fine revisione di \macro{}, piu' una serie di correzioni nella rilettura.
[gapil.git] / socket.tex
index 0efc4fd8ca2832ad76223df43bb939a82bfef5e3..54e7d48662850309a35c522406d298928c910023 100644 (file)
@@ -1,3 +1,13 @@
+%% socket.tex
+%%
+%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
 \chapter{Introduzione ai socket}
 \label{cha:socket_intro}
 
@@ -8,7 +18,7 @@ operativi.
 
 Dopo una breve panoramica sulle caratteristiche di questa interfaccia vedremo
 come creare un socket e come collegarlo allo specifico protocollo di rete che
-utilizzerà per la comunicazione. Per evitare unintroduzione puramente teorica
+utilizzerà per la comunicazione. Per evitare un'introduzione puramente teorica
 concluderemo il capitolo con un primo esempio di applicazione.
 
 \section{Una panoramica}
@@ -22,14 +32,15 @@ con essi.
 \label{sec:sock_socket_def}
 
 Il \textit{socket}\footnote{una traduzione letterale potrebbe essere
-  \textsl{manicotto}, ma essendo universalmente noti come socket utilizzeremo
-  sempre la parola inglese} è uno dei principali meccanismi di comunicazione
-fra programmi utilizzato in ambito unix. Il socket costituisce in sostanza un
+  \textsl{presa}, ma essendo universalmente noti come socket utilizzeremo
+  sempre la parola inglese.} è uno dei principali meccanismi di comunicazione
+fra programmi utilizzato in ambito Unix. Il socket costituisce in sostanza un
 canale di comunicazione fra due processi su cui si possono leggere e scrivere
-dati analogo a quello di una pipe ma a differenza di questa e degli altri
-meccanismi esaminati nel capitolo \capref{cha:IPC} i socket non sono limitati
-alla comunicazione fra processi che girano sulla stessa macchina ma possono
-effettuare la comunicazione anche attraverso la rete.
+dati analogo a quello di una pipe (vedi \secref{sec:ipc_pipes}) ma a
+differenza di questa e degli altri meccanismi esaminati nel capitolo
+\capref{cha:IPC} i socket non sono limitati alla comunicazione fra processi
+che girano sulla stessa macchina ma possono effettuare la comunicazione anche
+attraverso la rete.
 
 Quella dei socket costituisce infatti la principale API (\textit{Application
   Program Interface}) usata nella programmazione di rete.  La loro origine
@@ -37,8 +48,8 @@ risale al 1983, quando furono introdotti nel BSD 4.2; l'interfaccia 
 sostanzialmente la stessa con piccole modifiche negli anni successivi. Benché
 siano state sviluppate interfacce alternative, originate dai sistemi SVr4,
 come la XTI (\textit{X/Open Transport Interface}) nessuna ha mai raggiunto la
-diffusione e la popolarità di quella dei socket (né tantomeno usabilità e
-flessibilità).
+diffusione e la popolarità di quella dei socket (né tantomeno la stessa
+usabilità e flessibilità).
 
 La flessibilità e la genericità dell'interfaccia inoltre ha consentito di
 utilizzare i socket con i più disparati meccanismi di comunicazione, e non
@@ -57,11 +68,11 @@ usato, le funzioni da usare restano le stesse.
 
 Per questo motivo una semplice descrizione dell'interfaccia è assolutamente
 inutile, in quanto il comportamento di quest'ultima e le problematiche da
-affrontare cambiano radicalmente a seconda dello ``stile'' di comunicazione
-usato.  La scelta di questo stile va infatti ad incidere sulla semantica che
-verrà utilizzata a livello utente per gestire la comunicazione (su come
-inviare e ricevere i dati) e sul comportamento effettivo delle funzioni
-utilizzate.
+affrontare cambiano radicalmente a seconda dello \textsl{stile} di
+comunicazione usato.  La scelta di questo stile va infatti ad incidere sulla
+semantica che verrà utilizzata a livello utente per gestire la comunicazione
+(su come inviare e ricevere i dati) e sul comportamento effettivo delle
+funzioni utilizzate.
 
 La scelta di uno stile dipende sia dai meccanismi disponibili, sia dal tipo di
 comunicazione che si vuole effettuare. Ad esempio alcuni stili di
@@ -97,42 +108,43 @@ il tipo di comunicazione che esso deve utilizzare.
 \label{sec:sock_socket}
 
 La creazione di un socket avviene attraverso l'uso della funzione
-\func{socket} questa restituisce un \textit{socket descriptor} (un valore
-intero non negativo) che come gli analoghi file descriptor di file e alle
-pipe serve come riferimento al socket; in sostanza è l'indice nella tabella
-dei file che contiene i puntatori alle opportune strutture usate dal kernel ed
-allocate per ogni processo, (la stessa usata per i files e le pipes [NdA
-verificare!]).
-
-La funzione prende tre parametri, il dominio del socket (che definisce la
-famiglia di protocolli, vedi \secref{sec:sock_domain}), il tipo di socket (che
-definisce lo stile di comunicazione vedi \secref{sec:sock_type}) e il
-protocollo; in genere quest'ultimo è indicato implicitamente dal tipo di
-socket, per cui viene messo a zero (con l'eccezione dei \textit{raw socket}).
-
+\func{socket}; questa restituisce un \textit{file descriptor}\footnote{del
+  tutto analogo a quelli che si ottengono per i file di dati e le pipe,
+  descritti in \secref{sec:file_fd}.} che serve come riferimento al socket; il
+suo protototipo è:
 \begin{prototype}{sys/socket.h}{int socket(int domain, int type, int protocol)}
-  
-  La funzione restituisce un intero positivo se riesce, e -1 se fallisce, in
-  quest'ultimo caso la variabile \var{errno} è settata con i seguenti
-  codici di errore:
 
+  Apre un socket.
+  
+  \bodydesc{La funzione restituisce un intero positivo in caso di successo, e
+    -1 in caso di fallimento, nel qual caso la variabile \var{errno} assumerà
+  i valori:
   \begin{errlist}
-  \item \macro{EPROTONOSUPPORT} Il tipo di socket o il protocollo scelto non
+  \item[\errcode{EPROTONOSUPPORT}] Il tipo di socket o il protocollo scelto non
     sono supportati nel dominio.
-  \item \macro{ENFILE} Il kernel non ha memoria sufficiente a creare una
+  \item[\errcode{ENFILE}] Il kernel non ha memoria sufficiente a creare una
     nuova struttura per il socket.
-  \item \macro{EMFILE} Si è ecceduta la tabella dei file.
-  \item \macro{EACCES} Non si hanno privilegi per creare un socket nel
+  \item[\errcode{EMFILE}] Si è ecceduta la tabella dei file.
+  \item[\errcode{EACCES}] Non si hanno privilegi per creare un socket nel
     dominio o con il protocollo specificato.
-  \item \macro{EINVAL} Protocollo sconosciuto o dominio non disponibile.
-  \item \macro{ENOBUFS} o \macro{ENOMEM} Non c'è sufficiente memoria per
-    creare il socket.
-  \end{errlist}
+  \item[\errcode{EINVAL}] Protocollo sconosciuto o dominio non disponibile.
+  \item[\errcode{ENOBUFS}] Non c'è sufficiente memoria per creare il socket
+    (può essere anche \errval{ENOMEM}).
+  \end{errlist}}
 \end{prototype}
 
-Si noti che la creazione del socket non comporta nulla riguardo
-all'indicazione degli indirizzi remoti o locali attraverso i quali si vuole
-effettuare la comunicazione.
+La funzione ha tre argomenti, \param{domain} specifica il dominio del socket
+(definisce cioè la famiglia di protocolli, come vedremo in
+\secref{sec:sock_domain}), \param{type} specifica il tipo di socket (definisce
+cioè lo stile di comunicazione, come vedremo in \secref{sec:sock_type}) e
+\param{protocol} il protocollo; in genere quest'ultimo è indicato
+implicitamente dal tipo di socket, per cui viene messo a zero (con l'eccezione
+dei \textit{raw socket}).
+
+Si noti che la creazione del socket si limita ad allocare le opportune
+strutture nel kernel (sostanzialmente una voce nella \textit{file table}) e
+non comporta nulla riguardo all'indicazione degli indirizzi remoti o locali
+attraverso i quali si vuole effettuare la comunicazione.
 
 \subsection{Il dominio, o \textit{protocol family}}
 \label{sec:sock_domain}
@@ -146,9 +158,10 @@ altro nome con cui si indicano i domini.
 
 A ciascun tipo di dominio corrisponde un analogo nome simbolico che inizia per
 \texttt{AF\_} da \textit{address family}, e che identifica il formato degli
-indirizzi usati in quel dominio; le man pages di Linux si riferiscono a questi
-anche come \textit{name space}, (nome che però il manuale della glibc riserva
-ai domini) e che identifica il formato degli indirizzi usati in quel dominio.
+indirizzi usati in quel dominio; le pagine di manuale di Linux si riferiscono
+a questi anche come \textit{name space}, (nome che però il manuale delle
+\acr{glibc} riserva ai domini) e che identifica il formato degli indirizzi
+usati in quel dominio.
 
 L'idea alla base della distinzione era che una famiglia di protocolli potesse
 supportare vari tipi di indirizzi, per cui il prefisso \texttt{PF\_} si
@@ -160,7 +173,7 @@ nomi sono equivalenti e corrispondono agli stessi valori.
 
 I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di
 indirizzi sono definiti dall'header \textit{socket.h}. In Linux le famiglie di
-protocolli disponibili sono riportate in \ntab.
+protocolli disponibili sono riportate in \tabref{tab:net_pf_names}.
 
 \begin{table}[htb]
   \footnotesize
@@ -170,17 +183,17 @@ protocolli disponibili sono riportate in \ntab.
        \textbf{Nome}      & \textbf{Utilizzo}           &\textbf{Man page} \\
        \hline
        \hline
-       \macro{PF\_UNIX},
-       \macro{PF\_LOCAL}  & Local communication            & unix(7)    \\
-       \macro{PF\_INET}   & IPv4 Internet protocols        & ip(7)      \\
-       \macro{PF\_INET6}  & IPv6 Internet protocols        &            \\
-       \macro{PF\_IPX}    & IPX - Novell protocols         &            \\
-       \macro{PF\_NETLINK}& Kernel user interface device   & netlink(7) \\
-       \macro{PF\_X25}    & ITU-T X.25 / ISO-8208 protocol & x25(7)     \\
-       \macro{PF\_AX25}   & Amateur radio AX.25 protocol   &            \\
-       \macro{PF\_ATMPVC} & Access to raw ATM PVCs         &            \\
-       \macro{PF\_APPLETALK}& Appletalk                    & ddp(7)     \\
-       \macro{PF\_PACKET} & Low level packet interface     & packet(7)  \\    
+       \const{PF\_UNIX},
+       \const{PF\_LOCAL}  & Local communication            & unix(7)    \\
+       \const{PF\_INET}   & IPv4 Internet protocols        & ip(7)      \\
+       \const{PF\_INET6}  & IPv6 Internet protocols        & ipv6(7)    \\
+       \const{PF\_IPX}    & IPX - Novell protocols         &            \\
+       \const{PF\_NETLINK}& Kernel user interface device   & netlink(7) \\
+       \const{PF\_X25}    & ITU-T X.25 / ISO-8208 protocol & x25(7)     \\
+       \const{PF\_AX25}   & Amateur radio AX.25 protocol   &            \\
+       \const{PF\_ATMPVC} & Access to raw ATM PVCs         &            \\
+       \const{PF\_APPLETALK}& Appletalk                    & ddp(7)     \\
+       \const{PF\_PACKET} & Low level packet interface     & packet(7)  \\    
        \hline
   \end{tabular}
   \caption{Famiglie di protocolli definiti in Linux}
@@ -188,9 +201,9 @@ protocolli disponibili sono riportate in \ntab.
 \end{table}
 
 Non tutte le famiglie di protocolli sono accessibili dall'utente generico, ad
-esempio in generale tutti i socket di tipo \macro{SOCK\_RAW} possono essere
-creati solo da processi che hanno i privilegi di root (cioè effective uid
-uguale a zero) o la capability \macro{CAP\_NET\_RAW}.
+esempio in generale tutti i socket di tipo \const{SOCK\_RAW} possono essere
+creati solo da processi che hanno i privilegi di root (cioè con userid
+effettivo uguale a zero) o con la capability \texttt{CAP\_NET\_RAW}.
 
 
 \subsection{Il tipo, o stile}
@@ -200,63 +213,64 @@ La scelta di un dominio non comporta per
 comunicazione, questo infatti viene a dipendere dal protocollo che si andrà ad
 utilizzare fra quelli disponibili nella famiglia scelta. Le API permettono di
 scegliere lo stile di comunicazione indicando il tipo di socket; Linux e le
-glibc mettono a disposizione i seguenti tipi di socket (che il manuale della
-glibc chiama \textit{styles}) definiti come \type{int} in \file{socket.h}:
+\acr{glibc} mettono a disposizione i seguenti tipi di socket (che il manuale
+della \acr{glibc} chiama \textit{styles}) definiti come \ctyp{int} in
+\file{socket.h}:
 
 \begin{list}{}{}
-\item \macro{SOCK\_STREAM} Provvede un canale di trasmissione dati
+\item \const{SOCK\_STREAM} Provvede un canale di trasmissione dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati vengono ricevuti e trasmessi come un flusso continuo di
   byte (da cui il nome \textit{stream}). 
-\item \macro{SOCK\_DGRAM} Viene usato per mandare pacchetti di lunghezza
+\item \const{SOCK\_DGRAM} Viene usato per mandare pacchetti di lunghezza
   massima fissata (\textit{datagram}) indirizzati singolarmente, senza
   connessione e in maniera non affidabile. È l'opposto del precedente. 
-\item \macro{SOCK\_SEQPACKET} Provvede un canale di trasmissione di dati
+\item \const{SOCK\_SEQPACKET} Provvede un canale di trasmissione di dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati possono solo essere trasmessi e letti per pacchetti (di
   dimensione massima fissata).
-\item \macro{SOCK\_RAW} Provvede l'accesso a basso livello ai protocolli di
+\item \const{SOCK\_RAW} Provvede l'accesso a basso livello ai protocolli di
   rete e alle varie interfacce. I normali programmi di comunicazione non
   devono usarlo.
-\item \macro{SOCK\_RDM} Provvede un canale di trasmissione di pacchetti
+\item \const{SOCK\_RDM} Provvede un canale di trasmissione di pacchetti
   affidabile ma in cui non è garantito l'ordine di arrivo dei pacchetti.
-\item \macro{SOCK\_PACKET} Obsoleto, non deve essere usato.
+\item \const{SOCK\_PACKET} Obsoleto, non deve essere usato.
 \end{list}
 
-Si tenga presente che non tutte le combinazioni di famiglia di protocolli e
-tipo di socket sono valide, in quanto non è detto che nella famiglia esista un
-protocollo per tutti gli stili di comunicazione indicati qui sopra. Una
-tabella che mostra le combinazioni valide è la seguente:
+Si tenga presente che non tutte le combinazioni fra una famiglia di protocolli
+e un tipo di socket sono valide, in quanto non è detto che in una famiglia
+esista un protocollo per ciascuno dei diversi stili di comunicazione appena
+elencati.
 
 \begin{table}[htb]
   \footnotesize
   \centering
   \begin{tabular}{l|c|c|c|c|c|}
-   \multicolumn{1}{c}{} &\multicolumn{1}{c}{\macro{SOCK\_STREAM}}& 
-     \multicolumn{1}{c}{\macro{SOCK\_DGRAM}} & 
-     \multicolumn{1}{c}{\macro{SOCK\_RAW}} & 
-     \multicolumn{1}{c}{\macro{SOCK\_PACKET}}& 
-     \multicolumn{1}{c}{\macro{SOCK\_SEQPACKET}} \\
+   \multicolumn{1}{c}{} &\multicolumn{1}{c}{\const{SOCK\_STREAM}}& 
+     \multicolumn{1}{c}{\const{SOCK\_DGRAM}} & 
+     \multicolumn{1}{c}{\const{SOCK\_RAW}} & 
+     \multicolumn{1}{c}{\const{SOCK\_PACKET}}& 
+     \multicolumn{1}{c}{\const{SOCK\_SEQPACKET}} \\
      \cline{2-6}
-    \macro{PF\_UNIX}      &  si & si  &      &     &     \\
+    \const{PF\_UNIX}      &  si & si  &      &     &     \\
      \cline{2-6}
-    \macro{PF\_INET}      & TCP & UDP & IPv4 &     &     \\
+    \const{PF\_INET}      & TCP & UDP & IPv4 &     &     \\
      \cline{2-6}
-    \macro{PF\_INET6}     & TCP & UDP & IPv6 &     &     \\
+    \const{PF\_INET6}     & TCP & UDP & IPv6 &     &     \\
      \cline{2-6}
-    \macro{PF\_IPX}       &     &     &      &     &     \\
+    \const{PF\_IPX}       &     &     &      &     &     \\
      \cline{2-6}
-    \macro{PF\_NETLINK}   &     &  si &  si  &     &     \\
+    \const{PF\_NETLINK}   &     &  si &  si  &     &     \\
      \cline{2-6}
-    \macro{PF\_X25}       &     &     &      &     &  si \\
+    \const{PF\_X25}       &     &     &      &     &  si \\
      \cline{2-6}
-    \macro{PF\_AX25}      &     &     &      &     &     \\
+    \const{PF\_AX25}      &     &     &      &     &     \\
      \cline{2-6}
-    \macro{PF\_ATMPVC}    &     &     &      &     &     \\
+    \const{PF\_ATMPVC}    &     &     &      &     &     \\
      \cline{2-6}
-    \macro{PF\_APPLETALK} &     & si  &  si  &     &     \\
+    \const{PF\_APPLETALK} &     & si  &  si  &     &     \\
      \cline{2-6}
-    \macro{PF\_PACKET}    &     & si  & si   &     &     \\    
+    \const{PF\_PACKET}    &     & si  & si   &     &     \\    
      \cline{2-6}
   \end{tabular}
   \caption{Combinazioni valide di dominio e tipo di protocollo per la 
@@ -264,9 +278,11 @@ tabella che mostra le combinazioni valide 
   \label{tab:sock_sock_valid_combinations}
 \end{table}
 
-Dove per ogni combinazione valida si è indicato il tipo di protocollo, o la
-parola \textsl{si} qualora non il protocollo non abbia un nome definito,
-mentre si sono lasciate vuote le caselle per le combinazioni non supportate.
+In \secref{tab:sock_sock_valid_combinations} sono mostrate le combinazioni
+valide possibili per le varie famiglie di protocolli. Per ogni combinazione
+valida si è indicato il tipo di protocollo, o la parola \textsl{si} qualora
+non il protocollo non abbia un nome definito, mentre si sono lasciate vuote le
+caselle per le combinazioni non supportate.
 
 
 
@@ -298,19 +314,21 @@ attraverso puntatori (cio
 maneggiare puntatori a strutture relative a tutti gli indirizzi possibili
 nelle varie famiglie di protocolli; questo pone il problema di come passare
 questi puntatori, il C ANSI risolve questo problema coi i puntatori generici
-(i \type{void *}), ma l'interfaccia dei socket è antecedente alla
-definizione dello standard ANSI, e per questo nel 1982 fu scelto di definire
-una struttura generica \type{sockaddr} per gli indirizzi dei socket mostrata
-in \nfig:
+(i \ctyp{void *}), ma l'interfaccia dei socket è antecedente alla definizione
+dello standard ANSI, e per questo nel 1982 fu scelto di definire una struttura
+generica per gli indirizzi dei socket, \type{sockaddr}, che si è riportata in
+\figref{fig:sock_sa_gen_struct}.
 
 \begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
 struct sockaddr {
     sa_family_t  sa_family;     /* address family: AF_xxx */
     char         sa_data[14];   /* address (protocol-specific) */
 };
-  \end{lstlisting}
+    \end{lstlisting}
+  \end{minipage} 
   \caption{La struttura generica degli indirizzi dei socket \type{sockaddr}}
   \label{fig:sock_sa_gen_struct}
 \end{figure}
@@ -321,16 +339,18 @@ invocano dette funzioni passando l'indirizzo di un protocollo specifico
 occorrerà eseguire un casting del relativo puntatore.
 
 I tipi di dati che compongono la struttura sono stabiliti dallo standard
-POSIX.1g, riassunti in \ntab\ con i rispettivi file di include in cui sono
-definiti; la struttura è invece definita nell'include file
-\file{sys/socket.h}
+POSIX.1g, riassunti in \tabref{tab:sock_data_types} con i rispettivi file di
+include in cui sono definiti; la struttura è invece definita nell'include file
+\file{sys/socket.h}.
 
 \begin{table}[!htb]
   \centering
+  \footnotesize
   \begin{tabular}{|l|l|l|}
     \hline
-    \multicolumn{1}{|c|}{Tipo}& \multicolumn{1}{|c|}{Descrizione}& 
-    \multicolumn{1}{|c|}{Header} \\
+    \multicolumn{1}{|c|}{\textbf{Tipo}}& 
+    \multicolumn{1}{|c|}{\textbf{Descrizione}}& 
+    \multicolumn{1}{|c|}{\textbf{Header}} \\
     \hline
     \hline
     \type{int8\_t}   & intero a 8 bit con segno   & \file{sys/types.h}\\
@@ -342,16 +362,16 @@ definiti; la struttura 
     \hline
     \type{sa\_family\_t} & famiglia degli indirizzi& \file{sys/socket.h}\\
     \type{socklen\_t} & lunghezza (\type{uint32\_t}) dell'indirizzo di
-    un socket& \type{sys/socket.h}\\
+    un socket& \file{sys/socket.h}\\
     \hline
-    \type{in\_addr\_t} & indirizzo IPv4 (\file{uint32\_t}) & 
-    \type{netinet/in.h}\\
-    \type{in\_port\_t} & porta TCP o UDP (\file{uint16\_t})& 
-    \type{netinet/in.h}\\
+    \type{in\_addr\_t} & indirizzo IPv4 (\type{uint32\_t}) & 
+    \file{netinet/in.h}\\
+    \type{in\_port\_t} & porta TCP o UDP (\type{uint16\_t})& 
+    \file{netinet/in.h}\\
     \hline
   \end{tabular}
   \caption{Tipi di dati usati nelle strutture degli indirizzi, secondo quanto 
-    stabilito dallo standard POSIX.1g}
+    stabilito dallo standard POSIX.1g.}
   \label{tab:sock_data_types}
 \end{table}
 
@@ -359,13 +379,13 @@ In alcuni sistemi la struttura 
 aggiuntivo \var{uint8\_t sin\_len} (come riportato da R. Stevens nei suoi
 libri). Questo campo non verrebbe usato direttamente dal programmatore e non è
 richiesto dallo standard POSIX.1g, in Linux pertanto non esiste. Il campo
-\type{sa\_family\_t} era storicamente un \type{unsigned short}.
+\type{sa\_family\_t} era storicamente un \ctyp{unsigned short}.
 
 Dal punto di vista del programmatore l'unico uso di questa struttura è quello
 di fare da riferimento per il casting, per il kernel le cose sono un po'
 diverse, in quanto esso usa il puntatore per recuperare il campo
 \var{sa\_family} con cui determinare il tipo di indirizzo; per questo
-motivo, anche se l'uso di un puntatore \type{void *} sarebbe più immediato
+motivo, anche se l'uso di un puntatore \ctyp{void *} sarebbe più immediato
 per l'utente (che non dovrebbe più eseguire il casting), è stato mantenuto
 l'uso di questa struttura.
 
@@ -373,15 +393,16 @@ l'uso di questa struttura.
 \subsection{La struttura degli indirizzi IPv4}
 \label{sec:sock_sa_ipv4}
 
-I socket di tipo \macro{PF\_INET} vengono usati per la comunicazione
+I socket di tipo \const{PF\_INET} vengono usati per la comunicazione
 attraverso internet; la struttura per gli indirizzi per un socket internet
 (IPv4) è definita come \type{sockaddr\_in} nell'header file
-\file{netinet/in.h} e secondo le man page ha la forma mostrata in \nfig,
-conforme allo standard POSIX.1g.
+\file{netinet/in.h} e secondo le pagine di manuale ha la forma mostrata in
+\figref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g.
 
 \begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+  \footnotesize\centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
 struct sockaddr_in {
     sa_family_t     sin_family; /* address family: AF_INET */
     u_int16_t       sin_port;   /* port in network byte order */
@@ -391,7 +412,8 @@ struct sockaddr_in {
 struct in_addr {
     u_int32_t       s_addr;     /* address in network byte order */
 };
-  \end{lstlisting}
+    \end{lstlisting}
+  \end{minipage} 
   \caption{La struttura degli indirizzi dei socket internet (IPv4)
     \type{sockaddr\_in}.}
   \label{fig:sock_sa_ipv4_struct}
@@ -402,14 +424,14 @@ internet di un'interfaccia pi
 prevede numeri di porta, che sono utilizzati solo dai protocolli di livello
 superiore come TCP e UDP. Questa struttura però viene usata anche per i socket
 RAW che accedono direttamente al livello di IP, nel qual caso il numero della
-porta viene settato al numero di protocollo.
+porta viene impostato al numero di protocollo.
 
-Il membro \var{sin\_family} deve essere sempre settato; \var{sin\_port}
+Il membro \var{sin\_family} deve essere sempre impostato; \var{sin\_port}
 specifica il numero di porta (vedi \secref{sec:TCPel_port_num}; i numeri di
 porta sotto il 1024 sono chiamati \textsl{riservati} in quanto utilizzati da
-servizi standard. Soltanto processi con i privilegi di root (effective uid
-uguale a zero) o con la capability \macro{CAP\_NET\_BIND\_SERVICE} possono
-usare la funzione \func{bind} su queste porte.
+servizi standard. Soltanto processi con i privilegi di root (con userid
+effettivo uguale a zero) o con la capability \texttt{CAP\_NET\_BIND\_SERVICE}
+possono usare la funzione \func{bind} su queste porte.
 
 Il membro \var{sin\_addr} contiene l'indirizzo internet dell'altro capo
 della comunicazione, e viene acceduto sia come struttura (un resto di una
@@ -427,14 +449,15 @@ problema e le relative soluzioni).
 \subsection{La struttura degli indirizzi IPv6}
 \label{sec:sock_sa_ipv6}
 
-Essendo IPv6 una estensione di IPv4 i socket di tipo \macro{PF\_INET6} sono
+Essendo IPv6 un'estensione di IPv4 i socket di tipo \const{PF\_INET6} sono
 sostanzialmente identici ai precedenti; la parte in cui si trovano
 praticamente tutte le differenze è quella della struttura degli indirizzi. La
 struttura degli indirizzi è definita ancora in \file{netinet/in.h}.
 
 \begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
 struct sockaddr_in6 {
     u_int16_t       sin6_family;   /* AF_INET6 */
     u_int16_t       sin6_port;     /* port number */
@@ -446,14 +469,15 @@ struct sockaddr_in6 {
 struct in6_addr {
     unsigned char   s6_addr[16];   /* IPv6 address */
 };
-  \end{lstlisting}
+    \end{lstlisting}
+  \end{minipage} 
   \caption{La struttura degli indirizzi dei socket IPv6 
     \type{sockaddr\_in6}.}
   \label{fig:sock_sa_ipv6_struct}
 \end{figure}
 
-Il campo \var{sin6\_family} deve essere sempre settato ad
-\macro{AF\_INET6}, il campo \var{sin6\_port} è analogo a quello di IPv4 e
+Il campo \var{sin6\_family} deve essere sempre impostato ad
+\const{AF\_INET6}, il campo \var{sin6\_port} è analogo a quello di IPv4 e
 segue le stesse regole; il campo \var{sin6\_flowinfo} è a sua volta diviso
 in tre parti di cui i 24 bit inferiori indicano l'etichetta di flusso, i
 successivi 4 bit la priorità e gli ultimi 4 sono riservati; questi valori
@@ -472,28 +496,31 @@ possibilit
 \subsection{La struttura degli indirizzi locali}
 \label{sec:sock_sa_local}
 
-I socket di tipo \macro{PF\_UNIX} vengono usati per una comunicazione
-efficiente fra processi che stanno sulla stessa macchina; essi rispetto ai
+I socket di tipo \const{PF\_UNIX} o \const{PF\_LOCAL} vengono usati per una
+comunicazione fra processi che stanno sulla stessa macchina (per vengono
+chiamati \textit{local domain} o anche \textit{Unix domain}); essi rispetto ai
 precedenti possono essere anche creati in maniera anonima attraverso la
-funzione \func{socketpair}. Quando però si vuole fare riferimento esplicito
-ad uno di questi socket si deve usare la seguente struttura di indirizzi
-definita nel file di header \file{sys/un.h}.
+funzione \func{socketpair} (vedi \secref{sec:ipc_socketpair}). Quando però si
+vuole fare riferimento esplicito ad uno di questi socket si deve usare la
+seguente struttura di indirizzi definita nel file di header \file{sys/un.h}.
 
 \begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
 #define UNIX_PATH_MAX    108
 struct sockaddr_un {
     sa_family_t  sun_family;              /* AF_UNIX */
     char         sun_path[UNIX_PATH_MAX]; /* pathname */
 };
-  \end{lstlisting}
+    \end{lstlisting}
+  \end{minipage} 
   \caption{La struttura degli indirizzi dei socket locali 
     \var{sockaddr\_un}.}
   \label{fig:sock_sa_local_struct}
 \end{figure}
 
-In questo caso il campo \var{sun\_family} deve essere \macro{AF\_UNIX},
+In questo caso il campo \var{sun\_family} deve essere \const{AF\_UNIX},
 mentre il campo \var{sun\_path} deve specificare un indirizzo; questo ha
 due forme un file (di tipo socket) nel filesystem o una stringa univoca
 (tenuta in uno spazio di nomi astratto). Nel primo caso l'indirizzo viene
@@ -579,31 +606,34 @@ Per questo motivo si usano le seguenti funzioni di conversione che servono a
 tener conto automaticamente della possibile differenza fra l'ordinamento usato
 sul computer e quello che viene usato nelle trasmissione sulla rete; queste
 funzioni sono:
-\begin{prototype}{netinet/in.h}
-{unsigned long int htonl(unsigned long int hostlong)} 
+\begin{functions}
+  \headdecl{netinet/in.h}
+  \funcdecl{unsigned long int htonl(unsigned long int hostlong)} 
   Converte l'intero a 32 bit \var{hostlong} dal formato della macchina a
   quello della rete.
-\end{prototype}
-\begin{prototype}{netinet/in.h}
-{unsigned short int htons(unsigned short int hostshort)}
+  \funcdecl{unsigned short int htons(unsigned short int hostshort)}
   Converte l'intero a 16 bit \var{hostshort} dal formato della macchina a
   quello della rete.
-\end{prototype}
-\begin{prototype}{netinet/in.h}
-{unsigned long int ntonl(unsigned long int netlong)}
+
+  \funcdecl{unsigned long int ntonl(unsigned long int netlong)}
   Converte l'intero a 32 bit \var{netlong} dal formato della rete a quello
   della macchina.
-\end{prototype}
-\begin{prototype}{netinet/in.h}
-{unsigned sort int ntons(unsigned short int netshort)}
+
+  \funcdecl{unsigned sort int ntons(unsigned short int netshort)}
   Converte l'intero a 16 bit \var{netshort} dal formato della rete a quello
   della macchina.
-\end{prototype}
-I nomi sono assegnati usando la lettera \func{n} come mnemonico per indicare
+  
+  \bodydesc{Tutte le funzioni restituiscono il valore convertito, e non hanno
+    errori.}
+\end{functions}
+
+I nomi sono assegnati usando la lettera \texttt{n} come mnemonico per indicare
 l'ordinamento usato sulla rete (da \textit{network order}) e la lettera
-\func{h} come mnemonico per l'ordinamento usato sulla macchina locale (da
-\textit{host order}), mentre le lettere \func{s} e \func{l} stanno ad indicare
-i tipi di dato (\type{long} o \type{short}, riportati anche dai prototipi).
+\texttt{h} come mnemonico per l'ordinamento usato sulla macchina locale (da
+\textit{host order}), mentre le lettere \texttt{s} e \texttt{l} stanno ad
+indicare i tipi di dato (\ctyp{long} o \ctyp{short}, riportati anche dai
+prototipi).
 
 Usando queste funzioni si ha la conversione automatica: nel caso in cui la
 macchina che si sta usando abbia una architettura \textit{big endian} queste
@@ -624,7 +654,7 @@ Le prime tre funzioni di manipolazione riguardano la conversione degli
 indirizzi IPv4 da una stringa in cui il numero di IP è espresso secondo la
 cosiddetta notazione \textit{dotted-decimal}, (cioè nella forma
 \texttt{192.160.0.1}) al formato binario (direttamente in \textit{network
-  order}) e viceversa; in questo caso si usa la lettera \func{a} come
+  order}) e viceversa; in questo caso si usa la lettera \texttt{a} come
 mnemonico per indicare la stringa. Dette funzioni sono:
 \begin{prototype}{arpa/inet.h}
   {int inet\_aton(const char *src, struct in\_addr *dest)} 
@@ -632,13 +662,13 @@ mnemonico per indicare la stringa. Dette funzioni sono:
   memorizzare all'indirizzo puntato da \var{dest}, restituendo 0 in caso di
   successo e 1 in caso di fallimento (è espressa in questa forma in modo da
   poterla usare direttamente con il puntatore usato per passare la struttura
-  degli indirizzi). Se usata con \var{dest} inizializzato a \macro{NULL}
+  degli indirizzi). Se usata con \var{dest} inizializzato a \val{NULL}
   effettua la validazione dell'indirizzo.
 \end{prototype}
 \begin{prototype}{arpa/inet.h}{in\_addr\_t inet\_addr(const char *strptr)}
   Restituisce l'indirizzo a 32 bit in network order a partire dalla stringa
   passata come parametro, in caso di errore restituisce il valore
-  \macro{INADDR\_NONE} che tipicamente sono trentadue bit a uno; questo
+  \const{INADDR\_NONE} che tipicamente sono trentadue bit a uno; questo
   comporta che la stringa \texttt{255.255.255.255}, che pure è un indirizzo
   valido, non può essere usata con questa funzione; per questo motivo essa è
   generalmente deprecata in favore della precedente.
@@ -657,9 +687,9 @@ mnemonico per indicare la stringa. Dette funzioni sono:
 Le tre funzioni precedenti sono limitate solo ad indirizzi IPv4, per questo
 motivo è preferibile usare le due nuove funzioni \func{inet\_pton} e
 \func{inet\_ntop} che possono convertire anche gli indirizzi IPv6. Anche in
-questo caso le lettere \func{n} e \func{p} sono degli mnemonici per ricordare
-il tipo di conversione effettuata e stanno per \textit{presentation} e
-\textit{numeric}.
+questo caso le lettere \texttt{n} e \texttt{p} sono degli mnemonici per
+ricordare il tipo di conversione effettuata e stanno per \textit{presentation}
+\textit{numeric}.
 
 % \begin{figure}[htb]
 %   \centering  
@@ -671,33 +701,42 @@ il tipo di conversione effettuata e stanno per \textit{presentation} e
 % \end{figure}
 
 Entrambe le funzioni accettano l'argomento \param{af} che indica il tipo di
-indirizzo e può essere \macro{AF\_INET} o \macro{AF\_INET6}. Se la famiglia
-indicata non è valida entrambe le funzioni settano la variabile \var{errno}
-al valore \macro{EAFNOSUPPORT}. I prototipi delle suddette funzioni sono i
-seguenti:
+indirizzo e può essere soltanto \const{AF\_INET} o \const{AF\_INET6}. I
+prototipi delle suddette funzioni sono i seguenti:
 \begin{prototype}{sys/socket.h}
-  {int inet\_pton(int af, const char *src, void *addr\_ptr)} Converte la
-  stringa puntata da \var{src} nell'indirizzo IP da memorizzare
-  all'indirizzo puntato da \var{addr\_ptr}, la funzione restituisce un
-  valore positivo in caso di successo, e zero se la stringa non rappresenta un
-  indirizzo valido, e negativo se \var{af} specifica una famiglia di indirizzi
-  non valida.
+{int inet\_pton(int af, const char *src, void *addr\_ptr)} 
+
+  Converte l'indirizzo espresso tramite una stringa nel valore numerico.
+  
+  \bodydesc{La funzione restituisce un valore negativo se \var{af} specifica
+    una famiglia di indirizzi non valida, settando \var{errno} a
+    \errcode{EAFNOSUPPORT}, un valore nullo se \param{src} non rappresenta un
+    indirizzo valido, ed un valore positivo in caso di successo.}
 \end{prototype}
+
+La funzione converte la stringa indicata tramite \param{src} nel valore
+numerico dell'indirizzo IP del tipo specificato da \param{af} che viene
+memorizzato all'indirizzo puntato da \var{addr\_ptr}, la funzione restituisce
+un valore positivo in caso di successo, e zero se la stringa non rappresenta
+un indirizzo valido, e negativo se \var{af} specifica una famiglia di
+indirizzi non valida.
+
+
 \begin{prototype}{sys/socket.h}
   {char *inet\_ntop(int af, const void *addr\_ptr, char *dest, size\_t len)}
   Converte la struttura dell'indirizzo puntata da \var{addr\_ptr} in una
   stringa che viene copiata nel buffer puntato dall'indirizzo \var{dest};
   questo deve essere preallocato dall'utente e la lunghezza deve essere almeno
-  \macro{INET\_ADDRSTRLEN} in caso di indirizzi IPv4 e
-  \macro{INET6\_ADDRSTRLEN} per indirizzi IPv6; la lunghezza del buffer deve
+  \const{INET\_ADDRSTRLEN} in caso di indirizzi IPv4 e
+  \const{INET6\_ADDRSTRLEN} per indirizzi IPv6; la lunghezza del buffer deve
   comunque venire specificata attraverso il parametro \var{len}.
  
-  La funzione restituisce un puntatore non nullo a \var{dest} in caso di
-  successo e un puntatore nullo in caso di fallimento, in quest'ultimo caso
-  viene settata la variabile \var{errno} con il valore \macro{ENOSPC} in
-  caso le dimensioni dell'indirizzo eccedano la lunghezza specificata da
-  \var{len} o \macro{ENOAFSUPPORT} in caso \var{af} non sia una famiglia di
-  indirizzi valida.
+  \bodydesc{La funzione restituisce un puntatore non nullo a \var{dest} in
+    caso di successo e un puntatore nullo in caso di fallimento, in
+    quest'ultimo caso viene impostata la variabile \var{errno} con il valore
+    \errval{ENOSPC} in caso le dimensioni dell'indirizzo eccedano la lunghezza
+    specificata da \var{len} o \errval{ENOAFSUPPORT} in caso \var{af} non sia
+    una famiglia di indirizzi valida.}
 \end{prototype}
 
 Gli indirizzi vengono convertiti da/alle rispettive strutture di indirizzo
@@ -775,8 +814,9 @@ ssize_t SockRead(int fd, void *buf, size_t count)
 Per questo motivo seguendo l'esempio di W. R. Stevens si sono definite due
 funzioni \func{SockRead} e \func{SockWrite} che eseguono la lettura da un
 socket tenendo conto di questa caratteristica, ed in grado di ritornare dopo
-avere letto o scritto esattamente il numero di byte specificato; il sorgente
-è riportato in \curfig\ e \nfig\ ed è disponibile fra i sorgenti allegati alla
+avere letto o scritto esattamente il numero di byte specificato; il sorgente è
+riportato in \figref{fig:sock_SockRead_code} e
+\figref{fig:sock_SockWrite_code} ed è disponibile fra i sorgenti allegati alla
 guida nei files \file{SockRead.c} e \file{SockWrite.c}.
 
 \begin{figure}[htb]
@@ -811,7 +851,7 @@ ssize_t SockWrite(int fd, const void *buf, size_t count)
 
 Come si può notare le funzioni ripetono la lettura/scrittura in un ciclo fino
 all'esaurimento del numero di byte richiesti, in caso di errore viene
-controllato se questo è \macro{EINTR} (cioè un'interruzione della system call
+controllato se questo è \errcode{EINTR} (cioè un'interruzione della system call
 dovuta ad un segnale), nel qual caso l'accesso viene ripetuto, altrimenti
 l'errore viene ritornato interrompendo il ciclo.
 
@@ -831,9 +871,10 @@ successivo; qui ci limiteremo a introdurre la nomenclatura senza fornire
 definizioni precise e dettagli di funzionamento che saranno trattati
 estensivamente più avanti.
 
-In \nfig\ è riportata la sezione principale del codice del nostro client
-elementare per il servizio \textit{daytime}, un servizio standard che
-restituisce l'ora locale della macchina a cui si effettua la richiesta.
+In \figref{fig:net_cli_code} è riportata la sezione principale del codice del
+nostro client elementare per il servizio \textit{daytime}, un servizio
+standard che restituisce l'ora locale della macchina a cui si effettua la
+richiesta.
 
 \begin{figure}[!htb]
   \footnotesize
@@ -903,12 +944,12 @@ comando (effettuata con le apposite routine illustrate in
 \capref{sec:proc_opt_handling}).
 
 Il primo passo (\texttt{\small 14--18}) è creare un \textit{socket} IPv4
-(\macro{AF\_INET}), di tipo TCP \macro{SOCK\_STREAM}. La funzione
-\macro{socket} ritorna il descrittore che viene usato per identificare il
+(\const{AF\_INET}), di tipo TCP \const{SOCK\_STREAM}. La funzione
+\const{socket} ritorna il descrittore che viene usato per identificare il
 socket in tutte le chiamate successive. Nel caso la chiamata fallisca si
 stampa un errore con la relativa routine e si esce.
 
-Il passo seguente (\texttt{\small 19--27}) è quello di costruire unapposita
+Il passo seguente (\texttt{\small 19--27}) è quello di costruire un'apposita
 struttura \type{sockaddr\_in} in cui sarà inserito l'indirizzo del server ed
 il numero della porta del servizio. Il primo passo è inizializzare tutto a
 zero, per poi inserire il tipo di protocollo e la porta (usando per
@@ -953,7 +994,7 @@ necessario deve provvedere il programma stesso.
 
 Dopo aver illustrato il client daremo anche un esempio di un server
 elementare, in grado di rispondere al precedente client. Il listato è
-nuovamente mostrato in \nfig, il sorgente completo
+nuovamente mostrato in \figref{fig:net_serv_code}, il sorgente completo
 (\file{ElemDaytimeTCPServer.c}) è allegato insieme agli altri file nella
 directory \file{sources}.
 
@@ -1029,7 +1070,7 @@ sono omesse le parti relative al trattamento delle opzioni da riga di comando.
 La creazione del socket (\texttt{\small 22--26}) è analoga al caso precedente,
 come pure l'inizializzazione della struttura \type{sockaddr\_in}, anche in
 questo caso si usa la porta standard del servizio daytime, ma come indirizzo
-IP si il valore predefinito \macro{INET\_ANY} che corrisponde ad un indirizzo
+IP si il valore predefinito \const{INET\_ANY} che corrisponde ad un indirizzo
 generico (\texttt{\small 27--31}).
 
 Si effettua poi (\texttt{\small 32--36}) la chiamata alla funzione
@@ -1065,3 +1106,8 @@ scritto per essere lanciato da linea di comando, se lo si volesse utilizzare
 come demone di sistema (che è in esecuzione anche quando non c'è nessuna shell
 attiva e il terminale da cui lo si è lanciato è stato sconnesso),
 occorrerebbero delle opportune modifiche.
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: