Lavoro fatto a casa senza ADSL, correzioni multiple agli indici, documentato
[gapil.git] / signal.tex
index 4643eafdef097cdd9153137da192768c3a317ada..aa47a4dc18514364b4fc05abe80f633cf14761f4 100644 (file)
@@ -60,7 +60,7 @@ il seguente:
   \code{C-z};\footnote{indichiamo con \code{C-x} la pressione simultanea al
     tasto \code{x} del tasto control (ctrl in molte tastiere).}
 \item l'esecuzione di una \func{kill} o di una \func{raise} da parte del
-  processo stesso o di un'altro (solo nel caso della \func{kill}).
+  processo stesso o di un altro (solo nel caso della \func{kill}).
 \end{itemize*}
 
 Ciascuno di questi eventi (compresi gli ultimi due che pure sono controllati
@@ -116,7 +116,7 @@ verr
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
 semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo gestore non sono operazioni atomiche, e
-sono sempre possibili delle race condition\index{\textit{race~condition}}
+sono sempre possibili delle \textit{race condition}\itindex{race~condition}
 (sull'argomento vedi quanto detto in sez.~\ref{sec:proc_multi_prog}).
 
 Un altro problema è che in questa semantica non esiste un modo per bloccare i
@@ -125,18 +125,18 @@ segnale, ma non 
 di un segnale, pur mantenendo memoria del fatto che è avvenuto.
 
 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
-moderno) il gestore una volta installato resta attivo e non si hanno
-tutti i problemi precedenti. In questa semantica i segnali vengono
-\textsl{generati} dal kernel per un processo all'occorrenza dell'evento che
-causa il segnale. In genere questo viene fatto dal kernel impostando l'apposito
-campo della \struct{task\_struct} del processo nella process table (si veda
-fig.~\ref{fig:proc_task_struct}).
+moderno) il gestore una volta installato resta attivo e non si hanno tutti i
+problemi precedenti. In questa semantica i segnali vengono \textsl{generati}
+dal kernel per un processo all'occorrenza dell'evento che causa il segnale. In
+genere questo viene fatto dal kernel impostando l'apposito campo della
+\struct{task\_struct} del processo nella \itindex{process~table}
+\textit{process table} (si veda fig.~\ref{fig:proc_task_struct}).
 
 Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
 esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
-procedura viene effettuata dallo scheduler\index{\textit{scheduler}} quando,
+procedura viene effettuata dallo scheduler\itindex{scheduler} quando,
 riprendendo l'esecuzione del processo in questione, verifica la presenza del
 segnale nella \struct{task\_struct} e mette in esecuzione il gestore.
 
@@ -209,9 +209,9 @@ ignorarlo).
 
 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
 avviene non appena questo viene rimesso in esecuzione dallo
-scheduler\index{\textit{scheduler}} che esegue l'azione specificata. Questo a
-meno che il segnale in questione non sia stato bloccato prima della notifica,
-nel qual caso l'invio non avviene ed il segnale resta \textsl{pendente}
+scheduler\itindex{scheduler} che esegue l'azione specificata. Questo a meno
+che il segnale in questione non sia stato bloccato prima della notifica, nel
+qual caso l'invio non avviene ed il segnale resta \textsl{pendente}
 indefinitamente. Quando lo si sblocca il segnale \textsl{pendente} sarà subito
 notificato. Si tenga presente però che i segnali \textsl{pendenti} non si
 accodano, alla generazione infatti il kernel marca un flag nella
@@ -241,11 +241,11 @@ una  delle tre possibilit
 
 Un programma può specificare queste scelte usando le due funzioni
 \func{signal} e \func{sigaction} (vedi sez.~\ref{sec:sig_signal} e
-sez.~\ref{sec:sig_sigaction}). Se si è installato un gestore sarà
-quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
-farà si che mentre viene eseguito il gestore di un segnale, quest'ultimo
-venga automaticamente bloccato (così si possono evitare race
-condition\index{\textit{race~condition}}).
+sez.~\ref{sec:sig_sigaction}). Se si è installato un gestore sarà quest'ultimo
+ad essere eseguito alla notifica del segnale.  Inoltre il sistema farà si che
+mentre viene eseguito il gestore di un segnale, quest'ultimo venga
+automaticamente bloccato (così si possono evitare \textit{race
+  condition}\itindex{race~condition}).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
 standard che (come vedremo in sez.~\ref{sec:sig_standard}) è propria di ciascun
@@ -260,10 +260,11 @@ un eventuale messaggio di errore.
 
 I segnali che rappresentano errori del programma (divisione per zero o
 violazioni di accesso) hanno anche la caratteristica di scrivere un file di
-\textit{core dump} che registra lo stato del processo (ed in particolare della
-memoria e dello stack) prima della terminazione.  Questo può essere esaminato
-in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
-avviene se i suddetti segnali vengono generati con una \func{kill}.
+\itindex{core~dump}\textit{core dump} che registra lo stato del processo (ed
+in particolare della memoria e dello \itindex{stack} stack) prima della
+terminazione.  Questo può essere esaminato in seguito con un debugger per
+investigare sulla causa dell'errore.  Lo stesso avviene se i suddetti segnali
+vengono generati con una \func{kill}.
 
 
 \section{La classificazione dei segnali}
@@ -279,7 +280,7 @@ di identificarli, e le funzioni che ne stampano la descrizione.
 
 Ciascun segnale è identificato rispetto al sistema da un numero, ma l'uso
 diretto di questo numero da parte dei programmi è da evitare, in quanto esso
-può variare a seconda dell'implementazione del sistema, e nel caso si Linux,
+può variare a seconda dell'implementazione del sistema, e nel caso di Linux,
 anche a seconda dell'architettura hardware. 
 Per questo motivo ad ogni segnale viene associato un nome, definendo con una
 macro di preprocessore una costante uguale al suddetto numero. Sono questi
@@ -346,8 +347,9 @@ colonna standard sono stati indicati anche gli standard in cui ciascun segnale
 In alcuni casi alla terminazione del processo è associata la creazione di un
 file (posto nella directory corrente del processo e chiamato \file{core}) su
 cui viene salvata un'immagine della memoria del processo (il cosiddetto
-\textit{core dump}), che può essere usata da un debugger per esaminare lo
-stato dello stack e delle variabili al momento della ricezione del segnale.
+\itindex{core~dump}\textit{core dump}), che può essere usata da un debugger
+per esaminare lo stato dello \itindex{stack} stack e delle variabili al
+momento della ricezione del segnale.
 
 \begin{table}[htb]
   \footnotesize
@@ -415,11 +417,11 @@ tipologia, verr
 \label{sec:sig_prog_error}
 
 Questi segnali sono generati quando il sistema, o in certi casi direttamente
-l'hardware (come per i \textit{page fault} non validi) rileva un qualche
-errore insanabile nel programma in esecuzione. In generale la generazione di
-questi segnali significa che il programma ha dei gravi problemi (ad esempio ha
-dereferenziato un puntatore non valido o ha eseguito una operazione aritmetica
-proibita) e l'esecuzione non può essere proseguita.
+l'hardware (come per i \itindex{page~fault}\textit{page fault} non validi)
+rileva un qualche errore insanabile nel programma in esecuzione. In generale
+la generazione di questi segnali significa che il programma ha dei gravi
+problemi (ad esempio ha dereferenziato un puntatore non valido o ha eseguito
+una operazione aritmetica proibita) e l'esecuzione non può essere proseguita.
 
 In genere si intercettano questi segnali per permettere al programma di
 terminare in maniera pulita, ad esempio per ripristinare le impostazioni della
@@ -431,10 +433,10 @@ gestore non ci fosse stato.
 
 L'azione predefinita per tutti questi segnali è causare la terminazione del
 processo che li ha causati. In genere oltre a questo il segnale provoca pure
-la registrazione su disco di un file di \textit{core dump} che viene scritto
-in un file \file{core} nella directory corrente del processo al momento
-dell'errore, che il debugger può usare per ricostruire lo stato del programma
-al momento della terminazione.  Questi segnali sono:
+la registrazione su disco di un file di \itindex{core~dump}\textit{core dump}
+che viene scritto in un file \file{core} nella directory corrente del processo
+al momento dell'errore, che il debugger può usare per ricostruire lo stato del
+programma al momento della terminazione.  Questi segnali sono:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\const{SIGFPE}] Riporta un errore aritmetico fatale. Benché il nome
   derivi da \textit{floating point exception} si applica a tutti gli errori
@@ -446,6 +448,7 @@ al momento della terminazione.  Questi segnali sono:
 %   molte diverse eccezioni che \texttt{SIGFPE} non distingue, mentre lo
 %   standard IEEE per le operazioni in virgola mobile definisce varie eccezioni
 %   aritmetiche e richiede che esse siano notificate.  
+% TODO trovare altre info su SIGFPE e trattare la notifica delle eccezioni 
   
 \item[\const{SIGILL}] Il nome deriva da \textit{illegal instruction},
   significa che il programma sta cercando di eseguire una istruzione
@@ -454,10 +457,10 @@ al momento della terminazione.  Questi segnali sono:
   file eseguibile è corrotto o si stanno cercando di eseguire dei dati.
   Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
   posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
-  una variabile locale, andando a corrompere lo stack. Lo stesso segnale viene
-  generato in caso di overflow dello stack o di problemi nell'esecuzione di un
-  gestore. Se il gestore ritorna il comportamento del processo è
-  indefinito.
+  una variabile locale, andando a corrompere lo \itindex{stack} stack. Lo
+  stesso segnale viene generato in caso di overflow dello \itindex{stack}
+  stack o di problemi nell'esecuzione di un gestore. Se il gestore ritorna il
+  comportamento del processo è indefinito.
 \item[\const{SIGSEGV}] Il nome deriva da \textit{segment violation}, e
   significa che il programma sta cercando di leggere o scrivere in una zona di
   memoria protetta al di fuori di quella che gli è stata riservata dal
@@ -471,9 +474,9 @@ al momento della terminazione.  Questi segnali sono:
   \const{SIGSEGV} questo è un segnale che viene generato di solito quando si
   dereferenzia un puntatore non inizializzato, la differenza è che
   \const{SIGSEGV} indica un accesso non permesso su un indirizzo esistente
-  (tipo fuori dallo heap o dallo stack), mentre \const{SIGBUS} indica
-  l'accesso ad un indirizzo non valido, come nel caso di un puntatore non
-  allineato.
+  (tipo fuori dallo heap o dallo \itindex{stack} stack), mentre \const{SIGBUS}
+  indica l'accesso ad un indirizzo non valido, come nel caso di un puntatore
+  non allineato.
 \item[\const{SIGABRT}] Il nome deriva da \textit{abort}. Il segnale indica che
   il programma stesso ha rilevato un errore che viene riportato chiamando la
   funzione \func{abort} che genera questo segnale.
@@ -512,10 +515,11 @@ segnali sono:
   interruzione per il programma. È quello che viene generato di default dal
   comando \cmd{kill} o dall'invio sul terminale del carattere di controllo
   INTR (interrupt, generato dalla sequenza \cmd{C-c}).
-\item[\const{SIGQUIT}] È analogo a \const{SIGINT} con la differenze che è
-  controllato da un'altro carattere di controllo, QUIT, corrispondente alla
+\item[\const{SIGQUIT}] È analogo a \const{SIGINT} con la differenza che è
+  controllato da un altro carattere di controllo, QUIT, corrispondente alla
   sequenza \verb|C-\|. A differenza del precedente l'azione predefinita, oltre
-  alla terminazione del processo, comporta anche la creazione di un core dump.
+  alla terminazione del processo, comporta anche la creazione di un
+  \itindex{core~dump}\textit{core dump}.
 
   In genere lo si può pensare come corrispondente ad una condizione di
   errore del programma rilevata dall'utente. Per questo motivo non è opportuno
@@ -653,7 +657,7 @@ processo, questi segnali sono:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\const{SIGPIPE}] Sta per \textit{Broken pipe}. Se si usano delle pipe,
   (o delle FIFO o dei socket) è necessario, prima che un processo inizi a
-  scrivere su una di esse, che un'altro l'abbia aperta in lettura (si veda
+  scrivere su una di esse, che un altro l'abbia aperta in lettura (si veda
   sez.~\ref{sec:ipc_pipes}). Se il processo in lettura non è partito o è
   terminato inavvertitamente alla scrittura sulla pipe il kernel genera questo
   segnale. Se il segnale è bloccato, intercettato o ignorato la chiamata che
@@ -890,9 +894,9 @@ Il numero di segnale passato in \param{signum} pu
 direttamente con una delle costanti definite in sez.~\ref{sec:sig_standard}. Il
 gestore \param{handler} invece, oltre all'indirizzo della funzione da chiamare
 all'occorrenza del segnale, può assumere anche i due valori costanti
-\const{SIG\_IGN} con cui si dice ignorare il segnale e \const{SIG\_DFL} per
+\const{SIG\_IGN} con cui si dice di ignorare il segnale e \const{SIG\_DFL} per
 reinstallare l'azione predefinita.\footnote{si ricordi però che i due segnali
-  \const{SIGKILL} e \const{SIGSTOP} non possono essere ignorati né
+  \const{SIGKILL} e \const{SIGSTOP} non possono essere né ignorati né
   intercettati; l'uso di \const{SIG\_IGN} per questi segnali non ha alcun
   effetto.}
 
@@ -947,7 +951,7 @@ suo prototipo 
 \begin{prototype}{signal.h}{int raise(int sig)}
   Invia il segnale \param{sig} al processo corrente.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, il solo errore restituito è \errval{EINVAL} qualora si sia
     specificato un numero di segnale invalido.}
 \end{prototype}
@@ -970,7 +974,7 @@ prototipo 
   \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
   processo specificato con \param{pid}.
   
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore nel qual caso \var{errno} assumerà uno dei valori:
     \begin{errlist}
     \item[\errcode{EINVAL}] Il segnale specificato non esiste.
@@ -1004,12 +1008,14 @@ Una seconda funzione che pu
 \code{kill(-pidgrp, signal)}; il suo prototipo è:
 \begin{prototype}{signal.h}{int killpg(pid\_t pidgrp, int signal)} 
   
-  Invia il segnale \param{signal} al process group \param{pidgrp}.
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  Invia il segnale \param{signal} al \itindex{process~group} \textit{process
+    group} \param{pidgrp}.
+
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore, gli errori sono gli stessi di \func{kill}.}
 \end{prototype}
-\noindent e permette di inviare un segnale a tutto un \textit{process group}
-(vedi sez.~\ref{sec:sess_proc_group}).
+\noindent e permette di inviare un segnale a tutto un \itindex{process~group}
+\textit{process group} (vedi sez.~\ref{sec:sess_proc_group}).
 
 \begin{table}[htb]
   \footnotesize
@@ -1020,11 +1026,11 @@ Una seconda funzione che pu
     \hline
     \hline
     $>0$ & il segnale è mandato al processo con il \acr{pid} indicato.\\
-    0    & il segnale è mandato ad ogni processo del \textit{process group}
-    del chiamante.\\ 
+    0    & il segnale è mandato ad ogni processo del \itindex{process~group}
+           \textit{process group} del chiamante.\\ 
     $-1$ & il segnale è mandato ad ogni processo (eccetto \cmd{init}).\\
-    $<-1$ & il segnale è mandato ad ogni processo del process group 
-    $|\code{pid}|$.\\
+    $<-1$ & il segnale è mandato ad ogni processo del \textit{process group} 
+            \itindex{process~group} $|\code{pid}|$.\\
     \hline
   \end{tabular}
   \caption{Valori dell'argomento \param{pid} per la funzione
@@ -1076,10 +1082,9 @@ segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
 questo può essere usato per cancellare una programmazione precedente. 
 
 La funzione inoltre ritorna il numero di secondi rimanenti all'invio
-dell'allarme precedentemente programmato, in modo che sia possibile
-controllare se non si cancella un precedente allarme ed eventualmente
-predisporre le opportune misure per gestire il caso di necessità di più
-interruzioni.
+dell'allarme programmato in precedenza. In questo modo è possibile controllare
+se non si è cancellato un precedente allarme e predisporre eventuali misure
+che permettano di gestire il caso in cui servono più interruzioni.
 
 In sez.~\ref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
 associati tre tempi diversi: il \textit{clock time}, l'\textit{user time} ed
@@ -1113,9 +1118,9 @@ suo prototipo 
     itimerval *value, struct itimerval *ovalue)} 
   
   Predispone l'invio di un segnale di allarme alla scadenza dell'intervallo
-  \param{value} sul timer specificato da \func{which}.
+  \param{value} sul timer specificato da \param{which}.
   
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore, nel qual caso \var{errno} assumerà uno dei valori \errval{EINVAL} o
     \errval{EFAULT}.}
 \end{prototype}
@@ -1209,9 +1214,9 @@ valore corrente di un timer senza modificarlo, 
 \begin{prototype}{sys/time.h}{int getitimer(int which, struct
     itimerval *value)}
   
-  Legge in \param{value} il valore del timer specificato da \func{which}.
+  Legge in \param{value} il valore del timer specificato da \param{which}.
   
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore e restituisce gli stessi errori di \func{getitimer}}
 \end{prototype}
 \noindent i cui argomenti hanno lo stesso significato e formato di quelli di
@@ -1241,7 +1246,7 @@ il processo non viene terminato direttamente dal gestore sia la stessa
 \func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
 standard POSIX, prima della terminazione tutti i file aperti e gli stream
 saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
-eventuali funzioni registrate con \func{at\_exit} e \func{on\_exit}.
+eventuali funzioni registrate con \func{atexit} e \func{on\_exit}.
 
 
 \subsection{Le funzioni di pausa e attesa}
@@ -1263,7 +1268,7 @@ segnale 
   Pone il processo in stato di sleep fino al ritorno di un gestore.
   
   \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
-    il relativo gestore è ritornato, nel qual caso restituisce -1 e
+    il relativo gestore è ritornato, nel qual caso restituisce $-1$ e
     \var{errno} assumerà il valore \errval{EINTR}.}
 \end{prototype}
 
@@ -1313,8 +1318,8 @@ seguono quella di SUSv2 che prevede il seguente prototipo:
   
   Pone il processo in stato di sleep per \param{usec} microsecondi.
   
-  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
-    caso di errore, nel qual caso \var{errno} assumerà il valore
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o $-1$
+    in caso di errore, nel qual caso \var{errno} assumerà il valore
     \errval{EINTR}.}
 
 \end{prototype}
@@ -1329,8 +1334,8 @@ POSIX1.b, il cui prototipo 
   Pone il processo in stato di sleep per il tempo specificato da \param{req}.
   In caso di interruzione restituisce il tempo restante in \param{rem}.
   
-  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
-    caso di errore, nel qual caso \var{errno} assumerà uno dei valori: 
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o $-1$
+    in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
     \begin{errlist}
     \item[\errcode{EINVAL}] si è specificato un numero di secondi negativo o un
       numero di nanosecondi maggiore di 999.999.999.
@@ -1355,15 +1360,14 @@ Chiaramente, anche se il tempo pu
 nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
 temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
 specificato, ma prima che il processo possa tornare ad essere eseguito
-occorrerà almeno attendere il successivo giro di
-scheduler\index{\textit{scheduler}} e cioè un tempo che a seconda dei casi può
-arrivare fino a 1/\const{HZ}, (sempre che il sistema sia scarico ed il
-processa venga immediatamente rimesso in esecuzione); per questo motivo il
-valore restituito in \param{rem} è sempre arrotondato al multiplo successivo
-di 1/\const{HZ}.
+occorrerà almeno attendere il successivo giro di scheduler\itindex{scheduler}
+e cioè un tempo che a seconda dei casi può arrivare fino a 1/\const{HZ},
+(sempre che il sistema sia scarico ed il processa venga immediatamente rimesso
+in esecuzione); per questo motivo il valore restituito in \param{rem} è sempre
+arrotondato al multiplo successivo di 1/\const{HZ}.
 
 In realtà è possibile ottenere anche pause più precise del centesimo di
-secondo usando politiche di scheduling real time come \const{SCHED\_FIFO} o
+secondo usando politiche di scheduling real-time come \const{SCHED\_FIFO} o
 \const{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
 viene evitato, e si raggiungono pause fino ai 2~ms con precisioni del $\mu$s.
 
@@ -1398,12 +1402,6 @@ di sez.~\ref{sec:proc_termination}, invocando \cmd{forktest} con l'opzione
 gestore di \const{SIGCHLD}) potremo verificare che non si ha più la creazione
 di zombie\index{zombie}.
 
-%  è pertanto
-% naturale usare un esempio che ci permette di concludere la trattazione della
-% terminazione dei processi.
-% In questo caso si è tratterà di illustrare un esempio relativo ad un
-% gestore per che è previsto ritornare,
-
 \begin{figure}[!htb]
   \footnotesize  \centering
   \begin{minipage}[c]{15cm}
@@ -1411,7 +1409,7 @@ di zombie\index{zombie}.
   \end{minipage}
   \normalsize 
   \caption{Codice di una funzione generica di gestione per il segnale
-    \texttt{SIGCHLD}.}  
+    \texttt{SIGCHLD}.}
   \label{fig:sig_sigchld_handl}
 \end{figure}
 
@@ -1421,7 +1419,7 @@ comincia (\texttt{\small 6--7}) con il salvare lo stato corrente di
 \var{errno}, in modo da poterlo ripristinare prima del ritorno del gestore
 (\texttt{\small 16--17}). In questo modo si preserva il valore della variabile
 visto dal corso di esecuzione principale del processo, che altrimenti sarebbe
-sovrascritto dal valore restituito nella successiva chiamata di \func{wait}.
+sovrascritto dal valore restituito nella successiva chiamata di \func{waitpid}.
 
 Il compito principale del gestore è quello di ricevere lo stato di
 terminazione del processo, cosa che viene eseguita nel ciclo in
@@ -1437,7 +1435,7 @@ Questo pu
 che molti processi figli terminino in rapida successione. Esso inoltre si
 presenta tutte le volte che un segnale viene bloccato: per quanti siano i
 segnali emessi durante il periodo di blocco, una volta che quest'ultimo sarà
-rimosso sarà recapitato un solo segnale.
+rimosso verrà recapitato un solo segnale.
 
 Allora, nel caso della terminazione dei processi figli, se si chiamasse
 \func{waitpid} una sola volta, essa leggerebbe lo stato di terminazione per un
@@ -1458,8 +1456,8 @@ tutti gli stati di terminazione sono stati ricevuti.
 
 Le funzioni esaminate finora fanno riferimento alle modalità più elementari
 della gestione dei segnali; non si sono pertanto ancora prese in
-considerazione le tematiche più complesse, collegate alle varie race
-condition\index{\textit{race~condition}} che i segnali possono generare e alla
+considerazione le tematiche più complesse, collegate alle varie \textit{race
+  condition}\itindex{race~condition} che i segnali possono generare e alla
 natura asincrona degli stessi.
 
 Affronteremo queste problematiche in questa sezione, partendo da un esempio
@@ -1501,14 +1499,13 @@ l'interruzione di \func{pause} venisse causata da un altro segnale.
 
 Questo codice però, a parte il non gestire il caso in cui si è avuta una
 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
-presenta una pericolosa race condition\index{\textit{race~condition}}.
-Infatti se il processo viene interrotto fra la chiamata di \func{alarm} e
-\func{pause} può capitare (ad esempio se il sistema è molto carico) che il
+presenta una pericolosa \textit{race condition}\itindex{race~condition}.
+Infatti, se il processo viene interrotto fra la chiamata di \func{alarm} e
+\func{pause}, può capitare (ad esempio se il sistema è molto carico) che il
 tempo di attesa scada prima dell'esecuzione di quest'ultima, cosicché essa
 sarebbe eseguita dopo l'arrivo di \const{SIGALRM}. In questo caso ci si
-troverebbe di fronte ad un deadlock\index{\textit{deadlock}}, in quanto
-\func{pause} non verrebbe mai più interrotta (se non in caso di un altro
-segnale).
+troverebbe di fronte ad un deadlock\itindex{deadlock}, in quanto \func{pause}
+non verrebbe mai più interrotta (se non in caso di un altro segnale).
 
 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
 SVr2) usando la funzione \func{longjmp} (vedi sez.~\ref{sec:proc_longjmp}) per
@@ -1565,10 +1562,11 @@ segnale, e prendere le relative azioni conseguenti (\texttt{\small 6-11}).
 
 Questo è il tipico esempio di caso, già citato in
 sez.~\ref{sec:proc_race_cond}, in cui si genera una
-\index{\textit{race~condition}}race condition; se infatti il segnale arriva
-immediatamente dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima
-della cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà
-perduta.
+\itindex{race~condition}\textit{race condition}; infatti, in una situazione in
+cui un segnale è già arrivato (e \var{flag} è già ad 1) se un altro segnale
+segnale arriva immediatamente dopo l'esecuzione del controllo (\texttt{\small
+  6}) ma prima della cancellazione del flag (\texttt{\small 7}), la sua
+occorrenza sarà perduta.
 
 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
 funzioni più sofisticate di quelle illustrate finora, che hanno origine dalla
@@ -1581,7 +1579,8 @@ reagire alla ricezione di un segnale.
 \subsection{Gli \textsl{insiemi di segnali} o \textit{signal set}}
 \label{sec:sig_sigset}
 
-\index{\textit{signal~set}|(} 
+\itindbeg{signal~set} 
+
 Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
 originarie, nate con la semantica inaffidabile, hanno dei limiti non
 superabili; in particolare non è prevista nessuna funzione che permetta di
@@ -1624,7 +1623,7 @@ segnali: \funcd{sigemptyset}, \funcd{sigfillset}, \funcd{sigaddset},
   
   \bodydesc{Le prime quattro funzioni ritornano 0 in caso di successo, mentre
     \func{sigismember} ritorna 1 se \param{signum} è in \param{set} e 0
-    altrimenti. In caso di errore tutte ritornano -1, con \var{errno}
+    altrimenti. In caso di errore tutte ritornano $-1$, con \var{errno}
     impostata a \errval{EINVAL} (il solo errore possibile è che \param{signum}
     non sia un segnale valido).}
 \end{functions}
@@ -1643,8 +1642,8 @@ ottenuto con \func{sigemptyset} o togliendo quelli che non servono da un
 insieme completo ottenuto con \func{sigfillset}. Infine \func{sigismember}
 permette di verificare la presenza di uno specifico segnale in un
 insieme.
-\index{\textit{signal~set}|)}
 
+\itindend{signal~set} 
 
 
 \subsection{La funzione \func{sigaction}}
@@ -1664,7 +1663,7 @@ da un processo. Il suo prototipo 
   
   Installa una nuova azione per il segnale \param{signum}.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, nel qual caso \var{errno} assumerà i valori:
   \begin{errlist}
   \item[\errcode{EINVAL}] Si è specificato un numero di segnale invalido o si è
@@ -1754,8 +1753,8 @@ in tab.~\ref{tab:sig_sa_flag}.
     \const{SA\_SIGINFO}  & Deve essere specificato quando si vuole usare un
                            gestore in forma estesa usando
                            \var{sa\_sigaction} al posto di \var{sa\_handler}.\\
-    \const{SA\_ONSTACK}  & Stabilisce l'uso di uno stack alternativo per
-                           l'esecuzione del gestore (vedi
+    \const{SA\_ONSTACK}  & Stabilisce l'uso di uno \itindex{stack} stack 
+                           alternativo per l'esecuzione del gestore (vedi
                            sez.~\ref{sec:sig_specific_features}).\\ 
     \hline
   \end{tabular}
@@ -1763,6 +1762,8 @@ in tab.~\ref{tab:sig_sa_flag}.
   \label{tab:sig_sa_flag}
 \end{table}
 
+% TODO con il 2.6 sono stati aggiunti SA_NOCLDWAIT e altro, documentare
+
 Come si può notare in fig.~\ref{fig:sig_sigaction} \func{sigaction} permette
 di utilizzare due forme diverse di gestore,\footnote{La possibilità è prevista
   dallo standard POSIX.1b, ed è stata aggiunta nei kernel della serie 2.1.x
@@ -1845,7 +1846,7 @@ sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
     \includecodesample{listati/Signal.c}
   \end{minipage} 
   \normalsize 
-  \caption{La funzione \funcd{Signal}, equivalente a \func{signal}, definita
+  \caption{La funzione \func{Signal}, equivalente a \func{signal}, definita
     attraverso \func{sigaction}.}
   \label{fig:sig_Signal_code}
 \end{figure}
@@ -1864,11 +1865,11 @@ estremamente semplice, 
   le funzioni piccole ed usate di frequente (in particolare nel kernel, dove
   in certi casi le ottimizzazioni dal compilatore, tarate per l'uso in user
   space, non sono sempre adatte). In tal caso infatti le istruzioni per creare
-  un nuovo frame nello stack per chiamare la funzione costituirebbero una
-  parte rilevante del codice, appesantendo inutilmente il programma.
-  Originariamente questo comportamento veniva ottenuto con delle macro, ma
-  queste hanno tutta una serie di problemi di sintassi nel passaggio degli
-  argomenti (si veda ad esempio \cite{PratC}) che in questo modo possono
+  un nuovo frame nello \itindex{stack} stack per chiamare la funzione
+  costituirebbero una parte rilevante del codice, appesantendo inutilmente il
+  programma.  Originariamente questo comportamento veniva ottenuto con delle
+  macro, ma queste hanno tutta una serie di problemi di sintassi nel passaggio
+  degli argomenti (si veda ad esempio \cite{PratC}) che in questo modo possono
   essere evitati.}
 
 
@@ -1877,9 +1878,9 @@ estremamente semplice, 
   \textit{signal mask}}
 \label{sec:sig_sigmask}
 
-\index{\textit{signal mask}|(}
+\itindbeg{signal~mask}
 Come spiegato in sez.~\ref{sec:sig_semantics} tutti i moderni sistemi unix-like
-permettono si bloccare temporaneamente (o di eliminare completamente,
+permettono di bloccare temporaneamente (o di eliminare completamente,
 impostando \const{SIG\_IGN} come azione) la consegna dei segnali ad un
 processo. Questo è fatto specificando la cosiddetta \textsl{maschera dei
   segnali} (o \textit{signal mask}) del processo\footnote{nel caso di Linux
@@ -1894,7 +1895,7 @@ Uno dei problemi evidenziatisi con l'esempio di fig.~\ref{fig:sig_event_wrong}
 è che in molti casi è necessario proteggere delle sezioni di codice (nel caso
 in questione la sezione fra il controllo e la eventuale cancellazione del flag
 che testimoniava l'avvenuta occorrenza del segnale) in modo da essere sicuri
-che essi siano eseguiti senza interruzioni.
+che essi siano eseguite senza interruzioni.
 
 Le operazioni più semplici, come l'assegnazione o il controllo di una
 variabile (per essere sicuri si può usare il tipo \type{sig\_atomic\_t}) di
@@ -1906,7 +1907,7 @@ segnali; il suo prototipo 
   
   Cambia la \textsl{maschera dei segnali} del processo corrente.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, nel qual caso \var{errno} assumerà i valori:
   \begin{errlist}
   \item[\errcode{EINVAL}] Si è specificato un numero di segnale invalido.
@@ -1955,7 +1956,7 @@ occorre ricordare che qualunque modifica alla maschera dei segnali viene
 perduta alla conclusione del terminatore. 
 
 Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
-dei casi di race condition\index{\textit{race~condition}} restano aperte
+dei casi di \textit{race condition}\itindex{race~condition} restano aperte
 alcune possibilità legate all'uso di \func{pause}; il caso è simile a quello
 del problema illustrato nell'esempio di fig.~\ref{fig:sig_sleep_incomplete}, e
 cioè la possibilità che il processo riceva il segnale che si intende usare per
@@ -1969,7 +1970,7 @@ sospensione del processo lo standard POSIX ha previsto la funzione
   
   Imposta la \textit{signal mask} specificata, mettendo in attesa il processo.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, nel qual caso \var{errno} assumerà i valori:
   \begin{errlist}
   \item[\errcode{EINVAL}] Si è specificato un numero di segnale invalido.
@@ -2014,8 +2015,8 @@ fine (\texttt{\small 22}), e al contempo si prepara la maschera dei segnali
 \var{sleep\_mask} per riattivare \const{SIGALRM} all'esecuzione di
 \func{sigsuspend}.  
 
-In questo modo non sono più possibili race
-condition\index{\textit{race~condition}} dato che \const{SIGALRM} viene
+In questo modo non sono più possibili \textit{race
+  condition}\itindex{race~condition} dato che \const{SIGALRM} viene
 disabilitato con \func{sigprocmask} fino alla chiamata di \func{sigsuspend}.
 Questo metodo è assolutamente generale e può essere applicato a qualunque
 altra situazione in cui si deve attendere per un segnale, i passi sono sempre
@@ -2029,9 +2030,10 @@ i seguenti:
 \end{enumerate*}
 Per quanto possa sembrare strano bloccare la ricezione di un segnale per poi
 riabilitarla immediatamente dopo, in questo modo si evita il
-deadlock\index{\textit{deadlock}} dovuto all'arrivo del segnale prima
-dell'esecuzione di \func{sigsuspend}.
-\index{\textit{signal mask}|)}
+deadlock\itindex{deadlock} dovuto all'arrivo del segnale prima dell'esecuzione
+di \func{sigsuspend}.  
+
+\itindend{signal~mask}
 
 
 \subsection{Ulteriori funzioni di gestione}
@@ -2048,7 +2050,7 @@ standard POSIX.1; il suo prototipo 
   
 Scrive in \param{set} l'insieme dei segnali pendenti.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore.}
 \end{prototype}
 
@@ -2061,11 +2063,11 @@ escluderne l'avvenuto invio al momento della chiamata non significa nulla
 rispetto a quanto potrebbe essere in un qualunque momento successivo.
 
 Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
-di usare uno stack alternativo per i segnali; è cioè possibile fare usare al
-sistema un altro stack (invece di quello relativo al processo, vedi
-sez.~\ref{sec:proc_mem_layout}) solo durante l'esecuzione di un
-gestore. L'uso di uno stack alternativo è del tutto trasparente ai
-gestori, occorre però seguire una certa procedura:
+di usare uno \itindex{stack} stack alternativo per i segnali; è cioè possibile
+fare usare al sistema un altro \itindex{stack} stack (invece di quello
+relativo al processo, vedi sez.~\ref{sec:proc_mem_layout}) solo durante
+l'esecuzione di un gestore.  L'uso di uno stack alternativo è del tutto
+trasparente ai gestori, occorre però seguire una certa procedura:
 \begin{enumerate}
 \item Allocare un'area di memoria di dimensione sufficiente da usare come
   stack alternativo;
@@ -2081,24 +2083,24 @@ In genere il primo passo viene effettuato allocando un'opportuna area di
 memoria con \code{malloc}; in \file{signal.h} sono definite due costanti,
 \const{SIGSTKSZ} e \const{MINSIGSTKSZ}, che possono essere utilizzate per
 allocare una quantità di spazio opportuna, in modo da evitare overflow. La
-prima delle due è la dimensione canonica per uno stack di segnali e di norma è
-sufficiente per tutti gli usi normali. 
+prima delle due è la dimensione canonica per uno \itindex{stack} stack di
+segnali e di norma è sufficiente per tutti gli usi normali.
 
 La seconda è lo spazio che occorre al sistema per essere in grado di lanciare
 il gestore e la dimensione di uno stack alternativo deve essere sempre
 maggiore di questo valore. Quando si conosce esattamente quanto è lo spazio
 necessario al gestore gli si può aggiungere questo valore per allocare uno
-stack di dimensione sufficiente.
+\itindex{stack} stack di dimensione sufficiente.
 
-Come accennato, per poter essere usato, lo stack per i segnali deve essere
-indicato al sistema attraverso la funzione \funcd{sigaltstack}; il suo
-prototipo è:
+Come accennato, per poter essere usato, lo \itindex{stack} stack per i segnali
+deve essere indicato al sistema attraverso la funzione \funcd{sigaltstack}; il
+suo prototipo è:
 \begin{prototype}{signal.h}
 {int sigaltstack(const stack\_t *ss, stack\_t *oss)}
   
 Installa un nuovo stack per i segnali.
   
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+  \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, nel qual caso \var{errno} assumerà i valori:
 
   \begin{errlist}
@@ -2113,10 +2115,10 @@ Installa un nuovo stack per i segnali.
 \end{prototype}
 
 La funzione prende come argomenti puntatori ad una struttura di tipo
-\var{stack\_t}, definita in fig.~\ref{fig:sig_stack_t}. I due valori \param{ss}
-e \param{oss}, se non nulli, indicano rispettivamente il nuovo stack da
-installare e quello corrente (che viene restituito dalla funzione per un
-successivo ripristino).
+\var{stack\_t}, definita in fig.~\ref{fig:sig_stack_t}. I due valori
+\param{ss} e \param{oss}, se non nulli, indicano rispettivamente il nuovo
+\itindex{stack} stack da installare e quello corrente (che viene restituito
+dalla funzione per un successivo ripristino).
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -2128,33 +2130,34 @@ successivo ripristino).
   \label{fig:sig_stack_t}
 \end{figure}
 
-Il campo \var{ss\_sp} di \struct{stack\_t} indica l'indirizzo base dello stack,
-mentre \var{ss\_size} ne indica la dimensione; il campo \var{ss\_flags} invece
-indica lo stato dello stack. Nell'indicare un nuovo stack occorre
-inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al puntatore e
-alla dimensione della memoria allocata, mentre \var{ss\_flags} deve essere
-nullo.  Se invece si vuole disabilitare uno stack occorre indicare
+Il campo \var{ss\_sp} di \struct{stack\_t} indica l'indirizzo base dello
+\itindex{stack} stack, mentre \var{ss\_size} ne indica la dimensione; il campo
+\var{ss\_flags} invece indica lo stato dello stack. Nell'indicare un nuovo
+stack occorre inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al
+puntatore e alla dimensione della memoria allocata, mentre \var{ss\_flags}
+deve essere nullo.  Se invece si vuole disabilitare uno stack occorre indicare
 \const{SS\_DISABLE} come valore di \var{ss\_flags} e gli altri valori saranno
 ignorati.
 
 Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
-dimensione dello stack corrente nei relativi campi, mentre \var{ss\_flags}
-potrà assumere il valore \const{SS\_ONSTACK} se il processo è in esecuzione
-sullo stack alternativo (nel qual caso non è possibile cambiarlo) e
-\const{SS\_DISABLE} se questo non è abilitato.
-
-In genere si installa uno stack alternativo per i segnali quando si teme di
-avere problemi di esaurimento dello stack standard o di superamento di un
-limite imposto con chiamata de tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.
-In tal caso infatti si avrebbe un segnale di \const{SIGSEGV}, che potrebbe
-essere gestito soltanto avendo abilitato uno stack alternativo. 
+dimensione dello \itindex{stack} stack corrente nei relativi campi, mentre
+\var{ss\_flags} potrà assumere il valore \const{SS\_ONSTACK} se il processo è
+in esecuzione sullo stack alternativo (nel qual caso non è possibile
+cambiarlo) e \const{SS\_DISABLE} se questo non è abilitato.
+
+In genere si installa uno \itindex{stack} stack alternativo per i segnali
+quando si teme di avere problemi di esaurimento dello stack standard o di
+superamento di un limite (vedi sez.~\ref{sec:sys_resource_limit}) imposto con
+chiamate del tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.  In tal caso
+infatti si avrebbe un segnale di \const{SIGSEGV}, che potrebbe essere gestito
+soltanto avendo abilitato uno \itindex{stack} stack alternativo.
 
 Si tenga presente che le funzioni chiamate durante l'esecuzione sullo stack
 alternativo continueranno ad usare quest'ultimo, che, al contrario di quanto
-avviene per lo stack ordinario dei processi, non si accresce automaticamente
-(ed infatti eccederne le dimensioni può portare a conseguenze imprevedibili).
-Si ricordi infine che una chiamata ad una funzione della famiglia
-\func{exec} cancella ogni stack alternativo.
+avviene per lo \itindex{stack} stack ordinario dei processi, non si accresce
+automaticamente (ed infatti eccederne le dimensioni può portare a conseguenze
+imprevedibili).  Si ricordi infine che una chiamata ad una funzione della
+famiglia \func{exec} cancella ogni stack alternativo.
 
 Abbiamo visto in fig.~\ref{fig:sig_sleep_incomplete} come si possa usare
 \func{longjmp} per uscire da un gestore rientrando direttamente nel corpo
@@ -2191,7 +2194,7 @@ due comportamenti il programma deve assumere; i loro prototipi sono:
 \end{functions}
 
 Le due funzioni prendono come primo argomento la variabile su cui viene
-salvato il contesto dello stack per permettere il
+salvato il contesto dello \itindex{stack} stack per permettere il
 \index{salto~non-locale}salto non-locale; nel caso specifico essa è di tipo
 \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le analoghe di
 sez.~\ref{sec:proc_longjmp} in quanto in questo caso viene salvata anche la
@@ -2317,7 +2320,7 @@ funzione, \funcd{sigqueue}, il cui prototipo 
   Invia il segnale \param{signo} al processo \param{pid}, restituendo al
   gestore il valore \param{value}.
   
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore, nel qual caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EAGAIN}] La coda è esaurita, ci sono già \const{SIGQUEUE\_MAX}
@@ -2333,7 +2336,7 @@ funzione, \funcd{sigqueue}, il cui prototipo 
 
 Il comportamento della funzione è analogo a quello di \func{kill}, ed i
 privilegi occorrenti ad inviare il segnale ad un determinato processo sono gli
-stessi; un valore nullo di \func{signo} permette di verificare le condizioni
+stessi; un valore nullo di \param{signo} permette di verificare le condizioni
 di errore senza inviare nessun segnale.
 
 Se il segnale è bloccato la funzione ritorna immediatamente, se si è
@@ -2362,7 +2365,7 @@ meccanismi di comunicazione elementare; la prima di queste funzioni 
   
   Attende che uno dei segnali specificati in \param{set} sia pendente.
   
-  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
     errore, nel qual caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EINTR}] La funzione è stata interrotta.
@@ -2407,7 +2410,7 @@ relativi prototipi sono:
   timeout in \param{timeout}.
 
   
-  \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso di
+  \bodydesc{Le funzioni restituiscono 0 in caso di successo e $-1$ in caso di
     errore, nel qual caso \var{errno} assumerà uno dei valori già visti per
     \func{sigwait}, ai quali si aggiunge, per \func{sigtimedwait}:
   \begin{errlist}