Aggiornamenti su pselect e select
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2014 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione avanzata dei file}
13 \label{cha:file_advanced}
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \itindbeg{file~locking}
28
29 In sez.~\ref{sec:file_shared_access} abbiamo preso in esame le modalità in cui
30 un sistema unix-like gestisce l'accesso concorrente ai file da parte di
31 processi diversi. In quell'occasione si è visto come, con l'eccezione dei file
32 aperti in \itindex{append~mode} \textit{append mode}, quando più processi
33 scrivono contemporaneamente sullo stesso file non è possibile determinare la
34 sequenza in cui essi opereranno.
35
36 Questo causa la possibilità di una \itindex{race~condition} \textit{race
37   condition}; in generale le situazioni più comuni sono due: l'interazione fra
38 un processo che scrive e altri che leggono, in cui questi ultimi possono
39 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
40 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
41 output sul file.
42
43 In tutti questi casi il \textit{file locking} è la tecnica che permette di
44 evitare le \itindex{race~condition} \textit{race condition}, attraverso una
45 serie di funzioni che permettono di bloccare l'accesso al file da parte di
46 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
47 delle operazioni di lettura o scrittura.
48
49
50 \subsection{L'\textit{advisory locking}}
51 \label{sec:file_record_locking}
52
53 La prima modalità di \textit{file locking} che è stata implementata nei
54 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
55   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
56   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
57   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
58     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
59   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
60     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
61   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
62   riferimento al concetto di \textit{record}, alla fine si è scelto di
63   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
64 processi, e non il sistema, che si incaricano di asserire e verificare se
65 esistono delle condizioni di blocco per l'accesso ai file. 
66
67 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
68 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
69 pertanto è sempre compito dei vari processi che intendono usare il
70 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
71 prima di accedervi, utilizzando le relative funzioni.
72
73 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
74   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
75   nomenclatura inglese di \textit{file lock}, o più brevemente con
76   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
77   processo (cioè la condizione in cui il processo viene posto in stato di
78   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
79 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
80 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
81 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
82 richiedere contemporaneamente uno \textit{shared lock} su un file per
83 proteggere il loro accesso in lettura.
84
85 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
86 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
87 lettura che in scrittura) da parte di altri processi mentre lo si sta
88 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
89 processo alla volta può richiedere un \textit{exclusive lock} su un file per
90 proteggere il suo accesso in scrittura.
91
92 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
93   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
94 \func{flock}, la seconda è quella recepita dallo standard POSIX.1 (che è
95 derivata dall'interfaccia usata in System V), che è basata sulla funzione
96 \func{fcntl}.  I \textit{file lock} sono implementati in maniera completamente
97 indipendente nelle due interfacce (in realtà con Linux questo avviene solo
98 dalla serie 2.0 dei kernel) che pertanto possono coesistere senza
99 interferenze.
100
101 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
102 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
103 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
104 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
105 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
106 comportamento non bloccante) viene posto in stato di \textit{sleep}. Una volta
107 finite le operazioni sul file si deve provvedere a rimuovere il blocco.
108
109 La situazione delle varie possibilità che si possono verificare è riassunta in
110 tab.~\ref{tab:file_file_lock}, dove si sono riportati, a seconda delle varie
111 tipologie di blocco già presenti su un file, il risultato che si avrebbe in
112 corrispondenza di una ulteriore richiesta da parte di un processo di un blocco
113 nelle due tipologie di \textit{file lock} menzionate, con un successo o meno
114 della richiesta.
115
116 \begin{table}[htb]
117   \centering
118   \footnotesize
119    \begin{tabular}[c]{|l|c|c|c|}
120     \hline
121     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
122     \cline{2-4}
123                 &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
124     \hline
125     \hline
126     \textit{Read lock} & esecuzione & esecuzione & blocco \\
127     \textit{Write lock}& esecuzione & blocco & blocco \\
128     \hline    
129   \end{tabular}
130   \caption{Tipologie di \textit{file locking}.}
131   \label{tab:file_file_lock}
132 \end{table}
133
134 Si tenga presente infine che il controllo di accesso e la gestione dei
135 permessi viene effettuata quando si apre un file, l'unico controllo residuo
136 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
137 si vuole ottenere su un file deve essere compatibile con le modalità di
138 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
139 un \textit{write lock}).
140
141 %%  Si ricordi che
142 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
143 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
144 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
145
146
147 \subsection{La funzione \func{flock}} 
148 \label{sec:file_flock}
149
150 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
151 permette di eseguire un blocco solo su un intero file; la funzione di sistema
152 usata per richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il
153 suo prototipo è:
154
155 \begin{funcproto}{
156 \fhead{sys/file.h}
157 \fdecl{int flock(int fd, int operation)}
158 \fdesc{Applica o rimuove un \textit{file lock}.} 
159 }
160
161 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
162   caso \var{errno} assumerà uno dei valori: 
163   \begin{errlist}
164   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale
165     nell'attesa dell'acquisizione di un \textit{file lock}.
166   \item[\errcode{EINVAL}] si è specificato un valore non valido
167     per \param{operation}.
168   \item[\errcode{ENOLCK}] il kernel non ha memoria sufficiente per gestire il
169     \textit{file lock}.
170   \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
171     specificato \const{LOCK\_NB}.
172   \end{errlist}
173   ed inoltre \errval{EBADF} nel suo significato generico.
174 }
175 \end{funcproto}
176
177 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
178 a seconda di quanto specificato tramite il valore dell'argomento
179 \param{operation}; questo viene interpretato come maschera binaria, e deve
180 essere passato costruendo il valore con un OR aritmetico delle costanti
181 riportate in tab.~\ref{tab:file_flock_operation}.
182
183 \begin{table}[htb]
184   \centering
185   \footnotesize
186   \begin{tabular}[c]{|l|p{6cm}|}
187     \hline
188     \textbf{Valore} & \textbf{Significato} \\
189     \hline
190     \hline
191     \const{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
192     \const{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
193     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
194     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
195                        richiesta di un \textit{file lock}.\\
196     \hline    
197   \end{tabular}
198   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
199   \label{tab:file_flock_operation}
200 \end{table}
201
202 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
203 richiedere un \textit{file lock} rispettivamente condiviso o esclusivo, ed
204 ovviamente non possono essere usati insieme. Se con essi si specifica anche
205 \const{LOCK\_NB} la funzione non si bloccherà qualora il \textit{file lock}
206 non possa essere acquisito, ma ritornerà subito con un errore di
207 \errcode{EWOULDBLOCK}. Per rilasciare un \textit{file lock} si dovrà invece
208 usare direttamente \const{LOCK\_UN}.
209
210 Si tenga presente che non esiste una modalità per eseguire atomicamente un
211 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
212   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
213 possibile che nel frattempo abbia successo un'altra richiesta pendente,
214 facendo fallire la riacquisizione.
215
216 Si tenga presente infine che \func{flock} non è supportata per i file
217 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
218 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
219 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
220 NFS, a condizione ovviamente che sia il client che il server supportino questa
221 funzionalità.
222
223 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
224 \textit{file locking} POSIX, in particolare per quanto riguarda il
225 comportamento dei \textit{file lock} nei confronti delle due funzioni
226 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
227 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
228 per entrambe le interfacce.
229
230 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
231 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
232 fondamentale da capire è che un \textit{file lock}, qualunque sia
233 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
234 agisce sempre su di un file; perciò le informazioni relative agli eventuali
235 \textit{file lock} sono mantenute dal kernel a livello di \itindex{inode}
236 \textit{inode}, dato che questo è l'unico riferimento in comune che possono
237 avere due processi diversi che aprono lo stesso file.
238
239 In particolare, come accennato in fig.~\ref{fig:file_flock_struct}, i
240 \textit{file lock} sono mantenuti in una \itindex{linked~list} \textit{linked
241   list} di strutture \kstruct{file\_lock}. La lista è referenziata
242 dall'indirizzo di partenza mantenuto dal campo \var{i\_flock} della struttura
243 \kstruct{inode} (per le definizioni esatte si faccia riferimento al file
244 \file{include/linux/fs.h} nei sorgenti del kernel).  Un bit del campo
245 \var{fl\_flags} di specifica se si tratta di un lock in semantica BSD
246 (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}) o un \textit{file lease}
247 (\const{FL\_LEASE}, vedi sez.~\ref{sec:file_asyncronous_lease}).
248
249 \begin{figure}[!htb]
250   \centering
251   \includegraphics[width=12cm]{img/file_flock}
252   \caption{Schema dell'architettura del \textit{file locking}, nel caso
253     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
254   \label{fig:file_flock_struct}
255 \end{figure}
256
257 La richiesta di un \textit{file lock} prevede una scansione della lista per
258 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
259 un nuovo elemento (cioè l'aggiunta di una nuova struttura
260 \kstruct{file\_lock}).  Nel caso dei blocchi creati con \func{flock} la
261 semantica della funzione prevede che sia \func{dup} che \func{fork} non creino
262 ulteriori istanze di un \textit{file lock} quanto piuttosto degli ulteriori
263 riferimenti allo stesso. Questo viene realizzato dal kernel secondo lo schema
264 di fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file
265   lock} un puntatore alla voce nella \itindex{file~table} \textit{file table}
266 da cui si è richiesto il blocco, che così ne identifica il titolare. Il
267 puntatore è mantenuto nel campo \var{fl\_file} di \kstruct{file\_lock}, e
268 viene utilizzato solo per i \textit{file lock} creati con la semantica BSD.
269
270 Questa struttura prevede che, quando si richiede la rimozione di un
271 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
272 file descriptor che fa riferimento ad una voce nella \itindex{file~table}
273 \textit{file table} corrispondente a quella registrata nel blocco.  Allora se
274 ricordiamo quanto visto in sez.~\ref{sec:file_dup} e
275 sez.~\ref{sec:file_shared_access}, e cioè che i file descriptor duplicati e
276 quelli ereditati in un processo figlio puntano sempre alla stessa voce nella
277 \itindex{file~table} \textit{file table}, si può capire immediatamente quali
278 sono le conseguenze nei confronti delle funzioni \func{dup} e \func{fork}.
279
280 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
281 dei file descriptor che fanno riferimento alla stessa voce nella
282 \itindex{file~table} \textit{file table}, anche se questo è diverso da quello
283 con cui lo si è creato,\footnote{attenzione, questo non vale se il file
284   descriptor fa riferimento allo stesso file, ma attraverso una voce diversa
285   della \itindex{file~table} \textit{file table}, come accade tutte le volte
286   che si apre più volte lo stesso file.} o se si esegue la rimozione in un
287 processo figlio. Inoltre una volta tolto un \textit{file lock} su un file, la
288 rimozione avrà effetto su tutti i file descriptor che condividono la stessa
289 voce nella \itindex{file~table} \textit{file table}, e quindi, nel caso di
290 file descriptor ereditati attraverso una \func{fork}, anche per processi
291 diversi.
292
293 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
294 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
295 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
296 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
297 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
298 fintanto che non viene rilasciata la relativa voce nella \itindex{file~table}
299 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
300 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
301 siano duplicati o processi figli che mantengono ancora aperto un file
302 descriptor, il \textit{file lock} non viene rilasciato.
303  
304
305 \subsection{Il \textit{file locking} POSIX}
306 \label{sec:file_posix_lock}
307
308 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
309 quella standardizzata da POSIX, basata sulla funzione di sistema
310 \func{fcntl}. Abbiamo già trattato questa funzione nelle sue molteplici
311 possibilità di utilizzo in sez.~\ref{sec:file_fcntl_ioctl}. Quando la si
312 impiega per il \textit{file locking} essa viene usata solo secondo il seguente
313 prototipo:
314
315 \begin{funcproto}{
316 \fhead{fcntl.h}
317 \fdecl{int fcntl(int fd, int cmd, struct flock *lock)}
318 \fdesc{Applica o rimuove un \textit{file lock}.} 
319 }
320
321 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
322   caso \var{errno} assumerà uno dei valori: 
323   \begin{errlist}
324     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
325       \textit{file lock} da parte di altri processi.
326     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
327       bloccata da un altro processo che è a sua volta in attesa dello sblocco
328       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
329       un \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
330       riconosca sempre questa situazione.
331     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
332       di poter acquisire un \textit{file lock}.
333     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
334       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
335       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
336   \end{errlist}
337   ed inoltre \errval{EBADF}, \errval{EFAULT} nel loro significato generico.}
338 \end{funcproto}
339
340 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
341 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
342 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
343 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
344 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
345 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
346 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
347 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
348 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
349 con un'altra regione bloccata.
350
351 \begin{figure}[!htb]
352   \footnotesize \centering
353   \begin{minipage}[c]{0.90\textwidth}
354     \includestruct{listati/flock.h}
355   \end{minipage} 
356   \normalsize 
357   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
358     \textit{file locking}.}
359   \label{fig:struct_flock}
360 \end{figure}
361
362 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
363 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
364 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
365 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
366 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
367 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
368 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
369 relative descrizioni in tab.~\ref{tab:lseek_whence_values}).
370
371 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
372 regione al di là della corrente fine del file, così che una eventuale
373 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
374 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
375 dimensione massima del file; in questo modo è possibile bloccare una qualunque
376 regione a partire da un certo punto fino alla fine del file, coprendo
377 automaticamente quanto eventualmente aggiunto in coda allo stesso.
378
379 Lo standard POSIX non richiede che \var{l\_len} sia positivo, ed a partire dal
380 kernel 2.4.21 è possibile anche indicare valori di \var{l\_len} negativi, in
381 tal caso l'intervallo coperto va da \var{l\_start}$+$\var{l\_len} a
382 \var{l\_start}$-1$, mentre per un valore positivo l'intervallo va da
383 \var{l\_start} a \var{l\_start}$+$\var{l\_len}$-1$. Si può però usare un
384 valore negativo soltanto se l'inizio della regione indicata non cade prima
385 dell'inizio del file, mentre come accennato con un valore positivo  si
386 può anche indicare una regione che eccede la dimensione corrente del file.
387
388 Il tipo di \textit{file lock} richiesto viene specificato dal campo
389 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
390 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
391 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
392 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
393 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
394 \const{F\_GETLK}, e riporta il \ids{PID} del processo che detiene il
395 \textit{file lock}.
396
397 \begin{table}[htb]
398   \centering
399   \footnotesize
400   \begin{tabular}[c]{|l|l|}
401     \hline
402     \textbf{Valore} & \textbf{Significato} \\
403     \hline
404     \hline
405     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
406     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
407     \const{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
408     \hline    
409   \end{tabular}
410   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
411   \label{tab:file_flock_type}
412 \end{table}
413
414 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
415 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
416 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl_ioctl},
417 specifica l'azione da compiere; i valori utilizzabili relativi al \textit{file
418   locking} sono tre:
419 \begin{basedescript}{\desclabelwidth{2.0cm}}
420 \item[\const{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
421   struttura puntata da \param{lock} può essere acquisito: in caso negativo
422   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
423   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
424   campo \var{l\_type} con il valore \const{F\_UNLCK}.
425 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
426   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
427   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia; nel
428   caso la richiesta non possa essere soddisfatta a causa di un blocco
429   preesistente la funzione ritorna immediatamente con un errore di
430   \errcode{EACCES} o di \errcode{EAGAIN}.
431 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
432   non può essere soddisfatta per la presenza di un altro blocco, mette il
433   processo in stato di attesa fintanto che il blocco precedente non viene
434   rilasciato; se l'attesa viene interrotta da un segnale la funzione ritorna
435   con un errore di \errcode{EINTR}.
436 \end{basedescript}
437
438 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
439 una presenza generica di blocco su un file, perché se ne esistono altri
440 compatibili con quello richiesto, la funzione ritorna comunque impostando
441 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
442 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
443 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
444 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
445 impedisce l'acquisizione di quello richiesto (basta che le regioni si
446 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
447 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
448 per indicare quale è la regione bloccata.
449
450 Infine si tenga presente che effettuare un controllo con il comando
451 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
452 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
453 chiamate) per cui si deve sempre verificare il codice di ritorno di
454 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
455   è comunque una buona norma di programmazione, che permette di evitare un
456   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
457 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
458 stato effettivamente acquisito.
459
460 \begin{figure}[!htb]
461   \centering \includegraphics[width=9cm]{img/file_lock_dead}
462   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
463   \label{fig:file_flock_dead}
464 \end{figure}
465
466 Non operando a livello di interi file, il \textit{file locking} POSIX
467 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
468 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
469 processo B la regione 2. Supponiamo che successivamente il processo A richieda
470 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
471 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
472 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
473 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
474 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
475 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
476 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
477 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
478 cerca di acquisire un blocco che porterebbe ad un \itindex{deadlock}
479 \textit{deadlock}.
480
481 Per capire meglio il funzionamento del \textit{file locking} in semantica
482 POSIX (che differisce alquanto rispetto da quello di BSD, visto
483 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
484 kernel. Lo schema delle strutture utilizzate è riportato in
485 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
486 di fig.~\ref{fig:file_flock_struct}. In questo caso nella figura si sono
487 evidenziati solo i campi di \kstruct{file\_lock} significativi per la
488 semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
489 \ids{PID} del processo in \var{fl\_pid}, la sezione di file che viene bloccata
490 grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è comunque la
491 stessa, solo che in questo caso nel campo \var{fl\_flags} è impostato il bit
492 \const{FL\_POSIX} ed il campo \var{fl\_file} non viene usato. Il blocco è
493 sempre associato \itindex{inode} all'\textit{inode}, solo che in questo caso
494 la titolarità non viene identificata con il riferimento ad una voce nella
495 \itindex{file~table} \textit{file table}, ma con il valore del \ids{PID} del
496 processo.
497
498 \begin{figure}[!htb]
499   \centering \includegraphics[width=12cm]{img/file_posix_lock}
500   \caption{Schema dell'architettura del \textit{file locking}, nel caso
501     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
502   \label{fig:file_posix_lock}
503 \end{figure}
504
505 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
506 tutti i blocchi presenti sul file\footnote{scandisce cioè la
507   \itindex{linked~list} \textit{linked list} delle strutture
508   \kstruct{file\_lock}, scartando automaticamente quelle per cui
509   \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
510   ben separate.}  per verificare se la regione richiesta non si sovrappone ad
511 una già bloccata, in caso affermativo decide in base al tipo di blocco, in
512 caso negativo il nuovo blocco viene comunque acquisito ed aggiunto alla lista.
513
514 Nel caso di rimozione invece questa viene effettuata controllando che il
515 \ids{PID} del processo richiedente corrisponda a quello contenuto nel blocco.
516 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
517 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
518 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
519 figlio avrà un \ids{PID} diverso, mentre passa indenne attraverso una
520 \func{exec} in quanto il \ids{PID} resta lo stesso.  Questo comporta che, al
521 contrario di quanto avveniva con la semantica BSD, quando un processo termina
522 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
523
524 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
525 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
526 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
527 un blocco, dato che quello che conta è solo il \ids{PID} del processo. Da
528 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
529 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
530 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
531 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
532 fossero stati creati usando altri file descriptor che restano aperti.
533
534 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
535 \ids{PID} del processo, possiamo anche prendere in considerazione un altro
536 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
537 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
538 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
539 solo sul \ids{PID} del processo che chiama la funzione, queste richieste
540 avranno sempre successo.  Nel caso della semantica BSD, essendo i lock
541 relativi a tutto un file e non accumulandosi,\footnote{questa ultima
542   caratteristica è vera in generale, se cioè si richiede più volte lo stesso
543   \textit{file lock}, o più blocchi sulla stessa sezione di file, le richieste
544   non si cumulano e basta una sola richiesta di rilascio per cancellare il
545   blocco.}  la cosa non ha alcun effetto; la funzione ritorna con successo,
546 senza che il kernel debba modificare la lista dei \textit{file lock}.
547
548 Con i \textit{file lock} POSIX invece si possono avere una serie di situazioni
549 diverse: ad esempio è possibile rimuovere con una sola chiamata più
550 \textit{file lock} distinti (indicando in una regione che si sovrapponga
551 completamente a quelle di questi ultimi), o rimuovere solo una parte di un
552 blocco preesistente (indicando una regione contenuta in quella di un altro
553 blocco), creando un buco, o coprire con un nuovo blocco altri \textit{file
554   lock} già ottenuti, e così via, a secondo di come si sovrappongono le
555 regioni richieste e del tipo di operazione richiesta.
556
557 Il comportamento seguito in questo caso è che la funzione ha successo ed
558 esegue l'operazione richiesta sulla regione indicata; è compito del kernel
559 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
560   lock} per far si che le regioni bloccate da essa risultanti siano coerenti
561 con quanto necessario a soddisfare l'operazione richiesta.
562
563 \begin{figure}[!htbp]
564   \footnotesize \centering
565   \begin{minipage}[c]{\codesamplewidth}
566     \includecodesample{listati/Flock.c}
567   \end{minipage}
568   \normalsize 
569   \caption{Sezione principale del codice del programma \file{Flock.c}.}
570   \label{fig:file_flock_code}
571 \end{figure}
572
573 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
574 permette di bloccare una sezione di un file usando la semantica POSIX, o un
575 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
576 riportata il corpo principale del codice del programma, (il testo completo è
577 allegato nella directory dei sorgenti, nel file \texttt{Flock.c}).
578
579 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
580 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
581 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
582 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
583 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
584 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
585   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
586 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
587 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
588 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
589 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
590 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
591 \cmd{-b}.
592
593 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
594 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
595   15--18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
596 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
597 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
598 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
599 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
600 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
601 modalità bloccante.
602
603 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
604 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
605 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
606 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
607 aggiunta la relativa opzione, con un OR aritmetico, dato che \func{flock}
608 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
609 invece che si sia scelta la semantica POSIX le operazioni sono molto più
610 immediate si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
611 si esegue (\texttt{\small 41}).
612
613 In entrambi i casi dopo aver richiesto il blocco viene controllato il
614 risultato uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un
615 messaggio (\texttt{\small 47--49}) in caso di successo. Infine il programma si
616 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
617 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
618 tutti i blocchi vengono rilasciati.
619
620 Con il programma possiamo fare varie verifiche sul funzionamento del
621 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
622 file, ad esempio usando all'interno di un terminale il seguente comando:
623
624 \begin{Console}
625 [piccardi@gont sources]$ \textbf{./flock -r Flock.c}
626 Lock acquired
627 \end{Console}
628 %$
629 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
630 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
631 riguardo alla sezione che si vuole bloccare sono stati usati i valori
632 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
633 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
634 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
635
636 \begin{Console}
637 [piccardi@gont sources]$ \textbf{./flock -w Flock.c}
638 Failed lock: Resource temporarily unavailable
639 \end{Console}
640 %$
641 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
642 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
643 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
644 del file con il comando:
645
646 \begin{Console}
647 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
648 Failed lock: Resource temporarily unavailable
649 \end{Console}
650 %$
651 se invece blocchiamo una regione con: 
652
653 \begin{Console}
654 [piccardi@gont sources]$ \textbf{./flock -r -s0 -l10 Flock.c}
655 Lock acquired
656 \end{Console}
657 %$
658 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
659 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
660 regioni si sovrappongono avremo che:
661
662 \begin{Console}
663 [piccardi@gont sources]$ \textbf{./flock -w -s5 -l15  Flock.c}
664 Failed lock: Resource temporarily unavailable
665 \end{Console}
666 %$
667 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
668 avremo che:
669
670 \begin{Console}
671 [piccardi@gont sources]$ \textbf{./flock -w -s11 -l15  Flock.c}
672 Lock acquired
673 \end{Console}
674 %$
675 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
676 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
677
678 \begin{Console}
679 [piccardi@gont sources]$ \textbf{./flock -r -s10 -l20 Flock.c}
680 Failed lock: Resource temporarily unavailable
681 \end{Console}
682 %$
683 come ci aspettiamo questo non sarà consentito.
684
685 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
686 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
687 bloccante, riproviamo allora a ripetere le prove precedenti con questa
688 opzione:
689
690 \begin{Console}
691 [piccardi@gont sources]$ \textbf{./flock -r -b -s0 -l10 Flock.c} Lock acquired
692 \end{Console}
693 %$
694 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
695 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
696 essere acquisito otterremo:
697
698 \begin{Console}
699 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
700 \end{Console}
701 %$
702 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
703 punto rilasciamo il precedente blocco (terminando il primo comando un
704 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
705 blocco viene acquisito, con la comparsa di una nuova riga:
706
707 \begin{Console}
708 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
709 Lock acquired
710 \end{Console}
711 %$
712
713 Un'altra cosa che si può controllare con il nostro programma è l'interazione
714 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
715 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
716 succede quando si cerca di ottenere un blocco in scrittura con la semantica
717 BSD:
718
719 \begin{Console}
720 [root@gont sources]# \textbf{./flock -f -w Flock.c}
721 Lock acquired
722 \end{Console}
723 %$
724 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
725 questo motivo occorre sempre tenere presente quale, fra le due semantiche
726 disponibili, stanno usando i programmi con cui si interagisce, dato che i
727 blocchi applicati con l'altra non avrebbero nessun effetto.
728
729 % \subsection{La funzione \func{lockf}}
730 % \label{sec:file_lockf}
731
732 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
733 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
734 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
735 motivo è disponibile anche una interfaccia semplificata che utilizza la
736 funzione \funcd{lockf},\footnote{la funzione è ripresa da System V e per
737   poterla utilizzare è richiesta che siano definite le opportune macro, una
738   fra \macro{\_BSD\_SOURCE} o \macro{\_SVID\_SOURCE}, oppure
739   \macro{\_XOPEN\_SOURCE} ad un valore di almeno 500, oppure
740   \macro{\_XOPEN\_SOURCE} e \macro{\_XOPEN\_SOURCE\_EXTENDED}.} il cui
741 prototipo è:
742
743 \begin{funcproto}{
744 \fhead{unistd.h}
745 \fdecl{int lockf(int fd, int cmd, off\_t len)}
746 \fdesc{Applica, controlla o rimuove un \textit{file lock}.} 
747 }
748
749 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
750   caso \var{errno} assumerà uno dei valori: 
751   \begin{errlist}
752   \item[\errcode{EAGAIN}] il file è bloccato, e si sono richiesti
753     \const{F\_TLOCK} o \const{F\_TEST} (in alcuni casi può dare anche
754     \errcode{EACCESS}.
755   \item[\errcode{EBADF}] \param{fd} non è un file descriptor aperto o si sono
756     richiesti \const{F\_LOCK} o \const{F\_TLOCK} ma il file non è scrivibile.
757   \item[\errcode{EINVAL}] si è usato un valore non valido per \param{cmd}.
758   \end{errlist}
759   ed inoltre \errcode{EDEADLK} e \errcode{ENOLCK} con lo stesso significato
760   che hanno con \funcd{fcntl}.
761 }
762 \end{funcproto}
763   
764 La funzione opera sul file indicato dal file descriptor \param{fd}, che deve
765 essere aperto in scrittura, perché utilizza soltanto \textit{lock}
766 esclusivi. La sezione di file bloccata viene controllata dal valore
767 di \param{len}, che indica la lunghezza della stessa, usando come riferimento
768 la posizione corrente sul file. La sezione effettiva varia a secondo del
769 segno, secondo lo schema illustrato in fig.~\ref{fig:file_lockf_boundary}, se
770 si specifica un valore nullo il file viene bloccato a partire dalla posizione
771 corrente fino alla sua fine presente o futura (nello schema corrisponderebbe
772 ad un valore infinito positivo).
773
774 \begin{figure}[!htb] 
775   \centering
776   \includegraphics[width=10cm]{img/lockf_boundary}
777   \caption{Schema della sezione di file bloccata con \func{lockf}.}
778   \label{fig:file_lockf_boundary}
779 \end{figure}
780
781 Il comportamento della funzione viene controllato dal valore
782 dell'argomento \param{cmd}, che specifica quale azione eseguire, i soli valori
783 consentiti sono i seguenti:
784
785 \begin{basedescript}{\desclabelwidth{2.0cm}}
786 \item[\const{F\_LOCK}] Richiede un \textit{lock} esclusivo sul file, e blocca
787   il processo chiamante se, anche parzialmente, la sezione indicata si
788   sovrappone ad una che è già stata bloccata da un altro processo; in caso di
789   sovrapposizione con un altro blocco già ottenuto le sezioni vengono unite.
790 \item[\const{F\_TLOCK}] Richiede un \textit{exclusive lock}, in maniera
791   identica a \const{F\_LOCK}, ma in caso di indisponibilità non blocca il
792   processo restituendo un errore di \errval{EAGAIN}.
793 \item[\const{F\_ULOCK}] Rilascia il blocco sulla sezione indicata, questo può
794   anche causare la suddivisione di una sezione bloccata in precedenza nelle
795   due parti eccedenti nel caso si sia indicato un intervallo più limitato.
796 \item[\const{F\_TEST}] Controlla la presenza di un blocco sulla sezione di
797   file indicata, \func{lockf} ritorna $0$ se la sezione è libera o bloccata
798   dal processo stesso, o $-1$ se è bloccata da un altro processo, nel qual
799   caso \var{errno} assume il valore \errval{EAGAIN} (ma su alcuni sistemi può
800   essere restituito anche \errval{EACCESS}).
801 \end{basedescript}
802
803 La funzione è semplicemente una diversa interfaccia al \textit{file locking}
804 POSIX ed è realizzata utilizzando \func{fcntl}; pertanto la semantica delle
805 operazioni è la stessa di quest'ultima e quindi la funzione presenta lo stesso
806 comportamento riguardo gli effetti della chiusura dei file, ed il
807 comportamento sui file duplicati e nel passaggio attraverso \func{fork} ed
808 \func{exec}. Per questo stesso motivo la funzione non è equivalente a
809 \func{flock} e può essere usata senza interferenze insieme a quest'ultima.
810
811
812
813 \subsection{Il \textit{mandatory locking}}
814 \label{sec:file_mand_locking}
815
816 \itindbeg{mandatory~locking}
817
818 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
819 per introdurre un \textit{file locking} che, come dice il nome, fosse
820 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
821 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
822 direttamente al sistema, così che, anche qualora non si predisponessero le
823 opportune verifiche nei processi, questo verrebbe comunque rispettato.
824
825 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
826 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid} dei permessi dei
827 file. Se si ricorda quanto esposto in sez.~\ref{sec:file_special_perm}), esso
828 viene di norma utilizzato per cambiare il \ids{GID} effettivo con cui viene
829 eseguito un programma, ed è pertanto sempre associato alla presenza del
830 permesso di esecuzione per il gruppo. Impostando questo bit su un file senza
831 permesso di esecuzione in un sistema che supporta il \textit{mandatory
832   locking}, fa sì che quest'ultimo venga attivato per il file in questione. In
833 questo modo una combinazione dei permessi originariamente non contemplata, in
834 quanto senza significato, diventa l'indicazione della presenza o meno del
835 \textit{mandatory locking}.\footnote{un lettore attento potrebbe ricordare
836   quanto detto in sez.~\ref{sec:file_perm_management} e cioè che il bit
837   \acr{sgid} viene cancellato (come misura di sicurezza) quando di scrive su
838   un file, questo non vale quando esso viene utilizzato per attivare il
839   \textit{mandatory locking}.}
840
841 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
842 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
843 un processo che blocchi un file cruciale può renderlo completamente
844 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
845   problema si potrebbe risolvere rimuovendo il bit \itindex{sgid~bit}
846   \acr{sgid}, ma non è detto che sia così facile fare questa operazione con un
847   sistema bloccato.}  inoltre con il \textit{mandatory locking} si può
848 bloccare completamente un server NFS richiedendo una lettura su un file su cui
849 è attivo un blocco. Per questo motivo l'abilitazione del \textit{mandatory
850   locking} è di norma disabilitata, e deve essere attivata filesystem per
851 filesystem in fase di montaggio, specificando l'apposita opzione di
852 \func{mount} riportata in sez.~\ref{sec:filesystem_mounting}, o con l'opzione
853 \code{-o mand} per il comando omonimo.
854
855 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
856 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
857 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
858 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
859 per \func{fcntl}.
860
861 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
862 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
863 \textit{mandatory lock} attivato non è più necessario controllare la
864 disponibilità di accesso al file, ma si potranno usare direttamente le
865 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
866 direttamente il \textit{file locking}.
867
868 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
869 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
870 fino al rilascio del blocco, a meno di non aver aperto il file con
871 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
872 di \errcode{EAGAIN}.
873
874 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
875 scrivere sulla regione del file bloccata fermeranno il processo fino al
876 rilascio del blocco, a meno che il file non sia stato aperto con
877 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
878 con l'errore di \errcode{EAGAIN}.
879
880 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
881 sole ad operare sui contenuti di un file, e che sia \func{creat} che
882 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
883 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
884 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
885 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
886 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
887 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
888 dimensioni del file vada a sovrapporsi ad una regione bloccata).
889
890 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
891 funzioni di accesso ai file è quello relativo ai file mappati in memoria (vedi
892 sez.~\ref{sec:file_memory_map}); anche in tal caso infatti, quando si esegue
893 la mappatura con l'opzione \const{MAP\_SHARED}, si ha un accesso al contenuto
894 del file. Lo standard SVID prevede che sia impossibile eseguire il
895 \textit{memory mapping} di un file su cui sono presenti dei
896 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
897   impediscono anche in caso di \textit{advisory locking}, anche se questo
898   comportamento non ha molto senso, dato che comunque qualunque accesso
899   diretto al file è consentito.} in Linux è stata però fatta la scelta
900 implementativa\footnote{per i dettagli si possono leggere le note relative
901   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
902   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
903 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
904 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
905 possibilità di modificare il file.
906
907 Si tenga conto infine che su Linux l'implementazione corrente del
908 \textit{mandatory locking} è difettosa e soffre di una \textit{race
909   condition}, per cui una scrittura con \func{write} che si sovrapponga alla
910 richiesta di un \textit{read lock} può modificare i dati anche dopo che questo
911 è stato ottenuto, ed una lettura con \func{read} può restituire dati scritti
912 dopo l'ottenimento di un \textit{write lock}. Lo stesso tipo di problema si
913 può presentare anche con l'uso di file mappati in memoria; pertanto allo stato
914 attuale delle cose è sconsigliabile fare affidamento sul \textit{mandatory
915   locking}.
916
917 \itindend{file~locking}
918
919 \itindend{mandatory~locking}
920
921
922 \section{L'\textit{I/O multiplexing}}
923 \label{sec:file_multiplexing}
924
925
926 Uno dei problemi che si presentano quando si deve operare contemporaneamente
927 su molti file usando le funzioni illustrate in
928 sez.~\ref{sec:file_unix_interface} e sez.~\ref{sec:files_std_interface} è che
929 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
930 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
931 problema. In questa sezione forniremo una introduzione a questa problematica
932 ed analizzeremo le varie funzioni usate per implementare questa modalità di
933 I/O.
934
935
936 \subsection{La problematica dell'\textit{I/O multiplexing}}
937 \label{sec:file_noblocking}
938
939 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
940 \textit{fast} e \textit{slow} \textit{system call},\index{system~call~lente}
941 che in certi casi le funzioni di I/O eseguite su un file descritor possono
942 bloccarsi indefinitamente. Questo non avviene mai per i file normali, per i
943 quali le funzioni di lettura e scrittura ritornano sempre subito, ma può
944 avvenire per alcuni \index{file!di~dispositivo} file di dispositivo, come ad
945 esempio una seriale o un terminale, o con l'uso di file descriptor collegati a
946 meccanismi di intercomunicazione come le \textit{pipe} (vedi
947 sez.~\ref{sec:ipc_unix}) ed i socket (vedi sez.~\ref{sec:sock_socket_def}). In
948 casi come questi ad esempio una operazione di lettura potrebbe bloccarsi se
949 non ci sono dati disponibili sul descrittore su cui la si sta effettuando.
950
951 Questo comportamento è alla radice di una delle problematiche più comuni che
952 ci si trova ad affrontare nella gestione delle operazioni di I/O: la necessità
953 di operare su più file descriptor eseguendo funzioni che possono bloccarsi
954 indefinitamente senza che sia possibile prevedere quando questo può
955 avvenire. Un caso classico è quello di un server di rete (tratteremo la
956 problematica in dettaglio nella seconda parte della guida) in attesa di dati
957 in ingresso prevenienti da vari client.
958
959 In un caso di questo tipo, se si andasse ad operare sui vari file descriptor
960 aperti uno dopo l'altro, potrebbe accadere di restare bloccati nell'eseguire
961 una lettura su uno di quelli che non è ``\textsl{pronto}'', quando ce ne
962 potrebbe essere un altro con dati disponibili. Questo comporta nel migliore
963 dei casi una operazione ritardata inutilmente nell'attesa del completamento di
964 quella bloccata, mentre nel peggiore dei casi, quando la conclusione
965 dell'operazione bloccata dipende da quanto si otterrebbe dal file descriptor
966 ``\textsl{disponibile}'', si potrebbe addirittura arrivare ad un
967 \itindex{deadlock} \textit{deadlock}.
968
969 Abbiamo già accennato in sez.~\ref{sec:file_open_close} che è possibile
970 prevenire questo tipo di comportamento delle funzioni di I/O aprendo un file
971 in \textsl{modalità non-bloccante}, attraverso l'uso del flag
972 \const{O\_NONBLOCK} nella chiamata di \func{open}. In questo caso le funzioni
973 di lettura o scrittura eseguite sul file che si sarebbero bloccate ritornano
974 immediatamente, restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa
975 modalità di I/O permette di risolvere il problema controllando a turno i vari
976 file descriptor, in un ciclo in cui si ripete l'accesso fintanto che esso non
977 viene garantito. Ovviamente questa tecnica, detta \itindex{polling}
978 \textit{polling}, è estremamente inefficiente: si tiene costantemente
979 impiegata la CPU solo per eseguire in continuazione delle \textit{system call}
980 che nella gran parte dei casi falliranno.
981
982 É appunto per superare questo problema è stato introdotto il concetto di
983 \textit{I/O multiplexing}, una nuova modalità per la gestione dell'I/O che
984 consente di tenere sotto controllo più file descriptor in contemporanea,
985 permettendo di bloccare un processo quando le operazioni di lettura o
986 scrittura non sono immediatamente effettuabili, e di riprenderne l'esecuzione
987 una volta che almeno una di quelle che erano state richieste diventi
988 possibile, in modo da poterla eseguire con la sicurezza di non restare
989 bloccati.
990
991 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
992 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
993 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
994 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
995 ulteriori dettagli e qualche esempio di utilizzo concreto in
996 sez.~\ref{sec:TCP_sock_multiplexing}.
997
998
999 \subsection{Le funzioni \func{select} e \func{pselect}}
1000 \label{sec:file_select}
1001
1002 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
1003   multiplexing} è stato BSD, con la funzione \funcd{select} che è apparsa in
1004 BSD4.2 ed è stata standardizzata in BSD4.4, in seguito è stata portata su
1005 tutti i sistemi che supportano i socket, compreso le varianti di System V ed
1006 inserita in POSIX.1-2001; il suo prototipo è:\footnote{l'header
1007   \texttt{sys/select.h} è stato introdotto con POSIX.1-2001, è ed presente con
1008   le \acr{glibc} a partire dalla versione 2.0, in precedenza, con le
1009   \acr{libc4} e le \acr{libc5}, occorreva includere \texttt{sys/time.h},
1010   \texttt{sys/types.h} e \texttt{unistd.h}.}
1011
1012 \begin{funcproto}{
1013 \fhead{sys/select.h}
1014 \fdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
1015     *exceptfds, \\
1016 \phantom{int select(}struct timeval *timeout)}
1017 \fdesc{Attende che uno fra i file descriptor degli insiemi specificati diventi
1018   attivo.} 
1019 }
1020 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1021   caso \var{errno} assumerà uno dei valori: 
1022   \begin{errlist}
1023   \item[\errcode{EBADF}] si è specificato un file descriptor non valido
1024     (chiuso o con errori) in uno degli insiemi.
1025   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1026   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1027     o un valore non valido per \param{timeout}.
1028   \end{errlist}
1029   ed inoltre \errval{ENOMEM} nel suo significato generico.}
1030 \end{funcproto}
1031
1032 La funzione mette il processo in stato di \textit{sleep} (vedi
1033 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
1034 degli insiemi specificati (\param{readfds}, \param{writefds} e
1035 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
1036 \param{timeout}.
1037
1038 \itindbeg{file~descriptor~set} 
1039
1040 Per specificare quali file descriptor si intende selezionare la funzione usa
1041 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1042 \type{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1043 maniera analoga a come un \itindex{signal~set} \textit{signal set} (vedi
1044 sez.~\ref{sec:sig_sigset}) identifica un insieme di segnali. Per la
1045 manipolazione di questi \textit{file descriptor set} si possono usare delle
1046 opportune macro di preprocessore:
1047
1048 {\centering
1049 \vspace{3pt}
1050 \begin{funcbox}{
1051 \fhead{sys/select.h}
1052 \fdecl{void \macro{FD\_ZERO}(fd\_set *set)}
1053 \fdesc{Inizializza l'insieme (vuoto).} 
1054 \fdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
1055 \fdesc{Inserisce il file descriptor \param{fd} nell'insieme.} 
1056 \fdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
1057 \fdesc{Rimuove il file descriptor \param{fd} dall'insieme.} 
1058 \fdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
1059 \fdesc{Controlla se il file descriptor \param{fd} è nell'insieme.} 
1060 }
1061 \end{funcbox}}
1062
1063
1064 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1065 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1066 al limite per il numero massimo di file aperti (ad esempio in Linux, fino alla
1067 serie 2.0.x, c'era un limite di 256 file per processo), ma da quando, nelle
1068 versioni più recenti del kernel, questo limite è stato rimosso, esso indica le
1069 dimensioni massime dei numeri usati nei \textit{file descriptor set}, ed il
1070 suo valore, secondo lo standard POSIX 1003.1-2001, è definito in
1071 \headfile{sys/select.h}, ed è pari a 1024.
1072
1073 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1074 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1075 inizializzato può dar luogo a comportamenti non prevedibili. Allo stesso modo
1076 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1077 eccede \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1078
1079 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1080 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1081 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1082   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1083   bloccante, quindi anche in caso di \textit{end-of-file}.} il secondo,
1084 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1085 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni come i
1086 dati urgenti \itindex{out-of-band} su un socket, (vedi
1087 sez.~\ref{sec:TCP_urgent_data}).
1088
1089 Dato che in genere non si tengono mai sotto controllo fino a
1090 \const{FD\_SETSIZE} file contemporaneamente, la funzione richiede di
1091 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1092 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1093 e far controllare al kernel una quantità di memoria superiore a quella
1094 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1095 deve corrispondere al valore massimo aumentato di uno. Si ricordi infatti che
1096 i file descriptor sono numerati progressivamente a partire da zero, ed il
1097 valore indica il numero più alto fra quelli da tenere sotto controllo,
1098 dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore comune.
1099
1100 Infine l'argomento \param{timeout}, espresso con il puntatore ad una struttura
1101 di tipo \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un
1102 tempo massimo di attesa prima che la funzione ritorni; se impostato a
1103 \val{NULL} la funzione attende indefinitamente. Si può specificare anche un
1104 tempo nullo (cioè una struttura \struct{timeval} con i campi impostati a
1105 zero), qualora si voglia semplicemente controllare lo stato corrente dei file
1106 descriptor, e così può essere utilizzata eseguire il \itindex{polling}
1107 \textit{polling} su un gruppo di file descriptor. Usare questo argomento con
1108 tutti i \textit{file descriptor set} vuoti è un modo portabile, disponibile
1109 anche su sistemi in cui non sono disponibili le funzioni avanzate di
1110 sez.~\ref{sec:sig_timer_adv}, per tenere un processo in stato di
1111 \textit{sleep} con precisioni inferiori al secondo.
1112
1113 In caso di successo la funzione restituisce il numero di file descriptor
1114 pronti, seguendo il comportamento previsto dallo standard
1115 POSIX.1-2001,\footnote{si tenga però presente che esistono alcune versioni di
1116   Unix che non si comportano in questo modo, restituendo un valore positivo
1117   generico.}  e ciascun insieme viene sovrascritto per indicare quali sono i
1118 file descriptor pronti per le operazioni ad esso relative, in modo da poterli
1119 controllare con \macro{FD\_ISSET}.  Se invece scade il tempo indicato
1120 da \param{timout} viene restituito un valore nullo e i \textit{file descriptor
1121   set} non vengono modificati. In caso di errore la funzione restituisce -1, i
1122 valori dei tre insiemi e di \param{timeout} sono indefiniti e non si può fare
1123 nessun affidamento sul loro contenuto; nelle versioni più recenti della
1124 funzione invece i \textit{file descriptor set} non vengono modificati anche in
1125 caso di errore.
1126
1127 Si tenga presente infine che su Linux, in caso di programmazione
1128 \textit{multithread} se un file descriptor viene chiuso in un altro
1129 \textit{thread} rispetto a quello in cui si sta usando \func{select}, questa
1130 non subisce nessun effetto. In altre varianti di sistemi unix-like invece
1131 \func{select} ritorna indicando che il file descriptor è pronto, con
1132 conseguente possibile errore nel caso lo si usi senza che sia stato
1133 riaperto. Lo standard non prevede niente al riguardo e non si deve dare per
1134 assunto nessuno dei due comportamenti se si vogliono scrivere programmi
1135 portabili.
1136
1137
1138 \itindend{file~descriptor~set}
1139
1140 Una volta ritornata la funzione, si potrà controllare quali sono i file
1141 descriptor pronti, ed operare su di essi. Si tenga presente però che
1142 \func{select} fornisce solo di un suggerimento, esistono infatti condizioni in
1143 cui \func{select} può riportare in maniera spuria che un file descriptor è
1144 pronto, ma l'esecuzione di una operazione di I/O si bloccherebbe: ad esempio
1145 con Linux questo avviene quando su un socket arrivano dei dati che poi vengono
1146 scartati perché corrotti (ma sono possibili pure altri casi); in tal caso pur
1147 risultando il relativo file descriptor pronto in lettura una successiva
1148 esecuzione di una \func{read} si bloccherebbe. Per questo motivo quando si usa
1149 l'\textit{I/O multiplexing} è sempre raccomandato l'uso delle funzioni di
1150 lettura e scrittura in modalità non bloccante.
1151
1152 Su Linux quando la \textit{system call} \func{select} viene interrotta da un
1153 segnale modifica il valore nella struttura puntata da \param{timeout},
1154 impostandolo al tempo restante. In tal caso infatti si ha un errore di
1155 \errcode{EINTR} ed occorre rilanciare la funzione per proseguire l'attesa, ed
1156 in questo modo non è necessario ricalcolare tutte le volte il tempo
1157 rimanente. Questo può causare problemi di portabilità sia quando si usa codice
1158 scritto su Linux che legge questo valore, sia quando si usano programmi
1159 scritti per altri sistemi che non dispongono di questa caratteristica e
1160 ricalcolano \param{timeout} tutte le volte. In genere questa caratteristica è
1161 disponibile nei sistemi che derivano da System V e non è disponibile per
1162 quelli che derivano da BSD; lo standard POSIX.1-2001 non permette questo
1163 comportamento e per questo motivo le \acr{glibc} nascondono il comportamento
1164 passando alla \textit{system call} una copia dell'argomento \param{timeout}.
1165
1166 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1167 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1168 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1169 tale valore, e per capire quali sono i file descriptor da tenere sotto
1170 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1171 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1172 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1173
1174 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1175 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1176 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1177 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1178 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1179 estesa, con ulteriori perdite di prestazioni. 
1180
1181 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1182   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1183 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1184 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1185 vengano dichiarate nell'header \headfile{sys/select.h}, che sostituisce i
1186 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1187 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1188   l'header \headfile{sys/select.h}, compaiono in Linux a partire dalle
1189   \acr{glibc} 2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header,
1190   le \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
1191   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1192   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1193   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1194   maggiore di 600.} il cui prototipo è:
1195
1196 \begin{funcproto}{
1197 \fhead{sys/select.h}
1198 \fdecl{int pselect(int n, fd\_set *readfds, fd\_set *writefds, 
1199   fd\_set *exceptfds, \\ 
1200 \phantom{int pselect(}struct timespec *timeout, sigset\_t *sigmask)}
1201 \fdesc{Attende che uno dei file descriptor degli insiemi specificati diventi
1202   attivo.} 
1203 }
1204 {La funzione ritorna il numero (anche nullo) di file descriptor che sono
1205   attivi in caso di successo e $-1$ per un errore, nel qual caso \var{errno}
1206   assumerà uno dei valori:
1207   \begin{errlist}
1208   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1209     degli insiemi.
1210   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1211   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1212     o un valore non valido per \param{timeout}.
1213    \end{errlist}
1214    ed inoltre \errval{ENOMEM} nel suo significato generico.
1215 }
1216 \end{funcproto}
1217
1218 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1219 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1220 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1221 caso di interruzione. In realtà anche in questo caso la \textit{system call}
1222 di Linux aggiorna il valore al tempo rimanente, ma la funzione fornita dalle
1223 \acr{glibc} modifica questo comportamento passando alla \textit{system call}
1224 una variabile locale, in modo da mantenere l'aderenza allo standard POSIX che
1225 richiede che il valore di \param{timeout} non sia modificato. Ma rispetto a
1226 \func{select} prende un argomento aggiuntivo \param{sigmask} che è il
1227 puntatore ad una \index{maschera~dei~segnali} maschera di segnali (si veda
1228 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
1229 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
1230 funzione.
1231
1232 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1233 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
1234 attesa sia di un segnale che di dati. La tecnica classica è quella di
1235 utilizzare il gestore per impostare una \index{variabili!globali} variabile
1236 globale e controllare questa nel corpo principale del programma; abbiamo visto
1237 in sez.~\ref{sec:sig_example} come questo lasci spazio a possibili
1238 \itindex{race~condition} \textit{race condition}, per cui diventa essenziale
1239 utilizzare \func{sigprocmask} per disabilitare la ricezione del segnale prima
1240 di eseguire il controllo e riabilitarlo dopo l'esecuzione delle relative
1241 operazioni, onde evitare l'arrivo di un segnale immediatamente dopo il
1242 controllo, che andrebbe perso.
1243
1244 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
1245 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1246 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1247 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1248 alla gestione dati con un ciclo del tipo:
1249 \includecodesnip{listati/select_race.c} 
1250 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
1251 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
1252 interrotta, e la ricezione del segnale non sarà rilevata.
1253
1254 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1255 \param{sigmask} permette di riabilitare la ricezione il segnale
1256 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1257   kernel 2.6.16, non era presente la relativa \textit{system call}, e la
1258   funzione era implementata nelle \acr{glibc} attraverso \func{select} (vedi
1259   \texttt{man select\_tut}) per cui la possibilità di \itindex{race~condition}
1260   \textit{race condition} permaneva; in tale situazione si può ricorrere ad
1261   una soluzione alternativa, chiamata \itindex{self-pipe trick}
1262   \textit{self-pipe trick}, che consiste nell'aprire una pipe (vedi
1263   sez.~\ref{sec:ipc_pipes}) ed usare \func{select} sul capo in lettura della
1264   stessa; si può indicare l'arrivo di un segnale scrivendo sul capo in
1265   scrittura all'interno del gestore dello stesso; in questo modo anche se il
1266   segnale va perso prima della chiamata di \func{select} questa lo riconoscerà
1267   comunque dalla presenza di dati sulla pipe.} ribloccandolo non appena essa
1268 ritorna, così che il precedente codice potrebbe essere riscritto nel seguente
1269 modo:
1270 \includecodesnip{listati/pselect_norace.c} 
1271 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1272 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1273 interruzione si potranno eseguire le relative operazioni.
1274
1275
1276 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1277 \label{sec:file_poll}
1278
1279 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1280 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
1281 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
1282   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
1283   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
1284 cui prototipo è:
1285 \begin{prototype}{sys/poll.h}
1286   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
1287   
1288   La funzione attende un cambiamento di stato su un insieme di file
1289   descriptor.
1290   
1291   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1292     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1293     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1294   \begin{errlist}
1295   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1296     degli insiemi.
1297   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1298   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1299     \const{RLIMIT\_NOFILE}.
1300   \end{errlist}
1301   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1302 \end{prototype}
1303
1304 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1305 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1306 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1307 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1308 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1309 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1310 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
1311 \textsl{non-bloccante}).
1312
1313 Per ciascun file da controllare deve essere inizializzata una struttura
1314 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1315 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1316 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1317 descriptor da controllare, in \var{events} deve essere specificata una
1318 maschera binaria di flag che indichino il tipo di evento che si vuole
1319 controllare, mentre in \var{revents} il kernel restituirà il relativo
1320 risultato.  Usando un valore negativo per \param{fd} la corrispondente
1321 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
1322 tutto indipendenti da quelli in uscita (che vengono restituiti in
1323 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1324 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1325
1326 \begin{figure}[!htb]
1327   \footnotesize \centering
1328   \begin{minipage}[c]{\textwidth}
1329     \includestruct{listati/pollfd.h}
1330   \end{minipage} 
1331   \normalsize 
1332   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1333     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1334   \label{fig:file_pollfd}
1335 \end{figure}
1336
1337 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1338 binarie dei campi \var{events} e \var{revents} sono riportati in
1339 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1340 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
1341 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
1342 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
1343 nel campo \var{revents} per notificare delle condizioni di errore. 
1344
1345 \begin{table}[htb]
1346   \centering
1347   \footnotesize
1348   \begin{tabular}[c]{|l|l|}
1349     \hline
1350     \textbf{Flag}  & \textbf{Significato} \\
1351     \hline
1352     \hline
1353     \const{POLLIN}    & È possibile la lettura.\\
1354     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1355     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1356     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
1357                         urgenti.\\ 
1358     \hline
1359     \const{POLLOUT}   & È possibile la scrittura immediata.\\
1360     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1361     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1362     \hline
1363     \const{POLLERR}   & C'è una condizione di errore.\\
1364     \const{POLLHUP}   & Si è verificato un hung-up.\\
1365     \const{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1366                         socket.\footnotemark\\ 
1367     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
1368     \hline
1369     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
1370     \hline    
1371   \end{tabular}
1372   \caption{Costanti per l'identificazione dei vari bit dei campi
1373     \var{events} e \var{revents} di \struct{pollfd}.}
1374   \label{tab:file_pollfd_flags}
1375 \end{table}
1376
1377 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1378   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1379   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1380   socket, situazione che si viene chiamata appunto \itindex{half-close}
1381   \textit{half-close} (\textsl{mezza chiusura}) su cui torneremo con maggiori
1382   dettagli in sez.~\ref{sec:TCP_shutdown}.}
1383
1384 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1385 compatibilità con l'implementazione di SysV che usa gli
1386 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
1387   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
1388   delle librerie standard del C.} è da questi che derivano i nomi di alcune
1389 costanti, in quanto per essi sono definite tre classi di dati:
1390 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
1391 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
1392 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
1393 reagisce alle varie condizioni dei socket torneremo in
1394 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
1395
1396 Si tenga conto comunque che le costanti relative ai diversi tipi di dati
1397 normali e prioritari, vale a dire \const{POLLRDNORM}, \const{POLLWRNORM},
1398 \const{POLLRDBAND} e \const{POLLWRBAND} fanno riferimento alle implementazioni
1399 in stile SysV (in particolare le ultime due non vengono usate su Linux), e
1400 sono utilizzabili soltanto qualora si sia definita la macro
1401 \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
1402   file, definirla soltanto prima di includere \headfile{sys/poll.h} non è
1403   sufficiente.}
1404
1405 In caso di successo funzione ritorna restituendo il numero di file (un valore
1406 positivo) per i quali si è verificata una delle condizioni di attesa richieste
1407 o per i quali si è verificato un errore, nel qual caso vengono utilizzati i
1408 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}. Un
1409 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
1410 indica un errore nella chiamata, il cui codice viene riportato al solito
1411 tramite \var{errno}.
1412
1413 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1414 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1415 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1416 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
1417 \textit{file descriptor set} e la dimensione dei dati passati al kernel
1418 dipende solo dal numero dei file descriptor che si vogliono controllare, non
1419 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
1420     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
1421   qualora si debba osservare un solo file descriptor con un valore molto alto
1422   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
1423   memoria.}
1424
1425 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
1426   descriptor set} è usato sia in ingresso che in uscita, e questo significa
1427 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
1428 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
1429 da tenere sotto osservazione sono molti, non è invece necessaria con
1430 \func{poll}.
1431
1432 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1433 variante di \func{select} che consente di gestire correttamente la ricezione
1434 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1435 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1436 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1437
1438 In questo caso si tratta di una estensione che è specifica di Linux e non è
1439 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1440 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1441 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1442 prototipo è:
1443 \begin{prototype}{sys/poll.h}
1444   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
1445     const sigset\_t *sigmask)}
1446   
1447   La funzione attende un cambiamento di stato su un insieme di file
1448   descriptor.
1449   
1450   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1451     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1452     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1453   \begin{errlist}
1454   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1455     degli insiemi.
1456   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1457   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1458     \const{RLIMIT\_NOFILE}.
1459   \end{errlist}
1460   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1461 \end{prototype}
1462
1463 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1464 specificare, con l'argomento \param{sigmask}, il puntatore ad una
1465 \index{maschera~dei~segnali} maschera di segnali; questa sarà la maschera
1466 utilizzata per tutto il tempo che la funzione resterà in attesa, all'uscita
1467 viene ripristinata la maschera originale.  L'uso di questa funzione è cioè
1468 equivalente, come illustrato nella pagina di manuale, all'esecuzione atomica
1469 del seguente codice:
1470 \includecodesnip{listati/ppoll_means.c} 
1471
1472 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1473 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1474 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1475 risultati illustrati in precedenza. Come nel caso di \func{pselect} la system
1476 call che implementa \func{ppoll} restituisce, se la funzione viene interrotta
1477 da un segnale, il tempo mancante in \param{timeout}, e come per \func{pselect}
1478 la funzione di libreria fornita dalle \acr{glibc} maschera questo
1479 comportamento non modificando mai il valore di \param{timeout}.\footnote{anche
1480   se in questo caso non esiste nessuno standard che richiede questo
1481   comportamento.}
1482
1483
1484 \subsection{L'interfaccia di \textit{epoll}}
1485 \label{sec:file_epoll}
1486
1487 \itindbeg{epoll}
1488
1489 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1490 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1491 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1492   viene scartata a priori, perché può avvenire che il numero di file
1493   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
1494   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
1495 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
1496 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
1497 numero di file descriptor osservati, non a quelli che presentano attività.
1498
1499 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1500 eventi al secondo,\footnote{il caso classico è quello di un server web di un
1501   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
1502 trasferire avanti ed indietro da user space a kernel space la lunga lista
1503 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1504 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1505 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1506 per determinare quali di essi (in genere una piccola percentuale) sono
1507 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1508 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1509 bottiglia che degrada irrimediabilmente le prestazioni.
1510
1511 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1512 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
1513   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
1514 informazioni relative ai file descriptor osservati che presentano una
1515 attività, evitando così le problematiche appena illustrate. In genere queste
1516 prevedono che si registrino una sola volta i file descriptor da tenere sotto
1517 osservazione, e forniscono un meccanismo che notifica quali di questi
1518 presentano attività.
1519
1520 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1521 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1522   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1523   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1524   nell'elettronica digitale.} In questa modalità vengono notificati i file
1525 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1526 avviene indipendentemente dalle operazioni che possono essere state fatte su
1527 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1528 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1529 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1530 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1531 \textit{level triggered} questo sarà nuovamente notificato come
1532 \textsl{pronto}.
1533
1534 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1535 vengano notificati solo i file descriptor che hanno subito una transizione da
1536 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1537 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1538 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1539 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1540 byte. Solo una volta che si saranno esauriti tutti i dati disponibili, e che
1541 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1542 ulteriore notifica qualora ritornasse pronto.
1543
1544 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1545 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
1546   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
1547   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
1548 discussione altre interfacce con le quali si potranno effettuare lo stesso
1549 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
1550   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
1551   fornisce un sistema di notifica di eventi generico in grado di fornire le
1552   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
1553   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
1554 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
1555
1556 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
1557 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1558 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
1559   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
1560   file.} ma poi si è passati all'uso di apposite \textit{system call}.  Il
1561 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello
1562 ottenere detto file descriptor chiamando una delle funzioni
1563 \funcd{epoll\_create} e \funcd{epoll\_create1},\footnote{l'interfaccia di
1564   \textit{epoll} è stata inserita nel kernel a partire dalla versione 2.5.44,
1565   ed il supporto è stato aggiunto alle \acr{glibc} 2.3.2.} i cui prototipi
1566 sono:
1567 \begin{functions}
1568   \headdecl{sys/epoll.h}
1569
1570   \funcdecl{int epoll\_create(int size)}
1571   \funcdecl{int epoll\_create1(int flags)}
1572   
1573   Apre un file descriptor per \textit{epoll}.
1574   
1575   \bodydesc{Le funzioni restituiscono un file descriptor per \textit{epoll} in
1576     caso di successo, o $-1$ in caso di errore, nel qual caso \var{errno}
1577     assumerà uno dei valori:
1578   \begin{errlist}
1579   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1580     positivo o non valido per \param{flags}.
1581   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1582     nel sistema.
1583   \item[\errcode{EMFILE}] si è raggiunto il limite sul numero massimo di
1584     istanze di \textit{epoll} per utente stabilito da
1585     \sysctlfile{fs/epoll/max\_user\_instances}.
1586   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1587     l'istanza.
1588   \end{errlist}
1589 }
1590 \end{functions}
1591
1592 Entrambe le funzioni restituiscono un file descriptor speciale,\footnote{esso
1593   non è associato a nessun file su disco, inoltre a differenza dei normali
1594   file descriptor non può essere inviato ad un altro processo attraverso un
1595   socket locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche
1596 \textit{epoll descriptor}, che viene associato alla infrastruttura utilizzata
1597 dal kernel per gestire la notifica degli eventi. Nel caso di
1598 \func{epoll\_create} l'argomento \param{size} serviva a dare l'indicazione del
1599 numero di file descriptor che si vorranno tenere sotto controllo, e costituiva
1600 solo un suggerimento per semplificare l'allocazione di risorse sufficienti,
1601 non un valore massimo.\footnote{ma a partire dal kernel 2.6.8 esso viene
1602   totalmente ignorato e l'allocazione è sempre dinamica.}
1603
1604 La seconda versione della funzione, \func{epoll\_create1} è stata
1605 introdotta\footnote{è disponibile solo a partire dal kernel 2.6.27.} come
1606 estensione della precedente, per poter passare dei flag di controllo come
1607 maschera binaria in fase di creazione del file descriptor. Al momento l'unico
1608 valore legale per \param{flags} (a parte lo zero) è \const{EPOLL\_CLOEXEC},
1609 che consente di impostare in maniera atomica sul file descriptor il flag di
1610 \itindex{close-on-exec} \textit{close-on-exec} (si veda il significato di
1611 \const{O\_CLOEXEC} in sez.~\ref{sec:file_open_close}), senza che sia
1612 necessaria una successiva chiamata a \func{fcntl}.
1613
1614 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1615 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1616 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
1617 \funcd{epoll\_ctl}, il cui prototipo è:
1618 \begin{prototype}{sys/epoll.h}
1619   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1620   
1621   Esegue le operazioni di controllo di \textit{epoll}.
1622   
1623   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
1624     errore, nel qual caso \var{errno} assumerà uno dei valori:
1625   \begin{errlist}
1626   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
1627     validi.
1628   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1629     \param{fd} è già stato inserito in \param{epfd}.
1630   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1631     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1632     l'operazione richiesta con \param{op} non è supportata.
1633   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1634     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1635   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1636     l'operazione richiesta.
1637   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
1638   \item[\errcode{ENOSPC}] si è raggiunto il limite massimo di registrazioni
1639     per utente di file descriptor da osservare imposto da
1640     \sysctlfile{fs/epoll/max\_user\_watches}.
1641   \end{errlist}
1642 }
1643 \end{prototype}
1644
1645 Il comportamento della funzione viene controllato dal valore dall'argomento
1646 \param{op} che consente di specificare quale operazione deve essere eseguita.
1647 Le costanti che definiscono i valori utilizzabili per \param{op}
1648 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1649 delle operazioni cui fanno riferimento.
1650
1651 \begin{table}[htb]
1652   \centering
1653   \footnotesize
1654   \begin{tabular}[c]{|l|p{8cm}|}
1655     \hline
1656     \textbf{Valore}  & \textbf{Significato} \\
1657     \hline
1658     \hline
1659     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1660                              \param{fd} alla lista dei file descriptor
1661                              controllati tramite \param{epfd}, in
1662                              \param{event} devono essere specificate le
1663                              modalità di osservazione.\\
1664     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1665                              descriptor \param{fd} secondo il contenuto di
1666                              \param{event}.\\
1667     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1668                              dei file controllati tramite \param{epfd}.\\
1669     \hline    
1670   \end{tabular}
1671   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1672     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1673   \label{tab:epoll_ctl_operation}
1674 \end{table}
1675
1676 % aggiunta EPOLL_CTL_DISABLE con il kernel 3.7, vedi
1677 % http://lwn.net/Articles/520012/ e http://lwn.net/Articles/520198/
1678
1679 La funzione prende sempre come primo argomento un file descriptor di
1680 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
1681 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
1682 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
1683 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
1684 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1685
1686 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1687 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1688 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1689 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1690 sotto controllo.  L'argomento viene ignorato con l'operazione
1691 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1692   che questo fosse un puntatore valido, anche se poi veniva ignorato; a
1693   partire dal 2.6.9 si può specificare anche un valore \val{NULL} ma se si
1694   vuole mantenere la compatibilità con le versioni precedenti occorre usare un
1695   puntatore valido.}
1696
1697 \begin{figure}[!htb]
1698   \footnotesize \centering
1699   \begin{minipage}[c]{\textwidth}
1700     \includestruct{listati/epoll_event.h}
1701   \end{minipage} 
1702   \normalsize 
1703   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1704     gli eventi associati ad un file descriptor controllato con
1705     \textit{epoll}.}
1706   \label{fig:epoll_event}
1707 \end{figure}
1708
1709 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1710 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1711 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1712 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1713 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1714
1715 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1716 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1717 deve essere specificato come OR aritmetico delle costanti riportate in
1718 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, è una \direct{union}
1719 che serve a identificare il file descriptor a cui si intende fare riferimento,
1720 ed in astratto può contenere un valore qualsiasi (specificabile in diverse
1721 forme) che ne permetta una indicazione univoca. Il modo più comune di usarlo
1722 però è quello in cui si specifica il terzo argomento di \func{epoll\_ctl}
1723 nella forma \var{event.data.fd}, assegnando come valore di questo campo lo
1724 stesso valore dell'argomento \param{fd}, cosa che permette una immediata
1725 identificazione del file descriptor.
1726
1727 \begin{table}[htb]
1728   \centering
1729   \footnotesize
1730   \begin{tabular}[c]{|l|p{8cm}|}
1731     \hline
1732     \textbf{Valore}  & \textbf{Significato} \\
1733     \hline
1734     \hline
1735     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1736                           (analogo di \const{POLLIN}).\\
1737     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1738                           (analogo di \const{POLLOUT}).\\
1739     \const{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1740                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1741                           ha chiuso la connessione o il capo in scrittura
1742                           della stessa (vedi
1743                           sez.~\ref{sec:TCP_shutdown}).\footnotemark\\
1744     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
1745                           disponibili in lettura (analogo di
1746                           \const{POLLPRI}); questa condizione viene comunque
1747                           riportata in uscita, e non è necessaria impostarla
1748                           in ingresso.\\ 
1749     \const{EPOLLERR}    & Si è verificata una condizione di errore 
1750                           (analogo di \const{POLLERR}); questa condizione
1751                           viene comunque riportata in uscita, e non è
1752                           necessaria impostarla in ingresso.\\
1753     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up; questa
1754                           condizione viene comunque riportata in uscita, e non
1755                           è necessaria impostarla in ingresso.\\
1756     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1757                             triggered} per il file descriptor associato.\\ 
1758     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1759                           descriptor associato.\footnotemark\\
1760     \hline    
1761   \end{tabular}
1762   \caption{Costanti che identificano i bit del campo \param{events} di
1763     \struct{epoll\_event}.}
1764   \label{tab:epoll_events}
1765 \end{table}
1766
1767 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.17,
1768   ed è utile per riconoscere la chiusura di una connessione dall'altro capo
1769   quando si lavora in modalità \textit{edge triggered}.}
1770
1771 \footnotetext[48]{questa modalità è disponibile solo a partire dal kernel
1772   2.6.2.}
1773
1774 % TODO aggiunto EPOLLWAKEUP con il 3.5
1775
1776
1777 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1778 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
1779 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
1780 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
1781   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
1782   una perdita di prestazioni qualora il numero di file descriptor sia molto
1783   grande; per questo è stato proposto di introdurre come estensione una
1784   funzione \code{epoll\_ctlv} che consenta di effettuare con una sola chiamata
1785   le impostazioni per un blocco di file descriptor.} L'uso di
1786 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1787 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1788 osservazione.
1789
1790 % TODO verificare se prima o poi epoll_ctlv verrà introdotta
1791
1792 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1793 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1794 descriptor non si sia impostata la modalità \textit{edge triggered},
1795 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
1796 presente che è possibile tenere sotto osservazione uno stesso file descriptor
1797 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
1798 notifiche, anche se questa pratica è sconsigliata.
1799
1800 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
1801 si può rimuovere dalla lista associata a \param{epfd} con
1802 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
1803 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
1804 non è necessario usare \const{EPOLL\_CTL\_DEL}.
1805
1806 Infine una particolare modalità di notifica è quella impostata con
1807 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1808 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1809 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
1810   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
1811 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
1812 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
1813   logica \textit{edge triggered}.} 
1814
1815 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1816 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1817 notifica di un evento viene effettuata una sola volta, dopo di che il file
1818 descriptor osservato, pur restando nella lista di osservazione, viene
1819 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
1820   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
1821 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
1822 chiamata con \const{EPOLL\_CTL\_MOD}.
1823
1824 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1825 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
1826 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1827 \begin{prototype}{sys/epoll.h}
1828   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
1829     timeout)}
1830   
1831   Attende che uno dei file descriptor osservati sia pronto.
1832   
1833   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1834     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1835     assumerà uno dei valori:
1836   \begin{errlist}
1837   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1838   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1839   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1840     della scadenza di \param{timeout}.
1841   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1842     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1843   \end{errlist}
1844 }
1845 \end{prototype}
1846
1847 La funzione si blocca in attesa di un evento per i file descriptor registrati
1848 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1849 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1850 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1851 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1852 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1853 con l'argomento \param{maxevents}.
1854
1855 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1856 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1857 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1858 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
1859   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
1860 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
1861 un intero positivo.
1862
1863 Come accennato la funzione restituisce i suoi risultati nel vettore di
1864 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1865 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1866 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1867 stato impostato per il file descriptor per cui si è verificato l'evento quando
1868 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1869 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1870 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
1871   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
1872
1873 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1874 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1875 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1876 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1877 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1878 presenti eventi non ancora notificati, e si effettuasse una modifica
1879 dell'osservazione con \const{EPOLL\_CTL\_MOD}, questi verrebbero riletti alla
1880 luce delle modifiche.
1881
1882 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1883 il ritorno di \func{epoll\_wait} indica che un file descriptor è pronto e
1884 resterà tale fintanto che non si sono completamente esaurite le operazioni su
1885 di esso.  Questa condizione viene generalmente rilevata dall'occorrere di un
1886 errore di \errcode{EAGAIN} al ritorno di una \func{read} o una
1887 \func{write},\footnote{è opportuno ricordare ancora una volta che l'uso
1888   dell'\textit{I/O multiplexing} richiede di operare sui file in modalità non
1889   bloccante.} ma questa non è la sola modalità possibile, ad esempio la
1890 condizione può essere riconosciuta anche per il fatto che sono stati
1891 restituiti meno dati di quelli richiesti.
1892
1893 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1894 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1895 contemporaneamente per le osservazioni fatte in sez.~\ref{sec:file_select},
1896 per fare questo di nuovo è necessaria una variante della funzione di attesa
1897 che consenta di reimpostare all'uscita una \index{maschera~dei~segnali}
1898 maschera di segnali, analoga alle estensioni \func{pselect} e \func{ppoll} che
1899 abbiamo visto in precedenza per \func{select} e \func{poll}; in questo caso la
1900 funzione si chiama \funcd{epoll\_pwait}\footnote{la funziona è stata
1901   introdotta a partire dal kernel 2.6.19, ed è come tutta l'interfaccia di
1902   \textit{epoll}, specifica di Linux.} ed il suo prototipo è:
1903 \begin{prototype}{sys/epoll.h} 
1904   {int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1905     int timeout, const sigset\_t *sigmask)}
1906
1907   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1908   segnali. 
1909
1910   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1911     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1912     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1913 }
1914 \end{prototype}
1915
1916 La funzione è del tutto analoga \funcd{epoll\_wait}, soltanto che alla sua
1917 uscita viene ripristinata la \index{maschera~dei~segnali} maschera di segnali
1918 originale, sostituita durante l'esecuzione da quella impostata con
1919 l'argomento \param{sigmask}; in sostanza la chiamata a questa funzione è
1920 equivalente al seguente codice, eseguito però in maniera atomica:
1921 \includecodesnip{listati/epoll_pwait_means.c} 
1922
1923 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
1924 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
1925 prevalentemente con i server di rete, quando si devono tenere sotto
1926 osservazione un gran numero di socket; per questo motivo rimandiamo anche in
1927 questo caso la trattazione di un esempio concreto a quando avremo esaminato in
1928 dettaglio le caratteristiche dei socket; in particolare si potrà trovare un
1929 programma che utilizza questa interfaccia in sez.~\ref{sec:TCP_serv_epoll}.
1930
1931 \itindend{epoll}
1932
1933
1934 \subsection{La notifica di eventi tramite file descriptor}
1935 \label{sec:sig_signalfd_eventfd}
1936
1937 Abbiamo visto in sez.~\ref{sec:file_select} come il meccanismo classico delle
1938 notifiche di eventi tramite i segnali, presente da sempre nei sistemi
1939 unix-like, porti a notevoli problemi nell'interazione con le funzioni per
1940 l'\textit{I/O multiplexing}, tanto che per evitare possibili
1941 \itindex{race~condition} \textit{race condition} sono state introdotte
1942 estensioni dello standard POSIX e funzioni apposite come \func{pselect},
1943 \func{ppoll} e \funcd{epoll\_pwait}.
1944
1945 Benché i segnali siano il meccanismo più usato per effettuare notifiche ai
1946 processi, la loro interfaccia di programmazione, che comporta l'esecuzione di
1947 una funzione di gestione in maniera asincrona e totalmente scorrelata
1948 dall'ordinario flusso di esecuzione del processo, si è però dimostrata quasi
1949 subito assai problematica. Oltre ai limiti relativi ai limiti al cosa si può
1950 fare all'interno della funzione del gestore di segnali (quelli illustrati in
1951 sez.~\ref{sec:sig_signal_handler}), c'è il problema più generale consistente
1952 nel fatto che questa modalità di funzionamento cozza con altre interfacce di
1953 programmazione previste dal sistema in cui si opera in maniera
1954 \textsl{sincrona}, come quelle dell'I/O multiplexing appena illustrate.
1955
1956 In questo tipo di interfacce infatti ci si aspetta che il processo gestisca
1957 gli eventi a cui vuole rispondere in maniera sincrona generando le opportune
1958 risposte, mentre con l'arrivo di un segnale si possono avere interruzioni
1959 asincrone in qualunque momento.  Questo comporta la necessità di dover
1960 gestire, quando si deve tener conto di entrambi i tipi di eventi, le
1961 interruzioni delle funzioni di attesa sincrone, ed evitare possibili
1962 \itindex{race~condition} \textit{race conditions}.\footnote{in sostanza se non
1963   fossero per i segnali non ci sarebbe da doversi preoccupare, fintanto che si
1964   effettuano operazioni all'interno di un processo, della non atomicità delle
1965   \index{system~call~lente} \textit{system call} lente che vengono interrotte
1966   e devono essere riavviate.}
1967
1968 Abbiamo visto però in sez.~\ref{sec:sig_real_time} che insieme ai segnali
1969 \textit{real-time} sono state introdotte anche delle interfacce di gestione
1970 sincrona dei segnali con la funzione \func{sigwait} e le sue affini. Queste
1971 funzioni consentono di gestire i segnali bloccando un processo fino alla
1972 avvenuta ricezione e disabilitando l'esecuzione asincrona rispetto al resto
1973 del programma del gestore del segnale. Questo consente di risolvere i problemi
1974 di atomicità nella gestione degli eventi associati ai segnali, avendo tutto il
1975 controllo nel flusso principale del programma, ottenendo così una gestione
1976 simile a quella dell'\textit{I/O multiplexing}, ma non risolve i problemi
1977 delle interazioni con quest'ultimo, perché o si aspetta la ricezione di un
1978 segnale o si aspetta che un file descriptor sia accessibile e nessuna delle
1979 rispettive funzioni consente di fare contemporaneamente entrambe le cose.
1980
1981 Per risolvere questo problema nello sviluppo del kernel si è pensato di
1982 introdurre un meccanismo alternativo per la notifica dei segnali (esteso anche
1983 ad altri eventi generici) che, ispirandosi di nuovo alla filosofia di Unix per
1984 cui tutto è un file, consentisse di eseguire la notifica con l'uso di
1985 opportuni file descriptor.\footnote{ovviamente si tratta di una funzionalità
1986   specifica di Linux, non presente in altri sistemi unix-like, e non prevista
1987   da nessuno standard, per cui va evitata se si ha a cuore la portabilità.}
1988
1989 In sostanza, come per \func{sigwait}, si può disabilitare l'esecuzione di un
1990 gestore in occasione dell'arrivo di un segnale, e rilevarne l'avvenuta
1991 ricezione leggendone la notifica tramite l'uso di uno speciale file
1992 descriptor. Trattandosi di un file descriptor questo potrà essere tenuto sotto
1993 osservazione con le ordinarie funzioni dell'\textit{I/O multiplexing} (vale a
1994 dire con le solite \func{select}, \func{poll} e \funcd{epoll\_wait}) allo
1995 stesso modo di quelli associati a file o socket, per cui alla fine si potrà
1996 attendere in contemporanea sia l'arrivo del segnale che la disponibilità di
1997 accesso ai dati relativi a questi ultimi.
1998
1999 La funzione che permette di abilitare la ricezione dei segnali tramite file
2000 descriptor è \funcd{signalfd},\footnote{in realtà quella riportata è
2001   l'interfaccia alla funzione fornita dalle \acr{glibc}, esistono infatti due
2002   versioni diverse della \textit{system call}; una prima versione,
2003   \func{signalfd}, introdotta nel kernel 2.6.22 e disponibile con le
2004   \acr{glibc} 2.8 che non supporta l'argomento \texttt{flags}, ed una seconda
2005   versione, \funcm{signalfd4}, introdotta con il kernel 2.6.27 e che è quella
2006   che viene sempre usata a partire dalle \acr{glibc} 2.9, che prende un
2007   argomento aggiuntivo \code{size\_t sizemask} che indica la dimensione della
2008   \index{maschera~dei~segnali} maschera dei segnali, il cui valore viene
2009   impostato automaticamente dalle \acr{glibc}.}  il cui prototipo è:
2010 \begin{prototype}{sys/signalfd.h} 
2011   {int signalfd(int fd, const sigset\_t *mask, int flags)}
2012
2013   Crea o modifica un file descriptor per la ricezione dei segnali. 
2014
2015   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2016     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2017     dei valori:
2018   \begin{errlist}
2019   \item[\errcode{EBADF}] il valore \param{fd} non indica un file descriptor.
2020   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2021     con \func{signalfd} o il valore di \param{flags} non è valido.
2022   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
2023     descriptor di \func{signalfd}.
2024   \item[\errcode{ENODEV}] il kernel non può montare internamente il
2025     dispositivo per la gestione anonima degli \itindex{inode} \textit{inode}
2026     associati al file descriptor.
2027   \end{errlist}
2028   ed inoltre \errval{EMFILE} e \errval{ENFILE}.  
2029 }
2030 \end{prototype}
2031
2032 La funzione consente di creare o modificare le caratteristiche di un file
2033 descriptor speciale su cui ricevere le notifiche della ricezione di
2034 segnali. Per creare ex-novo uno di questi file descriptor è necessario passare
2035 $-1$ come valore per l'argomento \param{fd}, ogni altro valore positivo verrà
2036 invece interpretato come il numero del file descriptor (che deve esser stato
2037 precedentemente creato sempre con \func{signalfd}) di cui si vogliono
2038 modificare le caratteristiche. Nel primo caso la funzione ritornerà il valore
2039 del nuovo file descriptor e nel secondo caso il valore indicato
2040 con \param{fd}, in caso di errore invece verrà restituito $-1$.
2041
2042 L'elenco dei segnali che si vogliono gestire con \func{signalfd} deve essere
2043 specificato tramite l'argomento \param{mask}. Questo deve essere passato come
2044 puntatore ad una \index{maschera~dei~segnali} maschera di segnali creata con
2045 l'uso delle apposite macro già illustrate in sez.~\ref{sec:sig_sigset}. La
2046 maschera deve indicare su quali segnali si intende operare con
2047 \func{signalfd}; l'elenco può essere modificato con una successiva chiamata a
2048 \func{signalfd}. Dato che \signal{SIGKILL} e \signal{SIGSTOP} non possono
2049 essere intercettati (e non prevedono neanche la possibilità di un gestore) un
2050 loro inserimento nella maschera verrà ignorato senza generare errori.
2051
2052 L'argomento \param{flags} consente di impostare direttamente in fase di
2053 creazione due flag per il file descriptor analoghi a quelli che si possono
2054 impostare con una creazione ordinaria con \func{open}, evitando una
2055 impostazione successiva con \func{fcntl}.\footnote{questo è un argomento
2056   aggiuntivo, introdotto con la versione fornita a partire dal kernel 2.6.27,
2057   per kernel precedenti il valore deve essere nullo.} L'argomento deve essere
2058 specificato come maschera binaria dei valori riportati in
2059 tab.~\ref{tab:signalfd_flags}.
2060
2061 \begin{table}[htb]
2062   \centering
2063   \footnotesize
2064   \begin{tabular}[c]{|l|p{8cm}|}
2065     \hline
2066     \textbf{Valore}  & \textbf{Significato} \\
2067     \hline
2068     \hline
2069     \const{SFD\_NONBLOCK}& imposta sul file descriptor il flag di
2070                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2071     \const{SFD\_CLOEXEC}&  imposta il flag di \const{O\_CLOEXEC} per la
2072                            chiusura automatica del file descriptor nella
2073                            esecuzione di \func{exec}.\\
2074     \hline    
2075   \end{tabular}
2076   \caption{Valori dell'argomento \param{flags} per la funzione \func{signalfd}
2077     che consentono di impostare i flag del file descriptor.} 
2078   \label{tab:signalfd_flags}
2079 \end{table}
2080
2081 Si tenga presente che la chiamata a \func{signalfd} non disabilita la gestione
2082 ordinaria dei segnali indicati da \param{mask}; questa, se si vuole effettuare
2083 la ricezione tramite il file descriptor, dovrà essere disabilitata
2084 esplicitamente bloccando gli stessi segnali con \func{sigprocmask}, altrimenti
2085 verranno comunque eseguite le azioni di default (o un eventuale gestore
2086 installato in precedenza).\footnote{il blocco non ha invece nessun effetto sul
2087   file descriptor restituito da \func{signalfd}, dal quale sarà possibile
2088   pertanto ricevere qualunque segnale, anche se questo risultasse bloccato.}
2089 Si tenga presente inoltre che la lettura di una struttura
2090 \struct{signalfd\_siginfo} relativa ad un segnale pendente è equivalente alla
2091 esecuzione di un gestore, vale a dire che una volta letta il segnale non sarà
2092 più pendente e non potrà essere ricevuto, qualora si ripristino le normali
2093 condizioni di gestione, né da un gestore né dalla funzione \func{sigwaitinfo}.
2094
2095 Come anticipato, essendo questo lo scopo principale della nuova interfaccia,
2096 il file descriptor può essere tenuto sotto osservazione tramite le funzioni
2097 dell'\textit{I/O multiplexing} (vale a dire con le solite \func{select},
2098 \func{poll} e \funcd{epoll\_wait}), e risulterà accessibile in lettura quando
2099 uno o più dei segnali indicati tramite \param{mask} sarà pendente.
2100
2101 La funzione può essere chiamata più volte dallo stesso processo, consentendo
2102 così di tenere sotto osservazione segnali diversi tramite file descriptor
2103 diversi. Inoltre è anche possibile tenere sotto osservazione lo stesso segnale
2104 con più file descriptor, anche se la pratica è sconsigliata; in tal caso la
2105 ricezione del segnale potrà essere effettuata con una lettura da uno qualunque
2106 dei file descriptor a cui è associato, ma questa potrà essere eseguita
2107 soltanto una volta.\footnote{questo significa che tutti i file descriptor su
2108   cui è presente lo stesso segnale risulteranno pronti in lettura per le
2109   funzioni di \textit{I/O multiplexing}, ma una volta eseguita la lettura su
2110   uno di essi il segnale sarà considerato ricevuto ed i relativi dati non
2111   saranno più disponibili sugli altri file descriptor, che (a meno di una
2112   ulteriore occorrenza del segnale nel frattempo) di non saranno più pronti.}
2113
2114 Quando il file descriptor per la ricezione dei segnali non serve più potrà
2115 essere chiuso con \func{close} liberando tutte le risorse da esso allocate. In
2116 tal caso qualora vi fossero segnali pendenti questi resteranno tali, e
2117 potranno essere ricevuti normalmente una volta che si rimuova il blocco
2118 imposto con \func{sigprocmask}.
2119
2120 Oltre che con le funzioni dell'\textit{I/O multiplexing} l'uso del file
2121 descriptor restituito da \func{signalfd} cerca di seguire la semantica di un
2122 sistema unix-like anche con altre \textit{system call}; in particolare esso
2123 resta aperto (come ogni altro file descriptor) attraverso una chiamata ad
2124 \func{exec}, a meno che non lo si sia creato con il flag di
2125 \const{SFD\_CLOEXEC} o si sia successivamente impostato il
2126 \textit{close-on-exec} con \func{fcntl}. Questo comportamento corrisponde
2127 anche alla ordinaria semantica relativa ai segnali bloccati, che restano
2128 pendenti attraverso una \func{exec}.
2129
2130 Analogamente il file descriptor resta sempre disponibile attraverso una
2131 \func{fork} per il processo figlio, che ne riceve una copia; in tal caso però
2132 il figlio potrà leggere dallo stesso soltanto i dati relativi ai segnali
2133 ricevuti da lui stesso. Nel caso di \textit{thread} viene nuovamente seguita
2134 la semantica ordinaria dei segnali, che prevede che un singolo \textit{thread}
2135 possa ricevere dal file descriptor solo le notifiche di segnali inviati
2136 direttamente a lui o al processo in generale, e non quelli relativi ad altri
2137 \textit{thread} appartenenti allo stesso processo.
2138
2139 L'interfaccia fornita da \func{signalfd} prevede che la ricezione dei segnali
2140 sia eseguita leggendo i dati relativi ai segnali pendenti dal file descriptor
2141 restituito dalla funzione con una normalissima \func{read}.  Qualora non vi
2142 siano segnali pendenti la \func{read} si bloccherà a meno di non aver
2143 impostato la modalità di I/O non bloccante sul file descriptor, o direttamente
2144 in fase di creazione con il flag \const{SFD\_NONBLOCK}, o in un momento
2145 successivo con \func{fcntl}.  
2146
2147 \begin{figure}[!htb]
2148   \footnotesize \centering
2149   \begin{minipage}[c]{\textwidth}
2150     \includestruct{listati/signalfd_siginfo.h}
2151   \end{minipage} 
2152   \normalsize 
2153   \caption{La struttura \structd{signalfd\_siginfo}, restituita in lettura da
2154     un file descriptor creato con \func{signalfd}.}
2155   \label{fig:signalfd_siginfo}
2156 \end{figure}
2157
2158 I dati letti dal file descriptor vengono scritti sul buffer indicato come
2159 secondo argomento di \func{read} nella forma di una sequenza di una o più
2160 strutture \struct{signalfd\_siginfo} (la cui definizione si è riportata in
2161 fig.~\ref{fig:signalfd_siginfo}) a seconda sia della dimensione del buffer che
2162 del numero di segnali pendenti. Per questo motivo il buffer deve essere almeno
2163 di dimensione pari a quella di \struct{signalfd\_siginfo}, qualora sia di
2164 dimensione maggiore potranno essere letti in unica soluzione i dati relativi
2165 ad eventuali più segnali pendenti, fino al numero massimo di strutture
2166 \struct{signalfd\_siginfo} che possono rientrare nel buffer.
2167
2168 Il contenuto di \struct{signalfd\_siginfo} ricalca da vicino quella della
2169 analoga struttura \struct{siginfo\_t} (illustrata in
2170 fig.~\ref{fig:sig_siginfo_t}) usata dall'interfaccia ordinaria dei segnali, e
2171 restituisce dati simili. Come per \struct{siginfo\_t} i campi che vengono
2172 avvalorati dipendono dal tipo di segnale e ricalcano i valori che abbiamo già
2173 illustrato in sez.~\ref{sec:sig_sigaction}.\footnote{si tenga presente però
2174   che per un bug i kernel fino al 2.6.25 non avvalorano correttamente i campi
2175   \var{ssi\_ptr} e \var{ssi\_int} per segnali inviati con \func{sigqueue}.}
2176
2177 Come esempio di questa nuova interfaccia ed anche come esempio di applicazione
2178 della interfaccia di \itindex{epoll} \textit{epoll}, si è scritto un programma
2179 elementare che stampi sullo standard output sia quanto viene scritto da terzi
2180 su una \textit{named fifo}, che l'avvenuta ricezione di alcuni segnali.  Il
2181 codice completo si trova al solito nei sorgenti allegati alla guida (nel file
2182 \texttt{FifoReporter.c}).
2183
2184 In fig.~\ref{fig:fiforeporter_code_init} si è riportata la parte iniziale del
2185 programma in cui vengono effettuate le varie inizializzazioni necessarie per
2186 l'uso di \itindex{epoll} \textit{epoll} e \func{signalfd}, a partire
2187 (\texttt{\small 12--16}) dalla definizione delle varie variabili e strutture
2188 necessarie. Al solito si è tralasciata la parte dedicata alla decodifica delle
2189 opzioni che consentono ad esempio di cambiare il nome del file associato alla
2190 fifo.
2191
2192 \begin{figure}[!htbp]
2193   \footnotesize \centering
2194   \begin{minipage}[c]{\codesamplewidth}
2195     \includecodesample{listati/FifoReporter-init.c}
2196   \end{minipage} 
2197   \normalsize 
2198   \caption{Sezione di inizializzazione del codice del programma
2199     \file{FifoReporter.c}.}
2200   \label{fig:fiforeporter_code_init}
2201 \end{figure}
2202
2203 Il primo passo (\texttt{\small 19--20}) è la creazione di un file descriptor
2204 \texttt{epfd} di \itindex{epoll} \textit{epoll} con \func{epoll\_create} che è
2205 quello che useremo per il controllo degli altri.  É poi necessario
2206 disabilitare la ricezione dei segnali (nel caso \signal{SIGINT},
2207 \signal{SIGQUIT} e \signal{SIGTERM}) per i quali si vuole la notifica tramite
2208 file descriptor. Per questo prima li si inseriscono (\texttt{\small 22--25})
2209 in una \index{maschera~dei~segnali} maschera di segnali \texttt{sigmask} che
2210 useremo con (\texttt{\small 26}) \func{sigprocmask} per disabilitarli.  Con la
2211 stessa maschera si potrà per passare all'uso (\texttt{\small 28--29}) di
2212 \func{signalfd} per abilitare la notifica sul file descriptor
2213 \var{sigfd}. Questo poi (\texttt{\small 30--33}) dovrà essere aggiunto con
2214 \func{epoll\_ctl} all'elenco di file descriptor controllati con \texttt{epfd}.
2215
2216 Occorrerà infine (\texttt{\small 35--38}) creare la \textit{named fifo} se
2217 questa non esiste ed aprirla per la lettura (\texttt{\small 39--40}); una
2218 volta fatto questo sarà necessario aggiungere il relativo file descriptor
2219 (\var{fifofd}) a quelli osservati da \itindex{epoll} \textit{epoll} in maniera
2220 del tutto analoga a quanto fatto con quello relativo alla notifica dei
2221 segnali.
2222
2223 \begin{figure}[!htbp]
2224   \footnotesize \centering
2225   \begin{minipage}[c]{\codesamplewidth}
2226     \includecodesample{listati/FifoReporter-main.c}
2227   \end{minipage} 
2228   \normalsize 
2229   \caption{Ciclo principale del codice del programma \file{FifoReporter.c}.}
2230   \label{fig:fiforeporter_code_body}
2231 \end{figure}
2232
2233 Una volta completata l'inizializzazione verrà eseguito indefinitamente il
2234 ciclo principale del programma (\texttt{\small 2--45}) che si è riportato in
2235 fig.~\ref{fig:fiforeporter_code_body}, fintanto che questo non riceva un
2236 segnale di \signal{SIGINT} (ad esempio con la pressione di \texttt{C-c}). Il
2237 ciclo prevede che si attenda (\texttt{\small 2--3}) la presenza di un file
2238 descriptor pronto in lettura con \func{epoll\_wait},\footnote{si ricordi che
2239   entrambi i file descriptor \var{fifofd} e \var{sigfd} sono stati posti in
2240   osservazioni per eventi di tipo \const{EPOLLIN}.} che si bloccherà fintanto
2241 che non siano stati scritti dati sulla fifo o che non sia arrivato un
2242 segnale.\footnote{per semplificare il codice non si è trattato il caso in cui
2243   \func{epoll\_wait} viene interrotta da un segnale, assumendo che tutti
2244   quelli che possano interessare siano stati predisposti per la notifica
2245   tramite file descriptor, per gli altri si otterrà semplicemente l'uscita dal
2246   programma.}
2247
2248 Anche se in questo caso i file descriptor pronti possono essere al più due, si
2249 è comunque adottato un approccio generico in cui questi verranno letti
2250 all'interno di un opportuno ciclo (\texttt{\small 5--44}) sul numero
2251 restituito da \func{epoll\_wait}, esaminando i risultati presenti nel vettore
2252 \var{events} all'interno di una catena di condizionali alternativi sul valore
2253 del file descriptor riconosciuto come pronto.\footnote{controllando cioè a
2254   quale dei due file descriptor possibili corrisponde il campo relativo,
2255   \var{events[i].data.fd}.}
2256
2257 Il primo condizionale (\texttt{\small 6--24}) è relativo al caso che si sia
2258 ricevuto un segnale e che il file descriptor pronto corrisponda
2259 (\texttt{\small 6}) a \var{sigfd}. Dato che in generale si possono ricevere
2260 anche notifiche relativi a più di un singolo segnale, si è scelto di leggere
2261 una struttura \struct{signalfd\_siginfo} alla volta, eseguendo la lettura
2262 all'interno di un ciclo (\texttt{\small 8--24}) che prosegue fintanto che vi
2263 siano dati da leggere.
2264
2265 Per questo ad ogni lettura si esamina (\texttt{\small 9--14}) se il valore di
2266 ritorno della funzione \func{read} è negativo, uscendo dal programma
2267 (\texttt{\small 11}) in caso di errore reale, o terminando il ciclo
2268 (\texttt{\small 13}) con un \texttt{break} qualora si ottenga un errore di
2269 \errcode{EAGAIN} per via dell'esaurimento dei dati.\footnote{si ricordi come
2270   sia la fifo che il file descriptor per i segnali siano stati aperti in
2271   modalità non-bloccante, come previsto per l’\textit{I/O multiplexing},
2272   pertanto ci si aspetta di ricevere un errore di \errcode{EAGAIN} quando non
2273   vi saranno più dati da leggere.}
2274
2275 In presenza di dati invece il programma proseguirà l'esecuzione stampando
2276 (\texttt{\small 19--20}) il nome del segnale ottenuto all'interno della
2277 struttura \struct{signalfd\_siginfo} letta in \var{siginf}\footnote{per la
2278   stampa si è usato il vettore \var{sig\_names} a ciascun elemento del quale
2279   corrisponde il nome del segnale avente il numero corrispondente, la cui
2280   definizione si è omessa dal codice di fig.~\ref{fig:fiforeporter_code_init}
2281   per brevità.} ed il \textit{pid} del processo da cui lo ha ricevuto; inoltre
2282 (\texttt{\small 21--24}) si controllerà anche se il segnale ricevuto è
2283 \signal{SIGINT}, che si è preso come segnale da utilizzare per la terminazione
2284 del programma, che verrà eseguita dopo aver rimosso il file della \textit{name
2285   fifo}.
2286  
2287 Il secondo condizionale (\texttt{\small 26--39}) è invece relativo al caso in
2288 cui ci siano dati pronti in lettura sulla fifo e che il file descriptor pronto
2289 corrisponda (\texttt{\small 26}) a \var{fifofd}. Di nuovo si effettueranno le
2290 letture in un ciclo (\texttt{\small 28--39}) ripetendole fin tanto che la
2291 funzione \func{read} non restituisce un errore di \errcode{EAGAIN}
2292 (\texttt{\small 29--35}).\footnote{il procedimento è lo stesso adottato per il
2293   file descriptor associato al segnale, in cui si esce dal programma in caso
2294   di errore reale, in questo caso però alla fine dei dati prima di uscire si
2295   stampa anche (\texttt{\small 32}) un messaggio di chiusura.} Se invece vi
2296 sono dati validi letti dalla fifo si inserirà (\texttt{\small 36}) una
2297 terminazione di stringa sul buffer e si stamperà il tutto (\texttt{\small
2298   37--38}) sullo \textit{standard output}. L'ultimo condizionale
2299 (\texttt{\small 40--44}) è semplicemente una condizione di cattura per una
2300 eventualità che comunque non dovrebbe mai verificarsi, e che porta alla uscita
2301 dal programma con una opportuna segnalazione di errore.
2302
2303 A questo punto si potrà eseguire il comando lanciandolo su un terminale, ed
2304 osservarne le reazioni agli eventi generati da un altro terminale; lanciando
2305 il programma otterremo qualcosa del tipo:
2306 \begin{Verbatim}
2307 piccardi@hain:~/gapil/sources$ ./a.out 
2308 FifoReporter starting, pid 4568
2309 \end{Verbatim}
2310 %$
2311 e scrivendo qualcosa sull'altro terminale con:
2312 \begin{Verbatim}
2313 root@hain:~# echo prova > /tmp/reporter.fifo  
2314 \end{Verbatim}
2315 si otterrà:
2316 \begin{Verbatim}
2317 Message from fifo:
2318 prova
2319 end message
2320 \end{Verbatim}
2321 mentre inviando un segnale:
2322 \begin{Verbatim}
2323 root@hain:~# kill 4568
2324 \end{Verbatim}
2325 si avrà:
2326 \begin{Verbatim}
2327 Signal received:
2328 Got SIGTERM       
2329 From pid 3361
2330 \end{Verbatim}
2331 ed infine premendo \texttt{C-\bslash} sul terminale in cui è in esecuzione si
2332 vedrà:
2333 \begin{Verbatim}
2334 ^\Signal received:
2335 Got SIGQUIT       
2336 From pid 0
2337 \end{Verbatim}
2338 e si potrà far uscire il programma con \texttt{C-c} ottenendo:
2339 \begin{Verbatim}
2340 ^CSignal received:
2341 Got SIGINT        
2342 From pid 0
2343 SIGINT means exit
2344 \end{Verbatim}
2345
2346
2347 Lo stesso paradigma di notifica tramite file descriptor usato per i segnali è
2348 stato adottato anche per i timer. In questo caso, rispetto a quanto visto in
2349 sez.~\ref{sec:sig_timer_adv}, la scadenza di un timer potrà essere letta da un
2350 file descriptor senza dover ricorrere ad altri meccanismi di notifica come un
2351 segnale o un \textit{thread}. Di nuovo questo ha il vantaggio di poter
2352 utilizzare le funzioni dell'\textit{I/O multiplexing} per attendere allo
2353 stesso tempo la disponibilità di dati o la ricezione della scadenza di un
2354 timer.\footnote{in realtà per questo sarebbe già sufficiente \func{signalfd}
2355   per ricevere i segnali associati ai timer, ma la nuova interfaccia
2356   semplifica notevolmente la gestione e consente di fare tutto con una sola
2357   \textit{system call}.}
2358
2359 Le funzioni di questa nuova interfaccia ricalcano da vicino la struttura delle
2360 analoghe versioni ordinarie introdotte con lo standard POSIX.1-2001, che
2361 abbiamo già illustrato in sez.~\ref{sec:sig_timer_adv}.\footnote{questa
2362   interfaccia è stata introdotta in forma considerata difettosa con il kernel
2363   2.6.22, per cui è stata immediatamente tolta nel successivo 2.6.23 e
2364   reintrodotta in una forma considerata adeguata nel kernel 2.6.25, il
2365   supporto nelle \acr{glibc} è stato introdotto a partire dalla versione
2366   2.8.6, la versione del kernel 2.6.22, presente solo su questo kernel, non è
2367   supportata e non deve essere usata.} La prima funzione prevista, quella che
2368 consente di creare un timer, è \funcd{timerfd\_create}, il cui prototipo è:
2369 \begin{prototype}{sys/timerfd.h} 
2370   {int timerfd\_create(int clockid, int flags)}
2371
2372   Crea un timer associato ad un file descriptor per la notifica. 
2373
2374   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2375     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2376     dei valori:
2377   \begin{errlist}
2378   \item[\errcode{EINVAL}] l'argomento \param{clockid} non è
2379     \const{CLOCK\_MONOTONIC} o \const{CLOCK\_REALTIME}, o
2380     l'argomento \param{flag} non è valido, o è diverso da zero per kernel
2381     precedenti il 2.6.27.
2382   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
2383     descriptor di \func{signalfd}.
2384   \item[\errcode{ENODEV}] il kernel non può montare internamente il
2385     dispositivo per la gestione anonima degli \itindex{inode} \textit{inode}
2386     associati al file descriptor.
2387   \end{errlist}
2388   ed inoltre \errval{EMFILE} e \errval{ENFILE}.  
2389 }
2390 \end{prototype}
2391
2392 La funzione prende come primo argomento un intero che indica il tipo di
2393 orologio a cui il timer deve fare riferimento, i valori sono gli stessi delle
2394 funzioni dello standard POSIX-1.2001 già illustrati in
2395 tab.~\ref{tab:sig_timer_clockid_types}, ma al momento i soli utilizzabili sono
2396 \const{CLOCK\_REALTIME} e \const{CLOCK\_MONOTONIC}. L'argomento \param{flags},
2397 come l'analogo di \func{signalfd}, consente di impostare i flag per l'I/O non
2398 bloccante ed il \textit{close-on-exec} sul file descriptor
2399 restituito,\footnote{esso è stato introdotto a partire dal kernel 2.6.27, per
2400   le versioni precedenti deve essere passato un valore nullo.} e deve essere
2401 specificato come una maschera binaria delle costanti riportate in
2402 tab.~\ref{tab:timerfd_flags}.
2403
2404 \begin{table}[htb]
2405   \centering
2406   \footnotesize
2407   \begin{tabular}[c]{|l|p{8cm}|}
2408     \hline
2409     \textbf{Valore}  & \textbf{Significato} \\
2410     \hline
2411     \hline
2412     \const{TFD\_NONBLOCK}& imposta sul file descriptor il flag di
2413                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2414     \const{TFD\_CLOEXEC}&  imposta il flag di \const{O\_CLOEXEC} per la
2415                            chiusura automatica del file descriptor nella
2416                            esecuzione di \func{exec}.\\
2417     \hline    
2418   \end{tabular}
2419   \caption{Valori dell'argomento \param{flags} per la funzione
2420     \func{timerfd\_create} che consentono di impostare i flag del file
2421     descriptor.}  
2422   \label{tab:timerfd_flags}
2423 \end{table}
2424
2425 In caso di successo la funzione restituisce un file descriptor sul quale
2426 verranno notificate le scadenze dei timer. Come per quelli restituiti da
2427 \func{signalfd} anche questo file descriptor segue la semantica dei sistemi
2428 unix-like, in particolare resta aperto attraverso una \func{exec},\footnote{a
2429   meno che non si sia impostato il flag di \textit{close-on exec} con
2430   \const{TFD\_CLOEXEC}.} e viene duplicato attraverso una \func{fork}; questa
2431 ultima caratteristica comporta però che anche il figlio può utilizzare i dati
2432 di un timer creato nel padre, a differenza di quanto avviene invece con i
2433 timer impostati con le funzioni ordinarie.\footnote{si ricordi infatti che,
2434   come illustrato in sez.~\ref{sec:proc_fork}, allarmi, timer e segnali
2435   pendenti nel padre vengono cancellati per il figlio dopo una \func{fork}.}
2436
2437 Una volta creato il timer con \func{timerfd\_create} per poterlo utilizzare
2438 occorre \textsl{armarlo} impostandone un tempo di scadenza ed una eventuale
2439 periodicità di ripetizione, per farlo si usa la funzione omologa di
2440 \func{timer\_settime} per la nuova interfaccia; questa è
2441 \funcd{timerfd\_settime} ed il suo prototipo è:
2442 \begin{prototype}{sys/timerfd.h} 
2443   {int timerfd\_settime(int fd, int flags,
2444                            const struct itimerspec *new\_value,
2445                            struct itimerspec *old\_value)}
2446
2447   Crea un timer associato ad un file descriptor per la notifica. 
2448
2449   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2450     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2451     dei valori:
2452   \begin{errlist}
2453   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2454     descriptor. 
2455   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2456     con \func{timerfd\_create}, o i valori di \param{flag} o dei campi
2457     \var{tv\_nsec} in \param{new\_value} non sono validi.
2458   \item[\errcode{EFAULT}] o \param{new\_value} o \param{old\_value} non sono
2459     puntatori validi.
2460   \end{errlist}
2461 }
2462 \end{prototype}
2463
2464 In questo caso occorre indicare su quale timer si intende operare specificando
2465 come primo argomento il file descriptor ad esso associato, che deve essere
2466 stato ottenuto da una precedente chiamata a \func{timerfd\_create}. I restanti
2467 argomenti sono del tutto analoghi a quelli della omologa funzione
2468 \func{timer\_settime}, e prevedono l'uso di strutture \struct{itimerspec}
2469 (vedi fig.~\ref{fig:struct_itimerspec}) per le indicazioni di temporizzazione.
2470
2471 I valori ed il significato di questi argomenti sono gli stessi che sono già
2472 stati illustrati in dettaglio in sez.~\ref{sec:sig_timer_adv} e non staremo a
2473 ripetere quanto detto in quell'occasione;\footnote{per brevità si ricordi che
2474   con \param{new\_value.it\_value} si indica la prima scadenza del timer e
2475   con \param{new\_value.it\_interval} la sua periodicità.}  l'unica differenza
2476 riguarda l'argomento \param{flags} che serve sempre ad indicare se il tempo di
2477 scadenza del timer è da considerarsi relativo o assoluto rispetto al valore
2478 corrente dell'orologio associato al timer, ma che in questo caso ha come
2479 valori possibili rispettivamente soltanto $0$ e
2480 \const{TFD\_TIMER\_ABSTIME}.\footnote{anche questo valore, che è l'analogo di
2481   \const{TIMER\_ABSTIME} è l'unico attualmente possibile per \param{flags}.}
2482
2483 L'ultima funzione prevista dalla nuova interfaccia è \funcd{timerfd\_gettime},
2484 che è l'analoga di \func{timer\_gettime}, il suo prototipo è:
2485 \begin{prototype}{sys/timerfd.h} 
2486   {int timerfd\_gettime(int fd, struct itimerspec *curr\_value)}
2487
2488   Crea un timer associato ad un file descriptor per la notifica. 
2489
2490   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
2491     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
2492     dei valori:
2493   \begin{errlist}
2494   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2495     descriptor. 
2496   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2497     con \func{timerfd\_create}.
2498   \item[\errcode{EFAULT}] o \param{curr\_value} non è un puntatore valido.
2499   \end{errlist}
2500 }
2501 \end{prototype}
2502
2503
2504
2505
2506
2507 Questo infatti diverrà pronto in lettura per tutte le varie funzioni dell'I/O
2508 multiplexing in presenza di una o più scadenze del timer ad esso associato.
2509
2510 Inoltre sarà possibile ottenere il numero di volte che il timer è scaduto
2511 dalla ultima impostazione
2512
2513 che può essere
2514 usato per leggere le notifiche delle scadenze dei timer. Queste possono essere
2515 ottenute leggendo in maniera ordinaria il file descriptor con una \func{read}, 
2516
2517
2518
2519
2520 % TODO trattare qui eventfd, timerfd introdotte con il 2.6.22 
2521 % timerfd è stata tolta nel 2.6.23 e rifatta per bene nel 2.6.25
2522 % vedi: http://lwn.net/Articles/233462/
2523 %       http://lwn.net/Articles/245533/
2524 %       http://lwn.net/Articles/267331/
2525
2526
2527 \section{L'accesso \textsl{asincrono} ai file}
2528 \label{sec:file_asyncronous_operation}
2529
2530 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
2531 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
2532 debba operare su più file contemporaneamente, esistono altre modalità di
2533 gestione delle stesse problematiche. In particolare sono importanti in questo
2534 contesto le modalità di accesso ai file eseguibili in maniera
2535 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
2536 attesa della disponibilità dell'accesso al file, ma può proseguire
2537 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
2538 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
2539 \textit{inotify}), per essere avvisato della possibilità di eseguire le
2540 operazioni di I/O volute.
2541
2542
2543 \subsection{Il \textit{Signal driven I/O}}
2544 \label{sec:signal_driven_io}
2545
2546 \itindbeg{signal~driven~I/O}
2547
2548 Abbiamo accennato in sez.~\ref{sec:file_open_close} che è definito un flag
2549 \const{O\_ASYNC}, che consentirebbe di aprire un file in modalità asincrona,
2550 anche se in realtà è opportuno attivare in un secondo tempo questa modalità
2551 impostando questo flag attraverso l'uso di \func{fcntl} con il comando
2552 \const{F\_SETFL} (vedi sez.~\ref{sec:file_fcntl_ioctl}).\footnote{l'uso del
2553   flag di \const{O\_ASYNC} e dei comandi \const{F\_SETOWN} e \const{F\_GETOWN}
2554   per \func{fcntl} è specifico di Linux e BSD.}  In realtà parlare di apertura
2555 in modalità asincrona non significa che le operazioni di lettura o scrittura
2556 del file vengono eseguite in modo asincrono (tratteremo questo, che è ciò che
2557 più propriamente viene chiamato \textsl{I/O asincrono}, in
2558 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
2559 notifica asincrona delle variazione dello stato del file descriptor aperto in
2560 questo modo.
2561
2562 Quello che succede è che per tutti i file posti in questa modalità\footnote{si
2563   tenga presente però che essa non è utilizzabile con i file ordinari ma solo
2564   con socket, file di terminale o pseudo terminale, ed anche, a partire dal
2565   kernel 2.6, anche per fifo e pipe.} il sistema genera un apposito segnale,
2566 \signal{SIGIO}, tutte le volte che diventa possibile leggere o scrivere dal
2567 file descriptor che si è posto in questa modalità. Inoltre è possibile, come
2568 illustrato in sez.~\ref{sec:file_fcntl_ioctl}, selezionare con il comando
2569 \const{F\_SETOWN} di \func{fcntl} quale processo o quale gruppo di processi
2570 dovrà ricevere il segnale. In questo modo diventa possibile effettuare le
2571 operazioni di I/O in risposta alla ricezione del segnale, e non ci sarà più la
2572 necessità di restare bloccati in attesa della disponibilità di accesso ai
2573 file.
2574
2575 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
2576
2577 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
2578 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
2579 modalità di gestione dell'I/O, alternativa all'uso di \itindex{epoll}
2580 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
2581   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
2582   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
2583   ottenendo comunque prestazioni superiori a quelle che si hanno con
2584   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
2585 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
2586 quando vengono usate con un numero molto grande di file descriptor, non hanno
2587 buone prestazioni.
2588
2589 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
2590 presenta notevoli problemi, dato che non è possibile determinare, quando i
2591 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
2592 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
2593 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
2594 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
2595 verrebbero notificati una volta sola.
2596
2597 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
2598 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
2599 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
2600 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
2601 estesa \var{sa\_sigaction} del gestore installata con il flag
2602 \const{SA\_SIGINFO} (si riveda quanto illustrato in
2603 sez.~\ref{sec:sig_sigaction}).
2604
2605 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
2606 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
2607 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
2608 I/O asincrono (il segnale predefinito è \signal{SIGIO}). In questo caso il
2609 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del campo
2610 \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia il
2611   segnale che si è associato all'I/O, ed indica appunto che il segnale è stato
2612   generato a causa di attività di I/O.} di \struct{siginfo\_t}, troverà nel
2613 campo \var{si\_fd} il valore del file descriptor che ha generato il segnale.
2614
2615 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
2616 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
2617 file descriptor; inoltre sarà possibile stabilire delle priorità nella
2618 risposta a seconda del segnale usato, dato che i segnali real-time supportano
2619 anche questa funzionalità. In questo modo si può identificare immediatamente
2620 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
2621 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
2622 la coda.
2623
2624 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
2625 più assicurare il comportamento corretto per un segnale real-time, invierà al
2626 suo posto un solo \signal{SIGIO}, su cui si saranno accumulati tutti i segnali
2627 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
2628 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
2629 impostare la lunghezza della coda dei segnali real-time ad una dimensione
2630 identica al valore massimo del numero di file descriptor
2631 utilizzabili.\footnote{vale a dire impostare il contenuto di
2632   \sysctlfile{kernel/rtsig-max} allo stesso valore del contenuto di
2633   \sysctlfile{fs/file-max}.}
2634
2635 % TODO fare esempio che usa O_ASYNC
2636
2637 \itindend{signal~driven~I/O}
2638
2639
2640
2641 \subsection{I meccanismi di notifica asincrona.}
2642 \label{sec:file_asyncronous_lease}
2643
2644 Una delle domande più frequenti nella programmazione in ambiente unix-like è
2645 quella di come fare a sapere quando un file viene modificato. La
2646 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
2647   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
2648     Question}.} è che nell'architettura classica di Unix questo non è
2649 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
2650 classico non prevedeva alcun meccanismo per cui un processo possa essere
2651 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
2652 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
2653 modo\footnote{in genere questo vien fatto inviandogli un segnale di
2654   \signal{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
2655   programmi, causa la rilettura della configurazione.} se il loro file di
2656 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
2657 modifiche.
2658
2659 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
2660 generico per qualunque file comporterebbe un notevole aumento di complessità
2661 dell'architettura della gestione dei file, il tutto per fornire una
2662 funzionalità che serve soltanto in alcuni casi particolari. Dato che
2663 all'origine di Unix i soli programmi che potevano avere una tale esigenza
2664 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
2665 era di far fare al kernel solo le operazioni strettamente necessarie e
2666 lasciare tutto il resto a processi in user space, non era stata prevista
2667 nessuna funzionalità di notifica.
2668
2669 Visto però il crescente interesse nei confronti di una funzionalità di questo
2670 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
2671 interfaccia grafica, quando si deve presentare all'utente lo stato del
2672 filesystem, sono state successivamente introdotte delle estensioni che
2673 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
2674 soluzione disponibile con l'interfaccia tradizionale, che è quella del
2675 \itindex{polling} \textit{polling}.
2676
2677 Queste nuove funzionalità sono delle estensioni specifiche, non
2678 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
2679 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
2680 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
2681 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
2682 sez.~\ref{sec:file_fcntl_ioctl}), che divengono disponibili soltanto se si è
2683 definita la macro \macro{\_GNU\_SOURCE} prima di includere \headfile{fcntl.h}.
2684
2685 \itindbeg{file~lease} 
2686
2687 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
2688 questo è un meccanismo che consente ad un processo, detto \textit{lease
2689   holder}, di essere notificato quando un altro processo, chiamato a sua volta
2690 \textit{lease breaker}, cerca di eseguire una \func{open} o una
2691 \func{truncate} sul file del quale l'\textit{holder} detiene il
2692 \textit{lease}.
2693 La notifica avviene in maniera analoga a come illustrato in precedenza per
2694 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
2695 il segnale \signal{SIGIO}, ma questo segnale può essere modificato usando il
2696 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
2697   può rispecificare lo stesso \signal{SIGIO}.} Se si è fatto questo\footnote{è
2698   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
2699   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
2700 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
2701 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
2702 questo modo un processo può mantenere anche più di un \textit{file lease}.
2703
2704 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
2705 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
2706 un altro processo esegue l'apertura del file in scrittura o usa
2707 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
2708 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
2709 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
2710
2711 Come accennato in sez.~\ref{sec:file_fcntl_ioctl} il comando di \func{fcntl}
2712 che consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che
2713 viene utilizzato anche per rilasciarlo. In tal caso il file
2714 descriptor \param{fd} passato a \func{fcntl} servirà come riferimento per il
2715 file su cui si vuole operare, mentre per indicare il tipo di operazione
2716 (acquisizione o rilascio) occorrerà specificare come valore
2717 dell'argomento \param{arg} di \func{fcntl} uno dei tre valori di
2718 tab.~\ref{tab:file_lease_fctnl}.
2719
2720 \begin{table}[htb]
2721   \centering
2722   \footnotesize
2723   \begin{tabular}[c]{|l|l|}
2724     \hline
2725     \textbf{Valore}  & \textbf{Significato} \\
2726     \hline
2727     \hline
2728     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
2729     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
2730     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2731     \hline    
2732   \end{tabular}
2733   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2734     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2735     \const{F\_GETLEASE}.} 
2736   \label{tab:file_lease_fctnl}
2737 \end{table}
2738
2739 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2740 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2741 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2742 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2743 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2744 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2745
2746 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2747 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2748 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
2749 può ottenere un \textit{lease} soltanto per un file appartenente ad un
2750 \ids{UID} corrispondente a quello del processo. Soltanto un processo con
2751 privilegi di amministratore (cioè con la \itindex{capabilities} capability
2752 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
2753 \textit{lease} su qualunque file.
2754
2755 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2756 esegue una \func{truncate} o una \func{open} che confligge con
2757 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2758   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2759     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
2760   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
2761   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
2762   holder}, così che questo possa completare le sue operazioni sul file e
2763 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
2764 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
2765 altro processo, mentre con un \textit{write lease} si rilevano anche i
2766 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
2767 notifica avvengono solo in fase di apertura del file e non sulle singole
2768 operazioni di lettura e scrittura.
2769
2770 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2771 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2772 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2773 esso. In genere un \textit{lease holder} che riceve una notifica deve
2774 provvedere a completare le necessarie operazioni (ad esempio scaricare
2775 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2776 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2777 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2778 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2779 operazione di lettura, declassando il \textit{lease} a lettura con
2780 \const{F\_RDLCK}.
2781
2782 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2783 il numero di secondi specificato dal parametro di sistema mantenuto in
2784 \sysctlfile{fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
2785 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
2786   evitare che un processo blocchi indefinitamente l'accesso ad un file
2787   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
2788 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
2789 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
2790 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
2791
2792 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2793 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2794 risolvere il problema di rilevare automaticamente quando un file o una
2795 directory vengono modificati,\footnote{questa funzionalità venne aggiunta
2796   principalmente ad uso di Samba per poter facilitare l'emulazione del
2797   comportamento di Windows sui file, ma ad oggi viene considerata una
2798   interfaccia mal progettata ed il suo uso è fortemente sconsigliato a favore
2799   di \textit{inotify}.} che è quanto necessario ad esempio ai programma di
2800 gestione dei file dei vari desktop grafici.
2801
2802 \itindbeg{dnotify}
2803
2804 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2805 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2806   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2807   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2808   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2809 che consente di richiedere una notifica quando una directory, o uno qualunque
2810 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2811 la notifica avviene di default attraverso il segnale \signal{SIGIO}, ma se ne
2812 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
2813   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
2814 come in precedenza, si potrà ottenere nel gestore del segnale il file
2815 descriptor che è stato modificato tramite il contenuto della struttura
2816 \struct{siginfo\_t}.
2817
2818 \itindend{file~lease}
2819
2820 \begin{table}[htb]
2821   \centering
2822   \footnotesize
2823   \begin{tabular}[c]{|l|p{8cm}|}
2824     \hline
2825     \textbf{Valore}  & \textbf{Significato} \\
2826     \hline
2827     \hline
2828     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2829                          \func{read}, \func{pread}, \func{readv}.\\ 
2830     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2831                          fra \func{write}, \func{pwrite}, \func{writev}, 
2832                          \func{truncate}, \func{ftruncate}.\\ 
2833     \const{DN\_CREATE} & È stato creato un file nella directory, con
2834                          l'esecuzione di una fra \func{open}, \func{creat},
2835                          \func{mknod}, \func{mkdir}, \func{link},
2836                          \func{symlink}, \func{rename} (da un'altra
2837                          directory).\\
2838     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
2839                          l'esecuzione di una fra \func{unlink}, \func{rename}
2840                          (su un'altra directory), \func{rmdir}.\\
2841     \const{DN\_RENAME} & È stato rinominato un file all'interno della
2842                          directory (con \func{rename}).\\
2843     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
2844                          l'esecuzione di una fra \func{chown}, \func{chmod},
2845                          \func{utime}.\\ 
2846     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2847                          eventi.\\ 
2848     \hline    
2849   \end{tabular}
2850   \caption{Le costanti che identificano le varie classi di eventi per i quali
2851     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2852   \label{tab:file_notify}
2853 \end{table}
2854
2855 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2856 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2857 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2858 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2859 eventi si vuole ricevere la notifica, e prende come valore una maschera
2860 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2861 tab.~\ref{tab:file_notify}.
2862
2863 A meno di non impostare in maniera esplicita una notifica permanente usando il
2864 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2865 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2866 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2867 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2868 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2869 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2870 specificate in chiamate successive vengono aggiunte a quelle già impostate
2871 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2872 specificare un valore nullo.
2873
2874 \itindbeg{inotify}
2875
2876 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2877 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2878 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2879 quando la directory che si controlla è all'interno di un dispositivo
2880 rimovibile, mantenere il relativo file descriptor aperto comporta
2881 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2882 complica notevolmente la gestione dell'uso di questi dispositivi.
2883
2884 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2885 tenere sotto controllo il contenuto di una directory; la modifica di un file
2886 viene segnalata, ma poi è necessario verificare di quale file si tratta
2887 (operazione che può essere molto onerosa quando una directory contiene un gran
2888 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
2889 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
2890 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
2891 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
2892 problematica ed il suo uso oggi è fortemente sconsigliato.
2893
2894 \itindend{dnotify}
2895
2896 Per risolvere i problemi appena illustrati è stata introdotta una nuova
2897 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
2898 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
2899   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
2900 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
2901 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
2902 notifica degli eventi associata ad un singolo file descriptor, il che permette
2903 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
2904 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
2905 prototipo è:
2906 \begin{prototype}{sys/inotify.h}
2907   {int inotify\_init(void)}
2908   
2909   Inizializza una istanza di \textit{inotify}.
2910   
2911   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
2912     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2913   \begin{errlist}
2914   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
2915     \textit{inotify} consentite all'utente.
2916   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
2917     nel sistema.
2918   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
2919     l'istanza.
2920   \end{errlist}
2921 }
2922 \end{prototype}
2923
2924 La funzione non prende alcun argomento; inizializza una istanza di
2925 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
2926 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
2927   di sistema è previsto che un utente possa utilizzare un numero limitato di
2928   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
2929   questo valore può essere cambiato con \func{sysctl} o usando il file
2930   \sysctlfile{fs/inotify/max\_user\_instances}.} si tratta di un file
2931 descriptor speciale che non è associato a nessun file su disco, e che viene
2932 utilizzato solo per notificare gli eventi che sono stati posti in
2933 osservazione. Dato che questo file descriptor non è associato a nessun file o
2934 directory reale, l'inconveniente di non poter smontare un filesystem i cui
2935 file sono tenuti sotto osservazione viene completamente
2936 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
2937   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
2938   su cui si trova il file o la directory osservata è stato smontato.}
2939
2940 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
2941 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
2942 con l'interfaccia di \textit{epoll};\footnote{ed a partire dal kernel 2.6.25 è
2943   stato introdotto anche il supporto per il \itindex{signal~driven~I/O}
2944   \texttt{signal-driven I/O} trattato in sez.~\ref{sec:signal_driven_io}.}
2945 siccome gli eventi vengono notificati come dati disponibili in lettura, dette
2946 funzioni ritorneranno tutte le volte che si avrà un evento di notifica. Così,
2947 invece di dover utilizzare i segnali,\footnote{considerati una pessima scelta
2948   dal punto di vista dell'interfaccia utente.} si potrà gestire l'osservazione
2949 degli eventi con una qualunque delle modalità di \textit{I/O multiplexing}
2950 illustrate in sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare
2951 l'osservazione, sarà sufficiente chiudere il file descriptor e tutte le
2952 risorse allocate saranno automaticamente rilasciate.
2953
2954 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
2955 osservazione, oltre che una directory, anche singoli file.  Una volta creata
2956 la coda di notifica si devono definire gli eventi da tenere sotto
2957 osservazione; questo viene fatto attraverso una \textsl{lista di osservazione}
2958 (o \textit{watch list}) che è associata alla coda. Per gestire la lista di
2959 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
2960 \funcd{inotify\_add\_watch}, il cui prototipo è:
2961 \begin{prototype}{sys/inotify.h}
2962   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
2963
2964   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
2965
2966   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
2967     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2968   \begin{errlist}
2969   \item[\errcode{EACCES}] non si ha accesso in lettura al file indicato.
2970   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
2971     non è un file descriptor di \textit{inotify}.
2972   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
2973     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
2974   \end{errlist}
2975   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
2976 \end{prototype}
2977
2978 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
2979 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
2980 deve essere indicata specificando il file descriptor ad essa associato
2981 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
2982   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
2983 porre sotto osservazione vengono invece indicati per nome, da passare
2984 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
2985 indica che tipo di eventi devono essere tenuti sotto osservazione e le
2986 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
2987 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
2988   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
2989   valore può essere cambiato con \func{sysctl} o usando il file
2990   \sysctlfile{fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
2991 un solo file descriptor.
2992
2993 Il tipo di evento che si vuole osservare deve essere specificato
2994 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
2995 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
2996 singoli bit della maschera ed il relativo significato. In essa si sono marcati
2997 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
2998 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
2999 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
3000 flag della prima parte.
3001
3002 \begin{table}[htb]
3003   \centering
3004   \footnotesize
3005   \begin{tabular}[c]{|l|c|p{10cm}|}
3006     \hline
3007     \textbf{Valore}  & & \textbf{Significato} \\
3008     \hline
3009     \hline
3010     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
3011                                           lettura.\\  
3012     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
3013                                           dell'\itindex{inode} \textit{inode}
3014                                           (o sugli attributi estesi, vedi
3015                                           sez.~\ref{sec:file_xattr}).\\ 
3016     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
3017                                           scrittura.\\  
3018     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
3019                                           sola lettura.\\
3020     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
3021                                           directory in una directory sotto
3022                                           osservazione.\\  
3023     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
3024                                           directory in una directory sotto
3025                                           osservazione.\\ 
3026     \const{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
3027                                           directory) sotto osservazione.\\ 
3028     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
3029     \const{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
3030                                           directory) sotto osservazione.\\ 
3031     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
3032                                           directory sotto osservazione.\\ 
3033     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
3034                                           directory sotto osservazione.\\ 
3035     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
3036     \hline    
3037     \const{IN\_CLOSE}         &         & Combinazione di
3038                                           \const{IN\_CLOSE\_WRITE} e
3039                                           \const{IN\_CLOSE\_NOWRITE}.\\  
3040     \const{IN\_MOVE}          &         & Combinazione di
3041                                           \const{IN\_MOVED\_FROM} e
3042                                           \const{IN\_MOVED\_TO}.\\
3043     \const{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
3044                                           possibili.\\
3045     \hline    
3046   \end{tabular}
3047   \caption{Le costanti che identificano i bit della maschera binaria
3048     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
3049     tipo di evento da tenere sotto osservazione.} 
3050   \label{tab:inotify_event_watch}
3051 \end{table}
3052
3053 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
3054 evento da osservare e che vengono utilizzati anche in uscita per indicare il
3055 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
3056 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
3057   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
3058   usa la versione 2.4 è necessario definirli a mano.}  riportati in
3059 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
3060 osservazione (da passare sempre nell'argomento \param{mask}) e che al
3061 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
3062
3063 \begin{table}[htb]
3064   \centering
3065   \footnotesize
3066   \begin{tabular}[c]{|l|p{10cm}|}
3067     \hline
3068     \textbf{Valore}  & \textbf{Significato} \\
3069     \hline
3070     \hline
3071     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
3072                               link simbolico.\\
3073     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
3074                               nell'argomento \param{mask}, invece di
3075                               sovrascriverli.\\
3076     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
3077                               sola volta, rimuovendolo poi dalla \textit{watch
3078                                 list}.\\ 
3079     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
3080                               soltanto gli eventi ad essa relativi e non
3081                               quelli per i file che contiene.\\ 
3082     \hline    
3083   \end{tabular}
3084   \caption{Le costanti che identificano i bit della maschera binaria
3085     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
3086     modalità di osservazione.} 
3087   \label{tab:inotify_add_watch_flag}
3088 \end{table}
3089
3090 Se non esiste nessun \textit{watch} per il file o la directory specificata
3091 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
3092 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
3093 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
3094 specificati saranno aggiunti a quelli già presenti.
3095
3096 Come accennato quando si tiene sotto osservazione una directory vengono
3097 restituite le informazioni sia riguardo alla directory stessa che ai file che
3098 essa contiene; questo comportamento può essere disabilitato utilizzando il
3099 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
3100 relativi alla directory stessa. Si tenga presente inoltre che quando si
3101 osserva una directory vengono riportati solo gli eventi sui file che essa
3102 contiene direttamente, non quelli relativi a file contenuti in eventuali
3103 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
3104 ulteriori \textit{watch} per ciascuna sottodirectory.
3105
3106 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
3107 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
3108   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
3109 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
3110 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
3111 sarà più notificato.
3112
3113 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
3114 detto \textit{watch descriptor}, che identifica univocamente un
3115 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
3116 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
3117 la eventuale rimozione dello stesso. 
3118
3119 La seconda funzione per la gestione delle code di notifica, che permette di
3120 rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch}, ed il suo
3121 prototipo è:
3122 \begin{prototype}{sys/inotify.h}
3123   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
3124
3125   Rimuove un \textsl{osservatore} da una coda di notifica.
3126   
3127   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
3128     errore, nel qual caso \var{errno} assumerà uno dei valori:
3129   \begin{errlist}
3130   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
3131     valido.
3132   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
3133     non è associato ad una coda di notifica.
3134   \end{errlist}
3135 }
3136 \end{prototype}
3137
3138 La funzione rimuove dalla coda di notifica identificata dall'argomento
3139 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
3140 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
3141   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
3142   di \errval{EINVAL}.} in caso di successo della rimozione, contemporaneamente
3143 alla cancellazione dell'osservatore, sulla coda di notifica verrà generato un
3144 evento di tipo \const{IN\_IGNORED} (vedi
3145 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
3146 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
3147 rimossi automaticamente e non è necessario utilizzare
3148 \func{inotify\_rm\_watch}.
3149
3150 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
3151 notificati come dati presenti in lettura sul file descriptor associato alla
3152 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
3153 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
3154 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
3155 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
3156 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
3157 modalità non bloccante) fino all'arrivo di almeno un evento.
3158
3159 \begin{figure}[!htb]
3160   \footnotesize \centering
3161   \begin{minipage}[c]{\textwidth}
3162     \includestruct{listati/inotify_event.h}
3163   \end{minipage} 
3164   \normalsize 
3165   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
3166     \textit{inotify} per riportare gli eventi.}
3167   \label{fig:inotify_event}
3168 \end{figure}
3169
3170 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
3171 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
3172 socket (si veda sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
3173 lettura sul file descriptor, utilizzando su di esso l'operazione
3174 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
3175   (vedi sez.~\ref{sec:file_fcntl_ioctl}), che è disponibile solo per i socket
3176   e per i file descriptor creati con \func{inotify\_init}.} Si può così
3177 utilizzare questa operazione, oltre che per predisporre una operazione di
3178 lettura con un buffer di dimensioni adeguate, anche per ottenere rapidamente
3179 il numero di file che sono cambiati.
3180
3181 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
3182 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
3183 Per identificare a quale file o directory l'evento corrisponde viene
3184 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
3185 osservatore è stato registrato. Il campo \var{mask} contiene invece una
3186 maschera di bit che identifica il tipo di evento verificatosi; in essa
3187 compariranno sia i bit elencati nella prima parte di
3188 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori
3189 aggiuntivi\footnote{questi compaiono solo nel campo \var{mask} di
3190   \struct{inotify\_event}, e  non utilizzabili in fase di registrazione
3191   dell'osservatore.} di tab.~\ref{tab:inotify_read_event_flag}.
3192
3193 \begin{table}[htb]
3194   \centering
3195   \footnotesize
3196   \begin{tabular}[c]{|l|p{10cm}|}
3197     \hline
3198     \textbf{Valore}  & \textbf{Significato} \\
3199     \hline
3200     \hline
3201     \const{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
3202                              esplicita con l'uso di \func{inotify\_rm\_watch}, 
3203                              che in maniera implicita per la rimozione 
3204                              dell'oggetto osservato o per lo smontaggio del
3205                              filesystem su cui questo si trova.\\
3206     \const{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
3207                              (consente così di distinguere, quando si pone
3208                              sotto osservazione una directory, fra gli eventi
3209                              relativi ad essa e quelli relativi ai file che
3210                              essa contiene).\\
3211     \const{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
3212                              eventi (\textit{overflow} della coda); in questo
3213                              caso il valore di \var{wd} è $-1$.\footnotemark\\
3214     \const{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
3215                              osservazione è stato smontato.\\
3216     \hline    
3217   \end{tabular}
3218   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
3219     binaria del campo \var{mask} di \struct{inotify\_event}.} 
3220   \label{tab:inotify_read_event_flag}
3221 \end{table}
3222
3223 \footnotetext{la coda di notifica ha una dimensione massima specificata dal
3224   parametro di sistema \sysctlfile{fs/inotify/max\_queued\_events} che
3225   indica il numero massimo di eventi che possono essere mantenuti sulla
3226   stessa; quando detto valore viene ecceduto gli ulteriori eventi vengono
3227   scartati, ma viene comunque generato un evento di tipo
3228   \const{IN\_Q\_OVERFLOW}.}
3229
3230 Il campo \var{cookie} contiene invece un intero univoco che permette di
3231 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
3232 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
3233 così all'applicazione di collegare la corrispondente coppia di eventi
3234 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
3235
3236 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
3237 l'evento è relativo ad un file presente in una directory posta sotto
3238 osservazione, in tal caso essi contengono rispettivamente il nome del file
3239 (come \itindsub{pathname}{relativo} \textit{pathname} relativo alla directory
3240 osservata) e la relativa dimensione in byte. Il campo \var{name} viene sempre
3241 restituito come stringa terminata da NUL, con uno o più zeri di terminazione,
3242 a seconda di eventuali necessità di allineamento del risultato, ed il valore
3243 di \var{len} corrisponde al totale della dimensione di \var{name}, zeri
3244 aggiuntivi compresi. La stringa con il nome del file viene restituita nella
3245 lettura subito dopo la struttura \struct{inotify\_event}; questo significa che
3246 le dimensioni di ciascun evento di \textit{inotify} saranno pari a
3247 \code{sizeof(\struct{inotify\_event}) + len}.
3248
3249 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
3250 semplice programma che permette di mettere sotto osservazione uno o più file e
3251 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
3252 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
3253 del programma, che non contiene la sezione di gestione delle opzioni e le
3254 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
3255
3256 \begin{figure}[!htbp]
3257   \footnotesize \centering
3258   \begin{minipage}[c]{\codesamplewidth}
3259     \includecodesample{listati/inotify_monitor.c}
3260   \end{minipage}
3261   \normalsize
3262   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
3263   \label{fig:inotify_monitor_example}
3264 \end{figure}
3265
3266 Una volta completata la scansione delle opzioni il corpo principale del
3267 programma inizia controllando (\texttt{\small 11--15}) che sia rimasto almeno
3268 un argomento che indichi quale file o directory mettere sotto osservazione (e
3269 qualora questo non avvenga esce stampando la pagina di aiuto); dopo di che
3270 passa (\texttt{\small 16--20}) all'inizializzazione di \textit{inotify}
3271 ottenendo con \func{inotify\_init} il relativo file descriptor (oppure usce in
3272 caso di errore).
3273
3274 Il passo successivo è aggiungere (\texttt{\small 21--30}) alla coda di
3275 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
3276 all'invocazione del comando; questo viene fatto eseguendo un ciclo
3277 (\texttt{\small 22--29}) fintanto che la variabile \var{i}, inizializzata a
3278 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
3279 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
3280 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
3281 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
3282 nella scansione delle opzioni), in caso di errore si esce dal programma
3283 altrimenti si incrementa l'indice (\texttt{\small 29}).
3284
3285 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
3286 (\texttt{\small 32--56}) del programma, nel quale si resta in attesa degli
3287 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
3288 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
3289 si saranno verificati eventi. 
3290
3291 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
3292 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
3293 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
3294 approssimativamente 512 eventi.\footnote{si ricordi che la quantità di dati
3295   restituita da \textit{inotify} è variabile a causa della diversa lunghezza
3296   del nome del file restituito insieme a \struct{inotify\_event}.} In caso di
3297 errore di lettura (\texttt{\small 35--40}) il programma esce con un messaggio
3298 di errore (\texttt{\small 37--39}), a meno che non si tratti di una
3299 interruzione della \textit{system call}, nel qual caso (\texttt{\small 36}) si
3300 ripete la lettura.
3301
3302 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
3303   43--52}) per leggere tutti gli eventi restituiti, al solito si inizializza
3304 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
3305 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
3306 in lettura. Per ciascun evento all'interno del ciclo si assegna\footnote{si
3307   noti come si sia eseguito un opportuno \textit{casting} del puntatore.} alla
3308 variabile \var{event} l'indirizzo nel buffer della corrispondente struttura
3309 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
3310 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
3311 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
3312 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
3313 in ordine progressivo crescente a partire da 1.
3314
3315 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
3316 si stampa (\texttt{\small 47--49}); si noti come in questo caso si sia
3317 utilizzato il valore del campo \var{event->len} e non al fatto che
3318 \var{event->name} riporti o meno un puntatore nullo.\footnote{l'interfaccia
3319   infatti, qualora il nome non sia presente, non avvalora il campo
3320   \var{event->name}, che si troverà a contenere quello che era precedentemente
3321   presente nella rispettiva locazione di memoria, nel caso più comune il
3322   puntatore al nome di un file osservato in precedenza.} Si utilizza poi
3323 (\texttt{\small 50}) la funzione \code{printevent}, che interpreta il valore
3324 del campo \var{event->mask} per stampare il tipo di eventi
3325 accaduti.\footnote{per il relativo codice, che non riportiamo in quanto non
3326   essenziale alla comprensione dell'esempio, si possono utilizzare direttamente
3327   i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si provvede ad
3328 aggiornare l'indice \var{i} per farlo puntare all'evento successivo.
3329
3330 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
3331 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
3332 tipo di:
3333 \begin{verbatim}
3334 piccardi@gethen:~/gapil/sources$ ./inotify_monitor -a /home/piccardi/gapil/
3335 Watch descriptor 1
3336 Observed event on /home/piccardi/gapil/
3337 IN_OPEN, 
3338 Watch descriptor 1
3339 Observed event on /home/piccardi/gapil/
3340 IN_CLOSE_NOWRITE, 
3341 \end{verbatim}
3342
3343 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
3344 eventi appena illustrato non viene trattato il caso particolare in cui la
3345 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
3346 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
3347 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
3348 specificando un buffer di dimensione insufficiente a contenere anche un solo
3349 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
3350 tale evenienza non si verificherà mai.
3351
3352 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
3353 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
3354 codice illustrato in precedenza non si è presa nessuna precauzione per
3355 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
3356 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
3357 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
3358 di restituire soltanto il numero di eventi che possono rientrare completamente
3359 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
3360   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
3361   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
3362   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
3363   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
3364 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
3365 chiamata di \func{read}.
3366
3367 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
3368 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
3369 garantito che se si esegue uno spostamento di un file gli eventi vengano
3370 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
3371 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
3372 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
3373 raggruppati in un solo evento.
3374
3375 \itindend{inotify}
3376
3377 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
3378 % http://lwn.net/Articles/343346/ (incluso nel 2.6.36)
3379
3380
3381 \subsection{L'interfaccia POSIX per l'I/O asincrono}
3382 \label{sec:file_asyncronous_io}
3383
3384 % vedere anche http://davmac.org/davpage/linux/async-io.html  e
3385 % http://www.ibm.com/developerworks/linux/library/l-async/ 
3386
3387
3388 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
3389 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
3390   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
3391 di I/O non attendono il completamento delle operazioni prima di ritornare,
3392 così che il processo non viene bloccato.  In questo modo diventa ad esempio
3393 possibile effettuare una richiesta preventiva di dati, in modo da poter
3394 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
3395
3396 Benché la modalità di apertura asincrona di un file possa risultare utile in
3397 varie occasioni (in particolar modo con i socket e gli altri file per i quali
3398 le funzioni di I/O sono \index{system~call~lente} \textit{system call} lente),
3399 essa è comunque limitata alla notifica della disponibilità del file descriptor
3400 per le operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.
3401 Lo standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono
3402 vero e proprio, che prevede un insieme di funzioni dedicate per la lettura e
3403 la scrittura dei file, completamente separate rispetto a quelle usate
3404 normalmente.
3405
3406 In generale questa interfaccia è completamente astratta e può essere
3407 implementata sia direttamente nel kernel, che in user space attraverso l'uso
3408 di \itindex{thread} \textit{thread}. Per le versioni del kernel meno recenti
3409 esiste una implementazione di questa interfaccia fornita delle \acr{glibc},
3410 che è realizzata completamente in user space, ed è accessibile linkando i
3411 programmi con la libreria \file{librt}. Nelle versioni più recenti (a partire
3412 dalla 2.5.32) è stato introdotto direttamente nel kernel un nuovo layer per
3413 l'I/O asincrono.
3414
3415 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
3416 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
3417 \textit{asyncronous I/O control block}), che viene passata come argomento a
3418 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
3419 \headfile{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
3420 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
3421 disponibilità dell'interfaccia per l'I/O asincrono.
3422
3423 \begin{figure}[!htb]
3424   \footnotesize \centering
3425   \begin{minipage}[c]{\textwidth}
3426     \includestruct{listati/aiocb.h}
3427   \end{minipage} 
3428   \normalsize 
3429   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
3430     asincrono.}
3431   \label{fig:file_aiocb}
3432 \end{figure}
3433
3434 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
3435 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
3436 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
3437 contemporanee effettuabili su un singolo file.  Ogni operazione deve
3438 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
3439 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
3440 che più operazioni possono essere eseguita in maniera asincrona, il concetto
3441 di posizione corrente sul file viene a mancare; pertanto si deve sempre
3442 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
3443 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
3444 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
3445 del blocco di dati da trasferire.
3446
3447 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
3448 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
3449   piattaforma supporti questa caratteristica, questo viene indicato definendo
3450   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
3451   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
3452 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
3453 cui viene sottratto il valore di questo campo.  Il campo
3454 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
3455 come vedremo, permette di eseguire con una sola chiamata una serie di
3456 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
3457 si specifica quale è la natura di ciascuna di esse.
3458
3459 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
3460 (illustrata in in fig.~\ref{fig:struct_sigevent}) che serve a specificare il
3461 modo in cui si vuole che venga effettuata la notifica del completamento delle
3462 operazioni richieste; per la trattazione delle modalità di utilizzo della
3463 stessa si veda quanto già visto in proposito in sez.~\ref{sec:sig_timer_adv}.
3464
3465 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
3466 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
3467 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
3468 appena descritta; i rispettivi prototipi sono:
3469 \begin{functions}
3470   \headdecl{aio.h}
3471
3472   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
3473   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
3474
3475   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
3476   Richiede una scrittura asincrona secondo quanto specificato con
3477   \param{aiocbp}.
3478   
3479   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
3480     errore, nel qual caso \var{errno} assumerà uno dei valori:
3481   \begin{errlist}
3482   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
3483   \item[\errcode{ENOSYS}] la funzione non è implementata.
3484   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
3485     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
3486   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
3487   \end{errlist}
3488 }
3489 \end{functions}
3490
3491 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
3492 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
3493 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
3494 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
3495 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
3496 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
3497 (vedi sez.~\ref{sec:file_open_close}), nel qual caso le scritture vengono
3498 effettuate comunque alla fine de file, nell'ordine delle chiamate a
3499 \func{aio\_write}.
3500
3501 Si tenga inoltre presente che deallocare la memoria indirizzata da
3502 \param{aiocbp} o modificarne i valori prima della conclusione di una
3503 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
3504 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
3505 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
3506 \index{variabili!automatiche} variabili automatiche e che non si deve
3507 riutilizzare la stessa struttura per un'altra operazione fintanto che la
3508 precedente non sia stata ultimata. In generale per ogni operazione si deve
3509 utilizzare una diversa struttura \struct{aiocb}.
3510
3511 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
3512 \func{aio\_write} non implica che le operazioni siano state effettivamente
3513 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
3514 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
3515 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
3516 errore; il suo prototipo è:
3517 \begin{prototype}{aio.h}
3518   {int aio\_error(const struct aiocb *aiocbp)}  
3519
3520   Determina lo stato di errore delle operazioni di I/O associate a
3521   \param{aiocbp}.
3522   
3523   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
3524     successo, altrimenti restituisce il codice di errore relativo al loro
3525     fallimento.}
3526 \end{prototype}
3527
3528 Se l'operazione non si è ancora completata viene restituito l'errore di
3529 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
3530 conclusa con successo, altrimenti restituisce il codice dell'errore
3531 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
3532 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
3533 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
3534 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
3535 del caso, i codici di errore delle \textit{system call} \func{read},
3536 \func{write} e \func{fsync}.
3537
3538 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
3539 che una chiamata ad \func{aio\_error} non ha restituito
3540 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
3541 permette di verificare il completamento delle operazioni di I/O asincrono; il
3542 suo prototipo è:
3543 \begin{prototype}{aio.h}
3544 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
3545
3546 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
3547 \param{aiocbp}.
3548   
3549 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
3550   eseguita.}
3551 \end{prototype}
3552
3553 La funzione deve essere chiamata una sola volte per ciascuna operazione
3554 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
3555 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
3556 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
3557 precedente il completamento delle operazioni darebbe risultati indeterminati.
3558
3559 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
3560 così come ricavato dalla sottostante \textit{system call} (il numero di byte
3561 letti, scritti o il valore di ritorno di \func{fsync}).  É importante chiamare
3562 sempre questa funzione, altrimenti le risorse disponibili per le operazioni di
3563 I/O asincrono non verrebbero liberate, rischiando di arrivare ad un loro
3564 esaurimento.
3565
3566 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
3567 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
3568 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
3569 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
3570 è:
3571 \begin{prototype}{aio.h}
3572 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
3573
3574 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
3575   
3576 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3577   errore, che può essere, con le stesse modalità di \func{aio\_read},
3578   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
3579 \end{prototype}
3580
3581 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
3582 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
3583 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
3584 di lettura e scrittura. L'argomento \param{op} permette di indicare la
3585 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
3586 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
3587 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
3588 sez.~\ref{sec:file_sync}).
3589
3590 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
3591 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
3592 relativi ad eventuali operazioni richieste successivamente. Se si è
3593 specificato un meccanismo di notifica questo sarà innescato una volta che le
3594 operazioni di sincronizzazione dei dati saranno completate.
3595
3596 In alcuni casi può essere necessario interrompere le operazioni (in genere
3597 quando viene richiesta un'uscita immediata dal programma), per questo lo
3598 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
3599 permette di cancellare una operazione richiesta in precedenza; il suo
3600 prototipo è:
3601 \begin{prototype}{aio.h}
3602 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
3603
3604 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
3605 da \param{aiocbp}.
3606   
3607 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
3608   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
3609   un valore non valido di \param{fildes}, imposta \var{errno} al valore
3610   \errval{EBADF}.}
3611 \end{prototype}
3612
3613 La funzione permette di cancellare una operazione specifica sul file
3614 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
3615 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
3616 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
3617 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
3618 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
3619 altro file descriptor il risultato è indeterminato.  In caso di successo, i
3620 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
3621 \headfile{aio.h}) sono tre:
3622 \begin{basedescript}{\desclabelwidth{3.0cm}}
3623 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
3624   cancellazione sono state già completate,
3625   
3626 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
3627   state cancellate,  
3628   
3629 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
3630   corso e non sono state cancellate.
3631 \end{basedescript}
3632
3633 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
3634 \func{aio\_error} per determinare quali sono le operazioni effettivamente
3635 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
3636 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
3637 del loro avvenuto completamento.
3638
3639 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
3640 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
3641 sospendere l'esecuzione del processo chiamante fino al completamento di una
3642 specifica operazione; il suo prototipo è:
3643 \begin{prototype}{aio.h}
3644 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
3645     timespec *timeout)}
3646   
3647   Attende, per un massimo di \param{timeout}, il completamento di una delle
3648   operazioni specificate da \param{list}.
3649   
3650   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
3651     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
3652     dei valori:
3653     \begin{errlist}
3654     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3655       \param{timeout}.
3656     \item[\errcode{ENOSYS}] la funzione non è implementata.
3657     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3658     \end{errlist}
3659   }
3660 \end{prototype}
3661
3662 La funzione permette di bloccare il processo fintanto che almeno una delle
3663 \param{nent} operazioni specificate nella lista \param{list} è completata, per
3664 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
3665 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
3666   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
3667 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
3668 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
3669 siano specificati valori non validi l'effetto è indefinito.  Un valore
3670 \val{NULL} per \param{timout} comporta l'assenza di timeout.
3671
3672 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
3673 che permette di effettuare la richiesta di una intera lista di operazioni di
3674 lettura o scrittura; il suo prototipo è:
3675 \begin{prototype}{aio.h}
3676   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
3677     sigevent *sig)}
3678   
3679   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
3680   secondo la modalità \param{mode}.
3681   
3682   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3683     errore, nel qual caso \var{errno} assumerà uno dei valori:
3684     \begin{errlist}
3685     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3686       \param{timeout}.
3687     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
3688       o un numero di operazioni \param{nent} maggiore di
3689       \const{AIO\_LISTIO\_MAX}.
3690     \item[\errcode{ENOSYS}] la funzione non è implementata.
3691     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3692     \end{errlist}
3693   }
3694 \end{prototype}
3695
3696 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
3697 lista \param{list} che deve contenere gli indirizzi di altrettanti
3698 \textit{control block} opportunamente inizializzati; in particolare dovrà
3699 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
3700 che può prendere i valori:
3701 \begin{basedescript}{\desclabelwidth{2.0cm}}
3702 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
3703 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
3704 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
3705 \end{basedescript}
3706 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
3707 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3708 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3709 quelle non completate.
3710
3711 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3712 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
3713 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
3714 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3715 il chiamante può richiedere la notifica del completamento di tutte le
3716 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3717 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3718
3719
3720 \section{Altre modalità di I/O avanzato}
3721 \label{sec:file_advanced_io}
3722
3723 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3724   asincrono}, esistono altre funzioni che implementano delle modalità di
3725 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3726 scrittura che abbiamo esaminato in sez.~\ref{sec:file_unix_interface}. In
3727 questa sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
3728   mappato in memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O
3729 avanzato.
3730
3731
3732 \subsection{File mappati in memoria}
3733 \label{sec:file_memory_map}
3734
3735 \itindbeg{memory~mapping}
3736 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3737 rispetto a quella classica vista in sez.~\ref{sec:file_unix_interface}, è il
3738 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
3739 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
3740 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
3741 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3742
3743 \begin{figure}[htb]
3744   \centering
3745   \includegraphics[width=12cm]{img/mmap_layout}
3746   \caption{Disposizione della memoria di un processo quando si esegue la
3747   mappatura in memoria di un file.}
3748   \label{fig:file_mmap_layout}
3749 \end{figure}
3750
3751 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3752 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3753 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3754 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3755 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
3756 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
3757 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
3758 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
3759 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
3760 \textsl{memoria mappata su file}.
3761
3762 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3763 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3764 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3765 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3766 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3767 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3768 un dato istante.
3769
3770 Infatti, dato che l'accesso è fatto direttamente attraverso la
3771 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
3772 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
3773 solo per le parti effettivamente usate, il tutto in maniera completamente
3774 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
3775 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
3776 salvate sullo swap.
3777
3778 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3779 vengono salvate automaticamente, così come le pagine dei programmi vengono
3780 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
3781 solo limite è quello dello spazio di indirizzi disponibile, e non della
3782 memoria su cui possono esserne lette delle porzioni.
3783
3784 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
3785 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
3786 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
3787 è:
3788 \begin{functions}
3789   
3790   \headdecl{unistd.h}
3791   \headdecl{sys/mman.h} 
3792
3793   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3794     fd, off\_t offset)}
3795   
3796   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
3797   
3798   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
3799     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
3800     qual caso \var{errno} assumerà uno dei valori:
3801     \begin{errlist}
3802     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3803       \const{MAP\_ANONYMOUS}.
3804     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3805       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3806       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3807       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3808       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3809     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3810       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3811       dimensione delle pagine).
3812     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
3813       \param{fd} è aperto in scrittura.
3814     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3815       rispetto a quanto consentito dai limiti di sistema (vedi
3816       sez.~\ref{sec:sys_resource_limit}).
3817     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3818       numero di mappature possibili.
3819     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3820       mapping.
3821     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
3822       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
3823       l'opzione \texttt{noexec}.
3824     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3825       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3826     \end{errlist}
3827   }
3828 \end{functions}
3829
3830 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
3831 partire da \param{offset} per \param{length} byte, preferibilmente
3832 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
3833 multiplo della dimensione di una pagina di memoria. 
3834
3835 \begin{table}[htb]
3836   \centering
3837   \footnotesize
3838   \begin{tabular}[c]{|l|l|}
3839     \hline
3840     \textbf{Valore} & \textbf{Significato} \\
3841     \hline
3842     \hline
3843     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
3844     \const{PROT\_READ}  & Le pagine possono essere lette.\\
3845     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
3846     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
3847     \hline    
3848   \end{tabular}
3849   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
3850     protezione applicate alle pagine del file mappate in memoria.}
3851   \label{tab:file_mmap_prot}
3852 \end{table}
3853
3854 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
3855   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
3856   in pagine: ogni processo vede la sua memoria attraverso uno o più segmenti
3857   lineari di memoria virtuale.  Per ciascuno di questi segmenti il kernel
3858   mantiene nella \itindex{page~table} \textit{page table} la mappatura sulle
3859   pagine di memoria reale, ed le modalità di accesso (lettura, esecuzione,
3860   scrittura); una loro violazione causa quella una \itindex{segment~violation}
3861   \textit{segment violation}, e la relativa emissione del segnale
3862   \signal{SIGSEGV}.} da applicare al segmento di memoria e deve essere
3863 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
3864 riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato deve essere
3865 compatibile con la modalità di accesso con cui si è aperto il file.
3866
3867 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
3868 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
3869 modalità con cui le modifiche alla memoria mappata vengono condivise o
3870 mantenute private al processo che le ha effettuate. Deve essere specificato
3871 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
3872 tab.~\ref{tab:file_mmap_flag}.
3873
3874 \begin{table}[htb]
3875   \centering
3876   \footnotesize
3877   \begin{tabular}[c]{|l|p{11cm}|}
3878     \hline
3879     \textbf{Valore} & \textbf{Significato} \\
3880     \hline
3881     \hline
3882     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
3883                              da \param{start}, se questo non può essere usato
3884                              \func{mmap} fallisce. Se si imposta questo flag il
3885                              valore di \param{start} deve essere allineato
3886                              alle dimensioni di una pagina.\\
3887     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
3888                              riportati sul file e saranno immediatamente
3889                              visibili agli altri processi che mappano lo stesso
3890                              file.\footnotemark Il file su disco però non sarà
3891                              aggiornato fino alla chiamata di \func{msync} o
3892                              \func{munmap}), e solo allora le modifiche saranno
3893                              visibili per l'I/O convenzionale. Incompatibile
3894                              con \const{MAP\_PRIVATE}.\\ 
3895     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
3896                              riportati sul file. Ne viene fatta una copia
3897                              privata cui solo il processo chiamante ha
3898                              accesso.  Le modifiche sono mantenute attraverso
3899                              il meccanismo del \textit{copy on
3900                                write} \itindex{copy~on~write} e 
3901                              salvate su swap in caso di necessità. Non è
3902                              specificato se i cambiamenti sul file originale
3903                              vengano riportati sulla regione
3904                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
3905     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
3906                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
3907                              (veniva usato per segnalare che tentativi di
3908                              scrittura sul file dovevano fallire con
3909                              \errcode{ETXTBSY}).\\ 
3910     \const{MAP\_EXECUTABLE}& Ignorato.\\
3911     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
3912                              delle pagine di swap ad uso del meccanismo del
3913                              \textit{copy on write} \itindex{copy~on~write}
3914                              per mantenere le
3915                              modifiche fatte alla regione mappata, in
3916                              questo caso dopo una scrittura, se non c'è più
3917                              memoria disponibile, si ha l'emissione di
3918                              un \signal{SIGSEGV}.\\
3919     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
3920                              mappate.\\
3921     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} \textit{stack}. 
3922                              Indica che la mappatura deve essere effettuata 
3923                              con gli indirizzi crescenti verso il basso.\\
3924     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
3925                              argomenti \param{fd} e \param{offset} sono
3926                              ignorati.\footnotemark\\
3927     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
3928     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
3929     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2Gb dello spazio
3930                              degli indirizzi, viene supportato solo sulle
3931                              piattaforme \texttt{x86-64} per compatibilità con
3932                              le applicazioni a 32 bit. Viene ignorato se si è
3933                              richiesto \const{MAP\_FIXED}.\\
3934     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
3935                              \textit{prefaulting} delle pagine di memoria
3936                              necessarie alla mappatura.\\
3937     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
3938                              non causa I/O.\footnotemark\\
3939 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
3940 %                              mappata con \func{mremap}, proposto ma pare non
3941 %                              implementato.\\
3942 %     \const{MAP\_HUGETLB}& da trattare.\\
3943 % TODO trattare MAP_HUGETLB introdotto con il kernel 2.6.32, e modifiche
3944 % introdotte con il 3.8 per le dimensioni variabili delle huge pages
3945
3946     \hline
3947   \end{tabular}
3948   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
3949   \label{tab:file_mmap_flag}
3950 \end{table}
3951
3952 \footnotetext[68]{dato che tutti faranno riferimento alle stesse pagine di
3953   memoria.}  
3954
3955 \footnotetext[69]{l'uso di questo flag con \const{MAP\_SHARED} è stato
3956   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
3957   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
3958   sez.~\ref{sec:ipc_mmap_anonymous}.}
3959
3960 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
3961   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
3962   parleremo più avanti.}
3963
3964 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
3965 piuttosto complessi, essi si possono comprendere solo tenendo presente che
3966 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
3967 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
3968 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
3969 avrà l'emissione di un segnale di violazione di accesso (\signal{SIGSEGV}),
3970 dato che i permessi sul segmento di memoria relativo non consentono questo
3971 tipo di accesso.
3972
3973 È invece assai diversa la questione relativa agli accessi al di fuori della
3974 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
3975 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
3976 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
3977 \index{paginazione} paginazione, la mappatura in memoria non può che essere
3978 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
3979 pagina, ed in generale queste potranno non corrispondere alle dimensioni
3980 effettive del file o della sezione che si vuole mappare.
3981
3982 \begin{figure}[!htb] 
3983   \centering
3984   \includegraphics[height=6cm]{img/mmap_boundary}
3985   \caption{Schema della mappatura in memoria di una sezione di file di
3986     dimensioni non corrispondenti al bordo di una pagina.}
3987   \label{fig:file_mmap_boundary}
3988 \end{figure}
3989
3990 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
3991 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
3992 verrà il file sarà mappato su un segmento di memoria che si estende fino al
3993 bordo della pagina successiva.
3994
3995 In questo caso è possibile accedere a quella zona di memoria che eccede le
3996 dimensioni specificate da \param{length}, senza ottenere un \signal{SIGSEGV}
3997 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
3998 mappata sul file. Il comportamento del sistema è quello di restituire un
3999 valore nullo per quanto viene letto, e di non riportare su file quanto viene
4000 scritto.
4001
4002 Un caso più complesso è quello che si viene a creare quando le dimensioni del
4003 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
4004 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
4005 quella della mappatura in memoria.
4006
4007 In questa situazione, per la sezione di pagina parzialmente coperta dal
4008 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
4009 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
4010 sarà più possibile, ma il segnale emesso non sarà \signal{SIGSEGV}, ma
4011 \signal{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
4012
4013 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
4014 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
4015 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
4016 comporta che ad esempio non è possibile mappare in memoria file descriptor
4017 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
4018 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
4019 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
4020 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
4021 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
4022 che sono utilizzabili solo con questa interfaccia.
4023
4024 \begin{figure}[htb]
4025   \centering
4026   \includegraphics[height=6cm]{img/mmap_exceed}
4027   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
4028     alla lunghezza richiesta.}
4029   \label{fig:file_mmap_exceed}
4030 \end{figure}
4031
4032 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
4033 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
4034 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
4035 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
4036 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
4037 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
4038 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
4039 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
4040 nuovo programma.
4041
4042 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
4043 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
4044 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
4045 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
4046 una pagina mappata su un file aggiorna questo tempo.  I valori di
4047 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
4048 consentita la scrittura sul file (cioè per un file mappato con
4049 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
4050 o in corrispondenza di una eventuale \func{msync}.
4051
4052 Dato per i file mappati in memoria le operazioni di I/O sono gestite
4053 direttamente dalla \index{memoria~virtuale} memoria virtuale, occorre essere
4054 consapevoli delle interazioni che possono esserci con operazioni effettuate
4055 con l'interfaccia dei file di sez.~\ref{sec:file_unix_interface}. Il problema
4056 è che una volta che si è mappato un file, le operazioni di lettura e scrittura
4057 saranno eseguite sulla memoria, e riportate su disco in maniera autonoma dal
4058 sistema della memoria virtuale.
4059
4060 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
4061 potranno essere visibili o meno a seconda del momento in cui la memoria
4062 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
4063 del tutto imprevedibile il risultato della modifica di un file nei confronti
4064 del contenuto della memoria su cui è mappato.
4065
4066 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
4067 l'interfaccia standard quando lo si è mappato in memoria, è invece possibile
4068 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
4069 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
4070 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
4071 memoria mappata con il file su disco; il suo prototipo è:
4072 \begin{functions}  
4073   \headdecl{unistd.h}
4074   \headdecl{sys/mman.h} 
4075
4076   \funcdecl{int msync(const void *start, size\_t length, int flags)}
4077   
4078   Sincronizza i contenuti di una sezione di un file mappato in memoria.
4079   
4080   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4081     errore nel qual caso \var{errno} assumerà uno dei valori:
4082     \begin{errlist}
4083     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
4084       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
4085       \param{flags}.
4086     \item[\errcode{EFAULT}] l'intervallo specificato non ricade in una zona
4087       precedentemente mappata.
4088     \end{errlist}
4089   }
4090 \end{functions}
4091
4092 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
4093 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
4094 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
4095 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
4096 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
4097 del file aggiornato.
4098
4099
4100 \begin{table}[htb]
4101   \centering
4102   \footnotesize
4103   \begin{tabular}[c]{|l|p{11cm}|}
4104     \hline
4105     \textbf{Valore} & \textbf{Significato} \\
4106     \hline
4107     \hline
4108     \const{MS\_SYNC}       & richiede una sincronizzazione e ritorna soltanto
4109                              quando questa è stata completata.\\
4110     \const{MS\_ASYNC}      & richiede una sincronizzazione, ma ritorna subito 
4111                              non attendendo che questa sia finita.\\
4112     \const{MS\_INVALIDATE} & invalida le pagine per tutte le mappature
4113                              in memoria così da rendere necessaria una
4114                              rilettura immediata delle stesse.\\
4115     \hline
4116   \end{tabular}
4117   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
4118   \label{tab:file_mmap_msync}
4119 \end{table}
4120
4121 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
4122 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
4123 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
4124 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
4125 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
4126 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
4127 flag fa sì che vengano invalidate, per tutte le mappature dello stesso file,
4128 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
4129 essere immediatamente aggiornate con i nuovi valori.
4130
4131 Una volta che si sono completate le operazioni di I/O si può eliminare la
4132 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
4133 \begin{functions}  
4134   \headdecl{unistd.h}
4135   \headdecl{sys/mman.h} 
4136
4137   \funcdecl{int munmap(void *start, size\_t length)}
4138   
4139   Rilascia la mappatura sulla sezione di memoria specificata.
4140
4141   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4142     errore nel qual caso \var{errno} assumerà uno dei valori:
4143     \begin{errlist}
4144     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
4145       precedentemente mappata.
4146     \end{errlist}
4147   }
4148 \end{functions}
4149
4150 La funzione cancella la mappatura per l'intervallo specificato con
4151 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
4152 un errore di accesso in memoria. L'argomento \param{start} deve essere
4153 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
4154 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
4155 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
4156 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
4157 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
4158 il \textit{memory mapping} non ha alcun effetto su di esso.
4159
4160 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
4161 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
4162 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
4163 la funzione può essere usata con qualunque pagina valida nella memoria
4164 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
4165 \begin{functions}  
4166 %  \headdecl{unistd.h}
4167   \headdecl{sys/mman.h} 
4168
4169   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
4170   
4171   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
4172   specificato.
4173
4174   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
4175     errore nel qual caso \var{errno} assumerà uno dei valori:
4176     \begin{errlist}
4177     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
4178       multiplo di \const{PAGE\_SIZE}.
4179     \item[\errcode{EACCES}] l'operazione non è consentita, ad esempio si è
4180       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
4181       ha solo accesso in lettura.
4182 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
4183 %       necessarie all'interno del kernel.
4184 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
4185 %       accessibile.
4186     \end{errlist}
4187     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
4188   } 
4189 \end{functions}
4190
4191
4192 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
4193 allineato alle dimensioni delle pagine di memoria, ed una dimensione
4194 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
4195 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
4196 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
4197 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
4198
4199 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
4200 kernel unix-like. La prima di queste è la possibilità di modificare un
4201 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
4202 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
4203 \begin{functions}  
4204   \headdecl{unistd.h}
4205   \headdecl{sys/mman.h} 
4206
4207   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
4208     new\_size, unsigned long flags)}
4209   
4210   Restringe o allarga una mappatura in memoria di un file.
4211
4212   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
4213     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
4214       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
4215     valori:
4216     \begin{errlist}
4217     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
4218       puntatore valido.
4219     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
4220       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
4221       mappature di tipo non corrispondente a quella richiesta.
4222     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
4223       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
4224       è specificato \const{MREMAP\_MAYMOVE} nei flag.
4225     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
4226       essere rimappato.
4227     \end{errlist}
4228   }
4229 \end{functions}
4230
4231 La funzione richiede come argomenti \param{old\_address} (che deve essere
4232 allineato alle dimensioni di una pagina di memoria) che specifica il
4233 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
4234 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
4235 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
4236 maschera binaria per i flag che controllano il comportamento della funzione.
4237 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
4238   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
4239   di includere \headfile{sys/mman.h}.}  che consente di eseguire l'espansione
4240 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
4241 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
4242 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
4243
4244 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
4245 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
4246 e le pagine di memoria, modificando i dati direttamente nella
4247 \itindex{page~table} \textit{page table} del processo. Come per
4248 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
4249 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
4250 implementare la funzione \func{realloc} in maniera molto efficiente.
4251
4252 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
4253 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
4254 un file vengono mappate linearmente su indirizzi successivi in memoria.
4255 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
4256   dai database o dai programmi che realizzano macchine virtuali.} in cui è
4257 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
4258
4259 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
4260 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
4261 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
4262   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
4263 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
4264 Infatti per ciascuna mappatura in memoria deve essere definita nella
4265 \itindex{page~table} \textit{page table} del processo una nuova area di
4266 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
4267   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
4268 questa diventi visibile nello spazio degli indirizzi come illustrato in
4269 fig.~\ref{fig:file_mmap_layout}.
4270
4271 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
4272   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
4273 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
4274 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
4275 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
4276 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
4277 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
4278   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
4279   aggiornamento.} solo per mantenere i dati di una gran quantità di
4280 \textit{memory mapping}.
4281
4282 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
4283 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
4284 una caratteristica specifica di Linux, non presente in altri sistemi
4285 unix-like.  Diventa così possibile utilizzare una sola mappatura
4286 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
4287   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
4288 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
4289 nuova \textit{system call}, \funcd{remap\_file\_pages}, il cui prototipo è:
4290 \begin{functions}  
4291   \headdecl{sys/mman.h} 
4292
4293   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
4294     ssize\_t pgoff, int flags)}
4295   
4296   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
4297
4298   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4299     errore, nel qual caso \var{errno} assumerà uno dei valori:
4300     \begin{errlist}
4301     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
4302       argomenti o \param{start} non fa riferimento ad un \textit{memory
4303         mapping} valido creato con \const{MAP\_SHARED}.
4304     \end{errlist}
4305   }
4306 \end{functions}
4307
4308 Per poter utilizzare questa funzione occorre anzitutto effettuare
4309 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
4310 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
4311 chiamerà questa funzione per modificare le corrispondenze fra pagine di
4312 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
4313 permette anche di mappare la stessa pagina di un file in più pagine della
4314 regione mappata.
4315
4316 La funzione richiede che si identifichi la sezione del file che si vuole
4317 riposizionare all'interno del \textit{memory mapping} con gli argomenti
4318 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
4319 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
4320 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
4321 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
4322 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
4323 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
4324
4325 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
4326 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
4327 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
4328 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
4329 per migliorare le prestazioni in certe condizioni di utilizzo del
4330 \textit{memory mapping}. 
4331
4332 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
4333 grosse dimensioni. Il comportamento normale del sistema della
4334 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
4335 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
4336 i dati verranno effettivamente utilizzati (si avrà cioè un
4337 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
4338 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
4339 interessate dal \textit{memory mapping}. 
4340
4341 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
4342 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
4343   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
4344 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
4345 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
4346 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
4347 comportamento viene abilitato quando si usa con \func{mmap} il flag
4348 \const{MAP\_POPULATE}.
4349
4350 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
4351 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
4352 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
4353 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
4354 mappatura che già si trovano nella cache del kernel.\footnote{questo può
4355   essere utile per il linker dinamico, in particolare quando viene effettuato
4356   il \textit{prelink} delle applicazioni.}
4357
4358 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
4359 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
4360 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
4361 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
4362 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
4363 riproduttore audio o video eseguirà per lo più letture sequenziali.
4364
4365 Per migliorare le prestazioni a seconda di queste modalità di accesso è
4366 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
4367   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
4368   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
4369 kernel delle indicazioni su dette modalità, così che possano essere adottate
4370 le opportune strategie di ottimizzazione. Il suo prototipo è:
4371 \begin{functions}  
4372   \headdecl{sys/mman.h} 
4373
4374   \funcdecl{int madvise(void *start, size\_t length, int advice)}
4375   
4376   Fornisce indicazioni sull'uso previsto di un \textit{memory mapping}.
4377
4378   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4379     errore, nel qual caso \var{errno} assumerà uno dei valori:
4380     \begin{errlist}
4381     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
4382     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
4383       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
4384       un valore valido, o si è richiesto il rilascio (con
4385       \const{MADV\_DONTNEED}) di pagine bloccate o condivise.
4386     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
4387       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
4388       processo (solo in caso di \const{MADV\_WILLNEED}).
4389     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
4390       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
4391       la richiesta.
4392     \end{errlist}
4393     ed inoltre \errval{EAGAIN} e \errval{ENOSYS}.
4394   }
4395 \end{functions}
4396
4397 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
4398 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
4399 \param{length}, il valore di \param{start} deve essere allineato,
4400 mentre \param{length} deve essere un numero positivo.\footnote{la versione di
4401   Linux consente anche un valore nullo per \param{length}, inoltre se una
4402   parte dell'intervallo non è mappato in memoria l'indicazione viene comunque
4403   applicata alle restanti parti, anche se la funzione ritorna un errore di
4404   \errval{ENOMEM}.} L'indicazione viene espressa dall'argomento \param{advice}
4405 che deve essere specificato con uno dei valori\footnote{si tenga presente che
4406   gli ultimi tre valori sono specifici di Linux (introdotti a partire dal
4407   kernel 2.6.16) e non previsti dallo standard POSIX.1b.} riportati in
4408 tab.~\ref{tab:madvise_advice_values}.
4409
4410 \begin{table}[htb]
4411   \centering
4412   \footnotesize
4413   \begin{tabular}[c]{|l|p{10 cm}|}
4414     \hline
4415     \textbf{Valore} & \textbf{Significato} \\
4416     \hline
4417     \hline
4418     \const{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
4419                             di default usato quando non si è chiamato
4420                             \func{madvise}.\\
4421     \const{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
4422                             indicata, pertanto l'applicazione di una lettura
4423                             anticipata con il meccanismo del
4424                             \itindex{read-ahead} \textit{read-ahead} (vedi
4425                             sez.~\ref{sec:file_fadvise}) è di
4426                             scarsa utilità e verrà disabilitata.\\
4427     \const{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
4428                             quindi da una parte sarà opportuno eseguire una
4429                             lettura anticipata, e dall'altra si potranno
4430                             scartare immediatamente le pagine una volta che
4431                             queste siano state lette.\\
4432     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
4433                             pertanto l'applicazione del \textit{read-ahead}
4434                             deve essere incentivata.\\
4435     \const{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
4436                             futuro, pertanto le pagine possono essere
4437                             liberate dal kernel non appena necessario; l'area
4438                             di memoria resterà accessibile, ma un accesso
4439                             richiederà che i dati vengano ricaricati dal file
4440                             a cui la mappatura fa riferimento.\\
4441     \hline
4442     \const{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
4443                             relativo supporto sottostante; è supportato
4444                             soltanto sui filesystem in RAM \textit{tmpfs} e
4445                             \textit{shmfs}.\footnotemark\\ 
4446     \const{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
4447                             ereditato dal processo figlio dopo una
4448                             \func{fork}; questo consente di evitare che il
4449                             meccanismo del \itindex{copy~on~write}
4450                             \textit{copy on write} effettui la rilocazione
4451                             delle pagine quando il padre scrive sull'area
4452                             di memoria dopo la \func{fork}, cosa che può
4453                             causare problemi per l'hardware che esegue
4454                             operazioni in DMA su quelle pagine.\\
4455     \const{MADV\_DOFORK}  & rimuove l'effetto della precedente
4456                             \const{MADV\_DONTFORK}.\\ 
4457     \const{MADV\_MERGEABLE}& marca la pagina come accorpabile (indicazione
4458                             principalmente ad uso dei sistemi di
4459                             virtualizzazione).\footnotemark\\
4460     \hline
4461   \end{tabular}
4462   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
4463   \label{tab:madvise_advice_values}
4464 \end{table}
4465
4466 \footnotetext{se usato su altri tipi di filesystem causa un errore di
4467   \errcode{ENOSYS}.}
4468
4469 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
4470   identifica pagine di memoria identiche e le accorpa in una unica pagina
4471   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
4472   di controllare tutte le pagine solo quelle marcate con questo flag vengono
4473   prese in considerazione per l'accorpamento; in questo modo si possono
4474   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
4475   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
4476   altre applicazioni in cui sian presenti numerosi processi che usano gli
4477   stessi dati; per maggiori dettagli si veda
4478   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}.}
4479
4480 La funzione non ha, tranne il caso di \const{MADV\_DONTFORK}, nessun effetto
4481 sul comportamento di un programma, ma può influenzarne le prestazioni fornendo
4482 al kernel indicazioni sulle esigenze dello stesso, così che sia possibile
4483 scegliere le opportune strategie per la gestione del \itindex{read-ahead}
4484 \textit{read-ahead} e del caching dei dati. A differenza da quanto specificato
4485 nello standard POSIX.1b, per il quale l'uso di \func{madvise} è a scopo
4486 puramente indicativo, Linux considera queste richieste come imperative, per
4487 cui ritorna un errore qualora non possa soddisfarle.\footnote{questo
4488   comportamento differisce da quanto specificato nello standard.}
4489
4490 \itindend{memory~mapping}
4491
4492
4493 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
4494 \label{sec:file_multiple_io}
4495
4496 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
4497 serie multipla di operazioni di I/O, come una serie di letture o scritture di
4498 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
4499 una struttura ed essi devono essere caricati o salvati su un file.  Benché
4500 l'operazione sia facilmente eseguibile attraverso una serie multipla di
4501 chiamate a \func{read} e \func{write}, ci sono casi in cui si vuole poter
4502 contare sulla atomicità delle operazioni.
4503
4504 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove
4505 \textit{system call} che permettessero di effettuare con una sola chiamata una
4506 serie di letture o scritture su una serie di buffer, con quello che viene
4507 normalmente chiamato \textsl{I/O vettorizzato}. Queste funzioni sono
4508 \funcd{readv} e \funcd{writev},\footnote{in Linux le due funzioni sono riprese
4509   da BSD4.4, esse sono previste anche dallo standard POSIX.1-2001.} ed i
4510 relativi prototipi sono:
4511 \begin{functions}
4512   \headdecl{sys/uio.h}
4513   
4514   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
4515   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
4516
4517   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
4518   
4519   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
4520     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
4521     assumerà uno dei valori:
4522   \begin{errlist}
4523   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
4524     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
4525   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
4526     di avere eseguito una qualunque lettura o scrittura.
4527   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
4528     non ci sono dati in lettura.
4529   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
4530   \end{errlist}
4531   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
4532   (se non sono stati allocati correttamente i buffer specificati nei campi
4533   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
4534   scrittura eseguite su \param{fd}.}
4535 \end{functions}
4536
4537 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
4538 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
4539 essere letti o scritti ed in che quantità. Il primo campo della struttura,
4540 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
4541 \var{iov\_len}, la dimensione dello stesso.
4542
4543 \begin{figure}[!htb]
4544   \footnotesize \centering
4545   \begin{minipage}[c]{\textwidth}
4546     \includestruct{listati/iovec.h}
4547   \end{minipage} 
4548   \normalsize 
4549   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
4550     vettorizzato.} 
4551   \label{fig:file_iovec}
4552 \end{figure}
4553
4554 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
4555 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
4556 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
4557   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
4558   logica, che però è stata dismessa per restare aderenti allo standard
4559   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
4560 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
4561 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
4562 specificati nel vettore \param{vector}.
4563
4564 La standardizzazione delle due funzioni all'interno della revisione
4565 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
4566 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
4567 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
4568 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \headfile{limits.h}; lo
4569 stesso valore deve essere ottenibile in esecuzione tramite la funzione
4570 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
4571 sez.~\ref{sec:sys_limits}).
4572
4573 Nel caso di Linux il limite di sistema è di 1024, però se si usano le
4574 \acr{glibc} queste forniscono un \textit{wrapper} per le \textit{system call}
4575 che si accorge se una operazione supererà il precedente limite, in tal caso i
4576 dati verranno letti o scritti con le usuali \func{read} e \func{write} usando
4577 un buffer di dimensioni sufficienti appositamente allocato e sufficiente a
4578 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
4579 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
4580
4581 Si tenga presente infine che queste funzioni operano sui file con
4582 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
4583 l'interfaccia classica dei \textit{file stream} di
4584 sez.~\ref{sec:files_std_interface}; a causa delle bufferizzazioni interne di
4585 quest'ultima infatti si potrebbero avere risultati indefiniti e non
4586 corrispondenti a quanto aspettato.
4587
4588 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
4589   vettorizzato} si pone il problema di poter effettuare le operazioni in
4590 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
4591 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
4592   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
4593 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
4594 \funcd{preadv} e \funcd{pwritev} ed i rispettivi prototipi sono:\footnote{le
4595   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
4596     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
4597   utilizzano degli argomenti diversi per problemi collegati al formato a 64
4598   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
4599   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
4600   che mantengono l'interfaccia delle analoghe tratte da BSD.}
4601 \begin{functions}
4602   \headdecl{sys/uio.h}
4603   
4604   \funcdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
4605     offset)}
4606   \funcdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
4607     offset)}
4608
4609   Eseguono una lettura o una scrittura vettorizzata a partire da una data
4610   posizione sul file.
4611   
4612   \bodydesc{Le funzioni hanno gli stessi valori di ritorno delle
4613     corrispondenti \func{readv} e \func{writev}; anche gli eventuali errori
4614     sono gli stessi già visti in precedenza, ma ad essi si possono aggiungere
4615     per \var{errno} anche i valori:
4616   \begin{errlist}
4617   \item[\errcode{EOVERFLOW}] \param{offset} ha un valore che non può essere
4618     usato come \type{off\_t}.
4619   \item[\errcode{ESPIPE}] \param{fd} è associato ad un socket o una pipe.
4620   \end{errlist}
4621 }
4622 \end{functions}
4623
4624 Le due funzioni eseguono rispettivamente una lettura o una scrittura
4625 vettorizzata a partire dalla posizione \param{offset} sul file indicato
4626 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
4627 processi che vi facciano riferimento, non viene alterata. A parte la presenza
4628 dell'ulteriore argomento il comportamento delle funzioni è identico alle
4629 precedenti \func{readv} e \func{writev}. 
4630
4631 Con l'uso di queste funzioni si possono evitare eventuali
4632 \itindex{race~condition} \textit{race condition} quando si deve eseguire la
4633 una operazione di lettura e scrittura vettorizzata a partire da una certa
4634 posizione su un file, mentre al contempo si possono avere in concorrenza
4635 processi che utilizzano lo stesso file descriptor (si ricordi quanto visto in
4636 sez.~\ref{sec:file_adv_func}) con delle chiamate a \func{lseek}.
4637
4638
4639
4640 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
4641   \func{splice}} 
4642 \label{sec:file_sendfile_splice}
4643
4644 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
4645 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
4646 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
4647 buffer in memoria, da cui essi vengono poi scritti sul secondo.
4648
4649 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
4650 fare con file normali, in generale quando i dati da trasferire sono molti si
4651 pone il problema di effettuare trasferimenti di grandi quantità di dati da
4652 kernel space a user space e all'indietro, quando in realtà potrebbe essere più
4653 efficiente mantenere tutto in kernel space. Tratteremo in questa sezione
4654 alcune funzioni specialistiche che permettono di ottimizzare le prestazioni in
4655 questo tipo di situazioni.
4656
4657 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
4658 fra due file descriptor è \func{sendfile};\footnote{la funzione è stata
4659   introdotta con i kernel della serie 2.2, e disponibile dalle \acr{glibc}
4660   2.1.} la funzione è presente in diverse versioni di Unix,\footnote{la si
4661   ritrova ad esempio in FreeBSD, HPUX ed altri Unix.} ma non è presente né in
4662 POSIX.1-2001 né in altri standard,\footnote{pertanto si eviti di utilizzarla
4663   se si devono scrivere programmi portabili.} per cui per essa vengono
4664 utilizzati prototipi e semantiche differenti; nel caso di Linux il prototipo
4665 di \funcd{sendfile} è:
4666 \begin{functions}  
4667   \headdecl{sys/sendfile.h} 
4668
4669   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
4670     count)} 
4671   
4672   Copia dei dati da un file descriptor ad un altro.
4673
4674   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4675     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4676     dei valori:
4677     \begin{errlist}
4678     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
4679       \param{out\_fd} e la scrittura si bloccherebbe.
4680     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
4681       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
4682       \param{in\_fd}.
4683     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
4684     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
4685       \param{in\_fd}.
4686     \end{errlist}
4687     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
4688   }
4689 \end{functions}
4690
4691 La funzione copia direttamente \param{count} byte dal file descriptor
4692 \param{in\_fd} al file descriptor \param{out\_fd}; in caso di successo
4693 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
4694 \param{out\_fd} o $-1$ in caso di errore; come le ordinarie \func{read} e
4695 \func{write} questo valore può essere inferiore a quanto richiesto con
4696 \param{count}.
4697
4698 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
4699 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
4700 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
4701 valore sarà aggiornato, come \textit{value result argument}, per indicare la
4702 posizione del byte successivo all'ultimo che è stato letto, mentre la
4703 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
4704 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
4705 letti da \param{in\_fd}.
4706
4707 Fino ai kernel della serie 2.4 la funzione è utilizzabile su un qualunque file
4708 descriptor, e permette di sostituire la invocazione successiva di una
4709 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
4710 sola chiamata a \funcd{sendfile}. In questo modo si può diminuire il numero di
4711 chiamate al sistema e risparmiare in trasferimenti di dati da kernel space a
4712 user space e viceversa.  La massima utilità della funzione si ha comunque per
4713 il trasferimento di dati da un file su disco ad un socket di
4714 rete,\footnote{questo è il caso classico del lavoro eseguito da un server web,
4715   ed infatti Apache ha una opzione per il supporto esplicito di questa
4716   funzione.} dato che in questo caso diventa possibile effettuare il
4717 trasferimento diretto via DMA dal controller del disco alla scheda di rete,
4718 senza neanche allocare un buffer nel kernel,\footnote{il meccanismo è detto
4719   \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel, che
4720   si limita a programmare solo le operazioni di lettura e scrittura via DMA.}
4721 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
4722
4723 In seguito però ci si è accorti che, fatta eccezione per il trasferimento
4724 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
4725 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
4726 \func{write},\footnote{nel caso generico infatti il kernel deve comunque
4727   allocare un buffer ed effettuare la copia dei dati, e in tal caso spesso il
4728   guadagno ottenibile nel ridurre il numero di chiamate al sistema non
4729   compensa le ottimizzazioni che possono essere fatte da una applicazione in
4730   user space che ha una conoscenza diretta su come questi sono strutturati.} e
4731 che anzi in certi casi si potevano avere anche dei peggioramenti.  Questo ha
4732 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
4733   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
4734   in \url{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}.}
4735 alla decisione di consentire l'uso della funzione soltanto quando il file da
4736 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
4737 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
4738 casi l'uso di \func{sendfile} darà luogo ad un errore di \errcode{EINVAL}.
4739
4740 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
4741 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
4742 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
4743 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
4744 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
4745 la gestione della copia dei dati fra file, evitando di dover gestire
4746 l'allocazione di un buffer temporaneo per il loro trasferimento.
4747
4748 Questo dubbio si può comunque ritenere superato con l'introduzione, avvenuta a
4749 partire dal kernel 2.6.17, della nuova \textit{system call} \func{splice}. Lo
4750 scopo di questa funzione è quello di fornire un meccanismo generico per il
4751 trasferimento di dati da o verso un file utilizzando un buffer gestito
4752 internamente dal kernel. Descritta in questi termini \func{splice} sembra
4753 semplicemente un ``\textsl{dimezzamento}'' di \func{sendfile}.\footnote{nel
4754   senso che un trasferimento di dati fra due file con \func{sendfile} non
4755   sarebbe altro che la lettura degli stessi su un buffer seguita dalla
4756   relativa scrittura, cosa che in questo caso si dovrebbe eseguire con due
4757   chiamate a \func{splice}.} In realtà le due \textit{system call} sono
4758 profondamente diverse nel loro meccanismo di funzionamento;\footnote{questo
4759   fino al kernel 2.6.23, dove \func{sendfile} è stata reimplementata in
4760   termini di \func{splice}, pur mantenendo disponibile la stessa interfaccia
4761   verso l'user space.} \func{sendfile} infatti, come accennato, non necessita
4762 di avere a disposizione un buffer interno, perché esegue un trasferimento
4763 diretto di dati; questo la rende in generale più efficiente, ma anche limitata
4764 nelle sue applicazioni, dato che questo tipo di trasferimento è possibile solo
4765 in casi specifici.\footnote{e nel caso di Linux questi sono anche solo quelli
4766   in cui essa può essere effettivamente utilizzata.}
4767
4768 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
4769   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
4770   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
4771   stata la reinterpretazione che ne è stata fatta nell'implementazione su
4772   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
4773   dallo stesso Linus Torvalds in \url{http://kerneltrap.org/node/6505}.} si
4774 tratta semplicemente di una funzione che consente di fare in maniera del tutto
4775 generica delle operazioni di trasferimento di dati fra un file e un buffer
4776 gestito interamente in kernel space. In questo caso il cuore della funzione (e
4777 delle affini \func{vmsplice} e \func{tee}, che tratteremo più avanti) è
4778 appunto l'uso di un buffer in kernel space, e questo è anche quello che ne ha
4779 semplificato l'adozione, perché l'infrastruttura per la gestione di un tale
4780 buffer è presente fin dagli albori di Unix per la realizzazione delle
4781 \textit{pipe} (vedi sez.~\ref{sec:ipc_unix}). Dal punto di vista concettuale
4782 allora \func{splice} non è altro che una diversa interfaccia (rispetto alle
4783 \textit{pipe}) con cui utilizzare in user space l'oggetto ``\textsl{buffer in
4784   kernel space}''.
4785
4786 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
4787 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
4788 dati che vengono trasferiti da un capo all'altro della stessa per creare un
4789 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
4790 viene usato o come fonte dei dati che saranno scritti su un file, o come
4791 destinazione dei dati che vengono letti da un file. La funzione \funcd{splice}
4792 fornisce quindi una interfaccia generica che consente di trasferire dati da un
4793 buffer ad un file o viceversa; il suo prototipo, accessibile solo dopo aver
4794 definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
4795   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
4796   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
4797 è il seguente:
4798 \begin{functions}  
4799   \headdecl{fcntl.h} 
4800
4801   \funcdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
4802     *off\_out, size\_t len, unsigned int flags)}
4803   
4804   Trasferisce dati da un file verso una pipe o viceversa.
4805
4806   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4807     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4808     dei valori:
4809     \begin{errlist}
4810     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
4811       non sono file descriptor validi o, rispettivamente, non sono stati
4812       aperti in lettura o scrittura.
4813     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
4814       \func{splice}, oppure nessuno dei file descriptor è una pipe, oppure si
4815       è dato un valore a \param{off\_in} o \param{off\_out} ma il
4816       corrispondente file è un dispositivo che non supporta la funzione
4817       \func{lseek}.
4818     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4819       richiesta.
4820     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
4821       \val{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
4822     \end{errlist}
4823   }
4824 \end{functions}
4825
4826 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
4827 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
4828 una \textit{pipe}; l'altro file descriptor può essere
4829 qualunque.\footnote{questo significa che può essere, oltre che un file di
4830   dati, anche un altra \textit{pipe}, o un socket.}  Come accennato una
4831 \textit{pipe} non è altro che un buffer in kernel space, per cui a seconda che
4832 essa sia usata per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la
4833 copia dei dati dal buffer al file o viceversa. 
4834
4835 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
4836 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
4837 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
4838 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
4839 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
4840 trasferimento dei dati, la funzione si comporta nei confronti del file
4841 descriptor che fa riferimento al file ordinario, come \func{read} o
4842 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
4843 il suddetto file in modalità non bloccante).
4844
4845 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
4846 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
4847 del file da cui partire per il trasferimento dei dati. Come per
4848 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
4849 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
4850 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
4851 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
4852 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
4853 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
4854 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
4855 specificato come valore non nullo.
4856
4857 Infine l'argomento \param{flags} consente di controllare alcune
4858 caratteristiche del funzionamento della funzione; il contenuto è una maschera
4859 binaria e deve essere specificato come OR aritmetico dei valori riportati in
4860 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
4861 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
4862 descrizioni complete di tutti i valori possibili anche quando, come per
4863 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
4864
4865 \begin{table}[htb]
4866   \centering
4867   \footnotesize
4868   \begin{tabular}[c]{|l|p{10cm}|}
4869     \hline
4870     \textbf{Valore} & \textbf{Significato} \\
4871     \hline
4872     \hline
4873     \const{SPLICE\_F\_MOVE}    & Suggerisce al kernel di spostare le pagine
4874                                  di memoria contenenti i dati invece di
4875                                  copiarle;\footnotemark viene usato soltanto
4876                                  da \func{splice}.\\ 
4877     \const{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
4878                                  bloccante; questo flag influisce solo sulle
4879                                  operazioni che riguardano l'I/O da e verso la
4880                                  \textit{pipe}. Nel caso di \func{splice}
4881                                  questo significa che la funzione potrà
4882                                  comunque bloccarsi nell'accesso agli altri
4883                                  file descriptor (a meno che anch'essi non
4884                                  siano stati aperti in modalità non
4885                                  bloccante).\\
4886     \const{SPLICE\_F\_MORE}    & Indica al kernel che ci sarà l'invio di
4887                                  ulteriori dati in una \func{splice}
4888                                  successiva, questo è un suggerimento utile
4889                                  che viene usato quando \param{fd\_out} è un
4890                                  socket.\footnotemark Attualmente viene usato
4891                                  solo da \func{splice}, potrà essere
4892                                  implementato in futuro anche per
4893                                  \func{vmsplice} e \func{tee}.\\
4894     \const{SPLICE\_F\_GIFT}    & Le pagine di memoria utente sono
4895                                  ``\textsl{donate}'' al kernel;\footnotemark
4896                                  se impostato una seguente \func{splice} che
4897                                  usa \const{SPLICE\_F\_MOVE} potrà spostare le 
4898                                  pagine con successo, altrimenti esse dovranno
4899                                  essere copiate; per usare questa opzione i
4900                                  dati dovranno essere opportunamente allineati
4901                                  in posizione ed in dimensione alle pagine di
4902                                  memoria. Viene usato soltanto da
4903                                  \func{vmsplice}.\\
4904     \hline
4905   \end{tabular}
4906   \caption{Le costanti che identificano i bit della maschera binaria
4907     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
4908     \func{tee}.} 
4909   \label{tab:splice_flag}
4910 \end{table}
4911
4912 \footnotetext[120]{per una maggiore efficienza \func{splice} usa quando
4913   possibile i meccanismi della memoria virtuale per eseguire i trasferimenti
4914   di dati (in maniera analoga a \func{mmap}), qualora le pagine non possano
4915   essere spostate dalla pipe o il buffer non corrisponda a pagine intere esse
4916   saranno comunque copiate.}
4917
4918 \footnotetext[121]{questa opzione consente di utilizzare delle opzioni di
4919   gestione dei socket che permettono di ottimizzare le trasmissioni via rete,
4920   si veda la descrizione di \const{TCP\_CORK} in
4921   sez.~\ref{sec:sock_tcp_udp_options} e quella di \const{MSG\_MORE} in
4922   sez.~\ref{sec:net_sendmsg}.}
4923
4924 \footnotetext{questo significa che la cache delle pagine e i dati su disco
4925   potranno differire, e che l'applicazione non potrà modificare quest'area di
4926   memoria.}
4927
4928 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
4929 semplice programma che usa questa funzione per effettuare la copia di un file
4930 su un altro senza utilizzare buffer in user space. Il programma si chiama
4931 \texttt{splicecp.c} ed il codice completo è disponibile coi sorgenti allegati
4932 alla guida, il corpo principale del programma, che non contiene la sezione di
4933 gestione delle opzioni e le funzioni di ausilio è riportato in
4934 fig.~\ref{fig:splice_example}.
4935
4936 Lo scopo del programma è quello di eseguire la copia dei con \func{splice},
4937 questo significa che si dovrà usare la funzione due volte, prima per leggere i
4938 dati e poi per scriverli, appoggiandosi ad un buffer in kernel space (vale a
4939 dire ad una \textit{pipe}); lo schema del flusso dei dati è illustrato in
4940 fig.~\ref{fig:splicecp_data_flux}. 
4941
4942 \begin{figure}[htb]
4943   \centering
4944   \includegraphics[height=6cm]{img/splice_copy}
4945   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
4946   \label{fig:splicecp_data_flux}
4947 \end{figure}
4948
4949 Una volta trattate le opzioni il programma verifica che restino
4950 (\texttt{\small 13--16}) i due argomenti che indicano il file sorgente ed il
4951 file destinazione. Il passo successivo è aprire il file sorgente
4952 (\texttt{\small 18--22}), quello di destinazione (\texttt{\small 23--27}) ed
4953 infine (\texttt{\small 28--31}) la \textit{pipe} che verrà usata come buffer.
4954
4955 \begin{figure}[!htbp]
4956   \footnotesize \centering
4957   \begin{minipage}[c]{\codesamplewidth}
4958     \includecodesample{listati/splicecp.c}
4959   \end{minipage}
4960   \normalsize
4961   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
4962     un file.}
4963   \label{fig:splice_example}
4964 \end{figure}
4965
4966 Il ciclo principale (\texttt{\small 33--58}) inizia con la lettura dal file
4967 sorgente tramite la prima \func{splice} (\texttt{\small 34--35}), in questo
4968 caso si è usato come primo argomento il file descriptor del file sorgente e
4969 come terzo quello del capo in scrittura della \textit{pipe} (il funzionamento
4970 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
4971 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
4972 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
4973 semplicemente al trasferimento dei dati dal file al buffer).
4974
4975 La lettura viene eseguita in blocchi pari alla dimensione specificata
4976 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
4977 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
4978 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
4979 detto valore è nullo (\texttt{\small 36}) questo significa che si è giunti
4980 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
4981 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
4982   59}). In caso di valore negativo (\texttt{\small 37--44}) c'è stato un
4983 errore ed allora si ripete la lettura (\texttt{\small 36}) se questo è dovuto
4984 ad una interruzione, o altrimenti si esce con un messaggio di errore
4985 (\texttt{\small 41--43}).
4986
4987 Una volta completata con successo la lettura si avvia il ciclo di scrittura
4988 (\texttt{\small 45--57}); questo inizia (\texttt{\small 46--47}) con la
4989 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
4990 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
4991 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
4992 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
4993 del file di destinazione.
4994
4995 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
4996 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
4997 dovuto a una interruzione o si esce con un messaggio negli altri casi
4998 (\texttt{\small 48--55}). Infine si chiude il ciclo di scrittura sottraendo
4999 (\texttt{\small 57}) il numero di byte scritti a quelli di cui è richiesta la
5000 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
5001   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
5002   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
5003 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
5004 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
5005 presenti sul buffer.
5006
5007 Si noti come il programma sia concettualmente identico a quello che si sarebbe
5008 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
5009 al posto della seconda, utilizzando un buffer in user space per eseguire la
5010 copia dei dati, solo che in questo caso non è stato necessario allocare nessun
5011 buffer e non si è trasferito nessun dato in user space.
5012
5013 Si noti anche come si sia usata la combinazione \texttt{SPLICE\_F\_MOVE |
5014   SPLICE\_F\_MORE } per l'argomento \param{flags} di \func{splice}, infatti
5015 anche se un valore nullo avrebbe dato gli stessi risultati, l'uso di questi
5016 flag, che si ricordi servono solo a dare suggerimenti al kernel, permette in
5017 genere di migliorare le prestazioni.
5018
5019 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
5020 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
5021 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
5022 trasferimento di dati attraverso un buffer in kernel space; benché queste non
5023 attengono strettamente ad operazioni di trasferimento dati fra file
5024 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
5025
5026 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
5027 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
5028 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
5029 il suo prototipo è:
5030 \begin{functions}  
5031   \headdecl{fcntl.h} 
5032   \headdecl{sys/uio.h}
5033
5034   \funcdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long
5035     nr\_segs, unsigned int flags)}
5036   
5037   Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.
5038
5039   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
5040     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
5041     dei valori:
5042     \begin{errlist}
5043     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
5044       fa riferimento ad una \textit{pipe}.
5045     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
5046       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
5047     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5048       richiesta.
5049     \end{errlist}
5050   }
5051 \end{functions}
5052
5053 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
5054 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
5055 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
5056 segmenti della memoria del processo devono essere trasferiti verso di essa si
5057 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
5058 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
5059 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
5060 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
5061 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
5062 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
5063 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
5064 illustrate in sez.~\ref{sec:file_multiple_io}.
5065
5066 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
5067 \textit{pipe}. In generale, se i dati una volta creati non devono essere
5068 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
5069 modificherà più la memoria trasferita), è opportuno utilizzare
5070 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
5071 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
5072 che queste possono essere utilizzate immediatamente senza necessità di
5073 eseguire una copia dei dati che contengono.
5074
5075 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
5076 suo nome all'omonimo comando in user space, perché in analogia con questo
5077 permette di duplicare i dati in ingresso su una \textit{pipe} su un'altra
5078 \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione dei dati su
5079 dei buffer in kernel space, la funzione consente di eseguire una copia del
5080 contenuto del buffer stesso. Il prototipo di \funcd{tee} è il seguente:
5081 \begin{functions}  
5082   \headdecl{fcntl.h} 
5083
5084   \funcdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
5085     flags)}
5086   
5087   Duplica \param{len} byte da una \textit{pipe} ad un'altra.
5088
5089   \bodydesc{La funzione restituisce il numero di byte copiati in caso di
5090     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
5091     dei valori:
5092     \begin{errlist}
5093     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
5094       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
5095       stessa \textit{pipe}.
5096     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5097       richiesta.
5098     \end{errlist}
5099   }
5100 \end{functions}
5101
5102 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
5103 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
5104 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
5105 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
5106 \func{tee} da \param{fd\_in} non vengono \textsl{consumati} e restano
5107 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
5108 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
5109 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
5110   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
5111 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
5112 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
5113 funzione non bloccante.
5114
5115 La funzione restituisce il numero di byte copiati da una \textit{pipe}
5116 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
5117 byte disponibili da copiare e che il capo in scrittura della pipe è stato
5118 chiuso.\footnote{si tenga presente però che questo non avviene se si è
5119   impostato il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si
5120   avrebbe un errore di \errcode{EAGAIN}.} Un esempio di realizzazione del
5121 comando \texttt{tee} usando questa funzione, ripreso da quello fornito nella
5122 pagina di manuale e dall'esempio allegato al patch originale, è riportato in
5123 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
5124 dello standard input sullo standard output e su un file specificato come
5125 argomento, il codice completo si trova nel file \texttt{tee.c} dei sorgenti
5126 allegati alla guida.
5127
5128 \begin{figure}[!htbp]
5129   \footnotesize \centering
5130   \begin{minipage}[c]{\codesamplewidth}
5131     \includecodesample{listati/tee.c}
5132   \end{minipage}
5133   \normalsize
5134   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
5135     standard input sullo standard output e su un file.}
5136   \label{fig:tee_example}
5137 \end{figure}
5138
5139 La prima parte del programma (\texttt{\small 10--35}) si cura semplicemente di
5140 controllare (\texttt{\small 11--14}) che sia stato fornito almeno un argomento
5141 (il nome del file su cui scrivere), di aprirlo ({\small 15--19}) e che sia lo
5142 standard input (\texttt{\small 20--27}) che lo standard output (\texttt{\small
5143   28--35}) corrispondano ad una \textit{pipe}.
5144
5145 Il ciclo principale (\texttt{\small 37--58}) inizia con la chiamata a
5146 \func{tee} che duplica il contenuto dello standard input sullo standard output
5147 (\texttt{\small 39}), questa parte è del tutto analoga ad una lettura ed
5148 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
5149 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
5150 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 40}), se
5151 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
5152 dovuto ad una interruzione (\texttt{\small 42--44}) o si stampa un messaggio
5153 di errore e si esce negli altri casi (\texttt{\small 44--47}).
5154
5155 Una volta completata la copia dei dati sullo standard output si possono
5156 estrarre dalla standard input e scrivere sul file, di nuovo su usa un ciclo di
5157 scrittura (\texttt{\small 50--58}) in cui si ripete una chiamata a
5158 \func{splice} (\texttt{\small 51}) fintanto che non si sono scritti tutti i
5159 \var{len} byte copiati in precedenza con \func{tee} (il funzionamento è
5160 identico all'analogo ciclo di scrittura del precedente esempio di
5161 fig.~\ref{fig:splice_example}).
5162
5163 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
5164 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
5165 di dati in realtà nella implementazione di queste \textit{system call} non è
5166 affatto detto che i dati vengono effettivamente spostati o copiati, il kernel
5167 infatti realizza le \textit{pipe} come un insieme di puntatori\footnote{per
5168   essere precisi si tratta di un semplice buffer circolare, un buon articolo
5169   sul tema si trova su \url{http://lwn.net/Articles/118750/}.}  alle pagine di
5170 memoria interna che contengono i dati, per questo una volta che i dati sono
5171 presenti nella memoria del kernel tutto quello che viene fatto è creare i
5172 suddetti puntatori ed aumentare il numero di referenze; questo significa che
5173 anche con \func{tee} non viene mai copiato nessun byte, vengono semplicemente
5174 copiati i puntatori.
5175
5176 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
5177
5178
5179 \subsection{Gestione avanzata dell'accesso ai dati dei file}
5180 \label{sec:file_fadvise}
5181
5182 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
5183 operazioni di lettura e scrittura non necessitano di nessun intervento di
5184 supervisione da parte dei programmi, si eseguirà una \func{read} o una
5185 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
5186 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
5187 termine in quello che ritiene essere il modo più efficiente.
5188
5189 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
5190 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
5191 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
5192 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
5193 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
5194 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
5195 il loro accesso ai dati dei file e controllare la gestione del relativo
5196 \textit{caching}.
5197
5198 \itindbeg{read-ahead}
5199
5200 Una prima funzione che può essere utilizzata per modificare la gestione
5201 ordinaria dell'I/O su un file è \funcd{readahead},\footnote{questa è una
5202   funzione specifica di Linux, introdotta con il kernel 2.4.13, e non deve
5203   essere usata se si vogliono scrivere programmi portabili.} che consente di
5204 richiedere una lettura anticipata del contenuto dello stesso in cache, così
5205 che le seguenti operazioni di lettura non debbano subire il ritardo dovuto
5206 all'accesso al disco; il suo prototipo è:
5207 \begin{functions}
5208   \headdecl{fcntl.h}
5209
5210   \funcdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
5211   
5212   Esegue una lettura preventiva del contenuto di un file in cache.
5213
5214   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
5215     errore, nel qual caso \var{errno} assumerà uno dei valori:
5216     \begin{errlist}
5217     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5218       valido o non è aperto in lettura.
5219     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
5220       file che non supporta l'operazione (come una pipe o un socket).
5221     \end{errlist}
5222   }
5223 \end{functions}
5224
5225 La funzione richiede che venga letto in anticipo il contenuto del file
5226 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
5227 \param{count} byte, in modo da portarlo in cache.  La funzione usa la
5228 \index{memoria~virtuale} memoria virtuale ed il meccanismo della
5229 \index{paginazione} paginazione per cui la lettura viene eseguita in blocchi
5230 corrispondenti alle dimensioni delle pagine di memoria, ed i valori di
5231 \param{offset} e \param{count} vengono arrotondati di conseguenza.
5232
5233 La funzione estende quello che è un comportamento normale del kernel che
5234 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
5235 una lettura preventiva di una certa quantità di dati; questo meccanismo di
5236 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
5237 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
5238 disco, effettua la lettura in cache della sezione richiesta e si blocca
5239 fintanto che questa non viene completata.  La posizione corrente sul file non
5240 viene modificata ed indipendentemente da quanto indicato con \param{count} la
5241 lettura dei dati si interrompe una volta raggiunta la fine del file.
5242
5243 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
5244 all'interno di un programma tutte le volte che si conosce in anticipo quanti
5245 dati saranno necessari nelle elaborazioni successive. Si potrà così
5246 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
5247 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
5248 nelle operazioni successive.
5249
5250 \itindend{read-ahead}
5251
5252 Il concetto di \func{readahead} viene generalizzato nello standard
5253 POSIX.1-2001 dalla funzione \func{posix\_fadvise},\footnote{anche se
5254   l'argomento \param{len} è stato modificato da \type{size\_t} a \type{off\_t}
5255   nella revisione POSIX.1-2003 TC5.} che consente di ``\textsl{avvisare}'' il
5256 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
5257 porzione di un file,\footnote{la funzione però è stata introdotta su Linux
5258   solo a partire dal kernel 2.5.60.} così che esso possa provvedere le
5259 opportune ottimizzazioni; il prototipo di \funcd{posix\_fadvise}, che è
5260 disponibile soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad
5261 valore di almeno 600, è:
5262 \begin{functions}  
5263   \headdecl{fcntl.h} 
5264
5265   \funcdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
5266   
5267   Dichiara al kernel le future modalità di accesso ad un file.
5268
5269   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
5270     errore, nel qual caso \var{errno} assumerà uno dei valori:
5271     \begin{errlist}
5272     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5273       valido.
5274     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
5275       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
5276       (come una pipe o un socket).
5277     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una pipe o
5278       un socket (ma su Linux viene restituito \errcode{EINVAL}).
5279     \end{errlist}
5280   }
5281 \end{functions}
5282
5283 La funzione dichiara al kernel le modalità con cui intende accedere alla
5284 regione del file indicato da \param{fd} che inizia alla posizione
5285 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
5286 valore nullo la regione coperta sarà da \param{offset} alla fine del
5287 file.\footnote{questo è vero solo per le versioni più recenti, fino al kernel
5288   2.6.6 il valore nullo veniva interpretato letteralmente.} Le modalità sono
5289 indicate dall'argomento \param{advice} che è una maschera binaria dei valori
5290 illustrati in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato
5291 degli analoghi già visti in sez.~\ref{sec:file_memory_map} per
5292 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
5293   in questo caso applicata direttamente al sistema ai contenuti di un file
5294   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
5295 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
5296 che utilizza semplicemente l'informazione.
5297
5298 \begin{table}[htb]
5299   \centering
5300   \footnotesize
5301   \begin{tabular}[c]{|l|p{10cm}|}
5302     \hline
5303     \textbf{Valore} & \textbf{Significato} \\
5304     \hline
5305     \hline
5306     \const{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
5307                                    riguardo le modalità di accesso, il
5308                                    comportamento sarà identico a quello che si
5309                                    avrebbe senza nessun avviso.\\ 
5310     \const{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
5311                                    accedere ai dati specificati in maniera
5312                                    sequenziale, a partire dalle posizioni più
5313                                    basse.\\ 
5314     \const{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
5315                                    completamente causale.\\
5316     \const{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
5317     \const{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
5318     \const{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
5319     \hline
5320   \end{tabular}
5321   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
5322     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
5323     ad un file.}
5324   \label{tab:posix_fadvise_flag}
5325 \end{table}
5326
5327 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
5328 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
5329 dal kernel; in particolare utilizzando il valore
5330 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
5331 dati letti preventivamente rispetto al default, aspettandosi appunto una
5332 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
5333 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
5334 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
5335 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
5336 riportarsi al comportamento di default.
5337
5338 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
5339 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
5340 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
5341 cache della regione del file indicata.  La quantità di dati che verranno letti
5342 è ovviamente limitata in base al carico che si viene a creare sul sistema
5343 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
5344 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
5345 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
5346 considerare l'equivalente POSIX di \func{readahead}.
5347
5348 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
5349 pagine di cache occupate dai dati presenti nella regione di file indicata.
5350 Questa è una indicazione utile che permette di alleggerire il carico sulla
5351 cache, ed un programma può utilizzare periodicamente questa funzione per
5352 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
5353 nuovi dati utili.\footnote{la pagina di manuale riporta l'esempio dello
5354   streaming di file di grosse dimensioni, dove le pagine occupate dai dati già
5355   inviati possono essere tranquillamente scartate.}
5356
5357 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
5358 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
5359 specifica per le operazioni di scrittura,
5360 \funcd{posix\_fallocate},\footnote{la funzione è stata introdotta a partire
5361   dalle glibc 2.1.94.} che consente di preallocare dello spazio disco per
5362 assicurarsi che una seguente scrittura non fallisca, il suo prototipo,
5363 anch'esso disponibile solo se si definisce la macro \macro{\_XOPEN\_SOURCE} ad
5364 almeno 600, è:
5365 \begin{functions}  
5366   \headdecl{fcntl.h} 
5367
5368   \funcdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
5369   
5370   Richiede la allocazione di spazio disco per un file.
5371
5372   \bodydesc{La funzione restituisce 0 in caso di successo e direttamente un
5373     codice di errore, in caso di fallimento, in questo caso \var{errno} non
5374     viene impostata, ma sarà restituito direttamente uno dei valori:
5375     \begin{errlist}
5376     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5377       valido o non è aperto in scrittura.
5378     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
5379       zero.
5380     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
5381       la dimensione massima consentita per un file.
5382     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
5383       file regolare.
5384     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
5385       l'operazione. 
5386     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una pipe.
5387   \end{errlist}
5388   }
5389 \end{functions}
5390
5391 La funzione assicura che venga allocato sufficiente spazio disco perché sia
5392 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
5393 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
5394 se questa regione si estende oltre la fine del file le dimensioni di
5395 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
5396 successo la funzione è garantito che una successiva scrittura nella regione
5397 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
5398 effetto né sul contenuto, né sulla posizione corrente del file.
5399
5400 Ci si può chiedere a cosa possa servire una funzione come
5401 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
5402 eseguendo esplicitamente sul file la scrittura\footnote{usando \funcd{pwrite}
5403   per evitare spostamenti della posizione corrente sul file.} di una serie di
5404 zeri per l'estensione di spazio necessaria qualora il \itindex{sparse~file}
5405 file debba essere esteso o abbia dei \index{file!\textit{hole}}
5406 buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e che
5407   l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
5408   \itindex{sparse~file} \textit{sparse file} (vedi sez.~\ref{sec:file_lseek})
5409   senza una effettiva allocazione dello spazio disco.}  In realtà questa è la
5410 modalità con cui la funzione veniva realizzata nella prima versione fornita
5411 dalle \acr{glibc}, per cui la funzione costituiva in sostanza soltanto una
5412 standardizzazione delle modalità di esecuzione di questo tipo di allocazioni.
5413
5414 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
5415 scrittura su tutto lo spazio disco necessario, da fare al momento della
5416 richiesta di allocazione, pagandone il conseguente prezzo in termini di
5417 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
5418 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
5419 diventa effettivamente disponibile.
5420
5421 Per poter fare tutto questo è però necessario il supporto da parte del kernel,
5422 e questo è divenuto disponibile solo a partire dal kernel 2.6.23 in cui è
5423 stata introdotta la nuova \textit{system call} \func{fallocate},\footnote{non
5424   è detto che la funzione sia disponibile per tutti i filesystem, ad esempio
5425   per XFS il supporto è stato introdotto solo a partire dal kernel 2.6.25.}
5426 che consente di realizzare direttamente all'interno del kernel l'allocazione
5427 dello spazio disco così da poter realizzare una versione di
5428 \func{posix\_fallocate} con prestazioni molto più elevate.\footnote{nelle
5429   \acr{glibc} la nuova \textit{system call} viene sfruttata per la
5430   realizzazione di \func{posix\_fallocate} a partire dalla versione 2.10.}
5431
5432 Trattandosi di una funzione di servizio, ed ovviamente disponibile
5433 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
5434 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
5435   in maniera indiretta con l'ausilio di \func{syscall}, vedi
5436   sez.~\ref{sec:proc_syscall}, come \code{long fallocate(int fd, int mode,
5437       loff\_t offset, loff\_t len)}.} ma a partire dalle \acr{glibc} 2.10 è
5438   stato fornito un supporto esplicito; il suo prototipo è:
5439 \begin{functions}
5440   \headdecl{linux/fcntl.h} 
5441
5442   \funcdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
5443
5444   Prealloca dello spazio disco per un file.
5445   
5446   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di errore,
5447     nel qual caso \var{errno} può assumere i valori:
5448     \begin{errlist}
5449     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
5450       valido aperto in scrittura.
5451     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
5452       dimensioni massime di un file. 
5453     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
5454       minore o uguale a zero. 
5455     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
5456       o a una directory. 
5457     \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per l'operazione. 
5458     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
5459       a \param{fd} non supporta \func{fallocate}.
5460     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
5461       a \param{fd} non supporta l'operazione \param{mode}.
5462   \end{errlist} 
5463   ed inoltre \errval{EINTR}, \errval{EIO}.
5464 }
5465 \end{functions}
5466
5467 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
5468 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
5469 modalità di allocazione; al momento quest'ultimo può soltanto essere nullo o
5470 assumere il valore \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la
5471 dimensione del file\footnote{quella ottenuta nel campo \var{st\_size} di una
5472   struttura \struct{stat} dopo una chiamata a \texttt{fstat}.} non venga
5473 modificata anche quando la somma di \param{offset} e \param{len} eccede la
5474 dimensione corrente. 
5475
5476 Se \param{mode} è nullo invece la dimensione totale del file in caso di
5477 estensione dello stesso viene aggiornata, come richiesto per
5478 \func{posix\_fallocate}, ed invocata in questo modo si può considerare
5479 \func{fallocate} come l'implementazione ottimale di \func{posix\_fallocate} a
5480 livello di kernel.
5481
5482 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
5483 % http://kernelnewbies.org/Linux_2_6_23
5484
5485 % TODO non so dove trattarli, ma dal 2.6.39 ci sono i file handle, vedi
5486 % http://lwn.net/Articles/432757/ 
5487
5488
5489 % LocalWords:  dell'I locking multiplexing cap sez system call socket BSD GID
5490 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
5491 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
5492 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
5493 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
5494 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
5495 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
5496 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
5497 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
5498 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
5499 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
5500 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
5501 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
5502 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
5503 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
5504 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
5505 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
5506 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
5507 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
5508 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
5509 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
5510 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
5511 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
5512 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
5513 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
5514 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
5515 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
5516 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old SFD
5517 % LocalWords:  exec atime ctime mtime mprotect addr mremap address new Failed
5518 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
5519 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
5520 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
5521 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW HP EACCESS
5522 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
5523 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
5524 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
5525 % LocalWords:  CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl acquired
5526 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
5527 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
5528 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
5529 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
5530 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
5531 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
5532 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
5533 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
5534 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
5535 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
5536 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
5537 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs it
5538 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
5539 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat union
5540 % LocalWords:  conditions sigwait CLOEXEC signalfd sizemask SIGKILL SIGSTOP ssi
5541 % LocalWords:  sigwaitinfo FifoReporter Windows ptr sigqueue named timerfd TFD
5542 % LocalWords:  clockid CLOCK MONOTONIC REALTIME itimerspec interval Resource
5543 % LocalWords:  ABSTIME gettime temporarily unavailable SIGINT SIGQUIT SIGTERM
5544
5545
5546 %%% Local Variables: 
5547 %%% mode: latex
5548 %%% TeX-master: "gapil"
5549 %%% End: 
5550 % LocalWords:  sigfd fifofd break siginf names starting echo Message from Got
5551 % LocalWords:  message kill received means exit