Tolti degli overfull e avanti sui segnali
[gapil.git] / signal.tex
index 915e16829a7e158dc5e50181a81629050daa35fa..c755b31229b6395f65475081d7deb89a12d07adf 100644 (file)
@@ -1802,7 +1802,7 @@ non verrebbe mai più interrotta (se non in caso di un altro segnale).
 
 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
 SVr2) usando la funzione \func{longjmp} (vedi sez.~\ref{sec:proc_longjmp}) per
-uscire dal gestore; in questo modo, con una condizione sullo stato di
+uscire dal gestore. In questo modo, con una condizione sullo stato di
 uscita di quest'ultima, si può evitare la chiamata a \func{pause}, usando un
 codice del tipo di quello riportato in fig.~\ref{fig:sig_sleep_incomplete}.
 
@@ -1817,29 +1817,32 @@ codice del tipo di quello riportato in fig.~\ref{fig:sig_sleep_incomplete}.
 \end{figure}
 
 In questo caso il gestore (\texttt{\small 18-27}) non ritorna come in
-fig.~\ref{fig:sig_sleep_wrong}, ma usa \func{longjmp} (\texttt{\small 25}) per
-rientrare nel corpo principale del programma; dato che in questo caso il
-valore di uscita di \func{setjmp} è 1, grazie alla condizione in
-(\texttt{\small 9-12}) si evita comunque che \func{pause} sia chiamata a
-vuoto.
-
-Ma anche questa implementazione comporta dei problemi; in questo caso infatti
-non viene gestita correttamente l'interazione con gli altri segnali; se
+fig.~\ref{fig:sig_sleep_wrong}, ma usa la funzione \func{longjmp}
+(\texttt{\small 25}) per rientrare direttamente nel corpo principale del
+programma. Dato che in questo caso il valore di uscita che verrà restituito da
+\func{setjmp} è 1, grazie alla condizione impostata in (\texttt{\small 9-12})
+si potrà evitare comunque che \func{pause} sia chiamata a vuoto.
+
+Ma anche questa implementazione comporta dei problemi, in questo caso infatti
+non viene gestita correttamente l'interazione con gli altri segnali. Se
 infatti il segnale di allarme interrompe un altro gestore, l'esecuzione non
 riprenderà nel gestore in questione, ma nel ciclo principale, interrompendone
 inopportunamente l'esecuzione.  Lo stesso tipo di problemi si presenterebbero
-se si volesse usare \func{alarm} per stabilire un timeout su una qualunque
-\textit{system call} bloccante.
-
-Un secondo esempio è quello in cui si usa il segnale per notificare una
-qualche forma di evento; in genere quello che si fa in questo caso è impostare
-nel gestore un opportuno flag da controllare nel corpo principale del
-programma (con un codice del tipo di quello riportato in
-fig.~\ref{fig:sig_event_wrong}). La logica è quella di far impostare al
-gestore (\texttt{\small 14-19}) una \index{variabili!globali} variabile
-globale preventivamente inizializzata nel programma principale, il quale potrà
-determinare, osservandone il contenuto, l'occorrenza o meno del segnale, e
-prendere le relative azioni conseguenti (\texttt{\small 6-11}).
+se si volesse usare questa implementazione di \func{alarm} per stabilire un
+timeout su una qualunque \textit{system call} bloccante.
+
+Un secondo esempio dei problemi a cui si può andare incontro è quello in cui
+si usa un segnale per notificare una qualche forma di evento. In genere quello
+che si fa in questo caso è impostare all'interno del gestore un opportuno flag
+da controllare nel corpo principale del programma, con un codice del tipo di
+quello riportato in fig.~\ref{fig:sig_event_wrong}.
+
+La logica del programma è quella di far impostare al gestore (\texttt{\small
+  14-19}) una \index{variabili!globali} variabile globale, preventivamente
+inizializzata nel programma principale, ad un diverso valore. In questo modo
+dal corpo principale del programma si potrà determinare, osservandone il
+contenuto di detta variabile, l'occorrenza o meno del segnale, ed eseguire le
+azioni conseguenti (\texttt{\small 6-11}) relative.
 
 \begin{figure}[!htbp]
   \footnotesize\centering
@@ -1854,16 +1857,19 @@ prendere le relative azioni conseguenti (\texttt{\small 6-11}).
 
 Questo è il tipico esempio di caso, già citato in
 sez.~\ref{sec:proc_race_cond}, in cui si genera una \itindex{race~condition}
-\textit{race condition}; infatti, in una situazione in cui un segnale è già
-arrivato (e \var{flag} è già ad 1) se un altro segnale arriva immediatamente
-dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima della
-cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà perduta.
+\textit{race condition}. Infatti, in una situazione in cui un segnale è già
+arrivato (e quindi \var{flag} è già stata impostata ad 1 nel gestore) se un
+altro segnale arriva immediatamente dopo l'esecuzione del controllo
+(\texttt{\small 6}) ma prima della cancellazione di \var{flag} fatta subito
+dopo (\texttt{\small 7}), la sua occorrenza sarà perduta.
 
-Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
-delle funzioni più sofisticate di quelle finora illustrate, queste hanno la
-loro origine nella semplice interfaccia dei primi sistemi Unix, ma con esse
-non è possibile gestire in maniera adeguata di tutti i possibili aspetti con
-cui un processo deve reagire alla ricezione di un segnale.
+Questi esempi ci mostrano come per poter eseguire una gestione effettiva dei
+segnali occorrono delle funzioni più sofisticate di quelle finora
+illustrate. La funzione \func{signal} infatti ha la sua origine nella
+interfaccia alquanto primitiva che venne adottata nei primi sistemi Unix, ma
+con questa funzione è sostanzialmente impossibile gestire in maniera adeguata
+di tutti i possibili aspetti con cui un processo deve reagire alla ricezione
+di un segnale.
 
 
 
@@ -1876,6 +1882,7 @@ Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
 originarie, nate con la semantica inaffidabile, hanno dei limiti non
 superabili; in particolare non è prevista nessuna funzione che permetta di
 gestire il blocco dei segnali o di verificare lo stato dei segnali pendenti.
+
 Per questo motivo lo standard POSIX.1, insieme alla nuova semantica dei
 segnali ha introdotto una interfaccia di gestione completamente nuova, che
 permette di ottenere un controllo molto più dettagliato. In particolare lo
@@ -1884,55 +1891,108 @@ rappresentare un \textsl{insieme di segnali} (un \textit{signal set}, come
 viene usualmente chiamato), tale tipo di dato viene usato per gestire il
 blocco dei segnali.
 
