Finita la parte sulle varie setXXXent &C iniziata getaddrinfo
[gapil.git] / socket.tex
index 37bc64204ebca686d04ef98cd0be2a6b990ac4a2..968a18c510f3e935866af9b0581e62f6a9033b1d 100644 (file)
@@ -1,6 +1,6 @@
 %% socket.tex
 %%
-%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
@@ -13,8 +13,8 @@
 
 In questo capitolo inizieremo a spiegare le caratteristiche salienti della
 principale interfaccia per la programmazione di rete, quella dei
-\textit{socket}, che, pur essendo nata in ambiente Unix è usata ormai da tutti
-i sistemi operativi.
+\textit{socket}, che, pur essendo nata in ambiente Unix, è usata ormai da
+tutti i sistemi operativi.
 
 Dopo una breve panoramica sulle caratteristiche di questa interfaccia vedremo
 come creare un socket e come collegarlo allo specifico protocollo di rete che
@@ -37,13 +37,13 @@ I \textit{socket}\footnote{una traduzione letterale potrebbe essere
   \textsl{presa}, ma essendo universalmente noti come \textit{socket}
   utilizzeremo sempre la parola inglese.} sono uno dei principali meccanismi
 di comunicazione utilizzato in ambito Unix, e li abbiamo brevemente incontrati
-in \secref{sec:ipc_socketpair}, fra i vari meccanismi di intercominazione fra
-processi. Un socket costituisce in sostanza un canale di comunicazione fra due
-processi su cui si possono leggere e scrivere dati analogo a quello di una
-pipe (vedi \secref{sec:ipc_pipes}) ma, a differenza di questa e degli altri
-meccanismi esaminati nel capitolo \capref{cha:IPC}, i socket non sono limitati
-alla comunicazione fra processi che girano sulla stessa macchina, ma possono
-realizzare la comunicazione anche attraverso la rete.
+in sez.~\ref{sec:ipc_socketpair}, fra i vari meccanismi di intercominazione
+fra processi. Un socket costituisce in sostanza un canale di comunicazione fra
+due processi su cui si possono leggere e scrivere dati analogo a quello di una
+pipe (vedi sez.~\ref{sec:ipc_pipes}) ma, a differenza di questa e degli altri
+meccanismi esaminati nel capitolo cap.~\ref{cha:IPC}, i socket non sono
+limitati alla comunicazione fra processi che girano sulla stessa macchina, ma
+possono realizzare la comunicazione anche attraverso la rete.
 
 Quella dei socket costituisce infatti la principale interfaccia usata nella
 programmazione di rete.  La loro origine risale al 1983, quando furono
@@ -63,7 +63,7 @@ di cui tratteremo in maniera pi
 \label{sec:sock_gen}
 
 Per capire il funzionamento dei socket occorre avere presente il funzionamento
-dei protocolli di rete (vedi \capref{cha:network}), ma l'interfaccia è del
+dei protocolli di rete (vedi cap.~\ref{cha:network}), ma l'interfaccia è del
 tutto generale e benché le problematiche (e quindi le modalità di risolvere i
 problemi) siano diverse a seconda del tipo di protocollo di comunicazione
 usato, le funzioni da usare restano le stesse.
@@ -115,8 +115,8 @@ il tipo di comunicazione che esso deve utilizzare.
 La creazione di un socket avviene attraverso l'uso della funzione
 \funcd{socket}; essa restituisce un \textit{file descriptor}\footnote{del
   tutto analogo a quelli che si ottengono per i file di dati e le pipe,
-  descritti in \secref{sec:file_fd}.} che serve come riferimento al socket; il
-suo prototipo è:
+  descritti in sez.~\ref{sec:file_fd}.} che serve come riferimento al socket;
+il suo prototipo è:
 \begin{prototype}{sys/socket.h}{int socket(int domain, int type, int protocol)}
 
   Apre un socket.
@@ -141,9 +141,9 @@ suo prototipo 
 \end{prototype}
 
 La funzione ha tre argomenti, \param{domain} specifica il dominio del socket
-(definisce cioè, come vedremo in \secref{sec:sock_domain}, la famiglia di
+(definisce cioè, come vedremo in sez.~\ref{sec:sock_domain}, la famiglia di
 protocolli usata), \param{type} specifica il tipo di socket (definisce cioè,
-come vedremo in \secref{sec:sock_type}, lo stile di comunicazione) e
+come vedremo in sez.~\ref{sec:sock_type}, lo stile di comunicazione) e
 \param{protocol} il protocollo; in genere quest'ultimo è indicato
 implicitamente dal tipo di socket, per cui di norma questo valore viene messo
 a zero (con l'eccezione dei \textit{raw socket}).
@@ -230,7 +230,7 @@ valori numerici.\footnote{in Linux, come si pu
 I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di
 indirizzi, sono definiti dall'header \textit{socket.h}. Un elenco delle
 famiglie di protocolli disponibili in Linux è riportato in
-\tabref{tab:net_pf_names}.\footnote{l'elenco indica tutti i protocolli
+tab.~\ref{tab:net_pf_names}.\footnote{l'elenco indica tutti i protocolli
   definiti; fra questi però saranno utilizzabili solo quelli per i quali si è
   compilato il supporto nel kernel (o si sono caricati gli opportuni moduli),
   viene definita anche una costante \const{PF\_MAX} che indica il valore
@@ -261,9 +261,9 @@ seguenti costanti:
   altro socket. I dati vengono ricevuti e trasmessi come un flusso continuo di
   byte (da cui il nome \textit{stream}).
 \item[\const{SOCK\_DGRAM}] Viene usato per trasmettere pacchetti di dati
-  (\textit{datagram}) di lunghezza massima fissata indirizzati singolarmente,
-  Non esiste una connessione e la trasmissione è effettuata in maniera non
-  affidabile.
+  (\textit{datagram}) di lunghezza massima prefissata, indirizzati
+  singolarmente. Non esiste una connessione e la trasmissione è effettuata in
+  maniera non affidabile.
 \item[\const{SOCK\_SEQPACKET}] Provvede un canale di trasmissione di dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati possono vengono trasmessi per pacchetti di dimensione
@@ -320,7 +320,7 @@ elencati.
   \label{tab:sock_sock_valid_combinations}
 \end{table}
 
-In \secref{tab:sock_sock_valid_combinations} sono mostrate le combinazioni
+In tab.~\ref{tab:sock_sock_valid_combinations} sono mostrate le combinazioni
 valide possibili per le principali famiglie di protocolli. Per ogni
 combinazione valida si è indicato il tipo di protocollo, o la parola
 \textsl{si} qualora non il protocollo non abbia un nome definito, mentre si
@@ -356,17 +356,12 @@ questi puntatori, il C moderno risolve questo problema coi i puntatori
 generici (i \ctyp{void *}), ma l'interfaccia dei socket è antecedente alla
 definizione dello standard ANSI C, e per questo nel 1982 fu scelto di definire
 una struttura generica per gli indirizzi dei socket, \struct{sockaddr}, che si
-è riportata in \figref{fig:sock_sa_gen_struct}.
+è riportata in fig.~\ref{fig:sock_sa_gen_struct}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sockaddr {
-    sa_family_t  sa_family;     /* address family: AF_xxx */
-    char         sa_data[14];   /* address (protocol-specific) */
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr.h}
   \end{minipage} 
   \caption{La struttura generica degli indirizzi dei socket
     \structd{sockaddr}.} 
@@ -379,7 +374,7 @@ invocano dette funzioni passando l'indirizzo di un protocollo specifico
 occorrerà eseguire una conversione del relativo puntatore.
 
 I tipi di dati che compongono la struttura sono stabiliti dallo standard
-POSIX.1g e li abbiamo riassunti in \tabref{tab:sock_data_types} con i
+POSIX.1g e li abbiamo riassunti in tab.~\ref{tab:sock_data_types} con i
 rispettivi file di include in cui sono definiti; la struttura è invece
 definita nell'include file \file{sys/socket.h}.
 
@@ -437,22 +432,12 @@ I socket di tipo \const{PF\_INET} vengono usati per la comunicazione
 attraverso internet; la struttura per gli indirizzi per un socket internet (se
 si usa IPv4) è definita come \struct{sockaddr\_in} nell'header file
 \file{netinet/in.h} ed ha la forma mostrata in
-\figref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g.
+fig.~\ref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g.
 
 \begin{figure}[!htb]
   \footnotesize\centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sockaddr_in {
-    sa_family_t     sin_family; /* address family: AF_INET */
-    in_port_t       sin_port;   /* port in network byte order */
-    struct in_addr  sin_addr;   /* internet address */
-};
-/* Internet address. */
-struct in_addr {
-    in_addr_t       s_addr;     /* address in network byte order */
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr_in.h}
   \end{minipage} 
   \caption{La struttura degli indirizzi dei socket internet (IPv4)
     \structd{sockaddr\_in}.}
@@ -461,7 +446,7 @@ struct in_addr {
 
 L'indirizzo di un socket internet (secondo IPv4) comprende l'indirizzo
 internet di un'interfaccia più un \textsl{numero di porta} (affronteremo in
-dettaglio il significato di questi numeri in \secref{sec:TCPel_port_num}).  Il
+dettaglio il significato di questi numeri in sez.~\ref{sec:TCP_port_num}).  Il
 protocollo IP non prevede numeri di porta, che sono utilizzati solo dai
 protocolli di livello superiore come TCP e UDP. Questa struttura però viene
 usata anche per i socket RAW che accedono direttamente al livello di IP, nel
@@ -473,21 +458,21 @@ specifica il \textsl{numero di porta}. I numeri di porta sotto il 1024 sono
 chiamati \textsl{riservati} in quanto utilizzati da servizi standard e
 soltanto processi con i privilegi di amministratore (con user-ID effettivo
 uguale a zero) o con la capability \texttt{CAP\_NET\_BIND\_SERVICE} possono
-usare la funzione \func{bind} (che vedremo in \secref{sec:TCPel_func_bind}) su
+usare la funzione \func{bind} (che vedremo in sez.~\ref{sec:TCP_func_bind}) su
 queste porte.
 
 Il membro \var{sin\_addr} contiene un indirizzo internet, e viene acceduto sia
 come struttura (un resto di una implementazione precedente in cui questa era
 una \direct{union} usata per accedere alle diverse classi di indirizzi) che
-direttamente come intero. In \file{netinet/in.h} vengono definiti anche alcune
-costanti per alcuni indirizzi speciali, che vedremo in
-\tabref{tab:TCPel_ipv4_addr}.
+direttamente come intero. In \file{netinet/in.h} vengono definite anche alcune
+costanti che identificano alcuni indirizzi speciali, riportati in
+tab.~\ref{tab:TCP_ipv4_addr}, che reincontreremo più avanti.
 
 Infine occorre sottolineare che sia gli indirizzi che i numeri di porta devono
 essere specificati in quello che viene chiamato \textit{network order}, cioè
 con i bit ordinati in formato \textit{big endian}, questo comporta la
 necessità di usare apposite funzioni di conversione per mantenere la
-portabilità del codice (vedi \secref{sec:sock_addr_func} per i dettagli del
+portabilità del codice (vedi sez.~\ref{sec:sock_addr_func} per i dettagli del
 problema e le relative soluzioni).
 
 
@@ -498,23 +483,12 @@ Essendo IPv6 un'estensione di IPv4, i socket di tipo \const{PF\_INET6} sono
 sostanzialmente identici ai precedenti; la parte in cui si trovano
 praticamente tutte le differenze fra i due socket è quella della struttura
 degli indirizzi; la sua definizione, presa da \file{netinet/in.h}, è riportata
-in \figref{fig:sock_sa_ipv6_struct}.
+in fig.~\ref{fig:sock_sa_ipv6_struct}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sockaddr_in6 {
-    uint16_t        sin6_family;   /* AF_INET6 */
-    in_port_t       sin6_port;     /* port number */
-    uint32_t        sin6_flowinfo; /* IPv6 flow information */
-    struct in6_addr sin6_addr;     /* IPv6 address */
-    uint32_t        sin6_scope_id; /* Scope id (new in 2.4) */
-};
-struct in6_addr {
-    uint8_t       s6_addr[16];   /* IPv6 address */
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr_in6.h}
   \end{minipage} 
   \caption{La struttura degli indirizzi dei socket IPv6 
     \structd{sockaddr\_in6}.}
@@ -526,17 +500,17 @@ il campo \var{sin6\_port} 
 il campo \var{sin6\_flowinfo} è a sua volta diviso in tre parti di cui i 24
 bit inferiori indicano l'etichetta di flusso, i successivi 4 bit la priorità e
 gli ultimi 4 sono riservati. Questi valori fanno riferimento ad alcuni campi
-specifici dell'header dei pacchetti IPv6 (vedi \secref{sec:IP_ipv6head}) ed il
-loro uso è sperimentale.
+specifici dell'header dei pacchetti IPv6 (vedi sez.~\ref{sec:IP_ipv6head}) ed
+il loro uso è sperimentale.
 
-Il campo \var{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6, infine
-il campo \var{sin6\_scope\_id} è un campo introdotto in Linux con il kernel
-2.4, per gestire alcune operazioni riguardanti il multicasting.
-Si noti che questa struttura ha una dimensione maggiore della struttura
-\struct{sockaddr} generica vista in \figref{fig:sock_sa_gen_struct}, quindi
-occorre stare attenti a non avere fatto assunzioni riguardo alla possibilità
-di contenere i dati nelle dimensioni di quest'ultima.
+Il campo \var{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6,
+espresso da un vettore di 16 byte. Infine il campo \var{sin6\_scope\_id} è un
+campo introdotto in Linux con il kernel 2.4, per gestire alcune operazioni
+riguardanti il multicasting.  Si noti infine che \struct{sockaddr\_in6} ha una
+dimensione maggiore della struttura \struct{sockaddr} generica di
+fig.~\ref{fig:sock_sa_gen_struct}, quindi occorre stare attenti a non avere
+fatto assunzioni riguardo alla possibilità di contenere i dati nelle
+dimensioni di quest'ultima.
 
 
 \subsection{La struttura degli indirizzi locali}
@@ -547,21 +521,15 @@ comunicazione fra processi che stanno sulla stessa macchina (per questo
 vengono chiamati \textit{local domain} o anche \textit{Unix domain}); essi
 hanno la caratteristica ulteriore di poter essere creati anche in maniera
 anonima attraverso la funzione \func{socketpair} (che abbiamo trattato in
-\secref{sec:ipc_socketpair}).  Quando però si vuole fare riferimento esplicito
-ad uno di questi socket si deve usare una struttura degli indirizzi di tipo
-\struct{sockaddr\_un}, la cui definizione si è riportata in
-\secref{fig:sock_sa_local_struct}.
+sez.~\ref{sec:ipc_socketpair}).  Quando però si vuole fare riferimento
+esplicito ad uno di questi socket si deve usare una struttura degli indirizzi
+di tipo \struct{sockaddr\_un}, la cui definizione si è riportata in
+fig.~\ref{fig:sock_sa_local_struct}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-#define UNIX_PATH_MAX    108
-struct sockaddr_un {
-    sa_family_t  sun_family;              /* AF_UNIX */
-    char         sun_path[UNIX_PATH_MAX]; /* pathname */
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr_un.h}
   \end{minipage} 
   \caption{La struttura degli indirizzi dei socket locali (detti anche
     \textit{unix domain}) \structd{sockaddr\_un} definita in \file{sys/un.h}.}
@@ -597,23 +565,13 @@ per \param{protocol} 
 
 Gli indirizzi AppleTalk devono essere specificati tramite una struttura
 \struct{sockaddr\_atalk}, la cui definizione è riportata in
-\figref{fig:sock_sa_atalk_struct}; la struttura viene dichiarata includendo il
-file \file{netatalk/at.h}.
+fig.~\ref{fig:sock_sa_atalk_struct}; la struttura viene dichiarata includendo
+il file \file{netatalk/at.h}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sockaddr_atalk {
-    sa_family_t     sat_family; /* address family */
-    uint8_t         sat_port;   /* port */
-    struct at_addr  sat_addr;   /* net/node */
-};
-struct at_addr {
-    uint16_t        s_net;
-    uint8_t         s_node;
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr_atalk.h}
   \end{minipage} 
   \caption{La struttura degli indirizzi dei socket AppleTalk 
     \structd{sockaddr\_atalk}.}
@@ -626,7 +584,7 @@ inferiori a 129 sono usati per le \textsl{porte riservate}, e possono essere
 usati solo da processi con i privilegi di amministratore o con la capability
 \const{CAP\_NET\_BIND\_SERVICE}. L'indirizzo remoto è specificato nella
 struttura \var{sat\_addr}, e deve essere in \textit{network order} (vedi
-\secref{sec:sock_endianess}); esso è composto da un parte di rete data dal
+sez.~\ref{sec:sock_endianess}); esso è composto da un parte di rete data dal
 campo \var{s\_net}, che può assumere il valore \const{AT\_ANYNET}, che indica
 una rete generica e vale anche per indicare la rete su cui si è, il singolo
 nodo è indicato da \var{s\_node}, e può prendere il valore generico
@@ -684,17 +642,7 @@ occorre usare la funzione \func{bind} per agganciare il socket a quest'ultima.
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sockaddr_ll {
-    unsigned short  sll_family;    /* Always AF_PACKET */
-    unsigned short  sll_protocol;  /* Physical layer protocol */
-    int             sll_ifindex;   /* Interface number */
-    unsigned short  sll_hatype;    /* Header type */
-    unsigned char   sll_pkttype;   /* Packet type */
-    unsigned char   sll_halen;     /* Length of address */
-    unsigned char   sll_addr[8];   /* Physical layer address */
-};
-    \end{lstlisting}
+    \includestruct{listati/sockaddr_ll.h}
   \end{minipage} 
   \caption{La struttura \structd{sockaddr\_ll} degli indirizzi dei
     \textit{packet socket}.}
@@ -703,7 +651,7 @@ struct sockaddr_ll {
 
 Nel caso dei \textit{packet socket} la struttura degli indirizzi è di tipo
 \struct{sockaddr\_ll}, e la sua definizione è riportata in
-\figref{fig:sock_sa_packet_struct}; essa però viene ad assumere un ruolo
+fig.~\ref{fig:sock_sa_packet_struct}; essa però viene ad assumere un ruolo
 leggermente diverso rispetto a quanto visto finora per gli altri tipi di
 socket.  Infatti se il socket è di tipo \const{SOCK\_RAW} si deve comunque
 scrivere tutto direttamente nel pacchetto, quindi la struttura non serve più a
@@ -784,12 +732,11 @@ cos
 \label{sec:sock_addr_func}
 
 In questa sezione tratteremo delle varie funzioni usate per manipolare gli
-indirizzi, limitandoci però agli indirizzi internet.
-
-Come accennato gli indirizzi e i numeri di porta usati nella rete devono
-essere forniti in formato opportuno (il \textit{network order}). Per capire
-cosa significa tutto ciò occorre introdurre un concetto generale che tornerà
-utile anche in seguito.
+indirizzi, limitandoci però agli indirizzi internet.  Come accennato gli
+indirizzi e i numeri di porta usati nella rete devono essere forniti in
+formato opportuno (il \textit{network order}). Per capire cosa significa tutto
+ciò occorre introdurre un concetto generale che tornerà utile anche in
+seguito.
 
 
 \subsection{La \textit{endianess}\index{endianess}}
@@ -801,22 +748,56 @@ due modi, chiamati rispettivamente \textit{big endian} e \textit{little
 variabili intere (ed in genere in diretta corrispondenza a come sono poi in
 realtà cablati sui bus interni del computer).
 
-Per capire meglio il problema si consideri un intero a 16 bit scritto in una
-locazione di memoria posta ad un certo indirizzo. I singoli bit possono essere
-disposti un memoria in due modi: a partire dal più significativo o a partire
-dal meno significativo. Così nel primo caso si troverà il byte che contiene i
-bit più significativi all'indirizzo menzionato e il byte con i bit meno
-significativi nell'indirizzo successivo; questo ordinamento è detto
-\textit{little endian} dato che il dato finale è la parte ``piccola'' del
-numero. Il caso opposto, in cui si parte dal bit meno significativo è detto
-per lo stesso motivo \textit{big endian}.
+Per capire meglio il problema si consideri un intero a 32 bit scritto in una
+locazione di memoria posta ad un certo indirizzo. Come illustrato in
+fig.~\ref{fig:sock_endianess} i singoli bit possono essere disposti un memoria
+in due modi: a partire dal più significativo o a partire dal meno
+significativo.  Così nel primo caso si troverà il byte che contiene i bit più
+significativi all'indirizzo menzionato e il byte con i bit meno significativi
+nell'indirizzo successivo; questo ordinamento è detto \textit{big endian},
+dato che si trova per prima la parte più grande. Il caso opposto, in cui si
+parte dal bit meno significativo è detto per lo stesso motivo \textit{little
+  endian}.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=3cm]{img/endianess}
+  \caption{Schema della disposizione dei dati in memoria a seconda della
+    \textit{endianess}\index{endianess}.}
+  \label{fig:sock_endianess}
+\end{figure}
+
+Si può allora verificare quale tipo di endianess usa il proprio computer con
+un programma elementare che si limita ad assegnare un valore ad una variabile
+per poi ristamparne il contenuto leggendolo un byte alla volta. Il codice di
+detto programma, \file{endtest.c}, è nei sorgenti allegati, allora se lo
+eseguiamo su un PC otterremo:
+\begin{verbatim}
+[piccardi@gont sources]$ ./endtest
+Using value ABCDEF01
+val[0]= 1
+val[1]=EF
+val[2]=CD
+val[3]=AB
+\end{verbatim}%$
+mentre su di un Mac avremo:
+\begin{verbatim}
+piccardi@anarres:~/gapil/sources$ ./endtest
+Using value ABCDEF01
+val[0]=AB
+val[1]=CD
+val[2]=EF
+val[3]= 1
+\end{verbatim}%$
+
 
 La \textit{endianess}\index{endianess} di un computer dipende essenzialmente
 dalla architettura hardware usata; Intel e Digital usano il \textit{little
   endian}, Motorola, IBM, Sun (sostanzialmente tutti gli altri) usano il
-\textit{big endian}. Il formato della rete è anch'esso \textit{big endian},
-altri esempi di uso di questi formati sono quello del bus PCI, che è
-\textit{little endian}, o quello del bus VME che è \textit{big endian}.
+\textit{big endian}. Il formato dei dati contenuti nelle intestazioni dei
+protocolli di rete è anch'esso \textit{big endian}; altri esempi di uso di
+questi due diversi formati sono quello del bus PCI, che è \textit{little
+  endian}, o quello del bus VME che è \textit{big endian}.
 
 Esistono poi anche dei processori che possono scegliere il tipo di formato
 all'avvio e alcuni che, come il PowerPC o l'Intel i860, possono pure passare
@@ -825,21 +806,47 @@ in Linux l'ordinamento 
 resta sempre lo stesso, anche quando il processore permetterebbe di eseguire
 questi cambiamenti.
 
+Per controllare quale tipo di ordinamento si ha sul proprio computer si è
+scritta una piccola funzione di controllo, il cui codice è riportato
+fig.~\ref{fig:sock_endian_code}, che restituisce un valore nullo (falso) se
+l'architettura è \textit{big endian} ed uno non nullo (vero) se l'architettura
+è \textit{little endian}.
+
+\begin{figure}[htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/endian.c}
+  \end{minipage} 
+  \normalsize
+  \caption{La funzione \func{endian}, usata per controllare il tipo di
+    architettura della macchina.}
+  \label{fig:sock_endian_code}
+\end{figure}
+
+Come si vede la funzione è molto semplice, e si limita, una volta assegnato
+(\texttt{\small 9}) un valore di test pari a \texttt{0xABCD} ad una variabile
+di tipo \ctyp{short} (cioè a 16 bit), a ricostruirne una copia byte a byte.
+Per questo prima (\texttt{\small 10}) si definisce il puntatore \var{ptr} per
+accedere al contenuto della prima variabile, ed infine calcola (\texttt{\small
+  11}) il valore della seconda assumendo che il primo byte sia quello meno
+significativo (cioè, per quanto visto in fig.~\ref{fig:sock_endianess}, che sia
+\textit{little endian}). Infine la funzione restituisce (\texttt{\small 12})
+il valore del confonto delle due variabili. 
+
+
+
+
 \subsection{Le funzioni per il riordinamento}
 \label{sec:sock_func_ord}
 
 Il problema connesso all'endianess\index{endianess} è che quando si passano
 dei dati da un tipo di architettura all'altra i dati vengono interpretati in
 maniera diversa, e ad esempio nel caso dell'intero a 16 bit ci si ritroverà
-con i due byte in cui è suddiviso scambiati di posto, e ne sarà quindi
-invertito l'ordine di lettura per cui, per riavere il valore originale,
-dovranno essere rovesciati.
-
-Per questo motivo si usano delle funzioni di conversione che servono a tener
-conto automaticamente della possibile differenza fra l'ordinamento usato sul
-computer e quello che viene usato nelle trasmissione sulla rete; queste
-funzioni sono \funcd{htonl}, \funcd{htons}, \funcd{ntonl} e \funcd{ntons} ed i
-rispettivi prototipi sono:
+con i due byte in cui è suddiviso scambiati di posto.  Per questo motivo si
+usano delle funzioni di conversione che servono a tener conto automaticamente
+della possibile differenza fra l'ordinamento usato sul computer e quello che
+viene usato nelle trasmissione sulla rete; queste funzioni sono \funcd{htonl},
+\funcd{htons}, \funcd{ntohl} e \funcd{ntohs} ed i rispettivi prototipi sono:
 \begin{functions}
   \headdecl{netinet/in.h}
   \funcdecl{unsigned long int htonl(unsigned long int hostlong)} 
@@ -850,11 +857,11 @@ rispettivi prototipi sono:
   Converte l'intero a 16 bit \param{hostshort} dal formato della macchina a
   quello della rete.
 
-  \funcdecl{unsigned long int ntonl(unsigned long int netlong)}
+  \funcdecl{unsigned long int ntohl(unsigned long int netlong)}
   Converte l'intero a 32 bit \param{netlong} dal formato della rete a quello
   della macchina.
 
-  \funcdecl{unsigned sort int ntons(unsigned short int netshort)}
+  \funcdecl{unsigned sort int ntohs(unsigned short int netshort)}
   Converte l'intero a 16 bit \param{netshort} dal formato della rete a quello
   della macchina.
   
@@ -917,7 +924,7 @@ di \func{inet\_aton}.
 
 La funzione \func{inet\_aton} converte la stringa puntata da \param{src}
 nell'indirizzo binario che viene memorizzato nell'opportuna struttura
-\struct{in\_addr} (si veda \secref{fig:sock_sa_ipv4_struct}) situata
+\struct{in\_addr} (si veda fig.~\ref{fig:sock_sa_ipv4_struct}) situata
 all'indirizzo dato dall'argomento \param{dest} (è espressa in questa forma in
 modo da poterla usare direttamente con il puntatore usato per passare la
 struttura degli indirizzi). La funzione restituisce 0 in caso di successo e 1
 
 Il formato usato per gli indirizzi in formato di presentazione è la notazione
 \textit{dotted decimal} per IPv4 e quello descritto in
-\secref{sec:IP_ipv6_notation} per IPv6.
+sez.~\ref{sec:IP_ipv6_notation} per IPv6.
 
 \index{socket|)}
 
 
-\section{Un esempio di applicazione}
-\label{sec:sock_appplication}
-
-Per evitare di rendere questa introduzione ai socket puramente teorica
-iniziamo con il mostrare un esempio di un client TCP elementare.  Prima di
-passare agli esempi del client e del server, ritorniamo con maggiori dettagli
-su una caratteristica delle funzioni di I/O, già accennata in
-\secref{sec:file_read} e \secref{sec:file_write}, che nel caso dei socket è
-particolarmente rilevante, e che ci tornerà utile anche in seguito.
-
-
-\subsection{Il comportamento delle funzioni di I/O}
-\label{sec:sock_io_behav}
-
-Una cosa che si tende a dimenticare quando si ha a che fare con i socket è che
-le funzioni di input/output non sempre hanno lo stesso comportamento che
-avrebbero con i normali file di dati (in particolare questo accade per i
-socket di tipo stream).
-
-Infatti con i socket è comune che funzioni come \func{read} o \func{write}
-possano restituire in input o scrivere in output un numero di byte minore di
-quello richiesto. Come già accennato in \secref{sec:file_read} questo è un
-comportamento normale per l'I/O su file, ma con i normali file di dati il
-problema si avverte solo quando si incontra la fine del file, in generale non
-è così, e con i socket questo è particolarmente evidente.
-
-Quando ci si trova ad affrontare questo comportamento tutto quello che si deve
-fare è semplicemente ripetere la lettura (o la scrittura) per la quantità di
-byte restanti, tenendo conto che le funzioni si possono bloccare se i dati non
-sono disponibili: è lo stesso comportamento che si può avere scrivendo più di
-\const{PIPE\_BUF} byte in una pipe (si riveda quanto detto in
-\secref{sec:ipc_pipes}).
-
-\begin{figure}[htb]
-  \centering
-  \footnotesize
-  \begin{lstlisting}{}
-#include <unistd.h>
-
-ssize_t FullRead(int fd, void *buf, size_t count) 
-{
-    size_t nleft;
-    ssize_t nread;
-    nleft = count;
-    while (nleft > 0) {             /* repeat until no left */
-        if ( (nread = read(fd, buf, nleft)) < 0) {
-            if (errno == EINTR) {   /* if interrupted by system call */
-                continue;           /* repeat the loop */
-            } else {
-                return(nread);      /* otherwise exit */
-            }
-        } else if (nread == 0) {    /* EOF */
-            break;                  /* break loop here */ 
-        }
-        nleft -= nread;             /* set left to read */
-        buf +=nread;                /* set pointer */
-    }
-    return (count - nleft);
-}  
-  \end{lstlisting}
-  \caption{Funzione \func{FullRead}, legge esattamente \var{count} byte da un
-    file descriptor, iterando opportunamente le letture.}
-  \label{fig:sock_FullRead_code}
-\end{figure}
-
-Per questo motivo, seguendo l'esempio di W. R. Stevens in \cite{UNP1}, si sono
-definite due funzioni, \func{FullRead} e \func{FullWrite}, che eseguono
-lettura e scrittura tenendo conto di questa caratteristica, ed in grado di
-ritornare dopo avere letto o scritto esattamente il numero di byte
-specificato; il sorgente è riportato rispettivamente in
-\figref{fig:sock_FullRead_code} e \figref{fig:sock_FullWrite_code} ed è
-disponibile fra i sorgenti allegati alla guida nei file \file{FullRead.c} e
-\file{FullWrite.c}.
-
-\begin{figure}[htb]
-  \centering
-  \footnotesize
-  \begin{lstlisting}{}
-#include <unistd.h>
-
-ssize_t FullWrite(int fd, const void *buf, size_t count) 
-{
-    size_t nleft;
-    ssize_t nwritten;
-
-    nleft = count;
-    while (nleft > 0) {             /* repeat until no left */
-        if ( (nwritten = write(fd, buf, nleft)) < 0) {
-            if (errno == EINTR) {   /* if interrupted by system call */
-                continue;           /* repeat the loop */
-            } else {
-                return(nwritten);   /* otherwise exit with error */
-            }
-        }
-        nleft -= nwritten;          /* set left to write */
-        buf +=nwritten;             /* set pointer */
-    }
-    return (count);
-}  
-  \end{lstlisting}
-  \caption{Funzione \func{FullWrite}, scrive \var{count} byte su un socket.}
-  \label{fig:sock_FullWrite_code}
-\end{figure}
-
-Come si può notare le funzioni ripetono la lettura/scrittura in un ciclo fino
-all'esaurimento del numero di byte richiesti, in caso di errore viene
-controllato se questo è \errcode{EINTR} (cioè un'interruzione della system call
-dovuta ad un segnale), nel qual caso l'accesso viene ripetuto, altrimenti
-l'errore viene ritornato interrompendo il ciclo.
-
-Nel caso della lettura, se il numero di byte letti è zero, significa che si è
-arrivati alla fine del file (per i socket questo significa in genere che
-l'altro capo è stato chiuso, e non è quindi più possibile leggere niente) e
-pertanto si ritorna senza aver concluso la lettura di tutti i byte richiesti.
-
-
-
-\subsection{Un primo esempio di client}
-\label{sec:net_cli_sample}
-
-Lo scopo di questo esempio è fornire un primo approccio alla programmazione di
-rete e vedere come si usano le funzioni descritte in precedenza, alcune delle
-funzioni usate nell'esempio saranno trattate in dettaglio nel capitolo
-successivo; qui ci limiteremo a introdurre la nomenclatura senza fornire
-definizioni precise e dettagli di funzionamento che saranno trattati
-estensivamente più avanti.
-
-In \figref{fig:net_cli_code} è riportata la sezione principale del codice del
-nostro client elementare per il servizio \textit{daytime}, un servizio
-standard che restituisce l'ora locale della macchina a cui si effettua la
-richiesta.
-
-\begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}{}
-#include <sys/types.h>   /* predefined types */
-#include <unistd.h>      /* include unix standard library */
-#include <arpa/inet.h>   /* IP addresses conversion utilities */
-#include <sys/socket.h>  /* socket library */
-#include <stdio.h>       /* include standard I/O library */
-
-int main(int argc, char *argv[])
-{
-    int sock_fd;
-    int i, nread;
-    struct sockaddr_in serv_add;
-    char buffer[MAXLINE];
-     ...
-    /* create socket */
-    if ( (sock_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
-        perror("Socket creation error");
-        return -1;
-    }
-    /* initialize address */
-    memset((void *) &serv_add, 0, sizeof(serv_add)); /* clear server address */
-    serv_add.sin_family = AF_INET;                   /* address type is INET */
-    serv_add.sin_port = htons(13);                   /* daytime post is 13 */
-    /* build address using inet_pton */
-    if ( (inet_pton(AF_INET, argv[optind], &serv_add.sin_addr)) <= 0) {
-        perror("Address creation error");
-        return -1;
-    }
-    /* extablish connection */
-    if (connect(sock_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
-        perror("Connection error");
-        return -1;
-    }
-    /* read daytime from server */
-    while ( (nread = read(sock_fd, buffer, MAXLINE)) > 0) {
-        buffer[nread]=0;
-        if (fputs(buffer, stdout) == EOF) {          /* write daytime */
-            perror("fputs error");
-            return -1;
-        }
-    }
-    /* error on read */
-    if (nread < 0) {
-        perror("Read error");
-        return -1;
-    }
-    /* normal exit */
-    return 0;
-}
-  \end{lstlisting}
-  \caption{Esempio di codice di un client elementare per il servizio daytime.}
-  \label{fig:net_cli_code}
-\end{figure}
-
-Il sorgente completo del programma (\file{ElemDaytimeTCPClient.c}, che
-comprende il trattamento delle opzioni e una funzione per stampare un
-messaggio di aiuto) è allegato alla guida nella sezione dei codici sorgente e
-può essere compilato su una qualunque macchina Linux.
-
-Il programma anzitutto include gli header necessari (\texttt{\small 1--5});
-dopo la dichiarazione delle variabili (\texttt{\small 9--12}) si è omessa
-tutta la parte relativa al trattamento degli argomenti passati dalla linea di
-comando (effettuata con le apposite routine illustrate in
-\capref{sec:proc_opt_handling}).
-
-Il primo passo (\texttt{\small 14--18}) è creare un \textit{socket} IPv4
-(\const{AF\_INET}), di tipo TCP \const{SOCK\_STREAM}. La funzione
-\func{socket} ritorna il descrittore che viene usato per identificare il
-socket in tutte le chiamate successive. Nel caso la chiamata fallisca si
-stampa un errore con la relativa routine e si esce.
-
-Il passo seguente (\texttt{\small 19--27}) è quello di costruire un'apposita
-struttura \struct{sockaddr\_in} in cui sarà inserito l'indirizzo del server ed
-il numero della porta del servizio. Il primo passo è inizializzare tutto a
-zero, per poi inserire il tipo di protocollo e la porta (usando per
-quest'ultima la funzione \func{htons} per convertire il formato dell'intero
-usato dal computer a quello usato nella rete), infine si utilizza la funzione
-\func{inet\_pton} per convertire l'indirizzo numerico passato dalla linea di
-comando.
-
-Usando la funzione \func{connect} sul socket creato in precedenza
-(\texttt{\small 28--32}) si provvede poi a stabilire la connessione con il
-server specificato dall'indirizzo immesso nella struttura passata come secondo
-argomento, il terzo argomento è la dimensione di detta struttura. Dato che
-esistono diversi tipi di socket, si è dovuto effettuare un cast della
-struttura inizializzata in precedenza, che è specifica per i socket IPv4.  Un
-valore di ritorno negativo implica il fallimento della connessione.
-
-Completata con successo la connessione il passo successivo (\texttt{\small
-  34--40}) è leggere la data dal socket; il server invierà sempre una stringa
-di 26 caratteri della forma \verb|Wed Apr 4 00:53:00 2001\r\n|, che viene
-letta dalla funzione \func{read} e scritta su \file{stdout}.
-
-Dato il funzionamento di TCP la risposta potrà tornare in un unico pacchetto
-di 26 byte (come avverrà senz'altro nel caso in questione) ma potrebbe anche
-arrivare in 26 pacchetti di un byte.  Per questo nel caso generale non si può
-mai assumere che tutti i dati arrivino con una singola lettura, pertanto
-quest'ultima deve essere effettuata in un ciclo in cui si continui a leggere
-fintanto che la funzione \func{read} non ritorni uno zero (che significa che
-l'altro capo ha chiuso la connessione) o un numero minore di zero (che
-significa un errore nella connessione).
-
-Si noti come in questo caso la fine dei dati sia specificata dal server che
-chiude la connessione; questa è una delle tecniche possibili (è quella usata
-pure dal protocollo HTTP), ma ce ne possono essere altre, ad esempio FTP marca
-la conclusione di un blocco di dati con la sequenza ASCII \verb|\r\n|
-(carriage return e line feed), mentre il DNS mette la lunghezza in testa ad
-ogni blocco che trasmette. Il punto essenziale è che TCP non provvede nessuna
-indicazione che permetta di marcare dei blocchi di dati, per cui se questo è
-necessario deve provvedere il programma stesso.
-
-\subsection{Un primo esempio di server}
-\label{sec:net_serv_sample}
-
-Dopo aver illustrato il client daremo anche un esempio di un server
-elementare, in grado di rispondere al precedente client. Il listato è
-nuovamente mostrato in \figref{fig:net_serv_code}, il sorgente completo
-(\file{ElemDaytimeTCPServer.c}) è allegato insieme agli altri file nella
-directory \file{sources}.
-
-\begin{figure}[!htbp]
-  \footnotesize
-  \begin{lstlisting}{}
-#include <sys/types.h>   /* predefined types */
-#include <unistd.h>      /* include unix standard library */
-#include <arpa/inet.h>   /* IP addresses conversion utilities */
-#include <sys/socket.h>  /* socket library */
-#include <stdio.h>       /* include standard I/O library */
-#include <time.h>
-#define MAXLINE 80
-#define BACKLOG 10
-int main(int argc, char *argv[])
-{
-/* 
- * Variables definition  
- */
-    int list_fd, conn_fd;
-    int i;
-    struct sockaddr_in serv_add;
-    char buffer[MAXLINE];
-    time_t timeval;
-    ...
-    /* create socket */
-    if ( (list_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
-        perror("Socket creation error");
-        exit(-1);
-    }
-    /* initialize address */
-    memset((void *)&serv_add, 0, sizeof(serv_add)); /* clear server address */
-    serv_add.sin_family = AF_INET;                  /* address type is INET */
-    serv_add.sin_port = htons(13);                  /* daytime port is 13 */
-    serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
-    /* bind socket */
-    if (bind(list_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
-        perror("bind error");
-        exit(-1);
-    }
-    /* listen on socket */
-    if (listen(list_fd, BACKLOG) < 0 ) {
-        perror("listen error");
-        exit(-1);
-    }
-    /* write daytime to client */
-    while (1) {
-        if ( (conn_fd = accept(list_fd, (struct sockaddr *) NULL, NULL)) <0 ) {
-            perror("accept error");
-            exit(-1);
-        }
-        timeval = time(NULL);
-        snprintf(buffer, sizeof(buffer), "%.24s\r\n", ctime(&timeval));
-        if ( (write(conn_fd, buffer, strlen(buffer))) < 0 ) {
-            perror("write error");
-            exit(-1);
-        }
-        close(conn_fd);
-    }
-    /* normal exit */
-    exit(0);
-}
-  \end{lstlisting}
-  \caption{Esempio di codice di un semplice server per il servizio daytime.}
-  \label{fig:net_serv_code}
-\end{figure}
-
-Come per il client si includono gli header necessari a cui è aggiunto quello
-per trattare i tempi, e si definiscono alcune costanti e le variabili
-necessarie in seguito (\texttt{\small 1--18}), come nel caso precedente si
-sono omesse le parti relative al trattamento delle opzioni da riga di comando.
-
-La creazione del socket (\texttt{\small 22--26}) è analoga al caso precedente,
-come pure l'inizializzazione della struttura \struct{sockaddr\_in}, anche in
-questo caso si usa la porta standard del servizio daytime, ma come indirizzo
-IP si il valore predefinito \const{INET\_ANY} che corrisponde ad un indirizzo
-generico (\texttt{\small 27--31}).
-
-Si effettua poi (\texttt{\small 32--36}) la chiamata alla funzione
-\func{bind} che permette di associare la precedente struttura al socket, in
-modo che quest'ultimo possa essere usato per accettare connessioni su una
-qualunque delle interfacce di rete locali.
-
-Il passo successivo (\texttt{\small 37--41}) è mettere ``in ascolto'' il
-socket, questo viene effettuato con la funzione \func{listen} che dice al
-kernel di accettare connessioni per il socket specificato, la funzione indica
-inoltre, con il secondo parametro, il numero massimo di connessioni che il
-kernel accetterà di mettere in coda per il suddetto socket.
-
-Questa ultima chiamata completa la preparazione del socket per l'ascolto (che
-viene chiamato anche \textit{listening descriptor}) a questo punto il processo
-è mandato in sleep (\texttt{\small 44--47}) con la successiva chiamata alla
-funzione \func{accept}, fin quando non arriva e viene accettata una
-connessione da un client.
-
-Quando questo avviene \func{accept} ritorna un secondo descrittore di socket,
-che viene chiamato \textit{connected descriptor} che è quello che viene usato
-dalla successiva chiamata alla \func{write} per scrivere la risposta al
-client, una volta che si è opportunamente (\texttt{\small 48--49}) costruita
-la stringa con la data da trasmettere. Completata la trasmissione il nuovo
-socket viene chiuso (\texttt{\small 54}).  Il tutto è inserito in un ciclo
-infinito (\texttt{\small 42--55}) in modo da poter ripetere l'invio della data
-ad una successiva connessione.
-
-È importante notare che questo server è estremamente elementare, infatti a
-parte il fatto di essere dipendente da IPv4, esso è in grado di servire solo
-un client alla volta, è cioè un \textsl{server iterativo}, inoltre esso è
-scritto per essere lanciato da linea di comando, se lo si volesse utilizzare
-come demone di sistema (che è in esecuzione anche quando non c'è nessuna shell
-attiva e il terminale da cui lo si è lanciato è stato sconnesso),
-occorrerebbero delle opportune modifiche.
-
-
 
 %%% Local Variables: 
 %%% mode: latex