{tabular}
3027   \caption{Le costanti che identificano i bit della maschera binaria
3028     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
3029     modalità di osservazione.} 
3030   \label{tab:inotify_add_watch_flag}
3031 \end{table}
3032
3033 Se non esiste nessun \textit{watch} per il file o la directory specificata
3034 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
3035 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
3036 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
3037 specificati saranno aggiunti a quelli già presenti.
3038
3039 Come accennato quando si tiene sotto osservazione una directory vengono
3040 restituite le informazioni sia riguardo alla directory stessa che ai file che
3041 essa contiene; questo comportamento può essere disabilitato utilizzando il
3042 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
3043 relativi alla directory stessa. Si tenga presente inoltre che quando si
3044 osserva una directory vengono riportati solo gli eventi sui file che essa
3045 contiene direttamente, non quelli relativi a file contenuti in eventuali
3046 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
3047 ulteriori \textit{watch} per ciascuna sottodirectory.
3048
3049 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
3050 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
3051   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
3052 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
3053 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
3054 sarà più notificato.
3055
3056 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
3057 detto \textit{watch descriptor}, che identifica univocamente un
3058 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
3059 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
3060 la eventuale rimozione dello stesso. 
3061
3062 La seconda funzione per la gestione delle code di notifica, che permette di
3063 rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch}, ed il suo
3064 prototipo è:
3065 \begin{prototype}{sys/inotify.h}
3066   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
3067
3068   Rimuove un \textsl{osservatore} da una coda di notifica.
3069   
3070   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
3071     errore, nel qual caso \var{errno} assumerà uno dei valori:
3072   \begin{errlist}
3073   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
3074     valido.
3075   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
3076     non è associato ad una coda di notifica.
3077   \end{errlist}
3078 }
3079 \end{prototype}
3080
3081 La funzione rimuove dalla coda di notifica identificata dall'argomento
3082 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
3083 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
3084   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
3085   di \errval{EINVAL}.} in caso di successo della rimozione, contemporaneamente
3086 alla cancellazione dell'osservatore, sulla coda di notifica verrà generato un
3087 evento di tipo \const{IN\_IGNORED} (vedi
3088 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
3089 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
3090 rimossi automaticamente e non è necessario utilizzare
3091 \func{inotify\_rm\_watch}.
3092
3093 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
3094 notificati come dati presenti in lettura sul file descriptor associato alla
3095 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
3096 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
3097 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
3098 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
3099 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
3100 modalità non bloccante) fino all'arrivo di almeno un evento.
3101
3102 \begin{figure}[!htb]
3103   \footnotesize \centering
3104   \begin{minipage}[c]{\textwidth}
3105     \includestruct{listati/inotify_event.h}
3106   \end{minipage} 
3107   \normalsize 
3108   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
3109     \textit{inotify} per riportare gli eventi.}
3110   \label{fig:inotify_event}
3111 \end{figure}
3112
3113 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
3114 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
3115 socket (si veda sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
3116 lettura sul file descriptor, utilizzando su di esso l'operazione
3117 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
3118   (vedi sez.~\ref{sec:file_fcntl_ioctl}), che è disponibile solo per i socket
3119   e per i file descriptor creati con \func{inotify\_init}.} Si può così
3120 utilizzare questa operazione, oltre che per predisporre una operazione di
3121 lettura con un buffer di dimensioni adeguate, anche per ottenere rapidamente
3122 il numero di file che sono cambiati.
3123
3124 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
3125 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
3126 Per identificare a quale file o directory l'evento corrisponde viene
3127 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
3128 osservatore è stato registrato. Il campo \var{mask} contiene invece una
3129 maschera di bit che identifica il tipo di evento verificatosi; in essa
3130 compariranno sia i bit elencati nella prima parte di
3131 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori
3132 aggiuntivi\footnote{questi compaiono solo nel campo \var{mask} di
3133   \struct{inotify\_event}, e  non utilizzabili in fase di registrazione
3134   dell'osservatore.} di tab.~\ref{tab:inotify_read_event_flag}.
3135
3136 \begin{table}[htb]
3137   \centering
3138   \footnotesize
3139   \begin{tabular}[c]{|l|p{10cm}|}
3140     \hline
3141     \textbf{Valore}  & \textbf{Significato} \\
3142     \hline
3143     \hline
3144     \const{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
3145                              esplicita con l'uso di \func{inotify\_rm\_watch}, 
3146                              che in maniera implicita per la rimozione 
3147                              dell'oggetto osservato o per lo smontaggio del
3148                              filesystem su cui questo si trova.\\
3149     \const{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
3150                              (consente così di distinguere, quando si pone
3151                              sotto osservazione una directory, fra gli eventi
3152                              relativi ad essa e quelli relativi ai file che
3153                              essa contiene).\\
3154     \const{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
3155                              eventi (\textit{overflow} della coda); in questo
3156                              caso il valore di \var{wd} è $-1$.\footnotemark\\
3157     \const{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
3158                              osservazione è stato smontato.\\
3159     \hline    
3160   \end{tabular}
3161   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
3162     binaria del campo \var{mask} di \struct{inotify\_event}.} 
3163   \label{tab:inotify_read_event_flag}
3164 \end{table}
3165
3166 \footnotetext{la coda di notifica ha una dimensione massima specificata dal
3167   parametro di sistema \sysctlfile{fs/inotify/max\_queued\_events} che
3168   indica il numero massimo di eventi che possono essere mantenuti sulla
3169   stessa; quando detto valore viene ecceduto gli ulteriori eventi vengono
3170   scartati, ma viene comunque generato un evento di tipo
3171   \const{IN\_Q\_OVERFLOW}.}
3172
3173 Il campo \var{cookie} contiene invece un intero univoco che permette di
3174 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
3175 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
3176 così all'applicazione di collegare la corrispondente coppia di eventi
3177 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
3178
3179 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
3180 l'evento è relativo ad un file presente in una directory posta sotto
3181 osservazione, in tal caso essi contengono rispettivamente il nome del file
3182 (come \itindsub{pathname}{relativo} \textit{pathname} relativo alla directory
3183 osservata) e la relativa dimensione in byte. Il campo \var{name} viene sempre
3184 restituito come stringa terminata da NUL, con uno o più zeri di terminazione,
3185 a seconda di eventuali necessità di allineamento del risultato, ed il valore
3186 di \var{len} corrisponde al totale della dimensione di \var{name}, zeri
3187 aggiuntivi compresi. La stringa con il nome del file viene restituita nella
3188 lettura subito dopo la struttura \struct{inotify\_event}; questo significa che
3189 le dimensioni di ciascun evento di \textit{inotify} saranno pari a
3190 \code{sizeof(\struct{inotify\_event}) + len}.
3191
3192 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
3193 semplice programma che permette di mettere sotto osservazione uno o più file e
3194 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
3195 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
3196 del programma, che non contiene la sezione di gestione delle opzioni e le
3197 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
3198
3199 \begin{figure}[!htbp]
3200   \footnotesize \centering
3201   \begin{minipage}[c]{\codesamplewidth}
3202     \includecodesample{listati/inotify_monitor.c}
3203   \end{minipage}
3204   \normalsize
3205   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
3206   \label{fig:inotify_monitor_example}
3207 \end{figure}
3208
3209 Una volta completata la scansione delle opzioni il corpo principale del
3210 programma inizia controllando (\texttt{\small 11--15}) che sia rimasto almeno
3211 un argomento che indichi quale file o directory mettere sotto osservazione (e
3212 qualora questo non avvenga esce stampando la pagina di aiuto); dopo di che
3213 passa (\texttt{\small 16--20}) all'inizializzazione di \textit{inotify}
3214 ottenendo con \func{inotify\_init} il relativo file descriptor (oppure usce in
3215 caso di errore).
3216
3217 Il passo successivo è aggiungere (\texttt{\small 21--30}) alla coda di
3218 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
3219 all'invocazione del comando; questo viene fatto eseguendo un ciclo
3220 (\texttt{\small 22--29}) fintanto che la variabile \var{i}, inizializzata a
3221 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
3222 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
3223 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
3224 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
3225 nella scansione delle opzioni), in caso di errore si esce dal programma
3226 altrimenti si incrementa l'indice (\texttt{\small 29}).
3227
3228 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
3229 (\texttt{\small 32--56}) del programma, nel quale si resta in attesa degli
3230 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
3231 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
3232 si saranno verificati eventi. 
3233
3234 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
3235 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
3236 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
3237 approssimativamente 512 eventi.\footnote{si ricordi che la quantità di dati
3238   restituita da \textit{inotify} è variabile a causa della diversa lunghezza
3239   del nome del file restituito insieme a \struct{inotify\_event}.} In caso di
3240 errore di lettura (\texttt{\small 35--40}) il programma esce con un messaggio
3241 di errore (\texttt{\small 37--39}), a meno che non si tratti di una
3242 interruzione della \textit{system call}, nel qual caso (\texttt{\small 36}) si
3243 ripete la lettura.
3244
3245 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
3246   43--52}) per leggere tutti gli eventi restituiti, al solito si inizializza
3247 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
3248 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
3249 in lettura. Per ciascun evento all'interno del ciclo si assegna\footnote{si
3250   noti come si sia eseguito un opportuno \textit{casting} del puntatore.} alla
3251 variabile \var{event} l'indirizzo nel buffer della corrispondente struttura
3252 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
3253 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
3254 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
3255 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
3256 in ordine progressivo crescente a partire da 1.
3257
3258 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
3259 si stampa (\texttt{\small 47--49}); si noti come in questo caso si sia
3260 utilizzato il valore del campo \var{event->len} e non al fatto che
3261 \var{event->name} riporti o meno un puntatore nullo.\footnote{l'interfaccia
3262   infatti, qualora il nome non sia presente, non avvalora il campo
3263   \var{event->name}, che si troverà a contenere quello che era precedentemente
3264   presente nella rispettiva locazione di memoria, nel caso più comune il
3265   puntatore al nome di un file osservato in precedenza.} Si utilizza poi
3266 (\texttt{\small 50}) la funzione \code{printevent}, che interpreta il valore
3267 del campo \var{event->mask} per stampare il tipo di eventi
3268 accaduti.\footnote{per il relativo codice, che non riportiamo in quanto non
3269   essenziale alla comprensione dell'esempio, si possono utilizzare direttamente
3270   i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si provvede ad
3271 aggiornare l'indice \var{i} per farlo puntare all'evento successivo.
3272
3273 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
3274 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
3275 tipo di:
3276 \begin{verbatim}
3277 piccardi@gethen:~/gapil/sources$ ./inotify_monitor -a /home/piccardi/gapil/
3278 Watch descriptor 1
3279 Observed event on /home/piccardi/gapil/
3280 IN_OPEN, 
3281 Watch descriptor 1
3282 Observed event on /home/piccardi/gapil/
3283 IN_CLOSE_NOWRITE, 
3284 \end{verbatim}
3285
3286 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
3287 eventi appena illustrato non viene trattato il caso particolare in cui la
3288 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
3289 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
3290 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
3291 specificando un buffer di dimensione insufficiente a contenere anche un solo
3292 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
3293 tale evenienza non si verificherà mai.
3294
3295 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
3296 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
3297 codice illustrato in precedenza non si è presa nessuna precauzione per
3298 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
3299 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
3300 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
3301 di restituire soltanto il numero di eventi che possono rientrare completamente
3302 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
3303   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
3304   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
3305   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
3306   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
3307 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
3308 chiamata di \func{read}.
3309
3310 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
3311 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
3312 garantito che se si esegue uno spostamento di un file gli eventi vengano
3313 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
3314 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
3315 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
3316 raggruppati in un solo evento.
3317
3318 \itindend{inotify}
3319
3320 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
3321 % http://lwn.net/Articles/343346/ (incluso nel 2.6.36)
3322
3323
3324 \subsection{L'interfaccia POSIX per l'I/O asincrono}
3325 \label{sec:file_asyncronous_io}
3326
3327 % vedere anche http://davmac.org/davpage/linux/async-io.html  e
3328 % http://www.ibm.com/developerworks/linux/library/l-async/ 
3329
3330
3331 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
3332 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
3333   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
3334 di I/O non attendono il completamento delle operazioni prima di ritornare,
3335 così che il processo non viene bloccato.  In questo modo diventa ad esempio
3336 possibile effettuare una richiesta preventiva di dati, in modo da poter
3337 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
3338
3339 Benché la modalità di apertura asincrona di un file possa risultare utile in
3340 varie occasioni (in particolar modo con i socket e gli altri file per i quali
3341 le funzioni di I/O sono \index{system~call~lente} \textit{system call} lente),
3342 essa è comunque limitata alla notifica della disponibilità del file descriptor
3343 per le operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.
3344 Lo standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono
3345 vero e proprio, che prevede un insieme di funzioni dedicate per la lettura e
3346 la scrittura dei file, completamente separate rispetto a quelle usate
3347 normalmente.
3348
3349 In generale questa interfaccia è completamente astratta e può essere
3350 implementata sia direttamente nel kernel, che in user space attraverso l'uso
3351 di \itindex{thread} \textit{thread}. Per le versioni del kernel meno recenti
3352 esiste una implementazione di questa interfaccia fornita delle \acr{glibc},
3353 che è realizzata completamente in user space, ed è accessibile linkando i
3354 programmi con la libreria \file{librt}. Nelle versioni più recenti (a partire
3355 dalla 2.5.32) è stato introdotto direttamente nel kernel un nuovo layer per
3356 l'I/O asincrono.
3357
3358 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
3359 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
3360 \textit{asyncronous I/O control block}), che viene passata come argomento a
3361 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
3362 \headfile{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
3363 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
3364 disponibilità dell'interfaccia per l'I/O asincrono.
3365
3366 \begin{figure}[!htb]
3367   \footnotesize \centering
3368   \begin{minipage}[c]{\textwidth}
3369     \includestruct{listati/aiocb.h}
3370   \end{minipage} 
3371   \normalsize 
3372   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
3373     asincrono.}
3374   \label{fig:file_aiocb}
3375 \end{figure}
3376
3377 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
3378 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
3379 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
3380 contemporanee effettuabili su un singolo file.  Ogni operazione deve
3381 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
3382 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
3383 che più operazioni possono essere eseguita in maniera asincrona, il concetto
3384 di posizione corrente sul file viene a mancare; pertanto si deve sempre
3385 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
3386 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
3387 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
3388 del blocco di dati da trasferire.
3389
3390 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
3391 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
3392   piattaforma supporti questa caratteristica, questo viene indicato definendo
3393   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
3394   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
3395 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
3396 cui viene sottratto il valore di questo campo.  Il campo
3397 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
3398 come vedremo, permette di eseguire con una sola chiamata una serie di
3399 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
3400 si specifica quale è la natura di ciascuna di esse.
3401
3402 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
3403 (illustrata in in fig.~\ref{fig:struct_sigevent}) che serve a specificare il
3404 modo in cui si vuole che venga effettuata la notifica del completamento delle
3405 operazioni richieste; per la trattazione delle modalità di utilizzo della
3406 stessa si veda quanto già visto in proposito in sez.~\ref{sec:sig_timer_adv}.
3407
3408 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
3409 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
3410 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
3411 appena descritta; i rispettivi prototipi sono:
3412 \begin{functions}
3413   \headdecl{aio.h}
3414
3415   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
3416   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
3417
3418   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
3419   Richiede una scrittura asincrona secondo quanto specificato con
3420   \param{aiocbp}.
3421   
3422   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
3423     errore, nel qual caso \var{errno} assumerà uno dei valori:
3424   \begin{errlist}
3425   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
3426   \item[\errcode{ENOSYS}] la funzione non è implementata.
3427   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
3428     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
3429   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
3430   \end{errlist}
3431 }
3432 \end{functions}
3433
3434 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
3435 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
3436 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
3437 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
3438 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
3439 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
3440 (vedi sez.~\ref{sec:file_open_close}), nel qual caso le scritture vengono
3441 effettuate comunque alla fine de file, nell'ordine delle chiamate a
3442 \func{aio\_write}.
3443
3444 Si tenga inoltre presente che deallocare la memoria indirizzata da
3445 \param{aiocbp} o modificarne i valori prima della conclusione di una
3446 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
3447 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
3448 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
3449 \index{variabili!automatiche} variabili automatiche e che non si deve
3450 riutilizzare la stessa struttura per un'altra operazione fintanto che la
3451 precedente non sia stata ultimata. In generale per ogni operazione si deve
3452 utilizzare una diversa struttura \struct{aiocb}.
3453
3454 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
3455 \func{aio\_write} non implica che le operazioni siano state effettivamente
3456 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
3457 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
3458 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
3459 errore; il suo prototipo è:
3460 \begin{prototype}{aio.h}
3461   {int aio\_error(const struct aiocb *aiocbp)}  
3462
3463   Determina lo stato di errore delle operazioni di I/O associate a
3464   \param{aiocbp}.
3465   
3466   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
3467     successo, altrimenti restituisce il codice di errore relativo al loro
3468     fallimento.}
3469 \end{prototype}
3470
3471 Se l'operazione non si è ancora completata viene restituito l'errore di
3472 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
3473 conclusa con successo, altrimenti restituisce il codice dell'errore
3474 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
3475 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
3476 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
3477 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
3478 del caso, i codici di errore delle \textit{system call} \func{read},
3479 \func{write} e \func{fsync}.
3480
3481 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
3482 che una chiamata ad \func{aio\_error} non ha restituito
3483 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
3484 permette di verificare il completamento delle operazioni di I/O asincrono; il
3485 suo prototipo è:
3486 \begin{prototype}{aio.h}
3487 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
3488
3489 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
3490 \param{aiocbp}.
3491   
3492 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
3493   eseguita.}
3494 \end{prototype}
3495
3496 La funzione deve essere chiamata una sola volte per ciascuna operazione
3497 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
3498 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
3499 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
3500 precedente il completamento delle operazioni darebbe risultati indeterminati.
3501
3502 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
3503 così come ricavato dalla sottostante \textit{system call} (il numero di byte
3504 letti, scritti o il valore di ritorno di \func{fsync}).  É importante chiamare
3505 sempre questa funzione, altrimenti le risorse disponibili per le operazioni di
3506 I/O asincrono non verrebbero liberate, rischiando di arrivare ad un loro
3507 esaurimento.
3508
3509 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
3510 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
3511 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
3512 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
3513 è:
3514 \begin{prototype}{aio.h}
3515 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
3516
3517 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
3518   
3519 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3520   errore, che può essere, con le stesse modalità di \func{aio\_read},
3521   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
3522 \end{prototype}
3523
3524 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
3525 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
3526 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
3527 di lettura e scrittura. L'argomento \param{op} permette di indicare la
3528 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
3529 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
3530 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
3531 sez.~\ref{sec:file_sync}).
3532
3533 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
3534 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
3535 relativi ad eventuali operazioni richieste successivamente. Se si è
3536 specificato un meccanismo di notifica questo sarà innescato una volta che le
3537 operazioni di sincronizzazione dei dati saranno completate.
3538
3539 In alcuni casi può essere necessario interrompere le operazioni (in genere
3540 quando viene richiesta un'uscita immediata dal programma), per questo lo
3541 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
3542 permette di cancellare una operazione richiesta in precedenza; il suo
3543 prototipo è:
3544 \begin{prototype}{aio.h}
3545 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
3546
3547 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
3548 da \param{aiocbp}.
3549   
3550 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
3551   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
3552   un valore non valido di \param{fildes}, imposta \var{errno} al valore
3553   \errval{EBADF}.}
3554 \end{prototype}
3555
3556 La funzione permette di cancellare una operazione specifica sul file
3557 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
3558 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
3559 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
3560 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
3561 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
3562 altro file descriptor il risultato è indeterminato.  In caso di successo, i
3563 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
3564 \headfile{aio.h}) sono tre:
3565 \begin{basedescript}{\desclabelwidth{3.0cm}}
3566 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
3567   cancellazione sono state già completate,
3568   
3569 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
3570   state cancellate,  
3571   
3572 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
3573   corso e non sono state cancellate.
3574 \end{basedescript}
3575
3576 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
3577 \func{aio\_error} per determinare quali sono le operazioni effettivamente
3578 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
3579 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
3580 del loro avvenuto completamento.
3581
3582 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
3583 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
3584 sospendere l'esecuzione del processo chiamante fino al completamento di una
3585 specifica operazione; il suo prototipo è:
3586 \begin{prototype}{aio.h}
3587 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
3588     timespec *timeout)}
3589   
3590   Attende, per un massimo di \param{timeout}, il completamento di una delle
3591   operazioni specificate da \param{list}.
3592   
3593   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
3594     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
3595     dei valori:
3596     \begin{errlist}
3597     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3598       \param{timeout}.
3599     \item[\errcode{ENOSYS}] la funzione non è implementata.
3600     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3601     \end{errlist}
3602   }
3603 \end{prototype}
3604
3605 La funzione permette di bloccare il processo fintanto che almeno una delle
3606 \param{nent} operazioni specificate nella lista \param{list} è completata, per
3607 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
3608 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
3609   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
3610 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
3611 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
3612 siano specificati valori non validi l'effetto è indefinito.  Un valore
3613 \val{NULL} per \param{timout} comporta l'assenza di timeout.
3614
3615 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
3616 che permette di effettuare la richiesta di una intera lista di operazioni di
3617 lettura o scrittura; il suo prototipo è:
3618 \begin{prototype}{aio.h}
3619   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
3620     sigevent *sig)}
3621   
3622   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
3623   secondo la modalità \param{mode}.
3624   
3625   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3626     errore, nel qual caso \var{errno} assumerà uno dei valori:
3627     \begin{errlist}
3628     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3629       \param{timeout}.
3630     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
3631       o un numero di operazioni \param{nent} maggiore di
3632       \const{AIO\_LISTIO\_MAX}.
3633     \item[\errcode{ENOSYS}] la funzione non è implementata.
3634     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3635     \end{errlist}
3636   }
3637 \end{prototype}
3638
3639 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
3640 lista \param{list} che deve contenere gli indirizzi di altrettanti
3641 \textit{control block} opportunamente inizializzati; in particolare dovrà
3642 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
3643 che può prendere i valori:
3644 \begin{basedescript}{\desclabelwidth{2.0cm}}
3645 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
3646 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
3647 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
3648 \end{basedescript}
3649 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
3650 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3651 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3652 quelle non completate.
3653
3654 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3655 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
3656 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
3657 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3658 il chiamante può richiedere la notifica del completamento di tutte le
3659 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3660 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3661
3662
3663 \section{Altre modalità di I/O avanzato}
3664 \label{sec:file_advanced_io}
3665
3666 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3667   asincrono}, esistono altre funzioni che implementano delle modalità di
3668 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3669 scrittura che abbiamo esaminato in sez.~\ref{sec:file_unix_interface}. In
3670 questa sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
3671   mappato in memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O
3672 avanzato.
3673
3674
3675 \subsection{File mappati in memoria}
3676 \label{sec:file_memory_map}
3677
3678 \itindbeg{memory~mapping}
3679 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3680 rispetto a quella classica vista in sez.~\ref{sec:file_unix_interface}, è il
3681 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
3682 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
3683 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
3684 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3685
3686 \begin{figure}[htb]
3687   \centering
3688   \includegraphics[width=12cm]{img/mmap_layout}
3689   \caption{Disposizione della memoria di un processo quando si esegue la
3690   mappatura in memoria di un file.}
3691   \label{fig:file_mmap_layout}
3692 \end{figure}
3693
3694 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3695 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3696 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3697 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3698 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
3699 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
3700 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
3701 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
3702 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
3703 \textsl{memoria mappata su file}.
3704
3705 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3706 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3707 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3708 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3709 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3710 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3711 un dato istante.
3712
3713 Infatti, dato che l'accesso è fatto direttamente attraverso la
3714 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
3715 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
3716 solo per le parti effettivamente usate, il tutto in maniera completamente
3717 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
3718 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
3719 salvate sullo swap.
3720
3721 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3722 vengono salvate automaticamente, così come le pagine dei programmi vengono
3723 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
3724 solo limite è quello dello spazio di indirizzi disponibile, e non della
3725 memoria su cui possono esserne lette delle porzioni.
3726
3727 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
3728 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
3729 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
3730 è:
3731 \begin{functions}
3732   
3733   \headdecl{unistd.h}
3734   \headdecl{sys/mman.h} 
3735
3736   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3737     fd, off\_t offset)}
3738   
3739   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
3740   
3741   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
3742     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
3743     qual caso \var{errno} assumerà uno dei valori:
3744     \begin{errlist}
3745     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3746       \const{MAP\_ANONYMOUS}.
3747     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3748       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3749       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3750       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3751       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3752     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3753       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3754       dimensione delle pagine).
3755     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
3756       \param{fd} è aperto in scrittura.
3757     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3758       rispetto a quanto consentito dai limiti di sistema (vedi
3759       sez.~\ref{sec:sys_resource_limit}).
3760     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3761       numero di mappature possibili.
3762     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3763       mapping.
3764     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
3765       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
3766       l'opzione \texttt{noexec}.
3767     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3768       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3769     \end{errlist}
3770   }
3771 \end{functions}
3772
3773 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
3774 partire da \param{offset} per \param{length} byte, preferibilmente
3775 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
3776 multiplo della dimensione di una pagina di memoria. 
3777
3778 \begin{table}[htb]
3779   \centering
3780   \footnotesize
3781   \begin{tabular}[c]{|l|l|}
3782     \hline
3783     \textbf{Valore} & \textbf{Significato} \\
3784     \hline
3785     \hline
3786     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
3787     \const{PROT\_READ}  & Le pagine possono essere lette.\\
3788     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
3789     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
3790     \hline    
3791   \end{tabular}
3792   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
3793     protezione applicate alle pagine del file mappate in memoria.}
3794   \label{tab:file_mmap_prot}
3795 \end{table}
3796
3797 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
3798   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
3799   in pagine: ogni processo vede la sua memoria attraverso uno o più segmenti
3800   lineari di memoria virtuale.  Per ciascuno di questi segmenti il kernel
3801   mantiene nella \itindex{page~table} \textit{page table} la mappatura sulle
3802   pagine di memoria reale, ed le modalità di accesso (lettura, esecuzione,
3803   scrittura); una loro violazione causa quella una \itindex{segment~violation}
3804   \textit{segment violation}, e la relativa emissione del segnale
3805   \signal{SIGSEGV}.} da applicare al segmento di memoria e deve essere
3806 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
3807 riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato deve essere
3808 compatibile con la modalità di accesso con cui si è aperto il file.
3809
3810 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
3811 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
3812 modalità con cui le modifiche alla memoria mappata vengono condivise o
3813 mantenute private al processo che le ha effettuate. Deve essere specificato
3814 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
3815 tab.~\ref{tab:file_mmap_flag}.
3816
3817 \begin{table}[htb]
3818   \centering
3819   \footnotesize
3820   \begin{tabular}[c]{|l|p{11cm}|}
3821     \hline
3822     \textbf{Valore} & \textbf{Significato} \\
3823     \hline
3824     \hline
3825     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
3826                              da \param{start}, se questo non può essere usato
3827                              \func{mmap} fallisce. Se si imposta questo flag il
3828                              valore di \param{start} deve essere allineato
3829                              alle dimensioni di una pagina.\\
3830     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
3831                              riportati sul file e saranno immediatamente
3832                              visibili agli altri processi che mappano lo stesso
3833                              file.\footnotemark Il file su disco però non sarà
3834                              aggiornato fino alla chiamata di \func{msync} o
3835                              \func{munmap}), e solo allora le modifiche saranno
3836                              visibili per l'I/O convenzionale. Incompatibile
3837                              con \const{MAP\_PRIVATE}.\\ 
3838     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
3839                              riportati sul file. Ne viene fatta una copia
3840                              privata cui solo il processo chiamante ha
3841                              accesso.  Le modifiche sono mantenute attraverso
3842                              il meccanismo del \textit{copy on
3843                                write} \itindex{copy~on~write} e 
3844                              salvate su swap in caso di necessità. Non è
3845                              specificato se i cambiamenti sul file originale
3846                              vengano riportati sulla regione
3847                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
3848     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
3849                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
3850                              (veniva usato per segnalare che tentativi di
3851                              scrittura sul file dovevano fallire con
3852                              \errcode{ETXTBSY}).\\ 
3853     \const{MAP\_EXECUTABLE}& Ignorato.\\
3854     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
3855                              delle pagine di swap ad uso del meccanismo del
3856                              \textit{copy on write} \itindex{copy~on~write}
3857                              per mantenere le
3858                              modifiche fatte alla regione mappata, in
3859                              questo caso dopo una scrittura, se non c'è più
3860                              memoria disponibile, si ha l'emissione di
3861                              un \signal{SIGSEGV}.\\
3862     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
3863                              mappate.\\
3864     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} \textit{stack}. 
3865                              Indica che la mappatura deve essere effettuata 
3866                              con gli indirizzi crescenti verso il basso.\\
3867     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
3868                              argomenti \param{fd} e \param{offset} sono
3869                              ignorati.\footnotemark\\
3870     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
3871     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
3872     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2Gb dello spazio
3873                              degli indirizzi, viene supportato solo sulle
3874                              piattaforme \texttt{x86-64} per compatibilità con
3875                              le applicazioni a 32 bit. Viene ignorato se si è
3876                              richiesto \const{MAP\_FIXED}.\\
3877     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
3878                              \textit{prefaulting} delle pagine di memoria
3879                              necessarie alla mappatura.\\
3880     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
3881                              non causa I/O.\footnotemark\\
3882 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
3883 %                              mappata con \func{mremap}, proposto ma pare non
3884 %                              implementato.\\
3885 %     \const{MAP\_HUGETLB}& da trattare.\\
3886 % TODO trattare MAP_HUGETLB introdotto con il kernel 2.6.32, e modifiche
3887 % introdotte con il 3.8 per le dimensioni variabili delle huge pages
3888
3889     \hline
3890   \end{tabular}
3891   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
3892   \label{tab:file_mmap_flag}
3893 \end{table}
3894
3895 \footnotetext[68]{dato che tutti faranno riferimento alle stesse pagine di
3896   memoria.}  
3897
3898 \footnotetext[69]{l'uso di questo flag con \const{MAP\_SHARED} è stato
3899   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
3900   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
3901   sez.~\ref{sec:ipc_mmap_anonymous}.}
3902
3903 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
3904   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
3905   parleremo più avanti.}
3906
3907 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
3908 piuttosto complessi, essi si possono comprendere solo tenendo presente che
3909 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
3910 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
3911 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
3912 avrà l'emissione di un segnale di violazione di accesso (\signal{SIGSEGV}),
3913 dato che i permessi sul segmento di memoria relativo non consentono questo
3914 tipo di accesso.
3915
3916 È invece assai diversa la questione relativa agli accessi al di fuori della
3917 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
3918 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
3919 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
3920 \index{paginazione} paginazione, la mappatura in memoria non può che essere
3921 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
3922 pagina, ed in generale queste potranno non corrispondere alle dimensioni
3923 effettive del file o della sezione che si vuole mappare.
3924
3925 \begin{figure}[!htb] 
3926   \centering
3927   \includegraphics[height=6cm]{img/mmap_boundary}
3928   \caption{Schema della mappatura in memoria di una sezione di file di
3929     dimensioni non corrispondenti al bordo di una pagina.}
3930   \label{fig:file_mmap_boundary}
3931 \end{figure}
3932
3933 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
3934 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
3935 verrà il file sarà mappato su un segmento di memoria che si estende fino al
3936 bordo della pagina successiva.
3937
3938 In questo caso è possibile accedere a quella zona di memoria che eccede le
3939 dimensioni specificate da \param{length}, senza ottenere un \signal{SIGSEGV}
3940 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
3941 mappata sul file. Il comportamento del sistema è quello di restituire un
3942 valore nullo per quanto viene letto, e di non riportare su file quanto viene
3943 scritto.
3944
3945 Un caso più complesso è quello che si viene a creare quando le dimensioni del
3946 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
3947 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
3948 quella della mappatura in memoria.
3949
3950 In questa situazione, per la sezione di pagina parzialmente coperta dal
3951 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
3952 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
3953 sarà più possibile, ma il segnale emesso non sarà \signal{SIGSEGV}, ma
3954 \signal{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
3955
3956 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
3957 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
3958 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
3959 comporta che ad esempio non è possibile mappare in memoria file descriptor
3960 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
3961 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
3962 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
3963 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
3964 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
3965 che sono utilizzabili solo con questa interfaccia.
3966
3967 \begin{figure}[htb]
3968   \centering
3969   \includegraphics[height=6cm]{img/mmap_exceed}
3970   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
3971     alla lunghezza richiesta.}
3972   \label{fig:file_mmap_exceed}
3973 \end{figure}
3974
3975 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
3976 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
3977 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
3978 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
3979 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
3980 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
3981 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
3982 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
3983 nuovo programma.
3984
3985 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
3986 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
3987 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
3988 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
3989 una pagina mappata su un file aggiorna questo tempo.  I valori di
3990 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
3991 consentita la scrittura sul file (cioè per un file mappato con
3992 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
3993 o in corrispondenza di una eventuale \func{msync}.
3994
3995 Dato per i file mappati in memoria le operazioni di I/O sono gestite
3996 direttamente dalla \index{memoria~virtuale} memoria virtuale, occorre essere
3997 consapevoli delle interazioni che possono esserci con operazioni effettuate
3998 con l'interfaccia dei file di sez.~\ref{sec:file_unix_interface}. Il problema
3999 è che una volta che si è mappato un file, le operazioni di lettura e scrittura
4000 saranno eseguite sulla memoria, e riportate su disco in maniera autonoma dal
4001 sistema della memoria virtuale.
4002
4003 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
4004 potranno essere visibili o meno a seconda del momento in cui la memoria
4005 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
4006 del tutto imprevedibile il risultato della modifica di un file nei confronti
4007 del contenuto della memoria su cui è mappato.
4008
4009 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
4010 l'interfaccia standard quando lo si è mappato in memoria, è invece possibile
4011 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
4012 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
4013 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
4014 memoria mappata con il file su disco; il suo prototipo è:
4015 \begin{functions}  
4016   \headdecl{unistd.h}
4017   \headdecl{sys/mman.h} 
4018
4019   \funcdecl{int msync(const void *start, size\_t length, int flags)}
4020   
4021   Sincronizza i contenuti di una sezione di un file mappato in memoria.
4022   
4023   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4024     errore nel qual caso \var{errno} assumerà uno dei valori:
4025     \begin{errlist}
4026     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
4027       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
4028       \param{flags}.
4029     \item[\errcode{EFAULT}] l'intervallo specificato non ricade in una zona
4030       precedentemente mappata.
4031     \end{errlist}
4032   }
4033 \end{functions}
4034
4035 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
4036 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
4037 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
4038 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
4039 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
4040 del file aggiornato.
4041
4042
4043 \begin{table}[htb]
4044   \centering
4045   \footnotesize
4046   \begin{tabular}[c]{|l|p{11cm}|}
4047     \hline
4048     \textbf{Valore} & \textbf{Significato} \\
4049     \hline
4050     \hline
4051     \const{MS\_SYNC}       & richiede una sincronizzazione e ritorna soltanto
4052                              quando questa è stata completata.\\
4053     \const{MS\_ASYNC}      & richiede una sincronizzazione, ma ritorna subito 
4054                              non attendendo che questa sia finita.\\
4055     \const{MS\_INVALIDATE} & invalida le pagine per tutte le mappature
4056                              in memoria così da rendere necessaria una
4057                              rilettura immediata delle stesse.\\
4058     \hline
4059   \end{tabular}
4060   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
4061   \label{tab:file_mmap_msync}
4062 \end{table}
4063
4064 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
4065 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
4066 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
4067 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
4068 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
4069 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
4070 flag fa sì che vengano invalidate, per tutte le mappature dello stesso file,
4071 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
4072 essere immediatamente aggiornate con i nuovi valori.
4073
4074 Una volta che si sono completate le operazioni di I/O si può eliminare la
4075 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
4076 \begin{functions}  
4077   \headdecl{unistd.h}
4078   \headdecl{sys/mman.h} 
4079
4080   \funcdecl{int munmap(void *start, size\_t length)}
4081   
4082   Rilascia la mappatura sulla sezione di memoria specificata.
4083
4084   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4085     errore nel qual caso \var{errno} assumerà uno dei valori:
4086     \begin{errlist}
4087     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
4088       precedentemente mappata.
4089     \end{errlist}
4090   }
4091 \end{functions}
4092
4093 La funzione cancella la mappatura per l'intervallo specificato con
4094 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
4095 un errore di accesso in memoria. L'argomento \param{start} deve essere
4096 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
4097 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
4098 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
4099 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
4100 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
4101 il \textit{memory mapping} non ha alcun effetto su di esso.
4102
4103 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
4104 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
4105 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
4106 la funzione può essere usata con qualunque pagina valida nella memoria
4107 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
4108 \begin{functions}  
4109 %  \headdecl{unistd.h}
4110   \headdecl{sys/mman.h} 
4111
4112   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
4113   
4114   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
4115   specificato.
4116
4117   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4118     errore nel qual caso \var{errno} assumerà uno dei valori:
4119     \begin{errlist}
4120     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
4121       multiplo di \const{PAGE\_SIZE}.
4122     \item[\errcode{EACCES}] l'operazione non è consentita, ad esempio si è
4123       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
4124       ha solo accesso in lettura.
4125 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
4126 %       necessarie all'interno del kernel.
4127 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
4128 %       accessibile.
4129     \end{errlist}
4130     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
4131   } 
4132 \end{functions}
4133
4134
4135 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
4136 allineato alle dimensioni delle pagine di memoria, ed una dimensione
4137 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
4138 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
4139 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
4140 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
4141
4142 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
4143 kernel unix-like. La prima di queste è la possibilità di modificare un
4144 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
4145 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
4146 \begin{functions}  
4147   \headdecl{unistd.h}
4148   \headdecl{sys/mman.h} 
4149
4150   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
4151     new\_size, unsigned long flags)}
4152   
4153   Restringe o allarga una mappatura in memoria di un file.
4154
4155   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
4156     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
4157       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
4158     valori:
4159     \begin{errlist}
4160     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
4161       puntatore valido.
4162     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
4163       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
4164       mappature di tipo non corrispondente a quella richiesta.
4165     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
4166       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
4167       è specificato \const{MREMAP\_MAYMOVE} nei flag.
4168     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
4169       essere rimappato.
4170     \end{errlist}
4171   }
4172 \end{functions}
4173
4174 La funzione richiede come argomenti \param{old\_address} (che deve essere
4175 allineato alle dimensioni di una pagina di memoria) che specifica il
4176 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
4177 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
4178 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
4179 maschera binaria per i flag che controllano il comportamento della funzione.
4180 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
4181   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
4182   di includere \headfile{sys/mman.h}.}  che consente di eseguire l'espansione
4183 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
4184 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
4185 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
4186
4187 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
4188 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
4189 e le pagine di memoria, modificando i dati direttamente nella
4190 \itindex{page~table} \textit{page table} del processo. Come per
4191 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
4192 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
4193 implementare la funzione \func{realloc} in maniera molto efficiente.
4194
4195 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
4196 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
4197 un file vengono mappate linearmente su indirizzi successivi in memoria.
4198 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
4199   dai database o dai programmi che realizzano macchine virtuali.} in cui è
4200 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
4201
4202 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
4203 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
4204 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
4205   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
4206 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
4207 Infatti per ciascuna mappatura in memoria deve essere definita nella
4208 \itindex{page~table} \textit{page table} del processo una nuova area di
4209 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
4210   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
4211 questa diventi visibile nello spazio degli indirizzi come illustrato in
4212 fig.~\ref{fig:file_mmap_layout}.
4213
4214 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
4215   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
4216 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
4217 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
4218 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
4219 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
4220 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
4221   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
4222   aggiornamento.} solo per mantenere i dati di una gran quantità di
4223 \textit{memory mapping}.
4224
4225 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
4226 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
4227 una caratteristica specifica di Linux, non presente in altri sistemi
4228 unix-like.  Diventa così possibile utilizzare una sola mappatura
4229 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
4230   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
4231 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
4232 nuova \textit{system call}, \funcd{remap\_file\_pages}, il cui prototipo è:
4233 \begin{functions}  
4234   \headdecl{sys/mman.h} 
4235
4236   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
4237     ssize\_t pgoff, int flags)}
4238   
4239   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
4240
4241   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4242     errore, nel qual caso \var{errno} assumerà uno dei valori:
4243     \begin{errlist}
4244     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
4245       argomenti o \param{start} non fa riferimento ad un \textit{memory
4246         mapping} valido creato con \const{MAP\_SHARED}.
4247     \end{errlist}
4248   }
4249 \end{functions}
4250
4251 Per poter utilizzare questa funzione occorre anzitutto effettuare
4252 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
4253 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
4254 chiamerà questa funzione per modificare le corrispondenze fra pagine di
4255 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
4256 permette anche di mappare la stessa pagina di un file in più pagine della
4257 regione mappata.
4258
4259 La funzione richiede che si identifichi la sezione del file che si vuole
4260 riposizionare all'interno del \textit{memory mapping} con gli argomenti
4261 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
4262 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
4263 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
4264 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
4265 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
4266 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
4267
4268 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
4269 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
4270 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
4271 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
4272 per migliorare le prestazioni in certe condizioni di utilizzo del
4273 \textit{memory mapping}. 
4274
4275 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
4276 grosse dimensioni. Il comportamento normale del sistema della
4277 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
4278 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
4279 i dati verranno effettivamente utilizzati (si avrà cioè un
4280 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
4281 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
4282 interessate dal \textit{memory mapping}. 
4283
4284 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
4285 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
4286   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
4287 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
4288 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
4289 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
4290 comportamento viene abilitato quando si usa con \func{mmap} il flag
4291 \const{MAP\_POPULATE}.
4292
4293 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
4294 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
4295 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
4296 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
4297 mappatura che già si trovano nella cache del kernel.\footnote{questo può
4298   essere utile per il linker dinamico, in particolare quando viene effettuato
4299   il \textit{prelink} delle applicazioni.}
4300
4301 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
4302 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
4303 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
4304 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
4305 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
4306 riproduttore audio o video eseguirà per lo più letture sequenziali.
4307
4308 Per migliorare le prestazioni a seconda di queste modalità di accesso è
4309 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
4310   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
4311   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
4312 kernel delle indicazioni su dette modalità, così che possano essere adottate
4313 le opportune strategie di ottimizzazione. Il suo prototipo è:
4314 \begin{functions}  
4315   \headdecl{sys/mman.h} 
4316
4317   \funcdecl{int madvise(void *start, size\_t length, int advice)}
4318   
4319   Fornisce indicazioni sull'uso previsto di un \textit{memory mapping}.
4320
4321   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4322     errore, nel qual caso \var{errno} assumerà uno dei valori:
4323     \begin{errlist}
4324     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
4325     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
4326       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
4327       un valore valido, o si è richiesto il rilascio (con
4328       \const{MADV\_DONTNEED}) di pagine bloccate o condivise.
4329     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
4330       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
4331       processo (solo in caso di \const{MADV\_WILLNEED}).
4332     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
4333       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
4334       la richiesta.
4335     \end{errlist}
4336     ed inoltre \errval{EAGAIN} e \errval{ENOSYS}.
4337   }
4338 \end{functions}
4339
4340 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
4341 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
4342 \param{length}, il valore di \param{start} deve essere allineato,
4343 mentre \param{length} deve essere un numero positivo.\footnote{la versione di
4344   Linux consente anche un valore nullo per \param{length}, inoltre se una
4345   parte dell'intervallo non è mappato in memoria l'indicazione viene comunque
4346   applicata alle restanti parti, anche se la funzione ritorna un errore di
4347   \errval{ENOMEM}.} L'indicazione viene espressa dall'argomento \param{advice}
4348 che deve essere specificato con uno dei valori\footnote{si tenga presente che
4349   gli ultimi tre valori sono specifici di Linux (introdotti a partire dal
4350   kernel 2.6.16) e non previsti dallo standard POSIX.1b.} riportati in
4351 tab.~\ref{tab:madvise_advice_values}.
4352
4353 \begin{table}[htb]
4354   \centering
4355   \footnotesize
4356   \begin{tabular}[c]{|l|p{10 cm}|}
4357     \hline
4358     \textbf{Valore} & \textbf{Significato} \\
4359     \hline
4360     \hline
4361     \const{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
4362                             di default usato quando non si è chiamato
4363                             \func{madvise}.\\
4364     \const{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
4365                             indicata, pertanto l'applicazione di una lettura
4366                             anticipata con il meccanismo del
4367                             \itindex{read-ahead} \textit{read-ahead} (vedi
4368                             sez.~\ref{sec:file_fadvise}) è di
4369                             scarsa utilità e verrà disabilitata.\\
4370     \const{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
4371                             quindi da una parte sarà opportuno eseguire una
4372                             lettura anticipata, e dall'altra si potranno
4373                             scartare immediatamente le pagine una volta che
4374                             queste siano state lette.\\
4375     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
4376                             pertanto l'applicazione del \textit{read-ahead}
4377                             deve essere incentivata.\\
4378     \const{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
4379                             futuro, pertanto le pagine possono essere
4380                             liberate dal kernel non appena necessario; l'area
4381                             di memoria resterà accessibile, ma un accesso
4382                             richiederà che i dati vengano ricaricati dal file
4383                             a cui la mappatura fa riferimento.\\
4384     \hline
4385     \const{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
4386                             relativo supporto sottostante; è supportato
4387                             soltanto sui filesystem in RAM \textit{tmpfs} e
4388                             \textit{shmfs}.\footnotemark\\ 
4389     \const{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
4390                             ereditato dal processo figlio dopo una
4391                             \func{fork}; questo consente di evitare che il
4392                             meccanismo del \itindex{copy~on~write}
4393                             \textit{copy on write} effettui la rilocazione
4394                             delle pagine quando il padre scrive sull'area
4395                             di memoria dopo la \func{fork}, cosa che può
4396                             causare problemi per l'hardware che esegue
4397                             operazioni in DMA su quelle pagine.\\
4398     \const{MADV\_DOFORK}  & rimuove l'effetto della precedente
4399                             \const{MADV\_DONTFORK}.\\ 
4400     \const{MADV\_MERGEABLE}& marca la pagina come accorpabile (indicazione
4401                             principalmente ad uso dei sistemi di
4402                             virtualizzazione).\footnotemark\\
4403     \hline
4404   \end{tabular}
4405   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
4406   \label{tab:madvise_advice_values}
4407 \end{table}
4408
4409 \footnotetext{se usato su altri tipi di filesystem causa un errore di
4410   \errcode{ENOSYS}.}
4411
4412 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
4413   identifica pagine di memoria identiche e le accorpa in una unica pagina
4414   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
4415   di controllare tutte le pagine solo quelle marcate con questo flag vengono
4416   prese in considerazione per l'accorpamento; in questo modo si possono
4417   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
4418   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
4419   altre applicazioni in cui sian presenti numerosi processi che usano gli
4420   stessi dati; per maggiori dettagli si veda
4421   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}.}
4422
4423 La funzione non ha, tranne il caso di \const{MADV\_DONTFORK}, nessun effetto
4424 sul comportamento di un programma, ma può influenzarne le prestazioni fornendo
4425 al kernel indicazioni sulle esigenze dello stesso, così che sia possibile
4426 scegliere le opportune strategie per la gestione del \itindex{read-ahead}
4427 \textit{read-ahead} e del caching dei dati. A differenza da quanto specificato
4428 nello standard POSIX.1b, per il quale l'uso di \func{madvise} è a scopo
4429 puramente indicativo, Linux considera queste richieste come imperative, per
4430 cui ritorna un errore qualora non possa soddisfarle.\footnote{questo
4431   comportamento differisce da quanto specificato nello standard.}
4432
4433 \itindend{memory~mapping}
4434
4435
4436 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
4437 \label{sec:file_multiple_io}
4438
4439 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
4440 serie multipla di operazioni di I/O, come una serie di letture o scritture di
4441 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
4442 una struttura ed essi devono essere caricati o salvati su un file.  Benché
4443 l'operazione sia facilmente eseguibile attraverso una serie multipla di
4444 chiamate a \func{read} e \func{write}, ci sono casi in cui si vuole poter
4445 contare sulla atomicità delle operazioni.
4446
4447 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove
4448 \textit{system call} che permettessero di effettuare con una sola chiamata una
4449 serie di letture o scritture su una serie di buffer, con quello che viene
4450 normalmente chiamato \textsl{I/O vettorizzato}. Queste funzioni sono
4451 \funcd{readv} e \funcd{writev},\footnote{in Linux le due funzioni sono riprese
4452   da BSD4.4, esse sono previste anche dallo standard POSIX.1-2001.} ed i
4453 relativi prototipi sono:
4454 \begin{functions}
4455   \headdecl{sys/uio.h}
4456   
4457   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
4458   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
4459
4460   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
4461   
4462   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
4463     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
4464     assumerà uno dei valori:
4465   \begin{errlist}
4466   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
4467     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
4468   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
4469     di avere eseguito una qualunque lettura o scrittura.
4470   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
4471     non ci sono dati in lettura.
4472   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
4473   \end{errlist}
4474   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
4475   (se non sono stati allocati correttamente i buffer specificati nei campi
4476   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
4477   scrittura eseguite su \param{fd}.}
4478 \end{functions}
4479
4480 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
4481 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
4482 essere letti o scritti ed in che quantità. Il primo campo della struttura,
4483 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
4484 \var{iov\_len}, la dimensione dello stesso.
4485
4486 \begin{figure}[!htb]
4487   \footnotesize \centering
4488   \begin{minipage}[c]{\textwidth}
4489     \includestruct{listati/iovec.h}
4490   \end{minipage} 
4491   \normalsize 
4492   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
4493     vettorizzato.} 
4494   \label{fig:file_iovec}
4495 \end{figure}
4496
4497 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
4498 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
4499 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
4500   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
4501   logica, che però è stata dismessa per restare aderenti allo standard
4502   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
4503 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
4504 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
4505 specificati nel vettore \param{vector}.
4506
4507 La standardizzazione delle due funzioni all'interno della revisione
4508 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
4509 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
4510 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
4511 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \headfile{limits.h}; lo
4512 stesso valore deve essere ottenibile in esecuzione tramite la funzione
4513 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
4514 sez.~\ref{sec:sys_limits}).
4515
4516 Nel caso di Linux il limite di sistema è di 1024, però se si usano le
4517 \acr{glibc} queste forniscono un \textit{wrapper} per le \textit{system call}
4518 che si accorge se una operazione supererà il precedente limite, in tal caso i
4519 dati verranno letti o scritti con le usuali \func{read} e \func{write} usando
4520 un buffer di dimensioni sufficienti appositamente allocato e sufficiente a
4521 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
4522 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
4523
4524 Si tenga presente infine che queste funzioni operano sui file con
4525 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
4526 l'interfaccia classica dei \textit{file stream} di
4527 sez.~\ref{sec:files_std_interface}; a causa delle bufferizzazioni interne di
4528 quest'ultima infatti si potrebbero avere risultati indefiniti e non
4529 corrispondenti a quanto aspettato.
4530
4531 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
4532   vettorizzato} si pone il problema di poter effettuare le operazioni in
4533 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
4534 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
4535   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
4536 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
4537 \funcd{preadv} e \funcd{pwritev} ed i rispettivi prototipi sono:\footnote{le
4538   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
4539     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
4540   utilizzano degli argomenti diversi per problemi collegati al formato a 64
4541   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
4542   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
4543   che mantengono l'interfaccia delle analoghe tratte da BSD.}
4544 \begin{functions}
4545   \headdecl{sys/uio.h}
4546   
4547   \funcdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
4548     offset)}
4549   \funcdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
4550     offset)}
4551
4552   Eseguono una lettura o una scrittura vettorizzata a partire da una data
4553   posizione sul file.
4554   
4555   \bodydesc{Le funzioni hanno gli stessi valori di ritorno delle
4556     corrispondenti \func{readv} e \func{writev}; anche gli eventuali errori
4557     sono gli stessi già visti in precedenza, ma ad essi si possono aggiungere
4558     per \var{errno} anche i valori:
4559   \begin{errlist}
4560   \item[\errcode{EOVERFLOW}] \param{offset} ha un valore che non può essere
4561     usato come \type{off\_t}.
4562   \item[\errcode{ESPIPE}] \param{fd} è associato ad un socket o una pipe.
4563   \end{errlist}
4564 }
4565 \end{functions}
4566
4567 Le due funzioni eseguono rispettivamente una lettura o una scrittura
4568 vettorizzata a partire dalla posizione \param{offset} sul file indicato
4569 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
4570 processi che vi facciano riferimento, non viene alterata. A parte la presenza
4571 dell'ulteriore argomento il comportamento delle funzioni è identico alle
4572 precedenti \func{readv} e \func{writev}. 
4573
4574 Con l'uso di queste funzioni si possono evitare eventuali
4575 \itindex{race~condition} \textit{race condition} quando si deve eseguire la
4576 una operazione di lettura e scrittura vettorizzata a partire da una certa
4577 posizione su un file, mentre al contempo si possono avere in concorrenza
4578 processi che utilizzano lo stesso file descriptor (si ricordi quanto visto in
4579 sez.~\ref{sec:file_adv_func}) con delle chiamate a \func{lseek}.
4580
4581
4582
4583 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
4584   \func{splice}} 
4585 \label{sec:file_sendfile_splice}
4586
4587 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
4588 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
4589 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
4590 buffer in memoria, da cui essi vengono poi scritti sul secondo.
4591
4592 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
4593 fare con file normali, in generale quando i dati da trasferire sono molti si
4594 pone il problema di effettuare trasferimenti di grandi quantità di dati da
4595 kernel space a user space e all'indietro, quando in realtà potrebbe essere più
4596 efficiente mantenere tutto in kernel space. Tratteremo in questa sezione
4597 alcune funzioni specialistiche che permettono di ottimizzare le prestazioni in
4598 questo tipo di situazioni.
4599
4600 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
4601 fra due file descriptor è \func{sendfile};\footnote{la funzione è stata
4602   introdotta con i kernel della serie 2.2, e disponibile dalle \acr{glibc}
4603   2.1.} la funzione è presente in diverse versioni di Unix,\footnote{la si
4604   ritrova ad esempio in FreeBSD, HPUX ed altri Unix.} ma non è presente né in
4605 POSIX.1-2001 né in altri standard,\footnote{pertanto si eviti di utilizzarla
4606   se si devono scrivere programmi portabili.} per cui per essa vengono
4607 utilizzati prototipi e semantiche differenti; nel caso di Linux il prototipo
4608 di \funcd{sendfile} è:
4609 \begin{functions}  
4610   \headdecl{sys/sendfile.h} 
4611
4612   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
4613     count)} 
4614   
4615   Copia dei dati da un file descriptor ad un altro.
4616
4617   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4618     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4619     dei valori:
4620     \begin{errlist}
4621     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
4622       \param{out\_fd} e la scrittura si bloccherebbe.
4623     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
4624       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
4625       \param{in\_fd}.
4626     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
4627     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
4628       \param{in\_fd}.
4629     \end{errlist}
4630     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
4631   }
4632 \end{functions}
4633
4634 La funzione copia direttamente \param{count} byte dal file descriptor
4635 \param{in\_fd} al file descriptor \param{out\_fd}; in caso di successo
4636 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
4637 \param{out\_fd} o $-1$ in caso di errore; come le ordinarie \func{read} e
4638 \func{write} questo valore può essere inferiore a quanto richiesto con
4639 \param{count}.
4640
4641 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
4642 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
4643 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
4644 valore sarà aggiornato, come \textit{value result argument}, per indicare la
4645 posizione del byte successivo all'ultimo che è stato letto, mentre la
4646 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
4647 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
4648 letti da \param{in\_fd}.
4649
4650 Fino ai kernel della serie 2.4 la funzione è utilizzabile su un qualunque file
4651 descriptor, e permette di sostituire la invocazione successiva di una
4652 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
4653 sola chiamata a \funcd{sendfile}. In questo modo si può diminuire il numero di
4654 chiamate al sistema e risparmiare in trasferimenti di dati da kernel space a
4655 user space e viceversa.  La massima utilità della funzione si ha comunque per
4656 il trasferimento di dati da un file su disco ad un socket di
4657 rete,\footnote{questo è il caso classico del lavoro eseguito da un server web,
4658   ed infatti Apache ha una opzione per il supporto esplicito di questa
4659   funzione.} dato che in questo caso diventa possibile effettuare il
4660 trasferimento diretto via DMA dal controller del disco alla scheda di rete,
4661 senza neanche allocare un buffer nel kernel,\footnote{il meccanismo è detto
4662   \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel, che
4663   si limita a programmare solo le operazioni di lettura e scrittura via DMA.}
4664 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
4665
4666 In seguito però ci si è accorti che, fatta eccezione per il trasferimento
4667 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
4668 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
4669 \func{write},\footnote{nel caso generico infatti il kernel deve comunque
4670   allocare un buffer ed effettuare la copia dei dati, e in tal caso spesso il
4671   guadagno ottenibile nel ridurre il numero di chiamate al sistema non
4672   compensa le ottimizzazioni che possono essere fatte da una applicazione in
4673   user space che ha una conoscenza diretta su come questi sono strutturati.} e
4674 che anzi in certi casi si potevano avere anche dei peggioramenti.  Questo ha
4675 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
4676   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
4677   in \url{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}.}
4678 alla decisione di consentire l'uso della funzione soltanto quando il file da
4679 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
4680 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
4681 casi l'uso di \func{sendfile} darà luogo ad un errore di \errcode{EINVAL}.
4682
4683 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
4684 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
4685 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
4686 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
4687 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
4688 la gestione della copia dei dati fra file, evitando di dover gestire
4689 l'allocazione di un buffer temporaneo per il loro trasferimento.
4690
4691 Questo dubbio si può comunque ritenere superato con l'introduzione, avvenuta a
4692 partire dal kernel 2.6.17, della nuova \textit{system call} \func{splice}. Lo
4693 scopo di questa funzione è quello di fornire un meccanismo generico per il
4694 trasferimento di dati da o verso un file utilizzando un buffer gestito
4695 internamente dal kernel. Descritta in questi termini \func{splice} sembra
4696 semplicemente un ``\textsl{dimezzamento}'' di \func{sendfile}.\footnote{nel
4697   senso che un trasferimento di dati fra due file con \func{sendfile} non
4698   sarebbe altro che la lettura degli stessi su un buffer seguita dalla
4699   relativa scrittura, cosa che in questo caso si dovrebbe eseguire con due
4700   chiamate a \func{splice}.} In realtà le due \textit{system call} sono
4701 profondamente diverse nel loro meccanismo di funzionamento;\footnote{questo
4702   fino al kernel 2.6.23, dove \func{sendfile} è stata reimplementata in
4703   termini di \func{splice}, pur mantenendo disponibile la stessa interfaccia
4704   verso l'user space.} \func{sendfile} infatti, come accennato, non necessita
4705 di avere a disposizione un buffer interno, perché esegue un trasferimento
4706 diretto di dati; questo la rende in generale più efficiente, ma anche limitata
4707 nelle sue applicazioni, dato che questo tipo di trasferimento è possibile solo
4708 in casi specifici.\footnote{e nel caso di Linux questi sono anche solo quelli
4709   in cui essa può essere effettivamente utilizzata.}
4710
4711 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
4712   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
4713   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
4714   stata la reinterpretazione che ne è stata fatta nell'implementazione su
4715   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
4716   dallo stesso Linus Torvalds in \url{http://kerneltrap.org/node/6505}.} si
4717 tratta semplicemente di una funzione che consente di fare in maniera del tutto
4718 generica delle operazioni di trasferimento di dati fra un file e un buffer
4719 gestito interamente in kernel space. In questo caso il cuore della funzione (e
4720 delle affini \func{vmsplice} e \func{tee}, che tratteremo più avanti) è
4721 appunto l'uso di un buffer in kernel space, e questo è anche quello che ne ha
4722 semplificato l'adozione, perché l'infrastruttura per la gestione di un tale
4723 buffer è presente fin dagli albori di Unix per la realizzazione delle
4724 \textit{pipe} (vedi sez.~\ref{sec:ipc_unix}). Dal punto di vista concettuale
4725 allora \func{splice} non è altro che una diversa interfaccia (rispetto alle
4726 \textit{pipe}) con cui utilizzare in user space l'oggetto ``\textsl{buffer in
4727   kernel space}''.
4728
4729 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
4730 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
4731 dati che vengono trasferiti da un capo all'altro della stessa per creare un
4732 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
4733 viene usato o come fonte dei dati che saranno scritti su un file, o come
4734 destinazione dei dati che vengono letti da un file. La funzione \funcd{splice}
4735 fornisce quindi una interfaccia generica che consente di trasferire dati da un
4736 buffer ad un file o viceversa; il suo prototipo, accessibile solo dopo aver
4737 definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
4738   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
4739   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
4740 è il seguente:
4741 \begin{functions}  
4742   \headdecl{fcntl.h} 
4743
4744   \funcdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
4745     *off\_out, size\_t len, unsigned int flags)}
4746   
4747   Trasferisce dati da un file verso una pipe o viceversa.
4748
4749   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4750     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4751     dei valori:
4752     \begin{errlist}
4753     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
4754       non sono file descriptor validi o, rispettivamente, non sono stati
4755       aperti in lettura o scrittura.
4756     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
4757       \func{splice}, oppure nessuno dei file descriptor è una pipe, oppure si
4758       è dato un valore a \param{off\_in} o \param{off\_out} ma il
4759       corrispondente file è un dispositivo che non supporta la funzione
4760       \func{lseek}.
4761     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4762       richiesta.
4763     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
4764       \val{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
4765     \end{errlist}
4766   }
4767 \end{functions}
4768
4769 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
4770 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
4771 una \textit{pipe}; l'altro file descriptor può essere
4772 qualunque.\footnote{questo significa che può essere, oltre che un file di
4773   dati, anche un altra \textit{pipe}, o un socket.}  Come accennato una
4774 \textit{pipe} non è altro che un buffer in kernel space, per cui a seconda che
4775 essa sia usata per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la
4776 copia dei dati dal buffer al file o viceversa. 
4777
4778 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
4779 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
4780 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
4781 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
4782 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
4783 trasferimento dei dati, la funzione si comporta nei confronti del file
4784 descriptor che fa riferimento al file ordinario, come \func{read} o
4785 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
4786 il suddetto file in modalità non bloccante).
4787
4788 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
4789 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
4790 del file da cui partire per il trasferimento dei dati. Come per
4791 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
4792 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
4793 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
4794 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
4795 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
4796 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
4797 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
4798 specificato come valore non nullo.
4799
4800 Infine l'argomento \param{flags} consente di controllare alcune
4801 caratteristiche del funzionamento della funzione; il contenuto è una maschera
4802 binaria e deve essere specificato come OR aritmetico dei valori riportati in
4803 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
4804 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
4805 descrizioni complete di tutti i valori possibili anche quando, come per
4806 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
4807
4808 \begin{table}[htb]
4809   \centering
4810   \footnotesize
4811   \begin{tabular}[c]{|l|p{10cm}|}
4812     \hline
4813     \textbf{Valore} & \textbf{Significato} \\
4814     \hline
4815     \hline
4816     \const{SPLICE\_F\_MOVE}    & Suggerisce al kernel di spostare le pagine
4817                                  di memoria contenenti i dati invece di
4818                                  copiarle;\footnotemark viene usato soltanto
4819                                  da \func{splice}.\\ 
4820     \const{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
4821                                  bloccante; questo flag influisce solo sulle
4822                                  operazioni che riguardano l'I/O da e verso la
4823                                  \textit{pipe}. Nel caso di \func{splice}
4824                                  questo significa che la funzione potrà
4825                                  comunque bloccarsi nell'accesso agli altri
4826                                  file descriptor (a meno che anch'essi non
4827                                  siano stati aperti in modalità non
4828                                  bloccante).\\
4829     \const{SPLICE\_F\_MORE}    & Indica al kernel che ci sarà l'invio di
4830                                  ulteriori dati in una \func{splice}
4831                                  successiva, questo è un suggerimento utile
4832                                  che viene usato quando \param{fd\_out} è un
4833                                  socket.\footnotemark Attualmente viene usato
4834                                  solo da \func{splice}, potrà essere
4835                                  implementato in futuro anche per
4836                                  \func{vmsplice} e \func{tee}.\\
4837     \const{SPLICE\_F\_GIFT}    & Le pagine di memoria utente sono
4838                                  ``\textsl{donate}'' al kernel;\footnotemark
4839                                  se impostato una seguente \func{splice} che
4840                                  usa \const{SPLICE\_F\_MOVE} potrà spostare le 
4841                                  pagine con successo, altrimenti esse dovranno
4842                                  essere copiate; per usare questa opzione i
4843                                  dati dovranno essere opportunamente allineati
4844                                  in posizione ed in dimensione alle pagine di
4845                                  memoria. Viene usato soltanto da
4846                                  \func{vmsplice}.\\
4847     \hline
4848   \end{tabular}
4849   \caption{Le costanti che identificano i bit della maschera binaria
4850     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
4851     \func{tee}.} 
4852   \label{tab:splice_flag}
4853 \end{table}
4854
4855 \footnotetext[120]{per una maggiore efficienza \func{splice} usa quando
4856   possibile i meccanismi della memoria virtuale per eseguire i trasferimenti
4857   di dati (in maniera analoga a \func{mmap}), qualora le pagine non possano
4858   essere spostate dalla pipe o il buffer non corrisponda a pagine intere esse
4859   saranno comunque copiate.}
4860
4861 \footnotetext[121]{questa opzione consente di utilizzare delle opzioni di
4862   gestione dei socket che permettono di ottimizzare le trasmissioni via rete,
4863   si veda la descrizione di \const{TCP\_CORK} in
4864   sez.~\ref{sec:sock_tcp_udp_options} e quella di \const{MSG\_MORE} in
4865   sez.~\ref{sec:net_sendmsg}.}
4866
4867 \footnotetext{questo significa che la cache delle pagine e i dati su disco
4868   potranno differire, e che l'applicazione non potrà modificare quest'area di
4869   memoria.}
4870
4871 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
4872 semplice programma che usa questa funzione per effettuare la copia di un file
4873 su un altro senza utilizzare buffer in user space. Il programma si chiama
4874 \texttt{splicecp.c} ed il codice completo è disponibile coi sorgenti allegati
4875 alla guida, il corpo principale del programma, che non contiene la sezione di
4876 gestione delle opzioni e le funzioni di ausilio è riportato in
4877 fig.~\ref{fig:splice_example}.
4878
4879 Lo scopo del programma è quello di eseguire la copia dei con \func{splice},
4880 questo significa che si dovrà usare la funzione due volte, prima per leggere i
4881 dati e poi per scriverli, appoggiandosi ad un buffer in kernel space (vale a
4882 dire ad una \textit{pipe}); lo schema del flusso dei dati è illustrato in
4883 fig.~\ref{fig:splicecp_data_flux}. 
4884
4885 \begin{figure}[htb]
4886   \centering
4887   \includegraphics[height=6cm]{img/splice_copy}
4888   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
4889   \label{fig:splicecp_data_flux}
4890 \end{figure}
4891
4892 Una volta trattate le opzioni il programma verifica che restino
4893 (\texttt{\small 13--16}) i due argomenti che indicano il file sorgente ed il
4894 file destinazione. Il passo successivo è aprire il file sorgente
4895 (\texttt{\small 18--22}), quello di destinazione (\texttt{\small 23--27}) ed
4896 infine (\texttt{\small 28--31}) la \textit{pipe} che verrà usata come buffer.
4897
4898 \begin{figure}[!htbp]
4899   \footnotesize \centering
4900   \begin{minipage}[c]{\codesamplewidth}
4901     \includecodesample{listati/splicecp.c}
4902   \end{minipage}
4903   \normalsize
4904   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
4905     un file.}
4906   \label{fig:splice_example}
4907 \end{figure}
4908
4909 Il ciclo principale (\texttt{\small 33--58}) inizia con la lettura dal file
4910 sorgente tramite la prima \func{splice} (\texttt{\small 34--35}), in questo
4911 caso si è usato come primo argomento il file descriptor del file sorgente e
4912 come terzo quello del capo in scrittura della \textit{pipe} (il funzionamento
4913 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
4914 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
4915 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
4916 semplicemente al trasferimento dei dati dal file al buffer).
4917
4918 La lettura viene eseguita in blocchi pari alla dimensione specificata
4919 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
4920 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
4921 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
4922 detto valore è nullo (\texttt{\small 36}) questo significa che si è giunti
4923 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
4924 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
4925   59}). In caso di valore negativo (\texttt{\small 37--44}) c'è stato un
4926 errore ed allora si ripete la lettura (\texttt{\small 36}) se questo è dovuto
4927 ad una interruzione, o altrimenti si esce con un messaggio di errore
4928 (\texttt{\small 41--43}).
4929
4930 Una volta completata con successo la lettura si avvia il ciclo di scrittura
4931 (\texttt{\small 45--57}); questo inizia (\texttt{\small 46--47}) con la
4932 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
4933 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
4934 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
4935 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
4936 del file di destinazione.
4937
4938 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
4939 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
4940 dovuto a una interruzione o si esce con un messaggio negli altri casi
4941 (\texttt{\small 48--55}). Infine si chiude il ciclo di scrittura sottraendo
4942 (\texttt{\small 57}) il numero di byte scritti a quelli di cui è richiesta la
4943 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
4944   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
4945   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
4946 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
4947 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
4948 presenti sul buffer.
4949
4950 Si noti come il programma sia concettualmente identico a quello che si sarebbe
4951 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
4952 al posto della seconda, utilizzando un buffer in user space per eseguire la
4953 copia dei dati, solo che in questo caso non è stato necessario allocare nessun
4954 buffer e non si è trasferito nessun dato in user space.
4955
4956 Si noti anche come si sia usata la combinazione \texttt{SPLICE\_F\_MOVE |
4957   SPLICE\_F\_MORE } per l'argomento \param{flags} di \func{splice}, infatti
4958 anche se un valore nullo avrebbe dato gli stessi risultati, l'uso di questi
4959 flag, che si ricordi servono solo a dare suggerimenti al kernel, permette in
4960 genere di migliorare le prestazioni.
4961
4962 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
4963 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
4964 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
4965 trasferimento di dati attraverso un buffer in kernel space; benché queste non
4966 attengono strettamente ad operazioni di trasferimento dati fra file
4967 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
4968
4969 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
4970 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
4971 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
4972 il suo prototipo è:
4973 \begin{functions}  
4974   \headdecl{fcntl.h} 
4975   \headdecl{sys/uio.h}
4976
4977   \funcdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long
4978     nr\_segs, unsigned int flags)}
4979   
4980   Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.
4981
4982   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4983     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4984     dei valori:
4985     \begin{errlist}
4986     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
4987       fa riferimento ad una \textit{pipe}.
4988     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
4989       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
4990     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4991       richiesta.
4992     \end{errlist}
4993   }
4994 \end{functions}
4995
4996 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
4997 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
4998 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
4999 segmenti della memoria del processo devono essere trasferiti verso di essa si
5000 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
5001 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
5002 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
5003 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
5004 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
5005 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
5006 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
5007 illustrate in sez.~\ref{sec:file_multiple_io}.
5008
5009 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
5010 \textit{pipe}. In generale, se i dati una volta creati non devono essere
5011 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
5012 modificherà più la memoria trasferita), è opportuno utilizzare
5013 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
5014 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
5015 che queste possono essere utilizzate immediatamente senza necessità di
5016 eseguire una copia dei dati che contengono.
5017
5018 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
5019 suo nome all'omonimo comando in user space, perché in analogia con questo
5020 permette di duplicare i dati in ingresso su una \textit{pipe} su un'altra
5021 \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione dei dati su
5022 dei buffer in kernel space, la funzione consente di eseguire una copia del
5023 contenuto del buffer stesso. Il prototipo di \funcd{tee} è il seguente:
5024 \begin{functions}  
5025   \headdecl{fcntl.h} 
5026
5027   \funcdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
5028     flags)}
5029   
5030   Duplica \param{len} byte da una \textit{pipe} ad un'altra.
5031
5032   \bodydesc{La funzione restituisce il numero di byte copiati in caso di
5033     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
5034     dei valori:
5035     \begin{errlist}
5036     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
5037       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
5038       stessa \textit{pipe}.
5039     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5040       richiesta.
5041     \end{errlist}
5042   }
5043 \end{functions}
5044
5045 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
5046 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
5047 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
5048 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
5049 \func{tee} da \param{fd\_in} non vengono \textsl{consumati} e restano
5050 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
5051 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
5052 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
5053   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
5054 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
5055 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
5056 funzione non bloccante.
5057
5058 La funzione restituisce il numero di byte copiati da una \textit{pipe}
5059 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
5060 byte disponibili da copiare e che il capo in scrittura della pipe è stato
5061 chiuso.\footnote{si tenga presente però che questo non avviene se si è
5062   impostato il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si
5063   avrebbe un errore di \errcode{EAGAIN}.} Un esempio di realizzazione del
5064 comando \texttt{tee} usando questa funzione, ripreso da quello fornito nella
5065 pagina di manuale e dall'esempio allegato al patch originale, è riportato in
5066 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
5067 dello standard input sullo standard output e su un file specificato come
5068 argomento, il codice completo si trova nel file \texttt{tee.c} dei sorgenti
5069 allegati alla guida.
5070
5071 \begin{figure}[!htbp]
5072   \footnotesize \centering
5073   \begin{minipage}[c]{\codesamplewidth}
5074     \includecodesample{listati/tee.c}
5075   \end{minipage}
5076   \normalsize
5077   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
5078     standard input sullo standard output e su un file.}
5079   \label{fig:tee_example}
5080 \end{figure}
5081
5082 La prima parte del programma (\texttt{\small 10--35}) si cura semplicemente di
5083 controllare (\texttt{\small 11--14}) che sia stato fornito almeno un argomento
5084 (il nome del file su cui scrivere), di aprirlo ({\small 15--19}) e che sia lo
5085 standard input (\texttt{\small 20--27}) che lo standard output (\texttt{\small
5086   28--35}) corrispondano ad una \textit{pipe}.
5087
5088 Il ciclo principale (\texttt{\small 37--58}) inizia con la chiamata a
5089 \func{tee} che duplica il contenuto dello standard input sullo standard output
5090 (\texttt{\small 39}), questa parte è del tutto analoga ad una lettura ed
5091 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
5092 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
5093 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 40}), se
5094 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
5095 dovuto ad una interruzione (\texttt{\small 42--44}) o si stampa un messaggio
5096 di errore e si esce negli altri casi (\texttt{\small 44--47}).
5097
5098 Una volta completata la copia dei dati sullo standard output si possono
5099 estrarre dalla standard input e scrivere sul file, di nuovo su usa un ciclo di
5100 scrittura (\texttt{\small 50--58}) in cui si ripete una chiamata a
5101 \func{splice} (\texttt{\small 51}) fintanto che non si sono scritti tutti i
5102 \var{len} byte copiati in precedenza con \func{tee} (il funzionamento è
5103 identico all'analogo ciclo di scrittura del precedente esempio di
5104 fig.~\ref{fig:splice_example}).
5105
5106 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
5107 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
5108 di dati in realtà nella implementazione di queste \textit{system call} non è
5109 affatto detto che i dati vengono effettivamente spostati o copiati, il kernel
5110 infatti realizza le \textit{pipe} come un insieme di puntatori\footnote{per
5111   essere precisi si tratta di un semplice buffer circolare, un buon articolo
5112   sul tema si trova su \url{http://lwn.net/Articles/118750/}.}  alle pagine di
5113 memoria interna che contengono i dati, per questo una volta che i dati sono
5114 presenti nella memoria del kernel tutto quello che viene fatto è creare i
5115 suddetti puntatori ed aumentare il numero di referenze; questo significa che
5116 anche con \func{tee} non viene mai copiato nessun byte, vengono semplicemente
5117 copiati i puntatori.
5118
5119 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
5120
5121
5122 \subsection{Gestione avanzata dell'accesso ai dati dei file}
5123 \label{sec:file_fadvise}
5124
5125 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
5126 operazioni di lettura e scrittura non necessitano di nessun intervento di
5127 supervisione da parte dei programmi, si eseguirà una \func{read} o una
5128 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
5129 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
5130 termine in quello che ritiene essere il modo più efficiente.
5131
5132 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
5133 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
5134 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
5135 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
5136 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
5137 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
5138 il loro accesso ai dati dei file e controllare la gestione del relativo
5139 \textit{caching}.
5140
5141 \itindbeg{read-ahead}
5142
5143 Una prima funzione che può essere utilizzata per modificare la gestione
5144 ordinaria dell'I/O su un file è \funcd{readahead},\footnote{questa è una
5145   funzione specifica di Linux, introdotta con il kernel 2.4.13, e non deve
5146   essere usata se si vogliono scrivere programmi portabili.} che consente di
5147 richiedere una lettura anticipata del contenuto dello stesso in cache, così
5148 che le seguenti operazioni di lettura non debbano subire il ritardo dovuto
5149 all'accesso al disco; il suo prototipo è:
5150 \begin{functions}
5151   \headdecl{fcntl.h}
5152
5153   \funcdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
5154   
5155   Esegue una lettura preventiva del contenuto di un file in cache.
5156
5157   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
5158     errore, nel qual caso \var{errno} assumerà uno dei valori:
5159     \begin{errlist}
5160     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5161       valido o non è aperto in lettura.
5162     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
5163       file che non supporta l'operazione (come una pipe o un socket).
5164     \end{errlist}
5165   }
5166 \end{functions}
5167
5168 La funzione richiede che venga letto in anticipo il contenuto del file
5169 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
5170 \param{count} byte, in modo da portarlo in cache.  La funzione usa la
5171 \index{memoria~virtuale} memoria virtuale ed il meccanismo della
5172 \index{paginazione} paginazione per cui la lettura viene eseguita in blocchi
5173 corrispondenti alle dimensioni delle pagine di memoria, ed i valori di
5174 \param{offset} e \param{count} vengono arrotondati di conseguenza.
5175
5176 La funzione estende quello che è un comportamento normale del kernel che
5177 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
5178 una lettura preventiva di una certa quantità di dati; questo meccanismo di
5179 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
5180 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
5181 disco, effettua la lettura in cache della sezione richiesta e si blocca
5182 fintanto che questa non viene completata.  La posizione corrente sul file non
5183 viene modificata ed indipendentemente da quanto indicato con \param{count} la
5184 lettura dei dati si interrompe una volta raggiunta la fine del file.
5185
5186 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
5187 all'interno di un programma tutte le volte che si conosce in anticipo quanti
5188 dati saranno necessari nelle elaborazioni successive. Si potrà così
5189 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
5190 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
5191 nelle operazioni successive.
5192
5193 \itindend{read-ahead}
5194
5195 Il concetto di \func{readahead} viene generalizzato nello standard
5196 POSIX.1-2001 dalla funzione \func{posix\_fadvise},\footnote{anche se
5197   l'argomento \param{len} è stato modificato da \type{size\_t} a \type{off\_t}
5198   nella revisione POSIX.1-2003 TC5.} che consente di ``\textsl{avvisare}'' il
5199 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
5200 porzione di un file,\footnote{la funzione però è stata introdotta su Linux
5201   solo a partire dal kernel 2.5.60.} così che esso possa provvedere le
5202 opportune ottimizzazioni; il prototipo di \funcd{posix\_fadvise}, che è
5203 disponibile soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad
5204 valore di almeno 600, è:
5205 \begin{functions}  
5206   \headdecl{fcntl.h} 
5207
5208   \funcdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
5209   
5210   Dichiara al kernel le future modalità di accesso ad un file.
5211
5212   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
5213     errore, nel qual caso \var{errno} assumerà uno dei valori:
5214     \begin{errlist}
5215     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5216       valido.
5217     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
5218       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
5219       (come una pipe o un socket).
5220     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una pipe o
5221       un socket (ma su Linux viene restituito \errcode{EINVAL}).
5222     \end{errlist}
5223   }
5224 \end{functions}
5225
5226 La funzione dichiara al kernel le modalità con cui intende accedere alla
5227 regione del file indicato da \param{fd} che inizia alla posizione
5228 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
5229 valore nullo la regione coperta sarà da \param{offset} alla fine del
5230 file.\footnote{questo è vero solo per le versioni più recenti, fino al kernel
5231   2.6.6 il valore nullo veniva interpretato letteralmente.} Le modalità sono
5232 indicate dall'argomento \param{advice} che è una maschera binaria dei valori
5233 illustrati in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato
5234 degli analoghi già visti in sez.~\ref{sec:file_memory_map} per
5235 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
5236   in questo caso applicata direttamente al sistema ai contenuti di un file
5237   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
5238 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
5239 che utilizza semplicemente l'informazione.
5240
5241 \begin{table}[htb]
5242   \centering
5243   \footnotesize
5244   \begin{tabular}[c]{|l|p{10cm}|}
5245     \hline
5246     \textbf{Valore} & \textbf{Significato} \\
5247     \hline
5248     \hline
5249     \const{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
5250                                    riguardo le modalità di accesso, il
5251                                    comportamento sarà identico a quello che si
5252                                    avrebbe senza nessun avviso.\\ 
5253     \const{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
5254                                    accedere ai dati specificati in maniera
5255                                    sequenziale, a partire dalle posizioni più
5256                                    basse.\\ 
5257     \const{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
5258                                    completamente causale.\\
5259     \const{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
5260     \const{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
5261     \const{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
5262     \hline
5263   \end{tabular}
5264   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
5265     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
5266     ad un file.}
5267   \label{tab:posix_fadvise_flag}
5268 \end{table}
5269
5270 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
5271 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
5272 dal kernel; in particolare utilizzando il valore
5273 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
5274 dati letti preventivamente rispetto al default, aspettandosi appunto una
5275 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
5276 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
5277 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
5278 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
5279 riportarsi al comportamento di default.
5280
5281 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
5282 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
5283 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
5284 cache della regione del file indicata.  La quantità di dati che verranno letti
5285 è ovviamente limitata in base al carico che si viene a creare sul sistema
5286 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
5287 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
5288 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
5289 considerare l'equivalente POSIX di \func{readahead}.
5290
5291 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
5292 pagine di cache occupate dai dati presenti nella regione di file indicata.
5293 Questa è una indicazione utile che permette di alleggerire il carico sulla
5294 cache, ed un programma può utilizzare periodicamente questa funzione per
5295 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
5296 nuovi dati utili.\footnote{la pagina di manuale riporta l'esempio dello
5297   streaming di file di grosse dimensioni, dove le pagine occupate dai dati già
5298   inviati possono essere tranquillamente scartate.}
5299
5300 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
5301 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
5302 specifica per le operazioni di scrittura,
5303 \funcd{posix\_fallocate},\footnote{la funzione è stata introdotta a partire
5304   dalle glibc 2.1.94.} che consente di preallocare dello spazio disco per
5305 assicurarsi che una seguente scrittura non fallisca, il suo prototipo,
5306 anch'esso disponibile solo se si definisce la macro \macro{\_XOPEN\_SOURCE} ad
5307 almeno 600, è:
5308 \begin{functions}  
5309   \headdecl{fcntl.h} 
5310
5311   \funcdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
5312   
5313   Richiede la allocazione di spazio disco per un file.
5314
5315   \bodydesc{La funzione restituisce 0 in caso di successo e direttamente un
5316     codice di errore, in caso di fallimento, in questo caso \var{errno} non
5317     viene impostata, ma sarà restituito direttamente uno dei valori:
5318     \begin{errlist}
5319     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5320       valido o non è aperto in scrittura.
5321     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
5322       zero.
5323     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
5324       la dimensione massima consentita per un file.
5325     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
5326       file regolare.
5327     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
5328       l'operazione. 
5329     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una pipe.
5330   \end{errlist}
5331   }
5332 \end{functions}
5333
5334 La funzione assicura che venga allocato sufficiente spazio disco perché sia
5335 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
5336 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
5337 se questa regione si estende oltre la fine del file le dimensioni di
5338 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
5339 successo la funzione è garantito che una successiva scrittura nella regione
5340 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
5341 effetto né sul contenuto, né sulla posizione corrente del file.
5342
5343 Ci si può chiedere a cosa possa servire una funzione come
5344 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
5345 eseguendo esplicitamente sul file la scrittura\footnote{usando \funcd{pwrite}
5346   per evitare spostamenti della posizione corrente sul file.} di una serie di
5347 zeri per l'estensione di spazio necessaria qualora il \itindex{sparse~file}
5348 file debba essere esteso o abbia dei \index{file!\textit{hole}}
5349 buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e che
5350   l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
5351   \itindex{sparse~file} \textit{sparse file} (vedi sez.~\ref{sec:file_lseek})
5352   senza una effettiva allocazione dello spazio disco.}  In realtà questa è la
5353 modalità con cui la funzione veniva realizzata nella prima versione fornita
5354 dalle \acr{glibc}, per cui la funzione costituiva in sostanza soltanto una
5355 standardizzazione delle modalità di esecuzione di questo tipo di allocazioni.
5356
5357 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
5358 scrittura su tutto lo spazio disco necessario, da fare al momento della
5359 richiesta di allocazione, pagandone il conseguente prezzo in termini di
5360 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
5361 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
5362 diventa effettivamente disponibile.
5363
5364 Per poter fare tutto questo è però necessario il supporto da parte del kernel,
5365 e questo è divenuto disponibile solo a partire dal kernel 2.6.23 in cui è
5366 stata introdotta la nuova \textit{system call} \func{fallocate},\footnote{non
5367   è detto che la funzione sia disponibile per tutti i filesystem, ad esempio
5368   per XFS il supporto è stato introdotto solo a partire dal kernel 2.6.25.}
5369 che consente di realizzare direttamente all'interno del kernel l'allocazione
5370 dello spazio disco così da poter realizzare una versione di
5371 \func{posix\_fallocate} con prestazioni molto più elevate.\footnote{nelle
5372   \acr{glibc} la nuova \textit{system call} viene sfruttata per la
5373   realizzazione di \func{posix\_fallocate} a partire dalla versione 2.10.}
5374
5375 Trattandosi di una funzione di servizio, ed ovviamente disponibile
5376 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
5377 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
5378   in maniera indiretta con l'ausilio di \func{syscall}, vedi
5379   sez.~\ref{sec:proc_syscall}, come \code{long fallocate(int fd, int mode,
5380       loff\_t offset, loff\_t len)}.} ma a partire dalle \acr{glibc} 2.10 è
5381   stato fornito un supporto esplicito; il suo prototipo è:
5382 \begin{functions}
5383   \headdecl{linux/fcntl.h} 
5384
5385   \funcdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
5386
5387   Prealloca dello spazio disco per un file.
5388   
5389   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di errore,
5390     nel qual caso \var{errno} può assumere i valori:
5391     \begin{errlist}
5392     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
5393       valido aperto in scrittura.
5394     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
5395       dimensioni massime di un file. 
5396     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
5397       minore o uguale a zero. 
5398     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
5399       o a una directory. 
5400     \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per l'operazione. 
5401     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
5402       a \param{fd} non supporta \func{fallocate}.
5403     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
5404       a \param{fd} non supporta l'operazione \param{mode}.
5405   \end{errlist} 
5406   ed inoltre \errval{EINTR}, \errval{EIO}.
5407 }
5408 \end{functions}
5409
5410 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
5411 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
5412 modalità di allocazione; al momento quest'ultimo può soltanto essere nullo o
5413 assumere il valore \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la
5414 dimensione del file\footnote{quella ottenuta nel campo \var{st\_size} di una
5415   struttura \struct{stat} dopo una chiamata a \texttt{fstat}.} non venga
5416 modificata anche quando la somma di \param{offset} e \param{len} eccede la
5417 dimensione corrente. 
5418
5419 Se \param{mode} è nullo invece la dimensione totale del file in caso di
5420 estensione dello stesso viene aggiornata, come richiesto per
5421 \func{posix\_fallocate}, ed invocata in questo modo si può considerare
5422 \func{fallocate} come l'implementazione ottimale di \func{posix\_fallocate} a
5423 livello di kernel.
5424
5425 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
5426 % http://kernelnewbies.org/Linux_2_6_23
5427
5428 % TODO non so dove trattarli, ma dal 2.6.39 ci sono i file handle, vedi
5429 % http://lwn.net/Articles/432757/ 
5430
5431
5432 % LocalWords:  dell'I locking multiplexing cap sez system call socket BSD
5433 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
5434 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
5435 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
5436 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
5437 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
5438 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
5439 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
5440 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
5441 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
5442 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
5443 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
5444 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
5445 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
5446 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
5447 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
5448 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
5449 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
5450 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
5451 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
5452 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
5453 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
5454 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
5455 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
5456 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
5457 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
5458 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
5459 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old SFD
5460 % LocalWords:  exec atime ctime mtime mprotect addr mremap address new
5461 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
5462 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
5463 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
5464 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
5465 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
5466 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
5467 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
5468 % LocalWords:  dell'inode CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl
5469 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
5470 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
5471 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
5472 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
5473 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
5474 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
5475 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
5476 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
5477 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
5478 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
5479 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
5480 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs it
5481 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
5482 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat union
5483 % LocalWords:  conditions sigwait CLOEXEC signalfd sizemask SIGKILL SIGSTOP ssi
5484 % LocalWords:  sigwaitinfo FifoReporter Windows ptr sigqueue named timerfd TFD
5485 % LocalWords:  clockid CLOCK MONOTONIC REALTIME itimerspec interval
5486 % LocalWords:  ABSTIME gettime
5487
5488
5489 %%% Local Variables: 
5490 %%% mode: latex
5491 %%% TeX-master: "gapil"
5492 %%% End: