Fatta prima parte dell'I/O asincrono (quella relativa a SIGIO)
[gapil.git] / signal.tex
index 540f0e27601886fa18d1922c5f0c3da28b3fb45a..5572fd4410886502429efef7316b4c1dd796f5de 100644 (file)
@@ -16,7 +16,7 @@ In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
 di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
 di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
-gestione.
+gestione. 
 
 
 \section{Introduzione}
 
 
 \section{Introduzione}
@@ -120,8 +120,8 @@ int sig_handler()
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
 semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
 semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
-atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
-quanto detto in \secref{sec:proc_multi_prog}).
+atomiche, e sono sempre possibili delle race condition\index{race condition}
+(sull'argomento vedi quanto detto in \secref{sec:proc_multi_prog}).
 
 Un'altro problema è che in questa semantica non esiste un modo per bloccare i
 segnali quando non si vuole che arrivino; i processi possono ignorare il
 
 Un'altro problema è che in questa semantica non esiste un modo per bloccare i
 segnali quando non si vuole che arrivino; i processi possono ignorare il
@@ -242,7 +242,8 @@ Un programma pu
 \secref{sec:sig_sigaction}). Se si è installato un manipolatore sarà
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
 farà si che mentre viene eseguito il manipolatore di un segnale, quest'ultimo
 \secref{sec:sig_sigaction}). Se si è installato un manipolatore sarà
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
 farà si che mentre viene eseguito il manipolatore di un segnale, quest'ultimo
-venga automaticamente bloccato (così si possono evitare race condition).
+venga automaticamente bloccato (così si possono evitare race
+condition\index{race condition}).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
 standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
 standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
@@ -411,9 +412,9 @@ tipologia, verr
 \label{sec:sig_prog_error}
 
 Questi segnali sono generati quando il sistema, o in certi casi direttamente
 \label{sec:sig_prog_error}
 
 Questi segnali sono generati quando il sistema, o in certi casi direttamente
-l'hardware (come per i page fault non validi) rileva un qualche errore
-insanabile nel programma in esecuzione. In generale la generazione di questi
-segnali significa che il programma ha dei gravi problemi (ad esempio ha
+l'hardware (come per i \textit{page fault} non validi) rileva un qualche
+errore insanabile nel programma in esecuzione. In generale la generazione di
+questi segnali significa che il programma ha dei gravi problemi (ad esempio ha
 dereferenziato un puntatore non valido o ha eseguito una operazione aritmetica
 proibita) e l'esecuzione non può essere proseguita.
 
 dereferenziato un puntatore non valido o ha eseguito una operazione aritmetica
 proibita) e l'esecuzione non può essere proseguita.
 
@@ -662,11 +663,11 @@ segnali sono:
   situazione precedente.
 \item[\macro{SIGXCPU}] Sta per \textit{CPU time limit exceeded}. Questo
   segnale è generato quando un processo eccede il limite impostato per il
   situazione precedente.
 \item[\macro{SIGXCPU}] Sta per \textit{CPU time limit exceeded}. Questo
   segnale è generato quando un processo eccede il limite impostato per il
-  tempo di CPU disponibile, vedi \secref{sec:sys_xxx}. 
+  tempo di CPU disponibile, vedi \secref{sec:sys_resource_limit}. 
 \item[\macro{SIGXFSZ}] Sta per \textit{File size limit exceeded}. Questo
   segnale è generato quando un processo tenta di estendere un file oltre le
   dimensioni specificate dal limite impostato per le dimensioni massime di un
 \item[\macro{SIGXFSZ}] Sta per \textit{File size limit exceeded}. Questo
   segnale è generato quando un processo tenta di estendere un file oltre le
   dimensioni specificate dal limite impostato per le dimensioni massime di un
-  file, vedi \secref{sec:sys_xxx}. 
+  file, vedi \secref{sec:sys_resource_limit}. 
 \end{basedescript}
 
 
 \end{basedescript}
 
 
@@ -714,7 +715,7 @@ di \func{strsignal}. Nel caso si debba mantenere traccia del messaggio sar
 necessario copiarlo.
 
 La seconda funzione deriva da BSD ed è analoga alla funzione \func{perror}
 necessario copiarlo.
 
 La seconda funzione deriva da BSD ed è analoga alla funzione \func{perror}
-descritta in \secref{sec:sys_strerror}; il suo prototipo è:
+descritta sempre in \secref{sec:sys_strerror}; il suo prototipo è:
 \begin{prototype}{signal.h}{void psignal(int sig, const char *s)} 
   Stampa sullo standard error un messaggio costituito dalla stringa \param{s},
   seguita da due punti ed una descrizione del segnale indicato da \param{sig}.
 \begin{prototype}{signal.h}{void psignal(int sig, const char *s)} 
   Stampa sullo standard error un messaggio costituito dalla stringa \param{s},
   seguita da due punti ed una descrizione del segnale indicato da \param{sig}.
@@ -750,7 +751,7 @@ processo alla loro occorrenza.
 
 
 \subsection{Il comportamento generale del sistema.}
 
 
 \subsection{Il comportamento generale del sistema.}
-  \label{sec:sig_gen_beha}
+\label{sec:sig_gen_beha}
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
@@ -778,28 +779,29 @@ manipolatore; viene mantenuto invece ogni eventuale settaggio dell'azione a
 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
 successiva pressione di \texttt{C-c} o \texttt{C-y}.
 
 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
 successiva pressione di \texttt{C-c} o \texttt{C-y}.
 
-Per quanto riguarda tutte le altre system call esse vengono tradizionalmente
-classificate, proprio in base al loro comportamento nei confronti dei segnali,
-in \textsl{lente} (\textit{slow}) e \textsl{veloci} (\textit{fast}). La gran
-parte appartiene a quest'ultima categoria che non è influenzata dall'arrivo di
-un segnale. In tal caso un eventuale manipolatore viene sempre eseguito dopo
-che la system call è stata completata. Esse sono dette \textsl{veloci} proprio
-in quanto la loro esecuzione è sostanzialmente immediata e attendere per
-eseguire un manipolatore non comporta nessun inconveniente.
-
-Esistono però dei casi in cui questo non è possibile perché renderebbe
-impossibile una risposta pronta al segnale. In generale questo avviene tutte
-le volte che si ha a che fare con system call che possono bloccarsi
-indefinitamente, (quelle che, per questo, vengono chiamate \textsl{lente}). Un
-elenco dei casi in cui si presenta questa situazione è il seguente:
+Per quanto riguarda il comportamento di tutte le altre system call si danno
+sostanzialmente due casi, a seconda che esse siano \textsl{lente}
+(\textit{slow}) o \textsl{veloci} (\textit{fast}). La gran parte di esse
+appartiene a quest'ultima categoria, che non è influenzata dall'arrivo di un
+segnale. Esse sono dette \textsl{veloci} in quanto la loro esecuzione è
+sostanzialmente immediata; la risposta al segnale viene sempre data dopo che
+la system call è stata completata, in quanto attendere per eseguire un
+manipolatore non comporta nessun inconveniente.
+
+In alcuni casi però alcune system call (che per questo motivo vengono chiamate
+\textsl{lente}) possono bloccarsi indefinitamente. In questo caso non si può
+attendere la conclusione della sistem call, perché questo renderebbe
+impossibile una risposta pronta al segnale, per cui il manipolatore viene
+eseguito prima che la system call sia ritornata.  Un elenco dei casi in cui si
+presenta questa situazione è il seguente:
 \begin{itemize}
 \begin{itemize}
-\item lettura da file che possono bloccarsi in attesa di dati non ancora
-  presenti (come per certi file di dispositivo, la rete o le pipe).
-\item scrittura sugli stessi file, nel caso in cui dati non possano essere
+\item la lettura da file che possono bloccarsi in attesa di dati non ancora
+  presenti (come per certi file di dispositivo, i socket o le pipe).
+\item la scrittura sugli stessi file, nel caso in cui dati non possano essere
   accettati immediatamente.
   accettati immediatamente.
-\item apertura di un file di dispositivo che richiede operazioni non immediate
-  per una una risposta. 
-\item operazioni eseguite con \func{ioctl} che non è detto possano essere
+\item l'apertura di un file di dispositivo che richiede operazioni non
+  immediate per una una risposta.
+\item le operazioni eseguite con \func{ioctl} che non è detto possano essere
   eseguite immediatamente.
 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
   da altri processi.
   eseguite immediatamente.
 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
   da altri processi.
@@ -1120,7 +1122,7 @@ illustrati in precedenza usare; i possibili valori sono riportati in
 Il valore della struttura specificata \param{value} viene usato per settare il
 timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
 salvato qui. I valori dei timer devono essere indicati attraverso una
 Il valore della struttura specificata \param{value} viene usato per settare il
 timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
 salvato qui. I valori dei timer devono essere indicati attraverso una
-struttura \var{itimerval}, definita in \figref{fig:file_stat_struct}.
+struttura \type{itimerval}, definita in \figref{fig:file_stat_struct}.
 
 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
 
 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
@@ -1141,16 +1143,10 @@ struct itimerval
     struct timeval it_interval; /* next value */
     struct timeval it_value;    /* current value */
 };
     struct timeval it_interval; /* next value */
     struct timeval it_value;    /* current value */
 };
-
-struct timeval 
-{
-    long tv_sec;                /* seconds */
-    long tv_usec;               /* microseconds */
-};
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \var{itimerval}, che definisce i valori dei timer di
+  \caption{La struttura \type{itimerval}, che definisce i valori dei timer di
     sistema.} 
   \label{fig:sig_itimerval}
 \end{figure}
     sistema.} 
   \label{fig:sig_itimerval}
 \end{figure}
@@ -1336,9 +1332,9 @@ Lo standard richiede che la funzione sia implementata in maniera del tutto
 indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
   utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
 interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
 indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
   utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
 interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
-delle strutture di tipo \var{timespec}, la cui definizione è riportata in 
-\figref{fig:sig_timespec_def}, che permettono di specificare un tempo con una
-precisione (teorica) fino al nanosecondo. 
+delle strutture di tipo \var{timespec}, la cui definizione è riportata in
+\figref{fig:sys_timeval_struct}, che permettono di specificare un tempo con
+una precisione (teorica) fino al nanosecondo.
 
 La funzione risolve anche il problema di proseguire l'attesa dopo
 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
 
 La funzione risolve anche il problema di proseguire l'attesa dopo
 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
@@ -1355,21 +1351,6 @@ sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
 questo motivo il valore restituito in \param{rem} è sempre arrotondato al
 multiplo successivo di 1/\macro{HZ}.
 
 questo motivo il valore restituito in \param{rem} è sempre arrotondato al
 multiplo successivo di 1/\macro{HZ}.
 
-\begin{figure}[!htb]
-  \footnotesize \centering
-  \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct timespec {
-    time_t  tv_sec;         /* seconds */
-    long    tv_nsec;        /* nanoseconds */
-};
-    \end{lstlisting}
-  \end{minipage} 
-  \normalsize 
-  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
-  \label{fig:sig_timespec_def}
-\end{figure}
-
 In realtà è possibile ottenere anche pause più precise del centesimo di
 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
 \macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
 In realtà è possibile ottenere anche pause più precise del centesimo di
 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
 \macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
@@ -1421,7 +1402,7 @@ la creazione di zombie.
 #include <sys/wait.h>
 #include "macro.h"
 
 #include <sys/wait.h>
 #include "macro.h"
 
-void Hand_CHLD(int sig)
+void sigchld_hand(int sig)
 {
     int errno_save;
     int status;
 {
     int errno_save;
     int status;
@@ -1492,8 +1473,9 @@ tutti gli stati di terminazione sono stati ricevuti.
 
 Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
 della gestione dei segnali; non si sono pertanto ancora prese in
 
 Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
 della gestione dei segnali; non si sono pertanto ancora prese in
-considerazione le tematiche più complesse, collegate alle varie race condition
-che i segnali possono generare e alla natura asincrona degli stessi.
+considerazione le tematiche più complesse, collegate alle varie race
+condition\index{race condition} che i segnali possono generare e alla natura
+asincrona degli stessi.
 
 Affronteremo queste problematiche in questa sezione, partendo da un esempio
 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
 
 Affronteremo queste problematiche in questa sezione, partendo da un esempio
 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
@@ -1513,43 +1495,44 @@ versione di \func{sleep} potrebbe essere quella illustrata in
 
 Dato che è nostra intenzione utilizzare \macro{SIGALRM} il primo passo della
 nostra implementazione di sarà quello di installare il relativo manipolatore
 
 Dato che è nostra intenzione utilizzare \macro{SIGALRM} il primo passo della
 nostra implementazione di sarà quello di installare il relativo manipolatore
-salvando il precedente (\texttt{\small 4-7}).  Si effettuerà poi una chiamata
-ad \func{alarm} per specificare il tempo d'attesa per l'invio del segnale a
-cui segue la chiamata a \func{pause} per fermare il programma (\texttt{\small
-  8-9}) fino alla sua ricezione.  Al ritorno di \func{pause}, causato dal
-ritorno del manipolatore (\texttt{\small 15-23}), si ripristina il
-manipolatore originario (\texttt{\small 10-11}) restituendo l'eventuale tempo
-rimanente (\texttt{\small 12-13}) che potrà essere diverso da zero qualora
+salvando il precedente (\texttt{\small 14-17}).  Si effettuerà poi una
+chiamata ad \func{alarm} per specificare il tempo d'attesa per l'invio del
+segnale a cui segue la chiamata a \func{pause} per fermare il programma
+(\texttt{\small 17-19}) fino alla sua ricezione.  Al ritorno di \func{pause},
+causato dal ritorno del manipolatore (\texttt{\small 1-9}), si ripristina il
+manipolatore originario (\texttt{\small 20-21}) restituendo l'eventuale tempo
+rimanente (\texttt{\small 22-23}) che potrà essere diverso da zero qualora
 l'interruzione di \func{pause} venisse causata da un altro segnale.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
     \begin{lstlisting}{}
 l'interruzione di \func{pause} venisse causata da un altro segnale.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
     \begin{lstlisting}{}
+void alarm_hand(int sig) {
+    /* check if the signal is the right one */
+    if (sig != SIGALRM) { /* if not exit with error */
+        printf("Something wrong, handler for SIGALRM\n");
+        exit(1);
+    } else {    /* do nothing, just interrupt pause */
+        return;
+    }
+}
 unsigned int sleep(unsigned int seconds)
 {
 unsigned int sleep(unsigned int seconds)
 {
-    signandler_t prev_handler;
+    sighandler_t prev_handler;
+    /* install and check new handler */
     if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
     if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
-        printf("Cannot set handler for alarm\n");
-        exit(1);
+        printf("Cannot set handler for alarm\n"); 
+        exit(-1);
     }
     }
-    alarm(second);
+    /* set alarm and go to sleep */
+    alarm(seconds); 
     pause(); 
     /* restore previous signal handler */
     signal(SIGALRM, prev_handler);
     pause(); 
     /* restore previous signal handler */
     signal(SIGALRM, prev_handler);
-    /* remove alarm, return remaining time */
+    /* return remaining time */
     return alarm(0);
 }
     return alarm(0);
 }
-void alarm_hand(int sig) 
-{
-    /* check if the signal is the right one */
-    if (sig != SIGALRM) { /* if not exit with error */
-        printf("Something wrong, handler for SIGALRM\n");
-        exit(1);
-    } else {    /* do nothing, just interrupt pause */
-        return;
-    }
-}      
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
@@ -1559,13 +1542,13 @@ void alarm_hand(int sig)
 
 Questo codice però, a parte il non gestire il caso in cui si è avuta una
 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
 
 Questo codice però, a parte il non gestire il caso in cui si è avuta una
 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
-presenta una pericolosa race condition.  Infatti se il processo viene
-interrotto fra la chiamata di \func{alarm} e \func{pause} può capitare (ad
-esempio se il sistema è molto carico) che il tempo di attesa scada prima
-dell'esecuzione quest'ultima, cosicché essa sarebbe eseguita dopo l'arrivo di
-\macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un deadlock, in
-quanto \func{pause} non verrebbe mai più interrotta (se non in caso di un
-altro segnale).
+presenta una pericolosa race condition\index{race condition}.  Infatti se il
+processo viene interrotto fra la chiamata di \func{alarm} e \func{pause} può
+capitare (ad esempio se il sistema è molto carico) che il tempo di attesa
+scada prima dell'esecuzione quest'ultima, cosicché essa sarebbe eseguita dopo
+l'arrivo di \macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un
+deadlock, in quanto \func{pause} non verrebbe mai più interrotta (se non in
+caso di un altro segnale).
 
 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
 SVr2) usando la funzione \func{longjmp} (vedi \secref{sec:proc_longjmp}) per
 
 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
 SVr2) usando la funzione \func{longjmp} (vedi \secref{sec:proc_longjmp}) per
@@ -1669,10 +1652,10 @@ quale potr
 segnale, e prendere le relative azioni conseguenti (\texttt{\small 6-11}).
 
 Questo è il tipico esempio di caso, già citato in \secref{sec:proc_race_cond},
 segnale, e prendere le relative azioni conseguenti (\texttt{\small 6-11}).
 
 Questo è il tipico esempio di caso, già citato in \secref{sec:proc_race_cond},
-in cui si genera una race condition; se infatti il segnale arriva
-immediatamente dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima
-della cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà
-perduta.
+in cui si genera una race condition\index{race condition}; se infatti il
+segnale arriva immediatamente dopo l'esecuzione del controllo (\texttt{\small
+  6}) ma prima della cancellazione del flag (\texttt{\small 7}), la sua
+occorrenza sarà perduta.
 
 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
 funzioni più sofisticate di quelle illustrate finora, che hanno origine dalla
 
 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
 funzioni più sofisticate di quelle illustrate finora, che hanno origine dalla
@@ -1814,32 +1797,24 @@ struct sigaction
   \label{fig:sig_sigaction}
 \end{figure}
 
   \label{fig:sig_sigaction}
 \end{figure}
 
-Come si può notare da quanto riportato in \figref{fig:sig_sigaction} in Linux
-\func{sigaction} permette di specificare il manipolatore in due forme diverse,
-indicate dai campi \var{sa\_handler} e \var{sa\_sigaction}; esse devono essere
-usate in maniera alternativa (in certe implementazioni questi vengono
-specificati come \ctyp{union}): la prima è quella classica usata anche con
-\func{signal}, la seconda permette invece di usare un manipolatore in grado di
-ricevere informazioni più dettagliate dal sistema (ad esempio il tipo di
-errore in caso di \macro{SIGFPE}), attraverso dei parametri aggiuntivi; per i
-dettagli si consulti la man page di \func{sigaction}).
-
 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
 essere bloccati durante l'esecuzione del manipolatore, ad essi viene comunque
 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
 essere bloccati durante l'esecuzione del manipolatore, ad essi viene comunque
 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
-sia specificato con \var{sa\_flag} un comportamento diverso. 
+sia specificato con \var{sa\_flag} un comportamento diverso. Quando il
+manipolatore ritorna comunque la maschera dei segnali bloccati (vedi
+\secref{sec:sig_sigmask}) viene ripristinata al valore precedente
+l'invocazione.
 
 L'uso di questo campo permette ad esempio di risolvere il problema residuo
 dell'implementazione di \code{sleep} mostrata in
 
 L'uso di questo campo permette ad esempio di risolvere il problema residuo
 dell'implementazione di \code{sleep} mostrata in
-\secref{fig:sig_sleep_incomplete}: in quel caso infatti se il segnale di
-allarme interrompe un altro manipolatore questo non sarà eseguito
-correttamente, la cosa può essere prevenuta installando quest'ultimo usando
-\var{sa\_mask} per bloccare \macro{SIGALRM} durante la sua esecuzione.
-
-Il valore di \var{sa\_flag} permette di specificare vari aspetti del
-comportamento di \func{sigaction}, e della reazione del processo ai vari
-segnali; i valori possibili ed il relativo significato sono riportati in
-\tabref{tab:sig_sa_flag}. 
+\secref{fig:sig_sleep_incomplete}. In quel caso infatti se il segnale di
+allarme avesse interrotto un altro manipolatore questo non sarebbe stato
+eseguito correttamente; la cosa poteva essere prevenuta installando gli altri
+manipolatori usando \var{sa\_mask} per bloccare \macro{SIGALRM} durante la
+loro esecuzione.  Il valore di \var{sa\_flag} permette di specificare vari
+aspetti del comportamento di \func{sigaction}, e della reazione del processo
+ai vari segnali; i valori possibili ed il relativo significato sono riportati
+in \tabref{tab:sig_sa_flag}.
 
 \begin{table}[htb]
   \footnotesize
 
 \begin{table}[htb]
   \footnotesize
@@ -1871,13 +1846,75 @@ segnali; i valori possibili ed il relativo significato sono riportati in
                            \var{sa\_sigaction} al posto di \var{sa\_handler}.\\
     \macro{SA\_ONSTACK}  & Stabilisce l'uso di uno stack alternativo per
                            l'esecuzione del manipolatore (vedi
                            \var{sa\_sigaction} al posto di \var{sa\_handler}.\\
     \macro{SA\_ONSTACK}  & Stabilisce l'uso di uno stack alternativo per
                            l'esecuzione del manipolatore (vedi
-                           \secref{sec:sig_xxx}).\\ 
+                           \secref{sec:sig_specific_features}).\\ 
     \hline
   \end{tabular}
   \caption{Valori del campo \var{sa\_flag} della struttura \var{sigaction}.}
   \label{tab:sig_sa_flag}
 \end{table}
 
     \hline
   \end{tabular}
   \caption{Valori del campo \var{sa\_flag} della struttura \var{sigaction}.}
   \label{tab:sig_sa_flag}
 \end{table}
 
+Come si può notare in \figref{fig:sig_sigaction} \func{sigaction}
+permette\footnote{La possibilità è prevista dallo standard POSIX.1b, ma in
+  Linux è stata aggiunta a partire dai kernel della serie 2.2.x. In precedenza
+  era possibile ottenere alcune informazioni addizionali usando
+  \var{sa\_handler} con un secondo parametro addizionale di tipo \var{struct
+    sigcontext}, che adesso è deprecato.}  di utilizzare due forme diverse di
+manipolatore, da specificare, a seconda dell'uso o meno del flag
+\macro{SA\_SIGINFO}, rispettivamente attraverso i campi \var{sa\_sigaction} o
+\var{sa\_handler}, (che devono essere usati in maniera alternativa, in certe
+implementazioni questi vengono addirittura definiti come \ctyp{union}): la
+prima è quella classica usata anche con \func{signal}, la seconda permette
+invece di usare un manipolatore in grado di ricevere informazioni più
+dettagliate dal sistema, attraverso la struttura \type{siginfo\_t}, riportata
+in \figref{fig:sig_siginfo_t}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+siginfo_t {
+    int      si_signo;  /* Signal number */
+    int      si_errno;  /* An errno value */
+    int      si_code;   /* Signal code */
+    pid_t    si_pid;    /* Sending process ID */
+    uid_t    si_uid;    /* Real user ID of sending process */
+    int      si_status; /* Exit value or signal */
+    clock_t  si_utime;  /* User time consumed */
+    clock_t  si_stime;  /* System time consumed */
+    sigval_t si_value;  /* Signal value */
+    int      si_int;    /* POSIX.1b signal */
+    void *   si_ptr;    /* POSIX.1b signal */
+    void *   si_addr;   /* Memory location which caused fault */
+    int      si_band;   /* Band event */
+    int      si_fd;     /* File descriptor */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \type{siginfo\_t}.} 
+  \label{fig:sig_siginfo_t}
+\end{figure}
+Installando un manipolatore di tipo \var{sa\_sigaction} diventa allora
+possibile accedere alle informazioni restituite attraverso il puntatore a
+questa struttura. Tutti i segnali settano i campi \var{si\_signo}, che riporta
+il segnale ricevuto, \var{si\_errno}, che riporta il codice di errore, e
+\var{si\_code}, che viene usato per indicare la ragione per cui è stato emesso
+il segnale (come i dettagli sul tipo di errore per \macro{SIGFPE} e
+\macro{SIGILL}) ed ha valori diversi\footnote{un elenco dettagliato è
+  disponibile nella man page di \func{sigaction}.} a seconda del tipo di
+segnale ricevuto.
+
+Il resto della struttura può essere definito come \ctyp{union} ed i valori
+eventualmente presenti dipendono dal segnale, così \macro{SIGCHLD} ed i
+segnali POSIX.1b\footnote{NdA trovare quale sono e completare l'informazione.}
+inviati tramite \func{kill} avvalorano \var{si\_pid} e \var{si\_uid} coi
+valori corrispondenti al processo che ha emesso il segnale, \macro{SIGILL},
+\macro{SIGFPE}, \macro{SIGSEGV} e \macro{SIGBUS} avvalorano \var{si\_addr} con
+l'indirizzo cui è avvenuto l'errore, \macro{SIGIO} (vedi
+\secref{sec:file_asyncronous_io}) e \macro{SIGPOLL} avvalorano \var{si\_fd}
+con il numero del file descriptor.
+
 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
 interagire in maniera anomala. Infatti l'azione specificata con
 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
 interagire in maniera anomala. Infatti l'azione specificata con
@@ -1891,13 +1928,49 @@ Per questo 
 ripristinare correttamente un manipolatore precedente, anche se questo è stato
 installato con \func{signal}. In generale poi non è il caso di usare il valore
 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
 ripristinare correttamente un manipolatore precedente, anche se questo è stato
 installato con \func{signal}. In generale poi non è il caso di usare il valore
 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
-che in certi sistemi questi possono essere diversi. In generale dunque, a meno
-che non si sia vincolati allo standard ISO C, è sempre il caso di evitare
-l'uso di \func{signal} a favore di \func{sigaction}.
+che in certi sistemi questi possono essere diversi. In definitiva dunque, a
+meno che non si sia vincolati all'aderenza stretta allo standard ISO C, è
+sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
 
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+typedef void SigFunc(int);
+inline SigFunc * Signal(int signo, SigFunc *func) 
+{
+    struct sigaction new_handl, old_handl;
+    new_handl.sa_handler=func;
+    /* clear signal mask: no signal blocked during execution of func */
+    if (sigemptyset(&new_handl.sa_mask)!=0){  /* initialize signal set */
+        perror("cannot initializes the signal set to empty"); /* see mess. */
+        exit(1);
+    }
+    new_handl.sa_flags=0;                  /* init to 0 all flags */
+    /* change action for signo signal */
+    if (sigaction(signo,&new_handl,&old_handl)){ 
+        perror("sigaction failed on signal action setting");
+        exit(1);
+    }
+    return (old_handl.sa_handler);
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una funzione equivalente a \func{signal} definita attraverso
+    \func{sigaction}.} 
+  \label{fig:sig_Signal_code}
+\end{figure}
 
 
+Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
+che abbia le stesse caratteristiche di \func{signal}, a definire una funzione
+equivalente attraverso \func{sigaction}; la funzione è \code{Signal}, e si
+trova definita come \code{inline} nel file \file{wrapper.h} (nei sorgenti
+allegati), riportata in \figref{fig:sig_Signal_code}. La riutilizzeremo spesso
+in seguito. 
 
 
-\subsection{La gestione del blocco dei segnali}
+\subsection{La gestione della \textsl{maschera dei segnali} o 
+  \textit{signal mask}}
 \label{sec:sig_sigmask}
 
 Come spiegato in \secref{sec:sig_semantics} tutti i moderni sistemi unix-like
 \label{sec:sig_sigmask}
 
 Come spiegato in \secref{sec:sig_semantics} tutti i moderni sistemi unix-like
@@ -1971,17 +2044,21 @@ critica. La funzione permette di risolvere problemi come quelli mostrati in
 \secref{fig:sig_event_wrong}, proteggendo la sezione fra il controllo del flag
 e la sua cancellazione. 
 
 \secref{fig:sig_event_wrong}, proteggendo la sezione fra il controllo del flag
 e la sua cancellazione. 
 
-Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
-dei casi di race condition restano aperte alcune possibilità legate all'uso di
-\func{pause}; il caso è simile a quello del problema illustrato nell'esempio
-di \secref{fig:sig_sleep_incomplete}, e cioè la possibilità che il processo
-riceva il segnale che si intende usare per uscire dallo stato di attesa
-invocato con \func{pause} immediatamente prima dell'esecuzione di
-quest'ultima. Per poter effettuare atomicamente la modifica della maschera dei
-segnali (di solito attivandone uno specifico) insieme alla sospensione del
-processo lo standard POSIX ha previsto la funzione \func{sigsuspend}, il cui
-prototipo è:
+La funzione può essere usata anche all'interno di un manipolatore, ad esempio
+per riabilitare la consegna del segnale che l'ha invocato, in questo caso però
+occorre ricordare che qualunque modifica alla maschera dei segnali viene
+perduta alla conclusione del terminatore. 
 
 
+Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
+dei casi di race condition\index{race condition} restano aperte alcune
+possibilità legate all'uso di \func{pause}; il caso è simile a quello del
+problema illustrato nell'esempio di \secref{fig:sig_sleep_incomplete}, e cioè
+la possibilità che il processo riceva il segnale che si intende usare per
+uscire dallo stato di attesa invocato con \func{pause} immediatamente prima
+dell'esecuzione di quest'ultima. Per poter effettuare atomicamente la modifica
+della maschera dei segnali (di solito attivandone uno specifico) insieme alla
+sospensione del processo lo standard POSIX ha previsto la funzione
+\func{sigsuspend}, il cui prototipo è:
 \begin{prototype}{signal.h}
 {int sigsuspend(const sigset\_t *mask)} 
   
 \begin{prototype}{signal.h}
 {int sigsuspend(const sigset\_t *mask)} 
   
@@ -1995,8 +2072,266 @@ prototipo 
   \end{errlist}}
 \end{prototype}
 
   \end{errlist}}
 \end{prototype}
 
+Come esempio dell'uso di queste funzioni proviamo a riscrivere un'altra volta
+l'esempio di implementazione di \code{sleep}. Abbiamo accennato in
+\secref{sec:sig_sigaction} come con \func{sigaction} sia possibile bloccare
+\macro{SIGALRM} nell'installazione dei manipolatori degli altri segnali, per
+poter usare l'implementazione vista in \secref{fig:sig_sleep_incomplete} senza
+interferenze.  Questo però comporta una precauzione ulteriore al semplice uso
+della funzione, vediamo allora come usando la nuova interfaccia è possibile
+ottenere un'implementazione, riportata in \figref{fig:sig_sleep_ok} che non
+presenta neanche questa necessità.
 
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+#include <unistd.h>      /* unix standard library */
+#include <signal.h>      /* POSIX signal library */
+void alarm_hand(int);
+unsigned int sleep(unsigned int seconds)
+{
+/* 
+ * Variables definition  
+ */
+    struct sigaction new_action, old_action;
+    sigset_t old_mask, stop_mask, sleep_mask;
+    /* set the signal handler */
+    sigemptyset(&new_action.sa_mask);              /* no signal blocked */
+    new_action.sa_handler = alarm_hand;            /* set handler */
+    new_action.sa_flags = 0;                       /* no flags */
+    sigaction(SIGALRM, &new_action, &old_action);  /* install action */
+    /* block SIGALRM to avoid race conditions */
+    sigemptyset(&stop_mask);                       /* init mask to empty */
+    sigaddset(&stop_mask, SIGALRM);                /* add SIGALRM */
+    sigprocmask(SIG_BLOCK, &stop_mask, &old_mask); /* add SIGALRM to blocked */
+    /* send the alarm */
+    alarm(seconds); 
+    /* going to sleep enabling SIGALRM */
+    sleep_mask = old_mask;                         /* take mask */
+    sigdelset(&sleep_mask, SIGALRM);               /* remove SIGALRM */
+    sigsuspend(&sleep_mask);                       /* go to sleep */
+    /* restore previous settings */
+    sigprocmask(SIG_SETMASK, &old_mask, NULL);     /* reset signal mask */    
+    sigaction(SIGALRM, &old_action, NULL);         /* reset signal action */
+    /* return remaining time */
+    return alarm(0);
+}
+/*
+ * Signal Handler for SIGALRM
+ */
+void alarm_hand(int sig) 
+{
+    return;     /* just return to interrupt sigsuspend */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione completa di \func{sleep}.} 
+  \label{fig:sig_sleep_ok}
+\end{figure}
+
+Per evitare i problemi di interferenza con gli altri segnali in questo caso
+non si è usato l'approccio di \figref{fig:sig_sleep_incomplete} evitando l'uso
+di \func{longjmp}. Come in precedenza il manipolatore (\texttt{\small 35-37})
+non esegue nessuna operazione, limitandosi a ritornare per interrompere il
+programma messo in attesa.
+
+La prima parte della funzione (\texttt{\small 11-15}) provvede ad installare
+l'opportuno manipolatore per \macro{SIGALRM}, salvando quello originario, che
+sarà ripristinato alla conclusione della stessa (\texttt{\small 28}); il passo
+successivo è quello di bloccare \macro{SIGALRM} (\texttt{\small 17-19}) per
+evitare che esso possa essere ricevuto dal processo fra l'esecuzione di
+\func{alarm} (\texttt{\small 21}) e la sospensione dello stesso. Nel fare
+questo si salva la maschera corrente dei segnali, che sarà ripristinata alla
+fine (\texttt{\small 27}), e al contempo si prepara la maschera dei segnali
+\var{sleep\_mask} per riattivare \macro{SIGALRM} all'esecuzione di
+\func{sigsuspend}.  
+
+In questo modo non sono più possibili race condition\index{race conditionx}
+dato che \macro{SIGALRM} viene disabilitato con \func{sigprocmask} fino alla
+chiamata di \func{sigsuspend}. Questo metodo è assolutamente generale e può
+essere applicato a qualunque altra situazione in cui si deve attendere per un
+segnale, i passi sono sempre i seguenti:
+\begin{enumerate}
+\item Leggere la maschera dei segnali corrente e bloccare il segnale voluto
+  con \func{sigprocmask}. 
+\item Mandare il processo in attesa con \func{sigsuspend} abilitando la
+  ricezione del segnale voluto.
+\item Ripristinare la maschera dei segnali originaria.
+\end{enumerate}
+Per quanto possa sembrare strano bloccare la ricezione di un segnale per poi
+riabilitarla immediatamente dopo, in questo modo si evita il deadlock dovuto
+all'arrivo del segnale prima dell'esecuzione di \func{sigsuspend}.
+
+
+\subsection{Ulteriori funzioni di gestione}
+\label{sec:sig_specific_features}
+
+In questa ultimo paragrafo esamineremo varie funzioni di gestione dei segnali
+non descritte finora, relative agli aspetti meno utilizzati. La prima di esse
+è \func{sigpending},  anch'essa introdotta dallo standard POSIX.1; il suo
+prototipo è:
+\begin{prototype}{signal.h}
+{int sigpending(sigset\_t *set)} 
+  
+Scrive in \param{set} l'insieme dei segnali pendenti.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore.}
+\end{prototype}
+
+La funzione permette di ricavare quali sono i segnali pendenti per il processo
+in corso, cioè i segnali che sono stato inviati dal kernel ma non sono stati
+ancora ricevuti dal processo in quanto bloccati. Non esiste una funzione
+equivalente nella vecchia interfaccia, ma essa è tutto sommato poco utile,
+dato che essa può solo assicurare che un segnale è stato inviato, dato che
+escluderne l'avvenuto invio al momento della chiamata non significa nulla
+rispetto a quanto potrebbe essere in un qualunque momento successivo.
+
+Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
+di usare uno stack alternativo per i segnali; è cioè possibile fare usare al
+sistema un altro stack (invece di quello relativo al processo, vedi
+\secref{sec:proc_mem_layout}) solo durante l'esecuzione di un
+manipolatore. L'uso di uno stack alternativo è del tutto trasparente ai
+manipolatori, occorre però seguire una certa procedura:
+\begin{enumerate}
+\item Allocare un'area di memoria di dimensione sufficiente da usare come
+  stack alternativo.
+\item Usare la funzione \func{sigaltstack} per rendere noto al sistema
+  l'esistenza e la locazione dello stack alternativo.
+\item Quando si installa un manipolatore occorre usare \func{sigaction}
+  specificando il flag \macro{SA\_ONSTACK} (vedi \tabref{tab:sig_sa_flag}) per
+  dire al sistema di usare lo stack alternativo durante l'esecuzione del
+  manipolatore. 
+\end{enumerate}
+
+In genere il primo passo viene effettuato allocando un'opportuna area di
+memoria con \code{malloc}; in \file{signal.h} sono definite due costanti,
+\macro{SIGSTKSZ} e \macro{MINSIGSTKSZ}, che possono essere utilizzate per
+allocare una quantità di spazio opportuna, in modo da evitare overflow. La
+prima delle due è la dimensione canonica per uno stack di segnali e di norma è
+sufficiente per tutti gli usi normali. La seconda è lo spazio che occorre al
+sistema per essere in grado di lanciare il manipolatore e la dimensione di uno
+stack alternativo deve essere sempre maggiore di questo valore. Quando si
+conosce esattamente quanto è lo spazio necessario al manipolatore gli si può
+aggiungere questo valore per allocare uno stack di dimensione sufficiente.
+
+Come accennato per poter essere usato lo stack per i segnali deve essere
+indicato al sistema attraverso la funzione \func{sigaltstack}; il suo
+prototipo è:
+\begin{prototype}{signal.h}
+{int sigaltstack(const stack\_t *ss, stack\_t *oss)}
+  
+Installa un nuovo stack per i segnali.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+
+  \begin{errlist}
+  \item[\macro{ENOMEM}] La dimensione specificata per il nuovo stack è minore
+  di \macro{MINSIGSTKSZ}.
+  \item[\macro{EPERM}] Uno degli indirizzi non è valido.
+  \item[\macro{EFAULT}] Si è cercato di cambiare lo stack alternativo mentre
+  questo è attivo (cioè il processo è in esecuzione su di esso).
+  \item[\macro{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
+  valore diverso da zero che non è \macro{SS\_DISABLE}.
+  \end{errlist}}
+\end{prototype}
+
+La funzione prende come argomenti puntatori ad una struttura di tipo
+\var{stack\_t}, definita in \figref{fig:sig_stack_t}. I due valori \param{ss}
+e \param{oss}, se non nulli, indicano rispettivamente il nuovo stack da
+installare e quello corrente (che viene restituito dalla funzione per un
+successivo ripristino).
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+typedef struct {
+    void  *ss_sp;     /* Base address of stack */
+    int    ss_flags;  /* Flags */
+    size_t ss_size;   /* Number of bytes in stack */
+} stack_t;
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{stack\_t}.} 
+  \label{fig:sig_stack_t}
+\end{figure}
+
+Il campo \var{ss\_sp} di \var{stack\_t} indica l'indirizzo base dello stack,
+mentre \var{ss\_size} ne indica la dimensione; il campo \var{ss\_flags} invece
+indica lo stato dello stack. Nell'indicare un nuovo stack occorre
+inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al puntatore e
+alla dimensione della memoria allocata, mentre \var{ss\_flags} deve essere
+nullo.  Se invece si vuole disabilitare uno stack occorre indicare
+\macro{SS\_DISABLE} come valore di \var{ss\_flags} e gli altri valori saranno
+ignorati.
+
+Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
+dimensione dello stack corrente nei relativi campi, mentre \var{ss\_flags}
+potrà assumere il valore \macro{SS\_ONSTACK} se il processo è in esecuzione
+sullo stack alternativo (nel qual caso non è possibile cambiarlo) e
+\macro{SS\_DISABLE} se questo non è abilitato.
+
+In genere si installa uno stack alternativo per i segnali quando si teme di
+avere problemi di esaurimento dello stack standard o di superamento di un
+limite imposto con chiamata de tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.
+In tal caso infatti si avrebbe un segnale di \macro{SIGSEGV}, che potrebbe
+essere gestito soltanto avendo abilitato uno stack alternativo. 
+
+Si tenga presente che le funzioni chiamate durante l'esecuzione sullo stack
+alternativo continueranno ad usare quest'ultimo, che, al contrario di quanto
+avviene per lo stack ordinario dei processi, non si accresce automaticamente
+(ed infatti eccederne le dimensioni può portare a conseguenze imprevedibili).
+Si ricordi infine che una chiamata ad una funzione della famiglia
+\func{exec} cancella ogni stack alternativo.
+
+Abbiamo visto in \secref{fig:sig_sleep_incomplete} come si possa usare
+\func{longjmp} per uscire da un manipolatore rientrando direttamente nel corpo
+del programma; sappiamo però che nell'esecuzione di un manipolatore il segnale
+che l'ha invocato viene bloccato, e abbiamo detto che possiamo ulteriormente
+modificarlo con \func{sigprocmask}. 
+
+Resta quindi il problema di cosa succede alla maschera dei segnali quando si
+esce da un manipolatore usando questa funzione. Il comportamento dipende
+dall'implementazione; in particolare BSD ripristina la maschera dei segnali
+precedente l'invocazione, come per un normale ritorno, mentre System V no. Lo
+standard POSIX.1 non specifica questo comportamento per \func{setjmp} e
+\func{longjmp}, ed il comportamento delle \acr{glibc} dipende da quale delle
+caratteristiche si sono abilitate con le macro viste in
+\secref{sec:intro_gcc_glibc_std}.
+
+Lo standard POSIX però prevede anche la presenza di altre due funzioni
+\func{sigsetjmp} e \func{siglongjmp}, che permettono di decidere quale dei due
+comportamenti il programma deve assumere; i loro prototipi sono:
+\begin{functions}
+  \headdecl{setjmp.h} 
+  
+  \funcdecl{int sigsetjmp(sigjmp\_buf env, int savesigs)} Salva il contesto
+  dello stack per un salto non locale.
+  \funcdecl{void siglongjmp(sigjmp\_buf env, int val)} Esegue un salto non
+  locale su un precedente contesto.
+
+  \bodydesc{Le due funzioni sono identiche alle analoghe \func{setjmp} e
+    \func{longjmp} di \secref{sec:proc_longjmp}, ma consentono di specificare
+    il comportamento sul ripristino o meno della maschera dei segnali.}
+\end{functions}
 
 
+Le due funzioni prendono come primo argomento la variabile su cui viene
+salvato il contesto dello stack per permettere il salto non locale; nel caso
+specifico essa è di tipo \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le
+analoghe di \secref{sec:proc_longjmp} in quanto in questo caso viene salvata
+anche la maschera dei segnali.
+
+Nel caso di \func{sigsetjmp} se si specifica un valore di \param{savesigs}
+diverso da zero la maschera dei valori sarà salvata in \param{env} e
+ripristinata in un successivo \func{siglongjmp}; quest'ultima funzione, a
+parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
+\func{longjmp}.
 
 
 %%% Local Variables: 
 
 
 %%% Local Variables: