Si passa agli esempi
[gapil.git] / signal.tex
index 072b1d1edeaf638aef100fa2e141f3b3b5c7892c..bfacf64b642354ca7d488b2dda271551c3683cc1 100644 (file)
@@ -2,24 +2,38 @@
 \label{cha:signals}
 
 I segnali sono il primo e più semplice meccanismo di comunicazione nei
-confronti dei processi. Non portano con se nessuna informazione che non sia il
-loro tipo, si tratta in sostanza di un'interruzione software portata ad un
+confronti dei processi. Non portano con sé nessuna informazione che non sia il
+loro tipo; si tratta in sostanza di un'interruzione software portata ad un
 processo.
 
-In genere i segnali vengono usati dal kernel per riportare situazioni
+In genere essi vengono usati dal kernel per riportare ai processi situazioni
 eccezionali (come errori di accesso, eccezioni aritmetiche, etc.) ma possono
 anche essere usati come forma elementare di comunicazione fra processi (ad
 esempio vengono usati per il controllo di sessione), per notificare eventi
-(come la terminazione di un processo figlio), etc.
+(come la terminazione di un processo figlio), ecc.
 
+In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
+partendo da una introduzione relativa ai concetti base con cui essi vengono
+realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
+di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
+gestione.
 
 
-\section{I concetti base}
+\section{Introduzione}
+\label{sec:sig_intro}
+
+In questa sezione esamineremo i concetti base dei segnali, introducendo le
+caratteristiche essenziali con cui il sistema interagisce con i processi
+attraverso di essi.
+
+
+\subsection{I concetti base}
 \label{sec:sig_base}
 
 Come il nome stesso indica i segnali sono usati per notificare ad un processo
-l'occorrenza di un evento eccezionale. Gli eventi che possono generare un
-segnale sono vari; un breve elenco di possibile cause è il seguente:
+l'occorrenza di un qualche evento. Gli eventi che possono generare un segnale
+sono vari; un breve elenco di possibili cause per l'emissione di un segnale è
+il seguente:
 
 \begin{itemize*}
 \item un errore del programma, come una divisione per zero o un tentativo di
@@ -30,37 +44,45 @@ segnale sono vari; un breve elenco di possibile cause 
   essere eseguita.
 \item una richiesta dell'utente di terminare o fermare il programma. In genere
   si realizza attraverso un segnale mandato dalla shell in corrispondenza
-  della pressione di tasti del terminale come 'ctrl-c' o 'ctrl-z'.
+  della pressione di tasti del terminale come \code{C-c} o
+  \code{C-z}.\footnote{indichiamo con \code{C-x} la pressione simultanea al
+    tasto \code{x} del tasto control (ctrl in molte tastiere).}
 \item l'esecuzione di una \func{kill} o di una \func{raise} da parte del
   processo stesso o di un'altro (solo nel caso della \func{kill}).
 \end{itemize*}
 
-Ciascuno di questi eventi (tranne gli ultimi due che sono controllati
-dall'utente) comporta l'intervento diretto da parte del kernel che causa la
-generazione un particolare tipo di segnale.
+Ciascuno di questi eventi (compresi gli ultimi due che pure sono controllati
+dall'utente o da un altro processo) comporta l'intervento diretto da parte del
+kernel che causa la generazione un particolare tipo di segnale.
+
+Quando un processo riceve un segnale, invece del normale corso del programma,
+viene eseguita una azione di default o una apposita routine di gestione (il
+cosiddetto \textit{signal handler} o \textsl{manipolatore}) che può essere
+stata specificata dall'utente (nel qual caso si dice che si
+\textsl{intercetta} il segnale).
 
 
 \subsection{Le modalità di funzionamento}
 \label{sec:sig_semantics}
 
-Quando un processo riceve un segnale il kernel esegue una azione di default o
-una apposita routine di gestione (il cosiddetto \textit{signal handler} o
-\textsl{manipolatore}) che può essere specificata dall'utente (nel qual caso
-si dice che si \textsl{intercetta} il segnale).  Negli anni il comportamento
-del sistema in risposta ai segnali è stato modificato in vari modi nelle
-differenti implementazioni di unix.  Si possono individuare due tipologie
-fondamentali di comportamento dei segnali (dette semantiche) che vengono
-chiamate rispettivamente \textit{reliable} e \textit{unreliable}.
-
-Nella semantica \textit{unreliable} (quella implementata dalle prime versioni
-di unix) la routine di gestione del segnale specificata dall'utente non resta
-installata una volta chiamata; è perciò a carico dell'utente stesso ripetere
-l'installazione all'interno della routine di gestione stessa in tutti i casi
-in cui si vuole che il signal handler esterno resti attivo.
+Negli anni il comportamento del sistema in risposta ai segnali è stato
+modificato in vari modi nelle differenti implementazioni di Unix.  Si possono
+individuare due tipologie fondamentali di comportamento dei segnali (dette
+semantiche) che vengono chiamate rispettivamente semantica \textsl{affidabile}
+(o \textit{reliable}) e semantica \textsl{inaffidabile} (o
+\textit{unreliable}).
+
+Nella semantica \textsl{inaffidabile} (quella implementata dalle prime
+versioni di Unix) la routine di gestione del segnale specificata dall'utente
+non resta attiva una volta che è stata eseguita; è perciò compito dell'utente
+stesso ripetere l'installazione della stessa all'interno della routine di
+gestione, in tutti i casi in cui si vuole che il manipolatore esterno resti
+attivo.
 
 In questo caso è possibile una situazione in cui i segnali possono essere
 perduti; si consideri il seguente segmento di codice in cui la prima
-operazione del manipolatore è quella di reinstallare se stesso:
+operazione del manipolatore è quella di reinstallare se stesso: 
+
 \footnotesize
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
     int sig_handler();            /* handler function */
@@ -81,24 +103,26 @@ causare il comportamento originale assegnato al segnale (in genere la
 terminazione del processo).
 
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
-semantica viene chiamata \textit{inaffidabile}, in quanto la ricezione del
+semantica viene chiamata \textsl{inaffidabile}, in quanto la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
-atomiche.
-
-Un'altro problema è che in questa semantica è che non esiste un modo per
-bloccare i segnali quando non si vuole che arrivino; i processi possono si
-ignorare il segnale, ma non è possibile istruire il sistema a non fare nulla
-in occasione di un segnale, pur mantenendo memoria del fatto che è avvenuto.
-
-Un caso classico, riportato da Stevens, in cui si incontra questo problema, è
-quello in cui si usa il manipolatore per settare un flag che riporta al
-processo l'occorrenza del segnale. Si consideri il seguente segmento di
-codice il cui scopo sarebbe quello di fermare il processo fino all'occorrenza
-di un opportuno segnale:
+atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
+quanto detto in \secref{sec:proc_multi_prog}).
+
+Un'altro problema è che in questa semantica non esiste un modo per bloccare i
+segnali quando non si vuole che arrivino; i processi possono ignorare il
+segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
+di un segnale, pur mantenendo memoria del fatto che è avvenuto.
+
+Un caso classico in cui si incontra questo problema, è quello in cui si usa il
+manipolatore per settare un flag che riporta al processo l'occorrenza del
+segnale, così che questo possa prendere provvedimenti al di fuori del
+manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
+quello di fermare il processo fino all'occorrenza di un opportuno segnale:
+
 \footnotesize
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 int signal_flag = 0;
-main ()
+main()
 {
     int sig_handler();            /* handler function */
     ...
@@ -124,7 +148,7 @@ riprende l'esecuzione all'istruzione successiva, ma essendo cambiato il flag
 la condizione non è più soddisfatta e il programma prosegue.
 
 Il problema con l'implementazione inaffidabile è che niente ci garantisce che
-il segnale arrivi fra la valutazione della condizione del \func{while} e la
+il segnale arrivi fra la valutazione della condizione del \code{while} e la
 chiamata a \func{pause}, nel qual caso, se il segnale non viene più generato,
 il processo resterà in sleep permanentemente.
 
@@ -135,41 +159,44 @@ il processo rester
 % sia \texttt{EINTR}.
 
 Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
-modalità semplice per ottenere una operazione di pausa atomica (cioè mandare
-in sleep un processo fino all'arrivo di un segnale).
+modalità semplice per ottenere una operazione di pausa (cioè mandare in sleep
+un processo fino all'arrivo di un segnale).
 
-Nella semantica \textit{reliable} (quella utilizzata da Linux e da ogni Unix
-moderno) invece il signal handler una volta installato resta attivo e non si
-hanno tutti i problemi precedenti. In questa semantica i segnali vengono
+Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
+moderno) il manipolatore una volta installato resta attivo e non si hanno
+tutti i problemi precedenti. In questa semantica i segnali vengono
 \textsl{generati} dal kernel per un processo all'occorrenza dell'evento che
-causa il segnale. In genere questo viene fatto dal kernel settando un flag
-nella process table del processo.
+causa il segnale. In genere questo viene fatto dal kernel settando l'apposito
+campo della \var{task\_struct} del processo nella process table (si veda
+\figref{fig:proc_task_struct}).
 
 Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
-esso è detto \textsl{pendente}. In genere questa procedura viene effettuata
-dal kernel quando, riprendendo l'esecuzione del processo in questione, verifica
-la presenza del flag del segnale nella process table.
+esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
+procedura viene effettuata dallo scheduler quando, riprendendo l'esecuzione
+del processo in questione, verifica la presenza del segnale nella
+\var{task\_struct} e mette in esecuzione il manipolatore.
 
 In questa semantica un processo ha la possibilità di bloccare la consegna dei
-segnali, in questo caso se l'azione per il suddetto segnale non è quella di
+segnali, in questo caso, se l'azione per il suddetto segnale non è quella di
 ignorarlo, il segnale resta \textsl{pendente} fintanto che il processo non lo
 sblocca (nel qual caso viene consegnato) o setta l'azione di default per
-ignorarlo. 
+ignorarlo.
 
-Si tenga presente kernel stabilisce cosa fare con un segnale che è stato
-bloccato al momento della consegna, non quando viene generato; questo consente
-di cambiare l'azione per il segnale prima che esso venga consegnato, e si può
-usare la funzione \func{sigpending} (vedi \secref{sec:sig_sigpending}) per
-determinare quali segnali sono bloccati e quali sono pendenti.
+Si tenga presente che il kernel stabilisce cosa fare con un segnale che è
+stato bloccato al momento della consegna, non quando viene generato; questo
+consente di cambiare l'azione per il segnale prima che esso venga consegnato,
+e si può usare la funzione \func{sigpending} (vedi
+\secref{sec:sig_sigpending}) per determinare quali segnali sono bloccati e
+quali sono pendenti.
 
 
 \subsection{Tipi di segnali}
 \label{sec:sig_types}
 
-In generale gli eventi che generano segnali si possono dividere in tre
-categorie principali: errori, eventi e richieste esplicite. 
+In generale gli eventi che generano segnali si possono dividere in tre
+categorie principali: errori, eventi esterni e richieste esplicite.
 
 Un errore significa che un programma ha fatto qualcosa di sbagliato e non può
 continuare ad essere eseguito. Non tutti gli errori causano dei segnali, in
@@ -187,19 +214,19 @@ Una richiesta esplicita significa l'uso di una chiamata di sistema (come
 viene fatta usualmente dalla shell quando l'utente invoca la sequenza di tasti
 di stop o di suspend, ma può essere pure inserita all'interno di un programma.
 
-Si dice poi che i segnali possono essere \textit{asincroni} o
-\textit{sincroni}. Un segnale sincrono è legato ad una azione specifica di un
-programma ed è inviato (a meno che non sia bloccato) durante tale azione;
-molti errori generano segnali sincroni, così come la richiesta esplicita da
-parte del processo tramite le chiamate al sistema. Alcuni errori come la
-divisione per zero non sono completamente sincroni e possono arrivare dopo
-qualche istruzione.
+Si dice poi che i segnali possono essere \textsl{asincroni} o
+\textsl{sincroni}. Un segnale \textsl{sincrono} è legato ad una azione
+specifica di un programma ed è inviato (a meno che non sia bloccato) durante
+tale azione; molti errori generano segnali \textsl{sincroni}, così come la
+richiesta esplicita da parte del processo tramite le chiamate al sistema.
+Alcuni errori come la divisione per zero non sono completamente sincroni e
+possono arrivare dopo qualche istruzione.
 
-I segnali asincroni sono generati da eventi fuori dal controllo del processo
-che li riceve e arrivano in tempi impredicibili nel corso dell'esecuzione del
-programma. Eventi esterni come la terminazione di un processo figlio generano
-segnali asincroni, così come le richieste di generazione di un segnale
-effettuate da altri processi.
+I segnali \textsl{asincroni} sono generati da eventi fuori dal controllo del
+processo che li riceve, e arrivano in tempi impredicibili nel corso
+dell'esecuzione del programma. Eventi esterni come la terminazione di un
+processo figlio generano segnali \textsl{asincroni}, così come le richieste di
+generazione di un segnale effettuate da altri processi.
 
 In generale un tipo di segnale o è sincrono o è asincrono, salvo il caso in
 cui esso sia generato attraverso una richiesta esplicita tramite chiamata al
@@ -207,150 +234,168 @@ sistema, nel qual caso qualunque tipo di segnale (quello scelto nella
 chiamata) può diventare sincrono o asincrono a seconda che sia generato
 internamente o esternamente al processo.
 
+
 \subsection{La notifica dei segnali}
 \label{sec:sig_notification}
 
-Quando un segnale viene generato il kernel prende nota del fatto; si dice così
-che diventa \textit{pending} (sospeso), e rimarrà tale fino al momento in cui
-verrà notificato al processo a cui deve essere inviato.
-
-Normalmente l'invio al processo che deve ricevere il segnale è immediato, a
-meno che il segnale in questione non sia stato bloccato (\textit{blocked}) nel
-qual caso l'invio non avviene ed il segnale resta sospeso indefinitamente. Una
-volta però che esso venga sbloccato il segnale sarà subito notificato.
-
-Una volta che il segnale viene notificato (che questo avvenga subito o dopo
-una attesa più o meno lunga) viene eseguita l'azione specificata per detto
+Come accennato quando un segnale viene generato, se la sua azione di default
+non è quella di essere ignorato, il kernel prende nota del fatto nella
+\var{task\_struct} del processo; si dice così che il segnale diventa
+\textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
+verrà notificato al processo (o verrà specificata come azione di default
+quella di ignorarlo).
+
+Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
+avviene non appena questo viene rimesso in esecuzione dallo scheduler che
+esegue l'azione specificata. Questo a meno che il segnale in questione non sia
+stato bloccato prima della notifica, nel qual caso l'invio non avviene ed il
+segnale resta \textsl{pendente} indefinitamente. Quando lo si sblocca il
+segnale \textsl{pendente} sarà subito notificato.
+
+Si ricordi però che se l'azione specificata per un segnale è quella di essere
+ignorato questo sarà scartato immediatamente al momento della sua generazione,
+e questo anche se in quel momento il segnale è bloccato (perché ciò che viene
+bloccata è la notifica). Per questo motivo un segnale, fintanto che viene
+ignorato, non sarà mai notificato, anche se è stato bloccato ed in seguito si
+è specificata una azione diversa (nel qual caso solo i segnali successivi alla
+nuova specificazione saranno notificati).
+
+Una volta che un segnale viene notificato (che questo avvenga subito o dopo
+una attesa più o meno lunga) viene eseguita l'azione specificata per il
 segnale. Per alcuni segnali (\macro{SIGKILL} e \macro{SIGSTOP}) questa azione
-è fissa e non può essere cambiata, ma per tutti gli altri il programma può
-specificare una scelta fra le tre seguenti:
+è fissa e non può essere cambiata, ma per tutti gli altri si può selezionare
+una  delle tre possibilità seguenti:
 
 \begin{itemize*}
 \item ignorare il segnale.
-\item catturare il segnale, ed utilizzare il manipolatore (\textit{signal
-    handler}) specificato.
+\item catturare il segnale, ed utilizzare il manipolatore specificato.
 \item accettare l'azione di default per quel segnale.
 \end{itemize*}
 
-Il programma può specificare queste scelte usano le due routine
-\func{signal} e \func{sigaction}; se si è installato un manipolatore sarà
-quest'ultimo a intercettare il segnale ed ad essere eseguito, e mentre viene
-eseguito (onde evitare race conditions) il segnale viene bloccato.
-
-Se l'azione specificata per un certo tipo di segnale è quella di ignorarlo
-questo sarà scartato immediatamente ogni volta che verrà generato, e questo
-avverrà anche se in quel momento il segnale è bloccato. Per questo un segnale
-ignorato non sarà mai notificato, anche se in seguito si sarà specificata una
-diversa azione per lo stesso segnale.
+Un programma può specificare queste scelte usando le due funzioni
+\func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
+\secref{sec:sig_sigaction}); se si è installato un manipolatore sarà
+quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
+fa si che mentre viene eseguito il manipolatore di un segnale, questo ultimo
+venga automaticamente bloccato (così si possono evitare race condition).
 
-Se arriva un segnale per il quale non è stato specificata un'azione viene
-utilizzata l'azione standard. Questa è diversa da segnale a segnale (come
-vedremo in \secref{sec:sig_standard}) ma per la maggior parte essa comporta la
-terminazione del processo, per alcuni che invece rappresentano eventi innocui
-l'azione standard è di non fare nulla.
+Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
+standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
+segnale; nella maggior parte dei casi essa porta alla terminazione del
+processo, ma alcuni segnali che rappresentano eventi innocui vengono ignorati.
 
 Quando un segnale termina un processo, il padre può determinare la causa della
 terminazione esaminando il codice di stato riportato delle funzioni
-\func{wait} e \func{waitpid} in cui è riportato anche se la causa è un
-segnale e nel caso quale; questo è il modo in cui la shell determina i motivi
-della terminazione di un programma e scrive un eventuale messaggio di errore.
+\func{wait} e \func{waitpid} (vedi \secref{sec:proc_wait}); questo è il modo
+in cui la shell determina i motivi della terminazione di un programma e scrive
+un eventuale messaggio di errore.
 
 I segnali che rappresentano errori del programma (divisione per zero o
-violazioni di accesso) hanno anche la caratteristica di scrivere un file
-\textit{core dump} che registra lo stato del processo prima della terminazione
-e può essere esaminato da un debugger per investigare sulla causa dell'errore.
-Lo stesso avviene se i suddetti segnale vengono generati artificialmente con
-una \func{kill}.
+violazioni di accesso) hanno anche la caratteristica di scrivere un file di
+\textit{core dump} che registra lo stato del processo (ed in particolare della
+memoria e dello stack) prima della terminazione.  Questo può essere esaminato
+in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
+avviene se i suddetti segnale vengono generati con una \func{kill}.
 
 
 
-\section{I segnali standard}
+\section{La classificazione dei segnali}
+\label{sec:sig_classification}
+
+Esamineremo in questa sezione quali sono i vari segnali definiti nel sistema,
+le loro caratteristiche e tipologia, le varie macro e costanti che permettono
+di identificarli, e le funzioni che ne stampano la descrizione.
+
+
+\subsection{I segnali standard}
 \label{sec:sig_standard}
 
-Esaminiamo ora i vari segnali disponibili e le loro caratteristiche. 
 Ciascun segnale è identificato rispetto al sistema da un numero, ma l'uso
 diretto di questo numero da parte dei programmi è da evitare, in quanto esso
-può variare a seconda dell'implementazione del sistema.
-
-Per questo ad ogni tipo di segnale viene associato un nome, che corrisponde,
-tramite una macro di preprocessore, al suddetto numero. Sono questi nomi, che
-sono standardizzati e uniformi rispetto alle varie implementazioni, che si
-devono usare nei programmi. Tutti i nomi e le funzioni che concernono i
-segnali sono definiti nell'header di sistema \file{signal.h}.
+può variare a seconda dell'implementazione del sistema, e nel caso si Linux,
+anche a seconda dell'architettura hardware. 
 
-Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
-che i numeri dei segnali sono allocati progressivamente, essa corrisponde
-anche al successivo del valore numerico assegnato all'ultimo segnale definito.
-In \ntab\ si è riportato l'elenco completo dei segnali definiti in Linux
-(estratto dalle man page), comparati con quelli definiti in vari standard.
 \begin{table}[htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|l|c|c|c||c|p{6cm}|}
+  \begin{tabular}[c]{|l|c|c|p{8cm}|}
     \hline
-    Segnale  & POSIX.1 & SUSv2 & Linux  &Azione &  Descrizione \\
+    \textbf{Segnale}&\textbf{Standard}&\textbf{Azione}&\textbf{Descrizione} \\
     \hline
     \hline
-    SIGHUP   &$\bullet$&&$\bullet$&  A  & Hangup  o
-    fine del processo di controllo  \\
-    SIGINT   &$\bullet$&&$\bullet$&  A  & Interrupt da tastiera (\cmd{C-c})\\
-    SIGQUIT  &$\bullet$&&$\bullet$&  C  & Quit da tastiera (\cmd{C-y}) \\
-    SIGILL   &$\bullet$&&$\bullet$&  C  & Istruzione illegale\\
-    SIGABRT  &$\bullet$&&$\bullet$&  C  & Segnale di Abort da \func{abort} \\
-    SIGFPE   &$\bullet$&&$\bullet$&  C  & Errore aritmetico\\
-    SIGKILL  &$\bullet$&&$\bullet$& AEF & Segnale di terminazione forzata \\
-    SIGSEGV  &$\bullet$&&$\bullet$&  C  & Errore di accesso in memoria\\
-    SIGPIPE  &$\bullet$&&$\bullet$&  A  & Pipe spezzata\\
-    SIGALRM  &$\bullet$&&$\bullet$&  A  & Segnale del timer da \func{alarm} \\
-    SIGTERM  &$\bullet$&&$\bullet$&  A  & Segnale di terminazione \verb|C-\|\\
-    SIGUSR1  &$\bullet$&&$\bullet$&  A  & User-defined signal 1\\
-    SIGUSR2  &$\bullet$&&$\bullet$&  A  & User-defined signal 2\\
-    SIGCHLD  &$\bullet$&&$\bullet$&  B  & Child stopped or terminated\\
-    SIGCONT  &$\bullet$&&$\bullet$&     & Continue if stopped\\
-    SIGSTOP  &$\bullet$&&$\bullet$& DEF & Stop process\\
-    SIGTSTP  &$\bullet$&&$\bullet$&  D  & Stop typed at tty \\
-    SIGTTIN  &$\bullet$&&$\bullet$&  D  & tty input for background process \\
-    SIGTTOU  &$\bullet$&&$\bullet$&  D  & tty output for background process \\
-    SIGBUS   &&$\bullet$&$\bullet$& C & Bus error (bad memory access) \\
-    SIGPOLL  &&$\bullet$&$\bullet$& A & Pollable event (Sys V). Synonym of SIGIO\\
-    SIGPROF   &&$\bullet$&$\bullet$& A & Profiling timer expired \\
-    SIGSYS    &&$\bullet$&$\bullet$& C & Bad argument to routine (SVID)\\
-    SIGTRAP   &&$\bullet$&$\bullet$& C & Trace/breakpoint trap \\
-    SIGURG    &&$\bullet$&$\bullet$& B & Urgent condition on socket (4.2 BSD)\\
-    SIGVTALRM &&$\bullet$&$\bullet$& A & Virtual alarm clock (4.2 BSD) \\
-    SIGXCPU   &&$\bullet$&$\bullet$& C & CPU time limit exceeded (4.2 BSD)  \\
-    SIGXFSZ   &&$\bullet$&$\bullet$& C & File size limit exceeded (4.2 BSD)\\
-    SIGIOT    &&&$\bullet$& C &     IOT trap. A synonym for SIGABRT        \\
-    SIGEMT    &&&$\bullet$&   &                                            \\
-    SIGSTKFLT &&&$\bullet$& A &     Stack fault on coprocessor             \\
-    SIGIO     &&&$\bullet$& A &     I/O now possible (4.2 BSD)             \\
-    SIGCLD    &&&$\bullet$&   &     A synonym for SIGCHLD                  \\
-    SIGPWR    &&&$\bullet$& A &     Power failure (System V)               \\
-    SIGINFO   &&&$\bullet$&   &     A synonym for SIGPWR                   \\
-    SIGLOST   &&&$\bullet$& A &     File lock lost                         \\
-    SIGWINCH  &&&$\bullet$& B &     Window resize signal (4.3 BSD, Sun)    \\
-    SIGUNUSED &&&$\bullet$& A &     Unused signal (will be SIGSYS)         \\
+    \macro{SIGHUP}   &PL & A & Hangup o fine del processo di controllo      \\
+    \macro{SIGINT}   &PL & A & Interrupt da tastiera (\cmd{C-c})            \\
+    \macro{SIGQUIT}  &PL & C & Quit da tastiera (\cmd{C-y})                 \\
+    \macro{SIGILL}   &PL & C & Istruzione illegale                          \\
+    \macro{SIGABRT}  &PL & C & Segnale di abort da \func{abort}             \\
+    \macro{SIGFPE}   &PL & C & Errore aritmetico                            \\
+    \macro{SIGKILL}  &PL &AEF& Segnale di terminazione forzata              \\
+    \macro{SIGSEGV}  &PL & C & Errore di accesso in memoria                 \\
+    \macro{SIGPIPE}  &PL & A & Pipe spezzata                                \\
+    \macro{SIGALRM}  &PL & A & Segnale del timer da \func{alarm}             \\
+    \macro{SIGTERM}  &PL & A & Segnale di terminazione \verb|C-\|            \\
+    \macro{SIGUSR1}  &PL & A & Segnale utente numero 1                       \\
+    \macro{SIGUSR2}  &PL & A & Segnale utente numero 2                       \\
+    \macro{SIGCHLD}  &PL & B & Figlio terminato o fermato                    \\
+    \macro{SIGCONT}  &PL &   & Continua se fermato                           \\
+    \macro{SIGSTOP}  &PL &DEF& Ferma il processo                             \\
+    \macro{SIGTSTP}  &PL & D & Stop typed at tty                             \\
+    \macro{SIGTTIN}  &PL & D & Input sul terminale per un processo 
+                               in background                                 \\
+    \macro{SIGTTOU}  &PL & D & Output sul terminale per un processo          
+                               in background                                 \\
+    \macro{SIGBUS}   &SL & C & Errore sul bus (bad memory access)            \\
+    \macro{SIGPOLL}  &SL & A & Pollable event (Sys V).                      
+                               Sinonimo di \macro{SIGIO}                     \\
+    \macro{SIGPROF}  &SL & A & Timer del profiling scaduto                   \\
+    \macro{SIGSYS}   &SL & C & Bad argument to routine (SVID)                \\
+    \macro{SIGTRAP}  &SL & C & Trace/breakpoint trap                         \\
+    \macro{SIGURG}   &SLB& B & Urgent condition on socket                    \\
+    \macro{SIGVTALRM}&SLB& A & Virtual alarm clock                           \\
+    \macro{SIGXCPU}  &SLB& C & Ecceduto il limite sul CPU time               \\
+    \macro{SIGXFSZ}  &SLB& C & Ecceduto il limite sulla dimensione dei file  \\
+    \macro{SIGIOT}   &L  & C & IOT trap. A synonym for \macro{SIGABRT}       \\
+    \macro{SIGEMT}   &L  &   &                                               \\
+    \macro{SIGSTKFLT}&L  & A & Stack fault on coprocessor                    \\
+    \macro{SIGIO}    &LB & A & I/O now possible (4.2 BSD)                    \\
+    \macro{SIGCLD}   &L  &   & A synonym for \macro{SIGCHLD}                 \\
+    \macro{SIGPWR}   &L  & A & Fallimento dell'alimentazione                 \\
+    \macro{SIGINFO}  &L  &   & A synonym for \macro{SIGPWR}                  \\
+    \macro{SIGLOST}  &L  & A & Perso un lock sul file (per NFS)              \\
+    \macro{SIGWINCH} &LB & B & Window resize signal (4.3 BSD, Sun)           \\
+    \macro{SIGUNUSED}&L  & A & Unused signal (will be SIGSYS)                \\
     \hline
   \end{tabular}
-  \caption{Lista dei segnali in Linux}
+  \caption{Lista dei segnali in Linux.}
   \label{tab:sig_signal_list}
 \end{table}
-in \curtab\ si sono riportate le azioni di default di ciascun segnale
-(riassunte con delle lettere, la cui legenda completa è in \ntab), quando
-nessun manipolatore è installato un segnale può essere ignorato o causare la
-terminazione del processo.
 
-In alcuni casi alla terminazione del processo è associata la creazione di un
-file (posto nella directory corrente del processo e chiamato \file{core}) su
-cui viene salvata un'immagine della memoria del processo (il cosiddetto
-\textit{core dump}), che può essere usata da un debugger per esaminare lo
-stato dello stack e delle variabili al momento della ricezione del segnale.
+Per questo motivo ad ogni segnale viene associato un nome, definendo con una
+macro di preprocessore una costante uguale al suddetto numero. Sono questi
+nomi, che sono standardizzati e sostanzialmente uniformi rispetto alle varie
+implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
+che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
+
+Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
+che i numeri dei segnali sono allocati progressivamente, essa corrisponde
+anche al successivo del valore numerico assegnato all'ultimo segnale definito.
+In \tabref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
+definiti in Linux (estratto dalle man page), comparati con quelli definiti in
+vari standard.
+
+In \tabref{tab:sig_signal_list} si sono anche riportate le azioni di default
+di ciascun segnale (riassunte con delle lettere, la cui legenda completa è in
+\tabref{tab:sig_action_leg}), quando nessun manipolatore è installato un
+segnale può essere ignorato o causare la terminazione del processo. Nella
+colonna standard sono stati indicati anche gli standard in cui ciascun segnale
+è definito, secondo lo schema di \tabref{tab:sig_standard_leg}.
 
 \begin{table}[htb]
+  \footnotesize
   \centering
   \begin{tabular}[c]{|c|p{8cm}|}
     \hline
-    Sigla & Significato \\
+    \textbf{Sigla} & \textbf{Significato} \\
     \hline
     \hline
     A & L'azione di default è terminare il processo. \\
@@ -362,11 +407,36 @@ stato dello stack e delle variabili al momento della ricezione del segnale.
     F & Il segnale non può essere ignorato.\\
     \hline
   \end{tabular}
-  \caption{Legenda delle caratteristiche dei segnali riportate in 
-    \tabref{tab:sig_signal_list}. }
+  \caption{Legenda delle azioni di default dei segnali riportate in 
+    \tabref{tab:sig_signal_list}.}
   \label{tab:sig_action_leg}
 \end{table}
 
+In alcuni casi alla terminazione del processo è associata la creazione di un
+file (posto nella directory corrente del processo e chiamato \file{core}) su
+cui viene salvata un'immagine della memoria del processo (il cosiddetto
+\textit{core dump}), che può essere usata da un debugger per esaminare lo
+stato dello stack e delle variabili al momento della ricezione del segnale.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Sigla} & \textbf{Standard} \\
+    \hline
+    \hline
+    P & POSIX. \\
+    B & BSD. \\
+    L & Linux.\\
+    S & SUSv2.\\
+    \hline
+  \end{tabular}
+  \caption{Legenda dei valori della colonna \textbf{Standard} di 
+    \tabref{tab:sig_signal_list}.}
+  \label{tab:sig_standard_leg}
+\end{table}
+
 La descrizione dettagliata del significato dei vari segnali, raggruppati per
 tipologia, verrà affrontate nel seguito.
 
@@ -406,7 +476,7 @@ Questi segnali sono:
 %   molte diverse eccezioni che \texttt{SIGFPE} non distingue, mentre lo
 %   standard IEEE per le operazioni in virgola mobile definisce varie eccezioni
 %   aritmetiche e richiede che esse siano notificate.  
-
+  
 \item[\macro{SIGILL}] Il nome deriva da \textit{illegal instruction},
   significa che il programma sta cercando di eseguire una istruzione
   privilegiata o inesistente, in generale del codice illegale. Poiché il
@@ -415,8 +485,8 @@ Questi segnali sono:
   Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
   posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
   una variabile locale, andando a corrompere lo stack. Lo stesso segnale viene
-  generato in caso di overflow dello stack o di problemi nell'esecuzione di di
-  un signal handler.
+  generato in caso di overflow dello stack o di problemi nell'esecuzione di un
+  manipolatore.
 \item[\macro{SIGSEGV}] Il nome deriva da \textit{segment violation}, e
   significa che il programma sta cercando di leggere o scrivere in una zona di
   memoria protetta al di fuori di quella che gli è stata riservata dal
@@ -655,93 +725,610 @@ classificabili in maniera omogenea. Questi segnali sono:
 \subsection{Le funzioni \func{strsignal} e \func{psignal}}
 \label{sec:sig_strsignal}
 
-Per la descrizione dei segnali il sistema mette a disposizione due funzioni
-che stampano un messaggio di descrizione dato il numero. In genere si usano
-quando si vuole notificare all'utente il segnale avvenuto (nel caso di
-terminazione di un processo figlio o di un manipolatore che gestisce più
-segnali); la prima funzione è una estensione GNU ed è analoga alla funzione
-\func{strerr} per gli errori:
-\begin{prototype}{string.h}{char * strsignal (int signum)} 
-  Ritorna il puntatore ad una stringa allocata staticamente che contiene la
-  descrizione del segnale \var{signum}. 
+Per la descrizione dei segnali il sistema mette a disposizione due funzioni,
+\func{strsignal} e \func{psignal}, che stampano un messaggio di descrizione
+dato il numero. In genere si usano quando si vuole notificare all'utente il
+segnale avvenuto (nel caso di terminazione di un processo figlio o di un
+manipolatore che gestisce più segnali); la prima funzione è una estensione
+GNU, accessibile avendo definito \macro{\_GNU\_SOURCE}, ed è analoga alla
+funzione \func{strerror} (si veda \secref{sec:sys_strerror}) per gli errori:
+\begin{prototype}{string.h}{char *strsignal(int signum)} 
+  Ritorna il puntatore ad una stringa che contiene la descrizione del segnale
+  \var{signum}.
 \end{prototype}
-
-Dato che la stringa è allocata staticamente non se ne deve modificare il
-contenuto, che resta valido solo fino alla successiva chiamata di
-\func{strsignal}; nel caso si debba mantenere traccia del messaggio sarà
+\noindent dato che la stringa è allocata staticamente non se ne deve
+modificare il contenuto, che resta valido solo fino alla successiva chiamata
+di \func{strsignal}. Nel caso si debba mantenere traccia del messaggio sarà
 necessario copiarlo.
 
 La seconda funzione deriva da BSD ed è analoga alla funzione \func{perror}
-descritta in \secref{sec:sys_strerror}.
+descritta in \secref{sec:sys_strerror}; il suo prototipo è:
+\begin{prototype}{signal.h}{void psignal(int sig, const char *s)} 
+  Stampa sullo standard error un messaggio costituito dalla stringa \param{s},
+  seguita da due punti ed una descrizione del segnale indicato da \param{sig}.
+\end{prototype}
+
+Una modalità alternativa per utilizzare le descrizioni restituite da
+\func{strsignal} e \func{psignal} è quello di fare usare la variabile
+\var{sys\_siglist}, che è definita in \file{signal.h} e può essere acceduta
+con la dichiarazione:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    extern const char *const sys_siglist[]
+\end{lstlisting}
+l'array \var{sys\_siglist} contiene i puntatori alle stringhe di descrizione,
+indicizzate per numero di segnale, per cui una chiamata del tipo di \code{char
+  *decr = strsignal(SIGINT)} può essere sostituita dall'equivalente \code{char
+  *decr = sys\_siglist[SIGINT]}.
+
 
 
 \section{La gestione dei segnali}
-\label{sec:sig_handlers}
+\label{sec:sig_management}
+
+I segnali sono il primo e più classico esempio di eventi asincroni, cioè di
+eventi che possono accadere in un qualunque momento durante l'esecuzione di un
+programma. Per questa loro caratteristica la loro gestione non può essere
+effettuata all'interno del normale flusso di esecuzione dello stesso, ma è
+delegata appunto agli eventuali manipolatori che si sono installati.
+
+In questa sezione vedremo come si effettua gestione dei segnali, a partire
+dalla loro interazione con le system call, passando per le varie funzioni che
+permettono di installare i manipolatori e controllare le reazioni di un
+processo alla loro occorrenza.
+
+
+\subsection{Il comportamento generale del sistema.}
+\label{sec:sig_gen_beha}
+
+Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
+gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
+comportamento delle system call; in particolare due di esse, \func{fork} ed
+\func{exec}, dovranno essere prese esplicitamente in considerazione, data la
+loro stretta relazione con la creazione di nuovi processi.
+
+Come accennato in \secref{sec:proc_fork} quando viene creato un nuovo processo
+con \func{fork} esso eredita dal padre sia le azioni che sono state settate
+per i singoli segnali, che la maschera dei segnali bloccati (tratteremo
+quest'ultimo argomento in \ref{sec:sig_sigpending}). Invece tutti i segnali
+pendenti e gli allarmi vengono cancellati; essi infatti devono essere
+recapitati solo al padre, al figlio dovranno arrivare solo i segnali dovuti
+alle sue azioni.
+
+Quando si mette in esecuzione un nuovo programma con \func{exec} (si ricordi
+quanto detto in \secref{sec:prog_exec}) tutti i segnali per i quali è stato
+installato un manipolatore vengono resettati a \macro{SIG\_DFL}. Non ha più
+senso infatti fare riferimento a funzioni definite nel programma originario,
+che non sono nemmeno presenti nello spazio di indirizzi del nuovo programma.
+
+Si noti che questo vale solo per le azioni per le quali è stato installato un
+manipolatore; viene mantenuto invece ogni eventuale settaggio dell'azione a
+\macro{SIG\_IGN}. Questo permette ad esempio alla shell di settare ad
+\macro{SIG\_IGN} le risposte per \macro{SIGINT} e \macro{SIGQUIT} per i
+programmi eseguiti in background, che altrimenti sarebbero interrotti da una
+successiva pressione di \texttt{C-c} o \texttt{C-y}.
+
+Per quanto riguarda tutte le altre system call esse vengono tradizionalmente
+classificate, proprio in base al loro comportamento nei confronti dei segnali,
+in \textsl{lente} (\textit{slow}) e \textsl{veloci} (\textit{fast}). La gran
+parte appartiene a quest'ultima categoria che non è influenzata dall'arrivo di
+un segnale. In tal caso un eventuale manipolatore viene sempre eseguito dopo
+che la system call è stata completata. Esse sono dette \textsl{veloci} proprio
+in quanto la loro esecuzione è sostanzialmente immediata e attendere per
+eseguire un manipolatore non comporta nessun inconveniente.
+
+Esistono però dei casi in cui questo non è possibile perché renderebbe
+impossibile una risposta pronta al segnale. In generale questo avviene tutte
+le volte che si ha a che fare con system call che possono bloccarsi
+indefinitamente, che per questo vengono chiamate \textsl{lente}. Un elenco
+dei casi in cui si presenta questa situazione è il seguente:
+\begin{itemize*}
+\item lettura da file che possono bloccarsi in attesa di dati non ancora
+  presenti (come per certi file di dispositivo, la rete o le pipe).
+\item scrittura sugli stessi file, nel caso in cui dati non possano essere
+  accettati immediatamente.
+\item apertura di un file di dispositivo che richiede operazioni non immediate
+  per una una risposta. 
+\item operazioni eseguite con \func{ioctl} che non è detto possano essere
+  eseguite immediatamente.
+\item le funzioni di intercomunicazione che si bloccano in attesa di risposte
+  da altri processi.
+\item la funzione \func{pause} (usata appunto per attendere l'-arrivo di un
+  segnale).
+\item la funzione \func{wait} (se nessun processo figlio è ancora terminato).
+\end{itemize*}
 
-I segnali sono il primo e più classico esempio di eventi asincroni, che
-possono accadere in un qualunque momento durante l'esecuzione di un programma.
-Non essendo sotto il controllo del programma la gestione dei segnali non potrà
-essere controllata all'interno del flusso di esecuzione di quest'ultimo, ma
-tutto quello che si potrà fare è di specificare (al kernel, che li genera)
-quale azione andrà intrapresa quando essi si verificano.
+In questo caso si pone il problema di cosa fare una volta che il manipolatore
+sia ritornato. La scelta originaria dei primi Unix era quella di far ritornare
+anche la system call restituendo l'errore di \macro{EINTR}. Questa è a
+tutt'oggi una scelta corrente, ma comporta che i programmi che usano dei
+manipolatori controllino lo stato di uscita delle funzioni per ripeterne la
+chiamata qualora l'errore fosse questo.
 
-In questa sezione vedremo allora come si gestiscono i segnali, esaminando le
-funzioni che si usano per effettuare la gestione dei segnali ed analizzando le
-problematiche relative alla gestione di eventi asincroni di questo tipo.
+Dimenticarsi di richiamare una system call interrotta da un segnale è un
+errore comune, tanto che le \acr{glibc} provvedono una macro
+\code{TEMP\_FAILURE\_RETRY(expr)} che esegue l'operazione automaticamente,
+ripetendo l'esecuzione dell'espressione \var{expr} fintanto che il risultato
+non è diverso dall'uscita con un errore \macro{EINTR}.
+
+La soluzione è comunque poco elegante e BSD ha scelto un approccio molto
+diverso, che è quello di fare ripartire automaticamente la system call invece
+di farla fallire. In questo caso ovviamente non c'è da preoccuparsi di
+controllare il codice di errore; si perde però la possibilità di eseguire
+azioni specifiche all'occorrenza di questa particolare condizione. 
+
+Linux e le \acr{glibc} consentono di utilizzare entrambi gli approcci,
+attraverso una opportuna opzione di \func{sigaction} (vedi
+\secref{sec:sig_sigaction}). È da chiarire comunque che nel caso di
+interruzione nel mezzo di un trasferimento parziale di dati, le system call
+ritornano sempre indicando i byte trasferiti.
 
 
 \subsection{La funzione \func{signal}}
 \label{sec:sig_signal}
 
-L'interfaccia più semplice alla manipolazione dei segnali è costituita dalla
-funzione \func{signal}; questa funzione è definita fin dallo standard ANSI C
-che però non considera sistemi multitasking, per cui la sua definizione in
-tale standard è tanto vaga da essere del tutto inutile in un sistema unix, per
-questo ogni implementazione successiva ne ha modificato e ridefinito il
+L'interfaccia più semplice per la gestione dei segnali è costituita dalla
+funzione \func{signal} che è definita fin dallo standard ANSI C.  Quest'ultimo
+però non considera sistemi multitasking, per cui la definizione è tanto vaga
+da essere del tutto inutile in un sistema Unix; è questo il motivo per cui
+ogni implementazione successiva ne ha modificato e ridefinito il
 comportamento, pur mantenendone immutato il prototipo\footnote{in realtà
   alcune vecchie implementazioni (SVR4 e 4.3+BSD) usano parametri aggiuntivi
-  per definire il comportamento della funzione} che è:
+  per definire il comportamento della funzione.} che è:
 \begin{prototype}{signal.h}
   {sighandler\_t signal(int signum, sighandler\_t handler)} 
   
-  Installa una nuova funzione di gestione (manipolatore) per il segnale
-  \param{signum}, usando il manipolatore \param{handler}.
+  Installa la funzione di gestione \param{handler} (il manipolatore) per il
+  segnale \param{signum}.
   
   \bodydesc{La funzione ritorna il precedente manipolatore in caso di successo
     o \macro{SIG\_ERR} in caso di errore.}
 \end{prototype}
 
 In questa definizione si è usato il tipo \type{sighandler\_t} che è una
-estensione GNU definita in Linux che permette di riscrivere il prototipo in
-forma più leggibile dell'originario \func{void (*signal(int signum, void
-  (*handler)(int)))int)}, e che è sostanzialmente equivalente alla
-definizione:
+estensione GNU, definita dalle \acr{glibc}, che permette di riscrivere il
+prototipo in una forma più leggibile dell'originario:
+\begin{verbatim}
+void (*signal(int signum, void (*handler)(int)))int)
+\end{verbatim}
+questa infatti, per la poca chiarezza della sintassi del C quando si vanno a
+trattare puntatori a funzioni, è molto meno comprensibile.  Da un confronto
+con il precedente prototipo si può dedurre la definizione di
+\type{sighandler\_t} che è:
 \begin{verbatim}
     typedef void (* sighandler_t)(int) 
 \end{verbatim}
-cioè un puntatore ad una funzione di tipo \type{void} con un parametro di tipo
-\type{int}\footnote{si devono usare le parentesi intorno al nome della
-  funzione per via delle precedenze degli operatori del C, senza di esse si
-  sarebbe definita una funzione che ritorna un puntatore a \type{void} e non
-  un puntatore ad una funzione \type{void}}.
-
-Il numero di segnale passato in \param{signum} segnale può essere indicato
-direttamente con una delle costanti definite in \secref{sec:sig_standard}, il
+e cioè un puntatore ad una funzione \type{void} (cioè senza valore di ritorno)
+e che prende un argomento di tipo \type{int}.\footnote{si devono usare le
+  parentesi intorno al nome della funzione per via delle precedenze degli
+  operatori del C, senza di esse si sarebbe definita una funzione che ritorna
+  un puntatore a \type{void} e non un puntatore ad una funzione \type{void}.}
+La funzione \func{signal} quindi restituisce e prende come secondo argomento
+un puntatore a una funzione di questo tipo, che è appunto il manipolatore del
+segnale.
+
+Il numero di segnale passato in \param{signum} può essere indicato
+direttamente con una delle costanti definite in \secref{sec:sig_standard}. Il
 manipolatore \param{handler} invece, oltre all'indirizzo della funzione da
-chiamare all'occorrenza del segnale, può assumere anche i valori costanti
+chiamare all'occorrenza del segnale, può assumere anche i due valori costanti
 \macro{SIG\_IGN} con cui si dice ignorare il segnale e \macro{SIG\_DFL} per
-installare l'azione di di default (si ricordi però che i due segnali
-\macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
-intercettati).
+installare l'azione di di default.\footnote{si ricordi però che i due segnali
+  \macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
+  intercettati.}
+
+La funzione restituisce l'indirizzo dell'azione precedente, che può essere
+salvato per poterlo ripristinare (con un'altra chiamata a \func{signal}) in un
+secondo tempo. Si ricordi che se si setta come azione \macro{SIG\_IGN} (o si
+setta un \macro{SIG\_DFL} per un segnale il cui default è di essere ignorato),
+tutti i segnali pendenti saranno scartati, e non verranno mai notificati.
+
+L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
+si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
+questi ultimi infatti la funzione è conforme al comportamento originale dei
+primi Unix in cui il manipolatore viene disinstallato alla sua chiamata
+secondo la semantica inaffidabile; Linux seguiva questa convenzione fino alle
+\acr{libc5}. Al contrario BSD segue la semantica affidabile, non resettando il
+manipolatore e bloccando il segnale durante l'esecuzione dello stesso. Con
+l'utilizzo delle \acr{glibc2} anche Linux è passato a questo comportamento;
+quello della versione originale della funzione, il cui uso è deprecato per i
+motivi visti in \secref{sec:sig_semantics}, può essere ottenuto chiamando
+\func{sysv\_signal}.  In generale, per evitare questi problemi, tutti i nuovi
+programmi dovrebbero usare \func{sigaction}.
+
+È da tenere presente che, seguendo lo standard POSIX, il comportamento di un
+processo che ignora i segnali \macro{SIGFPE}, \macro{SIGILL}, o
+\macro{SIGSEGV} (qualora non originino da una \func{kill} o una \func{raise})
+è indefinito. Un manipolatore che ritorna da questi segnali può dare luogo ad
+un ciclo infinito.
+
+
+\subsection{Le funzioni \func{kill} e \func{raise}}
+\label{sec:sig_kill_raise}
+
+Come accennato in \secref{sec:sig_types}, un segnale può essere generato
+direttamente da un processo. L'invio di un segnale generico può essere
+effettuato attraverso delle funzioni \func{kill} e \func{raise}. La prima
+serve per inviare un segnale al processo corrente, ed il suo prototipo è:
+\begin{prototype}{signal.h}{int raise(int sig)}
+  Invia il segnale \param{sig} al processo corrente.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, il solo errore restituito è \macro{EINVAL} qualora si sia
+    specificato un numero di segnale invalido.}
+\end{prototype}
 
+Il valore di \param{sig} specifica il segnale che si vuole inviare e può
+essere specificato con una delle macro definite in
+\secref{sec:sig_classification}.  In genere questa funzione viene usata per
+riprodurre il comportamento di default di un segnale che sia stato
+intercettato. In questo caso, una volta eseguite le operazioni volute, il
+manipolatore potrà reinstallare l'azione di default, e attivarla con
+\func{raise}.
+
+Se invece si vuole inviare un segnale ad un altro processo occorre utilizzare
+la funzione \func{kill}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h}
+  \headdecl{signal.h}
+  \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
+  processo specificato con \param{pid}.
+
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido.
+  \item[\macro{EPERM}] Il processo non ha il permesso di inviare il segnale
+  alla destinazione specificata.
+  \item[\macro{ESRCH}] Il \acr{pid} o il process group indicati non
+  esistono. Gli zombie (vedi \ref{sec:proc_termination}) sono considerati come
+  processi esistenti.
+  \end{errlist}}
+\end{functions}
+
+La funzione \code{raise(sig)} è sostanzialmente equivalente ad una
+\code{kill(getpid(), sig)}. Siccome \func{raise} è definita nello standard ISO
+C non esiste in alcune vecchie versioni di Unix, per cui in generale l'uso di
+\func{kill} è più portabile.
+
+Lo standard POSIX poi prevede che il valore 0 sia usato per specificare il
+segnale nullo.  Se le funzioni vengono chiamate con questo valore non viene
+inviato nessun segnale, ma viene eseguito il controllo degli errori, in tal
+caso si otterrà un errore \macro{EPERM} se non si hanno i permessi necessari
+ed un errore \macro{ESRCH} se il processo specificato non esiste. Si tenga
+conto però che il sistema ricicla i \acr{pid} (come accennato in
+\secref{sec:proc_pid}) per cui l'esistenza di un processo non significa che
+esso sia realmente quello a cui si intendeva mandare il segnale.
+
+Il valore dell'argomento \param{pid} specifica la destinazione a cui inviare
+il segnale e può assumere i seguenti significati:
+\begin{basedescript}{\desclabelwidth{2cm}\desclabelstyle{\nextlinelabel}}
+\item[$\texttt{pid}>0$] il segnale è mandato al processo con il \acr{pid}
+  indicato.
+\item[$\texttt{pid}=0$] il segnale è mandato ad ogni processo del
+  \textit{process group} del chiamante.
+\item[$\texttt{pid}=-1$] il segnale è mandato ad ogni processo (eccetto
+  \cmd{init}).
+\item[$\texttt{pid}<-1$] il segnale è mandato ad ogni processo del process
+  group $|\code{pid}|$.
+\end{basedescript}
+
+Solo l'amministratore può inviare un segnale ad un processo qualunque, in
+tutti gli altri casi il \textit{real user id} o l'\textit{effective user id}
+del processo chiamante devono corrispondere al \textit{real user id} o al
+\textit{saved user id} della destinazione. Fa eccezione il caso in cui il
+segnale inviato sia \macro{SIGCONT}, nel quale occorre che entrambi i processi
+appartengano alla stessa sessione. Inoltre, dato il ruolo fondamentale che
+riveste nel sistema (si ricordi quanto visto in \secref{sec:sig_termination}),
+non è possibile inviare al processo 1 (cioè a \cmd{init}) segnali per i quali
+esso non abbia un manipolatore installato.
+
+Infine, seguendo le specifiche POSIX 1003.1-2001, l'uso della chiamata
+\code{kill(-1, sig)} comporta che il segnale sia inviato (con la solita
+eccezione di \cmd{init}) a tutti i processi per i quali i permessi lo
+consentano. Lo standard permette comunque alle varie implementazione di
+escludere alcuni processi specifici: nel caso in questione Linux non invia il
+segnale al processo che ha effettuato la chiamata.
+
+
+\subsection{Le funzioni \func{alarm} e \func{abort}}
+\label{sec:sig_alarm_abort}
+
+Un caso particolare di segnali generati a richiesta è quello che riguarda i
+segnali di temporizzazione e e \macro{SIGABORT}, per i quali sono previste
+funzioni specifiche che ne effettuino l'invio. La prima di queste è
+\func{alarm} il cui prototipo è:
+\begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
+  Predispone l'invio di \macro{SIGALARM} dopo \param{seconds} secondi.
+  
+  \bodydesc{La funzione restituisce il numero di secondi rimanenti ad un
+    precedente allarme, o zero se non c'erano allarmi pendenti.}
+\end{prototype}
+
+La funzione provvede un meccanismo che consente ad un processo di predisporre
+un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
+dopo un certo periodo di tempo), programmando l'emissione si un segnale di
+\macro{SIGALARM} dopo il numero di secondi specificato da \param{seconds}.
+
+Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
+segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
+questo può essere usato per cancellare una programmazione precedente. La
+funzione inoltre ritorna il numero di secondi rimanenti all'invio dell'allarme
+precedentemente programmato, in modo che sia eventualmente possibile
+effettuare delle scelte in caso di necessità di più interruzioni.
+
+In \secref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
+associati tre tempi diversi: \textit{clock time}, \textit{user time} e
+\textit{system time}.  Per poterli calcolare il kernel mantiene tre diversi
+timer per ciascun processo:
+\begin{itemize}
+\item un \textit{real-time timer} che calcola il tempo reale trascorso (che
+  corrisponde al \textit{clock time}). La scadenza di questo timer provoca
+  l'emissione di \macro{SIGALARM}.
+\item un \textit{virtual timer} che calcola il tempo di processore usato dal
+  processo in user space (che corrisponde all'\textit{user time}). La scadenza
+  di questo timer provoca l'emissione di \macro{SIGVTALRM}.
+\item un \textit{profiling timer} che calcola la somma dei tempi di processore
+  utilizzati direttamente dal processo in user space, e dal kernel nelle
+  system call ad esso relative (che corrisponde a quello che in
+  \secref{sec:sys_unix_time} abbiamo chiamato \textit{CPU time}). La scadenza
+  di questo timer provoca l'emissione di \macro{SIGPROF}.
+\end{itemize}
+
+Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
+tempo reale. La funzione, pur essendo molto semplice, presenta numerosi
+limiti: non consente di usare gli altri timer, non può specificare intervalli
+con precisione maggiore del secondo e genera il segnale una sola volta.
+
+Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
+che permette di usare un timer qualunque e l'invio di segnali periodici, al
+costo però di una maggiore complessità d'uso e di una minore portabilità. Il
+suo prototipo è:
+\begin{prototype}{sys/time.h}{int setitimer(int which, const struct
+    itimerval *value, struct itimerval *ovalue)} 
+  
+  Predispone l'invio di un segnale di allarme alla scadenza dell'intervallo
+  \param{value} sul timer specificato da \func{which}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori \macro{EINVAL} e
+    \macro{EFAULT}.}
+\end{prototype}
+
+Il valore di \param{which} permette di specificare quale dei tre timer
+illustrati in precedenza usare; i possibili valori sono riportati in
+\tabref{tab:sig_setitimer_values}.
+\begin{table}[htb]
+  \centering
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Timer} \\
+    \hline
+    \hline
+    \macro{ITIMER\_REAL}    & \textit{real-time timer}\\
+    \macro{ITIMER\_VIRTUAL} & \textit{virtual timer}\\
+    \macro{ITIMER\_PROF}    & \textit{profiling timer}\\
+    \hline
+  \end{tabular}
+  \caption{Valori dell'argomento \param{which} per la funzione
+    \func{setitimer}.}
+  \label{tab:sig_setitimer_values}
+\end{table}
+
+Il valore della struttura specificata \param{value} viene usato per settare il
+timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
+salvato qui. I valori dei timer devono essere indicati attraverso una
+struttura \var{itimerval}, definita in \ref{fig:file_stat_struct}.
+
+La struttura è composta da due membri, il primo, \var{it\_interval} definisce
+il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
+scadenza. Entrambi esprimono i tempi tramite una struttura \var{timeval} che
+permette una precisione fino al microsecondo.
+
+Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
+il segnale e resetta \var{it\_value} al valore di \var{it\_interval},
+ripetendo il ciclo; se \var{it\_interval} è nullo il timer si ferma.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct itimerval {
+    struct timeval it_interval; /* next value */
+    struct timeval it_value;    /* current value */
+};
+struct timeval {
+    long tv_sec;                /* seconds */
+    long tv_usec;               /* microseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{itimerval}, che definisce i valori dei timer di
+    sistema.} 
+  \label{fig:sig_itimerval}
+\end{figure}
+
+L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
+caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
+definita direttamente nello standard POSIX.1, può a sua volta essere espressa
+in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
+\cite[glibc] che ne riporta la definizione in \figref{fig:sig_alarm_def}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+unsigned int alarm(unsigned int seconds)
+{
+    struct itimerval old, new;
+    new.it_interval.tv_usec = 0;
+    new.it_interval.tv_sec = 0;
+    new.it_value.tv_usec = 0;
+    new.it_value.tv_sec = (long int) seconds;
+    if (setitimer(ITIMER_REAL, &new, &old) < 0)
+        return 0;
+    else
+        return old.it_value.tv_sec;
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Definizione di \func{alarm} in termini di \func{setitimer}.} 
+  \label{fig:sig_alarm_def}
+\end{figure}
+
+Si deve comunque tenere presente che la precisione di queste funzioni è
+limitata da quella del timer di sistema (in genere 10~ms). Il sistema assicura
+comunque che il segnale non sarà mai generato prima della scadenza programmata
+(l'arrotondamento cioè è sempre effettuato per eccesso). Una seconda causa di
+potenziali ritardi è che il segnale viene generato alla scadenza del timer,
+ma poi deve essere consegnato; se il processo è attivo (questo è sempre vero
+per \macro{ITIMER\_VIRT}) la consegna è immediata, altrimenti può esserci un
+ulteriore ritardo che può variare a seconda del carico del sistema.
+
+Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
+valore corrente di un timer senza modificarlo, è possibile usare la funzione
+\func{getitimer}, il cui prototipo è:
+\begin{prototype}{sys/time.h}{int getitimer(int which, struct
+    itimerval *value)}
+  
+  Legge in \param{value} il valore del timer specificato da \func{which}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore e restituisce gli stessi errori di \func{getitimer}}
+\end{prototype}
+\noindent i cui parametri hanno lo stesso significato e formato di quelli di
+\func{setitimer}. 
+
+
+L'ultima funzione che permette l'invio diretto di un segnale è \func{abort};
+che, come accennato in \ref{sec:proc_termination}, permette di abortire
+l'esecuzione di un programma tramite l'invio di \macro{SIGABRT}. Il suo
+prototipo è:
+\begin{prototype}{stdlib.h}{void abort(void)}
+  
+  Abortisce il processo corrente.
+  
+  \bodydesc{La funzione non ritorna, il processo è terminato inviando il
+  segnale di \macro{SIGABRT}.}
+\end{prototype}
+
+La differenza fra questa funzione e l'uso di \func{raise} è che anche se il
+segnale è bloccato o ignorato, la funzione ha effetto lo stesso. Il segnale
+può però essere intercettato per effettuare eventuali operazioni di chiusura
+prima della terminazione del processo.
+
+Lo standard ANSI C richiede inoltre che anche se il manipolatore ritorna, la
+funzione non ritorni comunque. Lo standard POSIX.1 va oltre e richiede che se
+il processo non viene terminato direttamente dal manipolatore sia la stessa
+\func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
+standard POSIX, prima della terminazione tutti i file aperti e gli stream
+saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
+funzioni registrate con \func{at\_exit} e \func{on\_exit}.
+
+
+\subsection{Le funzioni \func{pause} e \func{sleep}}
+\label{sec:sig_pause_sleep}
+
+Il metodo tradizionale per fare attendere ad un processo fino all'arrivo di un
+segnale è quello di usare la funzione \func{pause}, il cui prototipo è:
+\begin{prototype}{unistd.h}{int pause(void)}
+  
+  Pone il processo in stato di sleep fino al ritorno di un manipolatore.
+  
+  \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
+  il relativo manipolatore è ritornato, nel qual caso restituisce -1 e setta
+  \var{errno} a \macro{EINTR}.}
+\end{prototype}
+
+La funzione segnala sempre una condizione di errore (il successo sarebbe
+quello di aspettare indefinitamente). In genere si usa questa funzione quando
+si vuole mettere un processo in attesa di un qualche evento specifico che non
+è sotto il suo diretto controllo (ad esempio la si può usare per far reagire
+il processo ad un segnale inviato da un altro processo).
+
+
+Se invece si vuole fare attendere un processo per un determinato intervallo di
+tempo lo standard POSIX.1 definisce la funzione \func{sleep}, il cui prototipo
+è:
+\begin{prototype}{unistd.h}{unsigned int sleep(unsigned int seconds)}
+  
+  Pone il processo in stato di sleep per \param{seconds} secondi.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o il
+  numero di secondi restanti se viene interrotta da un segnale.}
+\end{prototype}
+
+La funzione attende per il tempo specificato, a meno di non essere interrotta
+da un segnale. In questo caso non è una buona idea ripetere la chiamata per il
+tempo rimanente, in quanto la riattivazione del processo può avvenire in un
+qualunque momento, ma il valore restituito sarà sempre arrotondato al secondo,
+con la conseguenza che, se la successione dei segnali è particolarmente
+sfortunata, si potranno avere ritardi anche di parecchi secondi. In genere la
+scelta più sicura è quella di stabilire un termine per l'attesa, e ricalcolare
+tutte le volte il numero di secondi da aspettare.
+
+In alcune implementazioni inoltre l'uso di \func{sleep} può avere conflitti
+con quello di \macro{SIGALRM}, dato che la funzione può essere realizzata
+attraverso \func{pause} e \func{alarm} (in maniera analoga all'esempio che
+vedremo fra poco). In tal caso mescolare chiamata di \func{alarm} e
+\func{sleep} o modificare l'azione di \macro{SIGALRM}, può causare risultati
+indefiniti. Nel caso delle \acr{glibc} è stata usata una implementazione
+completamente indipendente e questi problemi non ci sono.
+
+La granularità di \func{sleep} è 
+
+
+
+Come accennato è possibile implementare \func{sleep} a partire da dall'uso di
+\func{pause} e \func{alarm}; 
 
-\subsection{Funzioni rientranti e default dei segnali}
-\label{sec:sig_reentrant}
 
+\subsection{La gestione di \macro{SIGCHLD}}
+\label{sec:sig_sigchld}
 
+Un semplice esempio per illustrare il funzionamento di un manipolatore di
+segnale è quello della gestione di \macro{SIGCHLD}.  Abbiamo visto in
+\secref{sec:proc_termination} che una delle azioni eseguite dal kernel alla
+conclusione di un processo è quella di inviare questo segnale al
+padre;\footnote{in realtà in SRV4 eredita la semantica di System V, in cui il
+  segnale si chiama \macro{SIGCLD} e viene trattato in maniera speciale; se si
+  setta esplicitamente l'azione a \macro{SIG_IGN} il segnale non viene
+  generato ed il sistema non genera zombie (lo stato di terminazione viene
+  scartato senza dover chiamare una wait), l'azione di default è sempre quella
+  di ignorare il segnale, ma non attiva questo comportamento. Linux, come BSD
+  e POSIX, non supporta questa semantica ed usa il nome di \macro{SIGCLD} come
+  sinonimo di \macro{SIGCHLD}.} è pertanto naturale completare qui la
+trattazione della terminazione dei processi illustrando le modalità per
+gestire questo segnale.
 
 
 
-\subsection{La funzione \func{sigpending}}
+\section{Gestione avanzata}
+\label{sec:sig_control}
+
+
+
+
+\subsection{Le funzioni \func{sigprocmask} e \func{sigpending}}
 \label{sec:sig_sigpending}
 
+
+
+\subsection{La funzione \func{sigaction}}
+\label{sec:sig_sigaction}
+
+
+
+\subsection{Funzioni rientranti e default dei segnali}
+\label{sec:sig_reentrant}
+
+
+, affrontando inoltre le varie problematiche di programmazione che si devono
+tenere presenti quando si ha a che fare con essi.
+
+
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: