Rimaneggiamenti generali
[gapil.git] / signal.tex
index f071289d2b18776b56e58cb47c1b608a0e01b87c..1375a973649190628d95fe6a4cce2d8f48c9e411 100644 (file)
@@ -2,7 +2,7 @@
 \label{cha:signals}
 
 I segnali sono il primo e più semplice meccanismo di comunicazione nei
-confronti dei processi. Non portano con se nessuna informazione che non sia il
+confronti dei processi. Non portano con sé nessuna informazione che non sia il
 loro tipo; si tratta in sostanza di un'interruzione software portata ad un
 processo.
 
@@ -15,16 +15,17 @@ esempio vengono usati per il controllo di sessione), per notificare eventi
 In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
-di generazionem fino ad esaminare in dettaglio funzioni e le metodologie di
+di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
 gestione.
 
 
 \section{Introduzione}
 \label{sec:sig_intro}
 
-In questa sezione esamineremo i concetti base dei segnali, introducendo le
-caratteristiche essenziali con cui il sistema interagisce con i processi
-attraverso di essi.
+In questa sezione esamineremo i concetti generali relativi ai segnali, vedremo
+le loro caratteristiche di base, introdurremo le nozioni di fondo relative
+all'architettura del funzionamento dei segnali e alle modalità con cui il
+sistema gestisce l'interazione fra di essi ed i processi.
 
 
 \subsection{I concetti base}
@@ -45,8 +46,8 @@ il seguente:
 \item una richiesta dell'utente di terminare o fermare il programma. In genere
   si realizza attraverso un segnale mandato dalla shell in corrispondenza
   della pressione di tasti del terminale come \code{C-c} o
-  \code{C-z}\footnote{indichiamo con \code{C-x} la pressione simultanea al
-    tasto \code{x} del tasto control (ctrl in molte tastiere)}.
+  \code{C-z}.\footnote{indichiamo con \code{C-x} la pressione simultanea al
+    tasto \code{x} del tasto control (ctrl in molte tastiere).}
 \item l'esecuzione di una \func{kill} o di una \func{raise} da parte del
   processo stesso o di un'altro (solo nel caso della \func{kill}).
 \end{itemize*}
@@ -73,14 +74,14 @@ semantiche) che vengono chiamate rispettivamente semantica \textsl{affidabile}
 \textit{unreliable}).
 
 Nella semantica \textsl{inaffidabile} (quella implementata dalle prime
-versioni di unix) la routine di gestione del segnale specificata dall'utente
+versioni di Unix) la routine di gestione del segnale specificata dall'utente
 non resta attiva una volta che è stata eseguita; è perciò compito dell'utente
 stesso ripetere l'installazione della stessa all'interno della routine di
 gestione, in tutti i casi in cui si vuole che il manipolatore esterno resti
 attivo.
 
 In questo caso è possibile una situazione in cui i segnali possono essere
-perduti; si consideri il seguente segmento di codice in cui la prima
+perduti. Si consideri il seguente segmento di codice, in cui la prima
 operazione del manipolatore è quella di reinstallare se stesso: 
 
 \footnotesize
@@ -103,7 +104,7 @@ causare il comportamento originale assegnato al segnale (in genere la
 terminazione del processo).
 
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
-semantica viene chiamata \textsl{inaffidabile}, in quanto la ricezione del
+semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
 atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
 quanto detto in \secref{sec:proc_multi_prog}).
@@ -113,54 +114,54 @@ segnali quando non si vuole che arrivino; i processi possono ignorare il
 segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
 di un segnale, pur mantenendo memoria del fatto che è avvenuto.
 
-Un caso classico in cui si incontra questo problema, è quello in cui si usa il
-manipolatore per settare un flag che riporta al processo l'occorrenza del
-segnale, così che questo possa prendere provvedimenti al di fuori del
-manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
-quello di fermare il processo fino all'occorrenza di un opportuno segnale:
-
-\footnotesize
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-int signal_flag = 0;
-main()
-{
-    int sig_handler();            /* handler function */
-    ...
-    signal(SIGINT, sig_handler);  /* establish handler */
-    ...
-    while(signal_flag == 0) {     /* while flag is zero */
-        pause();                  /* go to sleep */
-    }
-    ... 
-}
-int sig_handler() 
-{
-    signal(SIGINT, sig_handler);  /* restablish handler */
-    signal_flag = 1;              /* set flag */
-}
-\end{lstlisting}
-\normalsize
-l'idea è che quando il processo trova il flag a zero viene messo in sleep e
-verrà risvegliato solo dalla ricezione di un segnale. Il manipolatore si
-limita in questo caso a settare il flag a uno; all'uscita dal manipolatore la
-chiamata a \func{pause} è interrotta ed il processo viene risvegliato e
-riprende l'esecuzione all'istruzione successiva, ma essendo cambiato il flag
-la condizione non è più soddisfatta e il programma prosegue.
-
-Il problema con l'implementazione inaffidabile è che niente ci garantisce che
-il segnale arrivi fra la valutazione della condizione del \code{while} e la
-chiamata a \func{pause}, nel qual caso, se il segnale non viene più generato,
-il processo resterà in sleep permanentemente.
-
-% Un'altra caratteristica della implementazione inaffidabile è che le chiamate
-% di sistema non sono fatte ripartire automaticamente quando sono interrotte da
-% un segnale, per questo un programma deve controllare lo stato di uscita della
-% chiamata al sistema e ripeterla nel caso l'errore riportato da \texttt{errno}
-% sia \texttt{EINTR}.
-
-Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
-modalità semplice per ottenere una operazione di pausa (cioè mandare in sleep
-un processo fino all'arrivo di un segnale).
+Un caso classico in cui si incontra questo problema, è quello in cui si usa il
+manipolatore per settare un flag che riporta al processo l'occorrenza del
+segnale, così che questo possa prendere provvedimenti al di fuori del
+manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
+quello di fermare il processo fino all'occorrenza di un opportuno segnale:
+
+\footnotesize
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+int signal_flag = 0;
+main()
+{
+    int sig_handler();            /* handler function */
+    ...
+    signal(SIGINT, sig_handler);  /* establish handler */
+    ...
+    while(signal_flag == 0) {     /* while flag is zero */
+        pause();                  /* go to sleep */
+    }
+    ... 
+}
+int sig_handler() 
+{
+    signal(SIGINT, sig_handler);  /* restablish handler */
+    signal_flag = 1;              /* set flag */
+}
+\end{lstlisting}
+\normalsize
+l'idea è che quando il processo trova il flag a zero viene messo in sleep e
+verrà risvegliato solo dalla ricezione di un segnale. Il manipolatore si
+limita in questo caso a settare il flag a uno; all'uscita dal manipolatore la
+chiamata a \func{pause} è interrotta ed il processo viene risvegliato e
+riprende l'esecuzione all'istruzione successiva, ma essendo cambiato il flag
+la condizione non è più soddisfatta e il programma prosegue.
+
+Il problema con l'implementazione inaffidabile è che niente ci garantisce che
+il segnale arrivi fra la valutazione della condizione del \code{while} e la
+chiamata a \func{pause}, nel qual caso, se il segnale non viene più generato,
+il processo resterà in sleep permanentemente.
+
+% Un'altra caratteristica della implementazione inaffidabile è che le chiamate
+% di sistema non sono fatte ripartire automaticamente quando sono interrotte da
+% un segnale, per questo un programma deve controllare lo stato di uscita della
+% chiamata al sistema e ripeterla nel caso l'errore riportato da \texttt{errno}
+% sia \texttt{EINTR}.
+
+Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
+% modalità semplice per ottenere una operazione di attesa mandando in stato di
+% sleep (vedi \ref{sec:proc_sched}) un processo fino all'arrivo di un segnale.
 
 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
 moderno) il manipolatore una volta installato resta attivo e non si hanno
@@ -243,7 +244,7 @@ non 
 \var{task\_struct} del processo; si dice così che il segnale diventa
 \textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
 verrà notificato al processo (o verrà specificata come azione di default
-quella di ingorarlo).
+quella di ignorarlo).
 
 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
 avviene non appena questo viene rimesso in esecuzione dallo scheduler che
@@ -267,17 +268,16 @@ segnale. Per alcuni segnali (\macro{SIGKILL} e \macro{SIGSTOP}) questa azione
 una  delle tre possibilità seguenti:
 
 \begin{itemize*}
-\item \textsl{ignorare} il segnale.
-\item \textsl{catturare} il segnale, ed utilizzare il manipolatore
-  specificato.
+\item ignorare il segnale.
+\item catturare il segnale, ed utilizzare il manipolatore specificato.
 \item accettare l'azione di default per quel segnale.
 \end{itemize*}
 
 Un programma può specificare queste scelte usando le due funzioni
 \func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
-\secref{sec:sig_sigaction}); se si è installato un manipolatore sarà
+\secref{sec:sig_sigaction}). Se si è installato un manipolatore sarà
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
-fa si che mentre viene eseguito il manipolatore di un segnale, questo ultimo
+farà si che mentre viene eseguito il manipolatore di un segnale, quest'ultimo
 venga automaticamente bloccato (così si possono evitare race condition).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
@@ -299,7 +299,6 @@ in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
 avviene se i suddetti segnale vengono generati con una \func{kill}.
 
 
-
 \section{La classificazione dei segnali}
 \label{sec:sig_classification}
 
@@ -315,6 +314,74 @@ Ciascun segnale 
 diretto di questo numero da parte dei programmi è da evitare, in quanto esso
 può variare a seconda dell'implementazione del sistema, e nel caso si Linux,
 anche a seconda dell'architettura hardware. 
+Per questo motivo ad ogni segnale viene associato un nome, definendo con una
+macro di preprocessore una costante uguale al suddetto numero. Sono questi
+nomi, che sono standardizzati e sostanzialmente uniformi rispetto alle varie
+implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
+che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
+
+Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
+che i numeri dei segnali sono allocati progressivamente, essa corrisponde
+anche al successivo del valore numerico assegnato all'ultimo segnale definito.
+In \tabref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
+definiti in Linux (estratto dalle man page), comparati con quelli definiti in
+vari standard.
+
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|p{8cm}|}
+    \hline
+    \textbf{Sigla} & \textbf{Significato} \\
+    \hline
+    \hline
+    A & L'azione di default è terminare il processo. \\
+    B & L'azione di default è ignorare il segnale. \\
+    C & L'azione di default è terminare il processo e scrivere un \textit{core
+        dump}. \\
+    D & L'azione di default è fermare il processo. \\
+    E & Il segnale non può essere intercettato. \\
+    F & Il segnale non può essere ignorato.\\
+    \hline
+  \end{tabular}
+  \caption{Legenda delle azioni di default dei segnali riportate in 
+    \tabref{tab:sig_signal_list}.}
+  \label{tab:sig_action_leg}
+\end{table}
+
+In \tabref{tab:sig_signal_list} si sono anche riportate le azioni di default
+di ciascun segnale (riassunte con delle lettere, la cui legenda completa è in
+\tabref{tab:sig_action_leg}), quando nessun manipolatore è installato un
+segnale può essere ignorato o causare la terminazione del processo. Nella
+colonna standard sono stati indicati anche gli standard in cui ciascun segnale
+è definito, secondo lo schema di \tabref{tab:sig_standard_leg}.
+
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Sigla} & \textbf{Standard} \\
+    \hline
+    \hline
+    P & POSIX. \\
+    B & BSD. \\
+    L & Linux.\\
+    S & SUSv2.\\
+    \hline
+  \end{tabular}
+  \caption{Legenda dei valori della colonna \textbf{Standard} di 
+    \tabref{tab:sig_signal_list}.}
+  \label{tab:sig_standard_leg}
+\end{table}
+
+In alcuni casi alla terminazione del processo è associata la creazione di un
+file (posto nella directory corrente del processo e chiamato \file{core}) su
+cui viene salvata un'immagine della memoria del processo (il cosiddetto
+\textit{core dump}), che può essere usata da un debugger per esaminare lo
+stato dello stack e delle variabili al momento della ricezione del segnale.
 
 \begin{table}[htb]
   \footnotesize
@@ -371,73 +438,6 @@ anche a seconda dell'architettura hardware.
   \label{tab:sig_signal_list}
 \end{table}
 
-Per questo motivo ad ogni segnale viene associato un nome, definendo con una
-macro di preprocessore una costante uguale al suddetto numero. Sono questi
-nomi, che sono standardizzati e sostanzialemnte uniformi rispetto alle varie
-implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
-che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
-
-Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
-che i numeri dei segnali sono allocati progressivamente, essa corrisponde
-anche al successivo del valore numerico assegnato all'ultimo segnale definito.
-In \tabref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
-definiti in Linux (estratto dalle man page), comparati con quelli definiti in
-vari standard.
-
-In \tabref{tab:sig_signal_list} si sono anche riportate le azioni di default
-di ciascun segnale (riassunte con delle lettere, la cui legenda completa è in
-\tabref{tab:sig_action_leg}), quando nessun manipolatore è installato un
-segnale può essere ignorato o causare la terminazione del processo. Nella
-colonna standard sono stati indicati anche gli standard in cui ciascun segnale
-è definito, secondo lo schema di \tabref{tab:sig_standard_leg}.
-
-\begin{table}[htb]
-  \footnotesize
-  \centering
-  \begin{tabular}[c]{|c|p{8cm}|}
-    \hline
-    \textbf{Sigla} & \textbf{Significato} \\
-    \hline
-    \hline
-    A & L'azione di default è terminare il processo. \\
-    B & L'azione di default è ignorare il segnale. \\
-    C & L'azione di default è terminare il processo e scrivere un \textit{core
-        dump}. \\
-    D & L'azione di default è fermare il processo. \\
-    E & Il segnale non può essere intercettato. \\
-    F & Il segnale non può essere ignorato.\\
-    \hline
-  \end{tabular}
-  \caption{Legenda delle azioni di default dei segnali riportate in 
-    \tabref{tab:sig_signal_list}.}
-  \label{tab:sig_action_leg}
-\end{table}
-
-In alcuni casi alla terminazione del processo è associata la creazione di un
-file (posto nella directory corrente del processo e chiamato \file{core}) su
-cui viene salvata un'immagine della memoria del processo (il cosiddetto
-\textit{core dump}), che può essere usata da un debugger per esaminare lo
-stato dello stack e delle variabili al momento della ricezione del segnale.
-
-\begin{table}[htb]
-  \footnotesize
-  \centering
-  \begin{tabular}[c]{|c|l|}
-    \hline
-    \textbf{Sigla} & \textbf{Standard} \\
-    \hline
-    \hline
-    P & POSIX. \\
-    B & BSD. \\
-    L & Linux.\\
-    S & SUSv2.\\
-    \hline
-  \end{tabular}
-  \caption{Legenda dei valori della colonna \textbf{Standard} di 
-    \tabref{tab:sig_signal_list}.}
-  \label{tab:sig_standard_leg}
-\end{table}
-
 La descrizione dettagliata del significato dei vari segnali, raggruppati per
 tipologia, verrà affrontate nel seguito.
 
@@ -764,86 +764,770 @@ indicizzate per numero di segnale, per cui una chiamata del tipo di \code{char
 
 
 \section{La gestione dei segnali}
-\label{sec:sig_handlers}
+\label{sec:sig_management}
+
+I segnali sono il primo e più classico esempio di eventi asincroni, cioè di
+eventi che possono accadere in un qualunque momento durante l'esecuzione di un
+programma. Per questa loro caratteristica la loro gestione non può essere
+effettuata all'interno del normale flusso di esecuzione dello stesso, ma è
+delegata appunto agli eventuali manipolatori che si sono installati.
+
+In questa sezione vedremo come si effettua gestione dei segnali, a partire
+dalla loro interazione con le system call, passando per le varie funzioni che
+permettono di installare i manipolatori e controllare le reazioni di un
+processo alla loro occorrenza.
+
+
+\subsection{Il comportamento generale del sistema.}
+  \label{sec:sig_gen_beha}
+
+Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
+gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
+comportamento delle system call; in particolare due di esse, \func{fork} ed
+\func{exec}, dovranno essere prese esplicitamente in considerazione, data la
+loro stretta relazione con la creazione di nuovi processi.
+
+Come accennato in \secref{sec:proc_fork} quando viene creato un nuovo processo
+con \func{fork} esso eredita dal padre sia le azioni che sono state settate
+per i singoli segnali, che la maschera dei segnali bloccati (tratteremo
+quest'ultimo argomento in \ref{sec:sig_sigpending}). Invece tutti i segnali
+pendenti e gli allarmi vengono cancellati; essi infatti devono essere
+recapitati solo al padre, al figlio dovranno arrivare solo i segnali dovuti
+alle sue azioni.
+
+Quando si mette in esecuzione un nuovo programma con \func{exec} (si ricordi
+quanto detto in \secref{sec:proc_exec}) tutti i segnali per i quali è stato
+installato un manipolatore vengono resettati a \macro{SIG\_DFL}. Non ha più
+senso infatti fare riferimento a funzioni definite nel programma originario,
+che non sono presenti nello spazio di indirizzi del nuovo programma.
+
+Si noti che questo vale solo per le azioni per le quali è stato installato un
+manipolatore; viene mantenuto invece ogni eventuale settaggio dell'azione a
+\macro{SIG\_IGN}. Questo permette ad esempio alla shell di settare ad
+\macro{SIG\_IGN} le risposte per \macro{SIGINT} e \macro{SIGQUIT} per i
+programmi eseguiti in background, che altrimenti sarebbero interrotti da una
+successiva pressione di \texttt{C-c} o \texttt{C-y}.
+
+Per quanto riguarda tutte le altre system call esse vengono tradizionalmente
+classificate, proprio in base al loro comportamento nei confronti dei segnali,
+in \textsl{lente} (\textit{slow}) e \textsl{veloci} (\textit{fast}). La gran
+parte appartiene a quest'ultima categoria che non è influenzata dall'arrivo di
+un segnale. In tal caso un eventuale manipolatore viene sempre eseguito dopo
+che la system call è stata completata. Esse sono dette \textsl{veloci} proprio
+in quanto la loro esecuzione è sostanzialmente immediata e attendere per
+eseguire un manipolatore non comporta nessun inconveniente.
+
+Esistono però dei casi in cui questo non è possibile perché renderebbe
+impossibile una risposta pronta al segnale. In generale questo avviene tutte
+le volte che si ha a che fare con system call che possono bloccarsi
+indefinitamente, (quelle che, per questo, vengono chiamate \textsl{lente}). Un
+elenco dei casi in cui si presenta questa situazione è il seguente:
+\begin{itemize*}
+\item lettura da file che possono bloccarsi in attesa di dati non ancora
+  presenti (come per certi file di dispositivo, la rete o le pipe).
+\item scrittura sugli stessi file, nel caso in cui dati non possano essere
+  accettati immediatamente.
+\item apertura di un file di dispositivo che richiede operazioni non immediate
+  per una una risposta. 
+\item operazioni eseguite con \func{ioctl} che non è detto possano essere
+  eseguite immediatamente.
+\item le funzioni di intercomunicazione che si bloccano in attesa di risposte
+  da altri processi.
+\item la funzione \func{pause} (usata appunto per attendere l'-arrivo di un
+  segnale).
+\item la funzione \func{wait} (se nessun processo figlio è ancora terminato).
+\end{itemize*}
+
+In questo caso si pone il problema di cosa fare una volta che il manipolatore
+sia ritornato. La scelta originaria dei primi Unix era quella di far ritornare
+anche la system call restituendo l'errore di \macro{EINTR}. Questa è a
+tutt'oggi una scelta corrente, ma comporta che i programmi che usano dei
+manipolatori controllino lo stato di uscita delle funzioni per ripeterne la
+chiamata qualora l'errore fosse questo.
 
-I segnali sono il primo e più classico esempio di eventi asincroni, che
-possono accadere in un qualunque momento durante l'esecuzione di un programma.
-Non essendo sotto il controllo del programma la gestione dei segnali non potrà
-essere controllata all'interno del flusso di esecuzione di quest'ultimo, ma
-tutto quello che si potrà fare è di specificare (al kernel, che li genera)
-quale azione andrà intrapresa quando essi si verificano.
+Dimenticarsi di richiamare una system call interrotta da un segnale è un
+errore comune, tanto che le \acr{glibc} provvedono una macro
+\code{TEMP\_FAILURE\_RETRY(expr)} che esegue l'operazione automaticamente,
+ripetendo l'esecuzione dell'espressione \var{expr} fintanto che il risultato
+non è diverso dall'uscita con un errore \macro{EINTR}.
 
-In questa sezione vedremo allora come si gestiscono i segnali, esaminando le
-funzioni che si usano per effettuare la gestione dei segnali ed analizzando le
-problematiche relative alla gestione di eventi asincroni di questo tipo.
+La soluzione è comunque poco elegante e BSD ha scelto un approccio molto
+diverso, che è quello di fare ripartire automaticamente la system call invece
+di farla fallire. In questo caso ovviamente non c'è da preoccuparsi di
+controllare il codice di errore; si perde però la possibilità di eseguire
+azioni specifiche all'occorrenza di questa particolare condizione. 
+
+Linux e le \acr{glibc} consentono di utilizzare entrambi gli approcci,
+attraverso una opportuna opzione di \func{sigaction} (vedi
+\secref{sec:sig_sigaction}). È da chiarire comunque che nel caso di
+interruzione nel mezzo di un trasferimento parziale di dati, le system call
+ritornano sempre indicando i byte trasferiti.
 
 
 \subsection{La funzione \func{signal}}
 \label{sec:sig_signal}
 
-L'interfaccia più semplice alla manipolazione dei segnali è costituita dalla
-funzione \func{signal}; questa funzione è definita fin dallo standard ANSI C
-che però non considera sistemi multitasking, per cui la sua definizione in
-tale standard è tanto vaga da essere del tutto inutile in un sistema unix, per
-questo ogni implementazione successiva ne ha modificato e ridefinito il
+L'interfaccia più semplice per la gestione dei segnali è costituita dalla
+funzione \func{signal} che è definita fin dallo standard ANSI C.  Quest'ultimo
+però non considera sistemi multitasking, per cui la definizione è tanto vaga
+da essere del tutto inutile in un sistema Unix; è questo il motivo per cui
+ogni implementazione successiva ne ha modificato e ridefinito il
 comportamento, pur mantenendone immutato il prototipo\footnote{in realtà
   alcune vecchie implementazioni (SVR4 e 4.3+BSD) usano parametri aggiuntivi
-  per definire il comportamento della funzione} che è:
+  per definire il comportamento della funzione.} che è:
 \begin{prototype}{signal.h}
   {sighandler\_t signal(int signum, sighandler\_t handler)} 
   
-  Installa una nuova funzione di gestione (manipolatore) per il segnale
-  \param{signum}, usando il manipolatore \param{handler}.
+  Installa la funzione di gestione \param{handler} (il manipolatore) per il
+  segnale \param{signum}.
   
   \bodydesc{La funzione ritorna il precedente manipolatore in caso di successo
     o \macro{SIG\_ERR} in caso di errore.}
 \end{prototype}
 
 In questa definizione si è usato il tipo \type{sighandler\_t} che è una
-estensione GNU definita in Linux che permette di riscrivere il prototipo in
-forma più leggibile dell'originario:
+estensione GNU, definita dalle \acr{glibc}, che permette di riscrivere il
+prototipo in una forma più leggibile dell'originario:
 \begin{verbatim}
 void (*signal(int signum, void (*handler)(int)))int)
 \end{verbatim}
-che, per la poca chiarezza della sintassi del C quando si vanno a trattare
-puntatori a funzioni, è molto meno comprensibile, da questo si può dedurre la
-definizione di \type{sighandler\_t} che è:
+questa infatti, per la poca chiarezza della sintassi del C quando si vanno a
+trattare puntatori a funzioni, è molto meno comprensibile.  Da un confronto
+con il precedente prototipo si può dedurre la definizione di
+\type{sighandler\_t} che è:
 \begin{verbatim}
     typedef void (* sighandler_t)(int) 
 \end{verbatim}
-si tratta cioè un puntatore ad una funzione \type{void} (cioè senza valore di
-rtorno) e che prende un argomento di tipo \type{int}\footnote{si devono usare
-  le parentesi intorno al nome della funzione per via delle precedenze degli
+e cioè un puntatore ad una funzione \type{void} (cioè senza valore di ritorno)
+e che prende un argomento di tipo \type{int}.\footnote{si devono usare le
+  parentesi intorno al nome della funzione per via delle precedenze degli
   operatori del C, senza di esse si sarebbe definita una funzione che ritorna
-  un puntatore a \type{void} e non un puntatore ad una funzione \type{void}}.
+  un puntatore a \type{void} e non un puntatore ad una funzione \type{void}.}
 La funzione \func{signal} quindi restituisce e prende come secondo argomento
 un puntatore a una funzione di questo tipo, che è appunto il manipolatore del
 segnale.
 
-Il numero di segnale passato in \param{signum} segnale può essere indicato
+Il numero di segnale passato in \param{signum} può essere indicato
 direttamente con una delle costanti definite in \secref{sec:sig_standard}. Il
 manipolatore \param{handler} invece, oltre all'indirizzo della funzione da
-chiamare all'occorrenza del segnale, può assumere anche i valori costanti
+chiamare all'occorrenza del segnale, può assumere anche i due valori costanti
 \macro{SIG\_IGN} con cui si dice ignorare il segnale e \macro{SIG\_DFL} per
-installare l'azione di di default\footnote{si ricordi però che i due segnali
+installare l'azione di di default.\footnote{si ricordi però che i due segnali
   \macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
-  intercettati}.
+  intercettati.}
+
+La funzione restituisce l'indirizzo dell'azione precedente, che può essere
+salvato per poterlo ripristinare (con un'altra chiamata a \func{signal}) in un
+secondo tempo. Si ricordi che se si setta come azione \macro{SIG\_IGN} (o si
+setta un \macro{SIG\_DFL} per un segnale il cui default è di essere ignorato),
+tutti i segnali pendenti saranno scartati, e non verranno mai notificati.
+
+L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
+si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
+questi ultimi infatti la funzione è conforme al comportamento originale dei
+primi Unix in cui il manipolatore viene disinstallato alla sua chiamata,
+secondo la semantica inaffidabile; Linux seguiva questa convenzione fino alle
+\acr{libc5}. Al contrario BSD segue la semantica affidabile, non resettando il
+manipolatore e bloccando il segnale durante l'esecuzione dello stesso. Con
+l'utilizzo delle \acr{glibc2} anche Linux è passato a questo comportamento;
+quello della versione originale della funzione, il cui uso è deprecato per i
+motivi visti in \secref{sec:sig_semantics}, può essere ottenuto chiamando
+\func{sysv\_signal}.  In generale, per evitare questi problemi, tutti i nuovi
+programmi dovrebbero usare \func{sigaction}.
+
+È da tenere presente che, seguendo lo standard POSIX, il comportamento di un
+processo che ignora i segnali \macro{SIGFPE}, \macro{SIGILL}, o
+\macro{SIGSEGV} (qualora non originino da una \func{kill} o una \func{raise})
+è indefinito. Un manipolatore che ritorna da questi segnali può dare luogo ad
+un ciclo infinito.
+
+
+\subsection{Le funzioni \func{kill} e \func{raise}}
+\label{sec:sig_kill_raise}
+
+Come accennato in \secref{sec:sig_types}, un segnale può essere generato
+direttamente da un processo. L'invio di un segnale generico può essere
+effettuato attraverso delle funzioni \func{kill} e \func{raise}. La prima
+serve per inviare un segnale al processo corrente, ed il suo prototipo è:
+\begin{prototype}{signal.h}{int raise(int sig)}
+  Invia il segnale \param{sig} al processo corrente.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, il solo errore restituito è \macro{EINVAL} qualora si sia
+    specificato un numero di segnale invalido.}
+\end{prototype}
 
+Il valore di \param{sig} specifica il segnale che si vuole inviare e può
+essere specificato con una delle macro definite in
+\secref{sec:sig_classification}.  In genere questa funzione viene usata per
+riprodurre il comportamento di default di un segnale che sia stato
+intercettato. In questo caso, una volta eseguite le operazioni volute, il
+manipolatore potrà reinstallare l'azione di default, e attivarla con
+\func{raise}.
+
+Se invece si vuole inviare un segnale ad un altro processo occorre utilizzare
+la funzione \func{kill}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h}
+  \headdecl{signal.h}
+  \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
+  processo specificato con \param{pid}.
+
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido.
+  \item[\macro{EPERM}] Il processo non ha il permesso di inviare il segnale
+  alla destinazione specificata.
+  \item[\macro{ESRCH}] Il \acr{pid} o il process group indicati non
+  esistono. Gli zombie (vedi \ref{sec:proc_termination}) sono considerati come
+  processi esistenti.
+  \end{errlist}}
+\end{functions}
+
+La funzione \code{raise(sig)} è sostanzialmente equivalente ad una
+\code{kill(getpid(), sig)}. Siccome \func{raise}, che è definita nello
+standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
+l'uso di \func{kill} finisce per essere più portabile.
+
+Lo standard POSIX poi prevede che il valore 0 sia usato per specificare il
+segnale nullo.  Se le funzioni vengono chiamate con questo valore non viene
+inviato nessun segnale, ma viene eseguito il controllo degli errori, in tal
+caso si otterrà un errore \macro{EPERM} se non si hanno i permessi necessari
+ed un errore \macro{ESRCH} se il processo specificato non esiste. Si tenga
+conto però che il sistema ricicla i \acr{pid} (come accennato in
+\secref{sec:proc_pid}) per cui l'esistenza di un processo non significa che
+esso sia realmente quello a cui si intendeva mandare il segnale.
+
+Il valore dell'argomento \param{pid} specifica il processo (o i processi) di
+destinazione a cui il segnale deve essere inviato e può assumere i valori
+riportati in \tabref{tab:sig_kill_values}.
+\begin{table}[htb]
+  \centering
+  \begin{tabular}[c]{|r|l|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    $>0$ & il segnale è mandato al processo con il \acr{pid} indicato.\\
+    0    & il segnale è mandato ad ogni processo del \textit{process group}
+    del chiamante.\\ 
+    $-1$ & il segnale è mandato ad ogni processo (eccetto \cmd{init}).\\
+    $<-1$ & il segnale è mandato ad ogni processo del process group 
+    $|\code{pid}|$.\\
+    \hline
+  \end{tabular}
+  \caption{Valori dell'argomento \param{pid} per la funzione
+    \func{kill}.}
+  \label{tab:sig_kill_values}
+\end{table}
 
 
+Solo l'amministratore può inviare un segnale ad un processo qualunque, in
+tutti gli altri casi il \textit{real user id} o l'\textit{effective user id}
+del processo chiamante devono corrispondere al \textit{real user id} o al
+\textit{saved user id} della destinazione. Fa eccezione il caso in cui il
+segnale inviato sia \macro{SIGCONT}, nel quale occorre che entrambi i processi
+appartengano alla stessa sessione. Inoltre, dato il ruolo fondamentale che
+riveste nel sistema (si ricordi quanto visto in \secref{sec:sig_termination}),
+non è possibile inviare al processo 1 (cioè a \cmd{init}) segnali per i quali
+esso non abbia un manipolatore installato.
+
+Infine, seguendo le specifiche POSIX 1003.1-2001, l'uso della chiamata
+\code{kill(-1, sig)} comporta che il segnale sia inviato (con la solita
+eccezione di \cmd{init}) a tutti i processi per i quali i permessi lo
+consentano. Lo standard permette comunque alle varie implementazione di
+escludere alcuni processi specifici: nel caso in questione Linux non invia il
+segnale al processo che ha effettuato la chiamata.
+
+
+\subsection{Le funzioni \func{alarm} e \func{abort}}
+\label{sec:sig_alarm_abort}
+
+Un caso particolare di segnali generati a richiesta è quello che riguarda i
+segnali di temporizzazione e \macro{SIGABORT}, per i quali sono previste
+funzioni specifiche che ne effettuino l'invio. La prima di queste è
+\func{alarm} il cui prototipo è:
+\begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
+  Predispone l'invio di \macro{SIGALARM} dopo \param{seconds} secondi.
+  
+  \bodydesc{La funzione restituisce il numero di secondi rimanenti ad un
+    precedente allarme, o zero se non c'erano allarmi pendenti.}
+\end{prototype}
+
+La funzione provvede un meccanismo che consente ad un processo di predisporre
+un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
+dopo un certo periodo di tempo), programmando l'emissione di un segnale (in
+genere \macro{SIGALARM}) dopo il numero di secondi specificato da
+\param{seconds}.
+
+Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
+segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
+questo può essere usato per cancellare una programmazione precedente. La
+funzione inoltre ritorna il numero di secondi rimanenti all'invio dell'allarme
+precedentemente programmato, in modo che sia eventualmente possibile
+effettuare delle scelte in caso di necessità di più interruzioni.
+
+In \secref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
+associati tre tempi diversi: \textit{clock time}, \textit{user time} e
+\textit{system time}.  Per poterli calcolare il kernel mantiene per ciascun
+processo tre diversi timer:
+\begin{itemize}
+\item un \textit{real-time timer} che calcola il tempo reale trascorso (che
+  corrisponde al \textit{clock time}). La scadenza di questo timer provoca
+  l'emissione di \macro{SIGALARM}.
+\item un \textit{virtual timer} che calcola il tempo di processore usato dal
+  processo in user space (che corrisponde all'\textit{user time}). La scadenza
+  di questo timer provoca l'emissione di \macro{SIGVTALRM}.
+\item un \textit{profiling timer} che calcola la somma dei tempi di processore
+  utilizzati direttamente dal processo in user space, e dal kernel nelle
+  system call ad esso relative (che corrisponde a quello che in
+  \secref{sec:sys_unix_time} abbiamo chiamato \textit{CPU time}). La scadenza
+  di questo timer provoca l'emissione di \macro{SIGPROF}.
+\end{itemize}
+
+Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
+tempo reale. La funzione come abbiamo visto è molto semplice, ma proprio per
+questo presenta numerosi limiti: non consente di usare gli altri timer, non
+può specificare intervalli di tempo con precisione maggiore del secondo e
+genera il segnale una sola volta.
+
+Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
+che permette di usare un timer qualunque e l'invio di segnali periodici, al
+costo però di una maggiore complessità d'uso e di una minore portabilità. Il
+suo prototipo è:
+\begin{prototype}{sys/time.h}{int setitimer(int which, const struct
+    itimerval *value, struct itimerval *ovalue)} 
+  
+  Predispone l'invio di un segnale di allarme alla scadenza dell'intervallo
+  \param{value} sul timer specificato da \func{which}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori \macro{EINVAL} e
+    \macro{EFAULT}.}
+\end{prototype}
 
+Il valore di \param{which} permette di specificare quale dei tre timer
+illustrati in precedenza usare; i possibili valori sono riportati in
+\tabref{tab:sig_setitimer_values}.
+\begin{table}[htb]
+  \centering
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Timer} \\
+    \hline
+    \hline
+    \macro{ITIMER\_REAL}    & \textit{real-time timer}\\
+    \macro{ITIMER\_VIRTUAL} & \textit{virtual timer}\\
+    \macro{ITIMER\_PROF}    & \textit{profiling timer}\\
+    \hline
+  \end{tabular}
+  \caption{Valori dell'argomento \param{which} per la funzione
+    \func{setitimer}.}
+  \label{tab:sig_setitimer_values}
+\end{table}
 
-\subsection{Funzioni rientranti e default dei segnali}
-\label{sec:sig_reentrant}
+Il valore della struttura specificata \param{value} viene usato per settare il
+timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
+salvato qui. I valori dei timer devono essere indicati attraverso una
+struttura \var{itimerval}, definita in \ref{fig:file_stat_struct}.
+
+La struttura è composta da due membri, il primo, \var{it\_interval} definisce
+il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
+scadenza. Entrambi esprimono i tempi tramite una struttura \var{timeval} che
+permette una precisione fino al microsecondo.
+
+Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
+il segnale e resetta \var{it\_value} al valore di \var{it\_interval},
+ripetendo il ciclo; se \var{it\_interval} è nullo il timer si ferma.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct itimerval {
+    struct timeval it_interval; /* next value */
+    struct timeval it_value;    /* current value */
+};
+struct timeval {
+    long tv_sec;                /* seconds */
+    long tv_usec;               /* microseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{itimerval}, che definisce i valori dei timer di
+    sistema.} 
+  \label{fig:sig_itimerval}
+\end{figure}
+
+L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
+caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
+definita direttamente nello standard POSIX.1, può a sua volta essere espressa
+in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
+\cite{glibc} che ne riporta la definizione in \figref{fig:sig_alarm_def}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+unsigned int alarm(unsigned int seconds)
+{
+    struct itimerval old, new;
+    new.it_interval.tv_usec = 0;
+    new.it_interval.tv_sec = 0;
+    new.it_value.tv_usec = 0;
+    new.it_value.tv_sec = (long int) seconds;
+    if (setitimer(ITIMER_REAL, &new, &old) < 0)
+        return 0;
+    else
+        return old.it_value.tv_sec;
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Definizione di \func{alarm} in termini di \func{setitimer}.} 
+  \label{fig:sig_alarm_def}
+\end{figure}
+
+Si deve comunque tenere presente che la precisione di queste funzioni è
+limitata da quella del timer di sistema (in genere 10~ms). Il sistema assicura
+comunque che il segnale non sarà mai generato prima della scadenza programmata
+(l'arrotondamento cioè è sempre effettuato per eccesso). Una seconda causa di
+potenziali ritardi è che il segnale viene generato alla scadenza del timer,
+ma poi deve essere consegnato; se il processo è attivo (questo è sempre vero
+per \macro{ITIMER\_VIRT}) la consegna è immediata, altrimenti può esserci un
+ulteriore ritardo che può variare a seconda del carico del sistema.
+
+Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
+valore corrente di un timer senza modificarlo, è possibile usare la funzione
+\func{getitimer}, il cui prototipo è:
+\begin{prototype}{sys/time.h}{int getitimer(int which, struct
+    itimerval *value)}
+  
+  Legge in \param{value} il valore del timer specificato da \func{which}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore e restituisce gli stessi errori di \func{getitimer}}
+\end{prototype}
+\noindent i cui parametri hanno lo stesso significato e formato di quelli di
+\func{setitimer}. 
+
+
+L'ultima funzione che permette l'invio diretto di un segnale è \func{abort};
+che, come accennato in \ref{sec:proc_termination}, permette di abortire
+l'esecuzione di un programma tramite l'invio di \macro{SIGABRT}. Il suo
+prototipo è:
+\begin{prototype}{stdlib.h}{void abort(void)}
+  
+  Abortisce il processo corrente.
+  
+  \bodydesc{La funzione non ritorna, il processo è terminato inviando il
+  segnale di \macro{SIGABRT}.}
+\end{prototype}
+
+La differenza fra questa funzione e l'uso di \func{raise} è che anche se il
+segnale è bloccato o ignorato, la funzione ha effetto lo stesso. Il segnale
+può però essere intercettato per effettuare eventuali operazioni di chiusura
+prima della terminazione del processo.
 
+Lo standard ANSI C richiede inoltre che anche se il manipolatore ritorna, la
+funzione non ritorni comunque. Lo standard POSIX.1 va oltre e richiede che se
+il processo non viene terminato direttamente dal manipolatore sia la stessa
+\func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
+standard POSIX, prima della terminazione tutti i file aperti e gli stream
+saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
+funzioni registrate con \func{at\_exit} e \func{on\_exit}.
 
 
+\subsection{Le funzioni \func{pause} e \func{sleep}}
+\label{sec:sig_pause_sleep}
+
+Il metodo tradizionale per fare attendere ad un processo fino all'arrivo di un
+segnale è quello di usare la funzione \func{pause}, il cui prototipo è:
+\begin{prototype}{unistd.h}{int pause(void)}
+  
+  Pone il processo in stato di sleep fino al ritorno di un manipolatore.
+  
+  \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
+  il relativo manipolatore è ritornato, nel qual caso restituisce -1 e setta
+  \var{errno} a \macro{EINTR}.}
+\end{prototype}
+
+La funzione segnala sempre una condizione di errore (il successo sarebbe
+quello di aspettare indefinitamente). In genere si usa questa funzione quando
+si vuole mettere un processo in attesa di un qualche evento specifico che non
+è sotto il suo diretto controllo (ad esempio la si può usare per far reagire
+il processo ad un segnale inviato da un altro processo).
+
+
+Se invece si vuole fare attendere un processo per un determinato intervallo di
+tempo lo standard POSIX.1 definisce la funzione \func{sleep}, il cui prototipo
+è:
+\begin{prototype}{unistd.h}{unsigned int sleep(unsigned int seconds)}
+  
+  Pone il processo in stato di sleep per \param{seconds} secondi.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o il
+  numero di secondi restanti se viene interrotta da un segnale.}
+\end{prototype}
+
+La funzione attende per il tempo specificato, a meno di non essere interrotta
+da un segnale. In questo caso non è una buona idea ripetere la chiamata per il
+tempo rimanente, in quanto la riattivazione del processo può avvenire in un
+qualunque momento, ma il valore restituito sarà sempre arrotondato al secondo,
+con la conseguenza che, se la successione dei segnali è particolarmente
+sfortunata, si potranno avere ritardi anche di parecchi secondi. In genere la
+scelta più sicura è quella di stabilire un termine per l'attesa, e ricalcolare
+tutte le volte il numero di secondi da aspettare.
+
+In alcune implementazioni inoltre l'uso di \func{sleep} può avere conflitti
+con quello di \macro{SIGALRM}, dato che la funzione può essere realizzata
+attraverso \func{pause} e \func{alarm} (in maniera analoga all'esempio che
+vedremo in \ref{sec:sig_example}). In tal caso mescolare chiamata di
+\func{alarm} e \func{sleep} o modificare l'azione di \macro{SIGALRM}, può
+causare risultati indefiniti. Nel caso delle \acr{glibc} è stata usata una
+implementazione completamente indipendente e questi problemi non ci sono.
+
+La granularità di \func{sleep} permette di specificare attese in secondi, per
+questo sia sotto BSD4.3 che in SUSv2 è stata definita la funzione
+\func{usleep} (dove la \texttt{u} è intesa come sostituzione di $\mu$); i due
+standard hanno delle definizioni diverse, ma le \acr{glibc}
+seguono\footnote{secondo la man page almeno dalla versione 2.2.2.} seguono
+quella di SUSv2 che prevede il seguente prototipo: 
+\begin{prototype}{unistd.h}{int usleep(unsigned long usec)}
+  
+  Pone il processo in stato di sleep per \param{usec} microsecondi.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
+    caso di errore, nel qual caso \var{errno} è settata a \macro{EINTR}.}
+
+\end{prototype}
+
+Anche questa funzione a seconda delle implementazioni può presentare problemi
+nell'interazione con \func{alarm} e \macro{SIGALRM}, ed è pertanto deprecata
+in favore di \func{nanosleep}, definita dallo standard POSIX1.b, il cui
+prototipo è:
+\begin{prototype}{unistd.h}{int nanosleep(const struct timespec *req, struct
+    timespec *rem)}
+  
+  Pone il processo in stato di sleep per il tempo specificato da \param{req}.
+  In caso di interruzione restituisce il tempo restante in \param{rem}.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
+    caso di errore, nel qual caso \var{errno} è settata a 
+    \begin{errlist}
+    \item[\macro{EINVAL}] si è specificato un numero di secondi negativo o un
+      numero di nanosecondi maggiore di 999.999.999.
+    \item[\macro{EINTR}] la funzione è stata interrotta da un segnale.
+    \end{errlist}}
+\end{prototype}
+
+Lo standard richiede che la funzione sia implementata in maniera del tutto
+indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
+  utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
+interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
+delle strutture di tipo \var{timespec}, la cui definizione è riportata in 
+\figref{fig:sig_timespec_def}, che permettono di specificare un tempo con una
+precisione (teorica) fino al nanosecondo. 
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct timespec
+{
+    time_t  tv_sec;         /* seconds */
+    long    tv_nsec;        /* nanoseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
+
+La funzione risolve anche il problema di proseguire l'attesa dopo
+l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
+restituito il tempo rimanente rispetto a quanto richiesto inizialmente, e
+basta richiamare la funzione per completare l'attesa. 
+
+Chiaramente, anche se il tempo può essere specificato con risoluzioni fino al
+nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
+temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
+specificato, ma prima che il processo possa tornare ad essere eseguito
+occorrerà almeno attendere il successivo giro di scheduler e cioè un tempo che
+a seconda dei casi può arrivare fino a 1/\macro{HZ}, (sempre che il sistema
+sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
+questo motivo il valore restituito in \param{rem} è sempre arrotondato al
+multiplo successivo di 1/\macro{HZ}.
+
+In realtà è possibile ottenere anche pause più precise del centesimo di
+secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
+\macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
+viene evitato, e si raggiungono pause fino ai 2~ms con precisioni del $\mu$s.
+
+
+
+\subsection{Un esempio elementare}
+\label{sec:sig_sigchld}
+
+Un semplice esempio per illustrare il funzionamento di un manipolatore di
+segnale è quello della gestione di \macro{SIGCHLD}. Abbiamo visto in
+\secref{sec:proc_termination} che una delle azioni eseguite dal kernel alla
+conclusione di un processo è quella di inviare questo segnale al
+padre;\footnote{in realtà in SRV4 eredita la semantica di System V, in cui il
+  segnale si chiama \macro{SIGCLD} e viene trattato in maniera speciale; in
+  System V infatti se si setta esplicitamente l'azione a \macro{SIG\_IGN} il
+  segnale non viene generato ed il sistema non genera zombie (lo stato di
+  terminazione viene scartato senza dover chiamare una \func{wait}). L'azione
+  di default è sempre quella di ignorare il segnale, ma non attiva questo
+  comportamento. Linux, come BSD e POSIX, non supporta questa semantica ed usa
+  il nome di \macro{SIGCLD} come sinonimo di \macro{SIGCHLD}.} in questo caso
+tutto quello che dovrà fare il manipolatore è ricevere lo stato di
+terminazione in modo da evitare la formazione di zombie.
+
+%  è pertanto
+% naturale usare un esempio che ci permette di concludere la trattazione della
+% terminazione dei processi.
+% In questo caso si è tratterà di illustrare un esempio relativo ad un
+% manipolatore per che è previsto ritornare,
+
+In realtà nel caso di \macro{SIGCHLD} occorre tenere conto anche di un altro
+aspetto del comportamento dei segnali e cioè del fatto 
+
+
+
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+#include <errno.h>       /* error simbol definitions */
+#include <signal.h>      /* signal handling declarations */
+#include <sys/types.h>
+#include <sys/wait.h>
+#include "macro.h"
+
+void Hand_CHLD(int sig)
+{
+    int errno_save;
+    int status;
+    pid_t pid;
+    /* save errno current value */
+    errno_save = errno;
+    /* loop until no */
+    do {
+        errno = 0;
+        pid = waitpid(WAIT_ANY, &status, WNOHANG);
+        if (pid > 0) {
+            debug("child %d terminated with status %x\n", pid, status);
+        }
+    } while ((pid > 0) && (errno == EINTR));
+    /* restore errno value*/
+    errno = errno_save;
+    /* return */
+    return;
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione sbagliata di \func{sleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
 
 
-\subsection{La funzione \func{sigpending}}
+
+
+
+\section{Gestione avanzata}
+\label{sec:sig_control}
+
+Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
+della gestione dei segnali; non si sono pertanto ancora prese in
+considerazione le tematiche più complesse, collegate alle varie race condition
+che i segnali possono generare e alla natura asincrona degli stessi.
+
+Affronteremo queste problematiche in questa sezione, partendo da un esempio
+che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
+risolvere i problemi più complessi connessi alla programmazione con i segnali.
+
+
+\subsection{Un esempio di problema}
+\label{sec:sig_example}
+
+Come accennato in \ref{sec:sig_pause_sleep} è possibile implementare
+\func{sleep} a partire da dall'uso di \func{pause} e \func{alarm}. A prima
+vista questo può sembrare di implementazione immediata; ad esempio una
+semplice versione di \func{sleep} potrebbe essere la seguente:
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+unsigned int sleep(unsigned int seconds)
+{
+    signandler_t prev_handler;
+    if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
+        printf("Cannot set handler for alarm\n");
+        exit(1);
+    }
+    alarm(second);
+    pause(); 
+    /* restore previous signal handler */
+    signal(SIGALRM, prev_handler);
+    /* remove alarm, return remaining time */
+    return alarm(0);
+}
+void alarm_hand(int sig) {
+    /* check if the signal is the right one */
+    if (sig != SIGALRM) { /* if not exit with error */
+        printf("Something wrong, handler for SIGALRM\n");
+        exit(1);
+    } else {    /* do nothing, just interrupt pause */
+        return;
+    }
+}      
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione sbagliata di \func{sleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
+
+Ma questa funzione, a parte il non gestire il caso in cui si è avuta una
+precedente chiamata a \func{alarm}, presenta una pericolosa race condition.
+Infatti se il processo viene interrotto fra la chiamata di \func{alarm} e
+\func{pause} può capitare (nel caso il sistema sia molto carico) che
+quest'ultima possa essere eseguita dopo l'arrivo di \macro{SIGALRM}. In questo
+caso ci si troverebbe di fronte ad un deadlock, in cui \func{pause} non
+verrebbe mai interrotta (se non in caso di un altro segnale).
+
+Come abbiamo accennato in \secref{sec:proc_atom_oper} quando si ha a che fare
+con i segnali 
+
+
+
+
+\subsection{Le funzioni \func{sigprocmask} e \func{sigpending}}
 \label{sec:sig_sigpending}
 
 
+
+
+\subsection{La funzione \func{sigaction}}
+\label{sec:sig_sigaction}
+
+
+
+\subsection{Funzioni rientranti e default dei segnali}
+\label{sec:sig_reentrant}
+
+
+, affrontando inoltre le varie problematiche di programmazione che si devono
+tenere presenti quando si ha a che fare con essi.
+
+
+
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"