Aggiornamento anno note di copyright, dimenticato da gennaio...
[gapil.git] / signal.tex
index 669936ec4507df9e1595633d5fd668e451f8212d..0d9c7a1e724c1d7b7de96bc0b9bd12959cc28c02 100644 (file)
@@ -1,6 +1,6 @@
 %% signal.tex
 %%
-%% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2008 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -262,10 +262,10 @@ un eventuale messaggio di errore.
 I segnali che rappresentano errori del programma (divisione per zero o
 violazioni di accesso) hanno anche la caratteristica di scrivere un file di
 \itindex{core~dump} \textit{core dump} che registra lo stato del processo (ed
-in particolare della memoria e dello \itindex{stack} stack) prima della
-terminazione.  Questo può essere esaminato in seguito con un debugger per
-investigare sulla causa dell'errore.  Lo stesso avviene se i suddetti segnali
-vengono generati con una \func{kill}.
+in particolare della memoria e dello \itindex{stack} \textit{stack}) prima
+della terminazione.  Questo può essere esaminato in seguito con un debugger
+per investigare sulla causa dell'errore.  Lo stesso avviene se i suddetti
+segnali vengono generati con una \func{kill}.
 
 
 \section{La classificazione dei segnali}
@@ -349,8 +349,8 @@ In alcuni casi alla terminazione del processo 
 file (posto nella directory corrente del processo e chiamato \file{core}) su
 cui viene salvata un'immagine della memoria del processo (il cosiddetto
 \itindex{core~dump} \textit{core dump}), che può essere usata da un debugger
-per esaminare lo stato dello \itindex{stack} stack e delle variabili al
-momento della ricezione del segnale.
+per esaminare lo stato dello \itindex{stack} \textit{stack} e delle variabili
+al momento della ricezione del segnale.
 
 \begin{table}[htb]
   \footnotesize
@@ -390,7 +390,7 @@ momento della ricezione del segnale.
     \const{SIGTRAP}  &SL & C & Trappole per un Trace/breakpoint.             \\
     \const{SIGURG}   &SLB& B & Ricezione di una \textit{urgent condition} su 
                                un socket. \\
-    \const{SIGVTALRM}&SLB& A & Virtual alarm clock.                          \\
+    \const{SIGVTALRM}&SLB& A & Timer di esecuzione scaduto.                  \\
     \const{SIGXCPU}  &SLB& C & Ecceduto il limite sul tempo di CPU.          \\
     \const{SIGXFSZ}  &SLB& C & Ecceduto il limite sulla dimensione dei file. \\
     \const{SIGIOT}   &L  & C & IOT trap. Sinonimo di \const{SIGABRT}.        \\
@@ -459,16 +459,16 @@ programma al momento della terminazione.  Questi segnali sono:
   file eseguibile è corrotto o si stanno cercando di eseguire dei dati.
   Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
   posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
-  una variabile locale, andando a corrompere lo \itindex{stack} stack. Lo
-  stesso segnale viene generato in caso di overflow dello \itindex{stack}
-  stack o di problemi nell'esecuzione di un gestore. Se il gestore ritorna il
-  comportamento del processo è indefinito.
-\item[\const{SIGSEGV}] Il nome deriva da \textit{segment violation}, e
-  significa che il programma sta cercando di leggere o scrivere in una zona di
-  memoria protetta al di fuori di quella che gli è stata riservata dal
-  sistema. In genere è il meccanismo della protezione della memoria che si
-  accorge dell'errore ed il kernel genera il segnale.  Se il gestore
-  ritorna il comportamento del processo è indefinito.
+  una variabile locale, andando a corrompere lo \itindex{stack}
+  \textit{stack}. Lo stesso segnale viene generato in caso di overflow dello
+  \itindex{stack} \textit{stack} o di problemi nell'esecuzione di un gestore.
+  Se il gestore ritorna il comportamento del processo è indefinito.
+\item[\const{SIGSEGV}] Il nome deriva da \itindex{segment~violation}
+  \textit{segment violation}, e significa che il programma sta cercando di
+  leggere o scrivere in una zona di memoria protetta al di fuori di quella che
+  gli è stata riservata dal sistema. In genere è il meccanismo della
+  protezione della memoria che si accorge dell'errore ed il kernel genera il
+  segnale.  Se il gestore ritorna il comportamento del processo è indefinito.
 
   È tipico ottenere questo segnale dereferenziando un puntatore nullo o non
   inizializzato leggendo al di là della fine di un vettore. 
@@ -476,9 +476,9 @@ programma al momento della terminazione.  Questi segnali sono:
   \const{SIGSEGV} questo è un segnale che viene generato di solito quando si
   dereferenzia un puntatore non inizializzato, la differenza è che
   \const{SIGSEGV} indica un accesso non permesso su un indirizzo esistente
-  (tipo fuori dallo heap o dallo \itindex{stack} stack), mentre \const{SIGBUS}
-  indica l'accesso ad un indirizzo non valido, come nel caso di un puntatore
-  non allineato.
+  (tipo fuori dallo heap o dallo \itindex{stack} \textit{stack}), mentre
+  \const{SIGBUS} indica l'accesso ad un indirizzo non valido, come nel caso di
+  un puntatore non allineato.
 \item[\const{SIGABRT}] Il nome deriva da \textit{abort}. Il segnale indica che
   il programma stesso ha rilevato un errore che viene riportato chiamando la
   funzione \func{abort} che genera questo segnale.
@@ -563,16 +563,17 @@ segnali sono:
 \subsection{I segnali di allarme}
 \label{sec:sig_alarm}
 
-Questi segnali sono generati dalla scadenza di un timer. Il loro comportamento
-predefinito è quello di causare la terminazione del programma, ma con questi
-segnali la scelta predefinita è irrilevante, in quanto il loro uso presuppone
-sempre la necessità di un gestore.  Questi segnali sono:
+Questi segnali sono generati dalla scadenza di un timer (vedi
+sez.~\ref{sec:sig_alarm_abort}). Il loro comportamento predefinito è quello di
+causare la terminazione del programma, ma con questi segnali la scelta
+predefinita è irrilevante, in quanto il loro uso presuppone sempre la
+necessità di un gestore.  Questi segnali sono:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\const{SIGALRM}] Il nome sta per \textit{alarm}. Segnale la scadenza di
   un timer misurato sul tempo reale o sull'orologio di sistema. È normalmente
   usato dalla funzione \func{alarm}.
 
-\item[\const{SIGVTALRM}] Il nome sta per \textit{virtual alarm}. È analogo al
+\item[\const{SIVGTALRM}] Il nome sta per \textit{virtual alarm}. È analogo al
   precedente ma segnala la scadenza di un timer sul tempo di CPU usato dal
   processo. 
 
@@ -1215,6 +1216,8 @@ significa circa 10~ms). Il sistema assicura comunque che il segnale non sar
 mai generato prima della scadenza programmata (l'arrotondamento cioè è sempre
 effettuato per eccesso).  
 
+% TODO: verificare cose è successo con l'introduzione nel kernel degli htrimer
+
 Una seconda causa di potenziali ritardi è che il segnale viene generato alla
 scadenza del timer, ma poi deve essere consegnato al processo; se quest'ultimo
 è attivo (questo è sempre vero per \const{ITIMER\_VIRT}) la consegna è
@@ -1227,7 +1230,6 @@ in cui un timer scade prima che il segnale di una precedente scadenza sia
 stato consegnato; in questo caso, per il comportamento dei segnali descritto
 in sez.~\ref{sec:sig_sigchld}, un solo segnale sarà consegnato.
 
-
 Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
 valore corrente di un timer senza modificarlo, è possibile usare la funzione
 \funcd{getitimer}, il cui prototipo è:
@@ -1583,10 +1585,9 @@ relative azioni conseguenti (\texttt{\small 6-11}).
 Questo è il tipico esempio di caso, già citato in
 sez.~\ref{sec:proc_race_cond}, in cui si genera una \itindex{race~condition}
 \textit{race condition}; infatti, in una situazione in cui un segnale è già
-arrivato (e \var{flag} è già ad 1) se un altro segnale segnale arriva
-immediatamente dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima
-della cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà
-perduta.
+arrivato (e \var{flag} è già ad 1) se un altro segnale arriva immediatamente
+dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima della
+cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà perduta.
 
 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
 delle funzioni più sofisticate di quelle finora illustrate, queste hanno la
@@ -1764,9 +1765,10 @@ tab.~\ref{tab:sig_sa_flag}.
                            semantica inaffidabile.\\  
     \const{SA\_ONESHOT}  & Nome obsoleto, sinonimo non standard di
                            \const{SA\_RESETHAND}; da evitare.\\ 
-    \const{SA\_ONSTACK}  & Stabilisce l'uso di uno \itindex{stack} stack 
-                           alternativo per l'esecuzione del gestore (vedi
-                           sez.~\ref{sec:sig_specific_features}).\\ 
+    \const{SA\_ONSTACK}  & Stabilisce l'uso di uno \itindex{stack} 
+                           \textit{stack} alternativo per l'esecuzione del
+                           gestore (vedi
+                           sez.~\ref{sec:sig_specific_features}).\\  
     \const{SA\_RESTART}  & Riavvia automaticamente le \textit{slow system
                            call} quando vengono interrotte dal suddetto
                            segnale; riproduce cioè il comportamento standard
@@ -1894,7 +1896,7 @@ estremamente semplice, 
   le funzioni piccole ed usate di frequente (in particolare nel kernel, dove
   in certi casi le ottimizzazioni dal compilatore, tarate per l'uso in user
   space, non sono sempre adatte). In tal caso infatti le istruzioni per creare
-  un nuovo frame nello \itindex{stack} stack per chiamare la funzione
+  un nuovo frame nello \itindex{stack} \textit{stack} per chiamare la funzione
   costituirebbero una parte rilevante del codice, appesantendo inutilmente il
   programma.  Originariamente questo comportamento veniva ottenuto con delle
   macro, ma queste hanno tutta una serie di problemi di sintassi nel passaggio
@@ -2091,52 +2093,54 @@ escluderne l'avvenuto invio al momento della chiamata non significa nulla
 rispetto a quanto potrebbe essere in un qualunque momento successivo.
 
 Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
-di usare uno \itindex{stack} stack alternativo per i segnali; è cioè possibile
-fare usare al sistema un altro \itindex{stack} stack (invece di quello
-relativo al processo, vedi sez.~\ref{sec:proc_mem_layout}) solo durante
-l'esecuzione di un gestore.  L'uso di uno stack alternativo è del tutto
-trasparente ai gestori, occorre però seguire una certa procedura:
+di usare uno \itindex{stack} \textit{stack} alternativo per i segnali; è cioè
+possibile fare usare al sistema un altro \itindex{stack} \textit{stack}
+(invece di quello relativo al processo, vedi sez.~\ref{sec:proc_mem_layout})
+solo durante l'esecuzione di un gestore.  L'uso di uno \textit{stack}
+alternativo è del tutto trasparente ai gestori, occorre però seguire una certa
+procedura:
 \begin{enumerate}
 \item Allocare un'area di memoria di dimensione sufficiente da usare come
-  stack alternativo;
+  \textit{stack} alternativo;
 \item Usare la funzione \func{sigaltstack} per rendere noto al sistema
-  l'esistenza e la locazione dello stack alternativo;
+  l'esistenza e la locazione dello \textit{stack} alternativo;
 \item Quando si installa un gestore occorre usare \func{sigaction}
   specificando il flag \const{SA\_ONSTACK} (vedi tab.~\ref{tab:sig_sa_flag})
-  per dire al sistema di usare lo stack alternativo durante l'esecuzione del
-  gestore.
+  per dire al sistema di usare lo \textit{stack} alternativo durante
+  l'esecuzione del gestore.
 \end{enumerate}
 
 In genere il primo passo viene effettuato allocando un'opportuna area di
 memoria con \code{malloc}; in \file{signal.h} sono definite due costanti,
 \const{SIGSTKSZ} e \const{MINSIGSTKSZ}, che possono essere utilizzate per
 allocare una quantità di spazio opportuna, in modo da evitare overflow. La
-prima delle due è la dimensione canonica per uno \itindex{stack} stack di
-segnali e di norma è sufficiente per tutti gli usi normali.
+prima delle due è la dimensione canonica per uno \itindex{stack}
+\textit{stack} di segnali e di norma è sufficiente per tutti gli usi normali.
 
 La seconda è lo spazio che occorre al sistema per essere in grado di lanciare
-il gestore e la dimensione di uno stack alternativo deve essere sempre
-maggiore di questo valore. Quando si conosce esattamente quanto è lo spazio
-necessario al gestore gli si può aggiungere questo valore per allocare uno
-\itindex{stack} stack di dimensione sufficiente.
-
-Come accennato, per poter essere usato, lo \itindex{stack} stack per i segnali
-deve essere indicato al sistema attraverso la funzione \funcd{sigaltstack}; il
-suo prototipo è:
+il gestore e la dimensione di uno \textit{stack} alternativo deve essere
+sempre maggiore di questo valore. Quando si conosce esattamente quanto è lo
+spazio necessario al gestore gli si può aggiungere questo valore per allocare
+uno \itindex{stack} \textit{stack} di dimensione sufficiente.
+
+Come accennato, per poter essere usato, lo \itindex{stack} \textit{stack} per
+i segnali deve essere indicato al sistema attraverso la funzione
+\funcd{sigaltstack}; il suo prototipo è:
 \begin{prototype}{signal.h}
 {int sigaltstack(const stack\_t *ss, stack\_t *oss)}
   
-Installa un nuovo stack per i segnali.
+Installa un nuovo \textit{stack} per i segnali.
   
   \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
     errore, nel qual caso \var{errno} assumerà i valori:
 
   \begin{errlist}
-  \item[\errcode{ENOMEM}] la dimensione specificata per il nuovo stack è minore
-  di \const{MINSIGSTKSZ}.
+  \item[\errcode{ENOMEM}] la dimensione specificata per il nuovo
+    \textit{stack} è minore di \const{MINSIGSTKSZ}.
   \item[\errcode{EPERM}] uno degli indirizzi non è valido.
-  \item[\errcode{EFAULT}] si è cercato di cambiare lo stack alternativo mentre
-  questo è attivo (cioè il processo è in esecuzione su di esso).
+  \item[\errcode{EFAULT}] si è cercato di cambiare lo \textit{stack}
+    alternativo mentre questo è attivo (cioè il processo è in esecuzione su di
+    esso).
   \item[\errcode{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
   valore diverso da zero che non è \const{SS\_DISABLE}.
   \end{errlist}}
@@ -2145,8 +2149,8 @@ Installa un nuovo stack per i segnali.
 La funzione prende come argomenti puntatori ad una struttura di tipo
 \var{stack\_t}, definita in fig.~\ref{fig:sig_stack_t}. I due valori
 \param{ss} e \param{oss}, se non nulli, indicano rispettivamente il nuovo
-\itindex{stack} stack da installare e quello corrente (che viene restituito
-dalla funzione per un successivo ripristino).
+\itindex{stack} \textit{stack} da installare e quello corrente (che viene
+restituito dalla funzione per un successivo ripristino).
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -2159,33 +2163,35 @@ dalla funzione per un successivo ripristino).
 \end{figure}
 
 Il campo \var{ss\_sp} di \struct{stack\_t} indica l'indirizzo base dello
-\itindex{stack} stack, mentre \var{ss\_size} ne indica la dimensione; il campo
-\var{ss\_flags} invece indica lo stato dello stack. Nell'indicare un nuovo
-stack occorre inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al
-puntatore e alla dimensione della memoria allocata, mentre \var{ss\_flags}
-deve essere nullo.  Se invece si vuole disabilitare uno stack occorre indicare
-\const{SS\_DISABLE} come valore di \var{ss\_flags} e gli altri valori saranno
-ignorati.
+\itindex{stack} \textit{stack}, mentre \var{ss\_size} ne indica la dimensione;
+il campo \var{ss\_flags} invece indica lo stato dello \textit{stack}.
+Nell'indicare un nuovo \textit{stack} occorre inizializzare \var{ss\_sp} e
+\var{ss\_size} rispettivamente al puntatore e alla dimensione della memoria
+allocata, mentre \var{ss\_flags} deve essere nullo.  Se invece si vuole
+disabilitare uno \textit{stack} occorre indicare \const{SS\_DISABLE} come
+valore di \var{ss\_flags} e gli altri valori saranno ignorati.
 
 Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
-dimensione dello \itindex{stack} stack corrente nei relativi campi, mentre
-\var{ss\_flags} potrà assumere il valore \const{SS\_ONSTACK} se il processo è
-in esecuzione sullo stack alternativo (nel qual caso non è possibile
-cambiarlo) e \const{SS\_DISABLE} se questo non è abilitato.
-
-In genere si installa uno \itindex{stack} stack alternativo per i segnali
-quando si teme di avere problemi di esaurimento dello stack standard o di
-superamento di un limite (vedi sez.~\ref{sec:sys_resource_limit}) imposto con
-chiamate del tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.  In tal caso
-infatti si avrebbe un segnale di \const{SIGSEGV}, che potrebbe essere gestito
-soltanto avendo abilitato uno \itindex{stack} stack alternativo.
-
-Si tenga presente che le funzioni chiamate durante l'esecuzione sullo stack
-alternativo continueranno ad usare quest'ultimo, che, al contrario di quanto
-avviene per lo \itindex{stack} stack ordinario dei processi, non si accresce
-automaticamente (ed infatti eccederne le dimensioni può portare a conseguenze
-imprevedibili).  Si ricordi infine che una chiamata ad una funzione della
-famiglia \func{exec} cancella ogni stack alternativo.
+dimensione dello \itindex{stack} \textit{stack} corrente nei relativi campi,
+mentre \var{ss\_flags} potrà assumere il valore \const{SS\_ONSTACK} se il
+processo è in esecuzione sullo \textit{stack} alternativo (nel qual caso non è
+possibile cambiarlo) e \const{SS\_DISABLE} se questo non è abilitato.
+
+In genere si installa uno \itindex{stack} \textit{stack} alternativo per i
+segnali quando si teme di avere problemi di esaurimento dello \textit{stack}
+standard o di superamento di un limite (vedi
+sez.~\ref{sec:sys_resource_limit}) imposto con chiamate del tipo
+\code{setrlimit(RLIMIT\_STACK, \&rlim)}.  In tal caso infatti si avrebbe un
+segnale di \const{SIGSEGV}, che potrebbe essere gestito soltanto avendo
+abilitato uno \itindex{stack} \textit{stack} alternativo.
+
+Si tenga presente che le funzioni chiamate durante l'esecuzione sullo
+\textit{stack} alternativo continueranno ad usare quest'ultimo, che, al
+contrario di quanto avviene per lo \itindex{stack} \textit{stack} ordinario
+dei processi, non si accresce automaticamente (ed infatti eccederne le
+dimensioni può portare a conseguenze imprevedibili).  Si ricordi infine che
+una chiamata ad una funzione della famiglia \func{exec} cancella ogni
+\textit{stack} alternativo.
 
 Abbiamo visto in fig.~\ref{fig:sig_sleep_incomplete} come si possa usare
 \func{longjmp} per uscire da un gestore rientrando direttamente nel corpo
@@ -2211,7 +2217,7 @@ due comportamenti il programma deve assumere; i loro prototipi sono:
   \headdecl{setjmp.h} 
   
   \funcdecl{int sigsetjmp(sigjmp\_buf env, int savesigs)} Salva il contesto
-  dello stack per un \index{salto~non-locale} salto non-locale.
+  dello \textit{stack} per un \index{salto~non-locale} salto non-locale.
  
   \funcdecl{void siglongjmp(sigjmp\_buf env, int val)} Esegue un salto
   non-locale su un precedente contesto.
@@ -2222,7 +2228,7 @@ due comportamenti il programma deve assumere; i loro prototipi sono:
 \end{functions}
 
 Le due funzioni prendono come primo argomento la variabile su cui viene
-salvato il contesto dello \itindex{stack} stack per permettere il
+salvato il contesto dello \itindex{stack} \textit{stack} per permettere il
 \index{salto~non-locale} salto non-locale; nel caso specifico essa è di tipo
 \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le analoghe di
 sez.~\ref{sec:proc_longjmp} in quanto in questo caso viene salvata anche la
@@ -2245,7 +2251,7 @@ corrispondenza all'interruzione in un punto qualunque del programma principale,
 ed ad esempio può essere problematico chiamare all'interno di un gestore di
 segnali la stessa funzione che dal segnale è stata interrotta.
 
-\index{funzioni~sicure|(}
+\index{funzioni!sicure|(}
 
 Il concetto è comunque più generale e porta ad una distinzione fra quelle che
 che POSIX chiama \textsl{funzioni insicure} (\textit{n'Usane function}) e
@@ -2303,7 +2309,7 @@ riportata in fig.~\ref{fig:sig_safe_functions}.
   \label{fig:sig_safe_functions}
 \end{figure}
 
-\index{funzioni~sicure|)}
+\index{funzioni!sicure|)}
 
 Per questo motivo è opportuno mantenere al minimo indispensabile le operazioni
 effettuate all'interno di un gestore di segnali, qualora si debbano compiere
@@ -2315,14 +2321,14 @@ che si 
 
 
 \section{Funzionalità avanzate}
-\label{sec:sig_real_time}
+\label{sec:sig_advanced_signal}
 
 
 Tratteremo in questa ultima sezione alcune funzionalità avanzate relativa ai
 segnali ed in generale ai meccanismi di notifica, a partire dalla funzioni
 introdotte per la gestione dei cosiddetti ``\textsl{segnali real-time}'', alla
 gestione avanzata delle temporizzazioni e le nuove interfacce per la gestione
-di segnali ed eventi attraverso l'uso di filedescriptor.
+di segnali ed eventi attraverso l'uso di file descriptor.
 
 \subsection{I segnali real-time}
 \label{sec:sig_real_time}
@@ -2472,9 +2478,9 @@ caratteristiche tipiche dei segnali real-time (priorit
 
 Lo standard POSIX.1b definisce inoltre delle nuove funzioni che permettono di
 gestire l'attesa di segnali specifici su una coda, esse servono in particolar
-modo nel caso dei thread, in cui si possono usare i segnali real-time come
-meccanismi di comunicazione elementare; la prima di queste funzioni è
-\funcd{sigwait}, il cui prototipo è:
+modo nel caso dei \itindex{thread} \textit{thread}, in cui si possono usare i
+segnali real-time come meccanismi di comunicazione elementare; la prima di
+queste funzioni è \funcd{sigwait}, il cui prototipo è:
 \begin{prototype}{signal.h}
   {int sigwait(const sigset\_t *set, int *sig)}
   
@@ -2508,8 +2514,8 @@ consegnato che essere ricevuto da \func{sigwait}, il tutto in maniera non
 prevedibile.
 
 Lo standard POSIX.1b definisce altre due funzioni, anch'esse usate
-prevalentemente con i thread; \funcd{sigwaitinfo} e \funcd{sigtimedwait}, i
-relativi prototipi sono:
+prevalentemente con i \itindex{thread} \textit{thread}; \funcd{sigwaitinfo} e
+\funcd{sigtimedwait}, i relativi prototipi sono:
 \begin{functions}
   \headdecl{signal.h}   
 
@@ -2549,30 +2555,41 @@ di timeout nullo, e non ci sono segnali pendenti la funzione ritorner
 immediatamente; in questo modo si può eliminare un segnale dalla coda senza
 dover essere bloccati qualora esso non sia presente.
 
+\itindbeg{thread} 
+
 L'uso di queste funzioni è principalmente associato alla gestione dei segnali
-con i thread. In genere esse vengono chiamate dal thread incaricato della
-gestione, che al ritorno della funzione esegue il codice che usualmente
-sarebbe messo nel gestore, per poi ripetere la chiamata per mettersi in attesa
-del segnale successivo. Questo ovviamente comporta che non devono essere
-installati gestori, che solo il thread di gestione deve usare \func{sigwait} e
-che, per evitare che venga eseguita l'azione predefinita, i segnali gestiti in
-questa maniera devono essere mascherati per tutti i thread, compreso quello
-dedicato alla gestione, che potrebbe riceverlo fra due chiamate successive.
+con i \textit{thread}. In genere esse vengono chiamate dal \textit{thread}
+incaricato della gestione, che al ritorno della funzione esegue il codice che
+usualmente sarebbe messo nel gestore, per poi ripetere la chiamata per
+mettersi in attesa del segnale successivo. Questo ovviamente comporta che non
+devono essere installati gestori, che solo il \textit{thread} di gestione deve
+usare \func{sigwait} e che, per evitare che venga eseguita l'azione
+predefinita, i segnali gestiti in questa maniera devono essere mascherati per
+tutti i \textit{thread}, compreso quello dedicato alla gestione, che potrebbe
+riceverlo fra due chiamate successive.
+
+\itindend{thread} 
 
 
 \subsection{La gestione avanzata delle temporizzazioni}
 \label{sec:sig_timer_adv}
 
-
+% TODO trattare i Posix timer, e le fuzioni:
+% clock_getres clock_gettime clock_settime (vedi man page)
+% timer_getoverrun, timer_gettime, timer_settime, timer_create, timer_delete
 
 
 \subsection{Le interfacce per la notifica attraverso i file descriptor}
 \label{sec:sig_signalfd_eventfd}
 
 
-% TODO trattare qui eventfd signalfd e timerfd introdotte con il 2.6.22
+% TODO trattare qui eventfd signalfd e timerfd introdotte con il 2.6.22 
+% timerfd è stata tolta nel 2.6.23 e rifatta per bene nel 2.6.25
 % vedi: http://lwn.net/Articles/233462/
 %       http://lwn.net/Articles/245533/
+%       http://lwn.net/Articles/267331/
+
+
 
 
 % LocalWords:  kernel POSIX timer shell control ctrl kill raise signal handler
@@ -2614,10 +2631,10 @@ dedicato alla gestione, che potrebbe riceverlo fra due chiamate successive.
 % LocalWords:  getsockname getsockopt getuid listen lseek lstat mkdir mkfifo
 % LocalWords:  pathconf poll posix pselect read readlink recv recvfrom recvmsg
 % LocalWords:  rename rmdir select send sendmsg sendto setgid setpgid setsid
-% LocalWords:  setsockopt setuid shutdown sigpause socketpair stat symlink
+% LocalWords:  setsockopt setuid shutdown sigpause socketpair stat symlink page
 % LocalWords:  sysconf tcdrain tcflow tcflush tcgetattr tcgetgrp tcsendbreak
 % LocalWords:  tcsetattr tcsetpgrp getoverrun times umask uname unlink utime
-% LocalWords:  write sival
+% LocalWords:  write sival SIVGTALRM NOCLDWAIT
 
 
 %%% Local Variables: