Risistemata flock, aggiunta figura sulla struttura del sistema
[gapil.git] / prochand.tex
index 04b24efd31f50c0151c5b8e42ad9fe9f67ef5bdf..3f093759180ae0c364bfd34bbe6e39df922b76f5 100644 (file)
@@ -109,9 +109,10 @@ Dato che tutti i processi attivi nel sistema sono comunque generati da
 possono classificare i processi con la relazione padre/figlio in
 un'organizzazione gerarchica ad albero, in maniera analoga a come i file sono
 organizzati in un albero di directory (si veda
 possono classificare i processi con la relazione padre/figlio in
 un'organizzazione gerarchica ad albero, in maniera analoga a come i file sono
 organizzati in un albero di directory (si veda
-\secref{sec:file_organization}); in \curfig\ si è mostrato il risultato del
-comando \cmd{pstree} che permette di visualizzare questa struttura, alla cui
-base c'è \cmd{init} che è progenitore di tutti gli altri processi.
+\secref{sec:file_organization}); in \figref{fig:proc_tree} si è mostrato il
+risultato del comando \cmd{pstree} che permette di visualizzare questa
+struttura, alla cui base c'è \cmd{init} che è progenitore di tutti gli altri
+processi.
 
 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
 \textit{process table}; per ciascun processo viene mantenuta una voce nella
 
 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
 \textit{process table}; per ciascun processo viene mantenuta una voce nella
@@ -120,7 +121,7 @@ contiene tutte le informazioni rilevanti per quel processo. Tutte le strutture
 usate a questo scopo sono dichiarate nell'header file \file{linux/sched.h}, ed
 uno schema semplificato, che riporta la struttura delle principali informazioni
 contenute nella \type{task\_struct} (che in seguito incontreremo a più
 usate a questo scopo sono dichiarate nell'header file \file{linux/sched.h}, ed
 uno schema semplificato, che riporta la struttura delle principali informazioni
 contenute nella \type{task\_struct} (che in seguito incontreremo a più
-riprese), è mostrato in \nfig.
+riprese), è mostrato in \figref{fig:proc_task_struct}.
 
 \begin{figure}[htb]
   \centering
 
 \begin{figure}[htb]
   \centering
@@ -219,12 +220,14 @@ Il \acr{pid} viene assegnato in forma progressiva ogni volta che un nuovo
 processo viene creato, fino ad un limite che, essendo il \acr{pid} un numero
 positivo memorizzato in un intero a 16 bit, arriva ad un massimo di 32767.
 Oltre questo valore l'assegnazione riparte dal numero più basso disponibile a
 processo viene creato, fino ad un limite che, essendo il \acr{pid} un numero
 positivo memorizzato in un intero a 16 bit, arriva ad un massimo di 32767.
 Oltre questo valore l'assegnazione riparte dal numero più basso disponibile a
-partire da un minimo di 300,\footnote{questi valori sono definiti dalla macro
-  \macro{PID\_MAX} in \file{threads.h} e direttamente in \file{fork.c} nei
-  sorgenti del kernel.} che serve a riservare i \acr{pid} più bassi ai processi
-eseguiti dal direttamente dal kernel.  Per questo motivo, come visto in
-\secref{sec:proc_hierarchy}, il processo di avvio (\cmd{init}) ha sempre il
-\acr{pid} uguale a uno.
+partire da un minimo di 300,\footnote{questi valori, fino al kernel 2.4.x,
+  sono definiti dalla macro \macro{PID\_MAX} in \file{threads.h} e
+  direttamente in \file{fork.c}, con il kernel 2.5.x e la nuova interfaccia
+  per i thread creata da Ingo Molnar anche il meccanismo di allocazione dei
+  \acr{pid} è stato modificato.} che serve a riservare i \acr{pid} più bassi
+ai processi eseguiti dal direttamente dal kernel.  Per questo motivo, come
+visto in \secref{sec:proc_hierarchy}, il processo di avvio (\cmd{init}) ha
+sempre il \acr{pid} uguale a uno.
 
 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
 
 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
@@ -689,13 +692,14 @@ eseguite alla chiusura di un processo 
   \cmd{init}).
 \item viene inviato il segnale \macro{SIGCHLD} al processo padre (vedi
   \secref{sec:sig_sigchld}).
   \cmd{init}).
 \item viene inviato il segnale \macro{SIGCHLD} al processo padre (vedi
   \secref{sec:sig_sigchld}).
-\item se il processo è un leader di sessione viene mandato un segnale di
-  \macro{SIGHUP} a tutti i processi in background e il terminale di
-  controllo viene disconnesso (vedi \secref{sec:sess_xxx}).
+\item se il processo è un leader di sessione ed il suo terminale di controllo
+  è quello della sessione viene mandato un segnale di \macro{SIGHUP} a tutti i
+  processi del gruppo di foreground e il terminale di controllo viene
+  disconnesso (vedi \secref{sec:sess_ctrl_term}).
 \item se la conclusione di un processo rende orfano un \textit{process
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
   inviati in successione i segnali \macro{SIGHUP} e \macro{SIGCONT}
 \item se la conclusione di un processo rende orfano un \textit{process
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
   inviati in successione i segnali \macro{SIGHUP} e \macro{SIGCONT}
-  (vedi \secref{sec:sess_xxx}).
+  (vedi ancora \secref{sec:sess_ctrl_term}).
 \end{itemize*}
 
 Oltre queste operazioni è però necessario poter disporre di un meccanismo
 \end{itemize*}
 
 Oltre queste operazioni è però necessario poter disporre di un meccanismo
@@ -767,15 +771,15 @@ informazioni riguardo ai processi che sta terminando.
 
 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
 memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
 
 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
 memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
-dal processo (vedi \secref{sec:sys_unix_time}) e lo stato di
-terminazione\footnote{NdA verificare esattamente cosa c'è!}, mentre la memoria
-in uso ed i file aperti vengono rilasciati immediatamente. I processi che sono
-terminati, ma il cui stato di terminazione non è stato ancora ricevuto dal
-padre sono chiamati \textit{zombie}, essi restano presenti nella tabella dei
-processi ed in genere possono essere identificati dall'output di \cmd{ps} per
-la presenza di una \texttt{Z} nella colonna che ne indica lo stato. Quando il
-padre effettuerà la lettura dello stato di uscita anche questa informazione,
-non più necessaria, verrà scartata e la terminazione potrà dirsi completamente
+dal processo (vedi \secref{sec:sys_unix_time}) e lo stato di terminazione,
+mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. I
+processi che sono terminati, ma il cui stato di terminazione non è stato
+ancora ricevuto dal padre sono chiamati \textit{zombie}, essi restano presenti
+nella tabella dei processi ed in genere possono essere identificati
+dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella colonna che ne
+indica lo stato (vedi \tabref{tab:proc_proc_states}). Quando il padre
+effettuerà la lettura dello stato di uscita anche questa informazione, non più
+necessaria, verrà scartata e la terminazione potrà dirsi completamente
 conclusa.
 
 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
 conclusa.
 
 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
@@ -925,12 +929,16 @@ specchietto riportato in \tabref{tab:proc_waidpid_pid}:
 Il comportamento di \func{waitpid} può inoltre essere modificato passando
 delle opportune opzioni tramite l'argomento \param{option}. I valori possibili
 sono il già citato \macro{WNOHANG}, che previene il blocco della funzione
 Il comportamento di \func{waitpid} può inoltre essere modificato passando
 delle opportune opzioni tramite l'argomento \param{option}. I valori possibili
 sono il già citato \macro{WNOHANG}, che previene il blocco della funzione
-quando il processo figlio non è terminato, e \macro{WUNTRACED} (usata per il
-controllo di sessione, trattato in \secref{sec:sess_job_control}) che fa
-ritornare la funzione anche per i processi figli che sono bloccati ed il cui
-stato non è stato ancora riportato al padre. Il valore dell'opzione deve
-essere specificato come maschera binaria ottenuta con l'OR delle suddette
-costanti con zero.
+quando il processo figlio non è terminato, e \macro{WUNTRACED}. Quest'ultimo
+viene generalmente usato per il controllo di sessione, (trattato in
+\secref{sec:sess_job_control}) in quanto permette di identificare i processi
+bloccati. La funzione infatti in tal caso ritorna, restituendone il \acr{pid},
+se c'è un processo figlio che è entrato in stato di sleep (vedi
+\tabref{tab:proc_proc_states}) di cui non si è ancora letto lo stato (con
+questa stessa opzione). Il valore dell'opzione deve essere specificato come
+maschera binaria ottenuta con l'OR delle suddette costanti con zero. In Linux
+sono previste altre opzioni non standard relative al comportamento con i
+thread, che saranno trattate in \secref{sec:thread_xxx}.
 
 La terminazione di un processo figlio è chiaramente un evento asincrono
 rispetto all'esecuzione di un programma e può avvenire in un qualunque
 
 La terminazione di un processo figlio è chiaramente un evento asincrono
 rispetto all'esecuzione di un programma e può avvenire in un qualunque
@@ -1117,10 +1125,11 @@ linea di comando e l'ambiente ricevuti dal nuovo processo.
 \end{functions}
 
 Per capire meglio le differenze fra le funzioni della famiglia si può fare
 \end{functions}
 
 Per capire meglio le differenze fra le funzioni della famiglia si può fare
-riferimento allo specchietto riportato in \ntab. La prima differenza riguarda
-le modalità di passaggio dei parametri che poi andranno a costituire gli
-argomenti a linea di comando (cioè i valori di \var{argv} e \var{argc} visti
-dalla funzione \func{main} del programma chiamato). 
+riferimento allo specchietto riportato in \tabref{tab:proc_exec_scheme}. La
+prima differenza riguarda le modalità di passaggio dei parametri che poi
+andranno a costituire gli argomenti a linea di comando (cioè i valori di
+\var{argv} e \var{argc} visti dalla funzione \func{main} del programma
+chiamato).
 
 Queste modalità sono due e sono riassunte dagli mnemonici \code{v} e \code{l}
 che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso
 
 Queste modalità sono due e sono riassunte dagli mnemonici \code{v} e \code{l}
 che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso
@@ -1184,7 +1193,7 @@ indicato dal parametro \var{path}, che viene interpretato come il
 
 \begin{figure}[htb]
   \centering
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=13cm]{img/exec_rel}
+  \includegraphics[width=15cm]{img/exec_rel}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
@@ -1287,8 +1296,12 @@ problematiche connesse ad una gestione accorta dei privilegi.
 Come accennato in \secref{sec:intro_multiuser} il modello base\footnote{in
   realtà già esistono estensioni di questo modello base, che lo rendono più
   flessibile e controllabile, come le \textit{capabilities}, le ACL per i file
 Come accennato in \secref{sec:intro_multiuser} il modello base\footnote{in
   realtà già esistono estensioni di questo modello base, che lo rendono più
   flessibile e controllabile, come le \textit{capabilities}, le ACL per i file
-  o il \textit{Mandatory Access Control} di SELinux.} di sicurezza di un
-sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
+  o il \textit{Mandatory Access Control} di SELinux; inoltre basandosi sul
+  lavoro effettuato con SELinux, a partire dal kernel 2.5.x, è iniziato lo
+  sviluppo di una infrastruttura di sicurezza, il \textit{Linux Security
+    Modules}, ol LSM, in grado di fornire diversi agganci a livello del kernel
+  per modularizzare tutti i possibili controlli di accesso.} di sicurezza di
+un sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
 separazione fra l'amministratore (\textsl{root}, detto spesso anche
 \textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli
 utenti, per i quali invece vengono effettuati i vari controlli di accesso.
 separazione fra l'amministratore (\textsl{root}, detto spesso anche
 \textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli
 utenti, per i quali invece vengono effettuati i vari controlli di accesso.
@@ -1874,6 +1887,7 @@ sia la sua priorit
 fintanto che esso si trova in uno qualunque degli altri stati.
 
 \begin{table}[htb]
 fintanto che esso si trova in uno qualunque degli altri stati.
 
 \begin{table}[htb]
+  \footnotesize
   \centering
   \begin{tabular}[c]{|p{2.8cm}|c|p{10cm}|}
     \hline
   \centering
   \begin{tabular}[c]{|p{2.8cm}|c|p{10cm}|}
     \hline
@@ -2103,9 +2117,10 @@ priorit
 nel caso di Linux non si tratta di un vero hard real-time, in quanto in
 presenza di eventuali interrupt il kernel interrompe l'esecuzione di un
 processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
 nel caso di Linux non si tratta di un vero hard real-time, in quanto in
 presenza di eventuali interrupt il kernel interrompe l'esecuzione di un
 processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
-  siano installate le patch di RTLinux o RTAI, con i quali è possibile
+  siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
   ottenere un sistema effettivamente hard real-time. In tal caso infatti gli
   ottenere un sistema effettivamente hard real-time. In tal caso infatti gli
-  interrupt vengono intercettati dall'interfaccia real-time, e gestiti
+  interrupt vengono intercettati dall'interfaccia real-time (o nel caso di
+  Adeos gestiti dalle code del nano-kernel), in modo da poterlo controllare
   direttamente qualora ci sia la necessità di avere un processo con priorità
   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
 page fault\index{page fault} si possono avere ritardi non previsti. Se
   direttamente qualora ci sia la necessità di avere un processo con priorità
   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
 page fault\index{page fault} si possono avere ritardi non previsti. Se
@@ -2129,17 +2144,16 @@ eseguito per primo quello con priorit
 processi con la stessa priorità assoluta questi vengono tenuti in una coda
 tocca al kernel decidere quale deve essere eseguito. 
 
 processi con la stessa priorità assoluta questi vengono tenuti in una coda
 tocca al kernel decidere quale deve essere eseguito. 
 
-
-
 Il meccanismo con cui vengono gestiti questi processi dipende dalla politica
 di scheduling che si è scelto; lo standard ne prevede due:
 Il meccanismo con cui vengono gestiti questi processi dipende dalla politica
 di scheduling che si è scelto; lo standard ne prevede due:
-\begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
-\item[\textit{FIFO}] il processo viene eseguito fintanto che non cede
-  volontariamente la CPU, si blocca, finisce o viene interrotto da un processo
-  a priorità più alta.
-\item[\textit{Round Robin}] ciascun processo viene eseguito a turno per un
-  certo periodo di tempo (una \textit{time slice}). Solo i processi con la
-  stessa priorità ed in stato \textit{runnable} entrano nel circolo.
+\begin{basedescript}{\desclabelwidth{2cm}\desclabelstyle{\nextlinelabel}}
+\item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
+  fintanto che non cede volontariamente la CPU, si blocca, finisce o viene
+  interrotto da un processo a priorità più alta.
+\item[\textit{RR}] \textit{Round Robin}. Ciascun processo viene eseguito a
+  turno per un certo periodo di tempo (una \textit{time slice}). Solo i
+  processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  circolo.
 \end{basedescript}
 
 La funzione per impostare le politiche di scheduling (sia real-time che
 \end{basedescript}
 
 La funzione per impostare le politiche di scheduling (sia real-time che