Lavoro fatto a casa senza ADSL, correzioni multiple agli indici, documentato
[gapil.git] / socket.tex
index 4b450aaa0e5f150c55b8a54ef942c3375c668931..138ebe2a9969e0d2a2ff546e110405e37e259f69 100644 (file)
@@ -1,9 +1,9 @@
 %% socket.tex
 %%
-%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
-%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
@@ -228,7 +228,7 @@ valori numerici.\footnote{in Linux, come si pu
   lo stesso nome.}
 
 I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di
-indirizzi, sono definiti dall'header \textit{socket.h}. Un elenco delle
+indirizzi, sono definiti dall'header \texttt{socket.h}. Un elenco delle
 famiglie di protocolli disponibili in Linux è riportato in
 tab.~\ref{tab:net_pf_names}.\footnote{l'elenco indica tutti i protocolli
   definiti; fra questi però saranno utilizzabili solo quelli per i quali si è
@@ -240,7 +240,7 @@ Si tenga presente che non tutte le famiglie di protocolli sono utilizzabili
 dall'utente generico, ad esempio in generale tutti i socket di tipo
 \const{SOCK\_RAW} possono essere creati solo da processi che hanno i privilegi
 di amministratore (cioè con user-ID effettivo uguale a zero) o dotati della
-capability \texttt{CAP\_NET\_RAW}.
+\itindex{capabilities}\textit{capability} \const{CAP\_NET\_RAW}.
 
 
 \subsection{Il tipo, o stile}
@@ -255,7 +255,7 @@ disposizione vari tipi di socket (che corrispondono a quelli che il manuale
 della \acr{glibc} \cite{glibc} chiama \textit{styles}) identificati dalle
 seguenti costanti:
 
-\begin{basedescript}{\desclabelwidth{2.8cm}\desclabelstyle{\nextlinelabel}}
+\begin{basedescript}{\desclabelwidth{2.9cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{SOCK\_STREAM}] Provvede un canale di trasmissione dati
   bidirezionale, sequenziale e affidabile. Opera su una connessione con un
   altro socket. I dati vengono ricevuti e trasmessi come un flusso continuo di
@@ -439,8 +439,8 @@ fig.~\ref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g.
   \begin{minipage}[c]{15cm}
     \includestruct{listati/sockaddr_in.h}
   \end{minipage} 
-  \caption{La struttura degli indirizzi dei socket internet (IPv4)
-    \structd{sockaddr\_in}.}
+  \caption{La struttura \structd{sockaddr\_in} degli indirizzi dei socket
+    internet (IPv4) e la struttura \structd{in\_addr} degli indirizzi IPv4.}
   \label{fig:sock_sa_ipv4_struct}
 \end{figure}
 
@@ -457,16 +457,16 @@ altrimenti si avr
 specifica il \textsl{numero di porta}. I numeri di porta sotto il 1024 sono
 chiamati \textsl{riservati} in quanto utilizzati da servizi standard e
 soltanto processi con i privilegi di amministratore (con user-ID effettivo
-uguale a zero) o con la capability \texttt{CAP\_NET\_BIND\_SERVICE} possono
-usare la funzione \func{bind} (che vedremo in sez.~\ref{sec:TCP_func_bind}) su
-queste porte.
+uguale a zero) o con la \itindex{capabilities}\textit{capability}
+\const{CAP\_NET\_BIND\_SERVICE} possono usare la funzione \func{bind} (che
+vedremo in sez.~\ref{sec:TCP_func_bind}) su queste porte.
 
 Il membro \var{sin\_addr} contiene un indirizzo internet, e viene acceduto sia
 come struttura (un resto di una implementazione precedente in cui questa era
 una \direct{union} usata per accedere alle diverse classi di indirizzi) che
 direttamente come intero. In \file{netinet/in.h} vengono definite anche alcune
 costanti che identificano alcuni indirizzi speciali, riportati in
-tab.~\ref{tab:TCP_ipv4_addr}.
+tab.~\ref{tab:TCP_ipv4_addr}, che reincontreremo più avanti.
 
 Infine occorre sottolineare che sia gli indirizzi che i numeri di porta devono
 essere specificati in quello che viene chiamato \textit{network order}, cioè
@@ -490,8 +490,8 @@ in fig.~\ref{fig:sock_sa_ipv6_struct}.
   \begin{minipage}[c]{15cm}
     \includestruct{listati/sockaddr_in6.h}
   \end{minipage} 
-  \caption{La struttura degli indirizzi dei socket IPv6 
-    \structd{sockaddr\_in6}.}
+  \caption{La struttura \structd{sockaddr\_in6} degli indirizzi dei socket
+    IPv6 e la struttura \structd{in6\_addr} degli indirizzi IPv6.}
   \label{fig:sock_sa_ipv6_struct}
 \end{figure}
 
@@ -500,17 +500,17 @@ il campo \var{sin6\_port} 
 il campo \var{sin6\_flowinfo} è a sua volta diviso in tre parti di cui i 24
 bit inferiori indicano l'etichetta di flusso, i successivi 4 bit la priorità e
 gli ultimi 4 sono riservati. Questi valori fanno riferimento ad alcuni campi
-specifici dell'header dei pacchetti IPv6 (vedi sez.~\ref{sec:IP_ipv6head}) ed il
-loro uso è sperimentale.
+specifici dell'header dei pacchetti IPv6 (vedi sez.~\ref{sec:IP_ipv6head}) ed
+il loro uso è sperimentale.
 
-Il campo \var{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6, infine
-il campo \var{sin6\_scope\_id} è un campo introdotto in Linux con il kernel
-2.4, per gestire alcune operazioni riguardanti il multicasting.
-Si noti che questa struttura ha una dimensione maggiore della struttura
-\struct{sockaddr} generica vista in fig.~\ref{fig:sock_sa_gen_struct}, quindi
-occorre stare attenti a non avere fatto assunzioni riguardo alla possibilità
-di contenere i dati nelle dimensioni di quest'ultima.
+Il campo \var{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6,
+espresso da un vettore di 16 byte. Infine il campo \var{sin6\_scope\_id} è un
+campo introdotto in Linux con il kernel 2.4, per gestire alcune operazioni
+riguardanti il multicasting.  Si noti infine che \struct{sockaddr\_in6} ha una
+dimensione maggiore della struttura \struct{sockaddr} generica di
+fig.~\ref{fig:sock_sa_gen_struct}, quindi occorre stare attenti a non avere
+fatto assunzioni riguardo alla possibilità di contenere i dati nelle
+dimensioni di quest'ultima.
 
 
 \subsection{La struttura degli indirizzi locali}
@@ -531,8 +531,8 @@ fig.~\ref{fig:sock_sa_local_struct}.
   \begin{minipage}[c]{15cm}
     \includestruct{listati/sockaddr_un.h}
   \end{minipage} 
-  \caption{La struttura degli indirizzi dei socket locali (detti anche
-    \textit{unix domain}) \structd{sockaddr\_un} definita in \file{sys/un.h}.}
+  \caption{La struttura \structd{sockaddr\_un} degli indirizzi dei socket
+    locali (detti anche \textit{unix domain}) definita in \file{sys/un.h}.}
   \label{fig:sock_sa_local_struct}
 \end{figure}
 
@@ -541,8 +541,9 @@ il campo \var{sun\_path} deve specificare un indirizzo. Questo ha due forme;
 può essere un file (di tipo socket) nel filesystem o una stringa univoca
 (mantenuta in uno spazio di nomi astratto). Nel primo caso l'indirizzo viene
 specificato come una stringa (terminata da uno zero) corrispondente al
-pathname del file; nel secondo invece \var{sun\_path} inizia con uno zero e
-vengono usati come nome i restanti byte come stringa, senza terminazione.
+\itindex{pathname}\textit{pathname} del file; nel secondo invece
+\var{sun\_path} inizia con uno zero e vengono usati come nome i restanti byte
+come stringa, senza terminazione.
 
 
 \subsection{La struttura degli indirizzi AppleTalk}
@@ -561,7 +562,7 @@ I socket AppleTalk permettono di usare il protocollo DDP, che 
 a pacchetto, di tipo \const{SOCK\_DGRAM}; l'argomento \param{protocol} di
 \func{socket} deve essere nullo. È altresì possibile usare i socket raw
 specificando un tipo \const{SOCK\_RAW}, nel qual caso l'unico valore valido
-per \param{protocol} è \func{ATPROTO\_DDP}.
+per \param{protocol} è \const{ATPROTO\_DDP}.
 
 Gli indirizzi AppleTalk devono essere specificati tramite una struttura
 \struct{sockaddr\_atalk}, la cui definizione è riportata in
@@ -573,23 +574,24 @@ il file \file{netatalk/at.h}.
   \begin{minipage}[c]{15cm}
     \includestruct{listati/sockaddr_atalk.h}
   \end{minipage} 
-  \caption{La struttura degli indirizzi dei socket AppleTalk 
-    \structd{sockaddr\_atalk}.}
+  \caption{La struttura \structd{sockaddr\_atalk} degli indirizzi dei socket
+    AppleTalk, e la struttura \structd{at\_addr} degli indirizzi AppleTalk.}
   \label{fig:sock_sa_atalk_struct}
 \end{figure}
 
 Il campo \var{sat\_family} deve essere sempre \const{AF\_APPLETALK}, mentre il
 campo \var{sat\_port} specifica la porta che identifica i vari servizi. Valori
 inferiori a 129 sono usati per le \textsl{porte riservate}, e possono essere
-usati solo da processi con i privilegi di amministratore o con la capability
-\const{CAP\_NET\_BIND\_SERVICE}. L'indirizzo remoto è specificato nella
-struttura \var{sat\_addr}, e deve essere in \textit{network order} (vedi
-sez.~\ref{sec:sock_endianess}); esso è composto da un parte di rete data dal
-campo \var{s\_net}, che può assumere il valore \const{AT\_ANYNET}, che indica
-una rete generica e vale anche per indicare la rete su cui si è, il singolo
-nodo è indicato da \var{s\_node}, e può prendere il valore generico
-\const{AT\_ANYNODE} che indica anche il nodo corrente, ed il valore
-\const{ATADDR\_BCAST} che indica tutti i nodi della rete.
+usati solo da processi con i privilegi di amministratore o con la
+\itindex{capabilities}\textit{capability} \const{CAP\_NET\_BIND\_SERVICE}.
+L'indirizzo remoto è specificato nella struttura \var{sat\_addr}, e deve
+essere in \textit{network order} (vedi sez.~\ref{sec:sock_endianess}); esso è
+composto da un parte di rete data dal campo \var{s\_net}, che può assumere il
+valore \const{AT\_ANYNET}, che indica una rete generica e vale anche per
+indicare la rete su cui si è, il singolo nodo è indicato da \var{s\_node}, e
+può prendere il valore generico \const{AT\_ANYNODE} che indica anche il nodo
+corrente, ed il valore \const{ATADDR\_BCAST} che indica tutti i nodi della
+rete.
 
 
 \subsection{La struttura degli indirizzi dei \textit{packet socket}}
@@ -632,7 +634,7 @@ speciale \const{ETH\_P\_ALL} passeranno sul \textit{packet socket} tutti i
 pacchetti, qualunque sia il loro protocollo di collegamento. Ovviamente l'uso
 di questi socket è una operazione privilegiata e può essere effettuati solo da
 un processo con i privilegi di amministratore (user-ID effettivo nullo) o con
-la capability \const{CAP\_NET\_RAW}.
+la \itindex{capabilities}\textit{capability} \const{CAP\_NET\_RAW}.
 
 Una volta aperto un \textit{packet socket}, tutti i pacchetti del protocollo
 specificato passeranno attraverso di esso, qualunque sia l'interfaccia da cui
@@ -718,13 +720,13 @@ cos
 % passaggio dipende dalla direzione del medesimo, dal processo al kernel o
 % viceversa.
 
-% In particolare le tre funzioni \texttt{bind}, \texttt{connect} e
-% \texttt{sendto} passano la struttura al kernel, in questo caso è passata
+% In particolare le tre funzioni \func{bind}, \func{connect} e
+% \func{sendto} passano la struttura al kernel, in questo caso è passata
 % \textsl{per valore} anche la dimensione della medesima
 
 
-% Le funzioni \texttt{accept}, \texttt{recvfrom}, \texttt{getsockname} e
-% \texttt{getpeername} invece ricevono i valori del kernel 
+% Le funzioni \func{accept}, \func{recvfrom}, \func{getsockname} e
+% \func{getpeername} invece ricevono i valori del kernel 
 
 
 
@@ -739,15 +741,24 @@ ci
 seguito.
 
 
-\subsection{La \textit{endianess}\index{endianess}}
+\subsection{La \textit{endianess}}
 \label{sec:sock_endianess}
 
+\itindbeg{endianess}
 La rappresentazione di un numero binario in un computer può essere fatta in
 due modi, chiamati rispettivamente \textit{big endian} e \textit{little
   endian} a seconda di come i singoli bit vengono aggregati per formare le
 variabili intere (ed in genere in diretta corrispondenza a come sono poi in
 realtà cablati sui bus interni del computer).
 
+\begin{figure}[htb]
+  \centering
+  \includegraphics[height=3cm]{img/endianess}
+  \caption{Schema della disposizione dei dati in memoria a seconda della
+    \textit{endianess}.}
+  \label{fig:sock_endianess}
+\end{figure}
+
 Per capire meglio il problema si consideri un intero a 32 bit scritto in una
 locazione di memoria posta ad un certo indirizzo. Come illustrato in
 fig.~\ref{fig:sock_endianess} i singoli bit possono essere disposti un memoria
@@ -759,19 +770,11 @@ dato che si trova per prima la parte pi
 parte dal bit meno significativo è detto per lo stesso motivo \textit{little
   endian}.
 
-\begin{figure}[htb]
-  \centering
-  \includegraphics[height=3cm]{img/endianess}
-  \caption{Schema della disposizione dei dati in memoria a seconda della
-    \textit{endianess}\index{endianess}.}
-  \label{fig:sock_endianess}
-\end{figure}
-
-Si può allora verificare quale tipo di endianess usa il proprio computer con
-un programma elementare che si limita ad assegnare un valore ad una variabile
-per poi ristamparne il contenuto leggendolo un byte alla volta. Il codice di
-detto programma, \file{endtest.c}, è nei sorgenti allegati, allora se lo
-eseguiamo su un PC otterremo:
+Si può allora verificare quale tipo di \textit{endianess} usa il proprio
+computer con un programma elementare che si limita ad assegnare un valore ad
+una variabile per poi ristamparne il contenuto leggendolo un byte alla volta.
+Il codice di detto programma, \file{endtest.c}, è nei sorgenti allegati,
+allora se lo eseguiamo su un PC otterremo:
 \begin{verbatim}
 [piccardi@gont sources]$ ./endtest
 Using value ABCDEF01
@@ -791,13 +794,13 @@ val[3]= 1
 \end{verbatim}%$
 
 
-La \textit{endianess}\index{endianess} di un computer dipende essenzialmente
-dalla architettura hardware usata; Intel e Digital usano il \textit{little
-  endian}, Motorola, IBM, Sun (sostanzialmente tutti gli altri) usano il
-\textit{big endian}. Il formato dei dati contenuti nelle intestazioni dei
-protocolli di rete è anch'esso \textit{big endian}; altri esempi di uso di
-questi due diversi formati sono quello del bus PCI, che è \textit{little
-  endian}, o quello del bus VME che è \textit{big endian}.
+La \textit{endianess} di un computer dipende essenzialmente dalla architettura
+hardware usata; Intel e Digital usano il \textit{little endian}, Motorola,
+IBM, Sun (sostanzialmente tutti gli altri) usano il \textit{big endian}. Il
+formato dei dati contenuti nelle intestazioni dei protocolli di rete è
+anch'esso \textit{big endian}; altri esempi di uso di questi due diversi
+formati sono quello del bus PCI, che è \textit{little endian}, o quello del
+bus VME che è \textit{big endian}.
 
 Esistono poi anche dei processori che possono scegliere il tipo di formato
 all'avvio e alcuni che, come il PowerPC o l'Intel i860, possono pure passare
@@ -806,12 +809,6 @@ in Linux l'ordinamento 
 resta sempre lo stesso, anche quando il processore permetterebbe di eseguire
 questi cambiamenti.
 
-Per controllare quale tipo di ordinamento si ha sul proprio computer si è
-scritta una piccola funzione di controllo, il cui codice è riportato
-fig.~\ref{fig:sock_endian_code}, che restituisce un valore nullo (falso) se
-l'architettura è \textit{big endian} ed uno non nullo (vero) se l'architettura
-è \textit{little endian}.
-
 \begin{figure}[htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
@@ -823,6 +820,12 @@ l'architettura 
   \label{fig:sock_endian_code}
 \end{figure}
 
+Per controllare quale tipo di ordinamento si ha sul proprio computer si è
+scritta una piccola funzione di controllo, il cui codice è riportato
+fig.~\ref{fig:sock_endian_code}, che restituisce un valore nullo (falso) se
+l'architettura è \textit{big endian} ed uno non nullo (vero) se l'architettura
+è \textit{little endian}.
+
 Come si vede la funzione è molto semplice, e si limita, una volta assegnato
 (\texttt{\small 9}) un valore di test pari a \texttt{0xABCD} ad una variabile
 di tipo \ctyp{short} (cioè a 16 bit), a ricostruirne una copia byte a byte.
@@ -832,14 +835,14 @@ accedere al contenuto della prima variabile, ed infine calcola (\texttt{\small
 significativo (cioè, per quanto visto in fig.~\ref{fig:sock_endianess}, che sia
 \textit{little endian}). Infine la funzione restituisce (\texttt{\small 12})
 il valore del confonto delle due variabili. 
-
+\itindend{endianess}
 
 
 
 \subsection{Le funzioni per il riordinamento}
 \label{sec:sock_func_ord}
 
-Il problema connesso all'endianess\index{endianess} è che quando si passano
+Il problema connesso all'endianess\itindex{endianess} è che quando si passano
 dei dati da un tipo di architettura all'altra i dati vengono interpretati in
 maniera diversa, e ad esempio nel caso dell'intero a 16 bit ci si ritroverà
 con i due byte in cui è suddiviso scambiati di posto.  Per questo motivo si
@@ -948,15 +951,6 @@ questo caso le lettere \texttt{n} e \texttt{p} sono degli mnemonici per
 ricordare il tipo di conversione effettuata e stanno per \textit{presentation}
 e \textit{numeric}.
 
-% \begin{figure}[htb]
-%   \centering  
-
-%   \caption{Schema della rappresentazioni utilizzate dalle funzioni di 
-%     conversione \texttt{inet\_pton} e \texttt{inet\_ntop} }
-%   \label{fig:sock_inet_conv_func}
-
-% \end{figure}
-
 Entrambe le funzioni accettano l'argomento \param{af} che indica il tipo di
 indirizzo, e che può essere soltanto \const{AF\_INET} o \const{AF\_INET6}. La
 prima funzione, \funcd{inet\_pton}, serve a convertire una stringa in un