Aggiornamento al 2010 delle note di copyright
[gapil.git] / prochand.tex
index 6bdbb5a97966c1d3813956ad06829512055854ab..7fe061ffcb81b5d369b937932b4b05c5fa44438b 100644 (file)
@@ -1,6 +1,6 @@
 %% prochand.tex
 %%
-%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2010 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -8,6 +8,7 @@
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
 %%
+
 \chapter{La gestione dei processi}
 \label{cha:process_handling}
 
@@ -43,8 +44,8 @@ caratteristiche di Unix (che esamineremo in dettaglio pi
 qualunque processo può a sua volta generarne altri, detti processi figli
 (\textit{child process}). Ogni processo è identificato presso il sistema da un
 numero univoco, il cosiddetto \textit{process identifier} o, più brevemente,
-\acr{pid}, assegnato in forma progressiva (vedi sez.~\ref{sec:proc_pid}) quando
-il processo viene creato.
+\acr{pid}, assegnato in forma progressiva (vedi sez.~\ref{sec:proc_pid})
+quando il processo viene creato.
 
 Una seconda caratteristica di un sistema Unix è che la generazione di un
 processo è un'operazione separata rispetto al lancio di un programma. In
@@ -126,38 +127,52 @@ struttura, alla cui base c'
 processi.
 
 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
-\textit{process table}; per ciascun processo viene mantenuta una voce,
-costituita da una struttura \struct{task\_struct}, nella tabella dei processi
-che contiene tutte le informazioni rilevanti per quel processo. Tutte le
-strutture usate a questo scopo sono dichiarate nell'header file
-\file{linux/sched.h}, ed uno schema semplificato, che riporta la struttura
-delle principali informazioni contenute nella \struct{task\_struct} (che in
-seguito incontreremo a più riprese), è mostrato in
+\itindex{process~table} \textit{process table}; per ciascun processo viene
+mantenuta una voce, costituita da una struttura \struct{task\_struct}, nella
+tabella dei processi che contiene tutte le informazioni rilevanti per quel
+processo. Tutte le strutture usate a questo scopo sono dichiarate nell'header
+file \file{linux/sched.h}, ed uno schema semplificato, che riporta la
+struttura delle principali informazioni contenute nella \struct{task\_struct}
+(che in seguito incontreremo a più riprese), è mostrato in
 fig.~\ref{fig:proc_task_struct}.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=13cm]{img/task_struct}
+  \includegraphics[width=12cm]{img/task_struct}
   \caption{Schema semplificato dell'architettura delle strutture usate dal
     kernel nella gestione dei processi.}
   \label{fig:proc_task_struct}
 \end{figure}
 
-Come accennato in sez.~\ref{sec:intro_unix_struct} è lo
-\textit{scheduler}\index{\textit{scheduler}} che decide quale processo mettere
-in esecuzione; esso viene eseguito ad ogni system call ed ad ogni
-interrupt,\footnote{più in una serie di altre occasioni. NDT completare questa
-  parte.} (ma può essere anche attivato esplicitamente). Il timer di sistema
-provvede comunque a che esso sia invocato periodicamente, generando un
-interrupt periodico secondo la frequenza specificata dalla costante
-\const{HZ}, definita in \file{asm/param.h}, ed il cui valore è espresso in
-Hertz.\footnote{Il valore usuale di questa costante è 100, per tutte le
-  architetture eccetto l'alpha, per la quale è 1000. Occorre fare attenzione a
-  non confondere questo valore con quello dei clock tick (vedi
-  sez.~\ref{sec:sys_unix_time}).}
-%Si ha cioè un interrupt dal timer ogni centesimo di secondo.
-
-Ogni volta che viene eseguito, lo \textit{scheduler}\index{\textit{scheduler}}
+% TODO la task_struct è cambiata per qualche dettaglio vedi anche
+% http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
+% TODO completare la parte su quando viene chiamato lo scheduler.
+
+Come accennato in sez.~\ref{sec:intro_unix_struct} è lo \itindex{scheduler}
+\textit{scheduler} che decide quale processo mettere in esecuzione; esso viene
+eseguito ad ogni system call ed ad ogni interrupt,\footnote{più in una serie
+  di altre occasioni.} ma può essere anche attivato esplicitamente. Il timer
+di sistema provvede comunque a che esso sia invocato periodicamente; generando
+un interrupt periodico secondo la frequenza specificata dalla costante
+\const{HZ},\footnote{fino al kernel 2.4 il valore di \const{HZ} era 100 su
+  tutte le architetture tranne l'alpha, per cui era 1000, nel 2.6 è stato
+  portato a 1000 su tutte; dal 2.6.13 lo si può impostare in fase di
+  compilazione del kernel, con un default di 250 e valori possibili di 100,
+  250, 1000 e dal 2.6.20 anche 300 (che è divisibile per le frequenze di
+  refresh della televisione); occorre fare attenzione a non confondere questo
+  valore con quello dei \itindex{clock~tick} \textit{clock tick} (vedi
+  sez.~\ref{sec:sys_unix_time}).} definita in \file{asm/param.h}, ed il cui
+valore è espresso in Hertz.\footnote{a partire dal kernel 2.6.21 è stato
+  introdotto (a cura di Ingo Molnar) un meccanismo completamente diverso,
+  detto \textit{tickless}, in cui non c'è più una interruzione periodica con
+  frequenza prefissata, ma ad ogni chiamata del timer viene programmata
+  l'interruzione successiva sulla base di una stima; in questo modo si evita
+  di dover eseguire un migliaio di interruzioni al secondo anche su macchine
+  che non stanno facendo nulla, con un forte risparmio nell'uso dell'energia
+  da parte del processore che può essere messo in stato di sospensione anche
+  per lunghi periodi di tempo.}
+
+Ogni volta che viene eseguito, lo \itindex{scheduler} \textit{scheduler}
 effettua il calcolo delle priorità dei vari processi attivi (torneremo su
 questo in sez.~\ref{sec:proc_priority}) e stabilisce quale di essi debba
 essere posto in esecuzione fino alla successiva invocazione.
@@ -166,11 +181,11 @@ essere posto in esecuzione fino alla successiva invocazione.
 \subsection{Una panoramica sulle funzioni fondamentali}
 \label{sec:proc_handling_intro}
 
-In un sistema unix-like i processi vengono sempre creati da altri processi
-tramite la funzione \func{fork}; il nuovo processo (che viene chiamato
-\textsl{figlio}) creato dalla \func{fork} è una copia identica del processo
-processo originale (detto \textsl{padre}), ma ha un nuovo \acr{pid} e viene
-eseguito in maniera indipendente (le differenze fra padre e figlio sono
+Tradizionalmente in un sistema unix-like i processi vengono sempre creati da
+altri processi tramite la funzione \func{fork}; il nuovo processo (che viene
+chiamato \textsl{figlio}) creato dalla \func{fork} è una copia identica del
+processo processo originale (detto \textsl{padre}), ma ha un nuovo \acr{pid} e
+viene eseguito in maniera indipendente (le differenze fra padre e figlio sono
 affrontate in dettaglio in sez.~\ref{sec:proc_fork}).
 
 Se si vuole che il processo padre si fermi fino alla conclusione del processo
@@ -182,9 +197,9 @@ abbastanza limitata sulle cause della terminazione del processo figlio.
 Quando un processo ha concluso il suo compito o ha incontrato un errore non
 risolvibile esso può essere terminato con la funzione \func{exit} (si veda
 quanto discusso in sez.~\ref{sec:proc_conclusion}). La vita del processo però
-termina solo quando la notifica della sua conclusione viene ricevuta dal
-processo padre, a quel punto tutte le risorse allocate nel sistema ad esso
-associate vengono rilasciate.
+termina completamente solo quando la notifica della sua conclusione viene
+ricevuta dal processo padre, a quel punto tutte le risorse allocate nel
+sistema ad esso associate vengono rilasciate.
 
 Avere due processi che eseguono esattamente lo stesso codice non è molto
 utile, normalmente si genera un secondo processo per affidargli l'esecuzione
@@ -206,7 +221,6 @@ prima ritorna due volte (nel processo padre e nel figlio) mentre la seconda
 non ritorna mai (in quanto con essa viene eseguito un altro programma).
 
 
-
 \section{Le funzioni di base}% della gestione dei processi}
 \label{sec:proc_handling}
 
@@ -237,11 +251,13 @@ massimo di 32768.  Oltre questo valore l'assegnazione riparte dal numero pi
 basso disponibile a partire da un minimo di 300,\footnote{questi valori, fino
   al kernel 2.4.x, sono definiti dalla macro \const{PID\_MAX} in
   \file{threads.h} e direttamente in \file{fork.c}, con il kernel 2.5.x e la
-  nuova interfaccia per i thread creata da Ingo Molnar anche il meccanismo di
-  allocazione dei \acr{pid} è stato modificato.} che serve a riservare i
-\acr{pid} più bassi ai processi eseguiti direttamente dal kernel.  Per questo
-motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di avvio
-(\cmd{init}) ha sempre il \acr{pid} uguale a uno.
+  nuova interfaccia per i \itindex{thread} \textit{thread} creata da Ingo
+  Molnar anche il meccanismo di allocazione dei \acr{pid} è stato modificato;
+  il valore massimo è impostabile attraverso il file
+  \procfile{/proc/sys/kernel/pid\_max} e di default vale 32768.} che serve a
+riservare i \acr{pid} più bassi ai processi eseguiti direttamente dal kernel.
+Per questo motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di
+avvio (\cmd{init}) ha sempre il \acr{pid} uguale a uno.
 
 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
@@ -267,10 +283,9 @@ fig.~\ref{fig:proc_fork_code}, nel programma \file{ForkTest.c}.
 Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende un
 candidato per generare ulteriori indicatori associati al processo di cui
 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
-funzione \func{tmpname} (si veda sez.~\ref{sec:file_temp_file}) usa il
-\acr{pid} per generare un \index{\textit{pathname}}\textit{pathname} univoco,
-che non potrà essere replicato da un altro processo che usi la stessa
-funzione.
+funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
+\acr{pid} per generare un \itindex{pathname} \textit{pathname} univoco, che
+non potrà essere replicato da un altro processo che usi la stessa funzione.
 
 Tutti i processi figli dello stesso processo padre sono detti
 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
@@ -289,14 +304,22 @@ dell'identit
 affrontato in dettaglio in sez.~\ref{sec:proc_perms}.
 
 
-\subsection{La funzione \func{fork}}
+\subsection{La funzione \func{fork} e le funzioni di creazione dei processi}
 \label{sec:proc_fork}
 
 La funzione \funcd{fork} è la funzione fondamentale della gestione dei
-processi: come si è detto l'unico modo di creare un nuovo processo è
-attraverso l'uso di questa funzione, essa quindi riveste un ruolo centrale
-tutte le volte che si devono scrivere programmi che usano il multitasking.  Il
-prototipo della funzione è:
+processi: come si è detto tradizionalmente l'unico modo di creare un nuovo
+processo era attraverso l'uso di questa funzione,\footnote{in realtà oggi la
+  system call usata più comunemente da Linux per creare nuovi processi è
+  \func{clone} (vedi \ref{sec:process_clone}) , anche perché a partire dalle
+  \acr{glibc} 2.3.3 non viene più usata la system call originale, ma la stessa
+  \func{fork} viene implementata tramite \func{clone}, cosa che consente una
+  migliore interazione coi \textit{thread}.} essa quindi riveste un ruolo
+centrale tutte le volte che si devono scrivere programmi che usano il
+multitasking.\footnote{oggi questa rilevanza, con la diffusione dell'uso dei
+  \textit{thread} che tratteremo al cap.~\ref{cha:threads}, è in parte minore,
+  ma \func{fork} resta comunque la funzione principale per la creazione di
+  processi.} Il prototipo della funzione è:
 \begin{functions}
   \headdecl{sys/types.h} 
   \headdecl{unistd.h} 
@@ -318,22 +341,23 @@ prototipo della funzione 
 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
 il processo figlio continuano ad essere eseguiti normalmente a partire
 dall'istruzione successiva alla \func{fork}; il processo figlio è però una
-copia del padre, e riceve una copia dei segmenti di testo, stack e dati (vedi
+copia del padre, e riceve una copia dei \index{segmento!testo} segmenti di
+testo, \itindex{stack} \textit{stack} e \index{segmento!dati} dati (vedi
 sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del
 padre. Si tenga presente però che la memoria è copiata, non condivisa,
 pertanto padre e figlio vedono variabili diverse.
 
-Per quanto riguarda la gestione della memoria, in generale il segmento di
-testo, che è identico per i due processi, è condiviso e tenuto in read-only
-per il padre e per i figli. Per gli altri segmenti Linux utilizza la tecnica
-del \textit{copy on write}\index{\textit{copy~on~write}}; questa tecnica
-comporta che una pagina di memoria viene effettivamente copiata per il nuovo
-processo solo quando ci viene effettuata sopra una scrittura (e si ha quindi
-una reale differenza fra padre e figlio). In questo modo si rende molto più
-efficiente il meccanismo della creazione di un nuovo processo, non essendo più
-necessaria la copia di tutto lo spazio degli indirizzi virtuali del padre, ma
-solo delle pagine di memoria che sono state modificate, e solo al momento
-della modifica stessa.
+Per quanto riguarda la gestione della memoria, in generale il
+\index{segmento!testo} segmento di testo, che è identico per i due processi, è
+condiviso e tenuto in read-only per il padre e per i figli. Per gli altri
+segmenti Linux utilizza la tecnica del \itindex{copy~on~write} \textit{copy on
+  write}; questa tecnica comporta che una pagina di memoria viene
+effettivamente copiata per il nuovo processo solo quando ci viene effettuata
+sopra una scrittura (e si ha quindi una reale differenza fra padre e figlio).
+In questo modo si rende molto più efficiente il meccanismo della creazione di
+un nuovo processo, non essendo più necessaria la copia di tutto lo spazio
+degli indirizzi virtuali del padre, ma solo delle pagine di memoria che sono
+state modificate, e solo al momento della modifica stessa.
 
 La differenza che si ha nei due processi è che nel processo padre il valore di
 ritorno della funzione \func{fork} è il \acr{pid} del processo figlio, mentre
@@ -419,9 +443,7 @@ Se eseguiamo il comando\footnote{che 
 senza specificare attese (come si può notare in (\texttt{\small 17--19}) i
 valori predefiniti specificano di non attendere), otterremo come output sul
 terminale:
-
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ export LD_LIBRARY_PATH=./; ./forktest 3
 Process 1963: forking 3 child
 Spawned 1 child, pid 1964 
@@ -436,37 +458,54 @@ Child 3 successfully executing
 Child 3, parent 1963, exiting
 Spawned 3 child, pid 1966 
 Go to next child 
-\end{verbatim} %$
-\normalsize
+\end{Verbatim} 
+%$
 
 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
-si può dire quale processo fra il padre ed il figlio venga eseguito per
-primo\footnote{a partire dal kernel 2.5.2-pre10 è stato introdotto il nuovo
-  scheduler\index{\textit{scheduler}} di Ingo Molnar che esegue sempre per
-  primo il figlio; per mantenere la portabilità è opportuno non fare comunque
-  affidamento su questo comportamento.} dopo la chiamata a \func{fork};
-dall'esempio si può notare infatti come nei primi due cicli sia stato eseguito
-per primo il padre (con la stampa del \acr{pid} del nuovo processo) per poi
-passare all'esecuzione del figlio (completata con i due avvisi di esecuzione
-ed uscita), e tornare all'esecuzione del padre (con la stampa del passaggio al
-ciclo successivo), mentre la terza volta è stato prima eseguito il figlio
-(fino alla conclusione) e poi il padre.
+si può dire quale processo fra il padre ed il figlio venga eseguito per primo
+dopo la chiamata a \func{fork}; dall'esempio si può notare infatti come nei
+primi due cicli sia stato eseguito per primo il padre (con la stampa del
+\acr{pid} del nuovo processo) per poi passare all'esecuzione del figlio
+(completata con i due avvisi di esecuzione ed uscita), e tornare
+all'esecuzione del padre (con la stampa del passaggio al ciclo successivo),
+mentre la terza volta è stato prima eseguito il figlio (fino alla conclusione)
+e poi il padre.
 
 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
-scheduling usato dal kernel, dalla particolare situazione in cui si trova la
-macchina al momento della chiamata, risultando del tutto impredicibile.
-Eseguendo più volte il programma di prova e producendo un numero diverso di
-figli, si sono ottenute situazioni completamente diverse, compreso il caso in
-cui il processo padre ha eseguito più di una \func{fork} prima che uno dei
-figli venisse messo in esecuzione.
+\itindex{scheduler} scheduling usato dal kernel, dalla particolare situazione
+in cui si trova la macchina al momento della chiamata, risultando del tutto
+impredicibile.  Eseguendo più volte il programma di prova e producendo un
+numero diverso di figli, si sono ottenute situazioni completamente diverse,
+compreso il caso in cui il processo padre ha eseguito più di una \func{fork}
+prima che uno dei figli venisse messo in esecuzione.
 
 Pertanto non si può fare nessuna assunzione sulla sequenza di esecuzione delle
 istruzioni del codice fra padre e figli, né sull'ordine in cui questi potranno
 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
-rischio di incorrere nelle cosiddette 
-\textit{race condition}\index{\textit{race~condition}} 
-(vedi sez.~\ref{sec:proc_race_cond}).
+rischio di incorrere nelle cosiddette \itindex{race~condition} \textit{race
+  condition} (vedi sez.~\ref{sec:proc_race_cond}).
+
+In realtà a partire dal kernel 2.5.2-pre10 il nuovo \itindex{scheduler}
+\textit{scheduler} di Ingo Molnar esegue sempre per primo il
+figlio;\footnote{i risultati precedenti sono stati ottenuti usando un kernel
+  della serie 2.4.}  questa è una ottimizzazione che serve a evitare che il
+padre, effettuando per primo una operazione di scrittura in memoria, attivi il
+meccanismo del \itindex{copy~on~write} \textit{copy on write}. Questa
+operazione infatti potrebbe risultare del tutto inutile qualora il figlio
+fosse stato creato solo per eseguire una \func{exec}, in tal caso infatti si
+invocherebbe un altro programma scartando completamente lo spazio degli
+indirizzi, rendendo superflua la copia della memoria modificata dal padre.
+
+% TODO spiegare l'ulteriore cambiamento in ponte con il 2.6.32, che fa girare
+% prima il padre per questioni di caching nella CPU
+
+Eseguendo sempre per primo il figlio la \func{exec} verrebbe effettuata subito
+avendo così la certezza che il \itindex{copy~on~write} \textit{copy on write}
+viene utilizzato solo quando necessario. Quanto detto in precedenza vale
+allora soltanto per i kernel fino al 2.4; per mantenere la portabilità è però
+opportuno non fare affidamento su questo comportamento, che non si riscontra
+in altri Unix e nelle versioni del kernel precedenti a quella indicata.
 
 Si noti inoltre che essendo i segmenti di memoria utilizzati dai singoli
 processi completamente separati, le modifiche delle variabili nei processi
@@ -479,9 +518,7 @@ Un secondo aspetto molto importante nella creazione dei processi figli 
 quello dell'interazione dei vari processi con i file; per illustrarlo meglio
 proviamo a redirigere su un file l'output del nostro programma di test, quello
 che otterremo è:
-
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ./forktest 3 > output
 [piccardi@selidor sources]$ cat output
 Process 1967: forking 3 child
@@ -506,8 +543,7 @@ Spawned 2 child, pid 1969
 Go to next child 
 Spawned 3 child, pid 1970 
 Go to next child 
-\end{verbatim}
-\normalsize
+\end{Verbatim}
 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
 
 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
@@ -527,7 +563,7 @@ ogni figlio riceve una copia della memoria del padre, esso ricever
 quanto c'è nel buffer delle funzioni di I/O, comprese le linee scritte dal
 padre fino allora. Così quando il buffer viene scritto su disco all'uscita del
 figlio, troveremo nel file anche tutto quello che il processo padre aveva
-scritto prima della sua creazione.  E alla fine del file (dato che in questo
+scritto prima della sua creazione. E alla fine del file (dato che in questo
 caso il padre esce per ultimo) troveremo anche l'output completo del padre.
 
 L'esempio ci mostra un altro aspetto fondamentale dell'interazione con i file,
@@ -538,33 +574,33 @@ sez.~\ref{sec:file_sharing}), ma anche che, a differenza di quanto avviene per
 le variabili, la posizione corrente sul file è condivisa fra il padre e tutti
 i processi figli.
 
-Quello che succede è che quando lo standard output del padre viene rediretto,
-lo stesso avviene anche per tutti i figli; la funzione \func{fork} infatti ha
-la caratteristica di duplicare nei figli tutti i file descriptor aperti nel
-padre (allo stesso modo in cui lo fa la funzione \func{dup}, trattata in
-sez.~\ref{sec:file_dup}), il che comporta che padre e figli condividono le
-stesse voci della \textit{file table} (per la spiegazione di questi termini si
-veda sez.~\ref{sec:file_sharing}) fra cui c'è anche la posizione corrente nel
-file.
+Quello che succede è che quando lo standard output del padre viene rediretto
+come si è fatto nell'esempio, lo stesso avviene anche per tutti i figli; la
+funzione \func{fork} infatti ha la caratteristica di duplicare nei processi
+figli tutti i file descriptor aperti nel processo padre (allo stesso modo in
+cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}), il che
+comporta che padre e figli condividono le stesse voci della
+\itindex{file~table} \textit{file table} (per la spiegazione di questi termini
+si veda sez.~\ref{sec:file_sharing}) fra cui c'è anche la posizione corrente
+nel file.
 
 In questo modo se un processo scrive sul file aggiornerà la posizione corrente
-sulla \textit{file table}, e tutti gli altri processi, che vedono la stessa
-\textit{file table}, vedranno il nuovo valore. In questo modo si evita, in
-casi come quello appena mostrato in cui diversi processi scrivono sullo stesso
-file, che l'output successivo di un processo vada a sovrapporsi a quello dei
-precedenti: l'output potrà risultare mescolato, ma non ci saranno parti
-perdute per via di una sovrascrittura.
+sulla \itindex{file~table} \textit{file table}, e tutti gli altri processi,
+che vedono la stessa \itindex{file~table} \textit{file table}, vedranno il
+nuovo valore. In questo modo si evita, in casi come quello appena mostrato in
+cui diversi processi scrivono sullo stesso file, che l'output successivo di un
+processo vada a sovrapporsi a quello dei precedenti: l'output potrà risultare
+mescolato, ma non ci saranno parti perdute per via di una sovrascrittura.
 
 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
-scrivono sullo stesso file (un caso tipico è la shell quando lancia un
-programma, il cui output va sullo standard output). 
-
-In questo modo, anche se l'output viene rediretto, il padre potrà sempre
-continuare a scrivere in coda a quanto scritto dal figlio in maniera
-automatica; se così non fosse ottenere questo comportamento sarebbe
-estremamente complesso necessitando di una qualche forma di comunicazione fra
-i due processi per far riprendere al padre la scrittura al punto giusto.
+scrivono sullo stesso file; un caso tipico è la shell quando lancia un
+programma, il cui output va sullo standard output.  In questo modo, anche se
+l'output viene rediretto, il padre potrà sempre continuare a scrivere in coda
+a quanto scritto dal figlio in maniera automatica; se così non fosse ottenere
+questo comportamento sarebbe estremamente complesso necessitando di una
+qualche forma di comunicazione fra i due processi per far riprendere al padre
+la scrittura al punto giusto.
 
 In generale comunque non è buona norma far scrivere più processi sullo stesso
 file senza una qualche forma di sincronizzazione in quanto, come visto anche
@@ -585,47 +621,62 @@ Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
 comune dopo l'esecuzione di una \func{fork} è la seguente:
 \begin{itemize*}
-\item i file aperti e gli eventuali flag di
-  \textit{close-on-exec}\index{\textit{close-on-exec}} impostati (vedi
-  sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl});
+\item i file aperti e gli eventuali flag di \itindex{close-on-exec}
+  \textit{close-on-exec} impostati (vedi sez.~\ref{sec:proc_exec} e
+  sez.~\ref{sec:file_fcntl});
 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
   \textsl{group-ID effettivo} ed i \textit{group-ID supplementari} (vedi
   sez.~\ref{sec:proc_access_id});
-\item gli identificatori per il controllo di sessione: il \textit{process
-    group-ID} e il \textit{session id} ed il terminale di controllo (vedi
-  sez.~\ref{sec:sess_proc_group});
+\item gli identificatori per il controllo di sessione: il
+  \itindex{process~group} \textit{process group-ID} e il \textit{session id}
+  ed il terminale di controllo (vedi sez.~\ref{sec:sess_proc_group});
 \item la directory di lavoro e la directory radice (vedi
   sez.~\ref{sec:file_work_dir} e sez.~\ref{sec:file_chroot});
-\item la maschera dei permessi di creazione (vedi sez.~\ref{sec:file_umask});
+\item la maschera dei permessi di creazione dei file (vedi
+  sez.~\ref{sec:file_perm_management});
 \item la maschera dei segnali bloccati (vedi sez.~\ref{sec:sig_sigmask}) e le
   azioni installate (vedi sez.~\ref{sec:sig_gen_beha});
 \item i segmenti di memoria condivisa agganciati al processo (vedi
   sez.~\ref{sec:ipc_sysv_shm});
 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
-\item le priorità real-time e le affinità di processore (vedi
-  sez.~\ref{sec:proc_real_time});
+\item il valori di \textit{nice}, le priorità real-time e le affinità di
+  processore (vedi sez.~\ref{sec:proc_sched_stand},
+  sez.~\ref{sec:proc_real_time} e sez.~\ref{sec:proc_sched_multiprocess});
 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
 \end{itemize*}
-Le differenze fra padre e figlio dopo la \func{fork} invece sono:
+Le differenze fra padre e figlio dopo la \func{fork} invece sono:\footnote{a
+  parte le ultime quattro, relative a funzionalità specifiche di Linux, le
+  altre sono esplicitamente menzionate dallo standard POSIX.1-2001.}
 \begin{itemize*}
 \item il valore di ritorno di \func{fork};
-\item il \acr{pid} (\textit{process id});
+\item il \acr{pid} (\textit{process id}), assegnato ad un nuovo valore univoco;
 \item il \acr{ppid} (\textit{parent process id}), quello del figlio viene
   impostato al \acr{pid} del padre;
-\item i valori dei tempi di esecuzione della struttura \struct{tms} (vedi
-  sez.~\ref{sec:sys_cpu_times}) che nel figlio sono posti a zero;
-\item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}), che non
-  vengono ereditati dal figlio;
-\item gli allarmi ed i segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
-  per il figlio vengono cancellati.
+\item i valori dei tempi di esecuzione (vedi sez.~\ref{sec:sys_cpu_times}) e
+  delle risorse usate (vedi sez.~\ref{sec:sys_resource_use}), che nel figlio
+  sono posti a zero;
+\item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}) e sulla
+  memoria (vedi sez.~\ref{sec:proc_mem_lock}), che non vengono ereditati dal
+  figlio;
+\item gli allarmi (vedi sez.~\ref{sec:sig_alarm_abort}) ed i segnali pendenti
+  (vedi sez.~\ref{sec:sig_gen_beha}), che per il figlio vengono cancellati.
+\item le operazioni di I/O asincrono in corso (vedi
+  sez.~\ref{sec:file_asyncronous_io}) che non vengono ereditate dal figlio;
+\item gli aggiustamenti fatti dal padre ai semafori con \func{semop} (vedi
+  sez.~\ref{sec:ipc_sysv_sem}).
+\item le notifiche sui cambiamenti delle directory con \textit{dnotify} (vedi
+  sez.~\ref{sec:sig_notification}), che non vengono ereditate dal figlio;
+\item le mappature di memoria marcate come \const{MADV\_DONTFORK} (vedi
+  sez.~\ref{sec:file_memory_map}) che non vengono ereditate dal figlio;
+\item l'impostazione con \func{prctl} (vedi sez.~\ref{sec:prctl_xxx}) che
+  notifica al figlio la terminazione del padre viene cancellata;
+\item il segnale di terminazione del figlio è sempre \const{SIGCHLD} anche
+  qualora nel padre fosse stato modificato (vedi sez.~\ref{sec:process_clone}). 
 \end{itemize*}
 
-
-\subsection{La funzione \func{vfork}}
-\label{sec:proc_vfork}
-
-La funzione \func{vfork} è esattamente identica a \func{fork} ed ha la stessa
+Una seconda funzione storica usata per la creazione di un nuovo processo è
+\func{vfork}, che è esattamente identica a \func{fork} ed ha la stessa
 semantica e gli stessi errori; la sola differenza è che non viene creata la
 tabella delle pagine né la struttura dei task per il nuovo processo. Il
 processo padre è posto in attesa fintanto che il figlio non ha eseguito una
@@ -639,11 +690,11 @@ padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
 venne introdotta in BSD per migliorare le prestazioni.
 
-Dato che Linux supporta il \textit{copy on
-  write}\index{\textit{copy~on~write}} la perdita di prestazioni è
-assolutamente trascurabile, e l'uso di questa funzione (che resta un caso
-speciale della system call \func{\_\_clone}) è deprecato; per questo eviteremo
-di trattarla ulteriormente.
+Dato che Linux supporta il \itindex{copy~on~write} \textit{copy on write} la
+perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
+funzione, che resta un caso speciale della system call \func{clone} (che
+tratteremo in dettaglio in sez.~\ref{sec:process_clone}) è deprecato; per
+questo eviteremo di trattarla ulteriormente.
 
 
 \subsection{La conclusione di un processo}
@@ -664,9 +715,9 @@ terminazione del processo da parte del kernel).
 Ma abbiamo accennato che oltre alla conclusione normale esistono anche delle
 modalità di conclusione anomala; queste sono in sostanza due: il programma può
 chiamare la funzione \func{abort} per invocare una chiusura anomala, o essere
-terminato da un segnale.  In realtà anche la prima modalità si riconduce alla
-seconda, dato che \func{abort} si limita a generare il segnale
-\const{SIGABRT}.
+terminato da un segnale (torneremo sui segnali in cap.~\ref{cha:signals}).  In
+realtà anche la prima modalità si riconduce alla seconda, dato che
+\func{abort} si limita a generare il segnale \const{SIGABRT}.
 
 Qualunque sia la modalità di conclusione di un processo, il kernel esegue
 comunque una serie di operazioni: chiude tutti i file aperti, rilascia la
@@ -715,8 +766,8 @@ La scelta di riportare al padre lo stato di terminazione dei figli, pur
 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
 alla sua creazione è scontato che ogni nuovo processo ha un padre, non è detto
 che sia così alla sua conclusione, dato che il padre potrebbe essere già
-terminato (si potrebbe avere cioè quello che si chiama un processo
-\textsl{orfano})
+terminatosi potrebbe avere cioè quello che si chiama un processo
+\textsl{orfano}. 
 
 Questa complicazione viene superata facendo in modo che il processo orfano
 venga \textsl{adottato} da \cmd{init}. Come già accennato quando un processo
@@ -727,9 +778,7 @@ avr
 cui riportare il suo stato di terminazione.  Come verifica di questo
 comportamento possiamo eseguire il nostro programma \cmd{forktest} imponendo a
 ciascun processo figlio due secondi di attesa prima di uscire, il risultato è:
-
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ./forktest -c2 3
 Process 1972: forking 3 child
 Spawned 1 child, pid 1973 
@@ -744,8 +793,7 @@ Go to next child
 [piccardi@selidor sources]$ Child 3, parent 1, exiting
 Child 2, parent 1, exiting
 Child 1, parent 1, exiting
-\end{verbatim}
-\normalsize
+\end{Verbatim}
 come si può notare in questo caso il processo padre si conclude prima dei
 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
 secondi dopo viene stampato a video anche l'output dei tre figli che
@@ -762,7 +810,7 @@ memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
 dal processo (vedi sez.~\ref{sec:sys_unix_time}) e lo stato di terminazione,
 mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. I
 processi che sono terminati, ma il cui stato di terminazione non è stato
-ancora ricevuto dal padre sono chiamati \textit{zombie}\index{zombie}, essi
+ancora ricevuto dal padre sono chiamati \index{zombie} \textit{zombie}, essi
 restano presenti nella tabella dei processi ed in genere possono essere
 identificati dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella
 colonna che ne indica lo stato (vedi tab.~\ref{tab:proc_proc_states}). Quando
@@ -775,9 +823,7 @@ condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
 sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
 secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso
 terminale (prima dello scadere dei 10 secondi) otterremo:
-
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ps T
   PID TTY      STAT   TIME COMMAND
   419 pts/0    S      0:00 bash
@@ -786,40 +832,43 @@ terminale (prima dello scadere dei 10 secondi) otterremo:
   570 pts/0    Z      0:00 [forktest <defunct>]
   571 pts/0    Z      0:00 [forktest <defunct>]
   572 pts/0    R      0:00 ps T
-\end{verbatim} %$
-\normalsize e come si vede, dato che non si è fatto nulla per riceverne lo
+\end{Verbatim} 
+%$
+e come si vede, dato che non si è fatto nulla per riceverne lo
 stato di terminazione, i tre processi figli sono ancora presenti pur essendosi
-conclusi, con lo stato di zombie\index{zombie} e l'indicazione che sono stati
-terminati.
-
-La possibilità di avere degli zombie\index{zombie} deve essere tenuta sempre
-presente quando si scrive un programma che deve essere mantenuto in esecuzione
-a lungo e creare molti figli. In questo caso si deve sempre avere cura di far
-leggere l'eventuale stato di uscita di tutti i figli (in genere questo si fa
-attraverso un apposito \textit{signal handler}, che chiama la funzione
-\func{wait}, vedi sez.~\ref{sec:sig_sigchld} e sez.~\ref{sec:proc_wait}).
-Questa operazione è necessaria perché anche se gli
-\textit{zombie}\index{zombie} non consumano risorse di memoria o processore,
+conclusi, con lo stato di \index{zombie} \textit{zombie} e l'indicazione che
+sono stati terminati.
+
+La possibilità di avere degli \index{zombie} \textit{zombie} deve essere
+tenuta sempre presente quando si scrive un programma che deve essere mantenuto
+in esecuzione a lungo e creare molti figli. In questo caso si deve sempre
+avere cura di far leggere l'eventuale stato di uscita di tutti i figli (in
+genere questo si fa attraverso un apposito \textit{signal handler}, che chiama
+la funzione \func{wait}, vedi sez.~\ref{sec:sig_sigchld} e
+sez.~\ref{sec:proc_wait}).  Questa operazione è necessaria perché anche se gli
+\index{zombie} \textit{zombie} non consumano risorse di memoria o processore,
 occupano comunque una voce nella tabella dei processi, che a lungo andare
 potrebbe esaurirsi.
 
 Si noti che quando un processo adottato da \cmd{init} termina, esso non
-diviene uno \textit{zombie}\index{zombie}; questo perché una delle funzioni di
-\cmd{init} è appunto quella di chiamare la funzione \func{wait} per i processi
-cui fa da padre, completandone la terminazione. Questo è quanto avviene anche
-quando, come nel caso del precedente esempio con \cmd{forktest}, il padre
-termina con dei figli in stato di zombie\index{zombie}: alla sua terminazione
-infatti tutti i suoi figli (compresi gli zombie\index{zombie}) verranno
-adottati da \cmd{init}, il quale provvederà a completarne la terminazione.
-
-Si tenga presente infine che siccome gli zombie\index{zombie} sono processi
-già usciti, non c'è modo di eliminarli con il comando \cmd{kill}; l'unica
-possibilità di cancellarli dalla tabella dei processi è quella di terminare il
-processo che li ha generati, in modo che \cmd{init} possa adottarli e
-provvedere a concluderne la terminazione.
-
-
-\subsection{Le funzioni \func{wait} e  \func{waitpid}}
+diviene uno \index{zombie} \textit{zombie}; questo perché una delle funzioni
+di \cmd{init} è appunto quella di chiamare la funzione \func{wait} per i
+processi cui fa da padre, completandone la terminazione. Questo è quanto
+avviene anche quando, come nel caso del precedente esempio con \cmd{forktest},
+il padre termina con dei figli in stato di \index{zombie} \textit{zombie}:
+alla sua terminazione infatti tutti i suoi figli (compresi gli \index{zombie}
+\textit{zombie}) verranno adottati da \cmd{init}, il quale provvederà a
+completarne la terminazione.
+
+Si tenga presente infine che siccome gli \index{zombie} \textit{zombie} sono
+processi già usciti, non c'è modo di eliminarli con il comando \cmd{kill};
+l'unica possibilità di cancellarli dalla tabella dei processi è quella di
+terminare il processo che li ha generati, in modo che \cmd{init} possa
+adottarli e provvedere a concluderne la terminazione.
+
+
+\subsection{La funzione \func{waitpid} e le funzioni di ricezione degli stati
+  di uscita}
 \label{sec:proc_wait}
 
 Uno degli usi più comuni delle capacità multitasking di un sistema unix-like
@@ -827,8 +876,8 @@ consiste nella creazione di programmi di tipo server, in cui un processo
 principale attende le richieste che vengono poi soddisfatte da una serie di
 processi figli. Si è già sottolineato al paragrafo precedente come in questo
 caso diventi necessario gestire esplicitamente la conclusione dei figli onde
-evitare di riempire di \textit{zombie}\index{zombie} la tabella dei processi;
-le funzioni deputate a questo compito sono sostanzialmente due, \funcd{wait} e
+evitare di riempire di \index{zombie} \textit{zombie} la tabella dei processi;
+le funzioni deputate a questo compito sono principalmente due, \funcd{wait} e
 \func{waitpid}. La prima, il cui prototipo è:
 \begin{functions}
 \headdecl{sys/types.h}
@@ -867,8 +916,10 @@ Per questo motivo lo standard POSIX.1 ha introdotto la funzione
 \funcd{waitpid} che effettua lo stesso servizio, ma dispone di una serie di
 funzionalità più ampie, legate anche al controllo di sessione (si veda
 sez.~\ref{sec:sess_job_control}).  Dato che è possibile ottenere lo stesso
-comportamento di \func{wait} si consiglia di utilizzare sempre questa
-funzione, il cui prototipo è:
+comportamento di \func{wait}\footnote{in effetti il codice
+  \code{wait(\&status)} è del tutto equivalente a \code{waitpid(WAIT\_ANY,
+    \&status, 0)}.} si consiglia di utilizzare sempre questa funzione, il cui
+prototipo è:
 \begin{functions}
 \headdecl{sys/types.h}
 \headdecl{sys/wait.h}
@@ -879,37 +930,42 @@ Attende la conclusione di un processo figlio.
   è stata specificata l'opzione \const{WNOHANG} e il processo non è uscito e
   -1 per un errore, nel qual caso \var{errno} assumerà i valori:
   \begin{errlist}
-  \item[\errcode{EINTR}] se non è stata specificata l'opzione \const{WNOHANG} e
+  \item[\errcode{EINTR}] non è stata specificata l'opzione \const{WNOHANG} e
     la funzione è stata interrotta da un segnale.
   \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
     non è figlio del processo chiamante.
+  \item[\errcode{EINVAL}] si è specificato un valore non valido per
+    l'argomento \param{options}.
   \end{errlist}}
 \end{functions}
 
-Le differenze principali fra le due funzioni sono che \func{wait} si blocca
-sempre fino a che un processo figlio non termina, mentre \func{waitpid} ha la
-possibilità si specificare un'opzione \const{WNOHANG} che ne previene il
-blocco; inoltre \func{waitpid} può specificare in maniera flessibile quale
-processo attendere, sulla base del valore fornito dall'argomento \param{pid},
-secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}.
+La prima differenza fra le due funzioni è che con \func{waitpid} si può
+specificare in maniera flessibile quale processo attendere, sulla base del
+valore fornito dall'argomento \param{pid}, questo può assumere diversi valori,
+secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}, dove si
+sono riportate anche le costanti definite per indicare alcuni di essi.
 
 \begin{table}[!htb]
   \centering
   \footnotesize
   \begin{tabular}[c]{|c|c|p{8cm}|}
     \hline
-    \textbf{Valore} & \textbf{Opzione} &\textbf{Significato}\\
+    \textbf{Valore} & \textbf{Costante} &\textbf{Significato}\\
     \hline
     \hline
-    $<-1$& -- & attende per un figlio il cui \textit{process group} (vedi
-    sez.~\ref{sec:sess_proc_group}) è uguale al
-    valore assoluto di \param{pid}. \\
-    $-1$ & \const{WAIT\_ANY} & attende per un figlio qualsiasi, usata in
-    questa maniera è equivalente a \func{wait}.\\ 
-    $0$  & \const{WAIT\_MYPGRP} & attende per un figlio il cui \textit{process
-    group} è uguale a quello del processo chiamante. \\
-    $>0$ & -- &attende per un figlio il cui \acr{pid} è uguale al
-    valore di \param{pid}.\\
+    $<-1$& --               & Attende per un figlio il cui
+                              \itindex{process~group} \textit{process group}
+                              (vedi sez.~\ref{sec:sess_proc_group}) è uguale
+                              al valore assoluto di \param{pid}. \\ 
+    $-1$&\const{WAIT\_ANY}  & Attende per un figlio qualsiasi, usata in
+                              questa maniera senza specificare nessuna opzione
+                              è equivalente a \func{wait}.\\ 
+    $ 0$&\const{WAIT\_MYPGRP}&Attende per un figlio il cui
+                              \itindex{process~group} \textit{process group}
+                              (vedi sez.~\ref{sec:sess_proc_group}) è
+                              uguale a quello del processo chiamante. \\ 
+    $>0$& --                & Attende per un figlio il cui \acr{pid} è uguale
+                              al valore di \param{pid}.\\
     \hline
   \end{tabular}
   \caption{Significato dei valori dell'argomento \param{pid} della funzione
@@ -917,45 +973,106 @@ secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}.
   \label{tab:proc_waidpid_pid}
 \end{table}
 
-Il comportamento di \func{waitpid} può inoltre essere modificato passando
-delle opportune opzioni tramite l'argomento \param{option}. I valori possibili
-sono il già citato \const{WNOHANG}, che previene il blocco della funzione
-quando il processo figlio non è terminato, e \const{WUNTRACED} che permette di
-tracciare i processi bloccati.  Il valore dell'opzione deve essere specificato
-come maschera binaria ottenuta con l'OR delle suddette costanti con zero.
-
-In genere si utilizza \const{WUNTRACED} all'interno del controllo di sessione,
-(l'argomento è trattato in sez.~\ref{sec:sess_job_control}). In tal caso
-infatti la funzione ritorna, restituendone il \acr{pid}, quando c'è un
-processo figlio che è entrato in stato di sleep (vedi
-tab.~\ref{tab:proc_proc_states}) e del quale non si è ancora letto lo stato
-(con questa stessa opzione). In Linux sono previste altre opzioni non standard
-relative al comportamento con i thread, che riprenderemo in
-sez.~\ref{sec:thread_xxx}.
-
-La terminazione di un processo figlio è chiaramente un evento asincrono
-rispetto all'esecuzione di un programma e può avvenire in un qualunque
-momento. Per questo motivo, come accennato nella sezione precedente, una delle
-azioni prese dal kernel alla conclusione di un processo è quella di mandare un
-segnale di \const{SIGCHLD} al padre. L'azione predefinita (si veda
+Il comportamento di \func{waitpid} può inoltre essere modificato passando alla
+funzione delle opportune opzioni tramite l'argomento \param{options}; questo
+deve essere specificato come maschera binaria dei flag riportati nella prima
+parte in tab.~\ref{tab:proc_waitpid_options} che possono essere combinati fra
+loro con un OR aritmetico. Nella seconda parte della stessa tabella si sono
+riportati anche alcuni valori non standard specifici di Linux, che consentono
+un controllo più dettagliato per i processi creati con la system call generica
+\func{clone} (vedi sez.~\ref{sec:process_clone}) usati principalmente per la
+gestione della terminazione dei \itindex{thread} \textit{thread} (vedi
+sez.~\ref{sec:thread_xxx}).
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{8cm}|}
+    \hline
+    \textbf{Macro} & \textbf{Descrizione}\\
+    \hline
+    \hline
+    \const{WNOHANG}   & La funzione ritorna immediatamente anche se non è
+                        terminato nessun processo figlio. \\
+    \const{WUNTRACED} & Ritorna anche se un processo figlio è stato fermato. \\
+    \const{WCONTINUED}& Ritorna anche quando un processo figlio che era stato
+                        fermato ha ripreso l'esecuzione.\footnotemark \\
+    \hline
+    \const{\_\_WCLONE}& Attende solo per i figli creati con \func{clone},
+                        vale a dire processi che non emettono nessun segnale
+                        o emettono un segnale diverso da \const{SIGCHL} alla
+                        terminazione. \\
+    \const{\_\_WALL}  & Attende per qualunque processo figlio. \\
+    \const{\_\_WNOTHREAD}& Non attende per i figli di altri \textit{thread}
+                        dello stesso gruppo. \\
+    \hline
+  \end{tabular}
+  \caption{Costanti che identificano i bit dell'argomento \param{options}
+    della funzione \func{waitpid}.} 
+  \label{tab:proc_waitpid_options}
+\end{table}
+
+\footnotetext{disponibile solo a partire dal kernel 2.6.10.}
+
+L'uso dell'opzione \const{WNOHANG} consente di prevenire il blocco della
+funzione qualora nessun figlio sia uscito (o non si siano verificate le altre
+condizioni per l'uscita della funzione); in tal caso la funzione ritornerà un
+valore nullo anziché positivo.\footnote{anche in questo caso un valore
+  positivo indicherà il \acr{pid} del processo di cui si è ricevuto lo stato
+  ed un valore negativo un errore.}
+
+Le altre due opzioni \const{WUNTRACED} e \const{WCONTINUED} consentono
+rispettivamente di tracciare non la terminazione di un processo, ma il fatto
+che esso sia stato fermato, o fatto ripartire, e sono utilizzate per la
+gestione del controllo di sessione (vedi sez.~\ref{sec:sess_job_control}).
+
+Nel caso di \const{WUNTRACED} la funzione ritorna, restituendone il \acr{pid},
+quando un processo figlio entra nello stato \textit{stopped}\footnote{in
+  realtà viene notificato soltanto il caso in cui il processo è stato fermato
+  da un segnale di stop (vedi sez.~\ref{sec:sess_ctrl_term}), e non quello in
+  cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace} (vedi
+  sez.~\ref{sec:xxx_ptrace}).} (vedi tab.~\ref{tab:proc_proc_states}), mentre
+con \const{WCONTINUED} la funzione ritorna quando un processo in stato
+\textit{stopped} riprende l'esecuzione per la ricezione del segnale
+\const{SIGCONT} (l'uso di questi segnali per il controllo di sessione è
+dettagliato in sez.~\ref{sec:sess_ctrl_term}). 
+
+La terminazione di un processo figlio (così come gli altri eventi osservabili
+con \func{waitpid}) è chiaramente un evento asincrono rispetto all'esecuzione
+di un programma e può avvenire in un qualunque momento. Per questo motivo,
+come accennato nella sezione precedente, una delle azioni prese dal kernel
+alla conclusione di un processo è quella di mandare un segnale di
+\const{SIGCHLD} al padre. L'azione predefinita (si veda
 sez.~\ref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
 generazione costituisce il meccanismo di comunicazione asincrona con cui il
 kernel avverte il processo padre che uno dei suoi figli è terminato.
 
-In genere in un programma non si vuole essere forzati ad attendere la
-conclusione di un processo per proseguire, specie se tutto questo serve solo
-per leggerne lo stato di chiusura (ed evitare la presenza di
-\textit{zombie}\index{zombie}), per questo la modalità più usata per chiamare
-queste funzioni è quella di utilizzarle all'interno di un \textit{signal
-  handler} (vedremo un esempio di come gestire \const{SIGCHLD} con i segnali
-in sez.~\ref{sec:sig_example}). In questo caso infatti, dato che il segnale è
-generato dalla terminazione di un figlio, avremo la certezza che la chiamata a
-\func{wait} non si bloccherà.
+Il comportamento delle funzioni è però cambiato nel passaggio dal kernel 2.4
+al kernel 2.6, quest'ultimo infatti si è adeguato alle prescrizioni dello
+standard POSIX.1-2001,\footnote{una revisione del 2001 dello standard POSIX.1
+  che ha aggiunto dei requisiti e delle nuove funzioni, come \func{waitid}.}
+e come da esso richiesto se \const{SIGCHLD} viene ignorato, o se si imposta il
+flag di \const{SA\_NOCLDSTOP} nella ricezione dello stesso (si veda
+sez.~\ref{sec:sig_sigaction}) i processi figli che terminano non diventano
+\textit{zombie} e sia \func{wait} che \func{waitpid} si bloccano fintanto che
+tutti i processi figli non sono terminati, dopo di che falliscono con un
+errore di \errcode{ENOCHLD}.\footnote{questo è anche il motivo per cui le
+  opzioni \const{WUNTRACED} e \const{WCONTINUED} sono utilizzabili soltanto
+  qualora non si sia impostato il flag di \const{SA\_NOCLDSTOP} per il segnale
+  \const{SIGCHLD}.}
+
+Con i kernel della serie 2.4 e tutti i kernel delle serie precedenti entrambe
+le funzioni di attesa ignorano questa prescrizione\footnote{lo standard POSIX.1
+  originale infatti lascia indefinito il comportamento di queste funzioni
+  quando \const{SIGCHLD} viene ignorato.} e si comportano sempre nello stesso
+modo, indipendentemente dal fatto \const{SIGCHLD} sia ignorato o meno:
+attendono la terminazione di un processo figlio e ritornano il relativo
+\acr{pid} e lo stato di terminazione nell'argomento \param{status}.
 
 \begin{table}[!htb]
   \centering
   \footnotesize
-  \begin{tabular}[c]{|c|p{10cm}|}
+  \begin{tabular}[c]{|l|p{10cm}|}
     \hline
     \textbf{Macro} & \textbf{Descrizione}\\
     \hline
@@ -965,28 +1082,33 @@ generato dalla terminazione di un figlio, avremo la certezza che la chiamata a
     \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello
                              stato di uscita del processo (passato attraverso
                              \func{\_exit}, \func{exit} o come valore di
-                             ritorno di \func{main}). Può essere valutata solo
+                             ritorno di \func{main}); può essere valutata solo
                              se \val{WIFEXITED} ha restituito un valore non
                              nullo.\\ 
-    \macro{WIFSIGNALED(s)} & Vera se il processo figlio è terminato
+    \macro{WIFSIGNALED(s)} & Condizione vera se il processo figlio è terminato
                              in maniera anomala a causa di un segnale che non
                              è stato catturato (vedi
                              sez.~\ref{sec:sig_notification}).\\ 
     \macro{WTERMSIG(s)}    & Restituisce il numero del segnale che ha causato
-                             la terminazione anomala del processo.  Può essere
+                             la terminazione anomala del processo; può essere
                              valutata solo se \val{WIFSIGNALED} ha restituito
                              un valore non nullo.\\ 
     \macro{WCOREDUMP(s)}   & Vera se il processo terminato ha generato un
-                             file di \textit{core dump}. Può essere valutata
-                             solo se \val{WIFSIGNALED} ha restituito un valore
-                             non nullo.\footnotemark \\ 
+                             file di \itindex{core~dump} \textit{core
+                               dump}; può essere valutata solo se
+                             \val{WIFSIGNALED} ha restituito un valore non
+                             nullo.\footnotemark \\
     \macro{WIFSTOPPED(s)}  & Vera se il processo che ha causato il ritorno di
-                             \func{waitpid} è bloccato. L'uso è possibile solo
-                             avendo specificato l'opzione \const{WUNTRACED}. \\
+                             \func{waitpid} è bloccato; l'uso è possibile solo
+                             con \func{waitpid} avendo specificato l'opzione
+                             \const{WUNTRACED}.\\
     \macro{WSTOPSIG(s)}    & Restituisce il numero del segnale che ha bloccato
-                             il processo. Può essere valutata solo se
+                             il processo; può essere valutata solo se
                              \val{WIFSTOPPED} ha restituito un valore non
                              nullo. \\ 
+    \macro{WIFCONTINUED(s)}& Vera se il processo che ha causato il ritorno è
+                             stato riavviato da un
+                             \const{SIGCONT}.\footnotemark  \\ 
     \hline
   \end{tabular}
   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
@@ -994,42 +1116,180 @@ generato dalla terminazione di un figlio, avremo la certezza che la chiamata a
   \label{tab:proc_status_macro}
 \end{table}
 
-\footnotetext{questa macro non è definita dallo standard POSIX.1, ma è
-    presente come estensione sia in Linux che in altri Unix.}
-
-Entrambe le funzioni di attesa restituiscono lo stato di terminazione del
-processo tramite il puntatore \param{status} (se non interessa memorizzare lo
-stato si può passare un puntatore nullo). Il valore restituito da entrambe le
-funzioni dipende dall'implementazione, e tradizionalmente alcuni bit (in
-genere 8) sono riservati per memorizzare lo stato di uscita, e altri per
-indicare il segnale che ha causato la terminazione (in caso di conclusione
-anomala), uno per indicare se è stato generato un core file, ecc.\footnote{le
+\footnotetext[20]{questa macro non è definita dallo standard POSIX.1-2001, ma è
+  presente come estensione sia in Linux che in altri Unix, deve essere
+  pertanto utilizzata con attenzione (ad esempio è il caso di usarla in un
+  blocco \texttt{\#ifdef WCOREDUMP ... \#endif}.}
+
+\footnotetext{è presente solo a partire dal kernel 2.6.10.}
+
+In generale in un programma non si vuole essere forzati ad attendere la
+conclusione di un processo figlio per proseguire l'esecuzione, specie se tutto
+questo serve solo per leggerne lo stato di chiusura (ed evitare eventualmente
+la presenza di \index{zombie} \textit{zombie}). 
+
+Per questo la modalità più comune di chiamare queste funzioni è quella di
+utilizzarle all'interno di un \textit{signal handler} (vedremo un esempio di
+come gestire \const{SIGCHLD} con i segnali in sez.~\ref{sec:sig_example}). In
+questo caso infatti, dato che il segnale è generato dalla terminazione di un
+figlio, avremo la certezza che la chiamata a \func{waitpid} non si bloccherà.
+
+Come accennato sia \func{wait} che \func{waitpid} restituiscono lo stato di
+terminazione del processo tramite il puntatore \param{status} (se non
+interessa memorizzare lo stato si può passare un puntatore nullo). Il valore
+restituito da entrambe le funzioni dipende dall'implementazione, ma
+tradizionalmente alcuni bit (in genere 8) sono riservati per memorizzare lo
+stato di uscita, e altri per indicare il segnale che ha causato la
+terminazione (in caso di conclusione anomala), uno per indicare se è stato
+generato un \itindex{core~dump} \textit{core dump}, ecc.\footnote{le
   definizioni esatte si possono trovare in \file{<bits/waitstatus.h>} ma
   questo file non deve mai essere usato direttamente, esso viene incluso
   attraverso \file{<sys/wait.h>}.}
 
 Lo standard POSIX.1 definisce una serie di macro di preprocessore da usare per
 analizzare lo stato di uscita. Esse sono definite sempre in
-\file{<sys/wait.h>} ed elencate in tab.~\ref{tab:proc_status_macro} (si tenga
-presente che queste macro prendono come parametro la variabile di tipo
-\ctyp{int} puntata da \param{status}).
+\file{<sys/wait.h>} ed elencate in tab.~\ref{tab:proc_status_macro}; si tenga
+presente che queste macro prevedono che gli si passi come parametro la
+variabile di tipo \ctyp{int} puntata dall'argomento \param{status} restituito
+da \func{wait} o \func{waitpid}.
 
 Si tenga conto che nel caso di conclusione anomala il valore restituito da
-\val{WTERMSIG} può essere confrontato con le costanti definite in
-\file{signal.h} ed elencate in tab.~\ref{tab:sig_signal_list}, e stampato
-usando le apposite funzioni trattate in sez.~\ref{sec:sig_strsignal}.
+\val{WTERMSIG} può essere confrontato con le costanti che identificano i
+segnali definite in \file{signal.h} ed elencate in
+tab.~\ref{tab:sig_signal_list}, e stampato usando le apposite funzioni
+trattate in sez.~\ref{sec:sig_strsignal}.
+
+A partire dal kernel 2.6.9, sempre in conformità allo standard POSIX.1-2001, è
+stata introdotta una nuova funzione di attesa che consente di avere un
+controllo molto più preciso sui possibili cambiamenti di stato dei processi
+figli e più dettagli sullo stato di uscita; la funzione è \funcd{waitid} ed il
+suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+
+  \headdecl{sys/wait.h}
+  
+  \funcdecl{int waitid(idtype\_t idtype, id\_t id, siginfo\_t *infop, int
+    options)}    
+
+  Attende la conclusione di un processo figlio.
+
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore,
+    nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\errcode{EINTR}] se non è stata specificata l'opzione \const{WNOHANG} e
+    la funzione è stata interrotta da un segnale.
+  \item[\errcode{ECHILD}] il processo specificato da \param{pid} non esiste o
+    non è figlio del processo chiamante.
+  \item[\errcode{EINVAL}] si è specificato un valore non valido per
+    l'argomento \param{options}.
+  \end{errlist}}
+\end{functions}
 
+La funzione prevede che si specifichi quali processi si intendono osservare
+usando i due argomenti \param{idtype} ed \param{id}; il primo indica se ci si
+vuole porre in attesa su un singolo processo, un gruppo di processi o un
+processo qualsiasi, e deve essere specificato secondo uno dei valori di
+tab.~\ref{tab:proc_waitid_idtype}; il secondo indica, a seconda del valore del
+primo, quale processo o quale gruppo di processi selezionare.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{8cm}|}
+    \hline
+    \textbf{Macro} & \textbf{Descrizione}\\
+    \hline
+    \hline
+    \const{P\_PID} & Indica la richiesta di attendere per un processo figlio
+                     il cui \acr{pid} corrisponda al valore dell'argomento
+                     \param{id}.\\
+    \const{P\_PGID}& Indica la richiesta di attendere per un processo figlio
+                     appartenente al \textit{process group} (vedi
+                     sez.~\ref{sec:sess_proc_group}) il cui \acr{pgid}
+                     corrisponda al valore dell'argomento \param{id}.\\
+    \const{P\_ALL} & Indica la richiesta di attendere per un processo figlio
+                     generico, il valore dell'argomento \param{id} viene
+                     ignorato.\\
+    \hline
+  \end{tabular}
+  \caption{Costanti per i valori dell'argomento \param{idtype} della funzione
+    \func{waitid}.}
+  \label{tab:proc_waitid_idtype}
+\end{table}
 
-\subsection{Le funzioni \func{wait3} e \func{wait4}}
-\label{sec:proc_wait4}
+Come per \func{waitpid} anche il comportamento di \func{waitid} viene
+controllato dall'argomento \param{options}, da specificare come maschera
+binaria dei valori riportati in tab.~\ref{tab:proc_waitid_options}. Benché
+alcuni di questi siano identici come significato ed effetto ai precedenti di
+tab.~\ref{tab:proc_waitpid_options}, ci sono delle differenze significative:
+in questo caso si dovrà specificare esplicitamente l'attesa della terminazione
+di un processo impostando l'opzione \const{WEXITED}, mentre il precedente
+\const{WUNTRACED} è sostituito da \const{WSTOPPED}.  Infine è stata aggiunta
+l'opzione \const{WNOWAIT} che consente una lettura dello stato mantenendo il
+processo in attesa di ricezione, così che una successiva chiamata possa di
+nuovo riceverne lo stato.
 
-Linux, seguendo un'estensione di BSD, supporta altre due funzioni per la
-lettura dello stato di terminazione di un processo, analoghe alle precedenti
-ma che prevedono un ulteriore argomento attraverso il quale il kernel può
-restituire al padre informazioni sulle risorse usate dal processo terminato e
-dai vari figli.  Le due funzioni sono \funcd{wait3} e \funcd{wait4}, che
-diventano accessibili definendo la macro \macro{\_USE\_BSD}; i loro prototipi
-sono:
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{8cm}|}
+    \hline
+    \textbf{Macro} & \textbf{Descrizione}\\
+    \hline
+    \hline
+    \const{WEXITED}   & Ritorna quando un processo figlio è terminato.\\
+    \const{WNOHANG}   & Ritorna immediatamente anche se non c'è niente da
+                        notificare.\\ 
+    \const{WSTOPPED} &  Ritorna quando un processo figlio è stato fermato.\\
+    \const{WCONTINUED}& Ritorna quando un processo figlio che era stato
+                        fermato ha ripreso l'esecuzione.\\
+    \const{WNOWAIT}   & Lascia il processo ancora in attesa di ricezione, così
+                        che una successiva chiamata possa di nuovo riceverne
+                        lo stato.\\
+    \hline
+  \end{tabular}
+  \caption{Costanti che identificano i bit dell'argomento \param{options}
+    della funzione \func{waitid}.} 
+  \label{tab:proc_waitid_options}
+\end{table}
+
+La funzione \func{waitid} restituisce un valore nullo in caso di successo, e
+$-1$ in caso di errore; viene restituito un valore nullo anche se è stata
+specificata l'opzione \const{WNOHANG} e la funzione è ritornata immediatamente
+senza che nessun figlio sia terminato. Pertanto per verificare il motivo del
+ritorno della funzione occorre analizzare le informazioni che essa
+restituisce; queste, al contrario delle precedenti \func{wait} e
+\func{waitpid} che usavano un semplice valore numerico, sono ritornate in una
+struttura di tipo \struct{siginfo\_t} (vedi fig.~\ref{fig:sig_siginfo_t})
+all'indirizzo puntato dall'argomento \param{infop}.
+
+Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
+suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
+basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
+campi:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\var{si\_pid}] con il \acr{pid} del figlio.
+\item[\var{si\_uid}] con l'user-ID reale (vedi sez.~\ref{sec:proc_perms}) del
+  figlio.
+\item[\var{si\_signo}] con \const{SIGCHLD}.
+\item[\var{si\_status}] con lo stato di uscita del figlio o con il segnale che
+  lo ha terminato, fermato o riavviato.
+\item[\var{si\_code}] con uno fra \const{CLD\_EXITED}, \const{CLD\_KILLED},
+  \const{CLD\_STOPPED}, \const{CLD\_CONTINUED}, \const{CLD\_TRAPPED} e
+  \const{CLD\_DUMPED} a indicare la ragione del ritorno della funzione, il cui
+  significato è, nell'ordine: uscita normale, terminazione da segnale,
+  processo fermato, processo riavviato, processo terminato in \textit{core
+    dump}.
+\end{basedescript}
+
+Infine Linux, seguendo un'estensione di BSD, supporta altre due funzioni per
+la lettura dello stato di terminazione di un processo, analoghe alle
+precedenti ma che prevedono un ulteriore argomento attraverso il quale il
+kernel può restituire al padre informazioni sulle risorse (vedi
+sez.~\ref{sec:sys_res_limits}) usate dal processo terminato e dai vari figli.
+Le due funzioni sono \funcd{wait3} e \funcd{wait4}, che diventano accessibili
+definendo la macro \macro{\_USE\_BSD}; i loro prototipi sono:
 \begin{functions}
   \headdecl{sys/times.h} \headdecl{sys/types.h} \headdecl{sys/wait.h}
   \headdecl{sys/resource.h} 
@@ -1050,8 +1310,7 @@ utilizzata anche dalla funzione \func{getrusage} (vedi
 sez.~\ref{sec:sys_resource_use}) per ottenere le risorse di sistema usate da un
 processo; la sua definizione è riportata in fig.~\ref{fig:sys_rusage_struct}.
 
-
-\subsection{Le funzioni \func{exec}}
+\subsection{La funzione \func{exec} e le funzioni di esecuzione dei programmi}
 \label{sec:proc_exec}
 
 Abbiamo già detto che una delle modalità principali con cui si utilizzano i
@@ -1059,9 +1318,10 @@ processi in Unix 
 fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un
 processo chiama una di queste funzioni esso viene completamente sostituito dal
 nuovo programma; il \acr{pid} del processo non cambia, dato che non viene
-creato un nuovo processo, la funzione semplicemente rimpiazza lo stack, lo
-heap, i dati ed il testo del processo corrente con un nuovo programma letto da
-disco. 
+creato un nuovo processo, la funzione semplicemente rimpiazza lo
+\itindex{stack} \textit{stack}, lo \itindex{heap} \textit{heap}, i
+\index{segmento!dati} dati ed il \index{segmento!testo} testo del processo
+corrente con un nuovo programma letto da disco.
 
 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
 famiglia di funzioni) che possono essere usate per questo compito, in realtà
@@ -1076,9 +1336,9 @@ famiglia di funzioni) che possono essere usate per questo compito, in realt
   \begin{errlist}
   \item[\errcode{EACCES}] il file non è eseguibile, oppure il filesystem è
     montato in \cmd{noexec}, oppure non è un file regolare o un interprete.
-  \item[\errcode{EPERM}] il file ha i bit \acr{suid} o \acr{sgid}, l'utente
-    non è root, il processo viene tracciato, o il filesystem è montato con
-    l'opzione \cmd{nosuid}.
+  \item[\errcode{EPERM}] il file ha i bit \itindex{suid~bit} \acr{suid} o
+    \itindex{sgid~bit} \acr{sgid}, l'utente non è root, il processo viene
+    tracciato, o il filesystem è montato con l'opzione \cmd{nosuid}.
   \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
     riconosciuto come tale, o compilato per un'altra architettura.
   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
@@ -1189,11 +1449,11 @@ non viene trovato nessun altro file viene finalmente restituito
 
 Le altre quattro funzioni si limitano invece a cercare di eseguire il file
 indicato dall'argomento \param{path}, che viene interpretato come il
-\index{\textit{pathname}}\textit{pathname} del programma.
+\itindex{pathname} \textit{pathname} del programma.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=15cm]{img/exec_rel}
+  \includegraphics[width=12cm]{img/exec_rel}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
@@ -1207,83 +1467,141 @@ sez.~\ref{sec:proc_environ}) del processo di partenza per costruire
 l'ambiente.
 
 Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da
-\func{exec} assume anche una serie di altre proprietà del processo chiamante;
-la lista completa è la seguente:
+\func{exec} mantiene la gran parte delle proprietà del processo chiamante; una
+lista delle più significative è la seguente:
 \begin{itemize*}
 \item il \textit{process id} (\acr{pid}) ed il \textit{parent process id}
   (\acr{ppid});
 \item l'\textsl{user-ID reale}, il \textit{group-ID reale} ed i
   \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id});
-\item il \textit{session id} (\acr{sid}) ed il \textit{process group-ID}
-  (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
+\item il \textit{session ID} (\acr{sid}) ed il \itindex{process~group}
+  \textit{process group ID} (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
 \item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term});
 \item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort});
 \item la directory radice e la directory di lavoro corrente (vedi
   sez.~\ref{sec:file_work_dir});
-\item la maschera di creazione dei file (\var{umask}, vedi
-  sez.~\ref{sec:file_umask}) ed i \textit{lock} sui file (vedi
+\item la maschera di creazione dei file \itindex{umask} (\textit{umask}, vedi
+  sez.~\ref{sec:file_perm_management}) ed i \textit{lock} sui file (vedi
   sez.~\ref{sec:file_locking});
-\item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda
-  sez.~\ref{sec:sig_sigmask});
 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
-\item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
-  \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times}).
+\item i valori delle variabili \var{tms\_utime}, \var{tms\_stime};
+  \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times});
+% TODO ===========Importante=============
+% TODO questo sotto è incerto, verificare
+% TODO ===========Importante=============
+\item la maschera dei segnali (si veda sez.~\ref{sec:sig_sigmask}).
 \end{itemize*}
 
-Inoltre i segnali che sono stati impostati per essere ignorati nel processo
-chiamante mantengono la stessa impostazione pure nel nuovo programma, tutti
-gli altri segnali vengono impostati alla loro azione predefinita. Un caso
-speciale è il segnale \const{SIGCHLD} che, quando impostato a
-\const{SIG\_IGN}, può anche non essere reimpostato a \const{SIG\_DFL} (si veda
-sez.~\ref{sec:sig_gen_beha}).
-
-La gestione dei file aperti dipende dal valore che ha il flag di
-\textit{close-on-exec}\index{\textit{close-on-exec}} (vedi anche
-sez.~\ref{sec:file_fcntl}) per ciascun file descriptor. I file per cui è
-impostato vengono chiusi, tutti gli altri file restano aperti. Questo
-significa che il comportamento predefinito è che i file restano aperti
-attraverso una \func{exec}, a meno di una chiamata esplicita a \func{fcntl}
-che imposti il suddetto flag.
-
-Per le directory, lo standard POSIX.1 richiede che esse vengano chiuse
-attraverso una \func{exec}, in genere questo è fatto dalla funzione
-\func{opendir} (vedi sez.~\ref{sec:file_dir_read}) che effettua da sola
-l'impostazione del flag di
-\textit{close-on-exec}\index{\textit{close-on-exec}} sulle directory che apre,
-in maniera trasparente all'utente.
-
-Abbiamo detto che l'\textsl{user-ID reale} ed il \textsl{group-ID reale}
-restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per
-l'\textsl{user-ID effettivo} ed il \textsl{group-ID effettivo} (il significato
-di questi identificatori è trattato in sez.~\ref{sec:proc_access_id}), tranne
-quando il file che si va ad eseguire abbia o il \acr{suid} bit o lo \acr{sgid}
-bit impostato, in questo caso l'\textsl{user-ID effettivo} ed il
-\textsl{group-ID effettivo} vengono impostati rispettivamente all'utente o al
-gruppo cui il file appartiene (per i dettagli vedi sez.~\ref{sec:proc_perms}).
+Una serie di proprietà del processo originale, che non avrebbe senso mantenere
+in un programma che esegue un codice completamente diverso in uno spazio di
+indirizzi totalmente indipendente e ricreato da zero, vengono perse con
+l'esecuzione di \func{exec}; lo standard POSIX.1-2001 prevede che le seguenti
+proprietà non vengano preservate:
+\begin{itemize*}
+\item l'insieme dei segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
+  viene cancellato;
+\item gli eventuali stack alternativi per i segnali (vedi
+  sez.~\ref{sec:sig_specific_features});
+\item i \textit{directory stream} (vedi sez.~\ref{sec:file_dir_read}), che
+  vengono chiusi;
+\item le mappature dei file in memoria (vedi sez.~\ref{sec:file_memory_map});
+\item i segmenti di memoria condivisa SysV (vedi sez.~\ref{sec:ipc_sysv_shm})
+  e POSIX (vedi sez.~\ref{sec:ipc_posix_shm});
+\item i blocchi sulla memoria (vedi sez.~\ref{sec:proc_mem_lock});
+\item le funzioni registrate all'uscita (vedi sez.~\ref{sec:proc_atexit});
+\item i semafori e le code di messaggi POSIX (vedi
+  sez.~\ref{sec:ipc_posix_sem} e sez.~\ref{sec:ipc_posix_mq});
+\item i timer POSIX (vedi sez.~\ref{sec:sig_timer_adv}).
+\end{itemize*}
+
+I segnali che sono stati impostati per essere ignorati nel processo chiamante
+mantengono la stessa impostazione pure nel nuovo programma, ma tutti gli altri
+segnali, ed in particolare quelli per i quali è stato installato un gestore
+vengono impostati alla loro azione predefinita (vedi
+sez.~\ref{sec:sig_gen_beha}). Un caso speciale è il segnale \const{SIGCHLD}
+che, quando impostato a \const{SIG\_IGN}, potrebbe anche essere reimpostato a
+\const{SIG\_DFL}, anche se questo con Linux non avviene.\footnote{lo standard
+  POSIX.1-2001 prevede che questo comportamento sia deciso dalla singola
+  implementazione, quella di Linux è di non modificare l'impostazione
+  precedente.}
+
+Oltre alle precedenti che sono completamente generali e disponibili anche su
+altri sistemi unix-like, esistono altre proprietà dei processi, attinenti
+caratteristiche specifiche di Linux, che non vengono preservate
+nell'esecuzione della funzione \func{exec}, queste sono:
+\begin{itemize*}
+\item le operazione di I/O asincrono (vedi sez.~\ref{sec:file_asyncronous_io})
+  pendenti vengono cancellate;
+\item le \itindex{capabilities} \textit{capabilities} vengono modificate come
+  illustrato in sez.~\ref{sec:proc_capabilities};
+\item tutti i \itindex{thread} \textit{thread} tranne il chiamante (vedi
+  sez.~\ref{sec:thread_xxx}) sono cancellati e tutti gli oggetti ad essi
+  relativi (vedi sez.~\ref{sec:thread_xxx}) rimossi;
+\item viene impostato il flag \const{PR\_SET\_DUMPABLE} di \func{prctl} (vedi
+  sez.~\ref{sec:prctl_xxx}) a meno che il programma da eseguire non sia
+  \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} (vedi
+  sez.~\ref{sec:proc_access_id});
+\item il flag \const{PR\_SET\_KEEPCAPS} di \func{prctl} (vedi
+  sez.~\ref{sec:prctl_xxx}) viene cancellato;
+\item il nome del processo viene impostato al nome del file contenente il
+  programma messo in esecuzione;
+\item il segnale di terminazione viene reimpostato a \const{SIGCHLD};
+\item l'ambiente viene reinizializzato impostando le variabili attinenti alla
+  localizzazione al valore di default POSIX. 
+\end{itemize*}
+
+La gestione dei file aperti nel passaggio al nuovo programma lanciato con
+\func{exec} dipende dal valore che ha il flag di \itindex{close-on-exec}
+\textit{close-on-exec} (vedi anche sez.~\ref{sec:file_fcntl}) per ciascun file
+descriptor. I file per cui è impostato vengono chiusi, tutti gli altri file
+restano aperti. Questo significa che il comportamento predefinito è che i file
+restano aperti attraverso una \func{exec}, a meno di una chiamata esplicita a
+\func{fcntl} che imposti il suddetto flag.  Per le directory, lo standard
+POSIX.1 richiede che esse vengano chiuse attraverso una \func{exec}, in genere
+questo è fatto dalla funzione \func{opendir} (vedi
+sez.~\ref{sec:file_dir_read}) che effettua da sola l'impostazione del flag di
+\itindex{close-on-exec} \textit{close-on-exec} sulle directory che apre, in
+maniera trasparente all'utente.
+
+Il comportamento della funzione in relazione agli identificatori relativi al
+controllo di accesso verrà trattato in dettaglio in sez.~\ref{sec:proc_perms},
+qui è sufficiente anticipare (si faccia riferimento a
+sez.~\ref{sec:proc_access_id} per la definizione di questi identificatori)
+come l'\textsl{user-ID reale} ed il \textsl{group-ID reale} restano sempre gli
+stessi, mentre l'\textsl{user-ID salvato} ed il \textsl{group-ID salvato}
+vengono impostati rispettivamente all'\textsl{user-ID effettivo} ed il
+\textsl{group-ID effettivo}, questi ultimi normalmente non vengono modificati,
+a meno che il file di cui viene chiesta l'esecuzione non abbia o il
+\itindex{suid~bit} \acr{suid} bit o lo \itindex{sgid~bit} \acr{sgid} bit
+impostato, in questo caso l'\textsl{user-ID effettivo} ed il \textsl{group-ID
+  effettivo} vengono impostati rispettivamente all'utente o al gruppo cui il
+file appartiene.
 
 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
 condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
 del programma per caricare le librerie necessarie ed effettuare il link
-dell'eseguibile. Se il programma è in formato ELF per caricare le librerie
-dinamiche viene usato l'interprete indicato nel segmento \const{PT\_INTERP},
-in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le
-\acr{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
-\acr{glibc}. 
+dell'eseguibile.\footnote{il formato è ormai in completo disuso, per cui è
+  molto probabile che non il relativo supporto non sia disponibile.} Se il
+programma è in formato ELF per caricare le librerie dinamiche viene usato
+l'interprete indicato nel segmento \const{PT\_INTERP} previsto dal formato
+stesso, in genere questo è \sysfile{/lib/ld-linux.so.1} per programmi
+collegati con le \acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi
+collegati con le \acr{glibc}.
 
 Infine nel caso il file sia uno script esso deve iniziare con una linea nella
 forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete indicato
 deve essere un programma valido (binario, non un altro script) che verrà
 chiamato come se si fosse eseguito il comando \cmd{interpreter [argomenti]
   filename}.\footnote{si tenga presente che con Linux quanto viene scritto
-  come \texttt{argomenti} viene passato all'inteprete come un unico argomento
+  come \texttt{argomenti} viene passato all'interprete come un unico argomento
   con una unica stringa di lunghezza massima di 127 caratteri e se questa
   dimensione viene ecceduta la stringa viene troncata; altri Unix hanno
   dimensioni massime diverse, e diversi comportamenti, ad esempio FreeBSD
   esegue la scansione della riga e la divide nei vari argomenti e se è troppo
-  lunga restitituisce un errore di \const{ENAMETOOLONG}, una comparazione dei
+  lunga restituisce un errore di \const{ENAMETOOLONG}, una comparazione dei
   vari comportamenti si trova su
   \href{http://www.in-ulm.de/~mascheck/various/shebang/}
-  {\texttt{http://www.in-ulm.de/\tild mascheck/various/shebang/}}.}
+  {\textsf{http://www.in-ulm.de/\tild mascheck/various/shebang/}}.}
 
 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
 basata la gestione dei processi in Unix: con \func{fork} si crea un nuovo
@@ -1298,7 +1616,7 @@ vari parametri connessi ai processi.
 \label{sec:proc_perms}
 
 In questa sezione esamineremo le problematiche relative al controllo di
-accesso dal punto di vista del processi; vedremo quali sono gli identificatori
+accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
 usati, come questi possono essere modificati nella creazione e nel lancio di
 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
 problematiche connesse ad una gestione accorta dei privilegi.
@@ -1309,20 +1627,20 @@ problematiche connesse ad una gestione accorta dei privilegi.
 
 Come accennato in sez.~\ref{sec:intro_multiuser} il modello base\footnote{in
   realtà già esistono estensioni di questo modello base, che lo rendono più
-  flessibile e controllabile, come le \textit{capabilities}, le ACL per i file
-  o il \textit{Mandatory Access Control} di SELinux; inoltre basandosi sul
-  lavoro effettuato con SELinux, a partire dal kernel 2.5.x, è iniziato lo
-  sviluppo di una infrastruttura di sicurezza, il \textit{Linux Security
-    Modules}, o LSM, in grado di fornire diversi agganci a livello del kernel
-  per modularizzare tutti i possibili controlli di accesso.} di sicurezza di
-un sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
-separazione fra l'amministratore (\textsl{root}, detto spesso anche
-\textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli
-utenti, per i quali invece vengono effettuati i vari controlli di accesso.
-
-%Benché il sistema sia piuttosto semplice (è basato su un solo livello di
-% separazione) il sistema permette una
-%notevole flessibilità, 
+  flessibile e controllabile, come le \itindex{capabilities}
+  \textit{capabilities} illustrate in sez.~\ref{sec:proc_capabilities}, le ACL
+  per i file (vedi sez.~\ref{sec:file_ACL}) o il
+  \itindex{Mandatory~Access~Control~(MAC)} \textit{Mandatory Access Control}
+  di \index{SELinux} SELinux; inoltre basandosi sul lavoro effettuato con
+  SELinux, a partire dal kernel 2.5.x, è iniziato lo sviluppo di una
+  infrastruttura di sicurezza, i \itindex{Linux~Security~Modules}
+  \textit{Linux Security Modules}, o LSM, in grado di fornire diversi agganci
+  a livello del kernel per modularizzare tutti i possibili controlli di
+  accesso.} di sicurezza di un sistema unix-like è fondato sui concetti di
+utente e gruppo, e sulla separazione fra l'amministratore (\textsl{root},
+detto spesso anche \textit{superuser}) che non è sottoposto a restrizioni, ed
+il resto degli utenti, per i quali invece vengono effettuati i vari controlli
+di accesso.
 
 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
 identificatori univoci, lo user-ID ed il group-ID; questi servono al kernel per
@@ -1336,7 +1654,7 @@ kernel nella gestione dei permessi di accesso.
 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
 evidente che per poter implementare un controllo sulle operazioni occorre
 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
-anche a ciascun processo dovrà essere associato ad un utente e ad un gruppo.
+anche a ciascun processo dovrà essere associato un utente e un gruppo.
 
 Un semplice controllo di una corrispondenza fra identificativi non garantisce
 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
@@ -1359,27 +1677,27 @@ tab.~\ref{tab:proc_uid_gid}.
     \hline
     \hline
     \acr{uid}   & \textit{real} & \textsl{user-ID reale} 
-                & indica l'utente che ha lanciato il programma\\ 
+                & Indica l'utente che ha lanciato il programma.\\ 
     \acr{gid}   & '' &\textsl{group-ID reale} 
-                & indica il gruppo principale dell'utente che ha lanciato 
-                  il programma \\ 
+                & Indica il gruppo principale dell'utente che ha lanciato 
+                  il programma.\\ 
     \hline
     \acr{euid}  & \textit{effective} &\textsl{user-ID effettivo} 
-                & indica l'utente usato nel controllo di accesso \\ 
+                & Indica l'utente usato nel controllo di accesso.\\ 
     \acr{egid}  & '' & \textsl{group-ID effettivo} 
-                & indica il gruppo usato nel controllo di accesso \\ 
+                & Indica il gruppo usato nel controllo di accesso.\\ 
     --          & -- & \textsl{group-ID supplementari} 
-                & indicano gli ulteriori gruppi cui l'utente appartiene \\ 
+                & Indicano gli ulteriori gruppi cui l'utente appartiene.\\ 
     \hline
     --          & \textit{saved} & \textsl{user-ID salvato} 
-                & è una copia dell'\acr{euid} iniziale\\ 
+                & È una copia dell'\acr{euid} iniziale.\\ 
     --          & '' & \textsl{group-ID salvato} 
-                & è una copia dell'\acr{egid} iniziale \\ 
+                & È una copia dell'\acr{egid} iniziale.\\ 
     \hline
     \acr{fsuid} & \textit{filesystem} &\textsl{user-ID di filesystem} 
-                & indica l'utente effettivo per l'accesso al filesystem \\ 
+                & Indica l'utente effettivo per l'accesso al filesystem. \\ 
     \acr{fsgid} & '' & \textsl{group-ID di filesystem} 
-                & indica il gruppo effettivo per l'accesso al filesystem  \\ 
+                & Indica il gruppo effettivo per l'accesso al filesystem.\\ 
     \hline
   \end{tabular}
   \caption{Identificatori di utente e gruppo associati a ciascun processo con
@@ -1401,18 +1719,19 @@ nel sistema.
 Al secondo gruppo appartengono lo \textsl{user-ID effettivo} ed il
 \textsl{group-ID effettivo} (a cui si aggiungono gli eventuali \textsl{group-ID
   supplementari} dei gruppi dei quali l'utente fa parte).  Questi sono invece
-gli identificatori usati nella verifiche dei permessi del processo e per il
+gli identificatori usati nelle verifiche dei permessi del processo e per il
 controllo di accesso ai file (argomento affrontato in dettaglio in
 sez.~\ref{sec:file_perm_overview}).
 
 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
 \textit{real} tranne nel caso in cui, come accennato in
-sez.~\ref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i bit
-\acr{suid} o \acr{sgid} impostati (il significato di questi bit è affrontato
-in dettaglio in sez.~\ref{sec:file_suid_sgid}). In questo caso essi saranno
-impostati all'utente e al gruppo proprietari del file. Questo consente, per
-programmi in cui ci sia necessità, di dare a qualunque utente normale
-privilegi o permessi di un altro (o dell'amministratore).
+sez.~\ref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i
+bit \itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid} impostati
+(il significato di questi bit è affrontato in dettaglio in
+sez.~\ref{sec:file_special_perm}). In questo caso essi saranno impostati
+all'utente e al gruppo proprietari del file. Questo consente, per programmi in
+cui ci sia necessità, di dare a qualunque utente normale privilegi o permessi
+di un altro (o dell'amministratore).
 
 Come nel caso del \acr{pid} e del \acr{ppid}, anche tutti questi
 identificatori possono essere letti attraverso le rispettive funzioni:
@@ -1456,9 +1775,10 @@ L'\textsl{user-ID salvato} ed il \textsl{group-ID salvato} sono copie
 dell'\textsl{user-ID effettivo} e del \textsl{group-ID effettivo} del processo
 padre, e vengono impostati dalla funzione \func{exec} all'avvio del processo,
 come copie dell'\textsl{user-ID effettivo} e del \textsl{group-ID effettivo}
-dopo che questi sono stati impostati tenendo conto di eventuali \acr{suid} o
-\acr{sgid}.  Essi quindi consentono di tenere traccia di quale fossero utente
-e gruppo effettivi all'inizio dell'esecuzione di un nuovo programma.
+dopo che questi sono stati impostati tenendo conto di eventuali
+\itindex{suid~bit} \acr{suid} o \itindex{sgid~bit} \acr{sgid}.  Essi quindi
+consentono di tenere traccia di quale fossero utente e gruppo effettivi
+all'inizio dell'esecuzione di un nuovo programma.
 
 L'\textsl{user-ID di filesystem} e il \textsl{group-ID di filesystem} sono
 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
@@ -1509,18 +1829,19 @@ all'\textsl{user-ID salvato}. Negli altri casi viene segnalato un errore (con
 \errcode{EPERM}).
 
 Come accennato l'uso principale di queste funzioni è quello di poter
-consentire ad un programma con i bit \acr{suid} o \acr{sgid} impostati (vedi
-sez.~\ref{sec:file_suid_sgid}) di riportare l'\textsl{user-ID effettivo} a
-quello dell'utente che ha lanciato il programma, effettuare il lavoro che non
-necessita di privilegi aggiuntivi, ed eventualmente tornare indietro.
+consentire ad un programma con i bit \itindex{suid~bit} \acr{suid} o
+\itindex{sgid~bit} \acr{sgid} impostati (vedi sez.~\ref{sec:file_special_perm})
+di riportare l'\textsl{user-ID effettivo} a quello dell'utente che ha lanciato
+il programma, effettuare il lavoro che non necessita di privilegi aggiuntivi,
+ed eventualmente tornare indietro.
 
 Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
-viene gestito l'accesso al file \file{/var/log/utmp}.  In questo file viene
+viene gestito l'accesso al file \sysfile{/var/log/utmp}.  In questo file viene
 registrato chi sta usando il sistema al momento corrente; chiaramente non può
 essere lasciato aperto in scrittura a qualunque utente, che potrebbe
 falsificare la registrazione. Per questo motivo questo file (e l'analogo
-\file{/var/log/wtmp} su cui vengono registrati login e logout) appartengono ad
-un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad
+\sysfile{/var/log/wtmp} su cui vengono registrati login e logout) appartengono
+ad un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad
 esempio tutti i programmi di terminale in X, o il programma \cmd{screen} che
 crea terminali multipli su una console) appartengono a questo gruppo ed hanno
 il bit \acr{sgid} impostato.
@@ -1534,8 +1855,8 @@ situazione degli identificatori 
   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp}}
 \end{eqnarray*}
 in questo modo, dato che il \textsl{group-ID effettivo} è quello giusto, il
-programma può accedere a \file{/var/log/utmp} in scrittura ed aggiornarlo. A
-questo punto il programma può eseguire una \code{setgid(getgid())} per
+programma può accedere a \sysfile{/var/log/utmp} in scrittura ed aggiornarlo.
+questo punto il programma può eseguire una \code{setgid(getgid())} per
 impostare il \textsl{group-ID effettivo} a quello dell'utente (e dato che il
 \textsl{group-ID reale} corrisponde la funzione avrà successo), in questo modo
 non sarà possibile lanciare dal terminale programmi che modificano detto file,
@@ -1548,7 +1869,7 @@ in tal caso infatti la situazione degli identificatori sarebbe:
 \end{eqnarray*}
 e ogni processo lanciato dal terminale avrebbe comunque \acr{gid} come
 \textsl{group-ID effettivo}. All'uscita dal terminale, per poter di nuovo
-aggiornare lo stato di \file{/var/log/utmp} il programma eseguirà una
+aggiornare lo stato di \sysfile{/var/log/utmp} il programma eseguirà una
 \code{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
 \acr{utmp}, ottenuto ad esempio con una precedente \func{getegid}), dato che
 in questo caso il valore richiesto corrisponde al \textsl{group-ID salvato} la
@@ -1559,7 +1880,7 @@ funzione avr
   \textsl{group-ID effettivo}  &=& \textrm{\acr{utmp}} \\
   \textsl{group-ID salvato}    &=& \textrm{\acr{utmp} (invariato)}
 \end{eqnarray*}
-consentendo l'accesso a \file{/var/log/utmp}.
+consentendo l'accesso a \sysfile{/var/log/utmp}.
 
 Occorre però tenere conto che tutto questo non è possibile con un processo con
 i privilegi di amministratore, in tal caso infatti l'esecuzione di una
@@ -1571,10 +1892,9 @@ l'\textsl{user-ID effettivo} del processo per cedere i privilegi occorre
 ricorrere ad altre funzioni.
 
 Le due funzioni \funcd{setreuid} e \funcd{setregid} derivano da BSD che, non
-supportando\footnote{almeno fino alla versione 4.3+BSD TODO, FIXME verificare
-  e aggiornare la nota.} gli identificatori del gruppo \textit{saved}, le usa
-per poter scambiare fra di loro \textit{effective} e \textit{real}. I
-rispettivi prototipi sono:
+supportando\footnote{almeno fino alla versione 4.3+BSD.} gli identificatori
+del gruppo \textit{saved}, le usa per poter scambiare fra di loro
+\textit{effective} e \textit{real}. I rispettivi prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1700,8 +2020,8 @@ corrente.
 Anche queste funzioni sono un'estensione specifica di Linux, e non richiedono
 nessun privilegio. I valori sono restituiti negli argomenti, che vanno
 specificati come puntatori (è un altro esempio di
-\index{\textit{value~result~argument}}\textit{value result argument}). Si noti
-che queste funzioni sono le uniche in grado di leggere gli identificatori del
+\itindex{value~result~argument} \textit{value result argument}). Si noti che
+queste funzioni sono le uniche in grado di leggere gli identificatori del
 gruppo \textit{saved}.
 
 
@@ -1850,7 +2170,7 @@ un utente specifico, si pu
 \end{functions}
 
 La funzione esegue la scansione del database dei gruppi (usualmente
-\file{/etc/groups}) cercando i gruppi di cui è membro l'utente \param{user}
+\conffile{/etc/group}) cercando i gruppi di cui è membro l'utente \param{user}
 con cui costruisce una lista di gruppi supplementari, a cui aggiunge anche
 \param{group}, infine imposta questa lista per il processo corrente usando
 \func{setgroups}.  Si tenga presente che sia \func{setgroups} che
@@ -1859,26 +2179,23 @@ con cui costruisce una lista di gruppi supplementari, a cui aggiunge anche
 compila con il flag \cmd{-ansi}, è pertanto meglio evitarle se si vuole
 scrivere codice portabile.
 
-
-%\subsection{La gestione delle capabilities}
-%\label{sec:proc_capabilities}
-
-
-
-
-\section{La gestione della priorità di esecuzione}
+\section{La gestione della priorità dei processi}
 \label{sec:proc_priority}
 
 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
-lo \textit{scheduler}\index{\textit{scheduler}} assegna la CPU ai vari
-processi attivi.  In particolare prenderemo in esame i vari meccanismi con cui
-viene gestita l'assegnazione del tempo di CPU, ed illustreremo le varie
-funzioni di gestione.
+lo \itindex{scheduler} \textit{scheduler} assegna la CPU ai vari processi
+attivi.  In particolare prenderemo in esame i vari meccanismi con cui viene
+gestita l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
+gestione. Tratteremo infine anche le altre priorità dei processi (come quelle
+per l'accesso a disco) divenute disponibili con i kernel più recenti.
 
 
 \subsection{I meccanismi di \textit{scheduling}}
 \label{sec:proc_sched}
 
+\itindbeg{scheduler}
+
 La scelta di un meccanismo che sia in grado di distribuire in maniera efficace
 il tempo di CPU per l'esecuzione dei processi è sempre una questione delicata,
 ed oggetto di numerose ricerche; in generale essa dipende in maniera
@@ -1886,13 +2203,14 @@ essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
 cui non esiste un meccanismo che sia valido per tutti gli usi.
 
 La caratteristica specifica di un sistema multitasking come Linux è quella del
-cosiddetto \textit{prehemptive multitasking}: questo significa che al
-contrario di altri sistemi (che usano invece il cosiddetto \textit{cooperative
+cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
+  multitasking}: questo significa che al contrario di altri sistemi (che usano
+invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
 quando la CPU deve essere passata ad un altro processo. Come accennato in
 sez.~\ref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
-apposita del kernel, lo \textit{scheduler}\index{\textit{scheduler}}, il cui
-scopo è quello di distribuire al meglio il tempo di CPU fra i vari processi.
+apposita del kernel, lo \textit{scheduler}, il cui scopo è quello di
+distribuire al meglio il tempo di CPU fra i vari processi.
 
 La cosa è resa ancora più complicata dal fatto che con le architetture
 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
@@ -1916,33 +2234,39 @@ kernel provvedere a mettere in esecuzione un altro processo.
 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
 processo, in Linux un processo può trovarsi in uno degli stati riportati in
 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
-\textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
+\textbf{Runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
 fintanto che esso si trova in uno qualunque degli altri stati.
 
 \begin{table}[htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|p{2.8cm}|c|p{10cm}|}
+  \begin{tabular}[c]{|p{2.4cm}|c|p{9cm}|}
     \hline
     \textbf{Stato} & \texttt{STAT} & \textbf{Descrizione} \\
     \hline
     \hline
     \textbf{Runnable}& \texttt{R} & Il processo è in esecuzione o è pronto ad
                                     essere eseguito (cioè è in attesa che gli
-                                    venga assegnata la CPU). \\
+                                    venga assegnata la CPU).\\
     \textbf{Sleep}   & \texttt{S} & Il processo  è in attesa di un
                                     risposta dal sistema, ma può essere 
-                                    interrotto da un segnale. \\
+                                    interrotto da un segnale.\\
     \textbf{Uninterrutible Sleep}& \texttt{D} & Il  processo è in
                                     attesa di un risposta dal sistema (in 
                                     genere per I/O), e non può essere
-                                    interrotto in nessuna circostanza. \\
+                                    interrotto in nessuna circostanza.\\
     \textbf{Stopped} & \texttt{T} & Il processo è stato fermato con un
                                     \const{SIGSTOP}, o è tracciato.\\
     \textbf{Zombie}\index{zombie} & \texttt{Z} & Il processo è terminato ma il
                                     suo stato di terminazione non è ancora
-                                    stato letto dal padre. \\
+                                    stato letto dal padre.\\
+    \textbf{Killable}& \texttt{D} & Un nuovo stato introdotto con il kernel
+                                    2.6.25, sostanzialmente identico
+                                    all'\textbf{Uninterrutible Sleep} con la
+                                    sola differenza che il processo può
+                                    terminato con \const{SIGKILL} (usato per
+                                    lo più per NFS).\\ 
     \hline
   \end{tabular}
   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
@@ -1999,81 +2323,119 @@ bisogno della CPU.
 \subsection{Il meccanismo di \textit{scheduling} standard}
 \label{sec:proc_sched_stand}
 
-A meno che non si abbiano esigenze specifiche, l'unico meccanismo di
+A meno che non si abbiano esigenze specifiche,\footnote{per alcune delle quali
+  sono state introdotte delle varianti specifiche.} l'unico meccanismo di
 scheduling con il quale si avrà a che fare è quello tradizionale, che prevede
 solo priorità dinamiche. È di questo che, di norma, ci si dovrà preoccupare
-nella programmazione.
-
-Come accennato in Linux tutti i processi ordinari hanno la stessa priorità
-assoluta. Quello che determina quale, fra tutti i processi in attesa di
-esecuzione, sarà eseguito per primo, è la priorità dinamica, che è chiamata
-così proprio perché varia nel corso dell'esecuzione di un processo. Oltre a
-questo la priorità dinamica determina quanto a lungo un processo continuerà ad
-essere eseguito, e quando un processo potrà subentrare ad un altro
-nell'esecuzione.
-
-Il meccanismo usato da Linux è piuttosto semplice,\footnote{in realtà nella
-  serie 2.6.x lo \textit{scheduler} è stato riscritto da zero e può usare
-  diversi algoritmi, selezionabili sia in fase di compilazione, che, nelle
-  versioni più recenti, all'avvio (addirittura è stato ideato un sistema
-  modulare che permette di cambiare lo scheduler al volo, che comunque non è
-  incluso nel kernel ufficiale).} ad ogni processo è assegnata una
-\textit{time-slice}, cioè un intervallo di tempo (letteralmente una fetta) per
-il quale esso deve essere eseguito. Il valore della \textit{time-slice} è
-controllato dalla cosiddetta \textit{nice} (o \textit{niceness}) del processo.
-Essa è contenuta nel campo \var{nice} di \struct{task\_struct}; tutti i
-processi vengono creati con lo stesso valore, ed essa specifica il valore
-della durata iniziale della \textit{time-slice} che viene assegnato ad un
-altro campo della struttura (\var{counter}) quando il processo viene eseguito
-per la prima volta e diminuito progressivamente ad ogni interruzione del
-timer.
-
-Durante la sua esecuzione lo scheduler\index{\textit{scheduler}} scandisce la
-coda dei processi in stato \textit{runnable} associando, in base al valore di
-\var{counter}, un peso ad ogni processo in attesa di esecuzione,\footnote{il
-  calcolo del peso in realtà è un po' più complicato, ad esempio nei sistemi
-  multiprocessore viene favorito un processo eseguito sulla stessa CPU, e a
-  parità del valore di \var{counter} viene favorito chi ha una priorità più
-  elevata.} chi ha il peso più alto verrà posto in esecuzione, ed il
-precedente processo sarà spostato in fondo alla coda.  Dato che ad ogni
-interruzione del timer il valore di \var{counter} del processo corrente viene
-diminuito, questo assicura che anche i processi con priorità più bassa
-verranno messi in esecuzione.
-
-La priorità di un processo è così controllata attraverso il valore di
-\var{nice}, che stabilisce la durata della \textit{time-slice}; per il
-meccanismo appena descritto infatti un valore più lungo assicura una maggiore
-attribuzione di CPU.  L'origine del nome di questo parametro sta nel fatto che
-generalmente questo viene usato per diminuire la priorità di un processo, come
-misura di cortesia nei confronti degli altri.  I processi infatti vengono
-creati dal sistema con lo stesso valore di \var{nice} (nullo) e nessuno è
-privilegiato rispetto agli altri; il valore può essere modificato solo
-attraverso la funzione \funcd{nice}, il cui prototipo è:
+nella programmazione.  Come accennato in Linux i processi ordinari hanno tutti
+una priorità assoluta nulla; quello che determina quale, fra tutti i processi
+in attesa di esecuzione, sarà eseguito per primo, è la cosiddetta
+\textsl{priorità dinamica},\footnote{quella che viene mostrata nella colonna
+  \texttt{PR} del comando \texttt{top}.} che è chiamata così proprio perché
+varia nel corso dell'esecuzione di un processo.
+
+Il meccanismo usato da Linux è in realtà piuttosto complesso,\footnote{e
+  dipende strettamente dalla versione di kernel; in particolare a partire
+  dalla serie 2.6.x lo scheduler è stato riscritto completamente, con molte
+  modifiche susseguitesi per migliorarne le prestazioni, per un certo periodo
+  ed è stata anche introdotta la possibilità di usare diversi algoritmi,
+  selezionabili sia in fase di compilazione, che, nelle versioni più recenti,
+  all'avvio (addirittura è stato ideato un sistema modulare che permette di
+  cambiare lo scheduler a sistema attivo).} ma a grandi linee si può dire che
+ad ogni processo è assegnata una \textit{time-slice}, cioè un intervallo di
+tempo (letteralmente una fetta) per il quale, a meno di eventi esterni, esso
+viene eseguito senza essere interrotto.  Inoltre la priorità dinamica viene
+calcolata dallo scheduler a partire da un valore iniziale che viene
+\textsl{diminuito} tutte le volte che un processo è in stato \textbf{Runnable}
+ma non viene posto in esecuzione.\footnote{in realtà il calcolo della priorità
+  dinamica e la conseguente scelta di quale processo mettere in esecuzione
+  avviene con un algoritmo molto più complicato, che tiene conto anche della
+  \textsl{interattività} del processo, utilizzando diversi fattori, questa è
+  una brutale semplificazione per rendere l'idea del funzionamento, per una
+  trattazione più dettagliata, anche se non aggiornatissima, dei meccanismi di
+  funzionamento dello scheduler si legga il quarto capitolo di
+  \cite{LinKernDev}.} Lo scheduler infatti mette sempre in esecuzione, fra
+tutti i processi in stato \textbf{Runnable}, quello che ha il valore di
+priorità dinamica più basso.\footnote{con le priorità dinamiche il significato
+  del valore numerico ad esse associato è infatti invertito, un valore più
+  basso significa una priorità maggiore.} Il fatto che questo valore venga
+diminuito quando un processo non viene posto in esecuzione pur essendo pronto,
+significa che la priorità dei processi che non ottengono l'uso del processore
+viene progressivamente incrementata, così che anche questi alla fine hanno la
+possibilità di essere eseguiti.
+
+Sia la dimensione della \textit{time-slice} che il valore di partenza della
+priorità dinamica sono determinate dalla cosiddetta \textit{nice} (o
+\textit{niceness}) del processo.\footnote{questa è una delle tante proprietà
+  che ciascun processo si porta dietro, essa viene ereditata dai processi
+  figli e mantenuta attraverso una \func{exec}; fino alla serie 2.4 essa era
+  mantenuta nell'omonimo campo \texttt{nice} della \texttt{task\_struct}, con
+  la riscrittura dello scheduler eseguita nel 2.6 viene mantenuta nel campo
+  \texttt{static\_prio} come per le priorità statiche.} L'origine del nome di
+questo parametro sta nel fatto che generalmente questo viene usato per
+\textsl{diminuire} la priorità di un processo, come misura di cortesia nei
+confronti degli altri.  I processi infatti vengono creati dal sistema con un
+valore di \var{nice} nullo e nessuno è privilegiato rispetto agli altri;
+specificando un valore positivo si avrà una \textit{time-slice} più breve ed
+un valore di priorità dinamica iniziale più alto, mentre un valore negativo
+darà una \textit{time-slice} più lunga ed un valore di priorità dinamica
+iniziale più basso.
+
+Esistono diverse funzioni che consentono di modificare la \textit{niceness} di
+un processo; la più semplice è funzione \funcd{nice}, che opera sul processo
+corrente, il suo prototipo è:
 \begin{prototype}{unistd.h}
 {int nice(int inc)}
   Aumenta il valore di \var{nice} per il processo corrente.
   
-  \bodydesc{La funzione ritorna zero in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} può assumere i valori:
+  \bodydesc{La funzione ritorna zero o il nuovo valore di \var{nice} in caso
+    di successo e -1 in caso di errore, nel qual caso \var{errno} può assumere
+    i valori:
   \begin{errlist}
-  \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
-    specificato un valore di \param{inc} negativo.
+  \item[\errcode{EPERM}] non si ha il permesso di specificare un valore
+    di \param{inc} negativo. 
   \end{errlist}}
 \end{prototype}
 
-L'argomento \param{inc} indica l'incremento del valore di \var{nice}:
-quest'ultimo può assumere valori compresi fra \const{PRIO\_MIN} e
-\const{PRIO\_MAX} (che nel caso di Linux sono $-19$ e $20$), ma per
-\param{inc} si può specificare un valore qualunque, positivo o negativo, ed il
-sistema provvederà a troncare il risultato nell'intervallo consentito. Valori
-positivi comportano maggiore \textit{cortesia} e cioè una diminuzione della
-priorità, ogni utente può solo innalzare il valore di un suo processo. Solo
-l'amministratore può specificare valori negativi che permettono di aumentare
-la priorità di un processo.
-
-In SUSv2 la funzione ritorna il nuovo valore di \var{nice}; Linux non segue
-questa convenzione, e per leggere il nuovo valore occorre invece usare la
-funzione \funcd{getpriority}, derivata da BSD, il cui prototipo è:
+L'argomento \param{inc} indica l'incremento da effettuare rispetto al valore
+di \var{nice} corrente: quest'ultimo può assumere valori compresi fra
+\const{PRIO\_MIN} e \const{PRIO\_MAX}; nel caso di Linux sono fra $-20$ e
+$19$,\footnote{in realtà l'intervallo varia a seconda delle versioni di
+  kernel, ed è questo a partire dal kernel 1.3.43, anche se oggi si può avere
+  anche l'intervallo fra $-20$ e $20$.} ma per \param{inc} si può specificare
+un valore qualunque, positivo o negativo, ed il sistema provvederà a troncare
+il risultato nell'intervallo consentito. Valori positivi comportano maggiore
+\textit{cortesia} e cioè una diminuzione della priorità, valori negativi
+comportano invece un aumento della priorità. Con i kernel precedenti il
+2.6.12 solo l'amministratore\footnote{o un processo con la
+  \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_NICE}, vedi
+  sez.~\ref{sec:proc_capabilities}.} può specificare valori negativi
+di \param{inc} che permettono di aumentare la priorità di un processo, a
+partire da questa versione è consentito anche agli utenti normali alzare
+(entro certi limiti, che vedremo più avanti) la priorità dei propri processi.
+
+Gli standard SUSv2 e POSIX.1 prevedono che la funzione ritorni il nuovo valore
+di \var{nice} del processo; tuttavia la system call di Linux non segue questa
+convenzione e restituisce sempre 0 in caso di successo e $-1$ in caso di
+errore; questo perché $-1$ è un valore di \var{nice} legittimo e questo
+comporta una confusione con una eventuale condizione di errore. La system call
+originaria inoltre non consente, se non dotati di adeguati privilegi, di
+diminuire un valore di \var{nice} precedentemente innalzato.
+Fino alle \acr{glibc} 2.2.4 la funzione di libreria riportava direttamente il
+risultato dalla system call, violando lo standard, per cui per ottenere il
+nuovo valore occorreva una successiva chiamata alla funzione
+\func{getpriority}. A partire dalla \acr{glibc} 2.2.4 \func{nice} è stata
+reimplementata e non viene più chiamata la omonima system call, con questa
+versione viene restituito come valore di ritorno il valore di \var{nice}, come
+richiesto dallo standard.\footnote{questo viene fatto chiamando al suo interno
+  \func{setpriority}, che tratteremo a breve.}  In questo caso l'unico modo
+per rilevare in maniera affidabile una condizione di errore è quello di
+azzerare \var{errno} prima della chiamata della funzione e verificarne il
+valore quando \func{nice} restituisce $-1$.
+
+Per leggere il valore di \textit{nice} di un processo occorre usare la
+funzione \funcd{getpriority}, derivata da BSD; il suo prototipo è:
 \begin{prototype}{sys/resource.h}
 {int getpriority(int which, int who)}
   
@@ -2106,9 +2468,10 @@ l'utente correnti.
     \param{which} & \param{who} & \textbf{Significato} \\
     \hline
     \hline
-    \const{PRIO\_PROCESS} & \type{pid\_t} &  processo  \\
-    \const{PRIO\_PRGR}    & \type{pid\_t} &  process group  \\
-    \const{PRIO\_USER}    & \type{uid\_t} &  utente \\
+    \const{PRIO\_PROCESS} & \type{pid\_t} & processo  \\
+    \const{PRIO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
+                                            \textit{process group}  \\ 
+    \const{PRIO\_USER}    & \type{uid\_t} & utente \\
     \hline
   \end{tabular}
   \caption{Legenda del valore dell'argomento \param{which} e del tipo
@@ -2118,12 +2481,12 @@ l'utente correnti.
 \end{table}
 
 La funzione restituisce la priorità più alta (cioè il valore più basso) fra
-quelle dei processi specificati; dato che -1 è un valore possibile, per poter
-rilevare una condizione di errore è necessario cancellare sempre \var{errno}
-prima della chiamata alla funzione, per verificare che essa resti uguale a
-zero.  
+quelle dei processi specificati; di nuovo, dato che $-1$ è un valore
+possibile, per poter rilevare una condizione di errore è necessario cancellare
+sempre \var{errno} prima della chiamata alla funzione per verificare che essa
+resti uguale a zero.
 
-Analoga a \func{getpriority} la funzione \funcd{setpriority} permette di
+Analoga a \func{getpriority} è la funzione \funcd{setpriority} che permette di
 impostare la priorità di uno o più processi; il suo prototipo è:
 \begin{prototype}{sys/resource.h}
 {int setpriority(int which, int who, int prio)}  
@@ -2135,22 +2498,43 @@ impostare la priorit
   \item[\errcode{ESRCH}] non c'è nessun processo che corrisponda ai valori di
   \param{which} e \param{who}.
   \item[\errcode{EINVAL}] il valore di \param{which} non è valido.
+  \item[\errcode{EACCES}] si è richiesto un aumento di priorità senza avere
+    sufficienti privilegi.
   \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
-    specificato un valore di \param{inc} negativo.
-  \item[\errcode{EACCES}] un processo senza i privilegi di amministratore ha
     cercato di modificare la priorità di un processo di un altro utente.
   \end{errlist}}
 \end{prototype}
 
 La funzione imposta la priorità al valore specificato da \param{prio} per
-tutti i processi indicati dagli argomenti \param{which} e \param{who}.  La
-gestione dei permessi dipende dalle varie implementazioni; in Linux, secondo
-le specifiche dello standard SUSv3, e come avviene per tutti i sistemi che
-derivano da SysV, è richiesto che l'user-ID reale o effettivo del processo
-chiamante corrispondano al real user-ID (e solo quello) del processo di cui si
-vuole cambiare la priorità; per i sistemi derivati da BSD invece (SunOS,
-Ultrix, *BSD) la corrispondenza può essere anche con l'user-ID effettivo.
-
+tutti i processi indicati dagli argomenti \param{which} e \param{who}. In
+questo caso come valore di \param{prio} deve essere specificato il valore di
+\textit{nice} da assegnare, e non un incremento (positivo o negativo) come nel
+caso di \func{nice}. La funzione restituisce il valore di \textit{nice}
+assegnato in caso di successo e $-1$ in caso di errore, e come per \func{nice}
+anche in questo caso per rilevare un errore occorre sempre porre a zero
+\var{errno} prima della chiamata della funzione, essendo $-1$ un valore di
+\textit{nice} valido. 
+
+Si tenga presente che solo l'amministratore\footnote{o più precisamente un
+  processo con la \itindex{capabilities} \textit{capability}
+  \const{CAP\_SYS\_NICE}, vedi sez.~\ref{sec:proc_capabilities}.} ha la
+possibilità di modificare arbitrariamente le priorità di qualunque
+processo. Un utente normale infatti può modificare solo la priorità dei suoi
+processi ed in genere soltanto diminuirla.  Fino alla versione di kernel
+2.6.12 Linux ha seguito le specifiche dello standard SUSv3, e come per tutti i
+sistemi derivati da SysV veniva richiesto che l'user-ID reale o quello
+effettivo del processo chiamante corrispondessero all'user-ID reale (e solo a
+quello) del processo di cui si intendeva cambiare la priorità. A partire dalla
+versione 2.6.12 è stata adottata la semantica in uso presso i sistemi derivati
+da BSD (SunOS, Ultrix, *BSD), in cui la corrispondenza può essere anche con
+l'user-ID effettivo.
+
+Sempre a partire dal kernel 2.6.12 è divenuto possibile anche per gli utenti
+ordinari poter aumentare la priorità dei propri processi specificando un
+valore di \param{prio} negativo. Questa operazione non è possibile però in
+maniera indiscriminata, ed in particolare può essere effettuata solo
+nell'intervallo consentito dal valore del limite \const{RLIMIT\_NICE}
+(torneremo su questo in sez.~\ref{sec:sys_resource_limit}).
 
 
 \subsection{Il meccanismo di \textit{scheduling real-time}}
@@ -2167,31 +2551,40 @@ processo qualsiasi sia la sua priorit
   Adeos gestiti dalle code del nano-kernel), in modo da poterli controllare
   direttamente qualora ci sia la necessità di avere un processo con priorità
   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
-page fault\index{\textit{page~fault}} si possono avere ritardi non previsti.
-Se l'ultimo problema può essere aggirato attraverso l'uso delle funzioni di
-controllo della memoria virtuale (vedi sez.~\ref{sec:proc_mem_lock}), il primo
-non è superabile e può comportare ritardi non prevedibili riguardo ai tempi di
-esecuzione di qualunque processo.
-
-Occorre usare le priorità assolute con molta attenzione: se si dà ad un
-processo una priorità assoluta e questo finisce in un loop infinito, nessun
-altro processo potrà essere eseguito, ed esso sarà mantenuto in esecuzione
-permanentemente assorbendo tutta la CPU e senza nessuna possibilità di
-riottenere l'accesso al sistema. Per questo motivo è sempre opportuno, quando
-si lavora con processi che usano priorità assolute, tenere attiva una shell
-cui si sia assegnata la massima priorità assoluta, in modo da poter essere
-comunque in grado di rientrare nel sistema.
-
-Quando c'è un processo con priorità assoluta lo
-scheduler\index{\textit{scheduler}} lo metterà in esecuzione prima di ogni
-processo normale. In caso di più processi sarà eseguito per primo quello con
-priorità assoluta più alta. Quando ci sono più processi con la stessa priorità
-assoluta questi vengono tenuti in una coda e tocca al kernel decidere quale
-deve essere eseguito.  Il meccanismo con cui vengono gestiti questi processi
-dipende dalla politica di scheduling che si è scelto; lo standard ne prevede
-due:
+\itindex{page~fault} \textit{page fault} si possono avere ritardi non
+previsti.  Se l'ultimo problema può essere aggirato attraverso l'uso delle
+funzioni di controllo della memoria virtuale (vedi
+sez.~\ref{sec:proc_mem_lock}), il primo non è superabile e può comportare
+ritardi non prevedibili riguardo ai tempi di esecuzione di qualunque processo.
+
+Nonostante questo, ed in particolare con una serie di miglioramenti che sono
+stati introdotti nello sviluppo del kernel,\footnote{in particolare a partire
+  dalla versione 2.6.18 sono stati inserite nel kernel una serie di modifiche
+  che consentono di avvicinarsi sempre di più ad un vero e proprio sistema
+  \textit{real-time} estendendo il concetto di \textit{preemption} alle
+  operazioni dello stesso kernel; esistono vari livelli a cui questo può
+  essere fatto, ottenibili attivando in fase di compilazione una fra le
+  opzioni \texttt{CONFIG\_PREEMPT\_NONE}, \texttt{CONFIG\_PREEMPT\_VOLUNTARY}
+  e \texttt{CONFIG\_PREEMPT\_DESKTOP}.} si può arrivare ad una ottima
+approssimazione di sistema real-time usando le priorità assolute; occorre
+farlo però con molta attenzione: se si dà ad un processo una priorità assoluta
+e questo finisce in un loop infinito, nessun altro processo potrà essere
+eseguito, ed esso sarà mantenuto in esecuzione permanentemente assorbendo
+tutta la CPU e senza nessuna possibilità di riottenere l'accesso al
+sistema. Per questo motivo è sempre opportuno, quando si lavora con processi
+che usano priorità assolute, tenere attiva una shell cui si sia assegnata la
+massima priorità assoluta, in modo da poter essere comunque in grado di
+rientrare nel sistema.
+
+Quando c'è un processo con priorità assoluta lo scheduler lo metterà in
+esecuzione prima di ogni processo normale. In caso di più processi sarà
+eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
+processi con la stessa priorità assoluta questi vengono tenuti in una coda e
+tocca al kernel decidere quale deve essere eseguito.  Il meccanismo con cui
+vengono gestiti questi processi dipende dalla politica di scheduling che si è
+scelta; lo standard ne prevede due:
 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
-\item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
+\item[\textsf{FIFO}] \textit{First In First Out}. Il processo viene eseguito
   fintanto che non cede volontariamente la CPU (con \func{sched\_yield}), si
   blocca, finisce o viene interrotto da un processo a priorità più alta. Se il
   processo viene interrotto da uno a priorità più alta esso resterà in cima
@@ -2199,24 +2592,25 @@ due:
   più alta diverranno inattivi. Se invece lo si blocca volontariamente sarà
   posto in coda alla lista (ed altri processi con la stessa priorità potranno
   essere eseguiti).
-\item[\textit{RR}] \textit{Round Robin}. Il comportamento è del tutto analogo
+\item[\textsf{RR}] \textit{Round Robin}. Il comportamento è del tutto analogo
   a quello precedente, con la sola differenza che ciascun processo viene
   eseguito al massimo per un certo periodo di tempo (la cosiddetta
-  \textit{time slice}) dopo di che viene automaticamente posto in fondo alla
+  \textit{time-slice}) dopo di che viene automaticamente posto in fondo alla
   coda dei processi con la stessa priorità. In questo modo si ha comunque una
   esecuzione a turno di tutti i processi, da cui il nome della politica. Solo
-  i processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  i processi con la stessa priorità ed in stato \textbf{Runnable} entrano nel
   \textsl{girotondo}.
 \end{basedescript}
 
-La funzione per impostare le politiche di scheduling (sia real-time che
-ordinarie) ed i relativi parametri è \funcd{sched\_setscheduler}; il suo
-prototipo è:
+Lo standard POSIX.1-2001 prevede una funzione che consenta sia di modificare
+le politiche di scheduling, passando da real-time a ordinarie o viceversa, che
+di specificare, in caso di politiche real-time, la eventuale priorità statica;
+la funzione è \funcd{sched\_setscheduler} ed il suo prototipo è:
 \begin{prototype}{sched.h}
 {int sched\_setscheduler(pid\_t pid, int policy, const struct sched\_param *p)}
   Imposta priorità e politica di scheduling.
   
-  \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso
+  \bodydesc{La funzione ritorna la priorità in caso di successo e $-$1 in caso
     di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
@@ -2228,12 +2622,12 @@ prototipo 
 \end{prototype}
 
 La funzione esegue l'impostazione per il processo specificato dall'argomento
-\param{pid}; un valore nullo esegue l'impostazione per il processo corrente.
-La politica di scheduling è specificata dall'argomento \param{policy} i cui
-possibili valori sono riportati in tab.~\ref{tab:proc_sched_policy}; un valore
-negativo per \param{policy} mantiene la politica di scheduling corrente.
-Solo un processo con i privilegi di amministratore può impostare priorità
-assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
+\param{pid}; un valore nullo di questo argomento esegue l'impostazione per il
+processo corrente.  La politica di scheduling è specificata
+dall'argomento \param{policy} i cui possibili valori sono riportati in
+tab.~\ref{tab:proc_sched_policy}; la parte alta della tabella indica le
+politiche real-time, quella bassa le politiche ordinarie. Un valore negativo
+per \param{policy} mantiene la politica di scheduling corrente.
 
 \begin{table}[htb]
   \centering
@@ -2243,10 +2637,15 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
     \textbf{Policy}  & \textbf{Significato} \\
     \hline
     \hline
-    \const{SCHED\_FIFO} & Scheduling real-time con politica \textit{FIFO} \\
+    \const{SCHED\_FIFO} & Scheduling real-time con politica \textit{FIFO}. \\
     \const{SCHED\_RR}   & Scheduling real-time con politica \textit{Round
-    Robin} \\
-    \const{SCHED\_OTHER}& Scheduling ordinario\\
+      Robin}. \\
+    \hline
+    \const{SCHED\_OTHER}& Scheduling ordinario.\\
+    \const{SCHED\_BATCH}& Scheduling ordinario con l'assunzione ulteriore di
+                          lavoro \textit{CPU intensive}.\footnotemark\\
+    \const{SCHED\_IDLE} & Scheduling di priorità estremamente
+                          bassa.\footnotemark\\
     \hline
   \end{tabular}
   \caption{Valori dell'argomento \param{policy} per la funzione
@@ -2254,12 +2653,41 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
   \label{tab:proc_sched_policy}
 \end{table}
 
-Il valore della priorità è passato attraverso la struttura
-\struct{sched\_param} (riportata in fig.~\ref{fig:sig_sched_param}), il cui
-solo campo attualmente definito è \var{sched\_priority}, che nel caso delle
-priorità assolute deve essere specificato nell'intervallo fra un valore
-massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99; il valore
-nullo è legale, ma indica i processi normali.
+\footnotetext[41]{introdotto con il kernel 2.6.16.}
+\footnotetext{introdotto con il kernel 2.6.23.}
+
+Con le versioni più recenti del kernel sono state introdotte anche delle
+varianti sulla politica di scheduling tradizionale per alcuni carichi di
+lavoro specifici, queste due nuove politiche sono specifiche di Linux e non
+devono essere usate se si vogliono scrivere programmi portabili.
+
+La politica \const{SCHED\_BATCH} è una variante della politica ordinaria con
+la sola differenza che i processi ad essa soggetti non ottengono, nel calcolo
+delle priorità dinamiche fatto dallo scheduler, il cosiddetto bonus di
+interattività che mira a favorire i processi che si svegliano dallo stato di
+\textbf{Sleep}.\footnote{cosa che accade con grande frequenza per i processi
+  interattivi, dato che essi sono per la maggior parte del tempo in attesa di
+  dati in ingresso da parte dell'utente.} La si usa pertanto, come indica il
+nome, per processi che usano molta CPU (come programmi di calcolo) che in
+questo modo sono leggermente sfavoriti rispetto ai processi interattivi che
+devono rispondere a dei dati in ingresso, pur non perdendo il loro valore di
+\textit{nice}.
+
+La politica \const{SCHED\_IDLE} invece è una politica dedicata ai processi che
+si desidera siano eseguiti con la più bassa priorità possibile, ancora più
+bassa di un processo con il minimo valore di \textit{nice}. In sostanza la si
+può utilizzare per processi che devono essere eseguiti se non c'è niente altro
+da fare. Va comunque sottolineato che anche un processo \const{SCHED\_IDLE}
+avrà comunque una sua possibilità di utilizzo della CPU, sia pure in
+percentuale molto bassa.
+
+Qualora si sia richiesta una politica real-time il valore della priorità
+statica viene impostato attraverso la struttura \struct{sched\_param},
+riportata in fig.~\ref{fig:sig_sched_param}, il cui solo campo attualmente
+definito è \var{sched\_priority}. Il campo deve contenere il valore della
+priorità statica da assegnare al processo; lo standard prevede che questo
+debba essere assegnato all'interno di un intervallo fra un massimo ed un
+minimo che nel caso di Linux sono rispettivamente 1 e 99.  
 
 \begin{figure}[!bht]
   \footnotesize \centering
@@ -2271,11 +2699,11 @@ nullo 
   \label{fig:sig_sched_param}
 \end{figure}
 
-Si tenga presente che quando si imposta una politica di scheduling real-time
-per un processo (o se ne cambia la priorità con \func{sched\_setparam}) questo
-viene messo in cima alla lista dei processi con la stessa priorità; questo
-comporta che verrà eseguito subito, interrompendo eventuali altri processi con
-la stessa priorità in quel momento in esecuzione.
+I processi con politica di scheduling ordinaria devono sempre specificare un
+valore nullo di \var{sched\_priority} altrimenti si avrà un errore
+\errcode{EINVAL}, questo valore infatti non ha niente a che vedere con la
+priorità dinamica determinata dal valore di \textit{nice}, che deve essere
+impostato con le funzioni viste in precedenza.
 
 Lo standard POSIX.1b prevede comunque che i due valori della massima e minima
 priorità statica possano essere ottenuti, per ciascuna delle politiche di
@@ -2293,90 +2721,112 @@ prototipi sono:
   della priorità statica per la politica di scheduling \param{policy}.
   
   \bodydesc{La funzioni ritornano il valore della priorità in caso di successo
-    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    e $-1$ in caso di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{EINVAL}] il valore di \param{policy} non è valido.
   \end{errlist}}
 \end{functions}
 
-
-I processi con politica di scheduling \const{SCHED\_OTHER} devono specificare
-un valore nullo (altrimenti si avrà un errore \errcode{EINVAL}), questo valore
-infatti non ha niente a che vedere con la priorità dinamica determinata dal
-valore di \var{nice}, che deve essere impostato con le funzioni viste in
-precedenza.
+Si tenga presente che quando si imposta una politica di scheduling real-time
+per un processo o se ne cambia la priorità statica questo viene messo in cima
+alla lista dei processi con la stessa priorità; questo comporta che verrà
+eseguito subito, interrompendo eventuali altri processi con la stessa priorità
+in quel momento in esecuzione.
 
 Il kernel mantiene i processi con la stessa priorità assoluta in una lista, ed
 esegue sempre il primo della lista, mentre un nuovo processo che torna in
-stato \textit{runnable} viene sempre inserito in coda alla lista. Se la
+stato \textbf{Runnable} viene sempre inserito in coda alla lista. Se la
 politica scelta è \const{SCHED\_FIFO} quando il processo viene eseguito viene
 automaticamente rimesso in coda alla lista, e la sua esecuzione continua
 fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
-volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
+volontariamente la CPU (in tal caso, tornando nello stato \textbf{Runnable}
 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
 nel caso che esso sia stato interrotto da un processo a priorità più alta.
 
-Se si intende operare solo sulla priorità assoluta di un processo si possono
-usare le funzioni \funcd{sched\_setparam} e \funcd{sched\_getparam}, i cui
+Solo un processo con i privilegi di amministratore\footnote{più precisamente
+  con la \itindex{capabilities} capacità \const{CAP\_SYS\_NICE}, vedi
+  sez.~\ref{sec:proc_capabilities}.} può impostare senza restrizioni priorità
+assolute diverse da zero o politiche \const{SCHED\_FIFO} e
+\const{SCHED\_RR}. Un utente normale può modificare solo le priorità di
+processi che gli appartengono; è cioè richiesto che l'user-ID effettivo del
+processo chiamante corrisponda all'user-ID reale o effettivo del processo
+indicato con \param{pid}.
+
+Fino al kernel 2.6.12 gli utenti normali non potevano impostare politiche
+real-time o modificare la eventuale priorità statica di un loro processo. A
+partire da questa versione è divenuto possibile anche per gli utenti normali
+usare politiche real-time fintanto che la priorità assoluta che si vuole
+impostare è inferiore al limite \const{RLIMIT\_RTPRIO} (vedi
+sez.~\ref{sec:sys_resource_limit}) ad essi assegnato. Unica eccezione a questa
+possibilità sono i processi \const{SCHED\_IDLE}, che non possono cambiare
+politica di scheduling indipendentemente dal valore di
+\const{RLIMIT\_RTPRIO}. Inoltre, in caso di processo già sottoposto ad una
+politica real-time, un utente può sempre, indipendentemente dal valore di
+\const{RLIMIT\_RTPRIO}, diminuirne la priorità o portarlo ad una politica
+ordinaria.
+
+Se si intende operare solo sulla priorità statica di un processo si possono
+usare le due funzioni \funcd{sched\_setparam} e \funcd{sched\_getparam} che
+consentono rispettivamente di impostarne e leggerne il valore, i loro
 prototipi sono:
 \begin{functions}
   \headdecl{sched.h}
 
-  \funcdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *p)}
-  Imposta la priorità assoluta del processo \param{pid}.
+  \funcdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *param)}
+  Imposta la priorità statica del processo \param{pid}.
 
-  \funcdecl{int sched\_getparam(pid\_t pid, struct sched\_param *p)}
-  Legge la priorità assoluta del processo \param{pid}.
+  \funcdecl{int sched\_getparam(pid\_t pid, struct sched\_param *param)}
+  Legge la priorità statica del processo \param{pid}.
 
-  \bodydesc{La funzione ritorna la priorità  in caso di successo
-    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+  \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e $-1$ in
+    caso di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{p} non ha senso per la
-      politica scelta.
-    \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
-      eseguire l'operazione.
+    \item[\errcode{EINVAL}] il valore di \param{param} non ha senso per la
+      politica usata dal processo.
+    \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
+      l'operazione.
   \end{errlist}}
 \end{functions}
 
-L'uso di \func{sched\_setparam} che è del tutto equivalente a
-\func{sched\_setscheduler} con \param{priority} uguale a -1. Come per
-\func{sched\_setscheduler} specificando 0 come valore di \param{pid} si opera
-sul processo corrente. La disponibilità di entrambe le funzioni può essere
-verificata controllando la macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è
-definita nell'header \file{sched.h}. 
-
-Si tenga presente che per eseguire la funzione il processo chiamante deve
-avere un user-ID effettivo uguale all'user-ID reale o a quello effettivo del
-processo di cui vuole cambiare la priorità, oppure deve avere i privilegi di
-amministratore (con la capacità \const{CAP\_SYS\_NICE}).
-
-La priorità assoluta può essere riletta indietro dalla funzione
-\funcd{sched\_getscheduler}, il cui prototipo è:
+L'uso di \func{sched\_setparam}, compresi i controlli di accesso che vi si
+applicano, è del tutto equivalente a quello di \func{sched\_setscheduler} con
+argomento \param{policy} uguale a -1. Come per \func{sched\_setscheduler}
+specificando 0 come valore dell'argomento \param{pid} si opera sul processo
+corrente. Benché la funzione sia utilizzabile anche con processi sottoposti a
+politica ordinaria essa ha senso soltanto per quelli real-time, dato che per i
+primi la priorità statica può essere soltanto nulla.  La disponibilità di
+entrambe le funzioni può essere verificata controllando la macro
+\macro{\_POSIX\_PRIORITY\_SCHEDULING} che è definita nell'header
+\file{sched.h}.
+
+Se invece si vuole sapere quale è politica di scheduling di un processo si può
+usare la funzione \funcd{sched\_getscheduler}, il cui prototipo è:
 \begin{prototype}{sched.h}
 {int sched\_getscheduler(pid\_t pid)}
   Legge la politica di scheduling per il processo \param{pid}.
   
   \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
-    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    e $-1$ in caso di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
-  \end{errlist}}
+    \item[\errcode{EPERM}] non si hanno privilegi sufficienti per eseguire
+      l'operazione.
+  \end{errlist}}  
 \end{prototype}
 
-La funzione restituisce il valore (secondo quanto elencato in
-tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
-specificato; se \param{pid} è nullo viene restituito quello del processo
-chiamante.
+La funzione restituisce il valoresecondo quanto elencato in
+tab.~\ref{tab:proc_sched_policy}, della politica di scheduling per il processo
+specificato; se l'argomento \param{pid} è nullo viene restituito il valore
+relativo al processo chiamante.
 
 L'ultima funzione che permette di leggere le informazioni relative ai processi
 real-time è \funcd{sched\_rr\_get\_interval}, che permette di ottenere la
-lunghezza della \textit{time slice} usata dalla politica \textit{round robin};
+lunghezza della \textit{time-slice} usata dalla politica \textit{round robin};
 il suo prototipo è:
 \begin{prototype}{sched.h}
   {int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)} Legge in
-  \param{tp} la durata della \textit{time slice} per il processo \param{pid}.
+  \param{tp} la durata della \textit{time-slice} per il processo \param{pid}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
     nel qual caso \var{errno} può assumere i valori:
@@ -2393,10 +2843,9 @@ dato che in Linux questo intervallo di tempo 
 questa funzione ritorna sempre un valore di 150 millisecondi, e non importa
 specificare il PID di un processo reale.
 
-
-Come accennato ogni processo che usa lo scheduling real-time può rilasciare
-volontariamente la CPU; questo viene fatto attraverso la funzione
-\funcd{sched\_yield}, il cui prototipo è:
+Come accennato ogni processo può rilasciare volontariamente la CPU in modo da
+consentire agli altri processi di essere eseguiti; la funzione che consente di
+fare tutto ciò è \funcd{sched\_yield}, il cui prototipo è:
 \begin{prototype}{sched.h}
   {int sched\_yield(void)} 
   
@@ -2406,24 +2855,43 @@ volontariamente la CPU; questo viene fatto attraverso la funzione
     nel qual caso \var{errno} viene impostata opportunamente.}
 \end{prototype}
 
-La funzione fa sì che il processo rilasci la CPU, in modo da essere rimesso in
-coda alla lista dei processi da eseguire, e permettere l'esecuzione di un
-altro processo; se però il processo è l'unico ad essere presente sulla coda
-l'esecuzione non sarà interrotta. In genere usano questa funzione i processi
-in modalità \textit{fifo}, per permettere l'esecuzione degli altri processi
-con pari priorità quando la sezione più urgente è finita.
+Questa funzione ha un utilizzo effettivo soltanto quando si usa lo scheduling
+real-time, e serve a far sì che il processo corrente rilasci la CPU, in modo
+da essere rimesso in coda alla lista dei processi con la stessa priorità per
+permettere ad un altro di essere eseguito; se però il processo è l'unico ad
+essere presente sulla coda l'esecuzione non sarà interrotta. In genere usano
+questa funzione i processi con politica \const{SCHED\_FIFO}, per permettere
+l'esecuzione degli altri processi con pari priorità quando la sezione più
+urgente è finita.
+
+La funzione può essere utilizzata anche con processi che usano lo scheduling
+ordinario, ma in questo caso il comportamento non è ben definito, e dipende
+dall'implementazione. Fino al kernel 2.6.23 questo comportava che i processi
+venissero messi in fondo alla coda di quelli attivi, con la possibilità di
+essere rimessi in esecuzione entro breve tempo, con l'introduzione del
+\textit{Completely Fair Scheduler} questo comportamento è cambiato ed un
+processo che chiama la funzione viene inserito nella lista dei processi
+inattivo, con un tempo molto maggiore.\footnote{è comunque possibile
+  ripristinare un comportamento analogo al precedente scrivendo il valore 1
+  nel file \texttt{/proc/sys/kernel/sched\_compat\_yield}.}
+
+
+
+\subsection{Il controllo dello \textit{scheduler} per i sistemi
+  multiprocessore}
+\label{sec:proc_sched_multiprocess}
 
 Infine con il supporto dei sistemi multiprocessore sono state introdotte delle
 funzioni che permettono di controllare in maniera più dettagliata la scelta di
 quale processore utilizzare per eseguire un certo programma. Uno dei problemi
-che si pongono nei sistemi multiprocessore è infatti quello
-dell'\textsl{effetto ping-pong}.\index{\textsl{effetto ping-pong}} Può
-accadere cioè che lo scheduler, quando riavvia un processo precedentemente
-interrotto, scegliendo il primo processore disponibile lo faccia eseguire da
-un processore diverso rispetto a quello su cui era stato eseguito in
-precedenza. Se il processo passa da un processore all'altro in questo modo
-(cosa che avveniva abbastanza di frequente con i kernel della seria 2.4.x) si
-ha l'\textsl{effetto ping-pong}.
+che si pongono nei sistemi multiprocessore è infatti quello del cosiddetto
+\index{effetto~ping-pong} \textsl{effetto ping-pong}. Può accadere cioè che lo
+scheduler, quando riavvia un processo precedentemente interrotto scegliendo il
+primo processore disponibile, lo faccia eseguire da un processore diverso
+rispetto a quello su cui era stato eseguito in precedenza. Se il processo
+passa da un processore all'altro in questo modo (cosa che avveniva abbastanza
+di frequente con i kernel della seria 2.4.x) si ha l'\textsl{effetto
+  ping-pong}.
 
 Questo tipo di comportamento può generare dei seri problemi di prestazioni;
 infatti tutti i processori moderni utilizzano una memoria interna (la
@@ -2441,13 +2909,15 @@ questa operazione 
 diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
 infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
 e si ha una continua invalidazione della cache, che non diventa mai
-disponibile. 
+disponibile.
+
+\itindbeg{CPU~affinity}
 
 Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
-  di processore} (o \index{\textit{CPU~affinity}}\textit{CPU affinity}); la
-possibilità cioè di far sì che un processo possa essere assegnato per
-l'esecuzione sempre allo stesso processore. Lo scheduler dei kernel della
-serie 2.4.x aveva una scarsa \textit{CPU affinity}, e l'effetto ping-pong era
+  di processore} (o \textit{CPU affinity}); la possibilità cioè di far sì che
+un processo possa essere assegnato per l'esecuzione sempre allo stesso
+processore. Lo scheduler dei kernel della serie 2.4.x aveva una scarsa
+\textit{CPU affinity}, e \index{effetto~ping-pong} l'effetto ping-pong era
 comune; con il nuovo scheduler dei kernel della 2.6.x questo problema è stato
 risolto ed esso cerca di mantenere il più possibile ciascun processo sullo
 stesso processore.
@@ -2463,18 +2933,10 @@ problematiche nei nuovi kernel\footnote{le due system call per la gestione
 l'opportuna infrastruttura ed una nuova system call che permette di impostare
 su quali processori far eseguire un determinato processo attraverso una
 \textsl{maschera di affinità}. La corrispondente funzione di libreria è
-\funcd{sched\_setaffinity} ed il suo prototipo\footnote{di questa funzione (e
-  della corrispondente \func{sched\_setaffinity}) esistono versioni diverse
-  per gli argomenti successivi a \param{pid}: la prima (quella riportata nella
-  pagina di manuale) prevedeva due ulteriori argomenti di tipo
-  \texttt{unsigned int len} e \texttt{unsigned long *mask}, poi l'argomento
-  \texttt{len} è stato eliminato, successivamente si è introdotta la versione
-  riportata con però un secondo argomento di tipo \texttt{size\_t cpusetsize}
-  (anche questa citata nella pagina di manuale); la versione citata è quella
-  riportata nel manuale delle \textsl{glibc} e corripondente alla definizione
-  presente in \file{sched.h}.} è:
+\funcd{sched\_setaffinity} ed il suo prototipo è:
 \begin{prototype}{sched.h}
-  {int sched\_setaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  {int sched\_setaffinity (pid\_t pid, unsigned int cpusetsize, const
+    cpu\_set\_t *cpuset)} 
   Imposta la maschera di affinità del processo \param{pid}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
@@ -2489,6 +2951,21 @@ su quali processori far eseguire un determinato processo attraverso una
   ed inoltre anche \errval{EFAULT}.}
 \end{prototype}
 
+
+Questa funzione e la corrispondente \func{sched\_setaffinity} hanno una storia
+abbastanza complessa, la system call prevede l'uso di due ulteriori argomenti
+di tipo \texttt{unsigned int len} e \texttt{unsigned long *mask}, che
+corrispondono al fatto che la implementazione effettiva usa una semplice
+maschera binaria. Quando le funzioni vennero incluse nelle \acr{glibc}
+assunsero invece il prototipo appena mostrato. A complicare la cosa si
+aggiunge il fatto che nella versione 2.3.3 delle \acr{glibc} l'argomento
+\param{cpusetsize} è stato eliminato, per poi essere ripristinato nella
+versione 2.3.4.\footnote{pertanto se la vostra pagina di manuale non è
+  aggiornata, o usate quella particolare versione delle \acr{glibc}, potrete
+  trovare indicazioni diverse, il prototipo illustrato è quello riportato
+  nella versione corrente (maggio 2008) delle pagine di manuale e
+  corrispondente alla definizione presente in \file{sched.h}.}
+
 La funzione imposta, con l'uso del valore contenuto all'indirizzo
 \param{cpuset}, l'insieme dei processori sui quali deve essere eseguito il
 processo identificato tramite il valore passato in \param{pid}. Come in
@@ -2508,14 +2985,15 @@ utilizzato per un compito importante (ad esempio per applicazioni real-time o
 la cui risposta è critica) e si vuole la massima velocità, con questa
 interfaccia diventa possibile selezionare gruppi di processori utilizzabili in
 maniera esclusiva.  Lo stesso dicasi quando l'accesso a certe risorse (memoria
-o periferiche) può avere un costo diverso a seconda del processore (come
-avviene nelle architetture NUMA).
+o periferiche) può avere un costo diverso a seconda del processorecome
+avviene nelle architetture NUMA (\textit{Non-Uniform Memory Access}).
 
 Infine se un gruppo di processi accede alle stesse risorse condivise (ad
-esempio una applicazione con più thread) può avere senso usare lo stesso
-processore in modo da sfruttare meglio l'uso della sua cache; questo
-ovviamente riduce i benefici di un sistema multiprocessore nell'esecuzione
-contemporanea dei thread, ma in certi casi (quando i thread sono inerentemente
+esempio una applicazione con più \itindex{thread} \textit{thread}) può avere
+senso usare lo stesso processore in modo da sfruttare meglio l'uso della sua
+cache; questo ovviamente riduce i benefici di un sistema multiprocessore
+nell'esecuzione contemporanea dei \itindex{thread} \textit{thread}, ma in
+certi casi (quando i \itindex{thread} \textit{thread} sono inerentemente
 serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
 nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
 di processore.
@@ -2523,7 +3001,7 @@ di processore.
 Per facilitare l'uso dell'argomento \param{cpuset} le \acr{glibc} hanno
 introdotto un apposito dato di tipo, \ctyp{cpu\_set\_t},\footnote{questa è una
   estensione specifica delle \acr{glibc}, da attivare definendo la macro
-  \macro{\_GNU\_SOURCE}, non esiste infatti una standardardizzazione per
+  \macro{\_GNU\_SOURCE}, non esiste infatti una standardizzazione per
   questo tipo di interfaccia e POSIX al momento non prevede nulla al
   riguardo.} che permette di identificare un insieme di processori. Il dato è
 una maschera binaria: in generale è un intero a 32 bit in cui ogni bit
@@ -2563,7 +3041,8 @@ possa essere eseguito su qualunque processore, se pu
 valore per un processo specifico usando la funzione
 \funcd{sched\_getaffinity}, il suo prototipo è:
 \begin{prototype}{sched.h}
-  {int sched\_getaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  {int sched\_getaffinity (pid\_t pid, unsigned int cpusetsize, 
+    const cpu\_set\_t *cpuset)} 
   Legge la maschera di affinità del processo \param{pid}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
@@ -2578,13 +3057,221 @@ valore per un processo specifico usando la funzione
 La funzione restituirà all'indirizzo specificato da \param{cpuset} il valore
 della maschera di affinità del processo, così da poterla riutilizzare per una
 successiva reimpostazione. In questo caso non sono necessari privilegi
-paricolari.  
+particolari.  
 
 È chiaro che queste funzioni per la gestione dell'affinità hanno significato
 soltanto su un sistema multiprocessore, esse possono comunque essere
 utilizzate anche in un sistema con un processore singolo, nel qual caso però
 non avranno alcun risultato effettivo.
 
+\itindend{scheduler}
+\itindend{CPU~affinity}
+
+
+\subsection{Le priorità per le operazioni di I/O}
+\label{sec:io_priority}
+
+A lungo l'unica priorità usata per i processi è stata quella relativa
+all'assegnazione dell'uso del processore. Ma il processore non è l'unica
+risorsa che i processi devono contendersi, un'altra, altrettanto importante
+per le prestazioni, è quella dell'accesso a disco. Per questo motivo sono
+stati introdotti diversi \textit{I/O scheduler} in grado di distribuire in
+maniera opportuna questa risorsa ai vari processi. Fino al kernel 2.6.17 era
+possibile soltanto differenziare le politiche generali di gestione, scegliendo
+di usare un diverso \textit{I/O scheduler}; a partire da questa versione, con
+l'introduzione dello scheduler CFQ (\textit{Completely Fair Queuing}) è
+divenuto possibile, qualora si usi questo scheduler, impostare anche delle
+diverse priorità di accesso per i singoli processi.\footnote{al momento
+  (kernel 2.6.31), le priorità di I/O sono disponibili soltanto per questo
+  scheduler.}
+
+La scelta dello scheduler di I/O si può fare in maniera generica a livello di
+avvio del kernel assegnando il nome dello stesso al parametro
+\texttt{elevator}, mentre se ne può indicare uno per l'accesso al singolo
+disco scrivendo nel file \texttt{/sys/block/\textit{dev}/queue/scheduler}
+(dove \texttt{\textit{dev}} è il nome del dispositivo associato al disco); gli
+scheduler disponibili sono mostrati dal contenuto dello stesso file che
+riporta fra parentesi quadre quello attivo, il default in tutti i kernel
+recenti è proprio il \texttt{cfq},\footnote{nome con cui si indica appunto lo
+  scheduler \textit{Completely Fair Queuing}.} che supporta le priorità. Per i
+dettagli sulle caratteristiche specifiche degli altri scheduler, la cui
+discussione attiene a problematiche di ambito sistemistico, si consulti la
+documentazione nella directory \texttt{Documentation/block/} dei sorgenti del
+kernel.
+
+Una volta che si sia impostato lo scheduler CFQ ci sono due specifiche system
+call, specifiche di Linux, che consentono di leggere ed impostare le priorità
+di I/O.\footnote{se usate in corrispondenza ad uno scheduler diverso il loro
+  utilizzo non avrà alcun effetto.} Dato che non esiste una interfaccia
+diretta nelle \acr{glibc} per queste due funzioni occorrerà invocarle tramite
+la funzione \func{syscall} (come illustrato in
+sez.~\ref{sec:intro_syscall}). Le due funzioni sono \funcd{ioprio\_get} ed
+\funcd{ioprio\_set}; i rispettivi prototipi sono:
+\begin{functions}
+  \headdecl{linux/ioprio.h}
+  \funcdecl{int ioprio\_get(int which, int who)} 
+  \funcdecl{int ioprio\_set(int which, int who, int ioprio)} 
+
+  Rileva o imposta la priorità di I/O di un processo.
+  
+  \bodydesc{Le funzioni ritornano rispettivamente un intero positivo
+    (indicante la priorità) o 0 in caso di successo e $-1$ in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] non esiste il processo indicato.
+    \item[\errcode{EINVAL}] i valori di \param{which} e \param{who} non sono
+      validi. 
+    \item[\errcode{EPERM}] non si hanno i privilegi per eseguire
+      l'impostazione (solo per \func{ioprio\_set}). 
+  \end{errlist} }
+\end{functions}
+
+Le funzioni leggono o impostano la priorità di I/O sulla base dell'indicazione
+dei due argomenti \param{which} e \param{who} che hanno lo stesso significato
+già visto per gli omonimi argomenti di \func{getpriority} e
+\func{setpriority}. Anche in questo caso si deve specificare il valore
+di \param{which} tramite le opportune costanti riportate in
+tab.~\ref{tab:ioprio_args} che consentono di indicare un singolo processo, i
+processi di un \textit{process group} (tratteremo questo argomento in
+sez.~\ref{sec:sess_proc_group}) o tutti o processi di un utente.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|l|}
+    \hline
+    \param{which} & \param{who} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{IPRIO\_WHO\_PROCESS} & \type{pid\_t} & processo\\
+    \const{IPRIO\_WHO\_PRGR}    & \type{pid\_t} & \itindex{process~group}
+                                                  \textit{process group}\\ 
+    \const{IPRIO\_WHO\_USER}    & \type{uid\_t} & utente\\
+    \hline
+  \end{tabular}
+  \caption{Legenda del valore dell'argomento \param{which} e del tipo
+    dell'argomento \param{who} delle funzioni \func{ioprio\_get} e
+    \func{ioprio\_set} per le tre possibili scelte.}
+  \label{tab:ioprio_args}
+\end{table}
+
+In caso di successo \func{ioprio\_get} restituisce un intero positivo che
+esprime il valore della priorità di I/O, questo valore è una maschera binaria
+composta da due parti, una che esprime la \textsl{classe} di scheduling di I/O
+del processo, l'altra che esprime, quando la classe di scheduling lo prevede,
+la priorità del processo all'interno della classe stessa. Questo stesso
+formato viene utilizzato per indicare il valore della priorità da impostare
+con l'argomento \param{ioprio} di \func{ioprio\_set}.
+
+Per la gestione dei valori che esprimono le priorità di I/O sono state
+definite delle opportune macro di preprocessore, riportate in
+tab.~\ref{tab:IOsched_class_macro}. I valori delle priorità si ottengono o si
+impostano usando queste macro.  Le prime due si usano con il valore restituito
+da \func{ioprio\_get} e per ottenere rispettivamente la classe di
+scheduling\footnote{restituita dalla macro con i valori di
+  tab.~\ref{tab:IOsched_class}.} e l'eventuale valore della priorità. La terza
+macro viene invece usata per creare un valore di priorità da usare come
+argomento di \func{ioprio\_set} per eseguire una impostazione.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{8cm}|}
+    \hline
+    \textbf{Macro} & \textbf{Significato}\\
+    \hline
+    \hline
+    \macro{IOPRIO\_PRIO\_CLASS}\texttt{(\textit{value})}
+                                & dato il valore di una priorità come
+                                  restituito da \func{ioprio\_get} estrae il
+                                  valore della classe.\\
+    \macro{IOPRIO\_PRIO\_DATA}\texttt{(\textit{value})}
+                                & dato il valore di una priorità come
+                                  restituito da \func{ioprio\_get} estrae il
+                                  valore della priorità.\\
+    \macro{IOPRIO\_PRIO\_VALUE}\texttt{(\textit{class},\textit{prio})}
+                                & dato un valore di priorità ed una classe
+                                  ottiene il valore numerico da passare a
+                                  \func{ioprio\_set}.\\
+    \hline
+  \end{tabular}
+  \caption{Le macro per la gestione dei valori numerici .}
+  \label{tab:IOsched_class_macro}
+\end{table}
+
+Le classi di scheduling previste dallo scheduler CFQ sono tre, e ricalcano tre
+diverse modalità di distribuzione delle risorse analoghe a quelle già adottate
+anche nel funzionamento dello scheduler del processore. Ciascuna di esse è
+identificata tramite una opportuna costante, secondo quanto riportato in
+tab.~\ref{tab:IOsched_class}.
+
+La classe di priorità più bassa è \const{IOPRIO\_CLASS\_IDLE}; i processi in
+questa classe riescono ad accedere a disco soltanto quando nessun altro
+processo richiede l'accesso. Occorre pertanto usarla con molta attenzione,
+perché un processo in questa classe può venire completamente bloccato quando
+ci sono altri processi in una qualunque delle altre due classi che stanno
+accedendo al disco. Quando si usa questa classe non ha senso indicare un
+valore di priorità, dato che in questo caso non esiste nessuna gerarchia e la
+priorità è identica, la minima possibile, per tutti i processi.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Classe}  & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{IOPRIO\_CLASS\_RT}  & Scheduling di I/O \textit{real time}.\\
+    \const{IOPRIO\_CLASS\_BE}  & Scheduling di I/O ordinario.\\ 
+    \const{IOPRIO\_CLASS\_IDLE}& Scheduling di I/O di priorità minima.\\
+    \hline
+  \end{tabular}
+  \caption{Costanti che identificano le classi di scheduling di I/O.}
+  \label{tab:IOsched_class}
+\end{table}
+
+La seconda classe di priorità di I/O è \const{IOPRIO\_CLASS\_BE} (il nome sta
+per \textit{best-effort}) che è quella usata ordinariamente da tutti
+processi. In questo caso esistono priorità diverse che consentono di
+assegnazione di una maggiore banda passante nell'accesso a disco ad un
+processo rispetto agli altri, con meccanismo simile a quello dei valori di
+\textit{nice} in cui si evita che un processo a priorità più alta possa
+bloccare indefinitamente quelli a priorità più bassa. In questo caso però le
+diverse priorità sono soltanto otto, indicate da un valore numerico fra 0 e 7
+e come per \textit{nice} anche in questo caso un valore più basso indica una
+priorità maggiore. 
+
+
+Infine la classe di priorità di I/O \textit{real-time}
+\const{IOPRIO\_CLASS\_RT} ricalca le omonime priorità di processore: un
+processo in questa classe ha sempre la precedenza nell'accesso a disco
+rispetto a tutti i processi delle altre classi e di un processo nella stessa
+classe ma con priorità inferiore, ed è pertanto in grado di bloccare
+completamente tutti gli altri. Anche in questo caso ci sono 8 priorità diverse
+con un valore numerico fra 0 e 7, con una priorità più elevata per valori più
+bassi.
+
+In generale nel funzionamento ordinario la priorità di I/O di un processo
+viene impostata in maniera automatica nella classe \const{IOPRIO\_CLASS\_BE}
+con un valore ottenuto a partire dal corrispondente valore di \textit{nice}
+tramite la formula: $\mathtt{\mathit{prio}}=(\mathtt{\mathit{nice}}+20)/5$. Un
+utente ordinario può modificare con \func{ioprio\_set} soltanto le priorità
+dei processi che gli appartengono,\footnote{per la modifica delle priorità di
+  altri processi occorrono privilegi amministrativi, ed in particolare la
+  capacità \const{CAP\_SYS\_NICE} (vedi sez.~\ref{sec:proc_capabilities}).}
+cioè quelli il cui user-ID reale corrisponde all'user-ID reale o effettivo del
+chiamante. Data la possibilità di ottenere un blocco totale dello stesso, solo
+l'amministratore\footnote{o un processo con la capacità
+  \const{CAP\_SYS\_ADMIN} (vedi sez.~\ref{sec:proc_capabilities}).} può
+impostare un processo ad una priorità di I/O nella classe
+\const{IOPRIO\_CLASS\_RT} o \const{IOPRIO\_CLASS\_IDLE}.
+
+%TODO verificare http://lwn.net/Articles/355987/
+
+%TODO trattare le funzionalità per il NUMA
+% vedi man numa e le pagine di manuale relative
+% vedere anche dove metterle...
 
 \section{Problematiche di programmazione multitasking}
 \label{sec:proc_multi_prog}
@@ -2613,10 +3300,9 @@ di interruzione in una fase intermedia.
 In un ambiente multitasking il concetto è essenziale, dato che un processo può
 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
 altro processo o dalla ricezione di un segnale; occorre pertanto essere
-accorti nei confronti delle possibili 
-\textit{race condition}\index{\textit{race~condition}} (vedi
-sez.~\ref{sec:proc_race_cond}) derivanti da operazioni interrotte in una fase
-in cui non erano ancora state completate.
+accorti nei confronti delle possibili \itindex{race~condition} \textit{race
+  condition} (vedi sez.~\ref{sec:proc_race_cond}) derivanti da operazioni
+interrotte in una fase in cui non erano ancora state completate.
 
 Nel caso dell'interazione fra processi la situazione è molto più semplice, ed
 occorre preoccuparsi della atomicità delle operazioni solo quando si ha a che
@@ -2634,7 +3320,7 @@ qualunque momento, e le operazioni di un eventuale \textit{signal handler}
 sono compiute nello stesso spazio di indirizzi del processo. Per questo, anche
 il solo accesso o l'assegnazione di una variabile possono non essere più
 operazioni atomiche (torneremo su questi aspetti in
-sez.~\ref{sec:sig_control}).
+sez.~\ref{sec:sig_adv_control}).
 
 In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t},
 il cui accesso è assicurato essere atomico.  In pratica comunque si può
@@ -2651,7 +3337,8 @@ condiviso, onde evitare problemi con le ottimizzazioni del codice.
 \subsection{Le \textit{race condition} ed i \textit{deadlock}}
 \label{sec:proc_race_cond}
 
-\index{\textit{race~condition}|(}
+\itindbeg{race~condition}
+
 Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
 diversi operano su una risorsa comune, ed in cui il risultato viene a
 dipendere dall'ordine in cui essi effettuano le loro operazioni. Il caso
@@ -2676,11 +3363,11 @@ file, o nell'accesso a meccanismi di intercomunicazione come la memoria
 condivisa. In questi casi, se non si dispone della possibilità di eseguire
 atomicamente le operazioni necessarie, occorre che quelle parti di codice in
 cui si compiono le operazioni sulle risorse condivise (le cosiddette
-\textsl{sezioni critiche}\index{sezioni~critiche}) del programma, siano
+\index{sezione~critica} \textsl{sezioni critiche}) del programma, siano
 opportunamente protette da meccanismi di sincronizzazione (torneremo su queste
 problematiche di questo tipo in cap.~\ref{cha:IPC}).
 
-\index{\textit{deadlock}|(} 
+\itindbeg{deadlock}
 Un caso particolare di \textit{race condition} sono poi i cosiddetti
 \textit{deadlock}, particolarmente gravi in quanto comportano spesso il blocco
 completo di un servizio, e non il fallimento di una singola operazione. Per
@@ -2702,25 +3389,29 @@ In tutti questi casi 
 visto in sez.~\ref{sec:proc_atom_oper}; questi problemi infatti possono essere
 risolti soltanto assicurandosi, quando essa sia richiesta, che sia possibile
 eseguire in maniera atomica le operazioni necessarie.
-\index{\textit{race~condition}|)}
-\index{\textit{deadlock}|)}
+\itindend{race~condition}
+\itindend{deadlock}
 
 
 \subsection{Le funzioni rientranti}
 \label{sec:proc_reentrant}
 
+\index{funzioni!rientranti|(}
+
 Si dice \textsl{rientrante} una funzione che può essere interrotta in
 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
-un altro thread di esecuzione senza che questo comporti nessun problema
-nell'esecuzione della stessa. La problematica è comune nella programmazione
-multi-thread, ma si hanno gli stessi problemi quando si vogliono chiamare
-delle funzioni all'interno dei gestori dei segnali.
+un altro \itindex{thread} \textit{thread} di esecuzione senza che questo
+comporti nessun problema nell'esecuzione della stessa. La problematica è
+comune nella programmazione \itindex{thread} \textit{multi-thread}, ma si
+hanno gli stessi problemi quando si vogliono chiamare delle funzioni
+all'interno dei gestori dei segnali.
 
 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
-queste infatti vengono allocate nello stack, e un'altra invocazione non fa
-altro che allocarne un'altra copia. Una funzione può non essere rientrante
-quando opera su memoria che non è nello stack.  Ad esempio una funzione non è
-mai rientrante se usa una variabile globale o statica.
+queste infatti vengono allocate nello \itindex{stack} \textit{stack}, ed
+un'altra invocazione non fa altro che allocarne un'altra copia. Una funzione
+può non essere rientrante quando opera su memoria che non è nello
+\itindex{stack} \textit{stack}.  Ad esempio una funzione non è mai rientrante
+se usa una variabile globale o statica.
 
 Nel caso invece la funzione operi su un oggetto allocato dinamicamente, la
 cosa viene a dipendere da come avvengono le operazioni: se l'oggetto è creato
@@ -2734,13 +3425,68 @@ parte del programmatore.
 
 In genere le funzioni di libreria non sono rientranti, molte di esse ad
 esempio utilizzano variabili statiche, le \acr{glibc} però mettono a
-disposizione due macro di compilatore, \macro{\_REENTRANT} e
+disposizione due macro di compilatore,\footnote{si ricordi quanto illustrato
+  in sez.~\ref{sec:intro_gcc_glibc_std}.} \macro{\_REENTRANT} e
 \macro{\_THREAD\_SAFE}, la cui definizione attiva le versioni rientranti di
 varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 \code{\_r} al nome della versione normale.
 
-
-
+\index{funzioni!rientranti|)}
+
+
+% LocalWords:  multitasking like VMS child process identifier pid sez shell fig
+% LocalWords:  parent kernel init pstree keventd kswapd table struct linux call
+% LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
+% LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
+% LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD threads
+% LocalWords:  void ForkTest tempnam pathname sibling cap errno EAGAIN ENOMEM
+% LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
+% LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
+% LocalWords:  close group session tms lock vfork execve BSD stream main abort
+% LocalWords:  SIGABRT SIGCHLD SIGHUP foreground SIGCONT termination signal ANY
+% LocalWords:  handler kill EINTR POSIX options WNOHANG ECHILD option WUNTRACED
+% LocalWords:  dump bits rusage getrusage heap const filename argv envp EACCES
+% LocalWords:  filesystem noexec EPERM suid sgid root nosuid ENOEXEC ENOENT ELF
+% LocalWords:  ETXTBSY EINVAL ELIBBAD BIG EFAULT EIO ENAMETOOLONG ELOOP ENOTDIR
+% LocalWords:  ENFILE EMFILE argc execl path execv execle execlp execvp vector
+% LocalWords:  list environ NULL umask pending utime cutime ustime fcntl linker
+% LocalWords:  opendir libc interpreter FreeBSD capabilities Mandatory Access
+% LocalWords:  Control MAC SELinux Security Modules LSM superuser uid gid saved
+% LocalWords:  effective euid egid dell' fsuid fsgid getuid geteuid getgid SVr
+% LocalWords:  getegid IDS NFS setuid setgid all' logout utmp screen xterm TODO
+% LocalWords:  setreuid setregid FIXME ruid rgid seteuid setegid setresuid size
+% LocalWords:  setresgid getresuid getresgid value result argument setfsuid DAC
+% LocalWords:  setfsgid NGROUPS sysconf getgroups getgrouplist groups ngroups
+% LocalWords:  setgroups initgroups patch LIDS CHOWN OVERRIDE Discrectionary PF
+% LocalWords:  SEARCH chattr sticky NOATIME socket domain immutable append mmap
+% LocalWords:  broadcast multicast multicasting memory locking mlock mlockall
+% LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
+% LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
+% LocalWords:  capability capget capset header ESRCH undef version obj clear PT
+% LocalWords:  pag ssize length proc capgetp preemptive cache runnable Stopped
+% LocalWords:  Uninterrutible SIGSTOP soft slice nice niceness counter which SC
+% LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO First
+% LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
+% LocalWords:  min getparam getscheduler interval robin ENOSYS fifo ping long
+% LocalWords:  affinity setaffinity unsigned mask cpu NUMA CLR ISSET SETSIZE RR
+% LocalWords:  getaffinity assembler deadlock REENTRANT SAFE tgz MYPGRP l'OR rr
+% LocalWords:  WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG WCOREDUMP WIFSTOPPED
+% LocalWords:  WSTOPSIG opt char INTERP arg SIG IGN DFL mascheck grp FOWNER RAW
+% LocalWords:  FSETID SETPCAP BIND SERVICE ADMIN PACKET IPC OWNER MODULE RAWIO
+% LocalWords:  PACCT RESOURCE TTY CONFIG SETFCAP hdrp datap libcap lcap text tp
+% LocalWords:  get ncap caps CapInh CapPrm fffffeff CapEff getcap STAT dall'I
+% LocalWords:  inc PRIO SUSv PRGR prio SysV SunOS Ultrix sched timespec len sig
+% LocalWords:  cpusetsize cpuset atomic tickless redirezione WCONTINUED stopped
+% LocalWords:  waitid NOCLDSTOP ENOCHLD WIFCONTINUED ifdef endif idtype siginfo
+% LocalWords:  infop ALL WEXITED WSTOPPED WNOWAIT signo CLD EXITED KILLED page
+% LocalWords:  CONTINUED sources forking Spawned successfully executing exiting
+% LocalWords:  next cat for COMMAND pts bash defunct TRAPPED DUMPED Killable PR
+% LocalWords:  SIGKILL static RLIMIT preemption PREEMPT VOLUNTARY IDLE RTPRIO
+% LocalWords:  Completely Fair compat Uniform CFQ Queuing elevator dev cfq RT
+% LocalWords:  Documentation block syscall ioprio IPRIO CLASS class best effort
+% LocalWords:  refresh semop dnotify MADV DONTFORK prctl WCLONE SIGCHL WALL
+% LocalWords:  WNOTHREAD DUMPABLE KEEPCAPS
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"