Molte correzioni ed risistemazioni indici. Inizio trattazione dei
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2010 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione avanzata dei file}
12 \label{cha:file_advanced}
13
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \index{file!locking|(}
28
29 In sez.~\ref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
30 sistema unix-like gestisce la condivisione dei file da parte di processi
31 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
32 in \itindex{append~mode} \textit{append mode}, quando più processi scrivono
33 contemporaneamente sullo stesso file non è possibile determinare la sequenza
34 in cui essi opereranno.
35
36 Questo causa la possibilità di una \itindex{race~condition} \textit{race
37   condition}; in generale le situazioni più comuni sono due: l'interazione fra
38 un processo che scrive e altri che leggono, in cui questi ultimi possono
39 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
40 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
41 output sul file.
42
43 In tutti questi casi il \textit{file locking} è la tecnica che permette di
44 evitare le \itindex{race~condition} \textit{race condition}, attraverso una
45 serie di funzioni che permettono di bloccare l'accesso al file da parte di
46 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
47 delle operazioni di lettura o scrittura.
48
49
50 \subsection{L'\textit{advisory locking}}
51 \label{sec:file_record_locking}
52
53 La prima modalità di \textit{file locking} che è stata implementata nei
54 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
55   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
56   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
57   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
58     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
59   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
60     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
61   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
62   riferimento al concetto di \textit{record}, alla fine si è scelto di
63   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
64 processi, e non il sistema, che si incaricano di asserire e verificare se
65 esistono delle condizioni di blocco per l'accesso ai file. 
66
67 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
68 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
69 pertanto è sempre compito dei vari processi che intendono usare il
70 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
71 prima di accedervi, utilizzando le relative funzioni.
72
73 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
74   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
75   nomenclatura inglese di \textit{file lock}, o più brevemente con
76   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
77   processo (cioè la condizione in cui il processo viene posto in stato di
78   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
79 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
80 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
81 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
82 richiedere contemporaneamente uno \textit{shared lock} su un file per
83 proteggere il loro accesso in lettura.
84
85 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
86 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
87 lettura che in scrittura) da parte di altri processi mentre lo si sta
88 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
89 processo alla volta può richiedere un \textit{exclusive lock} su un file per
90 proteggere il suo accesso in scrittura.
91
92 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
93   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
94 \func{flock}, la seconda è quella standardizzata da POSIX.1 (derivata da
95 System V), che è basata sulla funzione \func{fcntl}.  I \textit{file lock}
96 sono implementati in maniera completamente indipendente nelle due
97 interfacce,\footnote{in realtà con Linux questo avviene solo dalla serie 2.0
98   dei kernel.}   che pertanto possono coesistere senza interferenze.
99
100 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
101 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
102 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
103 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
104 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
105 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
106 le operazioni sul file si deve provvedere a rimuovere il blocco. La situazione
107 delle varie possibilità è riassunta in tab.~\ref{tab:file_file_lock}, dove si
108 sono riportati, per le varie tipologie di blocco presenti su un file, il
109 risultato che si ha in corrispondenza alle due tipologie di \textit{file lock}
110 menzionate, nel successo della richiesta.
111
112 \begin{table}[htb]
113   \centering
114   \footnotesize
115    \begin{tabular}[c]{|l|c|c|c|}
116     \hline
117     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
118     \cline{2-4}
119                   &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
120     \hline
121     \hline
122     \textit{Read lock} & SI & SI & NO \\
123     \textit{Write lock}& SI & NO & NO \\
124     \hline    
125   \end{tabular}
126   \caption{Tipologie di \textit{file locking}.}
127   \label{tab:file_file_lock}
128 \end{table}
129
130 Si tenga presente infine che il controllo di accesso e la gestione dei
131 permessi viene effettuata quando si apre un file, l'unico controllo residuo
132 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
133 si vuole ottenere su un file deve essere compatibile con le modalità di
134 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
135 un \textit{write lock}).
136
137 %%  Si ricordi che
138 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
139 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
140 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
141
142
143 \subsection{La funzione \func{flock}} 
144 \label{sec:file_flock}
145
146 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
147 permette di eseguire un blocco solo su un intero file; la funzione usata per
148 richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il suo
149 prototipo è:
150 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
151   
152   Applica o rimuove un \textit{file lock} sul file \param{fd}.
153   
154   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
155     errore, nel qual caso \var{errno} assumerà uno dei valori:
156     \begin{errlist}
157     \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
158       specificato \const{LOCK\_NB}.
159     \end{errlist}
160   }
161 \end{prototype}
162
163 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
164 a seconda di quanto specificato tramite il valore dell'argomento
165 \param{operation}; questo viene interpretato come maschera binaria, e deve
166 essere passato costruendo il valore con un OR aritmetico delle costanti
167 riportate in tab.~\ref{tab:file_flock_operation}.
168
169 \begin{table}[htb]
170   \centering
171   \footnotesize
172   \begin{tabular}[c]{|l|p{6cm}|}
173     \hline
174     \textbf{Valore} & \textbf{Significato} \\
175     \hline
176     \hline
177     \const{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
178     \const{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
179     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
180     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
181                        richiesta di un \textit{file lock}.\\
182     \hline    
183   \end{tabular}
184   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
185   \label{tab:file_flock_operation}
186 \end{table}
187
188 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
189 richiedere un \textit{file lock}, ed ovviamente devono essere usati in maniera
190 alternativa. Se si specifica anche \const{LOCK\_NB} la funzione non si
191 bloccherà qualora il \textit{file lock} non possa essere acquisito, ma
192 ritornerà subito con un errore di \errcode{EWOULDBLOCK}. Per rilasciare un
193 \textit{file lock} si dovrà invece usare \const{LOCK\_UN}.
194
195 Si tenga presente che non esiste una modalità per eseguire atomicamente un
196 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
197   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
198 possibile che nel frattempo abbia successo un'altra richiesta pendente,
199 facendo fallire la riacquisizione.
200
201 Si tenga presente infine che \func{flock} non è supportata per i file
202 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
203 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
204 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
205 NFS, a condizione ovviamente che sia il client che il server supportino questa
206 funzionalità.
207
208 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
209 \textit{file locking} POSIX, in particolare per quanto riguarda il
210 comportamento dei \textit{file lock} nei confronti delle due funzioni
211 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
212 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
213 per entrambe le interfacce.
214
215 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
216 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
217 fondamentale da capire è che un \textit{file lock}, qualunque sia
218 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
219 agisce sempre su un file; perciò le informazioni relative agli eventuali
220 \textit{file lock} sono mantenute a livello di inode\index{inode},\footnote{in
221   particolare, come accennato in fig.~\ref{fig:file_flock_struct}, i
222   \textit{file lock} sono mantenuti in una \itindex{linked~list}
223   \textit{linked list} di strutture \struct{file\_lock}. La lista è
224   referenziata dall'indirizzo di partenza mantenuto dal campo \var{i\_flock}
225   della struttura \struct{inode} (per le definizioni esatte si faccia
226   riferimento al file \file{fs.h} nei sorgenti del kernel).  Un bit del campo
227   \var{fl\_flags} di specifica se si tratta di un lock in semantica BSD
228   (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}  dato che questo è l'unico
229 riferimento in comune che possono avere due processi diversi che aprono lo
230 stesso file.
231
232 \begin{figure}[htb]
233   \centering
234   \includegraphics[width=15cm]{img/file_flock}
235   \caption{Schema dell'architettura del \textit{file locking}, nel caso
236     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
237   \label{fig:file_flock_struct}
238 \end{figure}
239
240 La richiesta di un \textit{file lock} prevede una scansione della lista per
241 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
242 un nuovo elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}
243 Nel caso dei blocchi creati con \func{flock} la semantica della funzione
244 prevede che sia \func{dup} che \func{fork} non creino ulteriori istanze di un
245 \textit{file lock} quanto piuttosto degli ulteriori riferimenti allo
246 stesso. Questo viene realizzato dal kernel secondo lo schema di
247 fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file lock}
248 un puntatore\footnote{il puntatore è mantenuto nel campo \var{fl\_file} di
249   \struct{file\_lock}, e viene utilizzato solo per i \textit{file lock} creati
250   con la semantica BSD.} alla voce nella \itindex{file~table} \textit{file
251   table} da cui si è richiesto il blocco, che così ne identifica il titolare.
252
253 Questa struttura prevede che, quando si richiede la rimozione di un
254 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
255 file descriptor che fa riferimento ad una voce nella \itindex{file~table}
256 \textit{file table} corrispondente a quella registrata nel blocco.  Allora se
257 ricordiamo quanto visto in sez.~\ref{sec:file_dup} e
258 sez.~\ref{sec:file_sharing}, e cioè che i file descriptor duplicati e quelli
259 ereditati in un processo figlio puntano sempre alla stessa voce nella
260 \itindex{file~table} \textit{file table}, si può capire immediatamente quali
261 sono le conseguenze nei confronti delle funzioni \func{dup} e \func{fork}.
262
263 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
264 dei file descriptor che fanno riferimento alla stessa voce nella
265 \itindex{file~table} \textit{file table}, anche se questo è diverso da quello
266 con cui lo si è creato,\footnote{attenzione, questo non vale se il file
267   descriptor fa riferimento allo stesso file, ma attraverso una voce diversa
268   della \itindex{file~table} \textit{file table}, come accade tutte le volte
269   che si apre più volte lo stesso file.} o se si esegue la rimozione in un
270 processo figlio; inoltre una volta tolto un \textit{file lock}, la rimozione
271 avrà effetto su tutti i file descriptor che condividono la stessa voce nella
272 \itindex{file~table} \textit{file table}, e quindi, nel caso di file
273 descriptor ereditati attraverso una \func{fork}, anche su processi diversi.
274
275 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
276 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
277 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
278 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
279 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
280 fintanto che non viene rilasciata la relativa voce nella \itindex{file~table}
281 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
282 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
283 siano duplicati o processi figli che mantengono ancora aperto un file
284 descriptor, il \textit{file lock} non viene rilasciato.
285  
286
287 \subsection{Il \textit{file locking} POSIX}
288 \label{sec:file_posix_lock}
289
290 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
291 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
292 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
293 sez.~\ref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
294 essa viene usata solo secondo il seguente prototipo:
295 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
296   
297   Applica o rimuove un \textit{file lock} sul file \param{fd}.
298   
299   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
300     errore, nel qual caso \var{errno} assumerà uno dei valori:
301     \begin{errlist}
302     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
303       \textit{file lock} da parte di altri processi.
304     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
305       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
306       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
307     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
308       bloccata da un altro processo che è a sua volta in attesa dello sblocco
309       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
310       un \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
311       riconosca sempre questa situazione.
312     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
313       di poter acquisire un \textit{file lock}.
314     \end{errlist}
315     ed inoltre \errval{EBADF}, \errval{EFAULT}.
316   }
317 \end{prototype}
318
319 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
320 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
321 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
322 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
323 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
324 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
325 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
326 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
327 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
328 con un'altra regione bloccata.
329
330 \begin{figure}[!bht]
331   \footnotesize \centering
332   \begin{minipage}[c]{15cm}
333     \includestruct{listati/flock.h}
334   \end{minipage} 
335   \normalsize 
336   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
337     \textit{file locking}.}
338   \label{fig:struct_flock}
339 \end{figure}
340
341
342 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
343 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
344 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
345 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
346 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
347 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
348 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
349 relative descrizioni in sez.~\ref{sec:file_lseek}).
350
351 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
352 regione al di là della corrente fine del file, così che una eventuale
353 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
354 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
355 dimensione massima del file; in questo modo è possibile bloccare una qualunque
356 regione a partire da un certo punto fino alla fine del file, coprendo
357 automaticamente quanto eventualmente aggiunto in coda allo stesso.
358
359 \begin{table}[htb]
360   \centering
361   \footnotesize
362   \begin{tabular}[c]{|l|l|}
363     \hline
364     \textbf{Valore} & \textbf{Significato} \\
365     \hline
366     \hline
367     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
368     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
369     \const{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
370     \hline    
371   \end{tabular}
372   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
373   \label{tab:file_flock_type}
374 \end{table}
375
376 Il tipo di \textit{file lock} richiesto viene specificato dal campo
377 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
378 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
379 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
380 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
381 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
382 \const{F\_GETLK}, e riporta il \acr{pid} del processo che detiene il
383 \textit{file lock}.
384
385 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
386 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
387 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl}, specifica
388 l'azione da compiere; i valori relativi al \textit{file locking} sono tre:
389 \begin{basedescript}{\desclabelwidth{2.0cm}}
390 \item[\const{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
391   struttura puntata da \param{lock} può essere acquisito: in caso negativo
392   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
393   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
394   campo \var{l\_type} con il valore \const{F\_UNLCK}.
395 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
396   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
397   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia. Nel
398   caso la richiesta non possa essere soddisfatta a causa di un blocco
399   preesistente la funzione ritorna immediatamente con un errore di
400   \errcode{EACCES} o di \errcode{EAGAIN}.
401 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
402   non può essere soddisfatta per la presenza di un altro blocco, mette il
403   processo in stato di attesa fintanto che il blocco precedente non viene
404   rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
405   con un errore di \errcode{EINTR}.
406 \end{basedescript}
407
408 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
409 una presenza generica di blocco su un file, perché se ne esistono altri
410 compatibili con quello richiesto, la funzione ritorna comunque impostando
411 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
412 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
413 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
414 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
415 impedisce l'acquisizione di quello richiesto (basta che le regioni si
416 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
417 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
418 per indicare quale è la regione bloccata.
419
420 Infine si tenga presente che effettuare un controllo con il comando
421 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
422 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
423 chiamate) per cui si deve sempre verificare il codice di ritorno di
424 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
425   è comunque una buona norma di programmazione, che permette di evitare un
426   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
427 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
428 stato effettivamente acquisito.
429
430 \begin{figure}[htb]
431   \centering \includegraphics[width=9cm]{img/file_lock_dead}
432   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
433   \label{fig:file_flock_dead}
434 \end{figure}
435
436 Non operando a livello di interi file, il \textit{file locking} POSIX
437 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
438 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
439 processo B la regione 2. Supponiamo che successivamente il processo A richieda
440 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
441 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
442 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
443 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
444 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
445 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
446 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
447 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
448 cerca di acquisire un blocco che porterebbe ad un \itindex{deadlock}
449 \textit{deadlock}.
450
451 Per capire meglio il funzionamento del \textit{file locking} in semantica
452 POSIX (che differisce alquanto rispetto da quello di BSD, visto
453 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
454 kernel. Lo schema delle strutture utilizzate è riportato in
455 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
456 di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
457   sono evidenziati solo i campi di \struct{file\_lock} significativi per la
458   semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
459   \acr{pid} del processo in \var{fl\_pid}, la sezione di file che viene
460   bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
461   comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
462   impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
463   usato.} il blocco è sempre associato \index{inode} all'inode, solo che in
464 questo caso la titolarità non viene identificata con il riferimento ad una
465 voce nella \itindex{file~table} \textit{file table}, ma con il valore del
466 \acr{pid} del processo.
467
468 \begin{figure}[!bht]
469   \centering \includegraphics[width=13cm]{img/file_posix_lock}
470   \caption{Schema dell'architettura del \textit{file locking}, nel caso
471     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
472   \label{fig:file_posix_lock}
473 \end{figure}
474
475 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
476 tutti i blocchi presenti sul file\footnote{scandisce cioè la
477   \itindex{linked~list} \textit{linked list} delle strutture
478   \struct{file\_lock}, scartando automaticamente quelle per cui
479   \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
480   ben separate.}  per verificare se la regione richiesta non si sovrappone ad
481 una già bloccata, in caso affermativo decide in base al tipo di blocco, in
482 caso negativo il nuovo blocco viene comunque acquisito ed aggiunto alla lista.
483
484 Nel caso di rimozione invece questa viene effettuata controllando che il
485 \acr{pid} del processo richiedente corrisponda a quello contenuto nel blocco.
486 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
487 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
488 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
489 figlio avrà un \acr{pid} diverso, mentre passa indenne attraverso una
490 \func{exec} in quanto il \acr{pid} resta lo stesso.  Questo comporta che, al
491 contrario di quanto avveniva con la semantica BSD, quando un processo termina
492 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
493
494 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
495 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
496 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
497 un blocco, dato che quello che conta è solo il \acr{pid} del processo. Da
498 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
499 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
500 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
501 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
502 fossero stati creati usando altri file descriptor che restano aperti.
503
504 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
505 \acr{pid} del processo, possiamo anche prendere in considerazione un altro
506 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
507 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
508 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
509 solo sul \acr{pid} del processo che chiama la funzione, queste richieste
510 avranno sempre successo.
511
512 Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
513 accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
514   cioè si richiede più volte lo stesso \textit{file lock}, o più blocchi sulla
515   stessa sezione di file, le richieste non si cumulano e basta una sola
516   richiesta di rilascio per cancellare il blocco.}  la cosa non ha alcun
517 effetto; la funzione ritorna con successo, senza che il kernel debba
518 modificare la lista dei \textit{file lock}.  In questo caso invece si possono
519 avere una serie di situazioni diverse: ad esempio è possibile rimuovere con
520 una sola chiamata più \textit{file lock} distinti (indicando in una regione
521 che si sovrapponga completamente a quelle di questi ultimi), o rimuovere solo
522 una parte di un blocco preesistente (indicando una regione contenuta in quella
523 di un altro blocco), creando un buco, o coprire con un nuovo blocco altri
524 \textit{file lock} già ottenuti, e così via, a secondo di come si
525 sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
526 comportamento seguito in questo caso che la funzione ha successo ed esegue
527 l'operazione richiesta sulla regione indicata; è compito del kernel
528 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
529   lock} per far si che le regioni bloccate da essa risultanti siano coerenti
530 con quanto necessario a soddisfare l'operazione richiesta.
531
532 \begin{figure}[!htb]
533   \footnotesize \centering
534   \begin{minipage}[c]{15cm}
535     \includecodesample{listati/Flock.c}
536   \end{minipage} 
537   \normalsize 
538   \caption{Sezione principale del codice del programma \file{Flock.c}.}
539   \label{fig:file_flock_code}
540 \end{figure}
541
542 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
543 permette di bloccare una sezione di un file usando la semantica POSIX, o un
544 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
545 riportata il corpo principale del codice del programma, (il testo completo è
546 allegato nella directory dei sorgenti).
547
548 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
549 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
550 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
551 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
552 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
553 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
554   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
555 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
556 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
557 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
558 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
559 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
560 \cmd{-b}.
561
562 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
563 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
564   15--18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
565 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
566 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
567 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
568 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
569 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
570 modalità bloccante.
571
572 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
573 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
574 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
575 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
576 aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
577 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
578 invece che si sia scelta la semantica POSIX le operazioni sono molto più
579 immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
580 esegue (\texttt{\small 41}).
581
582 In entrambi i casi dopo aver richiesto il blocco viene controllato il
583 risultato uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un
584 messaggio (\texttt{\small 47--49}) in caso di successo. Infine il programma si
585 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
586 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
587 tutti i blocchi vengono rilasciati.
588
589 Con il programma possiamo fare varie verifiche sul funzionamento del
590 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
591 file, ad esempio usando all'interno di un terminale il seguente comando:
592
593 \vspace{1mm}
594 \begin{minipage}[c]{12cm}
595 \begin{verbatim}
596 [piccardi@gont sources]$ ./flock -r Flock.c
597 Lock acquired
598 \end{verbatim}%$
599 \end{minipage}\vspace{1mm}
600 \par\noindent
601 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
602 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
603 riguardo alla sezione che si vuole bloccare sono stati usati i valori
604 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
605 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
606 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
607
608 \vspace{1mm}
609 \begin{minipage}[c]{12cm}
610 \begin{verbatim}
611 [piccardi@gont sources]$ ./flock -w Flock.c
612 Failed lock: Resource temporarily unavailable
613 \end{verbatim}%$
614 \end{minipage}\vspace{1mm}
615 \par\noindent
616 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
617 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
618 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
619 del file con il comando:
620
621 \vspace{1mm}
622 \begin{minipage}[c]{12cm}
623 \begin{verbatim}
624 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
625 Failed lock: Resource temporarily unavailable
626 \end{verbatim}%$
627 \end{minipage}\vspace{1mm}
628 \par\noindent
629 se invece blocchiamo una regione con: 
630
631 \vspace{1mm}
632 \begin{minipage}[c]{12cm}
633 \begin{verbatim}
634 [piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
635 Lock acquired
636 \end{verbatim}%$
637 \end{minipage}\vspace{1mm}
638 \par\noindent
639 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
640 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
641 regioni si sovrappongono avremo che:
642
643 \vspace{1mm}
644 \begin{minipage}[c]{12cm}
645 \begin{verbatim}
646 [piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
647 Failed lock: Resource temporarily unavailable
648 \end{verbatim}%$
649 \end{minipage}\vspace{1mm}
650 \par\noindent
651 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
652 avremo che:
653
654 \vspace{1mm}
655 \begin{minipage}[c]{12cm}
656 \begin{verbatim}
657 [piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
658 Lock acquired
659 \end{verbatim}%$
660 \end{minipage}\vspace{1mm}
661 \par\noindent
662 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
663 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
664
665 \vspace{1mm}
666 \begin{minipage}[c]{12cm}
667 \begin{verbatim}
668 [piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
669 Failed lock: Resource temporarily unavailable
670 \end{verbatim}%$
671 \end{minipage}\vspace{1mm}
672 \par\noindent
673 come ci aspettiamo questo non sarà consentito.
674
675 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
676 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
677 bloccante, riproviamo allora a ripetere le prove precedenti con questa
678 opzione:
679
680 \vspace{1mm}
681 \begin{minipage}[c]{12cm}
682 \begin{verbatim}
683 [piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
684 \end{verbatim}%$
685 \end{minipage}\vspace{1mm}
686 \par\noindent
687 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
688 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
689 essere acquisito otterremo:
690
691 \vspace{1mm}
692 \begin{minipage}[c]{12cm}
693 \begin{verbatim}
694 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
695 \end{verbatim}%$
696 \end{minipage}\vspace{1mm}
697 \par\noindent
698 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
699 punto rilasciamo il precedente blocco (terminando il primo comando un
700 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
701 blocco viene acquisito, con la comparsa di una nuova riga:
702
703 \vspace{1mm}
704 \begin{minipage}[c]{12cm}
705 \begin{verbatim}
706 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
707 Lock acquired
708 \end{verbatim}%$
709 \end{minipage}\vspace{3mm}
710 \par\noindent
711
712 Un'altra cosa che si può controllare con il nostro programma è l'interazione
713 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
714 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
715 succede quando si cerca di ottenere un blocco in scrittura con la semantica
716 BSD:
717
718 \vspace{1mm}
719 \begin{minipage}[c]{12cm}
720 \begin{verbatim}
721 [root@gont sources]# ./flock -f -w Flock.c
722 Lock acquired
723 \end{verbatim}
724 \end{minipage}\vspace{1mm}
725 \par\noindent
726 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
727 questo motivo occorre sempre tenere presente quale fra le due semantiche
728 disponibili stanno usando i programmi con cui si interagisce, dato che i
729 blocchi applicati con l'altra non avrebbero nessun effetto.
730
731
732
733 \subsection{La funzione \func{lockf}}
734 \label{sec:file_lockf}
735
736 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
737 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
738 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
739 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
740 che utilizza la funzione \funcd{lockf}, il cui prototipo è:
741 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
742   
743   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
744   
745   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
746     errore, nel qual caso \var{errno} assumerà uno dei valori:
747     \begin{errlist}
748     \item[\errcode{EWOULDBLOCK}] non è possibile acquisire il lock, e si è
749       selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
750       file è mappato in memoria.
751     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
752       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
753       dei \textit{file lock}.
754     \end{errlist}
755     ed inoltre \errval{EBADF}, \errval{EINVAL}.
756   }
757 \end{prototype}
758
759 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
760 che specifica quale azione eseguire; i valori possibili sono riportati in
761 tab.~\ref{tab:file_lockf_type}.
762
763 \begin{table}[htb]
764   \centering
765   \footnotesize
766   \begin{tabular}[c]{|l|p{7cm}|}
767     \hline
768     \textbf{Valore} & \textbf{Significato} \\
769     \hline
770     \hline
771     \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
772                       mantenere un blocco condiviso sullo stesso file.\\
773     \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
774                       alla volta può mantenere un blocco esclusivo su un file.\\
775     \const{LOCK\_UN}& Sblocca il file.\\
776     \const{LOCK\_NB}& Non blocca la funzione quando il blocco non è disponibile,
777                       si specifica sempre insieme ad una delle altre operazioni
778                       con un OR aritmetico dei valori.\\ 
779     \hline    
780   \end{tabular}
781   \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
782   \label{tab:file_lockf_type}
783 \end{table}
784
785 Qualora il blocco non possa essere acquisito, a meno di non aver specificato
786 \const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
787 Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
788 delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
789 affatto equivalente a \func{flock}).
790
791
792
793 \subsection{Il \textit{mandatory locking}}
794 \label{sec:file_mand_locking}
795
796 \itindbeg{mandatory~locking|(}
797
798 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
799 per introdurre un \textit{file locking} che, come dice il nome, fosse
800 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
801 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
802 direttamente al sistema, così che, anche qualora non si predisponessero le
803 opportune verifiche nei processi, questo verrebbe comunque rispettato.
804
805 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
806 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
807 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
808 utilizzato per cambiare il group-ID effettivo con cui viene eseguito un
809 programma, ed è pertanto sempre associato alla presenza del permesso di
810 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
811 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
812 quest'ultimo venga attivato per il file in questione. In questo modo una
813 combinazione dei permessi originariamente non contemplata, in quanto senza
814 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
815   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
816   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
817   cancellato (come misura di sicurezza) quando di scrive su un file, questo
818   non vale quando esso viene utilizzato per attivare il \textit{mandatory
819     locking}.}
820
821 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
822 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
823 un processo che blocchi un file cruciale può renderlo completamente
824 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
825   problema si potrebbe risolvere rimuovendo il bit \itindex{sgid~bit}
826   \acr{sgid}, ma non è detto che sia così facile fare questa operazione con un
827   sistema bloccato.}  inoltre con il \textit{mandatory locking} si può
828 bloccare completamente un server NFS richiedendo una lettura su un file su cui
829 è attivo un blocco. Per questo motivo l'abilitazione del \textit{mandatory
830   locking} è di norma disabilitata, e deve essere attivata filesystem per
831 filesystem in fase di montaggio (specificando l'apposita opzione di
832 \func{mount} riportata in tab.~\ref{tab:sys_mount_flags}, o con l'opzione
833 \code{-o mand} per il comando omonimo).
834
835 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
836 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
837 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
838 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
839 per \func{fcntl}.
840
841 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
842 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
843 \textit{mandatory lock} attivato non è più necessario controllare la
844 disponibilità di accesso al file, ma si potranno usare direttamente le
845 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
846 direttamente il \textit{file locking}.
847
848 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
849 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
850 fino al rilascio del blocco, a meno di non aver aperto il file con
851 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
852 di \errcode{EAGAIN}.
853
854 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
855 scrivere sulla regione del file bloccata fermeranno il processo fino al
856 rilascio del blocco, a meno che il file non sia stato aperto con
857 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
858 con l'errore di \errcode{EAGAIN}.
859
860 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
861 sole ad operare sui contenuti di un file, e che sia \func{creat} che
862 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
863 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
864 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
865 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
866 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
867 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
868 dimensioni del file vada a sovrapporsi ad una regione bloccata).
869
870 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
871 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
872 abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso
873 infatti, quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si
874 ha un accesso al contenuto del file. Lo standard SVID prevede che sia
875 impossibile eseguire il memory mapping di un file su cui sono presenti dei
876 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
877   impediscono anche in caso di \textit{advisory locking}, anche se questo
878   comportamento non ha molto senso, dato che comunque qualunque accesso
879   diretto al file è consentito.} in Linux è stata però fatta la scelta
880 implementativa\footnote{per i dettagli si possono leggere le note relative
881   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
882   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
883 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
884 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
885 possibilità di modificare il file.
886
887 \index{file!locking|)}
888
889 \itindend{mandatory~locking|(}
890
891
892 \section{L'\textit{I/O multiplexing}}
893 \label{sec:file_multiplexing}
894
895
896 Uno dei problemi che si presentano quando si deve operare contemporaneamente
897 su molti file usando le funzioni illustrate in
898 cap.~\ref{cha:file_unix_interface} e cap.~\ref{cha:files_std_interface} è che
899 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
900 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
901 problema. In questa sezione forniremo una introduzione a questa problematica
902 ed analizzeremo le varie funzioni usate per implementare questa modalità di
903 I/O.
904
905
906 \subsection{La problematica dell'\textit{I/O multiplexing}}
907 \label{sec:file_noblocking}
908
909 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
910 \textit{fast} e \textit{slow} system call,\index{system~call~lente} che in
911 certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
912   ricordi però che questo può accadere solo per le pipe, i socket ed alcuni
913   file di dispositivo\index{file!di~dispositivo}; sui file normali le funzioni
914   di lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni
915 di lettura possono bloccarsi quando non ci sono dati disponibili sul
916 descrittore su cui si sta operando.
917
918 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
919 affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
920 più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
921 possibile prevedere quando questo può avvenire (il caso più classico è quello
922 di un server in attesa di dati in ingresso da vari client). Quello che può
923 accadere è di restare bloccati nell'eseguire una operazione su un file
924 descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
925 altro disponibile. Questo comporta nel migliore dei casi una operazione
926 ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
927 nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
928 da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
929 potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
930
931 Abbiamo già accennato in sez.~\ref{sec:file_open} che è possibile prevenire
932 questo tipo di comportamento delle funzioni di I/O aprendo un file in
933 \textsl{modalità non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK}
934 nella chiamata di \func{open}. In questo caso le funzioni di input/output
935 eseguite sul file che si sarebbero bloccate, ritornano immediatamente,
936 restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa modalità di I/O
937 permette di risolvere il problema controllando a turno i vari file descriptor,
938 in un ciclo in cui si ripete l'accesso fintanto che esso non viene garantito.
939 Ovviamente questa tecnica, detta \itindex{polling} \textit{polling}, è
940 estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
941 eseguire in continuazione delle system call che nella gran parte dei casi
942 falliranno.
943
944 Per superare questo problema è stato introdotto il concetto di \textit{I/O
945   multiplexing}, una nuova modalità di operazioni che consente di tenere sotto
946 controllo più file descriptor in contemporanea, permettendo di bloccare un
947 processo quando le operazioni volute non sono possibili, e di riprenderne
948 l'esecuzione una volta che almeno una di quelle richieste sia effettuabile, in
949 modo da poterla eseguire con la sicurezza di non restare bloccati.
950
951 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
952 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
953 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
954 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
955 ulteriori dettagli e qualche esempio di utilizzo concreto in
956 sez.~\ref{sec:TCP_sock_multiplexing}.
957
958
959 \subsection{Le funzioni \func{select} e \func{pselect}}
960 \label{sec:file_select}
961
962 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
963   multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
964   BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
965   supportano i socket, compreso le varianti di System V.}  con la funzione
966 \funcd{select}, il cui prototipo è:
967 \begin{functions}
968   \headdecl{sys/time.h}
969   \headdecl{sys/types.h}
970   \headdecl{unistd.h}
971   \funcdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
972     *exceptfds, struct timeval *timeout)}
973   
974   Attende che uno dei file descriptor degli insiemi specificati diventi
975   attivo.
976   
977   \bodydesc{La funzione in caso di successo restituisce il numero di file
978     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
979     caso \var{errno} assumerà uno dei valori:
980   \begin{errlist}
981   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
982     degli insiemi.
983   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
984   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
985     o un valore non valido per \param{timeout}.
986   \end{errlist}
987   ed inoltre \errval{ENOMEM}.
988 }
989 \end{functions}
990
991 La funzione mette il processo in stato di \textit{sleep} (vedi
992 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
993 degli insiemi specificati (\param{readfds}, \param{writefds} e
994 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
995 \param{timeout}.
996
997 \itindbeg{file~descriptor~set} 
998
999 Per specificare quali file descriptor si intende selezionare la funzione usa
1000 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1001 \type{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1002 maniera analoga a come un \itindex{signal~set} \textit{signal set} (vedi
1003 sez.~\ref{sec:sig_sigset}) identifica un insieme di segnali. Per la
1004 manipolazione di questi \textit{file descriptor set} si possono usare delle
1005 opportune macro di preprocessore:
1006 \begin{functions}
1007   \headdecl{sys/time.h}
1008   \headdecl{sys/types.h}
1009   \headdecl{unistd.h}
1010   \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
1011   Inizializza l'insieme (vuoto).
1012
1013   \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
1014   Inserisce il file descriptor \param{fd} nell'insieme.
1015
1016   \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
1017   Rimuove il file descriptor \param{fd} dall'insieme.
1018   
1019   \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
1020   Controlla se il file descriptor \param{fd} è nell'insieme.
1021 \end{functions}
1022
1023 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1024 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1025 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
1026   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
1027 quando, come nelle versioni più recenti del kernel, questo limite è stato
1028 rimosso, esso indica le dimensioni massime dei numeri usati nei \textit{file
1029   descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
1030   1003.1-2001, è definito in \file{sys/select.h}, ed è pari a 1024.} 
1031
1032 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1033 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1034 inizializzato può dar luogo a comportamenti non prevedibili; allo stesso modo
1035 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1036 eccede \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1037
1038 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1039 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1040 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1041   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1042   bloccante, quindi anche in caso di \textit{end-of-file}; inoltre con Linux
1043   possono verificarsi casi particolari, ad esempio quando arrivano dati su un
1044   socket dalla rete che poi risultano corrotti e vengono scartati, può
1045   accadere che \func{select} riporti il relativo file descriptor come
1046   leggibile, ma una successiva \func{read} si blocchi.} il secondo,
1047 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1048 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i
1049 dati urgenti \itindex{out-of-band} su un socket, vedi
1050 sez.~\ref{sec:TCP_urgent_data}).
1051
1052 Dato che in genere non si tengono mai sotto controllo fino a
1053 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
1054 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1055 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1056 e far controllare al kernel una quantità di memoria superiore a quella
1057 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1058 deve corrispondere al valore massimo aumentato di uno.\footnote{si ricordi che
1059   i file descriptor sono numerati progressivamente a partire da zero, ed il
1060   valore indica il numero più alto fra quelli da tenere sotto controllo;
1061   dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore
1062   comune.}  
1063
1064 Infine l'argomento \param{timeout}, espresso con una struttura di tipo
1065 \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un tempo
1066 massimo di attesa prima che la funzione ritorni; se impostato a \val{NULL} la
1067 funzione attende indefinitamente. Si può specificare anche un tempo nullo
1068 (cioè una struttura \struct{timeval} con i campi impostati a zero), qualora si
1069 voglia semplicemente controllare lo stato corrente dei file descriptor.
1070
1071 La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
1072   il comportamento previsto dallo standard, ma la standardizzazione della
1073   funzione è recente, ed esistono ancora alcune versioni di Unix che non si
1074   comportano in questo modo.}  e ciascun insieme viene sovrascritto per
1075 indicare quali sono i file descriptor pronti per le operazioni ad esso
1076 relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
1077 ha un timeout viene restituito un valore nullo e gli insiemi non vengono
1078 modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
1079 insiemi sono indefiniti e non si può fare nessun affidamento sul loro
1080 contenuto.
1081
1082 \itindend{file~descriptor~set}
1083
1084 Una volta ritornata la funzione si potrà controllare quali sono i file
1085 descriptor pronti ed operare su di essi, si tenga presente però che si tratta
1086 solo di un suggerimento, esistono infatti condizioni\footnote{ad esempio
1087   quando su un socket arrivano dei dati che poi vengono scartati perché
1088   corrotti.} in cui \func{select} può riportare in maniera spuria che un file
1089 descriptor è pronto in lettura, quando una successiva lettura si bloccherebbe.
1090 Per questo quando si usa \textit{I/O multiplexing} è sempre raccomandato l'uso
1091 delle funzioni di lettura e scrittura in modalità non bloccante.
1092
1093 In Linux \func{select} modifica anche il valore di \param{timeout},
1094 impostandolo al tempo restante, quando la funzione viene interrotta da un
1095 segnale. In tal caso infatti si ha un errore di \errcode{EINTR}, ed occorre
1096 rilanciare la funzione; in questo modo non è necessario ricalcolare tutte le
1097 volte il tempo rimanente. Questo può causare problemi di portabilità sia
1098 quando si usa codice scritto su Linux che legge questo valore, sia quando si
1099 usano programmi scritti per altri sistemi che non dispongono di questa
1100 caratteristica e ricalcolano \param{timeout} tutte le volte.\footnote{in
1101   genere questa caratteristica è disponibile nei sistemi che derivano da
1102   System V e non è disponibile per quelli che derivano da BSD; lo standard
1103   POSIX.1-2001 non permette questo comportamento.}
1104
1105 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1106 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1107 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1108 tale valore, e per capire quali sono i file descriptor da tenere sotto
1109 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1110 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1111 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1112
1113 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1114 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1115 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1116 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1117 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1118 estesa, con ulteriori perdite di prestazioni. 
1119
1120 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1121   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1122 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1123 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1124 vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
1125 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1126 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1127   l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
1128   2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
1129   \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
1130   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1131   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1132   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1133   maggiore di 600.} il cui prototipo è:
1134 \begin{prototype}{sys/select.h}
1135   {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
1136     struct timespec *timeout, sigset\_t *sigmask)}
1137   
1138   Attende che uno dei file descriptor degli insiemi specificati diventi
1139   attivo.
1140   
1141   \bodydesc{La funzione in caso di successo restituisce il numero di file
1142     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
1143     caso \var{errno} assumerà uno dei valori:
1144   \begin{errlist}
1145   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1146     degli insiemi.
1147   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1148   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1149     o un valore non valido per \param{timeout}.
1150   \end{errlist}
1151   ed inoltre \errval{ENOMEM}.}
1152 \end{prototype}
1153
1154 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1155 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1156 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1157 caso di interruzione.\footnote{in realtà la system call di Linux aggiorna il
1158   valore al tempo rimanente, ma la funzione fornita dalle \acr{glibc} modifica
1159   questo comportamento passando alla system call una variabile locale, in modo
1160   da mantenere l'aderenza allo standard POSIX che richiede che il valore di
1161   \param{timeout} non sia modificato.} Inoltre prende un argomento aggiuntivo
1162 \param{sigmask} che è il puntatore ad una maschera di segnali (si veda
1163 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
1164 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
1165 funzione.
1166
1167 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1168 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
1169 attesa sia di un segnale che di dati. La tecnica classica è quella di
1170 utilizzare il gestore per impostare una variabile globale e controllare questa
1171 nel corpo principale del programma; abbiamo visto in
1172 sez.~\ref{sec:sig_example} come questo lasci spazio a possibili race
1173 condition, per cui diventa essenziale utilizzare \func{sigprocmask} per
1174 disabilitare la ricezione del segnale prima di eseguire il controllo e
1175 riabilitarlo dopo l'esecuzione delle relative operazioni, onde evitare
1176 l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe perso.
1177
1178 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
1179 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1180 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1181 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1182 alla gestione dati con un ciclo del tipo:
1183 \includecodesnip{listati/select_race.c} 
1184 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
1185 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
1186 interrotta, e la ricezione del segnale non sarà rilevata.
1187
1188 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1189 \param{sigmask} permette di riabilitare la ricezione il segnale
1190 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1191   kernel 2.6.16, non era presente la relativa system call, e la funzione era
1192   implementata nelle \acr{glibc} attraverso \func{select} (vedi \texttt{man
1193     select\_tut}) per cui la possibilità di \itindex{race~condition}
1194   \textit{race condition} permaneva; in tale situazione si può ricorrere ad una
1195   soluzione alternativa, chiamata \itindex{self-pipe trick} \textit{self-pipe
1196     trick}, che consiste nell'aprire una pipe (vedi sez.~\ref{sec:ipc_pipes})
1197   ed usare \func{select} sul capo in lettura della stessa; si può indicare
1198   l'arrivo di un segnale scrivendo sul capo in scrittura all'interno del
1199   gestore dello stesso; in questo modo anche se il segnale va perso prima
1200   della chiamata di \func{select} questa lo riconoscerà comunque dalla
1201   presenza di dati sulla pipe.} ribloccandolo non appena essa ritorna, così
1202 che il precedente codice potrebbe essere riscritto nel seguente modo:
1203 \includecodesnip{listati/pselect_norace.c} 
1204 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1205 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1206 interruzione si potranno eseguire le relative operazioni.
1207
1208
1209 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1210 \label{sec:file_poll}
1211
1212 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1213 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
1214 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
1215   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
1216   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
1217 cui prototipo è:
1218 \begin{prototype}{sys/poll.h}
1219   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
1220   
1221   La funzione attende un cambiamento di stato su un insieme di file
1222   descriptor.
1223   
1224   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1225     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1226     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1227   \begin{errlist}
1228   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1229     degli insiemi.
1230   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1231   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1232     \macro{RLIMIT\_NOFILE}.
1233   \end{errlist}
1234   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1235 \end{prototype}
1236
1237 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1238 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1239 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1240 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1241 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1242 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1243 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
1244 \textsl{non-bloccante}).
1245
1246 Per ciascun file da controllare deve essere inizializzata una struttura
1247 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1248 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1249 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1250 descriptor da controllare, in \var{events} deve essere specificata una
1251 maschera binaria di flag che indichino il tipo di evento che si vuole
1252 controllare, mentre in \var{revents} il kernel restituirà il relativo
1253 risultato.  Usando un valore negativo per \param{fd} la corrispondente
1254 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
1255 tutto indipendenti da quelli in uscita (che vengono restituiti in
1256 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1257 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1258
1259 \begin{figure}[!htb]
1260   \footnotesize \centering
1261   \begin{minipage}[c]{15cm}
1262     \includestruct{listati/pollfd.h}
1263   \end{minipage} 
1264   \normalsize 
1265   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1266     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1267   \label{fig:file_pollfd}
1268 \end{figure}
1269
1270 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1271 binarie dei campi \var{events} e \var{revents} sono riportati in
1272 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1273 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
1274 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
1275 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
1276 nel campo \var{revents} per notificare delle condizioni di errore. 
1277
1278 \begin{table}[htb]
1279   \centering
1280   \footnotesize
1281   \begin{tabular}[c]{|l|l|}
1282     \hline
1283     \textbf{Flag}  & \textbf{Significato} \\
1284     \hline
1285     \hline
1286     \const{POLLIN}    & È possibile la lettura.\\
1287     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1288     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1289     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
1290                         urgenti.\\ 
1291     \hline
1292     \const{POLLOUT}   & È possibile la scrittura immediata.\\
1293     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1294     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1295     \hline
1296     \const{POLLERR}   & C'è una condizione di errore.\\
1297     \const{POLLHUP}   & Si è verificato un hung-up.\\
1298     \const{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1299                         socket.\footnotemark\\ 
1300     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
1301     \hline
1302     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
1303     \hline    
1304   \end{tabular}
1305   \caption{Costanti per l'identificazione dei vari bit dei campi
1306     \var{events} e \var{revents} di \struct{pollfd}.}
1307   \label{tab:file_pollfd_flags}
1308 \end{table}
1309
1310 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1311   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1312   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1313   socket, situazione che si viene chiamata appunto \itindex{half-close}
1314   \textit{half-close} (\textsl{mezza chiusura}) su cui torneremo con maggiori
1315   dettagli in sez.~\ref{sec:TCP_shutdown}.}
1316
1317 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1318 compatibilità con l'implementazione di SysV che usa gli
1319 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
1320   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
1321   delle librerie standard del C.} è da questi che derivano i nomi di alcune
1322 costanti, in quanto per essi sono definite tre classi di dati:
1323 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
1324 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
1325 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
1326 reagisce alle varie condizioni dei socket torneremo in
1327 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
1328
1329 Si tenga conto comunque che le costanti relative ai diversi tipi di dati
1330 normali e prioritari, vale a dire \const{POLLRDNORM}, \const{POLLWRNORM},
1331 \const{POLLRDBAND} e \const{POLLWRBAND} fanno riferimento alle implementazioni
1332 in stile SysV (in particolare le ultime due non vengono usate su Linux), e
1333 sono utilizzabili soltanto qualora si sia definita la macro
1334 \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
1335   file, definirla soltanto prima di includere \file{sys/poll.h} non è
1336   sufficiente.}
1337
1338 In caso di successo funzione ritorna restituendo il numero di file (un valore
1339 positivo) per i quali si è verificata una delle condizioni di attesa richieste
1340 o per i quali si è verificato un errore, nel qual caso vengono utilizzati i
1341 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}. Un
1342 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
1343 indica un errore nella chiamata, il cui codice viene riportato al solito
1344 tramite \var{errno}.
1345
1346 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1347 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1348 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1349 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
1350 \textit{file descriptor set} e la dimensione dei dati passati al kernel
1351 dipende solo dal numero dei file descriptor che si vogliono controllare, non
1352 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
1353     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
1354   qualora si debba osservare un solo file descriptor con un valore molto alto
1355   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
1356   memoria.}
1357
1358 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
1359   descriptor set} è usato sia in ingresso che in uscita, e questo significa
1360 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
1361 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
1362 da tenere sotto osservazione sono molti, non è invece necessaria con
1363 \func{poll}.
1364
1365 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1366 variante di \func{select} che consente di gestire correttamente la ricezione
1367 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1368 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1369 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1370
1371 In questo caso si tratta di una estensione che è specifica di Linux e non è
1372 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1373 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1374 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1375 prototipo è:
1376 \begin{prototype}{sys/poll.h}
1377   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
1378     const sigset\_t *sigmask)}
1379   
1380   La funzione attende un cambiamento di stato su un insieme di file
1381   descriptor.
1382   
1383   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1384     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1385     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1386   \begin{errlist}
1387   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1388     degli insiemi.
1389   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1390   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1391     \macro{RLIMIT\_NOFILE}.
1392   \end{errlist}
1393   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1394 \end{prototype}
1395
1396 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1397 specificare, con l'argomento \param{sigmask}, il puntatore ad una maschera di
1398 segnali; questa sarà la maschera utilizzata per tutto il tempo che la funzione
1399 resterà in attesa, all'uscita viene ripristinata la maschera originale.  L'uso
1400 di questa funzione è cioè equivalente, come illustrato nella pagina di
1401 manuale, all'esecuzione atomica del seguente codice:
1402 \includecodesnip{listati/ppoll_means.c} 
1403
1404 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1405 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1406 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1407 risultati illustrati in precedenza. Come nel caso di \func{pselect} la system
1408 call che implementa \func{ppoll} restituisce, se la funzione viene interrotta
1409 da un segnale, il tempo mancante in \param{timeout}, e come per \func{pselect}
1410 la funzione di libreria fornita dalle \acr{glibc} maschera questo
1411 comportamento non modificando mai il valore di \param{timeout}.\footnote{anche
1412   se in questo caso non esiste nessuno standard che richiede questo
1413   comportamento.}
1414
1415
1416 \subsection{L'interfaccia di \textit{epoll}}
1417 \label{sec:file_epoll}
1418
1419 \itindbeg{epoll}
1420
1421 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1422 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1423 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1424   viene scartata a priori, perché può avvenire che il numero di file
1425   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
1426   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
1427 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
1428 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
1429 numero di file descriptor osservati, non a quelli che presentano attività.
1430
1431 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1432 eventi al secondo,\footnote{il caso classico è quello di un server web di un
1433   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
1434 trasferire avanti ed indietro da user space a kernel space la lunga lista
1435 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1436 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1437 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1438 per determinare quali di essi (in genere una piccola percentuale) sono
1439 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1440 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1441 bottiglia che degrada irrimediabilmente le prestazioni.
1442
1443 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1444 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
1445   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
1446 informazioni relative ai file descriptor osservati che presentano una
1447 attività, evitando così le problematiche appena illustrate. In genere queste
1448 prevedono che si registrino una sola volta i file descriptor da tenere sotto
1449 osservazione, e forniscono un meccanismo che notifica quali di questi
1450 presentano attività.
1451
1452 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1453 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1454   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1455   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1456   nell'elettronica digitale.} In questa modalità vengono notificati i file
1457 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1458 avviene indipendentemente dalle operazioni che possono essere state fatte su
1459 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1460 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1461 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1462 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1463 \textit{level triggered} questo sarà nuovamente notificato come
1464 \textsl{pronto}.
1465
1466 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1467 vengano notificati solo i file descriptor che hanno subito una transizione da
1468 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1469 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1470 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1471 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1472 byte. Solo una volta che si saranno esauriti tutti i byte disponibili, e che
1473 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1474 ulteriore notifica qualora ritornasse pronto.
1475
1476 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1477 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
1478   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
1479   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
1480 discussione altre interfacce con le quali si potranno effettuare lo stesso
1481 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
1482   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
1483   fornisce un sistema di notifica di eventi generico in grado di fornire le
1484   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
1485   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
1486 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
1487
1488 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
1489 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1490 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
1491   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
1492   file.} ma poi si è passati all'uso una apposita \textit{system call}.  Il
1493 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello di
1494 chiamare la funzione \funcd{epoll\_create}, il cui prototipo è:
1495 \begin{prototype}{sys/epoll.h}
1496   {int epoll\_create(int size)}
1497   
1498   Apre un file descriptor per \textit{epoll}.
1499   
1500   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
1501     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1502   \begin{errlist}
1503   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1504     positivo.
1505   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1506     nel sistema.
1507   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1508     l'istanza.
1509   \end{errlist}
1510 }
1511 \end{prototype}
1512
1513 La funzione restituisce un file descriptor speciale,\footnote{esso non è
1514   associato a nessun file su disco, inoltre a differenza dei normali file
1515   descriptor non può essere inviato ad un altro processo attraverso un socket
1516   locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche \textit{epoll
1517   descriptor}, che viene associato alla infrastruttura utilizzata dal kernel
1518 per gestire la notifica degli eventi; l'argomento \param{size} serve a dare
1519 l'indicazione del numero di file descriptor che si vorranno tenere sotto
1520 controllo, ma costituisce solo un suggerimento per semplificare l'allocazione
1521 di risorse sufficienti, non un valore massimo.
1522
1523 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1524 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1525 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
1526 \funcd{epoll\_ctl}, il cui prototipo è:
1527 \begin{prototype}{sys/epoll.h}
1528   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1529   
1530   Esegue le operazioni di controllo di \textit{epoll}.
1531   
1532   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
1533     errore, nel qual caso \var{errno} assumerà uno dei valori:
1534   \begin{errlist}
1535   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
1536     validi.
1537   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1538     \param{fd} è già stato inserito in \param{epfd}.
1539   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1540     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1541     l'operazione richiesta con \param{op} non è supportata.
1542   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1543     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1544   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1545     l'operazione richiesta.
1546   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
1547   \end{errlist}
1548 }
1549 \end{prototype}
1550
1551 Il comportamento della funzione viene controllato dal valore dall'argomento
1552 \param{op} che consente di specificare quale operazione deve essere eseguita.
1553 Le costanti che definiscono i valori utilizzabili per \param{op}
1554 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1555 delle operazioni cui fanno riferimento.
1556
1557 \begin{table}[htb]
1558   \centering
1559   \footnotesize
1560   \begin{tabular}[c]{|l|p{8cm}|}
1561     \hline
1562     \textbf{Valore}  & \textbf{Significato} \\
1563     \hline
1564     \hline
1565     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1566                              \param{fd} alla lista dei file descriptor
1567                              controllati tramite \param{epfd}, in
1568                              \param{event} devono essere specificate le
1569                              modalità di osservazione.\\
1570     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1571                              descriptor \param{fd} secondo il contenuto di
1572                              \param{event}.\\
1573     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1574                              dei file controllati tramite \param{epfd}.\\
1575     \hline    
1576   \end{tabular}
1577   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1578     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1579   \label{tab:epoll_ctl_operation}
1580 \end{table}
1581
1582 La funzione prende sempre come primo argomento un file descriptor di
1583 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
1584 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
1585 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
1586 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
1587 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1588
1589 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1590 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1591 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1592 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1593 sotto controllo.  L'argomento viene ignorato con l'operazione
1594 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1595   che questo fosse un puntatore valido, anche se poi veniva ignorato, a
1596   partire dal 2.6.9 si può specificare anche un valore \texttt{NULL}.}
1597
1598 \begin{figure}[!htb]
1599   \footnotesize \centering
1600   \begin{minipage}[c]{15cm}
1601     \includestruct{listati/epoll_event.h}
1602   \end{minipage} 
1603   \normalsize 
1604   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1605     gli eventi associati ad un file descriptor controllato con
1606     \textit{epoll}.}
1607   \label{fig:epoll_event}
1608 \end{figure}
1609
1610 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1611 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1612 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1613 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1614 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1615
1616 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1617 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1618 deve essere specificato come OR aritmetico delle costanti riportate in
1619 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, serve ad indicare a
1620 quale file descriptor si intende fare riferimento, ed in astratto può
1621 contenere un valore qualsiasi che permetta di identificarlo, di norma comunque
1622 si usa come valore lo stesso \param{fd}.
1623
1624 \begin{table}[htb]
1625   \centering
1626   \footnotesize
1627   \begin{tabular}[c]{|l|p{8cm}|}
1628     \hline
1629     \textbf{Valore}  & \textbf{Significato} \\
1630     \hline
1631     \hline
1632     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1633                           (analogo di \const{POLLIN}).\\
1634     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1635                           (analogo di \const{POLLOUT}).\\
1636     \const{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1637                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1638                           ha chiuso la connessione o il capo in scrittura
1639                           della stessa (vedi sez.~\ref{sec:TCP_shutdown}).\\
1640     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
1641                           disponibili in lettura (analogo di
1642                           \const{POLLPRI}); questa condizione viene comunque
1643                           riportata in uscita, e non è necessaria impostarla
1644                           in ingresso.\\ 
1645     \const{EPOLLERR}    & Si è verificata una condizione di errore 
1646                           (analogo di \const{POLLERR}); questa condizione
1647                           viene comunque riportata in uscita, e non è
1648                           necessaria impostarla in ingresso.\\
1649     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up.\\
1650     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1651                             triggered} per il file descriptor associato.\\ 
1652     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1653                           descriptor associato.\footnotemark\\
1654     \hline    
1655   \end{tabular}
1656   \caption{Costanti che identificano i bit del campo \param{events} di
1657     \struct{epoll\_event}.}
1658   \label{tab:epoll_events}
1659 \end{table}
1660
1661 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.2.}
1662
1663 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1664 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
1665 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
1666 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
1667   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
1668   una perdita di prestazioni qualora il numero di file descriptor sia molto
1669   grande; per questo è stato proposto di introdurre come estensione una
1670   funzione \func{epoll\_ctlv} che consenta di effettuare con una sola chiamata
1671   le impostazioni per un blocco di file descriptor.} L'uso di
1672 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1673 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1674 osservazione.
1675
1676 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1677 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1678 descriptor non si sia impostata la modalità \textit{edge triggered},
1679 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
1680 presente che è possibile tenere sotto osservazione uno stesso file descriptor
1681 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
1682 notifiche, anche se questa pratica è sconsigliata.
1683
1684 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
1685 si può rimuovere dalla lista associata a \param{epfd} con
1686 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
1687 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
1688 non è necessario usare \const{EPOLL\_CTL\_DEL}.
1689
1690 Infine una particolare modalità di notifica è quella impostata con
1691 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1692 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1693 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
1694   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
1695 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
1696 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
1697   logica \textit{edge triggered}.} 
1698
1699 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1700 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1701 notifica di un evento viene effettuata una sola volta, dopo di che il file
1702 descriptor osservato, pur restando nella lista di osservazione, viene
1703 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
1704   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
1705 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
1706 chiamata con \const{EPOLL\_CTL\_MOD}.
1707
1708 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1709 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
1710 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1711 \begin{prototype}{sys/epoll.h}
1712   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
1713     timeout)}
1714   
1715   Attende che uno dei file descriptor osservati sia pronto.
1716   
1717   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1718     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1719     assumerà uno dei valori:
1720   \begin{errlist}
1721   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1722   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1723   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1724     della scadenza di \param{timeout}.
1725   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1726     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1727   \end{errlist}
1728 }
1729 \end{prototype}
1730
1731 La funzione si blocca in attesa di un evento per i file descriptor registrati
1732 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1733 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1734 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1735 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1736 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1737 con l'argomento \param{maxevents}.
1738
1739 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1740 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1741 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1742 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
1743   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
1744 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
1745 un intero positivo.
1746
1747 Come accennato la funzione restituisce i suoi risultati nel vettore di
1748 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1749 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1750 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1751 stato impostato per il file descriptor per cui si è verificato l'evento quando
1752 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1753 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1754 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
1755   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
1756
1757 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1758 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1759 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1760 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1761 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1762 presenti eventi non ancora notificati, e si effettuasse una modifica
1763 dell'osservazione con \const{EPOLL\_CTL\_MOD} questi verrebbero riletti alla
1764 luce delle modifiche.
1765
1766 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1767 il ritorno di \func{epoll\_wait} indica un file descriptor è pronto e resterà
1768 tale fintanto che non si sono completamente esaurite le operazioni su di esso.
1769 Questa condizione viene generalmente rilevata dall'occorrere di un errore di
1770 \errcode{EAGAIN} al ritorno di una \func{read} o una \func{write},\footnote{è
1771   opportuno ricordare ancora una volta che l'uso dell'\textit{I/O multiplexing}
1772   richiede di operare sui file in modalità non bloccante.} ma questa non è la
1773 sola modalità possibile, ad esempio la condizione può essere riconosciuta
1774 anche con il fatto che sono stati restituiti meno dati di quelli richiesti.
1775
1776 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1777 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1778 contemporaneamente, per far questo di nuovo è necessaria una variante della
1779 funzione di attesa che consenta di reimpostare all'uscita una maschera di
1780 segnali, analoga alle precedenti estensioni \func{pselect} e \func{ppoll}; in
1781 questo caso la funzione si chiama \funcd{epoll\_pwait}\footnote{introdotta a
1782   partire dal kernel 2.6.19.} ed il suo prototipo è:
1783 \begin{prototype}{sys/epoll.h} 
1784   {int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1785     int timeout, const sigset\_t *sigmask)}
1786
1787   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1788   segnali. 
1789
1790   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1791     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1792     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1793 }
1794 \end{prototype}
1795
1796 La funzione è del tutto analoga \funcd{epoll\_wait}, soltanto che alla sua
1797 uscita viene ripristinata la maschera di segnali originale, sostituita durante
1798 l'esecuzione da quella impostata con l'argomento \param{sigmask}; in sostanza
1799 la chiamata a questa funzione è equivalente al seguente codice, eseguito però
1800 in maniera atomica:
1801 \includecodesnip{listati/epoll_pwait_means.c} 
1802
1803 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
1804 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
1805 prevalentemente con i server di rete, quando si devono tenere sotto
1806 osservazione un gran numero di socket; per questo motivo rimandiamo di nuovo
1807 la trattazione di un esempio concreto a quando avremo esaminato in dettaglio
1808 le caratteristiche dei socket, in particolare si potrà trovare un programma
1809 che utilizza questa interfaccia in sez.~\ref{sec:TCP_sock_multiplexing}.
1810
1811 \itindend{epoll}
1812
1813
1814 \section{L'accesso \textsl{asincrono} ai file}
1815 \label{sec:file_asyncronous_access}
1816
1817 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
1818 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
1819 debba operare su più file contemporaneamente, esistono altre modalità di
1820 gestione delle stesse problematiche. In particolare sono importanti in questo
1821 contesto le modalità di accesso ai file eseguibili in maniera
1822 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
1823 attesa della disponibilità dell'accesso al file, ma può proseguire
1824 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
1825 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
1826 \textit{inotify}), per essere avvisato della possibilità di eseguire le
1827 operazioni di I/O volute.
1828
1829
1830 \subsection{Il \textit{Signal driven I/O}}
1831 \label{sec:file_asyncronous_operation}
1832
1833 \itindbeg{signal~driven~I/O}
1834
1835 Abbiamo accennato in sez.~\ref{sec:file_open} che è possibile, attraverso
1836 l'uso del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e
1837   dei comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è
1838   specifico di Linux e BSD.} aprire un file in modalità asincrona, così come è
1839 possibile attivare in un secondo tempo questa modalità impostando questo flag
1840 attraverso l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
1841 sez.~\ref{sec:file_fcntl}). In realtà parlare di apertura in modalità
1842 asincrona non significa che le operazioni di lettura o scrittura del file
1843 vengono eseguite in modo asincrono (tratteremo questo, che è ciò che più
1844 propriamente viene chiamato \textsl{I/O asincrono}, in
1845 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
1846 notifica asincrona delle variazione dello stato del file descriptor aperto in
1847 questo modo.  
1848
1849 Quello che succede è che per tutti i file posti in questa modalità\footnote{si
1850   tenga presente però che essa non è utilizzabile con i file ordinari ma solo
1851   con socket, file di terminale o pseudo terminale, ed anche, a partire dal
1852   kernel 2.6, anche per fifo e pipe.} il sistema genera un apposito segnale,
1853 \const{SIGIO}, tutte le volte che diventa possibile leggere o scrivere dal
1854 file descriptor che si è posto in questa modalità. Inoltre è possibile, come
1855 illustrato in sez.~\ref{sec:file_fcntl}, selezionare con il comando
1856 \const{F\_SETOWN} di \func{fcntl} quale processo o quale gruppo di processi
1857 dovrà ricevere il segnale. In questo modo diventa possibile effettuare le
1858 operazioni di I/O in risposta alla ricezione del segnale, e non ci sarà più la
1859 necessità di restare bloccati in attesa della disponibilità di accesso ai
1860 file.
1861
1862 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
1863
1864 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
1865 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
1866 modalità di gestione dell'I/O, alternativa all'uso di \itindex{epoll}
1867 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
1868   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
1869   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
1870   ottenendo comunque prestazioni superiori a quelle che si hanno con
1871   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
1872 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
1873 quando vengono usate con un numero molto grande di file descriptor, non hanno
1874 buone prestazioni.
1875
1876 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
1877 presenta notevoli problemi, dato che non è possibile determinare, quando i
1878 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
1879 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
1880 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
1881 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
1882 verrebbero notificati una volta sola.
1883
1884 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
1885 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
1886 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
1887 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
1888 estesa \var{sa\_sigaction} del gestore installata con il flag
1889 \const{SA\_SIGINFO} (si riveda quanto illustrato in
1890 sez.~\ref{sec:sig_sigaction}).
1891
1892 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
1893 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
1894 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
1895 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
1896 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del campo
1897 \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia il
1898   segnale che si è associato all'I/O, ed indica appunto che il segnale è stato
1899   generato a causa di attività di I/O.} di \struct{siginfo\_t}, troverà nel
1900 campo \var{si\_fd} il valore del file descriptor che ha generato il segnale.
1901
1902 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
1903 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
1904 file descriptor; inoltre sarà possibile stabilire delle priorità nella
1905 risposta a seconda del segnale usato, dato che i segnali real-time supportano
1906 anche questa funzionalità. In questo modo si può identificare immediatamente
1907 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
1908 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
1909 la coda.
1910
1911 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
1912 più assicurare il comportamento corretto per un segnale real-time, invierà al
1913 suo posto un solo \const{SIGIO}, su cui si saranno accumulati tutti i segnali
1914 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
1915 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
1916 impostare la lunghezza della coda dei segnali real-time ad una dimensione
1917 identica al valore massimo del numero di file descriptor
1918 utilizzabili.\footnote{vale a dire impostare il contenuto di
1919   \procfile{/proc/sys/kernel/rtsig-max} allo stesso valore del contenuto di
1920   \procfile{/proc/sys/fs/file-max}.}
1921
1922 % TODO fare esempio che usa O_ASYNC
1923
1924 \itindend{signal~driven~I/O}
1925
1926
1927
1928 \subsection{I meccanismi di notifica asincrona.}
1929 \label{sec:file_asyncronous_lease}
1930
1931 Una delle domande più frequenti nella programmazione in ambiente unix-like è
1932 quella di come fare a sapere quando un file viene modificato. La
1933 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
1934   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
1935     Question}.} è che nell'architettura classica di Unix questo non è
1936 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
1937 classico non prevedeva alcun meccanismo per cui un processo possa essere
1938 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
1939 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
1940 modo\footnote{in genere questo vien fatto inviandogli un segnale di
1941   \const{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
1942   programmi, causa la rilettura della configurazione.} se il loro file di
1943 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
1944 modifiche.
1945
1946 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
1947 generico per qualunque file comporterebbe un notevole aumento di complessità
1948 dell'architettura della gestione dei file, il tutto per fornire una
1949 funzionalità che serve soltanto in alcuni casi particolari. Dato che
1950 all'origine di Unix i soli programmi che potevano avere una tale esigenza
1951 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
1952 era di far fare al kernel solo le operazioni strettamente necessarie e
1953 lasciare tutto il resto a processi in user space, non era stata prevista
1954 nessuna funzionalità di notifica.
1955
1956 Visto però il crescente interesse nei confronti di una funzionalità di questo
1957 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
1958 interfaccia grafica, quando si deve presentare all'utente lo stato del
1959 filesystem, sono state successivamente introdotte delle estensioni che
1960 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
1961 soluzione disponibile con l'interfaccia tradizionale, che è quella del
1962 \itindex{polling} \textit{polling}.
1963
1964 Queste nuove funzionalità sono delle estensioni specifiche, non
1965 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
1966 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
1967 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
1968 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
1969 sez.~\ref{sec:file_fcntl}), che divengono disponibili soltanto se si è
1970 definita la macro \macro{\_GNU\_SOURCE} prima di includere \file{fcntl.h}.
1971
1972 \index{file!lease|(} 
1973
1974 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
1975 questo è un meccanismo che consente ad un processo, detto \textit{lease
1976   holder}, di essere notificato quando un altro processo, chiamato a sua volta
1977 \textit{lease breaker}, cerca di eseguire una \func{open} o una
1978 \func{truncate} sul file del quale l'\textit{holder} detiene il
1979 \textit{lease}.
1980 La notifica avviene in maniera analoga a come illustrato in precedenza per
1981 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
1982 il segnale \const{SIGIO}, ma questo segnale può essere modificato usando il
1983 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
1984   può rispecificare lo stesso \const{SIGIO}.} Se si è fatto questo\footnote{è
1985   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
1986   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
1987 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
1988 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
1989 questo modo un processo può mantenere anche più di un \textit{file lease}.
1990
1991 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
1992 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
1993 un altro processo esegue l'apertura del file in scrittura o usa
1994 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
1995 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
1996 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
1997
1998 Come accennato in sez.~\ref{sec:file_fcntl} il comando di \func{fcntl} che
1999 consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che viene
2000 utilizzato anche per rilasciarlo. In tal caso il file descriptor \param{fd}
2001 passato a \func{fcntl} servirà come riferimento per il file su cui si vuole
2002 operare, mentre per indicare il tipo di operazione (acquisizione o rilascio)
2003 occorrerà specificare come valore dell'argomento \param{arg} di \func{fcntl}
2004 uno dei tre valori di tab.~\ref{tab:file_lease_fctnl}.
2005
2006 \begin{table}[htb]
2007   \centering
2008   \footnotesize
2009   \begin{tabular}[c]{|l|l|}
2010     \hline
2011     \textbf{Valore}  & \textbf{Significato} \\
2012     \hline
2013     \hline
2014     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
2015     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
2016     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2017     \hline    
2018   \end{tabular}
2019   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2020     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2021     \const{F\_GETLEASE}.} 
2022   \label{tab:file_lease_fctnl}
2023 \end{table}
2024
2025 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2026 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2027 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2028 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2029 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2030 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2031
2032 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2033 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2034 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
2035 può ottenere un \textit{lease} soltanto per un file appartenente ad un
2036 \acr{uid} corrispondente a quello del processo. Soltanto un processo con
2037 privilegi di amministratore (cioè con la \itindex{capabilities} capability
2038 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
2039 \textit{lease} su qualunque file.
2040
2041 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2042 esegue una \func{truncate} o una \func{open} che confligge con
2043 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2044   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2045     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
2046   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
2047   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
2048   holder}, così che questo possa completare le sue operazioni sul file e
2049 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
2050 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
2051 altro processo, mentre con un \textit{write lease} si rilevano anche i
2052 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
2053 notifica avvengono solo in fase di apertura del file e non sulle singole
2054 operazioni di lettura e scrittura.
2055
2056 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2057 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2058 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2059 esso. In genere un \textit{lease holder} che riceve una notifica deve
2060 provvedere a completare le necessarie operazioni (ad esempio scaricare
2061 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2062 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2063 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2064 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2065 operazione di lettura, declassando il \textit{lease} a lettura con
2066 \const{F\_RDLCK}.
2067
2068 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2069 il numero di secondi specificato dal parametro di sistema mantenuto in
2070 \procfile{/proc/sys/fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
2071 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
2072   evitare che un processo blocchi indefinitamente l'accesso ad un file
2073   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
2074 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
2075 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
2076 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
2077
2078
2079 \itindbeg{dnotify}
2080
2081 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2082 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2083 risolvere il problema di rilevare automaticamente quando un file o una
2084 directory vengono modificati, che è quanto necessario ad esempio ai programma
2085 di gestione dei file dei vari desktop grafici.
2086
2087 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2088 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2089   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2090   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2091   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2092 che consente di richiedere una notifica quando una directory, o uno qualunque
2093 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2094 la notifica avviene di default attraverso il segnale \const{SIGIO}, ma se ne
2095 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
2096   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
2097 come in precedenza, si potrà ottenere nel gestore del segnale il file
2098 descriptor che è stato modificato tramite il contenuto della struttura
2099 \struct{siginfo\_t}.
2100
2101 \index{file!lease|)}
2102
2103 \begin{table}[htb]
2104   \centering
2105   \footnotesize
2106   \begin{tabular}[c]{|l|p{8cm}|}
2107     \hline
2108     \textbf{Valore}  & \textbf{Significato} \\
2109     \hline
2110     \hline
2111     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2112                          \func{read}, \func{pread}, \func{readv}.\\ 
2113     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2114                          fra \func{write}, \func{pwrite}, \func{writev}, 
2115                          \func{truncate}, \func{ftruncate}.\\ 
2116     \const{DN\_CREATE} & È stato creato un file nella directory, con
2117                          l'esecuzione di una fra \func{open}, \func{creat},
2118                          \func{mknod}, \func{mkdir}, \func{link},
2119                          \func{symlink}, \func{rename} (da un'altra
2120                          directory).\\
2121     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
2122                          l'esecuzione di una fra \func{unlink}, \func{rename}
2123                          (su un'altra directory), \func{rmdir}.\\
2124     \const{DN\_RENAME} & È stato rinominato un file all'interno della
2125                          directory (con \func{rename}).\\
2126     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
2127                          l'esecuzione di una fra \func{chown}, \func{chmod},
2128                          \func{utime}.\\ 
2129     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2130                          eventi.\\ 
2131     \hline    
2132   \end{tabular}
2133   \caption{Le costanti che identificano le varie classi di eventi per i quali
2134     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2135   \label{tab:file_notify}
2136 \end{table}
2137
2138 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2139 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2140 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2141 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2142 eventi si vuole ricevere la notifica, e prende come valore una maschera
2143 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2144 tab.~\ref{tab:file_notify}.
2145
2146 A meno di non impostare in maniera esplicita una notifica permanente usando il
2147 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2148 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2149 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2150 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2151 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2152 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2153 specificate in chiamate successive vengono aggiunte a quelle già impostate
2154 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2155 specificare un valore nullo.
2156
2157 \itindbeg{inotify}
2158
2159 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2160 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2161 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2162 quando la directory che si controlla è all'interno di un dispositivo
2163 rimovibile, mantenere il relativo file descriptor aperto comporta
2164 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2165 complica notevolmente la gestione dell'uso di questi dispositivi.
2166
2167 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2168 tenere sotto controllo il contenuto di una directory; la modifica di un file
2169 viene segnalata, ma poi è necessario verificare di quale file si tratta
2170 (operazione che può essere molto onerosa quando una directory contiene un gran
2171 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
2172 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
2173 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
2174 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
2175 problematica.
2176
2177 \itindend{dnotify}
2178
2179 Per risolvere i problemi appena illustrati è stata introdotta una nuova
2180 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
2181 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
2182   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
2183 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
2184 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
2185 notifica degli eventi associata ad un singolo file descriptor, il che permette
2186 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
2187 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
2188 prototipo è:
2189 \begin{prototype}{sys/inotify.h}
2190   {int inotify\_init(void)}
2191   
2192   Inizializza una istanza di \textit{inotify}.
2193   
2194   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
2195     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2196   \begin{errlist}
2197   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
2198     \textit{inotify} consentite all'utente.
2199   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
2200     nel sistema.
2201   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
2202     l'istanza.
2203   \end{errlist}
2204 }
2205 \end{prototype}
2206
2207 La funzione non prende alcun argomento; inizializza una istanza di
2208 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
2209 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
2210   di sistema è previsto che un utente possa utilizzare un numero limitato di
2211   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
2212   questo valore può essere cambiato con \func{sysctl} o usando il file
2213   \procfile{/proc/sys/fs/inotify/max\_user\_instances}.} si tratta di un file
2214 descriptor speciale che non è associato a nessun file su disco, e che viene
2215 utilizzato solo per notificare gli eventi che sono stati posti in
2216 osservazione. Dato che questo file descriptor non è associato a nessun file o
2217 directory reale, l'inconveniente di non poter smontare un filesystem i cui
2218 file sono tenuti sotto osservazione viene completamente
2219 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
2220   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
2221   su cui si trova il file o la directory osservata è stato smontato.}
2222
2223 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
2224 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
2225 con l'interfaccia di \textit{epoll};\footnote{ed a partire dal kernel 2.6.25 è
2226   stato introdotto anche il supporto per il \itindex{signal~driven~I/O}
2227   \texttt{signal-driven I/O} trattato in
2228   sez.~\ref{sec:file_asyncronous_operation}.} siccome gli eventi vengono
2229 notificati come dati disponibili in lettura, dette funzioni ritorneranno tutte
2230 le volte che si avrà un evento di notifica. Così, invece di dover utilizzare i
2231 segnali,\footnote{considerati una pessima scelta dal punto di vista
2232   dell'interfaccia utente.} si potrà gestire l'osservazione degli eventi con
2233 una qualunque delle modalità di \textit{I/O multiplexing} illustrate in
2234 sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare l'osservazione,
2235 sarà sufficiente chiudere il file descriptor e tutte le risorse allocate
2236 saranno automaticamente rilasciate.
2237
2238 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
2239 osservazione, oltre che una directory, anche singoli file.  Una volta creata
2240 la coda di notifica si devono definire gli eventi da tenere sotto
2241 osservazione; questo viene fatto attraverso una \textsl{lista di osservazione}
2242 (o \textit{watch list}) che è associata alla coda. Per gestire la lista di
2243 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
2244 \funcd{inotify\_add\_watch}, il cui prototipo è:
2245 \begin{prototype}{sys/inotify.h}
2246   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
2247
2248   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
2249
2250   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
2251     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2252   \begin{errlist}
2253   \item[\errcode{EACCESS}] non si ha accesso in lettura al file indicato.
2254   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
2255     non è un file descriptor di \textit{inotify}.
2256   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
2257     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
2258   \end{errlist}
2259   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
2260 \end{prototype}
2261
2262 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
2263 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
2264 deve essere indicata specificando il file descriptor ad essa associato
2265 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
2266   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
2267 porre sotto osservazione vengono invece indicati per nome, da passare
2268 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
2269 indica che tipo di eventi devono essere tenuti sotto osservazione e le
2270 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
2271 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
2272   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
2273   valore può essere cambiato con \func{sysctl} o usando il file
2274   \procfile{/proc/sys/fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
2275 un solo file descriptor.
2276
2277 Il tipo di evento che si vuole osservare deve essere specificato
2278 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
2279 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
2280 singoli bit della maschera ed il relativo significato. In essa si sono marcati
2281 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
2282 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
2283 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
2284 flag della prima parte.
2285
2286 \begin{table}[htb]
2287   \centering
2288   \footnotesize
2289   \begin{tabular}[c]{|l|c|p{10cm}|}
2290     \hline
2291     \textbf{Valore}  & & \textbf{Significato} \\
2292     \hline
2293     \hline
2294     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
2295                                           lettura.\\  
2296     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
2297                                           dell'inode (o sugli attributi
2298                                           estesi, vedi
2299                                           sez.~\ref{sec:file_xattr}).\\ 
2300     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
2301                                           scrittura.\\  
2302     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
2303                                           sola lettura.\\
2304     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
2305                                           directory in una directory sotto
2306                                           osservazione.\\  
2307     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
2308                                           directory in una directory sotto
2309                                           osservazione.\\ 
2310     \const{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
2311                                           directory) sotto osservazione.\\ 
2312     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
2313     \const{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
2314                                           directory) sotto osservazione.\\ 
2315     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
2316                                           directory sotto osservazione.\\ 
2317     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
2318                                           directory sotto osservazione.\\ 
2319     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
2320     \hline    
2321     \const{IN\_CLOSE}         &         & Combinazione di
2322                                           \const{IN\_CLOSE\_WRITE} e
2323                                           \const{IN\_CLOSE\_NOWRITE}.\\  
2324     \const{IN\_MOVE}          &         & Combinazione di
2325                                           \const{IN\_MOVED\_FROM} e
2326                                           \const{IN\_MOVED\_TO}.\\
2327     \const{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
2328                                           possibili.\\
2329     \hline    
2330   \end{tabular}
2331   \caption{Le costanti che identificano i bit della maschera binaria
2332     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
2333     tipo di evento da tenere sotto osservazione.} 
2334   \label{tab:inotify_event_watch}
2335 \end{table}
2336
2337 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
2338 evento da osservare e che vengono utilizzati anche in uscita per indicare il
2339 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
2340 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
2341   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
2342   usa la versione 2.4 è necessario definirli a mano.}  riportati in
2343 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
2344 osservazione (da passare sempre nell'argomento \param{mask}) e che al
2345 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
2346
2347 \begin{table}[htb]
2348   \centering
2349   \footnotesize
2350   \begin{tabular}[c]{|l|p{10cm}|}
2351     \hline
2352     \textbf{Valore}  & \textbf{Significato} \\
2353     \hline
2354     \hline
2355     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
2356                               link simbolico.\\
2357     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
2358                               nell'argomento \param{mask}, invece di
2359                               sovrascriverli.\\
2360     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
2361                               sola volta, rimuovendolo poi dalla \textit{watch
2362                                 list}.\\ 
2363     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
2364                               soltanto gli eventi ad essa relativi e non
2365                               quelli per i file che contiene.\\ 
2366     \hline    
2367   \end{tabular}
2368   \caption{Le costanti che identificano i bit della maschera binaria
2369     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
2370     modalità di osservazione.} 
2371   \label{tab:inotify_add_watch_flag}
2372 \end{table}
2373
2374 Se non esiste nessun \textit{watch} per il file o la directory specificata
2375 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
2376 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
2377 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
2378 specificati saranno aggiunti a quelli già presenti.
2379
2380 Come accennato quando si tiene sotto osservazione una directory vengono
2381 restituite le informazioni sia riguardo alla directory stessa che ai file che
2382 essa contiene; questo comportamento può essere disabilitato utilizzando il
2383 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
2384 relativi alla directory stessa. Si tenga presente inoltre che quando si
2385 osserva una directory vengono riportati solo gli eventi sui file che essa
2386 contiene direttamente, non quelli relativi a file contenuti in eventuali
2387 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
2388 ulteriori \textit{watch} per ciascuna sottodirectory.
2389
2390 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
2391 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
2392   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
2393 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
2394 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
2395 sarà più notificato.
2396
2397 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
2398 detto \textit{watch descriptor}, che identifica univocamente un
2399 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
2400 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
2401 la eventuale rimozione dello stesso. 
2402
2403 La seconda funzione per la gestione delle code di notifica, che permette di
2404 rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch}, ed il suo
2405 prototipo è:
2406 \begin{prototype}{sys/inotify.h}
2407   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
2408
2409   Rimuove un \textsl{osservatore} da una coda di notifica.
2410   
2411   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
2412     errore, nel qual caso \var{errno} assumerà uno dei valori:
2413   \begin{errlist}
2414   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
2415     valido.
2416   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
2417     non è associato ad una coda di notifica.
2418   \end{errlist}
2419 }
2420 \end{prototype}
2421
2422 La funzione rimuove dalla coda di notifica identificata dall'argomento
2423 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
2424 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
2425   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
2426   di \errval{EINVAL}.} in caso di successo della rimozione, contemporaneamente
2427 alla cancellazione dell'osservatore, sulla coda di notifica verrà generato un
2428 evento di tipo \const{IN\_IGNORED} (vedi
2429 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
2430 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
2431 rimossi automaticamente e non è necessario utilizzare
2432 \func{inotify\_rm\_watch}.
2433
2434 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
2435 notificati come dati presenti in lettura sul file descriptor associato alla
2436 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
2437 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
2438 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
2439 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
2440 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
2441 modalità non bloccante) fino all'arrivo di almeno un evento.
2442
2443 \begin{figure}[!htb]
2444   \footnotesize \centering
2445   \begin{minipage}[c]{15cm}
2446     \includestruct{listati/inotify_event.h}
2447   \end{minipage} 
2448   \normalsize 
2449   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
2450     \textit{inotify} per riportare gli eventi.}
2451   \label{fig:inotify_event}
2452 \end{figure}
2453
2454 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
2455 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
2456 socket (si veda sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
2457 lettura sul file descriptor, utilizzando su di esso l'operazione
2458 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
2459   (vedi sez.~\ref{sec:file_ioctl}), che è disponibile solo per i socket e per
2460   i file descriptor creati con \func{inotify\_init}.} Si può così utilizzare
2461 questa operazione, oltre che per predisporre una operazione di lettura con un
2462 buffer di dimensioni adeguate, anche per ottenere rapidamente il numero di
2463 file che sono cambiati.
2464
2465 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
2466 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
2467 Per identificare a quale file o directory l'evento corrisponde viene
2468 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
2469 osservatore è stato registrato. Il campo \var{mask} contiene invece una
2470 maschera di bit che identifica il tipo di evento verificatosi; in essa
2471 compariranno sia i bit elencati nella prima parte di
2472 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori
2473 aggiuntivi\footnote{questi compaiono solo nel campo \var{mask} di
2474   \struct{inotify\_event}, e  non utilizzabili in fase di registrazione
2475   dell'osservatore.} di tab.~\ref{tab:inotify_read_event_flag}.
2476
2477 \begin{table}[htb]
2478   \centering
2479   \footnotesize
2480   \begin{tabular}[c]{|l|p{10cm}|}
2481     \hline
2482     \textbf{Valore}  & \textbf{Significato} \\
2483     \hline
2484     \hline
2485     \const{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
2486                              esplicita con l'uso di \func{inotify\_rm\_watch}, 
2487                              che in maniera implicita per la rimozione 
2488                              dell'oggetto osservato o per lo smontaggio del
2489                              filesystem su cui questo si trova.\\
2490     \const{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
2491                              (consente così di distinguere, quando si pone
2492                              sotto osservazione una directory, fra gli eventi
2493                              relativi ad essa e quelli relativi ai file che
2494                              essa contiene).\\
2495     \const{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
2496                              eventi (\textit{overflow} della coda); in questo
2497                              caso il valore di \var{wd} è $-1$.\footnotemark\\
2498     \const{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
2499                              osservazione è stato smontato.\\
2500     \hline    
2501   \end{tabular}
2502   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
2503     binaria del campo \var{mask} di \struct{inotify\_event}.} 
2504   \label{tab:inotify_read_event_flag}
2505 \end{table}
2506
2507 \footnotetext{la coda di notifica ha una dimensione massima specificata dal
2508   parametro di sistema \procfile{/proc/sys/fs/inotify/max\_queued\_events} che
2509   indica il numero massimo di eventi che possono essere mantenuti sulla
2510   stessa; quando detto valore viene ecceduto gli ulteriori eventi vengono
2511   scartati, ma viene comunque generato un evento di tipo
2512   \const{IN\_Q\_OVERFLOW}.}
2513
2514 Il campo \var{cookie} contiene invece un intero univoco che permette di
2515 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
2516 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
2517 così all'applicazione di collegare la corrispondente coppia di eventi
2518 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
2519
2520 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
2521 l'evento è relativo ad un file presente in una directory posta sotto
2522 osservazione, in tal caso essi contengono rispettivamente il nome del file
2523 (come pathname relativo alla directory osservata) e la relativa dimensione in
2524 byte. Il campo \var{name} viene sempre restituito come stringa terminata da
2525 NUL, con uno o più zeri di terminazione, a seconda di eventuali necessità di
2526 allineamento del risultato, ed il valore di \var{len} corrisponde al totale
2527 della dimensione di \var{name}, zeri aggiuntivi compresi. La stringa con il
2528 nome del file viene restituita nella lettura subito dopo la struttura
2529 \struct{inotify\_event}; questo significa che le dimensioni di ciascun evento
2530 di \textit{inotify} saranno pari a \code{sizeof(\struct{inotify\_event}) +
2531   len}.
2532
2533 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
2534 semplice programma che permette di mettere sotto osservazione uno o più file e
2535 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
2536 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
2537 del programma, che non contiene la sezione di gestione delle opzioni e le
2538 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
2539
2540 \begin{figure}[!htbp]
2541   \footnotesize \centering
2542   \begin{minipage}[c]{15cm}
2543     \includecodesample{listati/inotify_monitor.c}
2544   \end{minipage}
2545   \normalsize
2546   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
2547   \label{fig:inotify_monitor_example}
2548 \end{figure}
2549
2550 Una volta completata la scansione delle opzioni il corpo principale del
2551 programma inizia controllando (\texttt{\small 11--15}) che sia rimasto almeno
2552 un argomento che indichi quale file o directory mettere sotto osservazione (e
2553 qualora questo non avvenga esce stampando la pagina di aiuto); dopo di che
2554 passa (\texttt{\small 16--20}) all'inizializzazione di \textit{inotify}
2555 ottenendo con \func{inotify\_init} il relativo file descriptor (oppure usce in
2556 caso di errore).
2557
2558 Il passo successivo è aggiungere (\texttt{\small 21--30}) alla coda di
2559 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
2560 all'invocazione del comando; questo viene fatto eseguendo un ciclo
2561 (\texttt{\small 22--29}) fintanto che la variabile \var{i}, inizializzata a
2562 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
2563 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
2564 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
2565 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
2566 nella scansione delle opzioni), in caso di errore si esce dal programma
2567 altrimenti si incrementa l'indice (\texttt{\small 29}).
2568
2569 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
2570 (\texttt{\small 32--56}) del programma, nel quale si resta in attesa degli
2571 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
2572 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
2573 si saranno verificati eventi. 
2574
2575 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
2576 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
2577 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
2578 approssimativamente 512 eventi.\footnote{si ricordi che la quantità di dati
2579   restituita da \textit{inotify} è variabile a causa della diversa lunghezza
2580   del nome del file restituito insieme a \struct{inotify\_event}.} In caso di
2581 errore di lettura (\texttt{\small 35--40}) il programma esce con un messaggio
2582 di errore (\texttt{\small 37--39}), a meno che non si tratti di una
2583 interruzione della system call, nel qual caso (\texttt{\small 36}) si ripete la
2584 lettura.
2585
2586 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
2587   43--52}) per leggere tutti gli eventi restituiti, al solito si inizializza
2588 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
2589 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
2590 in lettura. Per ciascun evento all'interno del ciclo si assegna\footnote{si
2591   noti come si sia eseguito un opportuno \textit{casting} del puntatore.} alla
2592 variabile \var{event} l'indirizzo nel buffer della corrispondente struttura
2593 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
2594 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
2595 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
2596 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
2597 in ordine progressivo crescente a partire da 1.
2598
2599 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
2600 si stampa (\texttt{\small 47--49}); si noti come in questo caso si sia
2601 utilizzato il valore del campo \var{event->len} e non al fatto che
2602 \var{event->name} riporti o meno un puntatore nullo.\footnote{l'interfaccia
2603   infatti, qualora il nome non sia presente, non avvalora il campo
2604   \var{event->name}, che si troverà a contenere quello che era precedentemente
2605   presente nella rispettiva locazione di memoria, nel caso più comune il
2606   puntatore al nome di un file osservato in precedenza.} Si utilizza poi
2607 (\texttt{\small 50}) la funzione \code{printevent}, che interpreta il valore
2608 del campo \var{event->mask} per stampare il tipo di eventi
2609 accaduti.\footnote{per il relativo codice, che non riportiamo in quanto non
2610   essenziale alla comprensione dell'esempio, si possono utilizzare direttamente
2611   i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si provvede ad
2612 aggiornare l'indice \var{i} per farlo puntare all'evento successivo.
2613
2614 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
2615 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
2616 tipo di:
2617 \begin{verbatim}
2618 piccardi@gethen:~/gapil/sources$ ./inotify_monitor -a /home/piccardi/gapil/
2619 Watch descriptor 1
2620 Observed event on /home/piccardi/gapil/
2621 IN_OPEN, 
2622 Watch descriptor 1
2623 Observed event on /home/piccardi/gapil/
2624 IN_CLOSE_NOWRITE, 
2625 \end{verbatim}
2626
2627 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
2628 eventi appena illustrato non viene trattato il caso particolare in cui la
2629 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
2630 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
2631 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
2632 specificando un buffer di dimensione insufficiente a contenere anche un solo
2633 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
2634 tale evenienza non si verificherà mai.
2635
2636 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
2637 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
2638 codice illustrato in precedenza non si è presa nessuna precauzione per
2639 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
2640 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
2641 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
2642 di restituire soltanto il numero di eventi che possono rientrare completamente
2643 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
2644   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
2645   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
2646   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
2647   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
2648 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
2649 chiamata di \func{read}.
2650
2651 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
2652 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
2653 garantito che se si esegue uno spostamento di un file gli eventi vengano
2654 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
2655 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
2656 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
2657 raggruppati in un solo evento.
2658
2659 \itindend{inotify}
2660
2661 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
2662 % http://lwn.net/Articles/343346/ 
2663
2664
2665 \subsection{L'interfaccia POSIX per l'I/O asincrono}
2666 \label{sec:file_asyncronous_io}
2667
2668 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
2669 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
2670   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
2671 di I/O non attendono il completamento delle operazioni prima di ritornare,
2672 così che il processo non viene bloccato.  In questo modo diventa ad esempio
2673 possibile effettuare una richiesta preventiva di dati, in modo da poter
2674 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
2675
2676 Benché la modalità di apertura asincrona di un file possa risultare utile in
2677 varie occasioni (in particolar modo con i socket e gli altri file per i quali
2678 le funzioni di I/O sono \index{system~call~lente} system call lente), essa è
2679 comunque limitata alla notifica della disponibilità del file descriptor per le
2680 operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
2681 standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono vero
2682 e proprio, che prevede un insieme di funzioni dedicate per la lettura e la
2683 scrittura dei file, completamente separate rispetto a quelle usate
2684 normalmente.
2685
2686 In generale questa interfaccia è completamente astratta e può essere
2687 implementata sia direttamente nel kernel, che in user space attraverso l'uso
2688 di \itindex{thread} \textit{thread}. Per le versioni del kernel meno recenti
2689 esiste una implementazione di questa interfaccia fornita delle \acr{glibc},
2690 che è realizzata completamente in user space, ed è accessibile linkando i
2691 programmi con la libreria \file{librt}. Nelle versioni più recenti (a partire
2692 dalla 2.5.32) è stato introdotto direttamente nel kernel un nuovo layer per
2693 l'I/O asincrono.
2694
2695 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
2696 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
2697 \textit{asyncronous I/O control block}), che viene passata come argomento a
2698 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
2699 \file{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
2700 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
2701 disponibilità dell'interfaccia per l'I/O asincrono.
2702
2703 \begin{figure}[!htb]
2704   \footnotesize \centering
2705   \begin{minipage}[c]{15cm}
2706     \includestruct{listati/aiocb.h}
2707   \end{minipage} 
2708   \normalsize 
2709   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
2710     asincrono.}
2711   \label{fig:file_aiocb}
2712 \end{figure}
2713
2714 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
2715 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
2716 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
2717 contemporanee effettuabili su un singolo file.  Ogni operazione deve
2718 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
2719 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
2720 che più operazioni possono essere eseguita in maniera asincrona, il concetto
2721 di posizione corrente sul file viene a mancare; pertanto si deve sempre
2722 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
2723 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
2724 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
2725 del blocco di dati da trasferire.
2726
2727 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
2728 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
2729   piattaforma supporti questa caratteristica, questo viene indicato definendo
2730   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
2731   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
2732 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
2733 cui viene sottratto il valore di questo campo.  Il campo
2734 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
2735 come vedremo, permette di eseguire con una sola chiamata una serie di
2736 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
2737 si specifica quale è la natura di ciascuna di esse.
2738
2739 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
2740 che serve a specificare il modo in cui si vuole che venga effettuata la
2741 notifica del completamento delle operazioni richieste. La struttura è
2742 riportata in fig.~\ref{fig:file_sigevent}; il campo \var{sigev\_notify} è
2743 quello che indica le modalità della notifica, esso può assumere i tre valori:
2744 \begin{basedescript}{\desclabelwidth{2.6cm}}
2745 \item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
2746 \item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
2747   chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
2748   questo è stato installato con \const{SA\_SIGINFO} gli verrà restituito il
2749   valore di \var{sigev\_value} (la cui definizione è in
2750   fig.~\ref{fig:sig_sigval}) come valore del campo \var{si\_value} di
2751   \struct{siginfo\_t}.
2752 \item[\const{SIGEV\_THREAD}] La notifica viene effettuata creando un nuovo
2753   \itindex{thread} \textit{thread} che esegue la funzione specificata da
2754   \var{sigev\_notify\_function} con argomento \var{sigev\_value}, e con gli
2755   attributi specificati da \var{sigev\_notify\_attribute}.
2756 \end{basedescript}
2757
2758 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
2759 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
2760 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
2761 appena descritta; i rispettivi prototipi sono:
2762 \begin{functions}
2763   \headdecl{aio.h}
2764
2765   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
2766   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
2767
2768   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
2769   Richiede una scrittura asincrona secondo quanto specificato con
2770   \param{aiocbp}.
2771   
2772   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
2773     errore, nel qual caso \var{errno} assumerà uno dei valori:
2774   \begin{errlist}
2775   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
2776   \item[\errcode{ENOSYS}] la funzione non è implementata.
2777   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
2778     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
2779   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
2780   \end{errlist}
2781 }
2782 \end{functions}
2783
2784 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
2785 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
2786 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
2787 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
2788 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
2789 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
2790 (vedi sez.~\ref{sec:file_open}), nel qual caso le scritture vengono effettuate
2791 comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
2792
2793 Si tenga inoltre presente che deallocare la memoria indirizzata da
2794 \param{aiocbp} o modificarne i valori prima della conclusione di una
2795 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
2796 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
2797 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
2798 variabili automatiche e che non si deve riutilizzare la stessa struttura per
2799 un'altra operazione fintanto che la precedente non sia stata ultimata. In
2800 generale per ogni operazione si deve utilizzare una diversa struttura
2801 \struct{aiocb}.
2802
2803 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
2804 \func{aio\_write} non implica che le operazioni siano state effettivamente
2805 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
2806 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
2807 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
2808 errore; il suo prototipo è:
2809 \begin{prototype}{aio.h}
2810   {int aio\_error(const struct aiocb *aiocbp)}  
2811
2812   Determina lo stato di errore delle operazioni di I/O associate a
2813   \param{aiocbp}.
2814   
2815   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
2816     successo, altrimenti restituisce il codice di errore relativo al loro
2817     fallimento.}
2818 \end{prototype}
2819
2820 Se l'operazione non si è ancora completata viene restituito l'errore di
2821 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
2822 conclusa con successo, altrimenti restituisce il codice dell'errore
2823 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
2824 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
2825 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
2826 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
2827 del caso, i codici di errore delle system call \func{read}, \func{write} e
2828 \func{fsync}.
2829
2830 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
2831 che una chiamata ad \func{aio\_error} non ha restituito
2832 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
2833 permette di verificare il completamento delle operazioni di I/O asincrono; il
2834 suo prototipo è:
2835 \begin{prototype}{aio.h}
2836 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
2837
2838 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
2839 \param{aiocbp}.
2840   
2841 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
2842   eseguita.}
2843 \end{prototype}
2844
2845 La funzione deve essere chiamata una sola volte per ciascuna operazione
2846 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
2847 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
2848 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
2849 precedente il completamento delle operazioni darebbe risultati indeterminati.
2850
2851 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
2852 così come ricavato dalla sottostante system call (il numero di byte letti,
2853 scritti o il valore di ritorno di \func{fsync}).  É importante chiamare sempre
2854 questa funzione, altrimenti le risorse disponibili per le operazioni di I/O
2855 asincrono non verrebbero liberate, rischiando di arrivare ad un loro
2856 esaurimento.
2857
2858 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
2859 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
2860 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
2861 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
2862 è:
2863 \begin{prototype}{aio.h}
2864 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
2865
2866 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
2867   
2868 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2869   errore, che può essere, con le stesse modalità di \func{aio\_read},
2870   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
2871 \end{prototype}
2872
2873 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
2874 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
2875 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
2876 di lettura e scrittura. L'argomento \param{op} permette di indicare la
2877 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
2878 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
2879 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
2880 sez.~\ref{sec:file_sync}).
2881
2882 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
2883 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
2884 relativi ad eventuali operazioni richieste successivamente. Se si è
2885 specificato un meccanismo di notifica questo sarà innescato una volta che le
2886 operazioni di sincronizzazione dei dati saranno completate.
2887
2888 In alcuni casi può essere necessario interrompere le operazioni (in genere
2889 quando viene richiesta un'uscita immediata dal programma), per questo lo
2890 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
2891 permette di cancellare una operazione richiesta in precedenza; il suo
2892 prototipo è:
2893 \begin{prototype}{aio.h}
2894 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
2895
2896 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
2897 da \param{aiocbp}.
2898   
2899 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
2900   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
2901   un valore non valido di \param{fildes}, imposta \var{errno} al valore
2902   \errval{EBADF}.}
2903 \end{prototype}
2904
2905 La funzione permette di cancellare una operazione specifica sul file
2906 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
2907 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
2908 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
2909 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
2910 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
2911 altro file descriptor il risultato è indeterminato.  In caso di successo, i
2912 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
2913 \file{aio.h}) sono tre:
2914 \begin{basedescript}{\desclabelwidth{3.0cm}}
2915 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
2916   cancellazione sono state già completate,
2917   
2918 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
2919   state cancellate,  
2920   
2921 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
2922   corso e non sono state cancellate.
2923 \end{basedescript}
2924
2925 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
2926 \func{aio\_error} per determinare quali sono le operazioni effettivamente
2927 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
2928 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
2929 del loro avvenuto completamento.
2930
2931 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
2932 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
2933 sospendere l'esecuzione del processo chiamante fino al completamento di una
2934 specifica operazione; il suo prototipo è:
2935 \begin{prototype}{aio.h}
2936 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
2937     timespec *timeout)}
2938   
2939   Attende, per un massimo di \param{timeout}, il completamento di una delle
2940   operazioni specificate da \param{list}.
2941   
2942   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
2943     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
2944     dei valori:
2945     \begin{errlist}
2946     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
2947       \param{timeout}.
2948     \item[\errcode{ENOSYS}] la funzione non è implementata.
2949     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
2950     \end{errlist}
2951   }
2952 \end{prototype}
2953
2954 La funzione permette di bloccare il processo fintanto che almeno una delle
2955 \param{nent} operazioni specificate nella lista \param{list} è completata, per
2956 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
2957 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
2958   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
2959 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
2960 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
2961 siano specificati valori non validi l'effetto è indefinito.  Un valore
2962 \val{NULL} per \param{timout} comporta l'assenza di timeout.
2963
2964 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
2965 che permette di effettuare la richiesta di una intera lista di operazioni di
2966 lettura o scrittura; il suo prototipo è:
2967 \begin{prototype}{aio.h}
2968   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
2969     sigevent *sig)}
2970   
2971   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
2972   secondo la modalità \param{mode}.
2973   
2974   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2975     errore, nel qual caso \var{errno} assumerà uno dei valori:
2976     \begin{errlist}
2977     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
2978       \param{timeout}.
2979     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
2980       o un numero di operazioni \param{nent} maggiore di
2981       \const{AIO\_LISTIO\_MAX}.
2982     \item[\errcode{ENOSYS}] la funzione non è implementata.
2983     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
2984     \end{errlist}
2985   }
2986 \end{prototype}
2987
2988 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
2989 lista \param{list} che deve contenere gli indirizzi di altrettanti
2990 \textit{control block} opportunamente inizializzati; in particolare dovrà
2991 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
2992 che può prendere i valori:
2993 \begin{basedescript}{\desclabelwidth{2.0cm}}
2994 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
2995 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
2996 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
2997 \end{basedescript}
2998 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
2999 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3000 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3001 quelle non completate.
3002
3003 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3004 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
3005 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
3006 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3007 il chiamante può richiedere la notifica del completamento di tutte le
3008 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3009 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3010
3011
3012 \section{Altre modalità di I/O avanzato}
3013 \label{sec:file_advanced_io}
3014
3015 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3016   asincrono}, esistono altre funzioni che implementano delle modalità di
3017 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3018 scrittura che abbiamo esaminato in sez.~\ref{sec:file_base_func}. In questa
3019 sezione allora prenderemo in esame le interfacce per l'\textsl{I/O mappato in
3020   memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O avanzato.
3021
3022
3023 \subsection{File mappati in memoria}
3024 \label{sec:file_memory_map}
3025
3026 \itindbeg{memory~mapping}
3027 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3028 rispetto a quella classica vista in cap.~\ref{cha:file_unix_interface}, è il
3029 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
3030 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
3031 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
3032 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3033
3034 \begin{figure}[htb]
3035   \centering
3036   \includegraphics[width=14cm]{img/mmap_layout}
3037   \caption{Disposizione della memoria di un processo quando si esegue la
3038   mappatura in memoria di un file.}
3039   \label{fig:file_mmap_layout}
3040 \end{figure}
3041
3042 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3043 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3044 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3045 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3046 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
3047 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
3048 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
3049 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
3050 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
3051 \textsl{memoria mappata su file}.
3052
3053 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3054 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3055 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3056 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3057 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3058 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3059 un dato istante.
3060
3061 Infatti, dato che l'accesso è fatto direttamente attraverso la
3062 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
3063 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
3064 solo per le parti effettivamente usate, il tutto in maniera completamente
3065 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
3066 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
3067 salvate sullo swap.
3068
3069 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3070 vengono salvate automaticamente, così come le pagine dei programmi vengono
3071 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
3072 solo limite è quello dello spazio di indirizzi disponibile, e non della
3073 memoria su cui possono esserne lette delle porzioni.
3074
3075 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
3076 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
3077 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
3078 è:
3079 \begin{functions}
3080   
3081   \headdecl{unistd.h}
3082   \headdecl{sys/mman.h} 
3083
3084   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3085     fd, off\_t offset)}
3086   
3087   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
3088   
3089   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
3090     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
3091     qual caso \var{errno} assumerà uno dei valori:
3092     \begin{errlist}
3093     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3094       \const{MAP\_ANONYMOUS}.
3095     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3096       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3097       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3098       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3099       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3100     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3101       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3102       dimensione delle pagine).
3103     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
3104       \param{fd} è aperto in scrittura.
3105     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3106       rispetto a quanto consentito dai limiti di sistema (vedi
3107       sez.~\ref{sec:sys_resource_limit}).
3108     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3109       numero di mappature possibili.
3110     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3111       mapping.
3112     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
3113       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
3114       l'opzione \texttt{noexec}.
3115     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3116       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3117     \end{errlist}
3118   }
3119 \end{functions}
3120
3121 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
3122 partire da \param{offset} per \param{lenght} byte, preferibilmente
3123 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
3124 multiplo della dimensione di una pagina di memoria. 
3125
3126 \begin{table}[htb]
3127   \centering
3128   \footnotesize
3129   \begin{tabular}[c]{|l|l|}
3130     \hline
3131     \textbf{Valore} & \textbf{Significato} \\
3132     \hline
3133     \hline
3134     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
3135     \const{PROT\_READ}  & Le pagine possono essere lette.\\
3136     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
3137     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
3138     \hline    
3139   \end{tabular}
3140   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
3141     protezione applicate alle pagine del file mappate in memoria.}
3142   \label{tab:file_mmap_prot}
3143 \end{table}
3144
3145 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
3146   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
3147   in pagine: ogni processo vede la sua memoria attraverso uno o più segmenti
3148   lineari di memoria virtuale.  Per ciascuno di questi segmenti il kernel
3149   mantiene nella \itindex{page~table} \textit{page table} la mappatura sulle
3150   pagine di memoria reale, ed le modalità di accesso (lettura, esecuzione,
3151   scrittura); una loro violazione causa quella una \itindex{segment~violation}
3152   \textit{segment violation}, e la relativa emissione del segnale
3153   \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
3154 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
3155 riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato deve essere
3156 compatibile con la modalità di accesso con cui si è aperto il file.
3157
3158 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
3159 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
3160 modalità con cui le modifiche alla memoria mappata vengono condivise o
3161 mantenute private al processo che le ha effettuate. Deve essere specificato
3162 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
3163 tab.~\ref{tab:file_mmap_flag}.
3164
3165 \begin{table}[htb]
3166   \centering
3167   \footnotesize
3168   \begin{tabular}[c]{|l|p{11cm}|}
3169     \hline
3170     \textbf{Valore} & \textbf{Significato} \\
3171     \hline
3172     \hline
3173     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
3174                              da \param{start}, se questo non può essere usato
3175                              \func{mmap} fallisce. Se si imposta questo flag il
3176                              valore di \param{start} deve essere allineato
3177                              alle dimensioni di una pagina.\\
3178     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
3179                              riportati sul file e saranno immediatamente
3180                              visibili agli altri processi che mappano lo stesso
3181                              file.\footnotemark Il file su disco però non sarà
3182                              aggiornato fino alla chiamata di \func{msync} o
3183                              \func{munmap}), e solo allora le modifiche saranno
3184                              visibili per l'I/O convenzionale. Incompatibile
3185                              con \const{MAP\_PRIVATE}.\\ 
3186     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
3187                              riportati sul file. Ne viene fatta una copia
3188                              privata cui solo il processo chiamante ha
3189                              accesso.  Le modifiche sono mantenute attraverso
3190                              il meccanismo del \textit{copy on
3191                                write} \itindex{copy~on~write} e 
3192                              salvate su swap in caso di necessità. Non è
3193                              specificato se i cambiamenti sul file originale
3194                              vengano riportati sulla regione
3195                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
3196     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
3197                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
3198                              (veniva usato per segnalare che tentativi di
3199                              scrittura sul file dovevano fallire con
3200                              \errcode{ETXTBSY}).\\ 
3201     \const{MAP\_EXECUTABLE}& Ignorato.\\
3202     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
3203                              delle pagine di swap ad uso del meccanismo del
3204                              \textit{copy on write} \itindex{copy~on~write}
3205                              per mantenere le
3206                              modifiche fatte alla regione mappata, in
3207                              questo caso dopo una scrittura, se non c'è più
3208                              memoria disponibile, si ha l'emissione di
3209                              un \const{SIGSEGV}.\\
3210     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
3211                              mappate.\\
3212     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} \textit{stack}. 
3213                              Indica che la mappatura deve essere effettuata 
3214                              con gli indirizzi crescenti verso il basso.\\
3215     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
3216                              argomenti \param{fd} e \param{offset} sono
3217                              ignorati.\footnotemark\\
3218     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
3219     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
3220     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2Gb dello spazio
3221                              degli indirizzi, viene supportato solo sulle
3222                              piattaforme \texttt{x86-64} per compatibilità con
3223                              le applicazioni a 32 bit. Viene ignorato se si è
3224                              richiesto \const{MAP\_FIXED}.\\
3225     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
3226                              \textit{prefaulting} delle pagine di memoria
3227                              necessarie alla mappatura.\\
3228     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
3229                              non causa I/O.\footnotemark\\
3230 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
3231 %                              mappata con \func{mremap}, proposto ma pare non
3232 %                              implementato.\\
3233     \hline
3234   \end{tabular}
3235   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
3236   \label{tab:file_mmap_flag}
3237 \end{table}
3238
3239 \footnotetext[68]{dato che tutti faranno riferimento alle stesse pagine di
3240   memoria.}  
3241
3242 \footnotetext[69]{l'uso di questo flag con \const{MAP\_SHARED} è stato
3243   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
3244   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
3245   sez.~\ref{sec:ipc_mmap_anonymous}.}
3246
3247 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
3248   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
3249   parleremo più avanti.}
3250
3251 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
3252 piuttosto complessi, essi si possono comprendere solo tenendo presente che
3253 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
3254 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
3255 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
3256 avrà l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}),
3257 dato che i permessi sul segmento di memoria relativo non consentono questo
3258 tipo di accesso.
3259
3260 È invece assai diversa la questione relativa agli accessi al di fuori della
3261 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
3262 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
3263 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
3264 \index{paginazione} paginazione, la mappatura in memoria non può che essere
3265 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
3266 pagina, ed in generale queste potranno non corrispondere alle dimensioni
3267 effettive del file o della sezione che si vuole mappare.
3268
3269 \begin{figure}[!htb] 
3270   \centering
3271   \includegraphics[height=6cm]{img/mmap_boundary}
3272   \caption{Schema della mappatura in memoria di una sezione di file di
3273     dimensioni non corrispondenti al bordo di una pagina.}
3274   \label{fig:file_mmap_boundary}
3275 \end{figure}
3276
3277 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
3278 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
3279 verrà il file sarà mappato su un segmento di memoria che si estende fino al
3280 bordo della pagina successiva.
3281
3282 In questo caso è possibile accedere a quella zona di memoria che eccede le
3283 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
3284 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
3285 mappata sul file. Il comportamento del sistema è quello di restituire un
3286 valore nullo per quanto viene letto, e di non riportare su file quanto viene
3287 scritto.
3288
3289 Un caso più complesso è quello che si viene a creare quando le dimensioni del
3290 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
3291 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
3292 quella della mappatura in memoria.
3293
3294 In questa situazione, per la sezione di pagina parzialmente coperta dal
3295 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
3296 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
3297 sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
3298 \const{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
3299
3300 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
3301 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
3302 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
3303 comporta che ad esempio non è possibile mappare in memoria file descriptor
3304 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
3305 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
3306 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
3307 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
3308 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
3309 che sono utilizzabili solo con questa interfaccia.
3310
3311 \begin{figure}[htb]
3312   \centering
3313   \includegraphics[height=6cm]{img/mmap_exceed}
3314   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
3315     alla lunghezza richiesta.}
3316   \label{fig:file_mmap_exceed}
3317 \end{figure}
3318
3319 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
3320 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
3321 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
3322 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
3323 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
3324 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
3325 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
3326 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
3327 nuovo programma.
3328
3329 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
3330 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
3331 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
3332 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
3333 una pagina mappata su un file aggiorna questo tempo.  I valori di
3334 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
3335 consentita la scrittura sul file (cioè per un file mappato con
3336 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
3337 o in corrispondenza di una eventuale \func{msync}.
3338
3339 Dato per i file mappati in memoria le operazioni di I/O sono gestite
3340 direttamente dalla \index{memoria~virtuale}memoria virtuale, occorre essere
3341 consapevoli delle interazioni che possono esserci con operazioni effettuate
3342 con l'interfaccia standard dei file di cap.~\ref{cha:file_unix_interface}. Il
3343 problema è che una volta che si è mappato un file, le operazioni di lettura e
3344 scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
3345 autonoma dal sistema della memoria virtuale.
3346
3347 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
3348 potranno essere visibili o meno a seconda del momento in cui la memoria
3349 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
3350 del tutto imprevedibile il risultato della modifica di un file nei confronti
3351 del contenuto della memoria su cui è mappato.
3352
3353 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
3354 l'interfaccia standard quando lo si è mappato in memoria, è invece possibile
3355 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
3356 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
3357 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
3358 memoria mappata con il file su disco; il suo prototipo è:
3359 \begin{functions}  
3360   \headdecl{unistd.h}
3361   \headdecl{sys/mman.h} 
3362
3363   \funcdecl{int msync(const void *start, size\_t length, int flags)}
3364   
3365   Sincronizza i contenuti di una sezione di un file mappato in memoria.
3366   
3367   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3368     errore nel qual caso \var{errno} assumerà uno dei valori:
3369     \begin{errlist}
3370     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
3371       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
3372       \param{flags}.
3373     \item[\errcode{EFAULT}] l'intervallo specificato non ricade in una zona
3374       precedentemente mappata.
3375     \end{errlist}
3376   }
3377 \end{functions}
3378
3379 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
3380 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
3381 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
3382 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
3383 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
3384 del file aggiornato.
3385
3386
3387 \begin{table}[htb]
3388   \centering
3389   \footnotesize
3390   \begin{tabular}[c]{|l|p{11cm}|}
3391     \hline
3392     \textbf{Valore} & \textbf{Significato} \\
3393     \hline
3394     \hline
3395     \const{MS\_SYNC}       & richiede una sincronizzazione e ritorna soltanto
3396                              quando questa è stata completata.\\
3397     \const{MS\_ASYNC}      & richiede una sincronizzazione, ma ritorna subito 
3398                              non attendendo che questa sia finita.\\
3399     \const{MS\_INVALIDATE} & invalida le pagine per tutte le mappature
3400                              in memoria così da rendere necessaria una
3401                              rilettura immediata delle stesse.\\
3402     \hline
3403   \end{tabular}
3404   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
3405   \label{tab:file_mmap_msync}
3406 \end{table}
3407
3408 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
3409 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
3410 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
3411 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
3412 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
3413 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
3414 flag fa sì che vengano invalidate, per tutte le mappature dello stesso file,
3415 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
3416 essere immediatamente aggiornate con i nuovi valori.
3417
3418 Una volta che si sono completate le operazioni di I/O si può eliminare la
3419 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
3420 \begin{functions}  
3421   \headdecl{unistd.h}
3422   \headdecl{sys/mman.h} 
3423
3424   \funcdecl{int munmap(void *start, size\_t length)}
3425   
3426   Rilascia la mappatura sulla sezione di memoria specificata.
3427
3428   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3429     errore nel qual caso \var{errno} assumerà uno dei valori:
3430     \begin{errlist}
3431     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
3432       precedentemente mappata.
3433     \end{errlist}
3434   }
3435 \end{functions}
3436
3437 La funzione cancella la mappatura per l'intervallo specificato con
3438 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
3439 un errore di accesso in memoria. L'argomento \param{start} deve essere
3440 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
3441 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
3442 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
3443 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
3444 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
3445 il \textit{memory mapping} non ha alcun effetto su di esso.
3446
3447 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
3448 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
3449 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
3450 la funzione può essere usata con qualunque pagina valida nella memoria
3451 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
3452 \begin{functions}  
3453 %  \headdecl{unistd.h}
3454   \headdecl{sys/mman.h} 
3455
3456   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
3457   
3458   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
3459   specificato.
3460
3461   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3462     errore nel qual caso \var{errno} assumerà uno dei valori:
3463     \begin{errlist}
3464     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
3465       multiplo di \const{PAGE\_SIZE}.
3466     \item[\errcode{EACCESS}] l'operazione non è consentita, ad esempio si è
3467       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
3468       ha solo accesso in lettura.
3469 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
3470 %       necessarie all'interno del kernel.
3471 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
3472 %       accessibile.
3473     \end{errlist}
3474     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
3475   } 
3476 \end{functions}
3477
3478
3479 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
3480 allineato alle dimensioni delle pagine di memoria, ed una dimensione
3481 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
3482 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
3483 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
3484 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
3485
3486 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
3487 kernel unix-like. La prima di queste è la possibilità di modificare un
3488 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
3489 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
3490 \begin{functions}  
3491   \headdecl{unistd.h}
3492   \headdecl{sys/mman.h} 
3493
3494   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
3495     new\_size, unsigned long flags)}
3496   
3497   Restringe o allarga una mappatura in memoria di un file.
3498
3499   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
3500     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
3501       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
3502     valori:
3503     \begin{errlist}
3504     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
3505       puntatore valido.
3506     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
3507       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
3508       mappature di tipo non corrispondente a quella richiesta.
3509     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
3510       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
3511       è specificato \const{MREMAP\_MAYMOVE} nei flag.
3512     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
3513       essere rimappato.
3514     \end{errlist}
3515   }
3516 \end{functions}
3517
3518 La funzione richiede come argomenti \param{old\_address} (che deve essere
3519 allineato alle dimensioni di una pagina di memoria) che specifica il
3520 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
3521 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
3522 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
3523 maschera binaria per i flag che controllano il comportamento della funzione.
3524 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
3525   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
3526   di includere \file{sys/mman.h}.}  che consente di eseguire l'espansione
3527 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
3528 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
3529 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
3530
3531 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
3532 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
3533 e le pagine di memoria, modificando i dati direttamente nella
3534 \itindex{page~table} \textit{page table} del processo. Come per
3535 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
3536 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
3537 implementare la funzione \func{realloc} in maniera molto efficiente.
3538
3539 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
3540 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
3541 un file vengono mappate linearmente su indirizzi successivi in memoria.
3542 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
3543   dai database o dai programmi che realizzano macchine virtuali.} in cui è
3544 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
3545
3546 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
3547 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
3548 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
3549   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
3550 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
3551 Infatti per ciascuna mappatura in memoria deve essere definita nella
3552 \itindex{page~table} \textit{page table} del processo una nuova area di
3553 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
3554   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
3555 questa diventi visibile nello spazio degli indirizzi come illustrato in
3556 fig.~\ref{fig:file_mmap_layout}.
3557
3558 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
3559   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
3560 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
3561 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
3562 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
3563 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
3564 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
3565   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
3566   aggiornamento.} solo per mantenere i dati di una gran quantità di
3567 \textit{memory mapping}.
3568
3569 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
3570 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
3571 una caratteristica specifica di Linux, non presente in altri sistemi
3572 unix-like.  Diventa così possibile utilizzare una sola mappatura
3573 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
3574   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
3575 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
3576 nuova system call, \funcd{remap\_file\_pages}, il cui prototipo è:
3577 \begin{functions}  
3578   \headdecl{sys/mman.h} 
3579
3580   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
3581     ssize\_t pgoff, int flags)}
3582   
3583   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
3584
3585   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3586     errore, nel qual caso \var{errno} assumerà uno dei valori:
3587     \begin{errlist}
3588     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
3589       argomenti o \param{start} non fa riferimento ad un \textit{memory
3590         mapping} valido creato con \const{MAP\_SHARED}.
3591     \end{errlist}
3592   }
3593 \end{functions}
3594
3595 Per poter utilizzare questa funzione occorre anzitutto effettuare
3596 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
3597 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
3598 chiamerà questa funzione per modificare le corrispondenze fra pagine di
3599 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
3600 permette anche di mappare la stessa pagina di un file in più pagine della
3601 regione mappata.
3602
3603 La funzione richiede che si identifichi la sezione del file che si vuole
3604 riposizionare all'interno del \textit{memory mapping} con gli argomenti
3605 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
3606 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
3607 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
3608 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
3609 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
3610 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
3611
3612 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
3613 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
3614 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
3615 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
3616 per migliorare le prestazioni in certe condizioni di utilizzo del
3617 \textit{memory mapping}. 
3618
3619 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
3620 grosse dimensioni. Il comportamento normale del sistema della
3621 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
3622 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
3623 i dati verranno effettivamente utilizzati (si avrà cioè un
3624 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
3625 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
3626 interessate dal \textit{memory mapping}. 
3627
3628 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
3629 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
3630   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
3631 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
3632 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
3633 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
3634 comportamento viene abilitato quando si usa con \func{mmap} il flag
3635 \const{MAP\_POPULATE}.
3636
3637 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
3638 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
3639 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
3640 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
3641 mappatura che già si trovano nella cache del kernel.\footnote{questo può
3642   essere utile per il linker dinamico, in particolare quando viene effettuato
3643   il \textit{prelink} delle applicazioni.}
3644
3645 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
3646 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
3647 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
3648 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
3649 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
3650 riproduttore audio o video eseguirà per lo più letture sequenziali.
3651
3652 Per migliorare le prestazioni a seconda di queste modalità di accesso è
3653 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
3654   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
3655   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
3656 kernel delle indicazioni su dette modalità, così che possano essere adottate
3657 le opportune strategie di ottimizzazione. Il suo prototipo è:
3658 \begin{functions}  
3659   \headdecl{sys/mman.h} 
3660
3661   \funcdecl{int madvise(void *start, size\_t length, int advice)}
3662   
3663   Fornisce indicazioni sull'uso previsto di un \textit{memory mapping}.
3664
3665   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3666     errore, nel qual caso \var{errno} assumerà uno dei valori:
3667     \begin{errlist}
3668     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
3669     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
3670       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
3671       un valore valido, o si è richiesto il rilascio (con
3672       \const{MADV\_DONTNEED}) di pagine bloccate o condivise.
3673     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
3674       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
3675       processo (solo in caso di \const{MADV\_WILLNEED}).
3676     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
3677       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
3678       la richiesta.
3679     \end{errlist}
3680     ed inoltre \errval{EAGAIN} e \errval{ENOSYS}.
3681   }
3682 \end{functions}
3683
3684 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
3685 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
3686 \param{lenght}, il valore di \param{start} deve essere allineato,
3687 mentre \param{length} deve essere un numero positivo.\footnote{la versione di
3688   Linux consente anche un valore nullo per \param{lenght}, inoltre se una
3689   parte dell'intervallo non è mappato in memoria l'indicazione viene comunque
3690   applicata alle restanti parti, anche se la funzione ritorna un errore di
3691   \errval{ENOMEM}.} L'indicazione viene espressa dall'argomento \param{advice}
3692 che deve essere specificato con uno dei valori\footnote{si tenga presente che
3693   gli ultimi tre valori sono specifici di Linux (introdotti a partire dal
3694   kernel 2.6.16) e non previsti dallo standard POSIX.1b.} riportati in
3695 tab.~\ref{tab:madvise_advice_values}.
3696
3697 \begin{table}[htb]
3698   \centering
3699   \footnotesize
3700   \begin{tabular}[c]{|l|p{10 cm}|}
3701     \hline
3702     \textbf{Valore} & \textbf{Significato} \\
3703     \hline
3704     \hline
3705     \const{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
3706                             di default usato quando non si è chiamato
3707                             \func{madvise}.\\
3708     \const{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
3709                             indicata, pertanto l'applicazione di una lettura
3710                             anticipata con il meccanismo del
3711                             \itindex{read-ahead} \textit{read-ahead} (vedi
3712                             sez.~\ref{sec:file_fadvise}) è di
3713                             scarsa utilità e verrà disabilitata.\\
3714     \const{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
3715                             quindi da una parte sarà opportuno eseguire una
3716                             lettura anticipata, e dall'altra si potranno
3717                             scartare immediatamente le pagine una volta che
3718                             queste siano state lette.\\
3719     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
3720                             pertanto l'applicazione del \textit{read-ahead}
3721                             deve essere incentivata.\\
3722     \const{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
3723                             futuro, pertanto le pagine possono essere
3724                             liberate dal kernel non appena necessario; l'area
3725                             di memoria resterà accessibile, ma un accesso
3726                             richiederà che i dati vengano ricaricati dal file
3727                             a cui la mappatura fa riferimento.\\
3728     \hline
3729     \const{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
3730                             relativo supporto sottostante; è supportato
3731                             soltanto sui filesystem in RAM \textit{tmpfs} e
3732                             \textit{shmfs}.\footnotemark\\ 
3733     \const{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
3734                             ereditato dal processo figlio dopo una
3735                             \func{fork}; questo consente di evitare che il
3736                             meccanismo del \itindex{copy~on~write}
3737                             \textit{copy on write} effettui la rilocazione
3738                             delle pagine quando il padre scrive sull'area
3739                             di memoria dopo la \func{fork}, cosa che può
3740                             causare problemi per l'hardware che esegue
3741                             operazioni in DMA su quelle pagine.\\
3742     \const{MADV\_DOFORK}  & rimuove l'effetto della precedente
3743                             \const{MADV\_DONTFORK}.\\ 
3744     \const{MADV\_MERGEABLE}& marca la pagina come accorpabile (indicazione
3745                             principalmente ad uso dei sistemi di
3746                             virtualizzazione).\footnotemark\\
3747     \hline
3748   \end{tabular}
3749   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
3750   \label{tab:madvise_advice_values}
3751 \end{table}
3752
3753 \footnotetext{se usato su altri tipi di filesystem causa un errore di
3754   \errcode{ENOSYS}.}
3755
3756 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
3757   identifica pagine di memoria identiche e le accorpa in una unica pagina
3758   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
3759   di controllare tutte le pagine solo quelle marcate con questo flag vengono
3760   prese in considerazione per l'accorpamento; in questo modo si possono
3761   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
3762   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
3763   altre applicazioni in cui sian presenti numerosi processi che usano gli
3764   stessi dati; per maggiori dettagli si veda
3765   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}.}
3766
3767 La funzione non ha, tranne il caso di \const{MADV\_DONTFORK}, nessun effetto
3768 sul comportamento di un programma, ma può influenzarne le prestazioni fornendo
3769 al kernel indicazioni sulle esigenze dello stesso, così che sia possibile
3770 scegliere le opportune strategie per la gestione del \itindex{read-ahead}
3771 \textit{read-ahead} e del caching dei dati. A differenza da quanto specificato
3772 nello standard POSIX.1b, per il quale l'uso di \func{madvise} è a scopo
3773 puramente indicativo, Linux considera queste richieste come imperative, per
3774 cui ritorna un errore qualora non possa soddisfarle.\footnote{questo
3775   comportamento differisce da quanto specificato nello standard.}
3776
3777 \itindend{memory~mapping}
3778
3779
3780 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
3781 \label{sec:file_multiple_io}
3782
3783 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
3784 serie multipla di operazioni di I/O, come una serie di letture o scritture di
3785 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
3786 una struttura ed essi devono essere caricati o salvati su un file.  Benché
3787 l'operazione sia facilmente eseguibile attraverso una serie multipla di
3788 chiamate a \func{read} e \func{write}, ci sono casi in cui si vuole poter
3789 contare sulla atomicità delle operazioni.
3790
3791 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove system call
3792 che permettessero di effettuare con una sola chiamata una serie di letture o
3793 scritture su una serie di buffer, con quello che viene normalmente chiamato
3794 \textsl{I/O vettorizzato}. Queste funzioni sono \funcd{readv} e
3795 \funcd{writev},\footnote{in Linux le due funzioni sono riprese da BSD4.4, esse
3796   sono previste anche dallo standard POSIX.1-2001.} ed i relativi prototipi
3797 sono:
3798 \begin{functions}
3799   \headdecl{sys/uio.h}
3800   
3801   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
3802   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
3803
3804   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
3805   
3806   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
3807     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
3808     assumerà uno dei valori:
3809   \begin{errlist}
3810   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
3811     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
3812   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
3813     di avere eseguito una qualunque lettura o scrittura.
3814   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
3815     non ci sono dati in lettura.
3816   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
3817   \end{errlist}
3818   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
3819   (se non sono stati allocati correttamente i buffer specificati nei campi
3820   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
3821   scrittura eseguite su \param{fd}.}
3822 \end{functions}
3823
3824 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
3825 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
3826 essere letti o scritti ed in che quantità. Il primo campo della struttura,
3827 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
3828 \var{iov\_len}, la dimensione dello stesso.
3829
3830 \begin{figure}[!htb]
3831   \footnotesize \centering
3832   \begin{minipage}[c]{15cm}
3833     \includestruct{listati/iovec.h}
3834   \end{minipage} 
3835   \normalsize 
3836   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
3837     vettorizzato.} 
3838   \label{fig:file_iovec}
3839 \end{figure}
3840
3841 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
3842 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
3843 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
3844   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
3845   logica, che però è stata dismessa per restare aderenti allo standard
3846   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
3847 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
3848 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
3849 specificati nel vettore \param{vector}.
3850
3851 La standardizzazione delle due funzioni all'interno della revisione
3852 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
3853 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
3854 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
3855 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \file{limits.h}; lo
3856 stesso valore deve essere ottenibile in esecuzione tramite la funzione
3857 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
3858 sez.~\ref{sec:sys_sysconf}).
3859
3860 Nel caso di Linux il limite di sistema è di 1024, però se si usano le
3861 \acr{glibc} queste forniscono un \textit{wrapper} per le system call che si
3862 accorge se una operazione supererà il precedente limite, in tal caso i dati
3863 verranno letti o scritti con le usuali \func{read} e \func{write} usando un
3864 buffer di dimensioni sufficienti appositamente allocato e sufficiente a
3865 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
3866 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
3867
3868 Si tenga presente infine che queste funzioni operano sui file con
3869 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
3870 l'interfaccia classica dei \textit{file stream} di
3871 cap.~\ref{cha:files_std_interface}; a causa delle bufferizzazioni interne di
3872 quest'ultima infatti si potrebbero avere risultati indefiniti e non
3873 corrispondenti a quanto aspettato.
3874
3875 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
3876   vettorizzato} si pone il problema di poter effettuare le operazioni in
3877 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
3878 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
3879   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
3880 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
3881 \funcd{preadv} e \func{pwritev} ed i rispettivi prototipi sono:\footnote{le
3882   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
3883     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
3884   utilizzano degli argomenti diversi per problemi collegati al formato a 64
3885   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
3886   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
3887   che mantengono l'interfaccia delle analoghe tratte da BSD.}
3888 \begin{functions}
3889   \headdecl{sys/uio.h}
3890   
3891   \funcdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
3892     offset)}
3893   \funcdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
3894     offset)}
3895
3896   Eseguono una lettura o una scrittura vettorizzata a partire da una data
3897   posizione sul file.
3898   
3899   \bodydesc{Le funzioni hanno gli stessi valori di ritorno delle
3900     corrispondenti \func{readv} e \func{writev}; anche gli eventuali errori
3901     sono gli stessi già visti in precedenza, ma ad essi si possono aggiungere
3902     per \var{errno} anche i valori:
3903   \begin{errlist}
3904   \item[\errcode{EOVERFLOW}] \param{offset} ha un valore che non può essere
3905     usato come \ctyp{off\_t}.
3906   \item[\errcode{ESPIPE}] \param{fd} è associato ad un socket o una pipe.
3907   \end{errlist}
3908 }
3909 \end{functions}
3910
3911 Le due funzioni eseguono rispettivamente una lettura o una scrittura
3912 vettorizzata a partire dalla posizione \param{offset} sul file indicato
3913 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
3914 processi che vi facciano riferimento, non viene alterata. A parte la presenza
3915 dell'ulteriore argomento il comportamento delle funzioni è identico alle
3916 precedenti \func{readv} e \func{writev}. 
3917
3918 Con l'uso di queste funzioni si possono evitare eventuali
3919 \itindex{race~condition} \textit{race condition} quando si deve eseguire la
3920 una operazione di lettura e scrittura vettorizzata a partire da una certa
3921 posizione su un file, mentre al contempo si possono avere in concorrenza
3922 processi che utilizzano lo stesso file descriptor (si ricordi quanto visto in
3923 sez.~\ref{sec:file_adv_func}) con delle chiamate a \func{lseek}.
3924
3925
3926
3927 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
3928   \func{splice}} 
3929 \label{sec:file_sendfile_splice}
3930
3931 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
3932 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
3933 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
3934 buffer in memoria, da cui essi vengono poi scritti sul secondo.
3935
3936 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
3937 fare con file normali, in generale quando i dati da trasferire sono molti si
3938 pone il problema di effettuare trasferimenti di grandi quantità di dati da
3939 kernel space a user space e all'indietro, quando in realtà potrebbe essere più
3940 efficiente mantenere tutto in kernel space. Tratteremo in questa sezione
3941 alcune funzioni specialistiche che permettono di ottimizzare le prestazioni in
3942 questo tipo di situazioni.
3943
3944 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
3945 fra due file descriptor è \func{sendfile};\footnote{la funzione è stata
3946   introdotta con i kernel della serie 2.2, e disponibile dalle \acr{glibc}
3947   2.1.} la funzione è presente in diverse versioni di Unix,\footnote{la si
3948   ritrova ad esempio in FreeBSD, HPUX ed altri Unix.} ma non è presente né in
3949 POSIX.1-2001 né in altri standard,\footnote{pertanto si eviti di utilizzarla
3950   se si devono scrivere programmi portabili.} per cui per essa vengono
3951 utilizzati prototipi e semantiche differenti; nel caso di Linux il prototipo
3952 di \funcd{sendfile} è:
3953 \begin{functions}  
3954   \headdecl{sys/sendfile.h} 
3955
3956   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
3957     count)} 
3958   
3959   Copia dei dati da un file descriptor ad un altro.
3960
3961   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
3962     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
3963     dei valori:
3964     \begin{errlist}
3965     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
3966       \param{out\_fd} e la scrittura si bloccherebbe.
3967     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
3968       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
3969       \param{in\_fd}.
3970     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
3971     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
3972       \param{in\_fd}.
3973     \end{errlist}
3974     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
3975   }
3976 \end{functions}
3977
3978 La funzione copia direttamente \param{count} byte dal file descriptor
3979 \param{in\_fd} al file descriptor \param{out\_fd}; in caso di successo
3980 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
3981 \param{out\_fd} o $-1$ in caso di errore; come le ordinarie \func{read} e
3982 \func{write} questo valore può essere inferiore a quanto richiesto con
3983 \param{count}.
3984
3985 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
3986 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
3987 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
3988 valore sarà aggiornato, come \textit{value result argument}, per indicare la
3989 posizione del byte successivo all'ultimo che è stato letto, mentre la
3990 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
3991 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
3992 letti da \param{in\_fd}.
3993
3994 Fino ai kernel della serie 2.4 la funzione è utilizzabile su un qualunque file
3995 descriptor, e permette di sostituire la invocazione successiva di una
3996 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
3997 sola chiamata a \funcd{sendfile}. In questo modo si può diminuire il numero di
3998 chiamate al sistema e risparmiare in trasferimenti di dati da kernel space a
3999 user space e viceversa.  La massima utilità della funzione si ha comunque per
4000 il trasferimento di dati da un file su disco ad un socket di
4001 rete,\footnote{questo è il caso classico del lavoro eseguito da un server web,
4002   ed infatti Apache ha una opzione per il supporto esplicito di questa
4003   funzione.} dato che in questo caso diventa possibile effettuare il
4004 trasferimento diretto via DMA dal controller del disco alla scheda di rete,
4005 senza neanche allocare un buffer nel kernel,\footnote{il meccanismo è detto
4006   \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel, che
4007   si limita a programmare solo le operazioni di lettura e scrittura via DMA.}
4008 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
4009
4010 In seguito però ci si è accorti che, fatta eccezione per il trasferimento
4011 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
4012 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
4013 \func{write},\footnote{nel caso generico infatti il kernel deve comunque
4014   allocare un buffer ed effettuare la copia dei dati, e in tal caso spesso il
4015   guadagno ottenibile nel ridurre il numero di chiamate al sistema non
4016   compensa le ottimizzazioni che possono essere fatte da una applicazione in
4017   user space che ha una conoscenza diretta su come questi sono strutturati.} e
4018 che anzi in certi casi si potevano avere anche dei peggioramenti.  Questo ha
4019 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
4020   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
4021   in \href{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}
4022   {\textsf{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}}.}
4023 alla decisione di consentire l'uso della funzione soltanto quando il file da
4024 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
4025 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
4026 casi l'uso di \func{sendfile} darà luogo ad un errore di \errcode{EINVAL}.
4027
4028 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
4029 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
4030 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
4031 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
4032 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
4033 la gestione della copia dei dati fra file, evitando di dover gestire
4034 l'allocazione di un buffer temporaneo per il loro trasferimento.
4035
4036 Questo dubbio si può comunque ritenere superato con l'introduzione, avvenuta a
4037 partire dal kernel 2.6.17, della nuova \textit{system call} \func{splice}. Lo
4038 scopo di questa funzione è quello di fornire un meccanismo generico per il
4039 trasferimento di dati da o verso un file utilizzando un buffer gestito
4040 internamente dal kernel. Descritta in questi termini \func{splice} sembra
4041 semplicemente un ``\textsl{dimezzamento}'' di \func{sendfile}.\footnote{nel
4042   senso che un trasferimento di dati fra due file con \func{sendfile} non
4043   sarebbe altro che la lettura degli stessi su un buffer seguita dalla
4044   relativa scrittura, cosa che in questo caso si dovrebbe eseguire con due
4045   chiamate a \func{splice}.} In realtà le due system call sono profondamente
4046 diverse nel loro meccanismo di funzionamento;\footnote{questo fino al kernel
4047   2.6.23, dove \func{sendfile} è stata reimplementata in termini di
4048   \func{splice}, pur mantenendo disponibile la stessa interfaccia verso l'user
4049   space.} \func{sendfile} infatti, come accennato, non necessita di avere a
4050 disposizione un buffer interno, perché esegue un trasferimento diretto di
4051 dati; questo la rende in generale più efficiente, ma anche limitata nelle sue
4052 applicazioni, dato che questo tipo di trasferimento è possibile solo in casi
4053 specifici.\footnote{e nel caso di Linux questi sono anche solo quelli in cui
4054   essa può essere effettivamente utilizzata.}
4055
4056 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
4057   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
4058   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
4059   stata la reinterpretazione che ne è stata fatta nell'implementazione su
4060   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
4061   dallo stesso Linus Torvalds in \href{http://kerneltrap.org/node/6505}
4062   {\textsf{http://kerneltrap.org/node/6505}}.} si tratta semplicemente di una
4063 funzione che consente di fare in maniera del tutto generica delle operazioni
4064 di trasferimento di dati fra un file e un buffer gestito interamente in kernel
4065 space. In questo caso il cuore della funzione (e delle affini \func{vmsplice}
4066 e \func{tee}, che tratteremo più avanti) è appunto l'uso di un buffer in
4067 kernel space, e questo è anche quello che ne ha semplificato l'adozione,
4068 perché l'infrastruttura per la gestione di un tale buffer è presente fin dagli
4069 albori di Unix per la realizzazione delle \textit{pipe} (vedi
4070 sez.~\ref{sec:ipc_unix}). Dal punto di vista concettuale allora \func{splice}
4071 non è altro che una diversa interfaccia (rispetto alle \textit{pipe}) con cui
4072 utilizzare in user space l'oggetto ``\textsl{buffer in kernel space}''.
4073
4074 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
4075 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
4076 dati che vengono trasferiti da un capo all'altro della stessa per creare un
4077 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
4078 viene usato o come fonte dei dati che saranno scritti su un file, o come
4079 destinazione dei dati che vengono letti da un file. La funzione \funcd{splice}
4080 fornisce quindi una interfaccia generica che consente di trasferire dati da un
4081 buffer ad un file o viceversa; il suo prototipo, accessibile solo dopo aver
4082 definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
4083   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
4084   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
4085 è il seguente:
4086 \begin{functions}  
4087   \headdecl{fcntl.h} 
4088
4089   \funcdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
4090     *off\_out, size\_t len, unsigned int flags)}
4091   
4092   Trasferisce dati da un file verso una pipe o viceversa.
4093
4094   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4095     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4096     dei valori:
4097     \begin{errlist}
4098     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
4099       non sono file descriptor validi o, rispettivamente, non sono stati
4100       aperti in lettura o scrittura.
4101     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
4102       \func{splice}, oppure nessuno dei file descriptor è una pipe, oppure si
4103       è dato un valore a \param{off\_in} o \param{off\_out} ma il
4104       corrispondente file è un dispositivo che non supporta la funzione
4105       \func{seek}.
4106     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4107       richiesta.
4108     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
4109       \const{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
4110     \end{errlist}
4111   }
4112 \end{functions}
4113
4114 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
4115 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
4116 una \textit{pipe}; l'altro file descriptor può essere
4117 qualunque.\footnote{questo significa che può essere, oltre che un file di
4118   dati, anche un altra \textit{pipe}, o un socket.}  Come accennato una
4119 \textit{pipe} non è altro che un buffer in kernel space, per cui a seconda che
4120 essa sia usata per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la
4121 copia dei dati dal buffer al file o viceversa. 
4122
4123 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
4124 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
4125 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
4126 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
4127 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
4128 trasferimento dei dati, la funzione si comporta nei confronti del file
4129 descriptor che fa riferimento al file ordinario, come \func{read} o
4130 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
4131 il suddetto file in modalità non bloccante).
4132
4133 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
4134 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
4135 del file da cui partire per il trasferimento dei dati. Come per
4136 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
4137 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
4138 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
4139 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
4140 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
4141 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
4142 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
4143 specificato come valore non nullo.
4144
4145 Infine l'argomento \param{flags} consente di controllare alcune
4146 caratteristiche del funzionamento della funzione; il contenuto è una maschera
4147 binaria e deve essere specificato come OR aritmetico dei valori riportati in
4148 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
4149 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
4150 descrizioni complete di tutti i valori possibili anche quando, come per
4151 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
4152
4153 \begin{table}[htb]
4154   \centering
4155   \footnotesize
4156   \begin{tabular}[c]{|l|p{10cm}|}
4157     \hline
4158     \textbf{Valore} & \textbf{Significato} \\
4159     \hline
4160     \hline
4161     \const{SPLICE\_F\_MOVE}    & Suggerisce al kernel di spostare le pagine
4162                                  di memoria contenenti i dati invece di
4163                                  copiarle;\footnotemark viene usato soltanto
4164                                  da \func{splice}.\\ 
4165     \const{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
4166                                  bloccante; questo flag influisce solo sulle
4167                                  operazioni che riguardano l'I/O da e verso la
4168                                  \textit{pipe}. Nel caso di \func{splice}
4169                                  questo significa che la funzione potrà
4170                                  comunque bloccarsi nell'accesso agli altri
4171                                  file descriptor (a meno che anch'essi non
4172                                  siano stati aperti in modalità non
4173                                  bloccante).\\
4174     \const{SPLICE\_F\_MORE}    & Indica al kernel che ci sarà l'invio di
4175                                  ulteriori dati in una \func{splice}
4176                                  successiva, questo è un suggerimento utile
4177                                  che viene usato quando \param{fd\_out} è un
4178                                  socket.\footnotemark Attualmente viene usato
4179                                  solo da \func{splice}, potrà essere
4180                                  implementato in futuro anche per
4181                                  \func{vmsplice} e \func{tee}.\\
4182     \const{SPLICE\_F\_GIFT}    & Le pagine di memoria utente sono
4183                                  ``\textsl{donate}'' al kernel;\footnotemark
4184                                  se impostato una seguente \func{splice} che
4185                                  usa \const{SPLICE\_F\_MOVE} potrà spostare le 
4186                                  pagine con successo, altrimenti esse dovranno
4187                                  essere copiate; per usare questa opzione i
4188                                  dati dovranno essere opportunamente allineati
4189                                  in posizione ed in dimensione alle pagine di
4190                                  memoria. Viene usato soltanto da
4191                                  \func{vmsplice}.\\
4192     \hline
4193   \end{tabular}
4194   \caption{Le costanti che identificano i bit della maschera binaria
4195     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
4196     \func{tee}.} 
4197   \label{tab:splice_flag}
4198 \end{table}
4199
4200 \footnotetext[120]{per una maggiore efficienza \func{splice} usa quando
4201   possibile i meccanismi della memoria virtuale per eseguire i trasferimenti
4202   di dati (in maniera analoga a \func{mmap}), qualora le pagine non possano
4203   essere spostate dalla pipe o il buffer non corrisponda a pagine intere esse
4204   saranno comunque copiate.}
4205
4206 \footnotetext[121]{questa opzione consente di utilizzare delle opzioni di
4207   gestione dei socket che permettono di ottimizzare le trasmissioni via rete,
4208   si veda la descrizione di \const{TCP\_CORK} in
4209   sez.~\ref{sec:sock_tcp_udp_options} e quella di \const{MSG\_MORE} in
4210   sez.~\ref{sec:net_sendmsg}.}
4211
4212 \footnotetext{questo significa che la cache delle pagine e i dati su disco
4213   potranno differire, e che l'applicazione non potrà modificare quest'area di
4214   memoria.}
4215
4216 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
4217 semplice programma che usa questa funzione per effettuare la copia di un file
4218 su un altro senza utilizzare buffer in user space. Il programma si chiama
4219 \texttt{splicecp.c} ed il codice completo è disponibile coi sorgenti allegati
4220 alla guida, il corpo principale del programma, che non contiene la sezione di
4221 gestione delle opzioni e le funzioni di ausilio è riportato in
4222 fig.~\ref{fig:splice_example}.
4223
4224 Lo scopo del programma è quello di eseguire la copia dei con \func{splice},
4225 questo significa che si dovrà usare la funzione due volte, prima per leggere i
4226 dati e poi per scriverli, appoggiandosi ad un buffer in kernel space (vale a
4227 dire ad una \textit{pipe}); lo schema del flusso dei dati è illustrato in
4228 fig.~\ref{fig:splicecp_data_flux}. 
4229
4230 \begin{figure}[htb]
4231   \centering
4232   \includegraphics[height=6cm]{img/splice_copy}
4233   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
4234   \label{fig:splicecp_data_flux}
4235 \end{figure}
4236
4237 Una volta trattate le opzioni il programma verifica che restino
4238 (\texttt{\small 13--16}) i due argomenti che indicano il file sorgente ed il
4239 file destinazione. Il passo successivo è aprire il file sorgente
4240 (\texttt{\small 18--22}), quello di destinazione (\texttt{\small 23--27}) ed
4241 infine (\texttt{\small 28--31}) la \textit{pipe} che verrà usata come buffer.
4242
4243 \begin{figure}[!phtb]
4244   \footnotesize \centering
4245   \begin{minipage}[c]{15cm}
4246     \includecodesample{listati/splicecp.c}
4247   \end{minipage}
4248   \normalsize
4249   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
4250     un file.}
4251   \label{fig:splice_example}
4252 \end{figure}
4253
4254 Il ciclo principale (\texttt{\small 33--58}) inizia con la lettura dal file
4255 sorgente tramite la prima \func{splice} (\texttt{\small 34--35}), in questo
4256 caso si è usato come primo argomento il file descriptor del file sorgente e
4257 come terzo quello del capo in scrittura della \textit{pipe} (il funzionamento
4258 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
4259 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
4260 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
4261 semplicemente al trasferimento dei dati dal file al buffer).
4262
4263 La lettura viene eseguita in blocchi pari alla dimensione specificata
4264 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
4265 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
4266 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
4267 detto valore è nullo (\texttt{\small 36}) questo significa che si è giunti
4268 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
4269 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
4270   59}). In caso di valore negativo (\texttt{\small 37--44}) c'è stato un
4271 errore ed allora si ripete la lettura (\texttt{\small 36}) se questo è dovuto
4272 ad una interruzione, o altrimenti si esce con un messaggio di errore
4273 (\texttt{\small 41--43}).
4274
4275 Una volta completata con successo la lettura si avvia il ciclo di scrittura
4276 (\texttt{\small 45--57}); questo inizia (\texttt{\small 46--47}) con la
4277 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
4278 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
4279 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
4280 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
4281 del file di destinazione.
4282
4283 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
4284 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
4285 dovuto a una interruzione o si esce con un messaggio negli altri casi
4286 (\texttt{\small 48--55}). Infine si chiude il ciclo di scrittura sottraendo
4287 (\texttt{\small 57}) il numero di byte scritti a quelli di cui è richiesta la
4288 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
4289   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
4290   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
4291 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
4292 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
4293 presenti sul buffer.
4294
4295 Si noti come il programma sia concettualmente identico a quello che si sarebbe
4296 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
4297 al posto della seconda, utilizzando un buffer in user space per eseguire la
4298 copia dei dati, solo che in questo caso non è stato necessario allocare nessun
4299 buffer e non si è trasferito nessun dato in user space.
4300
4301 Si noti anche come si sia usata la combinazione \texttt{SPLICE\_F\_MOVE |
4302   SPLICE\_F\_MORE } per l'argomento \param{flags} di \func{splice}, infatti
4303 anche se un valore nullo avrebbe dato gli stessi risultati, l'uso di questi
4304 flag, che si ricordi servono solo a dare suggerimenti al kernel, permette in
4305 genere di migliorare le prestazioni.
4306
4307 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
4308 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
4309 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
4310 trasferimento di dati attraverso un buffer in kernel space; benché queste non
4311 attengono strettamente ad operazioni di trasferimento dati fra file
4312 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
4313
4314 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
4315 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
4316 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
4317 il suo prototipo è:
4318 \begin{functions}  
4319   \headdecl{fcntl.h} 
4320   \headdecl{sys/uio.h}
4321
4322   \funcdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long
4323     nr\_segs, unsigned int flags)}
4324   
4325   Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.
4326
4327   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4328     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4329     dei valori:
4330     \begin{errlist}
4331     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
4332       fa riferimento ad una \textit{pipe}.
4333     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
4334       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
4335     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4336       richiesta.
4337     \end{errlist}
4338   }
4339 \end{functions}
4340
4341 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
4342 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
4343 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
4344 segmenti della memoria del processo devono essere trasferiti verso di essa si
4345 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
4346 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
4347 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
4348 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
4349 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
4350 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
4351 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
4352 illustrate in sez.~\ref{sec:file_multiple_io}.
4353
4354 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
4355 \textit{pipe}. In generale, se i dati una volta creati non devono essere
4356 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
4357 modificherà più la memoria trasferita), è opportuno utilizzare
4358 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
4359 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
4360 che queste possono essere utilizzate immediatamente senza necessità di
4361 eseguire una copia dei dati che contengono.
4362
4363 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
4364 suo nome all'omonimo comando in user space, perché in analogia con questo
4365 permette di duplicare i dati in ingresso su una \textit{pipe} su un'altra
4366 \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione dei dati su
4367 dei buffer in kernel space, la funzione consente di eseguire una copia del
4368 contenuto del buffer stesso. Il prototipo di \funcd{tee} è il seguente:
4369 \begin{functions}  
4370   \headdecl{fcntl.h} 
4371
4372   \funcdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
4373     flags)}
4374   
4375   Duplica \param{len} byte da una \textit{pipe} ad un'altra.
4376
4377   \bodydesc{La funzione restituisce il numero di byte copiati in caso di
4378     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4379     dei valori:
4380     \begin{errlist}
4381     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
4382       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
4383       stessa \textit{pipe}.
4384     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4385       richiesta.
4386     \end{errlist}
4387   }
4388 \end{functions}
4389
4390 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
4391 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
4392 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
4393 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
4394 \func{tee} da \func{fd\_in} non vengono \textsl{consumati} e restano
4395 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
4396 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
4397 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
4398   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
4399 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
4400 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
4401 funzione non bloccante.
4402
4403 La funzione restituisce il numero di byte copiati da una \textit{pipe}
4404 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
4405 byte disponibili da copiare e che il capo in scrittura della pipe è stato
4406 chiuso.\footnote{si tenga presente però che questo non avviene se si è
4407   impostato il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si
4408   avrebbe un errore di \errcode{EAGAIN}.} Un esempio di realizzazione del
4409 comando \texttt{tee} usando questa funzione, ripreso da quello fornito nella
4410 pagina di manuale e dall'esempio allegato al patch originale, è riportato in
4411 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
4412 dello standard input sullo standard output e su un file specificato come
4413 argomento, il codice completo si trova nel file \texttt{tee.c} dei sorgenti
4414 allegati alla guida.
4415
4416 \begin{figure}[!htbp]
4417   \footnotesize \centering
4418   \begin{minipage}[c]{15cm}
4419     \includecodesample{listati/tee.c}
4420   \end{minipage}
4421   \normalsize
4422   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
4423     standard input sullo standard output e su un file.}
4424   \label{fig:tee_example}
4425 \end{figure}
4426
4427 La prima parte del programma (\texttt{\small 10--35}) si cura semplicemente di
4428 controllare (\texttt{\small 11--14}) che sia stato fornito almeno un argomento
4429 (il nome del file su cui scrivere), di aprirlo ({\small 15--19}) e che sia lo
4430 standard input (\texttt{\small 20--27}) che lo standard output (\texttt{\small
4431   28--35}) corrispondano ad una \textit{pipe}.
4432
4433 Il ciclo principale (\texttt{\small 37--58}) inizia con la chiamata a
4434 \func{tee} che duplica il contenuto dello standard input sullo standard output
4435 (\texttt{\small 39}), questa parte è del tutto analoga ad una lettura ed
4436 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
4437 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
4438 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 40}), se
4439 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
4440 dovuto ad una interruzione (\texttt{\small 42--44}) o si stampa un messaggio
4441 di errore e si esce negli altri casi (\texttt{\small 44--47}).
4442
4443 Una volta completata la copia dei dati sullo standard output si possono
4444 estrarre dalla standard input e scrivere sul file, di nuovo su usa un ciclo di
4445 scrittura (\texttt{\small 50--58}) in cui si ripete una chiamata a
4446 \func{splice} (\texttt{\small 51}) fintanto che non si sono scritti tutti i
4447 \var{len} byte copiati in precedenza con \func{tee} (il funzionamento è
4448 identico all'analogo ciclo di scrittura del precedente esempio di
4449 fig.~\ref{fig:splice_example}).
4450
4451 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
4452 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
4453 di dati in realtà nella implementazione di queste system call non è affatto
4454 detto che i dati vengono effettivamente spostati o copiati, il kernel infatti
4455 realizza le \textit{pipe} come un insieme di puntatori\footnote{per essere
4456   precisi si tratta di un semplice buffer circolare, un buon articolo sul tema
4457   si trova su \href{http://lwn.net/Articles/118750/}
4458   {\textsf{http://lwn.net/Articles/118750/}}.}  alle pagine di memoria interna
4459 che contengono i dati, per questo una volta che i dati sono presenti nella
4460 memoria del kernel tutto quello che viene fatto è creare i suddetti puntatori
4461 ed aumentare il numero di referenze; questo significa che anche con \func{tee}
4462 non viene mai copiato nessun byte, vengono semplicemente copiati i puntatori.
4463
4464 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
4465
4466
4467 \subsection{Gestione avanzata dell'accesso ai dati dei file}
4468 \label{sec:file_fadvise}
4469
4470 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
4471 operazioni di lettura e scrittura non necessitano di nessun intervento di
4472 supervisione da parte dei programmi, si eseguirà una \func{read} o una
4473 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
4474 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
4475 termine in quello che ritiene essere il modo più efficiente.
4476
4477 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
4478 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
4479 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
4480 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
4481 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
4482 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
4483 il loro accesso ai dati dei file e controllare la gestione del relativo
4484 \textit{caching}.
4485
4486 \itindbeg{read-ahead}
4487
4488 Una prima funzione che può essere utilizzata per modificare la gestione
4489 ordinaria dell'I/O su un file è \funcd{readahead},\footnote{questa è una
4490   funzione specifica di Linux, introdotta con il kernel 2.4.13, e non deve
4491   essere usata se si vogliono scrivere programmi portabili.} che consente di
4492 richiedere una lettura anticipata del contenuto dello stesso in cache, così
4493 che le seguenti operazioni di lettura non debbano subire il ritardo dovuto
4494 all'accesso al disco; il suo prototipo è:
4495 \begin{functions}
4496   \headdecl{fcntl.h}
4497
4498   \funcdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
4499   
4500   Esegue una lettura preventiva del contenuto di un file in cache.
4501
4502   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4503     errore, nel qual caso \var{errno} assumerà uno dei valori:
4504     \begin{errlist}
4505     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4506       valido o non è aperto in lettura.
4507     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
4508       file che non supporta l'operazione (come una pipe o un socket).
4509     \end{errlist}
4510   }
4511 \end{functions}
4512
4513 La funzione richiede che venga letto in anticipo il contenuto del file
4514 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
4515 \param{count} byte, in modo da portarlo in cache.  La funzione usa la
4516 \index{memoria~virtuale} memoria virtuale ed il meccanismo della
4517 \index{paginazione} paginazione per cui la lettura viene eseguita in blocchi
4518 corrispondenti alle dimensioni delle pagine di memoria, ed i valori di
4519 \param{offset} e \param{count} vengono arrotondati di conseguenza.
4520
4521 La funzione estende quello che è un comportamento normale del kernel che
4522 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
4523 una lettura preventiva di una certa quantità di dati; questo meccanismo di
4524 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
4525 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
4526 disco, effettua la lettura in cache della sezione richiesta e si blocca
4527 fintanto che questa non viene completata.  La posizione corrente sul file non
4528 viene modificata ed indipendentemente da quanto indicato con \param{count} la
4529 lettura dei dati si interrompe una volta raggiunta la fine del file.
4530
4531 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
4532 all'interno di un programma tutte le volte che si conosce in anticipo quanti
4533 dati saranno necessari nelle elaborazioni successive. Si potrà così
4534 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
4535 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
4536 nelle operazioni successive.
4537
4538 \itindend{read-ahead}
4539
4540 Il concetto di \func{readahead} viene generalizzato nello standard
4541 POSIX.1-2001 dalla funzione \func{posix\_fadvise},\footnote{anche se
4542   l'argomento \param{len} è stato modificato da \ctyp{size\_t} a \ctyp{off\_t}
4543   nella revisione POSIX.1-2003 TC5.} che consente di ``\textsl{avvisare}'' il
4544 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
4545 porzione di un file,\footnote{la funzione però è stata introdotta su Linux
4546   solo a partire dal kernel 2.5.60.} così che esso possa provvedere le
4547 opportune ottimizzazioni; il prototipo di \funcd{posix\_fadvise}, che è
4548 disponibile soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad
4549 valore di almeno 600, è:
4550 \begin{functions}  
4551   \headdecl{fcntl.h} 
4552
4553   \funcdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
4554   
4555   Dichiara al kernel le future modalità di accesso ad un file.
4556
4557   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4558     errore, nel qual caso \var{errno} assumerà uno dei valori:
4559     \begin{errlist}
4560     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4561       valido.
4562     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
4563       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
4564       (come una pipe o un socket).
4565     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una pipe o
4566       un socket (ma su Linux viene restituito \errcode{EINVAL}).
4567     \end{errlist}
4568   }
4569 \end{functions}
4570
4571 La funzione dichiara al kernel le modalità con cui intende accedere alla
4572 regione del file indicato da \param{fd} che inizia alla posizione
4573 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
4574 valore nullo la regione coperta sarà da \param{offset} alla fine del
4575 file.\footnote{questo è vero solo per le versioni più recenti, fino al kernel
4576   2.6.6 il valore nullo veniva interpretato letteralmente.} Le modalità sono
4577 indicate dall'argomento \param{advice} che è una maschera binaria dei valori
4578 illustrati in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato
4579 degli analoghi già visti in sez.~\ref{sec:file_memory_map} per
4580 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
4581   in questo caso applicata direttamente al sistema ai contenuti di un file
4582   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
4583 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
4584 che utilizza semplicemente l'informazione.
4585
4586 \begin{table}[htb]
4587   \centering
4588   \footnotesize
4589   \begin{tabular}[c]{|l|p{10cm}|}
4590     \hline
4591     \textbf{Valore} & \textbf{Significato} \\
4592     \hline
4593     \hline
4594     \const{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
4595                                    riguardo le modalità di accesso, il
4596                                    comportamento sarà identico a quello che si
4597                                    avrebbe senza nessun avviso.\\ 
4598     \const{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
4599                                    accedere ai dati specificati in maniera
4600                                    sequenziale, a partire dalle posizioni più
4601                                    basse.\\ 
4602     \const{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
4603                                    completamente causale.\\
4604     \const{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
4605     \const{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
4606     \const{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
4607     \hline
4608   \end{tabular}
4609   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
4610     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
4611     ad un file.}
4612   \label{tab:posix_fadvise_flag}
4613 \end{table}
4614
4615 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
4616 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
4617 dal kernel; in particolare utilizzando il valore
4618 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
4619 dati letti preventivamente rispetto al default, aspettandosi appunto una
4620 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
4621 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
4622 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
4623 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
4624 riportarsi al comportamento di default.
4625
4626 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
4627 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
4628 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
4629 cache della regione del file indicata.  La quantità di dati che verranno letti
4630 è ovviamente limitata in base al carico che si viene a creare sul sistema
4631 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
4632 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
4633 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
4634 considerare l'equivalente POSIX di \func{readahead}.
4635
4636 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
4637 pagine di cache occupate dai dati presenti nella regione di file indicata.
4638 Questa è una indicazione utile che permette di alleggerire il carico sulla
4639 cache, ed un programma può utilizzare periodicamente questa funzione per
4640 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
4641 nuovi dati utili.\footnote{la pagina di manuale riporta l'esempio dello
4642   streaming di file di grosse dimensioni, dove le pagine occupate dai dati già
4643   inviati possono essere tranquillamente scartate.}
4644
4645 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
4646 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
4647 specifica per le operazioni di scrittura,
4648 \funcd{posix\_fallocate},\footnote{la funzione è stata introdotta a partire
4649   dalle glibc 2.1.94.} che consente di preallocare dello spazio disco per
4650 assicurarsi che una seguente scrittura non fallisca, il suo prototipo,
4651 anch'esso disponibile solo se si definisce la macro \macro{\_XOPEN\_SOURCE} ad
4652 almeno 600, è:
4653 \begin{functions}  
4654   \headdecl{fcntl.h} 
4655
4656   \funcdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
4657   
4658   Richiede la allocazione di spazio disco per un file.
4659
4660   \bodydesc{La funzione restituisce 0 in caso di successo e direttamente un
4661     codice di errore, in caso di fallimento, in questo caso \var{errno} non
4662     viene impostata, ma sarà restituito direttamente uno dei valori:
4663     \begin{errlist}
4664     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4665       valido o non è aperto in scrittura.
4666     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
4667       zero.
4668     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
4669       la dimensione massima consentita per un file.
4670     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
4671       file regolare.
4672     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
4673       l'operazione. 
4674     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una pipe.
4675   \end{errlist}
4676   }
4677 \end{functions}
4678
4679 La funzione assicura che venga allocato sufficiente spazio disco perché sia
4680 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
4681 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
4682 se questa regione si estende oltre la fine del file le dimensioni di
4683 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
4684 successo la funzione è garantito che una successiva scrittura nella regione
4685 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
4686 effetto né sul contenuto, né sulla posizione corrente del file.
4687
4688 Ci si può chiedere a cosa possa servire una funzione come
4689 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
4690 eseguendo esplicitamente sul file la scrittura\footnote{usando \funcd{pwrite}
4691   per evitare spostamenti della posizione corrente sul file.} di una serie di
4692 zeri per l'estensione di spazio necessaria qualora il \itindex{sparse~file}
4693 file debba essere esteso o abbia dei \index{file!\textit{hole}}
4694 buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e che
4695   l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
4696   \itindex{sparse~file} \textit{sparse file} (vedi sez.~\ref{sec:file_lseek})
4697   senza una effettiva allocazione dello spazio disco.}  In realtà questa è la
4698 modalità con cui la funzione veniva realizzata nella prima versione fornita
4699 dalle \acr{glibc}, per cui la funzione costituiva in sostanza soltanto una
4700 standardizzazione delle modalità di esecuzione di questo tipo di allocazioni.
4701
4702 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
4703 scrittura su tutto lo spazio disco necessario, da fare al momento della
4704 richiesta di allocazione, pagandone il conseguente prezzo in termini di
4705 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
4706 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
4707 diventa effettivamente disponibile.
4708
4709 Per poter fare tutto questo è però necessario il supporto da parte del kernel,
4710 e questo è divenuto disponibile solo a partire dal kernel 2.6.23 in cui è
4711 stata introdotta la nuova \textit{system call} \func{fallocate},\footnote{non
4712   è detto che la funzione sia disponibile per tutti i filesystem, ad esempio
4713   per XFS il supporto è stato introdotto solo a partire dal kernel 2.6.25.}
4714 che consente di realizzare direttamente all'interno del kernel l'allocazione
4715 dello spazio disco così da poter realizzare una versione di
4716 \func{posix\_fallocate} con prestazioni molto più elevate.\footnote{nelle
4717   \acr{glibc} la nuova \textit{system call} viene sfruttata per la
4718   realizzazione di \func{posix\_fallocate} a partire dalla versione 2.10.}
4719
4720 Trattandosi di una funzione di servizio, ed ovviamente disponibile
4721 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
4722 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
4723   in maniera indiretta con l'ausilio di \func{syscall}, vedi
4724   sez.~\ref{sec:intro_syscall}, come \code{long fallocate(int fd, int mode,
4725       loff\_t offset, loff\_t len)}.} ma a partire dalle \acr{glibc} 2.10 è
4726   stato fornito un supporto esplicito; il suo prototipo è:
4727 \begin{functions}
4728   \headdecl{linux/fcntl.h} 
4729
4730   \funcdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
4731
4732   Prealloca dello spazio disco per un file.
4733   
4734   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di errore,
4735     nel qual caso \var{errno} può assumere i valori:
4736     \begin{errlist}
4737     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
4738       valido aperto in scrittura.
4739     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
4740       dimensioni massime di un file. 
4741     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
4742       minore o uguale a zero. 
4743     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
4744       o a una directory. 
4745     \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per l'operazione. 
4746     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
4747       a \param{fd} non supporta \func{fallocate}.
4748     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
4749       a \param{fd} non supporta l'operazione \param{mode}.
4750   \end{errlist} 
4751   ed inoltre \errval{EINTR}, \errval{EIO}.
4752 }
4753 \end{functions}
4754
4755 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
4756 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
4757 modalità di allocazione; al momento quest'ultimo può soltanto essere nullo o
4758 assumere il valore \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la
4759 dimensione del file\footnote{quella ottenuta nel campo \var{st\_size} di una
4760   struttura \struct{stat} dopo una chiamata a \texttt{fstat}.} non venga
4761 modificata anche quando la somma di \param{offset} e \param{len} eccede la
4762 dimensione corrente. 
4763
4764 Se \param{mode} è nullo invece la dimensione totale del file in caso di
4765 estensione dello stesso viene aggiornata, come richiesto per
4766 \func{posix\_fallocate}, ed invocata in questo modo si può considerare
4767 \func{fallocate} come l'implementazione ottimale di \func{posix\_fallocate} a
4768 livello di kernel.
4769
4770 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
4771 % http://kernelnewbies.org/Linux_2_6_23
4772
4773
4774
4775
4776 %\subsection{L'utilizzo delle porte di I/O}
4777 %\label{sec:file_io_port}
4778 %
4779 % TODO l'I/O sulle porte di I/O 
4780 % consultare le manpage di ioperm, iopl e outb
4781
4782
4783
4784
4785
4786 % LocalWords:  dell'I locking multiplexing cap dell' sez system call socket BSD
4787 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
4788 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
4789 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
4790 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
4791 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
4792 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
4793 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
4794 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
4795 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
4796 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
4797 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
4798 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
4799 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
4800 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
4801 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
4802 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
4803 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
4804 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
4805 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
4806 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
4807 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
4808 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
4809 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
4810 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
4811 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
4812 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
4813 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old
4814 % LocalWords:  exec atime ctime mtime mprotect addr EACCESS mremap address new
4815 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
4816 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
4817 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
4818 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
4819 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
4820 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
4821 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
4822 % LocalWords:  dell'inode CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl
4823 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
4824 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
4825 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
4826 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
4827 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
4828 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
4829 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
4830 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
4831 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
4832 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
4833 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
4834 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs
4835 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
4836 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat
4837
4838
4839 %%% Local Variables: 
4840 %%% mode: latex
4841 %%% TeX-master: "gapil"
4842 %%% End: