Reindicizzazioni varie e riscrittura totale della sezione sul
[gapil.git] / tcpsock.tex
index c896d448780bd9561439b55abb3e3f4092cd809e..1fab77a4a59d28f9d7e100c41f34197f056715b8 100644 (file)
@@ -731,7 +731,7 @@ Si noti che si è usato \func{htonl} per assegnare il valore
 \const{INADDR\_ANY}, anche se, essendo questo nullo, il riordinamento è
 inutile.  Si tenga presente comunque che tutte le costanti \val{INADDR\_}
 (riportate in tab.~\ref{tab:TCP_ipv4_addr}) sono definite secondo
-\itindex{endianess} l'\textit{endianess} della macchina, ed anche se esse
+\itindex{endianness} l'\textit{endianness} della macchina, ed anche se esse
 possono essere invarianti rispetto all'ordinamento dei bit, è comunque buona
 norma usare sempre la funzione \func{htonl}.
 
@@ -839,7 +839,7 @@ nella chiamata della funzione sono le seguenti:
   secondi per un numero di volte che può essere stabilito dall'utente. Questo
   può essere fatto a livello globale con una opportuna
   \func{sysctl},\footnote{o più semplicemente scrivendo il valore voluto in
-    \procfile{/proc/sys/net/ipv4/tcp\_syn\_retries}, vedi
+    \sysctlfile{net/ipv4/tcp\_syn\_retries}, vedi
     sez.~\ref{sec:sock_ipv4_sysctl}.} e a livello di singolo socket con
   l'opzione \const{TCP\_SYNCNT} (vedi sez.~\ref{sec:sock_tcp_udp_options}). Il
   valore predefinito per la ripetizione dell'invio è di 5 volte, che comporta
@@ -973,9 +973,9 @@ indicare la lunghezza della coda delle connessioni complete. La lunghezza
 della coda delle connessioni incomplete può essere ancora controllata usando
 la funzione \func{sysctl} con il parametro \const{NET\_TCP\_MAX\_SYN\_BACKLOG}
 o scrivendola direttamente in
-\procfile{/proc/sys/net/ipv4/tcp\_max\_syn\_backlog}.  Quando si attiva la
+\sysctlfile{net/ipv4/tcp\_max\_syn\_backlog}.  Quando si attiva la
 protezione dei syncookies però (con l'opzione da compilare nel kernel e da
-attivare usando \procfile{/proc/sys/net/ipv4/tcp\_syncookies}) questo valore
+attivare usando \sysctlfile{net/ipv4/tcp\_syncookies}) questo valore
 viene ignorato e non esiste più un valore massimo.  In ogni caso in Linux il
 valore di \param{backlog} viene troncato ad un massimo di \const{SOMAXCONN} se
 è superiore a detta costante (che di default vale 128).\footnote{il valore di
@@ -1537,8 +1537,8 @@ quello in questione, non è opportuno bloccare un server nel servizio di un
 client per volta; per questo si ricorre alle capacità di multitasking del
 sistema.
 
-Come accennato anche in sez.~\ref{sec:proc_gen} una delle modalità più comuni
-di funzionamento da parte dei server è quella di usare la funzione \func{fork}
+Come spiegato in sez.~\ref{sec:proc_fork} una delle modalità più comuni di
+funzionamento da parte dei server è quella di usare la funzione \func{fork}
 per creare, ad ogni richiesta da parte di un client, un processo figlio che si
 incarichi della gestione della comunicazione.  Si è allora riscritto il server
 \textit{daytime} dell'esempio precedente in forma concorrente, inserendo anche
@@ -2010,7 +2010,7 @@ quando affronteremo il comportamento in caso di conclusioni anomale:
   restituendo un puntatore nullo che causa l'uscita dal ciclo di \code{while},
   così la funzione \code{ClientEcho} ritorna.
 \item al ritorno di \code{ClientEcho} ritorna anche la funzione \code{main}, e
-  come parte del processo terminazione tutti i file descriptor vengono chiusi
+  come parte del processo di terminazione tutti i file descriptor vengono chiusi
   (si ricordi quanto detto in sez.~\ref{sec:proc_term_conclusion}); questo
   causa la chiusura del socket di comunicazione; il client allora invierà un
   FIN al server a cui questo risponderà con un ACK.  A questo punto il client
@@ -2035,22 +2035,22 @@ quando affronteremo il comportamento in caso di conclusioni anomale:
 Tutto questo riguarda la connessione, c'è però da tenere conto dell'effetto
 del procedimento di chiusura del processo figlio nel server (si veda quanto
 esaminato in sez.~\ref{sec:proc_termination}). In questo caso avremo l'invio
-del segnale \const{SIGCHLD} al padre, ma dato che non si è installato un
+del segnale \signal{SIGCHLD} al padre, ma dato che non si è installato un
 gestore e che l'azione predefinita per questo segnale è quella di essere
 ignorato, non avendo predisposto la ricezione dello stato di terminazione,
-otterremo che il processo figlio entrerà nello stato di \index{zombie} zombie
-(si riveda quanto illustrato in sez.~\ref{sec:sig_sigchld}), come risulterà
-ripetendo il comando \cmd{ps}:
+otterremo che il processo figlio entrerà nello stato di \itindex{zombie}
+\textit{zombie} (si riveda quanto illustrato in sez.~\ref{sec:sig_sigchld}),
+come risulterà ripetendo il comando \cmd{ps}:
 \begin{verbatim}
  2356 pts/0    S      0:00 ./echod
  2359 pts/0    Z      0:00 [echod <defunct>]
 \end{verbatim}
 
-Dato che non è il caso di lasciare processi \index{zombie} zombie, occorrerà
-ricevere opportunamente lo stato di terminazione del processo (si veda
-sez.~\ref{sec:proc_wait}), cosa che faremo utilizzando \const{SIGCHLD} secondo
-quanto illustrato in sez.~\ref{sec:sig_sigchld}. Una prima modifica al nostro
-server è pertanto quella di inserire la gestione della terminazione dei
+Dato che non è il caso di lasciare processi \itindex{zombie} \textit{zombie},
+occorrerà ricevere opportunamente lo stato di terminazione del processo (si
+veda sez.~\ref{sec:proc_wait}), cosa che faremo utilizzando \signal{SIGCHLD}
+secondo quanto illustrato in sez.~\ref{sec:sig_sigchld}. Una prima modifica al
+nostro server è pertanto quella di inserire la gestione della terminazione dei
 processi figli attraverso l'uso di un gestore.  Per questo useremo la funzione
 \code{Signal} (che abbiamo illustrato in fig.~\ref{fig:sig_Signal_code}), per
 installare il gestore che riceve i segnali dei processi figli terminati già
@@ -2069,13 +2069,13 @@ di \errcode{EINTR}.
 
 Vediamo allora cosa comporta tutto questo nel nostro caso: quando si chiude il
 client, il processo figlio che gestisce la connessione terminerà, ed il padre,
-per evitare la creazione di zombie, riceverà il segnale \const{SIGCHLD}
-eseguendo il relativo gestore. Al ritorno del gestore però l'esecuzione nel
-padre ripartirà subito con il ritorno della funzione \func{accept} (a meno di
-un caso fortuito in cui il segnale arriva durante l'esecuzione del programma
-in risposta ad una connessione) con un errore di \errcode{EINTR}. Non avendo
-previsto questa eventualità il programma considera questo un errore fatale
-terminando a sua volta con un messaggio del tipo:
+per evitare la creazione di \itindex{zombie} \textit{zombie}, riceverà il
+segnale \signal{SIGCHLD} eseguendo il relativo gestore. Al ritorno del gestore
+però l'esecuzione nel padre ripartirà subito con il ritorno della funzione
+\func{accept} (a meno di un caso fortuito in cui il segnale arriva durante
+l'esecuzione del programma in risposta ad una connessione) con un errore di
+\errcode{EINTR}. Non avendo previsto questa eventualità il programma considera
+questo un errore fatale terminando a sua volta con un messaggio del tipo:
 \begin{verbatim}
 [root@gont sources]# ./echod -i
 accept error: Interrupted system call
@@ -2136,7 +2136,7 @@ codice completo di quest'ultimo si trova nel file
 
 La prima modifica effettuata è stata quella di introdurre una nuova opzione a
 riga di comando, \texttt{-c}, che permette di richiedere il comportamento
-compatibile nella gestione di \const{SIGCHLD} al posto della semantica BSD
+compatibile nella gestione di \signal{SIGCHLD} al posto della semantica BSD
 impostando la variabile \var{compat} ad un valore non nullo. Questa è
 preimpostata al valore nullo, cosicché se non si usa questa opzione il
 comportamento di default del server è di usare la semantica BSD. 
@@ -2165,7 +2165,7 @@ programma.
 
 Vediamo allora come è cambiato il nostro server; una volta definite le
 variabili e trattate le opzioni il primo passo (\texttt{\small 9--13}) è
-verificare la semantica scelta per la gestione di \const{SIGCHLD}, a seconda
+verificare la semantica scelta per la gestione di \signal{SIGCHLD}, a seconda
 del valore di \var{compat} (\texttt{\small 9}) si installa il gestore con la
 funzione \func{Signal} (\texttt{\small 10}) o con \texttt{SignalRestart}
 (\texttt{\small 12}), essendo quest'ultimo il valore di default.
@@ -2182,13 +2182,13 @@ numero di secondi da aspettare (il valore preimpostato è nullo).
 
 Si è potuto lasciare inalterata tutta la sezione di creazione del socket
 perché nel server l'unica chiamata ad una system call lenta, che può essere
-interrotta dall'arrivo di \const{SIGCHLD}, è quella ad \func{accept}, che è
+interrotta dall'arrivo di \signal{SIGCHLD}, è quella ad \func{accept}, che è
 l'unica funzione che può mettere il processo padre in stato di sleep nel
 periodo in cui un figlio può terminare; si noti infatti come le altre
 \index{system~call~lente} \textit{slow system call}\footnote{si ricordi la
   distinzione fatta in sez.~\ref{sec:sig_gen_beha}.} o sono chiamate prima di
 entrare nel ciclo principale, quando ancora non esistono processi figli, o
-sono chiamate dai figli stessi e non risentono di \const{SIGCHLD}.
+sono chiamate dai figli stessi e non risentono di \signal{SIGCHLD}.
 
 Per questo l'unica modifica sostanziale nel ciclo principale (\texttt{\small
   23--42}), rispetto precedente versione di fig.~\ref{fig:TCP_ServEcho_first},
@@ -2291,7 +2291,7 @@ stata accettata dal programma.
 
 Questo significa che, oltre alla interruzione da parte di un segnale, che
 abbiamo trattato in sez.~\ref{sec:TCP_child_hand} nel caso particolare di
-\const{SIGCHLD}, si possono ricevere altri errori non fatali all'uscita di
+\signal{SIGCHLD}, si possono ricevere altri errori non fatali all'uscita di
 \func{accept}, che come nel caso precedente, necessitano semplicemente la
 ripetizione della chiamata senza che si debba uscire dal programma. In questo
 caso anche la versione modificata del nostro server non sarebbe adatta, in
@@ -2420,7 +2420,7 @@ pacchetto.  Questo causerà la ricezione dell'eco nel client che lo stamperà a
 video.
 
 A questo punto noi procediamo ad interrompere l'esecuzione del server con un
-\texttt{C-c} (cioè con l'invio di \const{SIGTERM}): nel momento in cui
+\texttt{C-c} (cioè con l'invio di \signal{SIGTERM}): nel momento in cui
 facciamo questo vengono immediatamente generati altri due pacchetti. La
 terminazione del processo infatti comporta la chiusura di tutti i suoi file
 descriptor, il che comporta, per il socket che avevamo aperto, l'inizio della
@@ -2491,7 +2491,7 @@ flusso dei dati, dal punto di vista del funzionamento nei confronti delle
 funzioni di lettura e scrittura, i socket sono del tutto analoghi a delle
 pipe. Allora, da quanto illustrato in sez.~\ref{sec:ipc_pipes}, sappiamo che
 tutte le volte che si cerca di scrivere su una pipe il cui altro capo non è
-aperto il lettura il processo riceve un segnale di \const{SIGPIPE}, e questo è
+aperto il lettura il processo riceve un segnale di \signal{SIGPIPE}, e questo è
 esattamente quello che avviene in questo caso, e siccome non abbiamo un
 gestore per questo segnale, viene eseguita l'azione preimpostata, che è quella
 di terminare il processo.
@@ -2618,7 +2618,7 @@ Il risultato finale qui dipende dall'implementazione dello stack TCP, e nel
 caso di Linux anche dall'impostazione di alcuni dei parametri di sistema che
 si trovano in \file{/proc/sys/net/ipv4}, che ne controllano il comportamento:
 in questo caso in particolare da
-\procrelfile{/proc/sys/net/ipv4}{tcp\_retries2} (vedi
+\sysctlrelfile{net/ipv4}{tcp\_retries2} (vedi
 sez.~\ref{sec:sock_ipv4_sysctl}). Questo parametro infatti specifica il numero
 di volte che deve essere ritentata la ritrasmissione di un pacchetto nel mezzo
 di una connessione prima di riportare un errore di timeout.  Il valore
@@ -2826,7 +2826,7 @@ pronto per la scrittura sono le seguenti:
   bloccherà e restituirà un valore positivo pari al numero di byte accettati
   dal livello di trasporto.
 \item il lato in scrittura della connessione è stato chiuso. In questo caso
-  una operazione di scrittura sul socket genererà il segnale \const{SIGPIPE}.
+  una operazione di scrittura sul socket genererà il segnale \signal{SIGPIPE}.
 \item c'è stato un errore sul socket. In questo caso una operazione di
   scrittura non si bloccherà ma restituirà una condizione di errore ed
   imposterà opportunamente la variabile \var{errno}. Vedremo in
@@ -3073,23 +3073,23 @@ vuole operare e come secondo argomento un valore intero \param{how} che indica
 la modalità di chiusura del socket, quest'ultima può prendere soltanto tre
 valori: 
 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
-\item[\macro{SHUT\_RD}] chiude il lato in lettura del socket, non sarà più
+\item[\const{SHUT\_RD}] chiude il lato in lettura del socket, non sarà più
   possibile leggere dati da esso, tutti gli eventuali dati trasmessi
   dall'altro capo del socket saranno automaticamente scartati dal kernel, che,
   in caso di socket TCP, provvederà comunque ad inviare i relativi segmenti di
   ACK.
-\item[\macro{SHUT\_WR}] chiude il lato in scrittura del socket, non sarà più
+\item[\const{SHUT\_WR}] chiude il lato in scrittura del socket, non sarà più
   possibile scrivere dati su di esso. Nel caso di socket TCP la chiamata causa
   l'emissione di un segmento FIN, secondo la procedura chiamata
   \itindex{half-close} \textit{half-close}. Tutti i dati presenti nel buffer
   di scrittura prima della chiamata saranno inviati, seguiti dalla sequenza di
   chiusura illustrata in sez.~\ref{sec:TCP_conn_term}.
-\item[\macro{SHUT\_RDWR}] chiude sia il lato in lettura che quello in
+\item[\const{SHUT\_RDWR}] chiude sia il lato in lettura che quello in
   scrittura del socket. È equivalente alla chiamata in sequenza con
-  \macro{SHUT\_RD} e \macro{SHUT\_WR}.
+  \const{SHUT\_RD} e \const{SHUT\_WR}.
 \end{basedescript}
 
-Ci si può chiedere quale sia l'utilità di avere introdotto \macro{SHUT\_RDWR}
+Ci si può chiedere quale sia l'utilità di avere introdotto \const{SHUT\_RDWR}
 quando questa sembra rendere \funcd{shutdown} del tutto equivalente ad una
 \func{close}. In realtà non è così, esiste infatti un'altra differenza con
 \func{close}, più sottile. Finora infatti non ci siamo presi la briga di
@@ -3116,7 +3116,7 @@ dato che restano altri riferimenti attivi, uno al socket connesso nel figlio
 ed uno a quello in ascolto nel padre.
 
 Questo non avviene affatto se si usa \func{shutdown} con argomento
-\macro{SHUT\_RDWR} al posto di \func{close}; in questo caso infatti la
+\const{SHUT\_RDWR} al posto di \func{close}; in questo caso infatti la
 chiusura del socket viene effettuata immediatamente, indipendentemente dalla
 presenza di altri riferimenti attivi, e pertanto sarà efficace anche per tutti
 gli altri file descriptor con cui, nello stesso o in altri processi, si fa
@@ -3601,7 +3601,7 @@ Da fare.
 % LocalWords:  lsof SOCK sys int sockfd const struct sockaddr serv addr socklen
 % LocalWords:  addrlen errno EBADF descriptor EINVAL ENOTSOCK EACCES EADDRINUSE
 % LocalWords:  EADDRNOTAVAIL EFAULT ENOTDIR ENOENT ENOMEM ELOOP ENOSR EROFS RPC
-% LocalWords:  portmapper htonl tab endianess BROADCAST broadcast any extern fd
+% LocalWords:  portmapper htonl tab endianness BROADCAST broadcast any extern fd
 % LocalWords:  ADRR INIT DGRAM SEQPACKET servaddr ECONNREFUSED ETIMEDOUT EAGAIN
 % LocalWords:  ENETUNREACH EINPROGRESS EALREADY EAFNOSUPPORT EPERM EISCONN proc
 % LocalWords:  sysctl filesystem syn retries reset ICMP backlog EOPNOTSUPP RECV