-In genere un \textsl{insieme di segnali} è rappresentato da un intero di
-dimensione opportuna, di solito pari al numero di bit dell'architettura della
-macchina,\footnote{nel caso dei PC questo comporta un massimo di 32 segnali
-  distinti: dato che in Linux questi sono sufficienti non c'è necessità di
-  nessuna struttura più complicata.} ciascun bit del quale è associato ad uno
-specifico segnale; in questo modo è di solito possibile implementare le
-operazioni direttamente con istruzioni elementari del processore. Lo standard
-POSIX.1 definisce cinque funzioni per la manipolazione degli insiemi di
-segnali: \funcd{sigemptyset}, \funcd{sigfillset}, \funcd{sigaddset},
-\funcd{sigdelset} e \funcd{sigismember}, i cui prototipi sono:
-\begin{functions}
-  \headdecl{signal.h} 
-  
-  \funcdecl{int sigemptyset(sigset\_t *set)} Inizializza un insieme di segnali
-  vuoto (in cui non c'è nessun segnale).
-  \funcdecl{int sigfillset(sigset\_t *set)} Inizializza un insieme di segnali
-  pieno (in cui ci sono tutti i segnali).
-  
-  \funcdecl{int sigaddset(sigset\_t *set, int signum)} Aggiunge il segnale
-  \param{signum} all'insieme di segnali \param{set}.
+Inizialmente un \textsl{insieme di segnali} veniva rappresentato da un intero
+di dimensione opportuna, di solito pari al numero di bit dell'architettura
+della macchina, ciascun bit del quale era associato ad uno specifico
+segnale. Nel caso di architetture a 32 bit questo comporta un massimo di 32
+segnali distinti e dato che a lungo questi sono stati sufficienti non c'era
+necessità di nessuna struttura più complicata, in questo modo era possibile
+implementare le operazioni direttamente con istruzioni elementari del
+processore. 
+
+Oggi questo non è più vero, in particolare con l'introduzione dei segnali
+\textit{real-rime} (che vedremo in sez.~\ref{sec:sig_real_time}).  Dato che in
+generale non si può fare conto sulle caratteristiche di una implementazione,
+perché non è detto che si disponga di un numero di bit sufficienti per mettere
+tutti i segnali in un intero, o perché in \type{sigset\_t} possono essere
+immagazzinate ulteriori informazioni, tutte le operazioni devono essere
+effettuate tramite le opportune funzioni di libreria che si curano di
+mascherare i dettagli di basso livello.
+
+Lo standard POSIX.1 definisce cinque funzioni per la manipolazione degli
+insiemi di segnali. Le prime quattro, che consentono di manipolare i contenuti
+di un \textit{signal set}, sono \funcd{sigemptyset}, \funcd{sigfillset},
+\funcd{sigaddset} e \funcd{sigdelset}; i rispettivi prototipi sono:
 
-  \funcdecl{int sigdelset(sigset\_t *set, int signum)} Toglie il segnale
-  \param{signum} dall'insieme di segnali \param{set}.
-  
-  \funcdecl{int sigismember(const sigset\_t *set, int signum)} Controlla se il
-  segnale \param{signum} è nell'insieme di segnali \param{set}.
-  
-  \bodydesc{Le prime quattro funzioni ritornano 0 in caso di successo, mentre
-    \func{sigismember} ritorna 1 se \param{signum} è in \param{set} e 0
-    altrimenti. In caso di errore tutte ritornano $-1$, con \var{errno}
-    impostata a \errval{EINVAL} (il solo errore possibile è che \param{signum}
-    non sia un segnale valido).}
-\end{functions}
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigemptyset(sigset\_t *set)}
+\fdesc{Inizializza un insieme di segnali vuoto.}
+\fdecl{int sigfillset(sigset\_t *set)}
+\fdesc{Inizializza un insieme di segnali pieno.}
+\fdecl{int sigaddset(sigset\_t *set, int signum)}
+\fdesc{Aggiunge un segnale ad un insieme di segnali.}
+\fdecl{int sigdelset(sigset\_t *set, int signum)}
+\fdesc{Rimuove un segnale da un insieme di segnali.}
+}
+
+{Le funzioni ritornano $0$ in caso di successo, e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà il valore:
+  \begin{errlist}
+  \item[\errcode{EINVAL}] \param{signum} non è un segnale valido.
+  \end{errlist}
+}
+\end{funcproto}
+
+Le prime due funzioni inizializzano l'insieme di segnali indicato
+dall'argomento \param{set} rispettivamente ad un contenuto vuoto (in cui cioè
+non c'è nessun segnale) e pieno (in cui cioè ci sono tutti i segnali). Le
+altre due funzioni consentono di inserire o rimuovere uno specifico segnale
+indicato con l'argomento \param{signum} in un insieme. 
+
+A queste funzioni si aggiunge l'ulteriore \funcd{sigismember}, che consente di
+verificare la presenza di un segnale in un insieme, il suo prototipo è:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigismember(const sigset\_t *set, int signum)}
+\fdesc{Controlla se un segnale è in un insieme di segnali.}
+}
+
+{La funzione ritorna $1$ il segnale è nell'insieme e $0$ altrimenti, e $-1$
+  per un errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}
+  se si è specificato un puntatore \var{NULL}.}
+\end{funcproto}
+
+La \acr{glibc} prevede inoltre altre funzioni non standardizzate, accessibili
+definendo la macro \macro{\_GNU\_SOURCE}. La prima di queste è
+\funcd{sigisemptyset}, che consente di verificare un insieme è vuoto, il suo
+prototipo è:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigisemptyset(sigset\_t *set)}
+\fdesc{Controlla se un insieme di segnali è vuoto.}
+}
+
+{La funzione ritorna $1$ l'insieme è vuoto e $0$ altrimenti, non sono previste
+  condizioni di errore.}
+\end{funcproto}
+
+Alla precedente si aggiungono altre due funzioni consentono di effettuare
+delle operazioni logiche con gli insiemi di segnali, esse sono
+\funcd{sigorset} e \funcd{sigandset}, ed i rispettivi prototipi sono:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{sigorset(sigset\_t *dest, sigset\_t *left, sigset\_t *right)}
+\fdesc{Crea l'unione di due insieme di segnali.}
+\fdecl{sigandset(sigset\_t *dest, sigset\_t *left, sigset\_t *right)}
+\fdesc{Crea l'intersezione di due insieme di segnali.} 
+}
+
+{Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà il valore \errcode{EINVAL}.}
+\end{funcproto}
 
-Dato che in generale non si può fare conto sulle caratteristiche di una
-implementazione (non è detto che si disponga di un numero di bit sufficienti
-per mettere tutti i segnali in un intero, o in \type{sigset\_t} possono essere
-immagazzinate ulteriori informazioni) tutte le operazioni devono essere
-comunque eseguite attraverso queste funzioni.
 
 In genere si usa un insieme di segnali per specificare quali segnali si vuole
 bloccare, o per riottenere dalle varie funzioni di gestione la maschera dei
-segnali attivi (vedi sez.~\ref{sec:sig_sigmask}). Essi possono essere definiti
-in due diverse maniere, aggiungendo i segnali voluti ad un insieme vuoto
-ottenuto con \func{sigemptyset} o togliendo quelli che non servono da un
-insieme completo ottenuto con \func{sigfillset}. Infine \func{sigismember}
-permette di verificare la presenza di uno specifico segnale in un
-insieme.
+segnali attivi (vedi sez.~\ref{sec:sig_sigmask}). La modalità più comune, che
+è anche quella più portabile, prevede che possano essere definiti aggiungendo
+i segnali voluti ad un insieme vuoto ottenuto con \func{sigemptyset} o
+togliendo quelli che non servono da un insieme completo ottenuto con
+\func{sigfillset}.
 
 \itindend{signal~set} 
 
@@ -1945,40 +2005,49 @@ relativi all'uso di \func{signal}. Per ovviare a tutto questo lo standard
 POSIX.1 ha ridefinito completamente l'interfaccia per la gestione dei segnali,
 rendendola molto più flessibile e robusta, anche se leggermente più complessa.
 
-La funzione principale dell'interfaccia POSIX.1 per i segnali è
-\funcd{sigaction}. Essa ha sostanzialmente lo stesso uso di \func{signal},
-permette cioè di specificare le modalità con cui un segnale può essere gestito
-da un processo. Il suo prototipo è:
-\begin{prototype}{signal.h}{int sigaction(int signum, const struct sigaction
-    *act, struct sigaction *oldact)} 
-  
-  Installa una nuova azione per il segnale \param{signum}.
-  
-  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
-    errore, nel qual caso \var{errno} assumerà i valori:
+La funzione di sistema principale prevista dall'interfaccia POSIX.1 per i
+segnali è \funcd{sigaction}. Essa ha sostanzialmente lo stesso uso di
+\func{signal}, permette cioè di specificare le modalità con cui un segnale può
+essere gestito da un processo. Il suo prototipo è:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigaction(int signum, const struct sigaction *act, struct sigaction
+  *oldact)}  
+\fdesc{Installa una nuova azione per un segnale.} 
+}
+
+{La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà uno dei valori: 
   \begin{errlist}
   \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido o si è
     cercato di installare il gestore per \signal{SIGKILL} o
     \signal{SIGSTOP}.
   \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
-  \end{errlist}}
-\end{prototype}
+  \end{errlist}
+}
+\end{funcproto}
 
 La funzione serve ad installare una nuova \textsl{azione} per il segnale
-\param{signum}; si parla di \textsl{azione} e non di \textsl{gestore}
-come nel caso di \func{signal}, in quanto la funzione consente di specificare
-le varie caratteristiche della risposta al segnale, non solo la funzione che
-verrà eseguita alla sua occorrenza.  Per questo lo standard raccomanda di
-usare sempre questa funzione al posto di \func{signal} (che in genere viene
-definita tramite essa), in quanto permette un controllo completo su tutti gli
-aspetti della gestione di un segnale, sia pure al prezzo di una maggiore
-complessità d'uso.
+indicato dall'argomento \param{signum}. Si parla di \textsl{azione} e non di
+\textsl{gestore} come nel caso di \func{signal}, in quanto la funzione
+consente di specificare le varie caratteristiche della risposta al segnale,
+non solo la funzione che verrà eseguita alla sua occorrenza.  
+
+Per questo motivo lo standard POSIX.1 raccomanda di usare sempre questa
+funzione al posto della precedente \func{signal}, che in genere viene
+ridefinita in termini di \func{sigaction}, in quanto la nuova interfaccia
+permette un controllo completo su tutti gli aspetti della gestione di un
+segnale, sia pure al prezzo di una maggiore complessità d'uso.
 
 Se il puntatore \param{act} non è nullo, la funzione installa la nuova azione
 da esso specificata, se \param{oldact} non è nullo il valore dell'azione
 corrente viene restituito indietro.  Questo permette (specificando \param{act}
 nullo e \param{oldact} non nullo) di superare uno dei limiti di \func{signal},
-che non consente di ottenere l'azione corrente senza installarne una nuova.
+che non consente di ottenere l'azione corrente senza installarne una nuova. Se
+sia \param{act} che \param{oldact} la funzione può essere utilizzata per
+verificare, se da luogo ad un errore, se il segnale indicato è valido per la
+piattaforma che si sta usando.
 
 Entrambi i puntatori fanno riferimento alla struttura \struct{sigaction},
 tramite la quale si specificano tutte le caratteristiche dell'azione associata
@@ -1989,7 +2058,7 @@ più usato.
 
 \begin{figure}[!htb]
   \footnotesize \centering
-  \begin{minipage}[c]{\textwidth}
+  \begin{minipage}[c]{0.8\textwidth}
     \includestruct{listati/sigaction.h}
   \end{minipage} 
   \normalsize 
@@ -2009,14 +2078,14 @@ L'uso di questo campo permette ad esempio di risolvere il problema residuo
 dell'implementazione di \code{sleep} mostrata in
 fig.~\ref{fig:sig_sleep_incomplete}. In quel caso infatti se il segnale di
 allarme avesse interrotto un altro gestore questo non sarebbe stato eseguito
-correttamente; la cosa poteva essere prevenuta installando gli altri gestori
-usando \var{sa\_mask} per bloccare \signal{SIGALRM} durante la loro esecuzione.
-Il valore di \var{sa\_flag} permette di specificare vari aspetti del
-comportamento di \func{sigaction}, e della reazione del processo ai vari
+correttamente, la cosa poteva essere prevenuta installando gli altri gestori
+usando \var{sa\_mask} per bloccare \signal{SIGALRM} durante la loro
+esecuzione.  Il valore di \var{sa\_flag} permette di specificare vari aspetti
+del comportamento di \func{sigaction}, e della reazione del processo ai vari
 segnali; i valori possibili ed il relativo significato sono riportati in
 tab.~\ref{tab:sig_sa_flag}.
 
-\begin{table}[htb]
+\begin{table}[!htb]
   \footnotesize
   \centering
   \begin{tabular}[c]{|l|p{8cm}|}
@@ -2028,41 +2097,47 @@ tab.~\ref{tab:sig_sa_flag}.
                            essere notificato quando il processo figlio viene
                            fermato da uno dei segnali \signal{SIGSTOP},
                            \signal{SIGTSTP}, \signal{SIGTTIN} o 
-                           \signal{SIGTTOU}.\\
-    \const{SA\_RESETHAND}& Ristabilisce l'azione per il segnale al valore 
-                           predefinito una volta che il gestore è stato
-                           lanciato, riproduce cioè il comportamento della
-                           semantica inaffidabile.\\  
-    \const{SA\_ONESHOT}  & Nome obsoleto, sinonimo non standard di
-                           \const{SA\_RESETHAND}; da evitare.\\ 
+                           \signal{SIGTTOU}, questo flag ha significato solo
+                           quando si imposta un gestore per \signal{SIGCHLD}.\\
+    \const{SA\_NOCLDWAIT}& Se il segnale è \signal{SIGCHLD} e si richiede di
+                           ignorare il segnale con \const{SIG\_IGN} allora i
+                           processi figli non diventano \itindex{zombie}
+                           \textit{zombie} quando terminano; questa
+                           funzionalità è stata introdotta nel kernel 2.6 e va
+                           a modificare il comportamento di \func{waitpid}
+                           come illustrato in sez.~\ref{sec:proc_wait}, se si
+                           installa un gestore con questo flag attivo il
+                           segnale \signal{SIGCHLD} viene comunque generato.\\ 
+    \const{SA\_NODEFER}  & Evita che il segnale corrente sia bloccato durante
+                           l'esecuzione del gestore.\\
+    \const{SA\_NOMASK}   & Nome obsoleto e sinonimo non standard di
+                           \const{SA\_NODEFER}, non deve essere più
+                           utilizzato.\\ 
+    \const{SA\_ONESHOT}  & Nome obsoleto e sinonimo non standard di
+                           \const{SA\_RESETHAND}, non deve essere più
+                           utilizzato.\\ 
     \const{SA\_ONSTACK}  & Stabilisce l'uso di uno \itindex{stack} 
                            \textit{stack} alternativo per l'esecuzione del
                            gestore (vedi
                            sez.~\ref{sec:sig_specific_features}).\\  
+    \const{SA\_RESETHAND}& Ristabilisce l'azione per il segnale al valore 
+                           predefinito una volta che il gestore è stato
+                           lanciato, riproduce cioè il comportamento della
+                           semantica inaffidabile.\\  
     \const{SA\_RESTART}  & Riavvia automaticamente le \textit{slow system
                            call} quando vengono interrotte dal suddetto
-                           segnale; riproduce cioè il comportamento standard
+                           segnale, riproduce cioè il comportamento standard
                            di BSD.\index{system~call~lente}\\ 
-    \const{SA\_NODEFER}  & Evita che il segnale corrente sia bloccato durante
-                           l'esecuzione del gestore.\\
-    \const{SA\_NOMASK}   & Nome obsoleto, sinonimo non standard di
-                           \const{SA\_NODEFER}.\\ 
     \const{SA\_SIGINFO}  & Deve essere specificato quando si vuole usare un
                            gestore in forma estesa usando
                            \var{sa\_sigaction} al posto di
                            \var{sa\_handler}.\\
-    \const{SA\_NOCLDWAIT}& Se il segnale è \signal{SIGCHLD} allora i processi
-                           figli non diventano \itindex{zombie}
-                           \textit{zombie} quando terminano.\footnotemark \\ 
     \hline
   \end{tabular}
   \caption{Valori del campo \var{sa\_flag} della struttura \struct{sigaction}.}
   \label{tab:sig_sa_flag}
 \end{table}
 
-\footnotetext{questa funzionalità è stata introdotta nel kernel 2.6 e va a
-  modificare il comportamento di \func{waitpid}.}
-
 Come si può notare in fig.~\ref{fig:sig_sigaction} \func{sigaction} permette
 di utilizzare due forme diverse di gestore,\footnote{la possibilità è prevista
   dallo standard POSIX.1b, ed è stata aggiunta nei kernel della serie 2.1.x
@@ -2071,13 +2146,13 @@ di utilizzare due forme diverse di gestore,\footnote{la possibilità è prevista
   informazioni addizionali usando \var{sa\_handler} con un secondo parametro
   addizionale di tipo \var{sigcontext}, che adesso è deprecato.}  da
 specificare, a seconda dell'uso o meno del flag \const{SA\_SIGINFO},
-rispettivamente attraverso i campi \var{sa\_sigaction} o
-\var{sa\_handler},\footnote{i due campi devono essere usati in maniera
-  alternativa, in certe implementazioni questi campi vengono addirittura
-  definiti come \direct{union}.}  Quest'ultima è quella classica usata anche con
-\func{signal}, mentre la prima permette di usare un gestore più complesso, in
-grado di ricevere informazioni più dettagliate dal sistema, attraverso la
-struttura \struct{siginfo\_t}, riportata in fig.~\ref{fig:sig_siginfo_t}.
+rispettivamente attraverso i campi \var{sa\_sigaction} o \var{sa\_handler}.
+Quest'ultima è quella classica usata anche con \func{signal}, mentre la prima
+permette di usare un gestore più complesso, in grado di ricevere informazioni
+più dettagliate dal sistema, attraverso la struttura \struct{siginfo\_t},
+riportata in fig.~\ref{fig:sig_siginfo_t}.  I due campi devono essere usati in
+maniera alternativa, in certe implementazioni questi campi vengono addirittura
+definiti come una \direct{union}.
 
 Installando un gestore di tipo \var{sa\_sigaction} diventa allora possibile
 accedere alle informazioni restituite attraverso il puntatore a questa
@@ -2089,7 +2164,7 @@ causato l'emissione del segnale.
 
 \begin{figure}[!htb]
   \footnotesize \centering
-  \begin{minipage}[c]{\textwidth}
+  \begin{minipage}[c]{0.9\textwidth}
     \includestruct{listati/siginfo_t.h}
   \end{minipage} 
   \normalsize 
@@ -2122,22 +2197,23 @@ altre informazioni specifiche.
     \textbf{Valore} & \textbf{Significato} \\
     \hline
     \hline
-    \const{SI\_USER}   & Generato da \func{kill} o \func{raise}.\\
-    \const{SI\_KERNEL} & Inviato dal kernel.\\
+    \const{SI\_USER}   & Generato da \func{kill} o \func{raise} o affini.\\
+    \const{SI\_KERNEL} & Inviato direttamente dal kernel.\\
     \const{SI\_QUEUE}  & Inviato con \func{sigqueue} (vedi
                          sez.~\ref{sec:sig_real_time}).\\ 
     \const{SI\_TIMER}  & Scadenza di un\itindex{POSIX~Timer~API} \textit{POSIX
                           timer} (vedi sez.~\ref{sec:sig_timer_adv}).\\
     \const{SI\_MESGQ}  & Inviato al cambiamento di stato di una coda di
-                         messaggi POSIX (vedi
-                         sez.~\ref{sec:ipc_posix_mq}).\footnotemark\\ 
+                         messaggi POSIX (vedi sez.~\ref{sec:ipc_posix_mq}),
+                         introdotto con il kernel 2.6.6.\\ 
     \const{SI\_ASYNCIO}& Una operazione di I/O asincrono (vedi
                          sez.~\ref{sec:file_asyncronous_io}) è stata
                          completata.\\
     \const{SI\_SIGIO}  & Segnale di \signal{SIGIO} da una coda (vedi
                          sez.~\ref{sec:file_asyncronous_operation}).\\ 
     \const{SI\_TKILL}  & Inviato da \func{tkill} o \func{tgkill} (vedi
-                         sez.~\ref{cha:threads_xxx}).\footnotemark\\ 
+                         sez.~\ref{cha:threads_xxx}), introdotto con il kernel
+                         2.4.19.\\ 
     \hline
   \end{tabular}
   \caption{Valori del campo \var{si\_code} della struttura \struct{sigaction}
@@ -2145,19 +2221,18 @@ altre informazioni specifiche.
   \label{tab:sig_si_code_generic}
 \end{table}
 
-\footnotetext[24]{introdotto con il kernel 2.6.6.}
-\footnotetext{introdotto con il kernel 2.4.19.}
 
 In questo caso il valore del campo \var{si\_code} deve essere verificato nei
-confronti delle diverse costanti previste per ciascuno di detti
-segnali;\footnote{dato che si tratta di una costante, e non di una maschera
-  binaria, i valori numerici vengono riutilizzati e ciascuno di essi avrà un
-  significato diverso a seconda del segnale a cui è associato.} l'elenco
-dettagliato dei nomi di queste costanti è riportato nelle diverse sezioni di
-tab.~\ref{tab:sig_si_code_special} che sono state ordinate nella sequenza in
-cui si sono appena citati i rispettivi segnali.\footnote{il prefisso del nome
-  indica comunque in maniera diretta il segnale a cui le costanti fanno
-  riferimento.}
+confronti delle diverse costanti previste per ciascuno di detti segnali; dato
+che si tratta di costanti, e non di una maschera binaria, i valori numerici
+vengono riutilizzati e ciascuno di essi avrà un significato diverso a seconda
+del segnale a cui è associato. 
+
+L'elenco dettagliato dei nomi di queste costanti è riportato nelle diverse
+sezioni di tab.~\ref{tab:sig_si_code_special} che sono state ordinate nella
+sequenza in cui si sono appena citati i rispettivi segnali, il prefisso del
+nome indica comunque in maniera diretta il segnale a cui le costanti fanno
+riferimento.
 
 \begin{table}[!htb]
   \footnotesize
@@ -2217,20 +2292,21 @@ cui si sono appena citati i rispettivi segnali.\footnote{il prefisso del nome
   \label{tab:sig_si_code_special}
 \end{table}
 
-Il resto della struttura \struct{siginfo\_t} è definito come \direct{union} ed
-i valori eventualmente presenti dipendono dal segnale, così \signal{SIGCHLD}
-ed i segnali \textit{real-time} (vedi sez.~\ref{sec:sig_real_time}) inviati
-tramite \func{kill} avvalorano \var{si\_pid} e \var{si\_uid} coi valori
-corrispondenti al processo che ha emesso il segnale, \signal{SIGCHLD} avvalora
-anche i campi \var{si\_status}, \var{si\_utime} e \var{si\_stime} che indicano
-rispettivamente lo stato di uscita, l'\textit{user time} e il \textit{system
-  time} (vedi sez.~\ref{sec:sys_cpu_times}) usati dal processo;
-\signal{SIGILL}, \signal{SIGFPE}, \signal{SIGSEGV} e \signal{SIGBUS}
-avvalorano \var{si\_addr} con l'indirizzo in cui è avvenuto l'errore,
-\signal{SIGIO} (vedi sez.~\ref{sec:file_asyncronous_io}) avvalora \var{si\_fd}
-con il numero del file descriptor e \var{si\_band} per i \itindex{out-of-band}
-dati urgenti (vedi sez.~\ref{sec:TCP_urgent_data}) su un socket, il segnale
-inviato alla scadenza di un \itindex{POSIX~Timer~API} POSIX timer (vedi
+Il resto della struttura \struct{siginfo\_t} è definito come una
+\direct{union} ed i valori eventualmente presenti dipendono dal segnale
+ricevuto, così \signal{SIGCHLD} ed i segnali \textit{real-time} (vedi
+sez.~\ref{sec:sig_real_time}) inviati tramite \func{kill} avvalorano
+\var{si\_pid} e \var{si\_uid} coi valori corrispondenti al processo che ha
+emesso il segnale, \signal{SIGCHLD} avvalora anche i campi \var{si\_status},
+\var{si\_utime} e \var{si\_stime} che indicano rispettivamente lo stato di
+uscita, l'\textit{user time} e il \textit{system time} (vedi
+sez.~\ref{sec:sys_cpu_times}) usati dal processo; \signal{SIGILL},
+\signal{SIGFPE}, \signal{SIGSEGV} e \signal{SIGBUS} avvalorano \var{si\_addr}
+con l'indirizzo in cui è avvenuto l'errore, \signal{SIGIO} (vedi
+sez.~\ref{sec:file_asyncronous_io}) avvalora \var{si\_fd} con il numero del
+file descriptor e \var{si\_band} per i \itindex{out-of-band} dati urgenti
+(vedi sez.~\ref{sec:TCP_urgent_data}) su un socket, il segnale inviato alla
+scadenza di un \itindex{POSIX~Timer~API} POSIX timer (vedi
 sez.~\ref{sec:sig_timer_adv}) avvalora i campi \var{si\_timerid} e
 \var{si\_overrun}.
 
@@ -2266,24 +2342,28 @@ Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
 che abbia le stesse caratteristiche di \func{signal}, a definire attraverso
 \func{sigaction} una funzione equivalente \func{Signal}, il cui codice è
 riportato in fig.~\ref{fig:sig_Signal_code} (il codice completo si trova nel
-file \file{SigHand.c} nei sorgenti allegati).  Si noti come, essendo la
-funzione estremamente semplice, essa è definita come
-\direct{inline};\footnote{la direttiva \direct{inline} viene usata per dire al
-  compilatore di trattare la funzione cui essa fa riferimento in maniera
-  speciale inserendo il codice direttamente nel testo del programma.  Anche se
-  i compilatori più moderni sono in grado di effettuare da soli queste
-  manipolazioni (impostando le opportune ottimizzazioni) questa è una tecnica
-  usata per migliorare le prestazioni per le funzioni piccole ed usate di
-  frequente (in particolare nel kernel, dove in certi casi le ottimizzazioni
-  dal compilatore, tarate per l'uso in user space, non sono sempre adatte). In
-  tal caso infatti le istruzioni per creare un nuovo frame nello
-  \itindex{stack} \textit{stack} per chiamare la funzione costituirebbero una
-  parte rilevante del codice, appesantendo inutilmente il programma.
-  Originariamente questo comportamento veniva ottenuto con delle macro, ma
-  queste hanno tutta una serie di problemi di sintassi nel passaggio degli
-  argomenti (si veda ad esempio \cite{PratC}) che in questo modo possono
-  essere evitati.} per semplificare ulteriormente la definizione si è poi
-definito un apposito tipo \texttt{SigFunc}.
+file \file{SigHand.c} nei sorgenti allegati). Anche in questo caso, per
+semplificare la definizione si è poi definito un apposito tipo
+\texttt{SigFunc} per esprimere in modo più comprensibile la forma di un
+gestore di segnale.
+
+Si noti come, essendo la funzione estremamente semplice, essa è definita come
+\direct{inline}. Questa direttiva viene usata per dire al compilatore di
+trattare la funzione cui essa fa riferimento in maniera speciale inserendo il
+codice direttamente nel testo del programma.  Anche se i compilatori più
+moderni sono in grado di effettuare da soli queste manipolazioni (impostando
+le opportune ottimizzazioni) questa è una tecnica usata per migliorare le
+prestazioni per le funzioni piccole ed usate di frequente, in particolare nel
+kernel, dove in certi casi le ottimizzazioni dal compilatore, tarate per l'uso
+in \textit{user space}, non sono sempre adatte.
+
+In tal caso infatti le istruzioni per creare un nuovo frame nello
+\itindex{stack} \textit{stack} per chiamare la funzione costituirebbero una
+parte rilevante del codice, appesantendo inutilmente il programma.
+Originariamente questo comportamento veniva ottenuto con delle macro, ma
+queste hanno tutta una serie di problemi di sintassi nel passaggio degli
+argomenti (si veda ad esempio \cite{PratC}) che in questo modo possono essere
+evitati.
 
 
 
@@ -2291,48 +2371,61 @@ definito un apposito tipo \texttt{SigFunc}.
   \textit{signal mask}}
 \label{sec:sig_sigmask}
 
-\itindbeg{signal~mask}
+\index{maschera dei segnali|(}
 Come spiegato in sez.~\ref{sec:sig_semantics} tutti i moderni sistemi unix-like
 permettono di bloccare temporaneamente (o di eliminare completamente,
-impostando \const{SIG\_IGN} come azione) la consegna dei segnali ad un
+impostando come azione \const{SIG\_IGN}) la consegna dei segnali ad un
 processo. Questo è fatto specificando la cosiddetta \textsl{maschera dei
   segnali} (o \textit{signal mask}) del processo\footnote{nel caso di Linux
   essa è mantenuta dal campo \var{blocked} della \struct{task\_struct} del
-  processo.} cioè l'insieme dei segnali la cui consegna è bloccata. Abbiamo
-accennato in sez.~\ref{sec:proc_fork} che la \textit{signal mask} viene
-ereditata dal padre alla creazione di un processo figlio, e abbiamo visto al
-paragrafo precedente che essa può essere modificata, durante l'esecuzione di
-un gestore, attraverso l'uso dal campo \var{sa\_mask} di \struct{sigaction}.
+  processo.} cioè l'insieme dei segnali la cui consegna è bloccata. 
+
+Abbiamo accennato in sez.~\ref{sec:proc_fork} che la maschera dei segnali
+viene ereditata dal padre alla creazione di un processo figlio, e abbiamo
+visto al paragrafo precedente che essa può essere modificata durante
+l'esecuzione di un gestore ed automaticamente ripristinata quando questo
+ritorna, attraverso l'uso dal campo \var{sa\_mask} di \struct{sigaction}.
 
 Uno dei problemi evidenziatisi con l'esempio di fig.~\ref{fig:sig_event_wrong}
-è che in molti casi è necessario proteggere delle sezioni di codice (nel caso
-in questione la sezione fra il controllo e la eventuale cancellazione del flag
-che testimoniava l'avvenuta occorrenza del segnale) in modo da essere sicuri
-che essi siano eseguite senza interruzioni.
-
-Le operazioni più semplici, come l'assegnazione o il controllo di una
-variabile (per essere sicuri si può usare il tipo \type{sig\_atomic\_t}) di
-norma sono atomiche; quando si devono eseguire operazioni più complesse si può
-invece usare la funzione \funcd{sigprocmask} che permette di bloccare uno o
-più segnali; il suo prototipo è:
-\begin{prototype}{signal.h}
-{int sigprocmask(int how, const sigset\_t *set, sigset\_t *oldset)} 
-  
-  Cambia la \textsl{maschera dei segnali} del processo corrente.
-  
-  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
-    errore, nel qual caso \var{errno} assumerà i valori:
+è che in molti casi è necessario proteggere delle sezioni di codice, in modo
+da essere sicuri che essi siano eseguite senza interruzioni da parte di un
+segnale.  Nel caso in questione si trattava della sezione di codice fra il
+controllo e la eventuale cancellazione del flag impostato dal gestore di un
+segnale che testimoniava l'avvenuta occorrenza dello stesso.
+
+Come illustrato in sez.~\ref{sec:proc_atom_oper} le operazioni più semplici,
+come l'assegnazione o il controllo di una variabile, di norma sono atomiche, e
+qualora si voglia essere sicuri si può usare il tipo \type{sig\_atomic\_t}. Ma
+quando si devono eseguire più operazioni su delle variabili (nell'esempio
+citato un controllo ed una assegnazione) o comunque eseguire una serie di
+istruzioni, l'atomicità non è più possibile.
+
+In questo caso, se si vuole essere sicuri di non poter essere interrotti da un
+segnale durante l'esecuzione di una sezione di codice, lo si può bloccare
+esplicitamente modificando la maschera dei segnali del processo con la
+funzione di sistema \funcd{sigprocmask}, il cui prototipo è:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigprocmask(int how, const sigset\_t *set, sigset\_t *oldset)}
+\fdesc{Imposta la maschera dei segnali del processo corrente.} 
+}
+
+{La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà uno dei valori: 
   \begin{errlist}
   \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido.
   \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
-  \end{errlist}}
-\end{prototype}
+  \end{errlist}
+}
+\end{funcproto}
 
-La funzione usa l'insieme di segnali dato all'indirizzo \param{set} per
-modificare la maschera dei segnali del processo corrente. La modifica viene
-effettuata a seconda del valore dell'argomento \param{how}, secondo le modalità
-specificate in tab.~\ref{tab:sig_procmask_how}. Qualora si specifichi un valore
-non nullo per \param{oldset} la maschera dei segnali corrente viene salvata a
+La funzione usa l'insieme di segnali posto all'indirizzo passato
+nell'argomento \param{set} per modificare la maschera dei segnali del processo
+corrente. La modifica viene effettuata a seconda del valore
+dell'argomento \param{how}, secondo le modalità specificate in
+tab.~\ref{tab:sig_procmask_how}. Qualora si specifichi un valore non nullo
+per \param{oldset} la maschera dei segnali corrente viene salvata a
 quell'indirizzo.
 
 \begin{table}[htb]
@@ -2361,35 +2454,37 @@ In questo modo diventa possibile proteggere delle sezioni di codice bloccando
 l'insieme di segnali voluto per poi riabilitarli alla fine della
 \index{sezione~critica} sezione critica. La funzione permette di risolvere
 problemi come quelli mostrati in fig.~\ref{fig:sig_event_wrong}, proteggendo
-la sezione fra il controllo del flag e la sua cancellazione.
-
-La funzione può essere usata anche all'interno di un gestore, ad esempio
-per riabilitare la consegna del segnale che l'ha invocato, in questo caso però
-occorre ricordare che qualunque modifica alla maschera dei segnali viene
-perduta alla conclusione del terminatore. 
+la sezione fra il controllo del flag e la sua cancellazione.  La funzione può
+essere usata anche all'interno di un gestore, ad esempio per riabilitare la
+consegna del segnale che l'ha invocato, in questo caso però occorre ricordare
+che qualunque modifica alla maschera dei segnali viene perduta al ritorno
+dallo stesso.
 
 Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
 dei casi di \itindex{race~condition} \textit{race condition} restano aperte
-alcune possibilità legate all'uso di \func{pause}; il caso è simile a quello
+alcune possibilità legate all'uso di \func{pause}.  Il caso è simile a quello
 del problema illustrato nell'esempio di fig.~\ref{fig:sig_sleep_incomplete}, e
 cioè la possibilità che il processo riceva il segnale che si intende usare per
 uscire dallo stato di attesa invocato con \func{pause} immediatamente prima
 dell'esecuzione di quest'ultima. Per poter effettuare atomicamente la modifica
 della maschera dei segnali (di solito attivandone uno specifico) insieme alla
-sospensione del processo lo standard POSIX ha previsto la funzione
+sospensione del processo lo standard POSIX ha previsto la funzione di sistema
 \funcd{sigsuspend}, il cui prototipo è:
-\begin{prototype}{signal.h}
-{int sigsuspend(const sigset\_t *mask)} 
-  
-  Imposta la \textit{signal mask} specificata, mettendo in attesa il processo.
-  
-  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
-    errore, nel qual caso \var{errno} assumerà i valori:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigsuspend(const sigset\_t *mask)} 
+\fdesc{Imposta la maschera dei segnali mettendo in attesa il processo.} 
+}
+
+{La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà uno dei valori: 
   \begin{errlist}
   \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido.
   \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
-  \end{errlist}}
-\end{prototype}
+  \end{errlist}
+}
+\end{funcproto}
 
 Come esempio dell'uso di queste funzioni proviamo a riscrivere un'altra volta
 l'esempio di implementazione di \code{sleep}. Abbiamo accennato in
@@ -2445,7 +2540,7 @@ riabilitarla immediatamente dopo, in questo modo si evita il
 \itindex{deadlock} deadlock dovuto all'arrivo del segnale prima
 dell'esecuzione di \func{sigsuspend}.
 
-\itindend{signal~mask}
+\index{maschera dei segnali|)}
 
 
 \subsection{Criteri di programmazione per i gestori dei segnali}
@@ -2463,8 +2558,8 @@ interrotta.
 
 Il concetto è comunque più generale e porta ad una distinzione fra quelle che
 POSIX chiama \textsl{funzioni insicure} (\textit{signal unsafe function}) e
-\textsl{funzioni sicure} (o più precisamente \textit{signal safe function});
-quando un segnale interrompe una funzione insicura ed il gestore chiama al suo
+\textsl{funzioni sicure} (o più precisamente \textit{signal safe function}).
+Quando un segnale interrompe una funzione insicura ed il gestore chiama al suo
 interno una funzione insicura il sistema può dare luogo ad un comportamento
 indefinito, la cosa non avviene invece per le funzioni sicure.
 
@@ -2475,13 +2570,13 @@ vogliono evitare questi problemi si può ricorrere soltanto all'uso delle
 funzioni considerate sicure.
 
 L'elenco delle funzioni considerate sicure varia a seconda della
-implementazione utilizzata e dello standard a cui si fa
-riferimento;\footnote{non è riportata una lista specifica delle funzioni
-  sicure per Linux, si suppone pertanto che siano quelle richieste dallo
-  standard.}  secondo quanto riportato dallo standard POSIX 1003.1 nella
-revisione del 2003, le ``\textit{signal safe function}'' che possono essere
-chiamate anche all'interno di un gestore di segnali sono tutte quelle della
-lista riportata in fig.~\ref{fig:sig_safe_functions}.
+implementazione utilizzata e dello standard a cui si fa riferimento. Non è
+riportata una lista specifica delle funzioni sicure per Linux, e si suppone
+pertanto che siano quelle richieste dallo standard. Secondo quanto richiesto
+dallo standard POSIX 1003.1 nella revisione del 2003, le ``\textit{signal safe
+  function}'' che possono essere chiamate anche all'interno di un gestore di
+segnali sono tutte quelle della lista riportata in
+fig.~\ref{fig:sig_safe_functions}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -2558,7 +2653,6 @@ un segnale.
 \section{Funzionalità avanzate}
 \label{sec:sig_advanced_signal}
 
-
 Tratteremo in questa ultima sezione alcune funzionalità avanzate relativa ai
 segnali ed in generale ai meccanismi di notifica, a partire dalla funzioni
 introdotte per la gestione dei cosiddetti ``\textsl{segnali real-time}'', alla
@@ -2571,18 +2665,18 @@ di segnali ed eventi attraverso l'uso di file descriptor.
 Lo standard POSIX.1b, nel definire una serie di nuove interfacce per i servizi
 \textit{real-time}, ha introdotto una estensione del modello classico dei
 segnali che presenta dei significativi miglioramenti,\footnote{questa
-  estensione è stata introdotta in Linux a partire dal kernel 2.1.43, e dalle
-  \acr{glibc} 2.1.} in particolare sono stati superati tre limiti fondamentali
-dei segnali classici:
+  estensione è stata introdotta in Linux a partire dal kernel 2.1.43, e dalla
+  versione 2.1 della \acr{glibc}.} in particolare sono stati superati tre
+limiti fondamentali dei segnali classici:
 \begin{basedescript}{\desclabelwidth{1cm}\desclabelstyle{\nextlinelabel}}
 \item[I segnali non sono accumulati] 
   se più segnali vengono generati prima dell'esecuzione di un gestore
   questo sarà eseguito una sola volta, ed il processo non sarà in grado di
-  accorgersi di quante volte l'evento che ha generato il segnale è accaduto;
+  accorgersi di quante volte l'evento che ha generato il segnale è accaduto.
 \item[I segnali non trasportano informazione]   
   i segnali classici non prevedono altra informazione sull'evento
   che li ha generati se non il fatto che sono stati emessi (tutta
-  l'informazione che il kernel associa ad un segnale è il suo numero);
+  l'informazione che il kernel associa ad un segnale è il suo numero).
 \item[I segnali non hanno un ordine di consegna] 
   l'ordine in cui diversi segnali vengono consegnati è casuale e non
   prevedibile. Non è possibile stabilire una priorità per cui la reazione a
@@ -2598,10 +2692,10 @@ funzionalità aggiunte sono:
 \item i segnali sono inseriti in una coda che permette di consegnare istanze
   multiple dello stesso segnale qualora esso venga inviato più volte prima
   dell'esecuzione del gestore; si assicura così che il processo riceva un
-  segnale per ogni occorrenza dell'evento che lo genera.
+  segnale per ogni occorrenza dell'evento che lo genera;
 \item è stata introdotta una priorità nella consegna dei segnali: i segnali
   vengono consegnati in ordine a seconda del loro valore, partendo da quelli
-  con un numero minore, che pertanto hanno una priorità maggiore.
+  con un numero minore, che pertanto hanno una priorità maggiore;
 \item è stata introdotta la possibilità di restituire dei dati al gestore,
   attraverso l'uso di un apposito campo \var{si\_value} nella struttura
   \struct{siginfo\_t}, accessibile tramite gestori di tipo
@@ -2621,10 +2715,10 @@ che di norma (vale a dire sulla piattaforma i386) è 64. Questo dà un totale di
 presente però che i primi segnali \textit{real-time} disponibili vendono usati
 dalle \acr{glibc} per l'implementazione dei \textit{thread} POSIX (vedi
 sez.~\ref{sec:thread_posix_intro}), ed il valore di \const{SIGRTMIN} viene
-modificato di conseguenza.\footnote{vengono usati i primi tre per la vecchia
-  implementazione dei \textit{LinuxThread} ed i primi due per la nuova NTPL
-  (\textit{New Thread Posix Library}), il che comporta che \const{SIGRTMIN} a
-  seconda dei casi può essere 34 o 35.}
+modificato di conseguenza.\footnote{per la precisione vengono usati i primi
+  tre per la vecchia implementazione dei \textit{LinuxThread} ed i primi due
+  per la nuova NTPL (\textit{New Thread Posix Library}), il che comporta che
+  \const{SIGRTMIN} a seconda dei casi può assumere i valori 34 o 35.}
 
 Per questo motivo nei programmi che usano i segnali \textit{real-time} non si
 deve mai usare un valore assoluto dato che si correrebbe il rischio di
@@ -2638,33 +2732,32 @@ consegnati per primi, inoltre i segnali \textit{real-time} non possono
 interrompere l'esecuzione di un gestore di un segnale a priorità più alta; la
 loro azione predefinita è quella di terminare il programma.  I segnali
 ordinari hanno tutti la stessa priorità, che è più alta di quella di qualunque
-segnale \textit{real-time}.\footnote{lo standard non definisce niente al
-  riguardo ma Linux, come molte altre implementazioni, adotta questa
-  politica.}
+segnale \textit{real-time}. Lo standard non definisce niente al riguardo ma
+Linux, come molte altre implementazioni, adotta questa politica.
 
 Si tenga presente che questi nuovi segnali non sono associati a nessun evento
 specifico, a meno di non richiedere specificamente il loro utilizzo in
 meccanismi di notifica come quelli per l'I/O asincrono (vedi
 sez.~\ref{sec:file_asyncronous_io}) o per le code di messaggi POSIX (vedi
-sez.~\ref{sec:ipc_posix_mq}); pertanto devono essere inviati esplicitamente.
+sez.~\ref{sec:ipc_posix_mq}), pertanto devono essere inviati esplicitamente.
 
 Inoltre, per poter usufruire della capacità di restituire dei dati, i relativi
 gestori devono essere installati con \func{sigaction}, specificando per
 \var{sa\_flags} la modalità \const{SA\_SIGINFO} che permette di utilizzare la
-forma estesa \var{sa\_sigaction} (vedi sez.~\ref{sec:sig_sigaction}).  In
-questo modo tutti i segnali \textit{real-time} possono restituire al gestore
-una serie di informazioni aggiuntive attraverso l'argomento
+forma estesa \var{sa\_sigaction} (vedi sez.~\ref{sec:sig_sigaction}) del
+gestore.  In questo modo tutti i segnali \textit{real-time} possono restituire
+al gestore una serie di informazioni aggiuntive attraverso l'argomento
 \struct{siginfo\_t}, la cui definizione è stata già vista in
 fig.~\ref{fig:sig_siginfo_t}, nella trattazione dei gestori in forma estesa.
 
 In particolare i campi utilizzati dai segnali \textit{real-time} sono
 \var{si\_pid} e \var{si\_uid} in cui vengono memorizzati rispettivamente il
-\ids{PID} e l'\ids{UID} effettivo del processo che ha inviato il segnale, mentre
-per la restituzione dei dati viene usato il campo \var{si\_value}.
+\ids{PID} e l'\ids{UID} effettivo del processo che ha inviato il segnale,
+mentre per la restituzione dei dati viene usato il campo \var{si\_value}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
-  \begin{minipage}[c]{\textwidth}
+  \begin{minipage}[c]{0.8\textwidth}
     \includestruct{listati/sigval_t.h}
   \end{minipage} 
   \normalsize 
@@ -2673,68 +2766,73 @@ per la restituzione dei dati viene usato il campo \var{si\_value}.
   \label{fig:sig_sigval}
 \end{figure}
 
-Questo è una \direct{union} di tipo \struct{sigval} (la sua definizione è in
+Detto campo, identificato con il tipo di dato \type{sigval\_t}, è una
+\direct{union} di tipo \struct{sigval} (la sua definizione è in
 fig.~\ref{fig:sig_sigval}) in cui può essere memorizzato o un valore numerico,
-se usata nella forma \var{sival\_int}, o un indirizzo, se usata nella forma
+se usata nella forma \var{sival\_int}, o un puntatore, se usata nella forma
 \var{sival\_ptr}. L'unione viene usata dai segnali \textit{real-time} e da
-vari meccanismi di notifica\footnote{un campo di tipo \type{sigval\_t} è
-  presente anche nella struttura \struct{sigevent} (definita in
-  fig.~\ref{fig:struct_sigevent}) che viene usata dai meccanismi di notifica
-  come quelli per \itindex{POSIX~Timer~API} i timer POSIX (vedi
-  sez.~\ref{sec:sig_timer_adv}), l'I/O asincrono (vedi
-  sez.~\ref{sec:file_asyncronous_io}) o le code di messaggi POSIX (vedi
-  sez.~\ref{sec:ipc_posix_mq}).} per restituire dati al gestore del segnale;
-in alcune definizioni essa viene identificata anche con l'abbreviazione
-\type{sigval\_t}.
+vari meccanismi di notifica per restituire dati al gestore del segnale in
+\var{si\_value}. Un campo di tipo \type{sigval\_t} è presente anche nella
+struttura \struct{sigevent} (definita in fig.~\ref{fig:struct_sigevent}) che
+viene usata dai meccanismi di notifica come quelli per
+\itindex{POSIX~Timer~API} i timer POSIX (vedi sez.~\ref{sec:sig_timer_adv}),
+l'I/O asincrono (vedi sez.~\ref{sec:file_asyncronous_io}) o le code di
+messaggi POSIX (vedi sez.~\ref{sec:ipc_posix_mq}).
 
 A causa delle loro caratteristiche, la funzione \func{kill} non è adatta ad
 inviare segnali \textit{real-time}, poiché non è in grado di fornire alcun
-valore per \struct{sigval}; per questo motivo lo standard ha previsto una
-nuova funzione, \funcd{sigqueue}, il cui prototipo è:
-\begin{prototype}{signal.h}
-  {int sigqueue(pid\_t pid, int signo, const union sigval value)}
-  
-  Invia il segnale \param{signo} al processo \param{pid}, restituendo al
-  gestore il valore \param{value}.
-  
-  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} assumerà uno dei valori:
+valore per il campo \var{si\_value} restituito nella struttura
+\struct{siginfo\_t} prevista da un gestore in forma estesa. Per questo motivo
+lo standard ha previsto una nuova funzione, \funcd{sigqueue}, il cui prototipo
+è:
+
+\begin{funcproto}{
+\fhead{signal.h}
+\fdecl{int sigqueue(pid\_t pid, int signo, const union sigval value)}
+\fdesc{Invia un segnale con un valore di informazione.} 
+}
+
+{La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
+  caso \var{errno} assumerà uno dei valori: 
   \begin{errlist}
   \item[\errcode{EAGAIN}] la coda è esaurita, ci sono già
     \const{SIGQUEUE\_MAX} segnali in attesa si consegna.
+  \item[\errcode{EINVAL}] si è specificato un valore non valido per
+    \param{signo}.
   \item[\errcode{EPERM}] non si hanno privilegi appropriati per inviare il
     segnale al processo specificato.
   \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-  \item[\errcode{EINVAL}] si è specificato un valore non valido per
-    \param{signo}.
   \end{errlist}
-  ed inoltre \errval{ENOMEM}.}
-\end{prototype}
+}
+\end{funcproto}
+
 
-Il comportamento della funzione è analogo a quello di \func{kill}, ed i
-privilegi occorrenti ad inviare il segnale ad un determinato processo sono gli
-stessi; un valore nullo di \param{signo} permette di verificare le condizioni
-di errore senza inviare nessun segnale.
+La funzione invia il segnale indicato dall'argomento \param{signo} al processo
+indicato dall'argomento \param{pid}. Per il resto il comportamento della
+funzione è analogo a quello di \func{kill}, ed i privilegi occorrenti ad
+inviare il segnale ad un determinato processo sono gli stessi; un valore nullo
+di \param{signo} permette di verificare le condizioni di errore senza inviare
+nessun segnale.
 
 Se il segnale è bloccato la funzione ritorna immediatamente, se si è
 installato un gestore con \const{SA\_SIGINFO} e ci sono risorse disponibili,
 (vale a dire che c'è posto nella coda dei segnali \textit{real-time}) esso
-viene inserito e diventa pendente; una volta consegnato riporterà nel campo
-\var{si\_code} di \struct{siginfo\_t} il valore \const{SI\_QUEUE} e il campo
-\var{si\_value} riceverà quanto inviato con \param{value}. Se invece si è
-installato un gestore nella forma classica il segnale sarà generato, ma tutte
-le caratteristiche tipiche dei segnali \textit{real-time} (priorità e coda)
-saranno perse.
+viene inserito e diventa pendente. Una volta consegnato il segnale il gestore
+otterrà nel campo \var{si\_code} di \struct{siginfo\_t} il valore
+\const{SI\_QUEUE} e nel campo \var{si\_value} il valore indicato
+nell'argomento \param{value}. Se invece si è installato un gestore nella forma
+classica il segnale sarà generato, ma tutte le caratteristiche tipiche dei
+segnali \textit{real-time} (priorità e coda) saranno perse.
 
 Secondo lo standard POSIX la profondità della coda è indicata dalla costante
-\const{SIGQUEUE\_MAX},\footnote{una della tante costanti di sistema definite
-  dallo standard POSIX che non abbiamo riportato esplicitamente in
-  sez.~\ref{sec:sys_limits}.} il suo valore minimo secondo lo standard,
+\const{SIGQUEUE\_MAX}, una della tante costanti di sistema definite dallo
+standard POSIX che non abbiamo riportato esplicitamente in
+sez.~\ref{sec:sys_limits}, il suo valore minimo secondo lo standard,
 \const{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32. Nel caso di Linux la coda ha una
 dimensione variabile; fino alla versione 2.6.7 c'era un limite massimo globale
 che poteva essere impostato come parametro del kernel in
-\sysctlfile{kernel/rtsig-max};\footnote{ed il valore predefinito era
-  pari a 1024.} a partire dal kernel 2.6.8 il valore globale è stato rimosso e
+\sysctlfile{kernel/rtsig-max};\footnote{ed il valore predefinito era pari a
+  1024.} a partire dal kernel 2.6.8 il valore globale è stato rimosso e
 sostituito dalla risorsa \const{RLIMIT\_SIGPENDING} associata al singolo
 utente, che può essere modificata con \func{setrlimit} come illustrato in
 sez.~\ref{sec:sys_resource_limit}.
@@ -3695,10 +3793,11 @@ parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
 % LocalWords:  ENOSYS pthread ENOENT NULL attribute itimerspec new old ABSTIME
 % LocalWords:  epoch multiplexing overrun res lpthread sec nsec curr one shot
 % LocalWords:  delete stopped gdb alpha mips emulation locking ppoll epoll PGID
+% LocalWords:  pwait msgrcv msgsnd semop semtimedop runnable sigisemptyset
 
 
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"
 %%% End: 
-% LocalWords:  pwait msgrcv msgsnd semop semtimedop runnable
+% LocalWords:  sigorset sigandset