Fatte mq_open, mq_close, mq_unlink, mq_setattr, mq_getaddr.
[gapil.git] / socket.tex
index 4cc999d34818865533ddcab50e8c2cadb0ca500f..2e34e78d3bdeaaa3bab7428c8740310ecc3b36ec 100644 (file)
@@ -1,25 +1,57 @@
-\chapter{Socket}
-\label{cha:socket}
-
-Il \textit{socket} (traducibile liberamente come \textsl{manicotto}) è uno dei
-principali meccanismi di comunicazione fra programmi utilizzato in ambito unix
-(e non solo). Il socket costituisce in sostanza un canale di comunicazione fra
-due processi su cui si possono leggere e scrivere dati. 
-
-La creazione di un socket restituisce un file descriptor con un comportamento
-analogo a quello di una pipe ma a differenza di questa e degli altri
-meccanismi esaminati nel capitolo \ref{cha:ipc} i socket non sono limitati
-alla comunicazione fra processi che girano sulla stessa macchina ma possono
-effettuare la comunicazione anche attraverso la rete.
-
-I socket infatti sono la principale API (\textit{Application Program
-  Interface}) usata nella programmazione di rete. La loro origine risale al
-1983, quando furono introdotti nel BSD 4.2; l'interfaccia è rimasta
+%% socket.tex
+%%
+%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
+\chapter{Introduzione ai socket}
+\label{cha:socket_intro}
+
+In questo capitolo inizieremo a spiegare le caratteristiche principali della
+principale interfaccia per la programmazione di rete, quella dei
+\textit{socket}, che pur essendo nata in unix è usata ormai da tutti i sistemi
+operativi.
+
+Dopo una breve panoramica sulle caratteristiche di questa interfaccia vedremo
+come creare un socket e come collegarlo allo specifico protocollo di rete che
+utilizzerà per la comunicazione. Per evitare un'introduzione puramente teorica
+concluderemo il capitolo con un primo esempio di applicazione.
+
+\section{Una panoramica}
+\label{sec:sock_overview}
+
+Iniziamo con una descrizione essenziale di cosa sono i \textit{socket} e di
+quali sono i concetti fondamentali da tenere presente quando si ha a che fare
+con essi.
+\index{socket|(}
+
+
+\subsection{I \textit{socket}}
+\label{sec:sock_socket_def}
+
+Il \textit{socket}\footnote{una traduzione letterale potrebbe essere
+  \textsl{presa}, ma essendo universalmente noti come socket utilizzeremo
+  sempre la parola inglese.} è uno dei principali meccanismi di comunicazione
+fra programmi utilizzato in ambito Unix. Il socket costituisce in sostanza un
+canale di comunicazione fra due processi su cui si possono leggere e scrivere
+dati analogo a quello di una pipe (vedi \secref{sec:ipc_pipes}) ma a
+differenza di questa e degli altri meccanismi esaminati nel capitolo
+\capref{cha:IPC} i socket non sono limitati alla comunicazione fra processi
+che girano sulla stessa macchina ma possono effettuare la comunicazione anche
+attraverso la rete.
+
+Quella dei socket costituisce infatti la principale API (\textit{Application
+  Program Interface}) usata nella programmazione di rete.  La loro origine
+risale al 1983, quando furono introdotti nel BSD 4.2; l'interfaccia è rimasta
 sostanzialmente la stessa con piccole modifiche negli anni successivi. Benché
 sostanzialmente la stessa con piccole modifiche negli anni successivi. Benché
-siano state sviluppate interfacce alternative, originate dai sistemi SYSV,
+siano state sviluppate interfacce alternative, originate dai sistemi SVr4,
 come la XTI (\textit{X/Open Transport Interface}) nessuna ha mai raggiunto la
 come la XTI (\textit{X/Open Transport Interface}) nessuna ha mai raggiunto la
-diffusione e la popolarità di quella dei socket (né tantomeno usabilità e
-flessibilità).
+diffusione e la popolarità di quella dei socket (né tantomeno la stessa
+usabilità e flessibilità).
 
 La flessibilità e la genericità dell'interfaccia inoltre ha consentito di
 utilizzare i socket con i più disparati meccanismi di comunicazione, e non
 
 La flessibilità e la genericità dell'interfaccia inoltre ha consentito di
 utilizzare i socket con i più disparati meccanismi di comunicazione, e non
@@ -27,26 +59,26 @@ solo con la suite dei protocolli TCP/IP, che sar
 tratteremo in maniera più estesa.
 
 
 tratteremo in maniera più estesa.
 
 
-\section{Concetti base}
+\subsection{Concetti base}
 \label{sec:sock_gen}
 
 Per capire il funzionamento dei socket occorre avere presente il funzionamento
 \label{sec:sock_gen}
 
 Per capire il funzionamento dei socket occorre avere presente il funzionamento
-dei protocolli di rete (vedi \ref{cha:network}), ma l'interfaccia è del tutto
-generale e benché le problematiche (e quindi le modalità di risolvere i
+dei protocolli di rete (vedi \capref{cha:network}), ma l'interfaccia è del
+tutto generale e benché le problematiche (e quindi le modalità di risolvere i
 problemi) siano diverse a seconda del tipo di protocollo di comunicazione
 usato, le funzioni da usare restano le stesse.
 
 Per questo motivo una semplice descrizione dell'interfaccia è assolutamente
 inutile, in quanto il comportamento di quest'ultima e le problematiche da
 problemi) siano diverse a seconda del tipo di protocollo di comunicazione
 usato, le funzioni da usare restano le stesse.
 
 Per questo motivo una semplice descrizione dell'interfaccia è assolutamente
 inutile, in quanto il comportamento di quest'ultima e le problematiche da
-affrontare cambiano radicalmente a seconda dello ``stile'' di comunicazione
-usato.  La scelta di questo stile va infatti ad incidere sulla semantica che
-verrà utilizzata a livello utente per gestire la comunicazione (su come
-inviare e ricevere i dati) e sul comportamento effettivo delle funzioni
-utilizzate.
+affrontare cambiano radicalmente a seconda dello \textsl{stile} di
+comunicazione usato.  La scelta di questo stile va infatti ad incidere sulla
+semantica che verrà utilizzata a livello utente per gestire la comunicazione
+(su come inviare e ricevere i dati) e sul comportamento effettivo delle
+funzioni utilizzate.
 
 La scelta di uno stile dipende sia dai meccanismi disponibili, sia dal tipo di
 comunicazione che si vuole effettuare. Ad esempio alcuni stili di
 
 La scelta di uno stile dipende sia dai meccanismi disponibili, sia dal tipo di
 comunicazione che si vuole effettuare. Ad esempio alcuni stili di
-comunicazione considerano i dati come una sequenza continua di bytes, altri
+comunicazione considerano i dati come una sequenza continua di byte, altri
 invece li raggruppano in blocchi (i pacchetti).
 
 Un'altro esempio di stile concerne la possibilità che la comunicazione possa o
 invece li raggruppano in blocchi (i pacchetti).
 
 Un'altro esempio di stile concerne la possibilità che la comunicazione possa o
@@ -58,78 +90,1059 @@ avviene, in certi casi essa pu
 con un solo partner come per una telefonata; altri casi possono prevedere una
 comunicazione come per lettera, in cui si scrive l'indirizzo su ogni
 pacchetto, altri ancora una comunicazione \textit{broadcast} come per la
 con un solo partner come per una telefonata; altri casi possono prevedere una
 comunicazione come per lettera, in cui si scrive l'indirizzo su ogni
 pacchetto, altri ancora una comunicazione \textit{broadcast} come per la
-radio, in cui i pacchetti vengono emessi su appositi ``canali'' dove chiunque
-si collega possa riceverli.
+radio, in cui i pacchetti vengono emessi su appositi ``\textsl{canali}'' dove
+chiunque si collega possa riceverli.
 
 É chiaro che ciascuno di questi stili comporta una modalità diversa di gestire
 la comunicazione, ad esempio se è inaffidabile occorrerà essere in grado di
 gestire la perdita o il rimescolamento dei dati.
 
 
 É chiaro che ciascuno di questi stili comporta una modalità diversa di gestire
 la comunicazione, ad esempio se è inaffidabile occorrerà essere in grado di
 gestire la perdita o il rimescolamento dei dati.
 
+
+\section{La creazione di un \textit{socket}}
+\label{sec:sock_creation}
+
+Come accennato l'interfaccia dei socket è estremamente flessibile e permette
+di interagire con protocolli di comunicazione anche molto diversi fra di loro;
+in questa sezione vedremo come è possibile creare un socket e come specificare
+il tipo di comunicazione che esso deve utilizzare.
+
+\subsection{La funzione \func{socket}}
+\label{sec:sock_socket}
+
+La creazione di un socket avviene attraverso l'uso della funzione
+\funcd{socket}; questa restituisce un \textit{file descriptor}\footnote{del
+  tutto analogo a quelli che si ottengono per i file di dati e le pipe,
+  descritti in \secref{sec:file_fd}.} che serve come riferimento al socket; il
+suo prototipo è:
+\begin{prototype}{sys/socket.h}{int socket(int domain, int type, int protocol)}
+
+  Apre un socket.
+  
+  \bodydesc{La funzione restituisce un intero positivo in caso di successo, e
+    -1 in caso di fallimento, nel qual caso la variabile \var{errno} assumerà
+  i valori:
+  \begin{errlist}
+  \item[\errcode{EPROTONOSUPPORT}] Il tipo di socket o il protocollo scelto non
+    sono supportati nel dominio.
+  \item[\errcode{ENFILE}] Il kernel non ha memoria sufficiente a creare una
+    nuova struttura per il socket.
+  \item[\errcode{EMFILE}] Si è ecceduta la tabella dei file.
+  \item[\errcode{EACCES}] Non si hanno privilegi per creare un socket nel
+    dominio o con il protocollo specificato.
+  \item[\errcode{EINVAL}] Protocollo sconosciuto o dominio non disponibile.
+  \item[\errcode{ENOBUFS}] Non c'è sufficiente memoria per creare il socket
+    (può essere anche \errval{ENOMEM}).
+  \end{errlist}}
+\end{prototype}
+
+La funzione ha tre argomenti, \param{domain} specifica il dominio del socket
+(definisce cioè la famiglia di protocolli, come vedremo in
+\secref{sec:sock_domain}), \param{type} specifica il tipo di socket (definisce
+cioè lo stile di comunicazione, come vedremo in \secref{sec:sock_type}) e
+\param{protocol} il protocollo; in genere quest'ultimo è indicato
+implicitamente dal tipo di socket, per cui viene messo a zero (con l'eccezione
+dei \textit{raw socket}).
+
+Si noti che la creazione del socket si limita ad allocare le opportune
+strutture nel kernel (sostanzialmente una voce nella \textit{file table}) e
+non comporta nulla riguardo all'indicazione degli indirizzi remoti o locali
+attraverso i quali si vuole effettuare la comunicazione.
+
+\subsection{Il dominio, o \textit{protocol family}}
+\label{sec:sock_domain}
+
 Dati i tanti e diversi protocolli di comunicazione disponibili, esistono vari
 tipi di socket, che vengono classificati raggruppandoli in quelli che si
 Dati i tanti e diversi protocolli di comunicazione disponibili, esistono vari
 tipi di socket, che vengono classificati raggruppandoli in quelli che si
-chiamano \textsl{domini} (\textit{domains}).  La scelta di un dominio equivale
-in sostanza alla scelta di una famiglia di protocolli. Ciascun dominio ha un
-suo nome simbolico che convenzionalmente inizia con \texttt{PF\_} (da
-\textit{Protocol Family}, altro nome con cui si indicano i domini). 
+chiamano \textsl{domini}.  La scelta di un dominio equivale in sostanza alla
+scelta di una famiglia di protocolli. Ciascun dominio ha un suo nome simbolico
+che convenzionalmente inizia con \texttt{PF\_} da \textit{protocol family},
+altro nome con cui si indicano i domini.
 
 A ciascun tipo di dominio corrisponde un analogo nome simbolico che inizia per
 
 A ciascun tipo di dominio corrisponde un analogo nome simbolico che inizia per
-\texttt{AF\_} da \textit{Address Family}, nome che useremo anche noi; le man
-pages di linux si riferiscono a questi anche come \textit{name space}, (nome
-che però il manuale della glibc riserva ai domini) e che identifica il formato
-degli indirizzi usati in quel dominio.
+\texttt{AF\_} da \textit{address family}, e che identifica il formato degli
+indirizzi usati in quel dominio; le pagine di manuale di Linux si riferiscono
+a questi anche come \textit{name space}, (nome che però il manuale delle
+\acr{glibc} riserva ai domini) e che identifica il formato degli indirizzi
+usati in quel dominio.
+
+L'idea alla base della distinzione era che una famiglia di protocolli potesse
+supportare vari tipi di indirizzi, per cui il prefisso \texttt{PF\_} si
+sarebbe dovuto usare nella creazione dei socket e il prefisso \texttt{AF\_} in
+quello delle strutture degli indirizzi; questo è quanto specificato anche
+dallo standard POSIX.1g, ma non esistono a tuttora famiglie di protocolli che
+supportino diverse strutture di indirizzi, per cui nella pratica questi due
+nomi sono equivalenti e corrispondono agli stessi valori.
 
 
-I domini (e i relativi nomi simbolici) sono definiti dall'header
-\textit{socket.h}. In linux sono disponibili le famiglie di protocolli
-riportate in \ntab.
+I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di
+indirizzi sono definiti dall'header \textit{socket.h}. In Linux le famiglie di
+protocolli disponibili sono riportate in \tabref{tab:net_pf_names}.
 
 \begin{table}[htb]
 
 \begin{table}[htb]
+  \footnotesize
   \centering
   \centering
-  \begin{tabular}[c]{lll}
-       Nome               & Utilizzo                       & Man page   \\
-       PF\_UNIX,PF\_LOCAL & Local communication            & unix(7)    \\
-       PF\_INET           & IPv4 Internet protocols        & ip(7)      \\
-       PF\_INET6          & IPv6 Internet protocols        &            \\
-       PF\_IPX            & IPX - Novell protocols         &            \\
-       PF\_NETLINK        & Kernel user interface device   & netlink(7) \\
-       PF\_X25            & ITU-T X.25 / ISO-8208 protocol & x25(7)     \\
-       PF\_AX25           & Amateur radio AX.25 protocol   &            \\
-       PF\_ATMPVC         & Access to raw ATM PVCs         &            \\
-       PF\_APPLETALK      & Appletalk                      & ddp(7)     \\
-       PF\_PACKET         & Low level packet interface     & packet(7)  \\    
+  \begin{tabular}[c]{|l|l|l|}
+       \hline
+       \textbf{Nome}      & \textbf{Utilizzo}           &\textbf{Man page} \\
+       \hline
+       \hline
+       \const{PF\_UNIX},
+       \const{PF\_LOCAL}  & Local communication            & unix(7)    \\
+       \const{PF\_INET}   & IPv4 Internet protocols        & ip(7)      \\
+       \const{PF\_INET6}  & IPv6 Internet protocols        & ipv6(7)    \\
+       \const{PF\_IPX}    & IPX - Novell protocols         &            \\
+       \const{PF\_NETLINK}& Kernel user interface device   & netlink(7) \\
+       \const{PF\_X25}    & ITU-T X.25 / ISO-8208 protocol & x25(7)     \\
+       \const{PF\_AX25}   & Amateur radio AX.25 protocol   &            \\
+       \const{PF\_ATMPVC} & Access to raw ATM PVCs         &            \\
+       \const{PF\_APPLETALK}& Appletalk                    & ddp(7)     \\
+       \const{PF\_PACKET} & Low level packet interface     & packet(7)  \\    
+       \hline
   \end{tabular}
   \end{tabular}
-  \caption{Famiglie di protocolli definiti in linux}
+  \caption{Famiglie di protocolli definiti in Linux}
   \label{tab:net_pf_names}
 \end{table}
 
   \label{tab:net_pf_names}
 \end{table}
 
+Non tutte le famiglie di protocolli sono accessibili dall'utente generico, ad
+esempio in generale tutti i socket di tipo \const{SOCK\_RAW} possono essere
+creati solo da processi che hanno i privilegi di root (cioè con user-ID
+effettivo uguale a zero) o con la capability \texttt{CAP\_NET\_RAW}.
+
+
+\subsection{Il tipo, o stile}
+\label{sec:sock_type}
+
 La scelta di un dominio non comporta però la scelta dello stile di
 comunicazione, questo infatti viene a dipendere dal protocollo che si andrà ad
 utilizzare fra quelli disponibili nella famiglia scelta. Le API permettono di
 La scelta di un dominio non comporta però la scelta dello stile di
 comunicazione, questo infatti viene a dipendere dal protocollo che si andrà ad
 utilizzare fra quelli disponibili nella famiglia scelta. Le API permettono di
-scegliere lo stile di comunicazione indicando il tipo di socket; linux e le
-glibc mettono a disposizione i seguenti tipi di socket (che il manuale della
-glibc chiama \textit{styles}) definiti come \texttt{int} in \texttt{socket.h}:
+scegliere lo stile di comunicazione indicando il tipo di socket; Linux e le
+\acr{glibc} mettono a disposizione i seguenti tipi di socket (che il manuale
+della \acr{glibc} chiama \textit{styles}) definiti come \ctyp{int} in
+\file{socket.h}:
 
 \begin{list}{}{}
 
 \begin{list}{}{}
-\item \texttt{SOCK\_STREAM} Provvede un canale di trasmissione dati
+\item \const{SOCK\_STREAM} Provvede un canale di trasmissione dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati vengono ricevuti e trasmessi come un flusso continuo di
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati vengono ricevuti e trasmessi come un flusso continuo di
-  byte (da cui il nome \textit{stream}). Vedi \ref{sec:sock_stream}.
-\item \texttt{SOCK\_DGRAM} Viene usato per mandare pacchetti di lunghezza
+  byte (da cui il nome \textit{stream}). 
+\item \const{SOCK\_DGRAM} Viene usato per mandare pacchetti di lunghezza
   massima fissata (\textit{datagram}) indirizzati singolarmente, senza
   massima fissata (\textit{datagram}) indirizzati singolarmente, senza
-  connessione e in maniera non affidabile. È l'opposto del precedente. Vedi
-  \ref{sec:sock_dgram}.
-\item \texttt{SOCK\_SEQPACKET} Provvede un canale di trasmissione di dati
+  connessione e in maniera non affidabile. È l'opposto del precedente. 
+\item \const{SOCK\_SEQPACKET} Provvede un canale di trasmissione di dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati possono solo essere trasmessi e letti per pacchetti (di
   dimensione massima fissata).
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati possono solo essere trasmessi e letti per pacchetti (di
   dimensione massima fissata).
-\item \texttt{SOCK\_RAW} Provvede l'accesso a basso livello ai protocolli di
+\item \const{SOCK\_RAW} Provvede l'accesso a basso livello ai protocolli di
   rete e alle varie interfacce. I normali programmi di comunicazione non
   devono usarlo.
   rete e alle varie interfacce. I normali programmi di comunicazione non
   devono usarlo.
-\item \texttt{SOCK\_RDM} Provvede un canale di trasmissione di pacchetti
+\item \const{SOCK\_RDM} Provvede un canale di trasmissione di pacchetti
   affidabile ma in cui non è garantito l'ordine di arrivo dei pacchetti.
   affidabile ma in cui non è garantito l'ordine di arrivo dei pacchetti.
-\item \texttt{SOCK\_PACKET} Obsoleto, non deve essere usato.
+\item \const{SOCK\_PACKET} Obsoleto, non deve essere usato.
 \end{list}
 
 \end{list}
 
+Si tenga presente che non tutte le combinazioni fra una famiglia di protocolli
+e un tipo di socket sono valide, in quanto non è detto che in una famiglia
+esista un protocollo per ciascuno dei diversi stili di comunicazione appena
+elencati.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}{l|c|c|c|c|c|}
+   \multicolumn{1}{c}{} &\multicolumn{1}{c}{\const{SOCK\_STREAM}}& 
+     \multicolumn{1}{c}{\const{SOCK\_DGRAM}} & 
+     \multicolumn{1}{c}{\const{SOCK\_RAW}} & 
+     \multicolumn{1}{c}{\const{SOCK\_PACKET}}& 
+     \multicolumn{1}{c}{\const{SOCK\_SEQPACKET}} \\
+     \cline{2-6}
+    \const{PF\_UNIX}      &  si & si  &      &     &     \\
+     \cline{2-6}
+    \const{PF\_INET}      & TCP & UDP & IPv4 &     &     \\
+     \cline{2-6}
+    \const{PF\_INET6}     & TCP & UDP & IPv6 &     &     \\
+     \cline{2-6}
+    \const{PF\_IPX}       &     &     &      &     &     \\
+     \cline{2-6}
+    \const{PF\_NETLINK}   &     &  si &  si  &     &     \\
+     \cline{2-6}
+    \const{PF\_X25}       &     &     &      &     &  si \\
+     \cline{2-6}
+    \const{PF\_AX25}      &     &     &      &     &     \\
+     \cline{2-6}
+    \const{PF\_ATMPVC}    &     &     &      &     &     \\
+     \cline{2-6}
+    \const{PF\_APPLETALK} &     & si  &  si  &     &     \\
+     \cline{2-6}
+    \const{PF\_PACKET}    &     & si  & si   &     &     \\    
+     \cline{2-6}
+  \end{tabular}
+  \caption{Combinazioni valide di dominio e tipo di protocollo per la 
+    funzione \func{socket}.}
+  \label{tab:sock_sock_valid_combinations}
+\end{table}
+
+In \secref{tab:sock_sock_valid_combinations} sono mostrate le combinazioni
+valide possibili per le varie famiglie di protocolli. Per ogni combinazione
+valida si è indicato il tipo di protocollo, o la parola \textsl{si} qualora
+non il protocollo non abbia un nome definito, mentre si sono lasciate vuote le
+caselle per le combinazioni non supportate.
+
+
+
+\section{Le strutture degli indirizzi dei socket}
+\label{sec:sock_sockaddr}
+
+Come si è visto nella creazione di un socket non si specifica nulla oltre al
+tipo di famiglia di protocolli che si vuole utilizzare, in particolare nessun
+indirizzo che identifichi i due capi della comunicazione. La funzione infatti
+si limita ad allocare nel kernel quanto necessario per poter poi realizzare la
+comunicazione.
+
+Gli indirizzi vengono specificati attraverso apposite strutture che vengono
+utilizzate dalle altre funzioni della API dei socket quando la comunicazione
+viene effettivamente realizzata. 
+
+Ogni famiglia di protocolli ha ovviamente una sua forma di indirizzamento e in
+corrispondenza a questa una sua peculiare struttura degli indirizzi; i nomi di
+tutte queste strutture iniziano per \var{sockaddr\_}, quelli propri di
+ciascuna famiglia vengono identificati dal suffisso finale, aggiunto al nome
+precedente.
+
+
+\subsection{La struttura generica}
+\label{sec:sock_sa_gen}
+
+Le strutture degli indirizzi vengono sempre passate alle varie funzioni
+attraverso puntatori (cioè \textit{by reference}), ma le funzioni devono poter
+maneggiare puntatori a strutture relative a tutti gli indirizzi possibili
+nelle varie famiglie di protocolli; questo pone il problema di come passare
+questi puntatori, il C ANSI risolve questo problema coi i puntatori generici
+(i \ctyp{void *}), ma l'interfaccia dei socket è antecedente alla definizione
+dello standard ANSI, e per questo nel 1982 fu scelto di definire una struttura
+generica per gli indirizzi dei socket, \struct{sockaddr}, che si è riportata in
+\figref{fig:sock_sa_gen_struct}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sockaddr {
+    sa_family_t  sa_family;     /* address family: AF_xxx */
+    char         sa_data[14];   /* address (protocol-specific) */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \caption{La struttura generica degli indirizzi dei socket
+    \structd{sockaddr}.} 
+  \label{fig:sock_sa_gen_struct}
+\end{figure}
+
+Tutte le funzioni dei socket che usano gli indirizzi sono definite usando nel
+prototipo un puntatore a questa struttura; per questo motivo quando si
+invocano dette funzioni passando l'indirizzo di un protocollo specifico
+occorrerà eseguire un casting del relativo puntatore.
+
+I tipi di dati che compongono la struttura sono stabiliti dallo standard
+POSIX.1g, riassunti in \tabref{tab:sock_data_types} con i rispettivi file di
+include in cui sono definiti; la struttura è invece definita nell'include file
+\file{sys/socket.h}.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}{|l|l|l|}
+    \hline
+    \multicolumn{1}{|c|}{\textbf{Tipo}}& 
+    \multicolumn{1}{|c|}{\textbf{Descrizione}}& 
+    \multicolumn{1}{|c|}{\textbf{Header}} \\
+    \hline
+    \hline
+    \type{int8\_t}   & intero a 8 bit con segno   & \file{sys/types.h}\\
+    \type{uint8\_t}  & intero a 8 bit senza segno & \file{sys/types.h}\\
+    \type{int16\_t}  & intero a 16 bit con segno  & \file{sys/types.h}\\
+    \type{uint16\_t} & intero a 16 bit senza segno& \file{sys/types.h}\\
+    \type{int32\_t}  & intero a 32 bit con segno  & \file{sys/types.h}\\
+    \type{uint32\_t} & intero a 32 bit senza segno& \file{sys/types.h}\\
+    \hline
+    \type{sa\_family\_t} & famiglia degli indirizzi& \file{sys/socket.h}\\
+    \type{socklen\_t} & lunghezza (\type{uint32\_t}) dell'indirizzo di
+    un socket& \file{sys/socket.h}\\
+    \hline
+    \type{in\_addr\_t} & indirizzo IPv4 (\type{uint32\_t}) & 
+    \file{netinet/in.h}\\
+    \type{in\_port\_t} & porta TCP o UDP (\type{uint16\_t})& 
+    \file{netinet/in.h}\\
+    \hline
+  \end{tabular}
+  \caption{Tipi di dati usati nelle strutture degli indirizzi, secondo quanto 
+    stabilito dallo standard POSIX.1g.}
+  \label{tab:sock_data_types}
+\end{table}
+
+In alcuni sistemi la struttura è leggermente diversa e prevede un primo membro
+aggiuntivo \code{uint8\_t sin\_len} (come riportato da R. Stevens nei suoi
+libri). Questo campo non verrebbe usato direttamente dal programmatore e non è
+richiesto dallo standard POSIX.1g, in Linux pertanto non esiste. Il campo
+\type{sa\_family\_t} era storicamente un \ctyp{unsigned short}.
+
+Dal punto di vista del programmatore l'unico uso di questa struttura è quello
+di fare da riferimento per il casting, per il kernel le cose sono un po'
+diverse, in quanto esso usa il puntatore per recuperare il campo
+\var{sa\_family} con cui determinare il tipo di indirizzo; per questo
+motivo, anche se l'uso di un puntatore \ctyp{void *} sarebbe più immediato
+per l'utente (che non dovrebbe più eseguire il casting), è stato mantenuto
+l'uso di questa struttura.
+
+
+\subsection{La struttura degli indirizzi IPv4}
+\label{sec:sock_sa_ipv4}
+
+I socket di tipo \const{PF\_INET} vengono usati per la comunicazione
+attraverso internet; la struttura per gli indirizzi per un socket internet
+(IPv4) è definita come \struct{sockaddr\_in} nell'header file
+\file{netinet/in.h} e secondo le pagine di manuale ha la forma mostrata in
+\figref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g.
+
+\begin{figure}[!htb]
+  \footnotesize\centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sockaddr_in {
+    sa_family_t     sin_family; /* address family: AF_INET */
+    u_int16_t       sin_port;   /* port in network byte order */
+    struct in_addr  sin_addr;   /* internet address */
+};
+/* Internet address. */
+struct in_addr {
+    u_int32_t       s_addr;     /* address in network byte order */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \caption{La struttura degli indirizzi dei socket internet (IPv4)
+    \structd{sockaddr\_in}.}
+  \label{fig:sock_sa_ipv4_struct}
+\end{figure}
+
+L'indirizzo di un socket internet (secondo IPv4) comprende l'indirizzo
+internet di un'interfaccia più un numero di porta. Il protocollo IP non
+prevede numeri di porta, che sono utilizzati solo dai protocolli di livello
+superiore come TCP e UDP. Questa struttura però viene usata anche per i socket
+RAW che accedono direttamente al livello di IP, nel qual caso il numero della
+porta viene impostato al numero di protocollo.
+
+Il membro \var{sin\_family} deve essere sempre impostato; \var{sin\_port}
+specifica il numero di porta (vedi \secref{sec:TCPel_port_num}; i numeri di
+porta sotto il 1024 sono chiamati \textsl{riservati} in quanto utilizzati da
+servizi standard. Soltanto processi con i privilegi di root (con user-ID
+effettivo uguale a zero) o con la capability \texttt{CAP\_NET\_BIND\_SERVICE}
+possono usare la funzione \func{bind} su queste porte.
+
+Il membro \var{sin\_addr} contiene l'indirizzo internet dell'altro capo
+della comunicazione, e viene acceduto sia come struttura (un resto di una
+implementazione precedente in cui questa era una \direct{union} usata per
+accedere alle diverse classi di indirizzi) che come intero.
+
+Infine è da sottolineare che sia gli indirizzi che i numeri di porta devono
+essere specificati in quello che viene chiamato \textit{network order}, cioè
+con i bit ordinati in formato \textit{big endian}, questo comporta la
+necessità di usare apposite funzioni di conversione per mantenere la
+portabilità del codice (vedi \secref{sec:sock_addr_func} per i dettagli del
+problema e le relative soluzioni).
+
+
+\subsection{La struttura degli indirizzi IPv6}
+\label{sec:sock_sa_ipv6}
+
+Essendo IPv6 un'estensione di IPv4 i socket di tipo \const{PF\_INET6} sono
+sostanzialmente identici ai precedenti; la parte in cui si trovano
+praticamente tutte le differenze è quella della struttura degli indirizzi. La
+struttura degli indirizzi è definita ancora in \file{netinet/in.h}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sockaddr_in6 {
+    u_int16_t       sin6_family;   /* AF_INET6 */
+    u_int16_t       sin6_port;     /* port number */
+    u_int32_t       sin6_flowinfo; /* IPv6 flow information */
+    struct in6_addr sin6_addr;     /* IPv6 address */
+    u_int32_t       sin6_scope_id; /* Scope id (new in 2.4) */
+};
+
+struct in6_addr {
+    unsigned char   s6_addr[16];   /* IPv6 address */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \caption{La struttura degli indirizzi dei socket IPv6 
+    \structd{sockaddr\_in6}.}
+  \label{fig:sock_sa_ipv6_struct}
+\end{figure}
+
+Il campo \var{sin6\_family} deve essere sempre impostato ad
+\const{AF\_INET6}, il campo \var{sin6\_port} è analogo a quello di IPv4 e
+segue le stesse regole; il campo \var{sin6\_flowinfo} è a sua volta diviso
+in tre parti di cui i 24 bit inferiori indicano l'etichetta di flusso, i
+successivi 4 bit la priorità e gli ultimi 4 sono riservati; questi valori
+fanno riferimento ad alcuni campi specifici dell'header dei pacchetti IPv6
+(vedi \secref{sec:IP_ipv6head}) ed il loro uso è sperimentale.
+
+Il campo \var{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6,
+infine il campo \var{sin6\_scope\_id} è un campo introdotto con il kernel
+2.4 per gestire alcune operazioni riguardanti il multicasting.
+Si noti che questa struttura è più grande di una \struct{sockaddr} generica,
+quindi occorre stare attenti a non avere fatto assunzioni riguardo alla
+possibilità di contenere i dati nelle dimensioni di quest'ultima.
+
+
+\subsection{La struttura degli indirizzi locali}
+\label{sec:sock_sa_local}
+
+I socket di tipo \const{PF\_UNIX} o \const{PF\_LOCAL} vengono usati per una
+comunicazione fra processi che stanno sulla stessa macchina (per vengono
+chiamati \textit{local domain} o anche \textit{Unix domain}); essi rispetto ai
+precedenti possono essere anche creati in maniera anonima attraverso la
+funzione \func{socketpair} (vedi \secref{sec:ipc_socketpair}). Quando però si
+vuole fare riferimento esplicito ad uno di questi socket si deve usare la
+seguente struttura di indirizzi definita nel file di header \file{sys/un.h}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+#define UNIX_PATH_MAX    108
+struct sockaddr_un {
+    sa_family_t  sun_family;              /* AF_UNIX */
+    char         sun_path[UNIX_PATH_MAX]; /* pathname */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \caption{La struttura degli indirizzi dei socket locali 
+    \structd{sockaddr\_un}.}
+  \label{fig:sock_sa_local_struct}
+\end{figure}
+
+In questo caso il campo \var{sun\_family} deve essere \const{AF\_UNIX},
+mentre il campo \var{sun\_path} deve specificare un indirizzo; questo ha
+due forme un file (di tipo socket) nel filesystem o una stringa univoca
+(tenuta in uno spazio di nomi astratto). Nel primo caso l'indirizzo viene
+specificato come una stringa (terminata da uno zero) corrispondente al
+pathname del file; nel secondo invece \var{sun\_path} inizia con uno zero
+vengono usati i restanti byte come stringa (senza terminazione).
+
+
+% \subsection{Il passaggio delle strutture}
+% \label{sec:sock_addr_pass}
+
+% Come detto nelle funzioni della API dei socket le strutture degli indirizzi
+% vengono sempre passate per riferimento usando un puntatore; anche la lunghezza
+% della struttura è passata come argomento, ma in questo caso la modalità del
+% passaggio dipende dalla direzione del medesimo, dal processo al kernel o
+% viceversa.
+
+% In particolare le tre funzioni \texttt{bind}, \texttt{connect} e
+% \texttt{sendto} passano la struttura al kernel, in questo caso è passata
+% \textsl{per valore} anche la dimensione della medesima
+
+
+% Le funzioni \texttt{accept}, \texttt{recvfrom}, \texttt{getsockname} e
+% \texttt{getpeername} invece ricevono i valori del kernel 
+
+
+
+\section{Le funzioni di conversione degli indirizzi}
+\label{sec:sock_addr_func}
+
+In questa sezione tratteremo delle varie funzioni usate per manipolare gli
+indirizzi, limitandoci però agli indirizzi internet.
+
+Come accennato gli indirizzi e i numeri di porta usati nella rete devono
+essere forniti in formato opportuno (il \textit{network order}). Per capire
+cosa significa tutto ciò occorre introdurre un concetto generale che tornerà
+utile anche in seguito.
+
+
+\subsection{La \textit{endianess}\index{endianess}}
+\label{sec:sock_endianess}
+
+La rappresentazione di un numero binario in un computer può essere fatta in
+due modi, chiamati rispettivamente \textit{big endian} e \textit{little
+  endian} a seconda di come i singoli bit vengono aggregati per formare le
+variabili intere (in diretta corrispondenza a come sono poi in realtà cablati
+sui bus interni del computer).
+
+Per capire meglio il problema si consideri un intero a 16 bit scritto in una
+locazione di memoria posta ad un certo indirizzo. I singoli bit possono essere
+disposti un memoria in due modi, a partire dal più significativo o a partire
+dal meno significativo. Così nel primo caso si troverà il byte che contiene i
+bit più significativi all'indirizzo menzionato e il byte con i bit meno
+significativi nell'indirizzo successivo; questo ordinamento è detto
+\textit{little endian} dato che il dato finale è la parte ``piccola'' del
+numero. Il caso opposto, in cui si parte dal bit meno significativo è detto
+per lo stesso motivo \textit{big endian}.
+
+La \textit{endianess}\index{endianess} di un computer dipende essenzialmente
+dalla architettura hardware usata; Intel e Digital usano il \textit{little
+  endian}, Motorola, IBM, Sun (sostanzialmente tutti gli altri) usano il
+\textit{big endian}. Il formato della rete è anch'esso \textit{big endian},
+altri esempi sono quello del bus PCI, che è \textit{little endian}, o quello
+del bus VME che è \textit{big endian}.
+
+Esistono poi anche dei processori che possono scegliere il tipo di formato
+all'avvio e alcuni che, come il PowerPC o l'Intel i860, possono pure passare
+da un tipo di ordinamento all'altro con una specifica istruzione. In ogni caso
+in Linux l'ordinamento è definito dall'architettura e dopo l'avvio del sistema
+resta sempre lo stesso, anche quando il processore permetterebbe di eseguire
+questi cambiamenti.
+
+\subsection{Le funzioni per il riordinamento}
+\label{sec:sock_func_ord}
+
+Il problema connesso all'endianess\index{endianess} è che quando si passano
+dei dati da un tipo di architettura all'altra i dati vengono interpretati in
+maniera diversa, e ad esempio nel caso dell'intero a 16 bit ci si ritroverà
+con i due byte in cui è suddiviso scambiati di posto, e ne sarà quindi
+invertito l'ordine di lettura per cui, per riavere il valore originale
+dovranno essere rovesciati.
+
+Per questo motivo si usano delle funzioni di conversione che servono a tener
+conto automaticamente della possibile differenza fra l'ordinamento usato sul
+computer e quello che viene usato nelle trasmissione sulla rete; queste
+funzioni sono \funcd{htonl}, \funcd{htons}, \funcd{ntonl} e \funcd{ntons} ed i
+rispettivi prototipi sono:
+\begin{functions}
+  \headdecl{netinet/in.h}
+  \funcdecl{unsigned long int htonl(unsigned long int hostlong)} 
+  Converte l'intero a 32 bit \param{hostlong} dal formato della macchina a
+  quello della rete.
+  \funcdecl{unsigned short int htons(unsigned short int hostshort)}
+  Converte l'intero a 16 bit \param{hostshort} dal formato della macchina a
+  quello della rete.
+
+  \funcdecl{unsigned long int ntonl(unsigned long int netlong)}
+  Converte l'intero a 32 bit \param{netlong} dal formato della rete a quello
+  della macchina.
+
+  \funcdecl{unsigned sort int ntons(unsigned short int netshort)}
+  Converte l'intero a 16 bit \param{netshort} dal formato della rete a quello
+  della macchina.
+  
+  \bodydesc{Tutte le funzioni restituiscono il valore convertito, e non hanno
+    errori.}
+\end{functions}
+
+I nomi sono assegnati usando la lettera \texttt{n} come mnemonico per indicare
+l'ordinamento usato sulla rete (da \textit{network order}) e la lettera
+\texttt{h} come mnemonico per l'ordinamento usato sulla macchina locale (da
+\textit{host order}), mentre le lettere \texttt{s} e \texttt{l} stanno ad
+indicare i tipi di dato (\ctyp{long} o \ctyp{short}, riportati anche dai
+prototipi).
+
+Usando queste funzioni si ha la conversione automatica: nel caso in cui la
+macchina che si sta usando abbia una architettura \textit{big endian} queste
+funzioni sono definite come macro che non fanno nulla. Per questo motivo vanno
+sempre utilizzate, anche quando potrebbero non essere necessarie, in modo da
+assicurare la portabilità del codice su tutte le architetture.
+
+
+\subsection{Le funzioni \func{inet\_aton}, \func{inet\_addr} e 
+  \func{inet\_ntoa}}
+\label{sec:sock_func_ipv4}
+
+Un secondo insieme di funzioni di manipolazione serve per passare dal formato
+binario usato nelle strutture degli indirizzi alla rappresentazione simbolica
+dei numeri IP che si usa normalmente.
+
+Le prime tre funzioni di manipolazione riguardano la conversione degli
+indirizzi IPv4 da una stringa in cui il numero di IP è espresso secondo la
+cosiddetta notazione \textit{dotted-decimal}, (cioè nella forma
+\texttt{192.160.0.1}) al formato binario (direttamente in \textit{network
+  order}) e viceversa; in questo caso si usa la lettera \texttt{a} come
+mnemonico per indicare la stringa. Dette funzioni sono \funcd{inet\_addr},
+\funcd{inet\_aton} e \funcd{inet\_ntoa}, ed i rispettivi prototipi sono:
+\begin{functions}
+  \headdecl{arpa/inet.h}
+  
+  \funcdecl{in\_addr\_t inet\_addr(const char *strptr)} Converte la stringa
+  dell'indirizzo \textit{dotted decimal} in nel numero IP in network order.
+
+  \funcdecl{int inet\_aton(const char *src, struct in\_addr *dest)} Converte
+  la stringa dell'indirizzo \textit{dotted decimal} in un indirizzo IP.
+
+  \funcdecl{char *inet\_ntoa(struct in\_addr addrptr)}
+  Converte un indirizzo IP in una stringa \textit{dotted decimal}.
+
+  \bodydesc{Tutte queste le funzioni non generano codice di errore.}
+\end{functions}
+
+La prima funzione, \func{inet\_addr}, restituisce l'indirizzo a 32 bit in
+network order (del tipo \type{in\_addr\_t}) a partire dalla stringa passata
+nell'argomento \param{strptr}. In caso di errore (quando la stringa non esprime
+un indirizzo valido) restituisce invece il valore \const{INADDR\_NONE} che
+tipicamente sono trentadue bit a uno.  Questo però comporta che la stringa
+\texttt{255.255.255.255}, che pure è un indirizzo valido, non può essere usata
+con questa funzione; per questo motivo essa è generalmente deprecata in favore
+di \func{inet\_aton}.
+
+La funzione \func{inet\_aton} converte la stringa puntata da \param{src}
+nell'indirizzo binario che viene memorizzato nell'opportuna struttura
+\struct{in\_addr} (si veda \secref{fig:sock_sa_ipv4_struct}) situata
+all'indirizzo dato dall'argomento \param{dest} (è espressa in questa forma in
+modo da poterla usare direttamente con il puntatore usato per passare la
+struttura degli indirizzi). La funzione restituisce 0 in caso di successo e 1
+in caso di fallimento.  Se usata con \param{dest} inizializzato a \val{NULL}
+effettua la validazione dell'indirizzo.
+
+L'ultima funzione, \func{inet\_ntoa}, converte il valore a 32 bit
+dell'indirizzo (espresso in \textit{network order}) restituendo il puntatore
+alla stringa che contiene l'espressione in formato dotted decimal. Si deve
+tenere presente che la stringa risiede in memoria statica, per cui questa
+funzione non è rientrante.
+
+
+\subsection{Le funzioni \func{inet\_pton} e \func{inet\_ntop}}
+\label{sec:sock_conv_func_gen}
+
+Le tre funzioni precedenti sono limitate solo ad indirizzi IPv4, per questo
+motivo è preferibile usare le due nuove funzioni \func{inet\_pton} e
+\func{inet\_ntop} che possono convertire anche gli indirizzi IPv6. Anche in
+questo caso le lettere \texttt{n} e \texttt{p} sono degli mnemonici per
+ricordare il tipo di conversione effettuata e stanno per \textit{presentation}
+e \textit{numeric}.
+
+% \begin{figure}[htb]
+%   \centering  
+
+%   \caption{Schema della rappresentazioni utilizzate dalle funzioni di 
+%     conversione \texttt{inet\_pton} e \texttt{inet\_ntop} }
+%   \label{fig:sock_inet_conv_func}
+
+% \end{figure}
+
+Entrambe le funzioni accettano l'argomento \param{af} che indica il tipo di
+indirizzo e può essere soltanto \const{AF\_INET} o \const{AF\_INET6}. La prima
+funzione è \funcd{inet\_pton}, che serve a convertire una stringa in un
+indirizzo, il suo prototipo è:
+\begin{prototype}{sys/socket.h}
+{int inet\_pton(int af, const char *src, void *addr\_ptr)} 
+
+  Converte l'indirizzo espresso tramite una stringa nel valore numerico.
+  
+  \bodydesc{La funzione restituisce un valore negativo se \param{af} specifica
+    una famiglia di indirizzi non valida, con \var{errno} che assume il valore
+    \errcode{EAFNOSUPPORT}, un valore nullo se \param{src} non rappresenta un
+    indirizzo valido, ed un valore positivo in caso di successo.}
+\end{prototype}
+
+La funzione converte la stringa indicata tramite \param{src} nel valore
+numerico dell'indirizzo IP del tipo specificato da \param{af} che viene
+memorizzato all'indirizzo puntato da \param{addr\_ptr}, la funzione restituisce
+un valore positivo in caso di successo, e zero se la stringa non rappresenta
+un indirizzo valido, e negativo se \param{af} specifica una famiglia di
+indirizzi non valida.
+
+La seconda funzione è \funcd{inet\_ntop} che converte un indirizzo in una
+stringa; il suo prototipo è:
+\begin{prototype}{sys/socket.h}
+  {char *inet\_ntop(int af, const void *addr\_ptr, char *dest, size\_t len)}
+  Converte l'indirizzo dalla relativa struttura in una stringa simbolica.
+  \bodydesc{La funzione restituisce un puntatore non nullo alla stringa
+    convertita in caso di successo e \val{NULL} in caso di fallimento, nel
+    qual caso \var{errno} assume i valori: 
+    \begin{errlist}
+    \item[\errcode{ENOSPC}] le dimensioni della stringa con la conversione
+      dell'indirizzo eccedono la lunghezza specificata da \param{len}.
+    \item[\errcode{ENOAFSUPPORT}] la famiglia di indirizzi \param{af} non è
+      una valida.
+  \end{errlist}}
+\end{prototype}
+
+La funzione converte la struttura dell'indirizzo puntata da \param{addr\_ptr}
+in una stringa che viene copiata nel buffer puntato dall'indirizzo
+\param{dest}; questo deve essere preallocato dall'utente e la lunghezza deve
+essere almeno \const{INET\_ADDRSTRLEN} in caso di indirizzi IPv4 e
+\const{INET6\_ADDRSTRLEN} per indirizzi IPv6; la lunghezza del buffer deve
+comunque venire specificata attraverso il parametro \param{len}.
+
+Gli indirizzi vengono convertiti da/alle rispettive strutture di indirizzo
+(una struttura \struct{in\_addr} per IPv4, e una struttura \struct{in6\_addr}
+per IPv6), che devono essere precedentemente allocate e passate attraverso il
+puntatore \param{addr\_ptr}; l'argomento \param{dest} di \func{inet\_ntop} non
+può essere nullo e deve essere allocato precedentemente.
+
+Il formato usato per gli indirizzi in formato di presentazione è la notazione
+\textit{dotted decimal} per IPv4 e quello descritto in
+\secref{sec:IP_ipv6_notation} per IPv6.
+
+\index{socket|)}
+
+
+\section{Un esempio di applicazione}
+\label{sec:sock_appplication}
+
+Per evitare di rendere questa introduzione ai socket puramente teorica
+iniziamo con il mostrare un esempio di un client TCP elementare.  Prima di
+passare agli esempi del client e del server, ritorniamo con maggiori dettagli
+su una caratteristica delle funzioni di I/O che nel caso dei socket è
+particolarmente rilevante, e che ci tornerà utile anche in seguito.
+
+
+\subsection{Il comportamento delle funzioni di I/O}
+\label{sec:sock_io_behav}
+
+Una cosa di cui non sempre si è consapevoli quando si ha a che fare con i
+socket è che le funzioni di input/output non sempre hanno lo stesso
+comportamento che avrebbero con i normali files (in particolare questo accade
+per i socket di tipo stream). 
+
+Infatti con i socket è comune che funzioni come \func{read} o \func{write}
+possano restituire in input o scrivere in output un numero di byte minore di
+quello richiesto. Come già accennato in \secref{sec:file_read} questo è un
+comportamento normale per l'I/O su file; con i normali file di dati il
+problema si avverte solo quando si incontra la fine del file, ma in generale
+non è così.
+
+In questo caso tutto quello che il programma chiamante deve fare è di ripetere
+la lettura (o scrittura) per la quantità di byte rimanenti (e le funzioni si
+possono bloccare se i dati non sono disponibili): è lo stesso comportamento
+che si può avere scrivendo più di \const{PIPE\_BUF} byte in una pipe (si
+riveda quanto detto in \secref{sec:ipc_pipes}).
+
+\begin{figure}[htb]
+  \centering
+  \footnotesize
+  \begin{lstlisting}{}
+#include <unistd.h>
+
+ssize_t FullRead(int fd, void *buf, size_t count) 
+{
+    size_t nleft;
+    ssize_t nread;
+    nleft = count;
+    while (nleft > 0) {             /* repeat until no left */
+        if ( (nread = read(fd, buf, nleft)) < 0) {
+            if (errno == EINTR) {   /* if interrupted by system call */
+                continue;           /* repeat the loop */
+            } else {
+                return(nread);      /* otherwise exit */
+            }
+        } else if (nread == 0) {    /* EOF */
+            break;                  /* break loop here */ 
+        }
+        nleft -= nread;             /* set left to read */
+        buf +=nread;                /* set pointer */
+    }
+    return (count - nleft);
+}  
+  \end{lstlisting}
+  \caption{Funzione \func{FullRead}, legge \var{count} byte da un socket }
+  \label{fig:sock_FullRead_code}
+\end{figure}
+
+Per questo motivo, seguendo l'esempio di W. R. Stevens in \cite{UNP1}, si sono
+definite due funzioni \func{FullRead} e \func{FullWrite} che eseguono la
+lettura da un socket tenendo conto di questa caratteristica, ed in grado di
+ritornare dopo avere letto o scritto esattamente il numero di byte
+specificato; il sorgente è riportato in \figref{fig:sock_FullRead_code} e
+\figref{fig:sock_FullWrite_code} ed è disponibile fra i sorgenti allegati alla
+guida nei files \file{FullRead.c} e \file{FullWrite.c}.
+
+\begin{figure}[htb]
+  \centering
+  \footnotesize
+  \begin{lstlisting}{}
+#include <unistd.h>
+
+ssize_t FullWrite(int fd, const void *buf, size_t count) 
+{
+    size_t nleft;
+    ssize_t nwritten;
+
+    nleft = count;
+    while (nleft > 0) {             /* repeat until no left */
+        if ( (nwritten = write(fd, buf, nleft)) < 0) {
+            if (errno == EINTR) {   /* if interrupted by system call */
+                continue;           /* repeat the loop */
+            } else {
+                return(nwritten);   /* otherwise exit with error */
+            }
+        }
+        nleft -= nwritten;          /* set left to write */
+        buf +=nwritten;             /* set pointer */
+    }
+    return (count);
+}  
+  \end{lstlisting}
+  \caption{Funzione \func{FullWrite}, scrive \var{count} byte su un socket.}
+  \label{fig:sock_FullWrite_code}
+\end{figure}
+
+Come si può notare le funzioni ripetono la lettura/scrittura in un ciclo fino
+all'esaurimento del numero di byte richiesti, in caso di errore viene
+controllato se questo è \errcode{EINTR} (cioè un'interruzione della system call
+dovuta ad un segnale), nel qual caso l'accesso viene ripetuto, altrimenti
+l'errore viene ritornato interrompendo il ciclo.
+
+Nel caso della lettura, se il numero di byte letti è zero, significa che si è
+arrivati alla fine del file (per i socket questo significa in genere che
+l'altro capo è stato chiuso, e non è quindi più possibile leggere niente) e
+pertanto si ritorna senza aver concluso la lettura di tutti i byte richiesti.
+
+
+
+\subsection{Un primo esempio di client}
+\label{sec:net_cli_sample}
+
+Lo scopo di questo esempio è fornire un primo approccio alla programmazione di
+rete e vedere come si usano le funzioni descritte in precedenza, alcune delle
+funzioni usate nell'esempio saranno trattate in dettaglio nel capitolo
+successivo; qui ci limiteremo a introdurre la nomenclatura senza fornire
+definizioni precise e dettagli di funzionamento che saranno trattati
+estensivamente più avanti.
+
+In \figref{fig:net_cli_code} è riportata la sezione principale del codice del
+nostro client elementare per il servizio \textit{daytime}, un servizio
+standard che restituisce l'ora locale della macchina a cui si effettua la
+richiesta.
+
+\begin{figure}[!htb]
+  \footnotesize
+  \begin{lstlisting}{}
+#include <sys/types.h>   /* predefined types */
+#include <unistd.h>      /* include unix standard library */
+#include <arpa/inet.h>   /* IP addresses conversion utilities */
+#include <sys/socket.h>  /* socket library */
+#include <stdio.h>       /* include standard I/O library */
+
+int main(int argc, char *argv[])
+{
+    int sock_fd;
+    int i, nread;
+    struct sockaddr_in serv_add;
+    char buffer[MAXLINE];
+     ...
+    /* create socket */
+    if ( (sock_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
+        perror("Socket creation error");
+        return -1;
+    }
+    /* initialize address */
+    memset((void *) &serv_add, 0, sizeof(serv_add)); /* clear server address */
+    serv_add.sin_family = AF_INET;                   /* address type is INET */
+    serv_add.sin_port = htons(13);                   /* daytime post is 13 */
+    /* build address using inet_pton */
+    if ( (inet_pton(AF_INET, argv[optind], &serv_add.sin_addr)) <= 0) {
+        perror("Address creation error");
+        return -1;
+    }
+    /* extablish connection */
+    if (connect(sock_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
+        perror("Connection error");
+        return -1;
+    }
+    /* read daytime from server */
+    while ( (nread = read(sock_fd, buffer, MAXLINE)) > 0) {
+        buffer[nread]=0;
+        if (fputs(buffer, stdout) == EOF) {          /* write daytime */
+            perror("fputs error");
+            return -1;
+        }
+    }
+    /* error on read */
+    if (nread < 0) {
+        perror("Read error");
+        return -1;
+    }
+    /* normal exit */
+    return 0;
+}
+  \end{lstlisting}
+  \caption{Esempio di codice di un client elementare per il servizio daytime.}
+  \label{fig:net_cli_code}
+\end{figure}
+
+Il sorgente completo del programma (\file{ElemDaytimeTCPClient.c}, che
+comprende il trattamento delle opzioni e una funzione per stampare un
+messaggio di aiuto) è allegato alla guida nella sezione dei codici sorgente e
+può essere compilato su una qualunque macchina Linux.
+
+Il programma anzitutto include gli header necessari (\texttt{\small 1--5});
+dopo la dichiarazione delle variabili (\texttt{\small 9--12}) si è omessa
+tutta la parte relativa al trattamento degli argomenti passati dalla linea di
+comando (effettuata con le apposite routine illustrate in
+\capref{sec:proc_opt_handling}).
+
+Il primo passo (\texttt{\small 14--18}) è creare un \textit{socket} IPv4
+(\const{AF\_INET}), di tipo TCP \const{SOCK\_STREAM}. La funzione
+\func{socket} ritorna il descrittore che viene usato per identificare il
+socket in tutte le chiamate successive. Nel caso la chiamata fallisca si
+stampa un errore con la relativa routine e si esce.
+
+Il passo seguente (\texttt{\small 19--27}) è quello di costruire un'apposita
+struttura \struct{sockaddr\_in} in cui sarà inserito l'indirizzo del server ed
+il numero della porta del servizio. Il primo passo è inizializzare tutto a
+zero, per poi inserire il tipo di protocollo e la porta (usando per
+quest'ultima la funzione \func{htons} per convertire il formato dell'intero
+usato dal computer a quello usato nella rete), infine si utilizza la funzione
+\func{inet\_pton} per convertire l'indirizzo numerico passato dalla linea di
+comando.
+
+Usando la funzione \func{connect} sul socket creato in precedenza
+(\texttt{\small 28--32}) si provvede poi a stabilire la connessione con il
+server specificato dall'indirizzo immesso nella struttura passata come secondo
+argomento, il terzo argomento è la dimensione di detta struttura. Dato che
+esistono diversi tipi di socket, si è dovuto effettuare un cast della
+struttura inizializzata in precedenza, che è specifica per i socket IPv4.  Un
+valore di ritorno negativo implica il fallimento della connessione.
+
+Completata con successo la connessione il passo successivo (\texttt{\small
+  34--40}) è leggere la data dal socket; il server invierà sempre una stringa
+di 26 caratteri della forma \verb|Wed Apr 4 00:53:00 2001\r\n|, che viene
+letta dalla funzione \func{read} e scritta su \file{stdout}.
+
+Dato il funzionamento di TCP la risposta potrà tornare in un unico pacchetto
+di 26 byte (come avverrà senz'altro nel caso in questione) ma potrebbe anche
+arrivare in 26 pacchetti di un byte.  Per questo nel caso generale non si può
+mai assumere che tutti i dati arrivino con una singola lettura, pertanto
+quest'ultima deve essere effettuata in un ciclo in cui si continui a leggere
+fintanto che la funzione \func{read} non ritorni uno zero (che significa che
+l'altro capo ha chiuso la connessione) o un numero minore di zero (che
+significa un errore nella connessione).
+
+Si noti come in questo caso la fine dei dati sia specificata dal server che
+chiude la connessione; questa è una delle tecniche possibili (è quella usata
+pure dal protocollo HTTP), ma ce ne possono essere altre, ad esempio FTP marca
+la conclusione di un blocco di dati con la sequenza ASCII \verb|\r\n|
+(carriage return e line feed), mentre il DNS mette la lunghezza in testa ad
+ogni blocco che trasmette. Il punto essenziale è che TCP non provvede nessuna
+indicazione che permetta di marcare dei blocchi di dati, per cui se questo è
+necessario deve provvedere il programma stesso.
+
+\subsection{Un primo esempio di server}
+\label{sec:net_serv_sample}
+
+Dopo aver illustrato il client daremo anche un esempio di un server
+elementare, in grado di rispondere al precedente client. Il listato è
+nuovamente mostrato in \figref{fig:net_serv_code}, il sorgente completo
+(\file{ElemDaytimeTCPServer.c}) è allegato insieme agli altri file nella
+directory \file{sources}.
+
+\begin{figure}[!htbp]
+  \footnotesize
+  \begin{lstlisting}{}
+#include <sys/types.h>   /* predefined types */
+#include <unistd.h>      /* include unix standard library */
+#include <arpa/inet.h>   /* IP addresses conversion utilities */
+#include <sys/socket.h>  /* socket library */
+#include <stdio.h>       /* include standard I/O library */
+#include <time.h>
+#define MAXLINE 80
+#define BACKLOG 10
+int main(int argc, char *argv[])
+{
+/* 
+ * Variables definition  
+ */
+    int list_fd, conn_fd;
+    int i;
+    struct sockaddr_in serv_add;
+    char buffer[MAXLINE];
+    time_t timeval;
+    ...
+    /* create socket */
+    if ( (list_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
+        perror("Socket creation error");
+        exit(-1);
+    }
+    /* initialize address */
+    memset((void *)&serv_add, 0, sizeof(serv_add)); /* clear server address */
+    serv_add.sin_family = AF_INET;                  /* address type is INET */
+    serv_add.sin_port = htons(13);                  /* daytime port is 13 */
+    serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
+    /* bind socket */
+    if (bind(list_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
+        perror("bind error");
+        exit(-1);
+    }
+    /* listen on socket */
+    if (listen(list_fd, BACKLOG) < 0 ) {
+        perror("listen error");
+        exit(-1);
+    }
+    /* write daytime to client */
+    while (1) {
+        if ( (conn_fd = accept(list_fd, (struct sockaddr *) NULL, NULL)) <0 ) {
+            perror("accept error");
+            exit(-1);
+        }
+        timeval = time(NULL);
+        snprintf(buffer, sizeof(buffer), "%.24s\r\n", ctime(&timeval));
+        if ( (write(conn_fd, buffer, strlen(buffer))) < 0 ) {
+            perror("write error");
+            exit(-1);
+        }
+        close(conn_fd);
+    }
+    /* normal exit */
+    exit(0);
+}
+  \end{lstlisting}
+  \caption{Esempio di codice di un semplice server per il servizio daytime.}
+  \label{fig:net_serv_code}
+\end{figure}
+
+Come per il client si includono gli header necessari a cui è aggiunto quello
+per trattare i tempi, e si definiscono alcune costanti e le variabili
+necessarie in seguito (\texttt{\small 1--18}), come nel caso precedente si
+sono omesse le parti relative al trattamento delle opzioni da riga di comando.
+
+La creazione del socket (\texttt{\small 22--26}) è analoga al caso precedente,
+come pure l'inizializzazione della struttura \struct{sockaddr\_in}, anche in
+questo caso si usa la porta standard del servizio daytime, ma come indirizzo
+IP si il valore predefinito \const{INET\_ANY} che corrisponde ad un indirizzo
+generico (\texttt{\small 27--31}).
+
+Si effettua poi (\texttt{\small 32--36}) la chiamata alla funzione
+\func{bind} che permette di associare la precedente struttura al socket, in
+modo che quest'ultimo possa essere usato per accettare connessioni su una
+qualunque delle interfacce di rete locali.
+
+Il passo successivo (\texttt{\small 37--41}) è mettere ``in ascolto'' il
+socket, questo viene effettuato con la funzione \func{listen} che dice al
+kernel di accettare connessioni per il socket specificato, la funzione indica
+inoltre, con il secondo parametro, il numero massimo di connessioni che il
+kernel accetterà di mettere in coda per il suddetto socket.
+
+Questa ultima chiamata completa la preparazione del socket per l'ascolto (che
+viene chiamato anche \textit{listening descriptor}) a questo punto il processo
+è mandato in sleep (\texttt{\small 44--47}) con la successiva chiamata alla
+funzione \func{accept}, fin quando non arriva e viene accettata una
+connessione da un client.
+
+Quando questo avviene \func{accept} ritorna un secondo descrittore di socket,
+che viene chiamato \textit{connected descriptor} che è quello che viene usato
+dalla successiva chiamata alla \func{write} per scrivere la risposta al
+client, una volta che si è opportunamente (\texttt{\small 48--49}) costruita
+la stringa con la data da trasmettere. Completata la trasmissione il nuovo
+socket viene chiuso (\texttt{\small 54}).  Il tutto è inserito in un ciclo
+infinito (\texttt{\small 42--55}) in modo da poter ripetere l'invio della data
+ad una successiva connessione.
 
 
+È importante notare che questo server è estremamente elementare, infatti a
+parte il fatto di essere dipendente da IPv4, esso è in grado di servire solo
+un client alla volta, è cioè un \textsl{server iterativo}, inoltre esso è
+scritto per essere lanciato da linea di comando, se lo si volesse utilizzare
+come demone di sistema (che è in esecuzione anche quando non c'è nessuna shell
+attiva e il terminale da cui lo si è lanciato è stato sconnesso),
+occorrerebbero delle opportune modifiche.
 
 
 
 
 
 
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: