Spostamento della sezione sulle capabilities, inizio aggiornamento
[gapil.git] / prochand.tex
index 76bd1bc1979e66f4a99d8b6f16640a59c36fdfc4..27d7d064b490e5f7736568c417d4593fc1475829 100644 (file)
@@ -1,6 +1,6 @@
 %% prochand.tex
 %%
-%% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2009 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -138,12 +138,15 @@ fig.~\ref{fig:proc_task_struct}.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=11cm]{img/task_struct}
+  \includegraphics[width=12cm]{img/task_struct}
   \caption{Schema semplificato dell'architettura delle strutture usate dal
     kernel nella gestione dei processi.}
   \label{fig:proc_task_struct}
 \end{figure}
 
+% TODO la task_struct è cambiata per qualche dettaglio vedi anche
+% http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
+
 Come accennato in sez.~\ref{sec:intro_unix_struct} è lo \itindex{scheduler}
 \textit{scheduler} che decide quale processo mettere in esecuzione; esso viene
 eseguito ad ogni system call ed ad ogni interrupt,\footnote{più in una serie
@@ -161,7 +164,7 @@ periodico secondo la frequenza specificata dalla costante
 valore è espresso in Hertz.\footnote{a partire dal kernel 2.6.21 è stato
   introdotto (a cura di Ingo Molnar) un meccanismo completamente diverso,
   detto \textit{tickless}, in cui non c'è più una interruzione periodica con
-  frequenza prefissata, ma ad ogni chiamata del time viene programmata
+  frequenza prefissata, ma ad ogni chiamata del timer viene programmata
   l'interruzione successiva sulla base di una stima; in questo modo si evita
   di dover eseguire un migliaio di interruzioni al secondo anche su macchine
   che non stanno facendo nulla, con un forte risparmio nell'uso dell'energia
@@ -248,13 +251,13 @@ massimo di 32768.  Oltre questo valore l'assegnazione riparte dal numero pi
 basso disponibile a partire da un minimo di 300,\footnote{questi valori, fino
   al kernel 2.4.x, sono definiti dalla macro \const{PID\_MAX} in
   \file{threads.h} e direttamente in \file{fork.c}, con il kernel 2.5.x e la
-  nuova interfaccia per i thread creata da Ingo Molnar anche il meccanismo di
-  allocazione dei \acr{pid} è stato modificato; il valore massimo è
-  impostabile attraverso il file \procfile{/proc/sys/kernel/pid\_max} e di
-  default vale 32768.} che serve a riservare i \acr{pid} più bassi ai processi
-eseguiti direttamente dal kernel.  Per questo motivo, come visto in
-sez.~\ref{sec:proc_hierarchy}, il processo di avvio (\cmd{init}) ha sempre il
-\acr{pid} uguale a uno.
+  nuova interfaccia per i \itindex{thread} \textit{thread} creata da Ingo
+  Molnar anche il meccanismo di allocazione dei \acr{pid} è stato modificato;
+  il valore massimo è impostabile attraverso il file
+  \procfile{/proc/sys/kernel/pid\_max} e di default vale 32768.} che serve a
+riservare i \acr{pid} più bassi ai processi eseguiti direttamente dal kernel.
+Per questo motivo, come visto in sez.~\ref{sec:proc_hierarchy}, il processo di
+avvio (\cmd{init}) ha sempre il \acr{pid} uguale a uno.
 
 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
@@ -331,7 +334,7 @@ Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
 il processo figlio continuano ad essere eseguiti normalmente a partire
 dall'istruzione successiva alla \func{fork}; il processo figlio è però una
 copia del padre, e riceve una copia dei \index{segmento!testo} segmenti di
-testo, \itindex{stack} stack e \index{segmento!dati} dati (vedi
+testo, \itindex{stack} \textit{stack} e \index{segmento!dati} dati (vedi
 sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del
 padre. Si tenga presente però che la memoria è copiata, non condivisa,
 pertanto padre e figlio vedono variabili diverse.
@@ -432,8 +435,7 @@ Se eseguiamo il comando\footnote{che 
 senza specificare attese (come si può notare in (\texttt{\small 17--19}) i
 valori predefiniti specificano di non attendere), otterremo come output sul
 terminale:
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ export LD_LIBRARY_PATH=./; ./forktest 3
 Process 1963: forking 3 child
 Spawned 1 child, pid 1964 
@@ -448,8 +450,8 @@ Child 3 successfully executing
 Child 3, parent 1963, exiting
 Spawned 3 child, pid 1966 
 Go to next child 
-\end{verbatim} %$
-\normalsize
+\end{Verbatim} 
+%$
 
 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
 si può dire quale processo fra il padre ed il figlio venga eseguito per primo
@@ -484,7 +486,7 @@ padre, effettuando per primo una operazione di scrittura in memoria, attivi il
 meccanismo del \itindex{copy~on~write} \textit{copy on write}. Questa
 operazione infatti potrebbe risultare del tutto inutile qualora il figlio
 fosse stato creato solo per eseguire una \func{exec}, in tal caso infatti si
-invocherebbe un'altro proramma scartando completamente lo spazio degli
+invocherebbe un altro programma scartando completamente lo spazio degli
 indirizzi, rendendo superflua la copia della memoria modificata dal padre.
 
 Eseguendo sempre per primo il figlio la \func{exec} verrebbe effettuata subito
@@ -505,8 +507,7 @@ Un secondo aspetto molto importante nella creazione dei processi figli 
 quello dell'interazione dei vari processi con i file; per illustrarlo meglio
 proviamo a redirigere su un file l'output del nostro programma di test, quello
 che otterremo è:
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ./forktest 3 > output
 [piccardi@selidor sources]$ cat output
 Process 1967: forking 3 child
@@ -531,8 +532,7 @@ Spawned 2 child, pid 1969
 Go to next child 
 Spawned 3 child, pid 1970 
 Go to next child 
-\end{verbatim}
-\normalsize
+\end{Verbatim}
 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
 
 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
@@ -563,14 +563,15 @@ sez.~\ref{sec:file_sharing}), ma anche che, a differenza di quanto avviene per
 le variabili, la posizione corrente sul file è condivisa fra il padre e tutti
 i processi figli.
 
-Quello che succede è che quando lo standard output del padre viene rediretto,
-lo stesso avviene anche per tutti i figli; la funzione \func{fork} infatti ha
-la caratteristica di duplicare nei figli tutti i file descriptor aperti nel
-padre (allo stesso modo in cui lo fa la funzione \func{dup}, trattata in
-sez.~\ref{sec:file_dup}), il che comporta che padre e figli condividono le
-stesse voci della \itindex{file~table} \textit{file table} (per la spiegazione
-di questi termini si veda sez.~\ref{sec:file_sharing}) fra cui c'è anche la
-posizione corrente nel file.
+Quello che succede è che quando lo standard output del padre viene rediretto
+come si è fatto nell'esempio, lo stesso avviene anche per tutti i figli; la
+funzione \func{fork} infatti ha la caratteristica di duplicare nei processi
+figli tutti i file descriptor aperti nel processo padre (allo stesso modo in
+cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}), il che
+comporta che padre e figli condividono le stesse voci della
+\itindex{file~table} \textit{file table} (per la spiegazione di questi termini
+si veda sez.~\ref{sec:file_sharing}) fra cui c'è anche la posizione corrente
+nel file.
 
 In questo modo se un processo scrive sul file aggiornerà la posizione corrente
 sulla \itindex{file~table} \textit{file table}, e tutti gli altri processi,
@@ -582,21 +583,20 @@ mescolato, ma non ci saranno parti perdute per via di una sovrascrittura.
 
 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
-scrivono sullo stesso file (un caso tipico è la shell quando lancia un
-programma, il cui output va sullo standard output). 
-
-In questo modo, anche se l'output viene rediretto, il padre potrà sempre
-continuare a scrivere in coda a quanto scritto dal figlio in maniera
-automatica; se così non fosse ottenere questo comportamento sarebbe
-estremamente complesso necessitando di una qualche forma di comunicazione fra
-i due processi per far riprendere al padre la scrittura al punto giusto.
+scrivono sullo stesso file; un caso tipico è la shell quando lancia un
+programma, il cui output va sullo standard output.  In questo modo, anche se
+l'output viene rediretto, il padre potrà sempre continuare a scrivere in coda
+a quanto scritto dal figlio in maniera automatica; se così non fosse ottenere
+questo comportamento sarebbe estremamente complesso necessitando di una
+qualche forma di comunicazione fra i due processi per far riprendere al padre
+la scrittura al punto giusto.
 
 In generale comunque non è buona norma far scrivere più processi sullo stesso
 file senza una qualche forma di sincronizzazione in quanto, come visto anche
 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
 i file dopo una \func{fork} sono sostanzialmente due:
-\begin{enumerate*}
+\begin{enumerate}
 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
   della posizione corrente dopo eventuali operazioni di lettura e scrittura
@@ -604,7 +604,7 @@ i file dopo una \func{fork} sono sostanzialmente due:
 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
   ciascuno dei due processi deve chiudere i file che non gli servono una volta
   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
-\end{enumerate*}
+\end{enumerate}
 
 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
@@ -695,7 +695,7 @@ Qualunque sia la modalit
 comunque una serie di operazioni: chiude tutti i file aperti, rilascia la
 memoria che stava usando, e così via; l'elenco completo delle operazioni
 eseguite alla chiusura di un processo è il seguente:
-\begin{itemize*}
+\begin{itemize}
 \item tutti i file descriptor sono chiusi;
 \item viene memorizzato lo stato di terminazione del processo;
 \item ad ogni processo figlio viene assegnato un nuovo padre (in genere
@@ -710,7 +710,7 @@ eseguite alla chiusura di un processo 
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
   inviati in successione i segnali \const{SIGHUP} e \const{SIGCONT}
   (vedi ancora sez.~\ref{sec:sess_ctrl_term}).
-\end{itemize*}
+\end{itemize}
 
 Oltre queste operazioni è però necessario poter disporre di un meccanismo
 ulteriore che consenta di sapere come la terminazione è avvenuta: dato che in
@@ -738,8 +738,8 @@ La scelta di riportare al padre lo stato di terminazione dei figli, pur
 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
 alla sua creazione è scontato che ogni nuovo processo ha un padre, non è detto
 che sia così alla sua conclusione, dato che il padre potrebbe essere già
-terminato (si potrebbe avere cioè quello che si chiama un processo
-\textsl{orfano})
+terminatosi potrebbe avere cioè quello che si chiama un processo
+\textsl{orfano}. 
 
 % TODO verificare il reparenting
 
@@ -752,8 +752,7 @@ avr
 cui riportare il suo stato di terminazione.  Come verifica di questo
 comportamento possiamo eseguire il nostro programma \cmd{forktest} imponendo a
 ciascun processo figlio due secondi di attesa prima di uscire, il risultato è:
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ./forktest -c2 3
 Process 1972: forking 3 child
 Spawned 1 child, pid 1973 
@@ -768,8 +767,7 @@ Go to next child
 [piccardi@selidor sources]$ Child 3, parent 1, exiting
 Child 2, parent 1, exiting
 Child 1, parent 1, exiting
-\end{verbatim}
-\normalsize
+\end{Verbatim}
 come si può notare in questo caso il processo padre si conclude prima dei
 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
 secondi dopo viene stampato a video anche l'output dei tre figli che
@@ -799,9 +797,7 @@ condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
 sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
 secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso
 terminale (prima dello scadere dei 10 secondi) otterremo:
-
-\footnotesize
-\begin{verbatim}
+\begin{Verbatim}[fontsize=\footnotesize,xleftmargin=1cm,xrightmargin=1.5cm]
 [piccardi@selidor sources]$ ps T
   PID TTY      STAT   TIME COMMAND
   419 pts/0    S      0:00 bash
@@ -810,8 +806,9 @@ terminale (prima dello scadere dei 10 secondi) otterremo:
   570 pts/0    Z      0:00 [forktest <defunct>]
   571 pts/0    Z      0:00 [forktest <defunct>]
   572 pts/0    R      0:00 ps T
-\end{verbatim} %$
-\normalsize e come si vede, dato che non si è fatto nulla per riceverne lo
+\end{Verbatim} 
+%$
+e come si vede, dato che non si è fatto nulla per riceverne lo
 stato di terminazione, i tre processi figli sono ancora presenti pur essendosi
 conclusi, con lo stato di \index{zombie} \textit{zombie} e l'indicazione che
 sono stati terminati.
@@ -955,8 +952,9 @@ funzione delle opportune opzioni tramite l'argomento \param{options}; questo
 deve essere specificato come maschera binaria dei flag riportati in
 tab.~\ref{tab:proc_waitpid_options},\footnote{oltre a queste in Linux sono
   previste del altre opzioni non standard, relative al comportamento con i
-  thread, che riprenderemo in sez.~\ref{sec:thread_xxx}.} che possono essere
-combinati fra loro con un OR aritmetico.
+  \itindex{thread} \textit{thread}, che riprenderemo in
+  sez.~\ref{sec:thread_xxx}.} che possono essere combinati fra loro con un OR
+aritmetico.
 
 L'uso dell'opzione \const{WNOHANG} consente di prevenire il blocco della
 funzione qualora nessun figlio sia uscito (o non si siano verificate le altre
@@ -1224,13 +1222,14 @@ specificata l'opzione \const{WNOHANG} e la funzione 
 senza che nessun figlio sia terminato. Pertanto per verificare il motivo del
 ritorno della funzione occorre analizzare le informazioni che essa
 restituisce; queste, al contrario delle precedenti \func{wait} e
-\func{waitpid}, sono ritornate nella struttura di tipo \struct{siginfo\_t}
-(vedi fig.~\ref{fig:sig_siginfo_t}) all'indirizzo puntato dall'argomento
-\param{infop}.
-
-Tratteremo nei dettagli questa struttura ed il significato dei suoi vari campi
-in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui basta dire che al
-ritorno di \func{waitid} verranno avvalorati i seguenti campi:
+\func{waitpid} che usavano un semplice valore numerico, sono ritornate in una
+struttura di tipo \struct{siginfo\_t} (vedi fig.~\ref{fig:sig_siginfo_t})
+all'indirizzo puntato dall'argomento \param{infop}.
+
+Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
+suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
+basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
+campi:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\var{si\_pid}] con il \acr{pid} del figlio.
 \item[\var{si\_uid}] con l'user-ID reale (vedi sez.~\ref{sec:proc_perms}) del
@@ -1239,19 +1238,20 @@ ritorno di \func{waitid} verranno avvalorati i seguenti campi:
 \item[\var{si\_status}] con lo stato di uscita del figlio o con il segnale che
   lo ha terminato, fermato o riavviato.
 \item[\var{si\_code}] con uno fra \const{CLD\_EXITED}, \const{CLD\_KILLED},
-  \const{CLD\_STOPPED}, \const{CLD\_CONTINUED} (vedi tab.~\ref{xxx_si_code}).
+  \const{CLD\_STOPPED}, \const{CLD\_CONTINUED}, \const{CLD\_TRAPPED} e
+  \const{CLD\_DUMPED} a indicare la ragione del ritorno della funzione, il cui
+  significato è, nell'ordine: uscita normale, terminazione da segnale,
+  processo fermato, processo riavviato, processo terminato in \textit{core
+    dump}.
 \end{basedescript}
 
-%TODO mettere riferimento alla tabella giusta (vedere man credentials e man
-%     waitid)
-
 Infine Linux, seguendo un'estensione di BSD, supporta altre due funzioni per
 la lettura dello stato di terminazione di un processo, analoghe alle
 precedenti ma che prevedono un ulteriore argomento attraverso il quale il
-kernel può restituire al padre informazioni sulle risorse usate dal processo
-terminato e dai vari figli.  Le due funzioni sono \funcd{wait3} e
-\funcd{wait4}, che diventano accessibili definendo la macro
-\macro{\_USE\_BSD}; i loro prototipi sono:
+kernel può restituire al padre informazioni sulle risorse (vedi
+sez.~\ref{sec:sys_res_limits}) usate dal processo terminato e dai vari figli.
+Le due funzioni sono \funcd{wait3} e \funcd{wait4}, che diventano accessibili
+definendo la macro \macro{\_USE\_BSD}; i loro prototipi sono:
 \begin{functions}
   \headdecl{sys/times.h} \headdecl{sys/types.h} \headdecl{sys/wait.h}
   \headdecl{sys/resource.h} 
@@ -1431,7 +1431,7 @@ l'ambiente.
 Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da
 \func{exec} assume anche una serie di altre proprietà del processo chiamante;
 la lista completa è la seguente:
-\begin{itemize*}
+\begin{itemize}
 \item il \textit{process id} (\acr{pid}) ed il \textit{parent process id}
   (\acr{ppid});
 \item l'\textsl{user-ID reale}, il \textit{group-ID reale} ed i
@@ -1450,7 +1450,7 @@ la lista completa 
 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times}).
-\end{itemize*}
+\end{itemize}
 
 Inoltre i segnali che sono stati impostati per essere ignorati nel processo
 chiamante mantengono la stessa impostazione pure nel nuovo programma, tutti
@@ -1465,32 +1465,34 @@ sez.~\ref{sec:file_fcntl}) per ciascun file descriptor. I file per cui 
 impostato vengono chiusi, tutti gli altri file restano aperti. Questo
 significa che il comportamento predefinito è che i file restano aperti
 attraverso una \func{exec}, a meno di una chiamata esplicita a \func{fcntl}
-che imposti il suddetto flag.
-
-Per le directory, lo standard POSIX.1 richiede che esse vengano chiuse
-attraverso una \func{exec}, in genere questo è fatto dalla funzione
-\func{opendir} (vedi sez.~\ref{sec:file_dir_read}) che effettua da sola
-l'impostazione del flag di \itindex{close-on-exec} \textit{close-on-exec}
-sulle directory che apre, in maniera trasparente all'utente.
+che imposti il suddetto flag.  Per le directory, lo standard POSIX.1 richiede
+che esse vengano chiuse attraverso una \func{exec}, in genere questo è fatto
+dalla funzione \func{opendir} (vedi sez.~\ref{sec:file_dir_read}) che effettua
+da sola l'impostazione del flag di \itindex{close-on-exec}
+\textit{close-on-exec} sulle directory che apre, in maniera trasparente
+all'utente.
 
 Abbiamo detto che l'\textsl{user-ID reale} ed il \textsl{group-ID reale}
-restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per
-l'\textsl{user-ID effettivo} ed il \textsl{group-ID effettivo} (il significato
-di questi identificatori è trattato in sez.~\ref{sec:proc_access_id}), tranne
-quando il file che si va ad eseguire abbia o il \itindex{suid~bit} \acr{suid}
-bit o lo \itindex{sgid~bit} \acr{sgid} bit impostato, in questo caso
-l'\textsl{user-ID effettivo} ed il \textsl{group-ID effettivo} vengono
-impostati rispettivamente all'utente o al gruppo cui il file appartiene (per i
-dettagli vedi sez.~\ref{sec:proc_perms}).
+restano gli stessi all'esecuzione di \func{exec}; normalmente vale lo stesso
+anche per l'\textsl{user-ID effettivo} ed il \textsl{group-ID effettivo} (il
+significato di questi identificatori è trattato in
+sez.~\ref{sec:proc_access_id}), tranne quando il file di cui viene chiesta
+l'esecuzione ha o il \itindex{suid~bit} \acr{suid} bit o lo \itindex{sgid~bit}
+\acr{sgid} bit impostato, in questo caso l'\textsl{user-ID effettivo} ed il
+\textsl{group-ID effettivo} vengono impostati rispettivamente all'utente o al
+gruppo cui il file appartiene (per i dettagli di questo comportamento si veda
+sez.~\ref{sec:proc_perms}).
 
 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
 condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
 del programma per caricare le librerie necessarie ed effettuare il link
-dell'eseguibile. Se il programma è in formato ELF per caricare le librerie
-dinamiche viene usato l'interprete indicato nel segmento \const{PT\_INTERP},
-in genere questo è \sysfile{/lib/ld-linux.so.1} per programmi collegati con le
-\acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi collegati con le
-\acr{glibc}. 
+dell'eseguibile.\footnote{il formato è ormai in completo disuso, per cui è
+  molto probabile che non il relativo supporto non sia disponibile.} Se il
+programma è in formato ELF per caricare le librerie dinamiche viene usato
+l'interprete indicato nel segmento \const{PT\_INTERP} previsto dal formato
+stesso, in genere questo è \sysfile{/lib/ld-linux.so.1} per programmi
+collegati con le \acr{libc5}, e \sysfile{/lib/ld-linux.so.2} per programmi
+collegati con le \acr{glibc}.
 
 Infine nel caso il file sia uno script esso deve iniziare con una linea nella
 forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete indicato
@@ -2083,715 +2085,7 @@ con cui costruisce una lista di gruppi supplementari, a cui aggiunge anche
 compila con il flag \cmd{-ansi}, è pertanto meglio evitarle se si vuole
 scrivere codice portabile.
 
-
-\subsection{La gestione delle \textit{capabilities}}
-\label{sec:proc_capabilities}
-
-\itindbeg{capabilities} 
-
-Come accennato in sez.~\ref{sec:proc_access_id} l'architettura classica della
-gestione dei privilegi in un sistema unix-like ha il sostanziale problema di
-fornire all'amministratore dei poteri troppo ampi, questo comporta che anche
-quando si siano predisposte delle misure di protezione per in essere in grado
-di difendersi dagli effetti di una eventuale compromissione del
-sistema,\footnote{come montare un filesystem in sola lettura per impedirne
-  modifiche, o marcare un file come immutabile.} una volta che questa sia
-stata effettuata e si siano ottenuti i privilegi di amministratore, queste
-potranno essere comunque rimosse.\footnote{nei casi elencati nella precedente
-  nota si potrà sempre rimontare il sistema in lettura-scrittura, o togliere
-  la marcatura di immutabilità.}
-
-Il problema consiste nel fatto che nell'architettura tradizionale di un
-sistema unix-like i controlli di accesso sono basati su un solo livello di
-separazione: per i processi normali essi sono posti in atto, mentre per i
-processi con i privilegi di amministratore essi non vengono neppure eseguiti;
-per questo motivo non era previsto alcun modo per evitare che un processo con
-diritti di amministratore non potesse eseguire certe operazioni, o per cedere
-definitivamente alcuni privilegi da un certo momento in poi.
-
-Per ovviare a tutto ciò, a partire dai kernel della serie 2.2, è stato
-introdotto un meccanismo, detto \textit{capabilities}, che consentisse di
-suddividere i vari privilegi tradizionalmente associati all'amministratore in
-un insieme di \textsl{capacità} distinte.  L'idea era che queste capacità
-potessero essere abilitate e disabilitate in maniera indipendente per ciascun
-processo con privilegi di amministratore, permettendo così una granularità
-molto più fine nella distribuzione degli stessi che evitasse la originaria
-situazione di \textsl{tutto o nulla}.
-
-Il meccanismo completo delle \textit{capabilities}\footnote{l'implementazione
-  di Linux si rifà ad una bozza per quello che dovrebbe divenire lo standard
-  POSIX.1e, che prevede questa funzionalità.} prevederebbe anche la
-possibilità di associare le stesse \textit{capabilities} anche ai singoli file
-eseguibili,\footnote{una descrizione sommaria di questa funzionalità è
-  riportata nella pagina di manuale che descrive l'implementazione delle
-  \textit{capabilities} con Linux (accessibile con \texttt{man capabilities}),
-  ma non essendo implementata non ne tratteremo qui.} in modo da poter
-stabilire quali capacità possono essere utilizzate quando viene messo in
-esecuzione uno specifico programma; attualmente però questa funzionalità non è
-implementata.\footnote{per attualmente si intende fino al kernel 2.6.23;
-  benché l'infrastruttura per crearla sia presente (vedi anche
-  sez.~\ref{sec:file_xattr}) finora non è disponibile nessuna realizzazione
-  delle specifiche POSIX.1e, esistono però dei patch di sicurezza del kernel,
-  come LIDS (vedi \href{http://www.lids.org}{\textsf{http://www.lids.org/})}
-  che realizzano qualcosa di simile.}
-
-% TODO verificare per process capability bounding set, vedi:
-%  http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=3b7391de67da515c91f48aa371de77cb6cc5c07e
-
-
-\begin{table}[!h!bt]
-  \centering
-  \footnotesize
-  \begin{tabular}{|l|p{12cm}|}
-    \hline
-    \textbf{Capacità}&\textbf{Descrizione}\\
-    \hline
-    \hline
-%
-% POSIX-draft defined capabilities.
-%
-    \const{CAP\_CHOWN}      & La capacità di cambiare proprietario e gruppo
-                              proprietario di un file (vedi
-                              sez.~\ref{sec:file_ownership_management}).\\
-    \const{CAP\_DAC\_OVERRIDE}& La capacità di evitare il controllo dei
-                              permessi di lettura, scrittura ed esecuzione dei
-                              file, (vedi sez.~\ref{sec:file_access_control})
-                              caratteristici del modello classico del
-                              controllo di accesso chiamato
-                              \itindex{Discrectionary~Access~Control~(DAC)} 
-                              \textit{Discrectionary Access Control} (da cui
-                              il nome DAC).\\  
-    \const{CAP\_DAC\_READ\_SEARCH}& La capacità di evitare il controllo dei
-                              permessi di lettura, scrittura ed esecuzione per
-                              le directory (vedi
-                              sez.~\ref{sec:file_access_control}).\\
-    \const{CAP\_FOWNER}     & La capacità di evitare il controllo che 
-                              l'user-ID effettivo del processo (o meglio il
-                              \textit{filesystem user-ID}, vedi
-                              sez.~\ref{sec:proc_setuid}) coincida con
-                              quello del proprietario di un file per tutte
-                              le operazioni privilegiate non coperte dalle
-                              precedenti \const{CAP\_DAC\_OVERRIDE} e
-                              \const{CAP\_DAC\_READ\_SEARCH}. Queste
-                              comprendono i cambiamenti dei permessi e dei
-                              tempi del file (vedi
-                              sez.~\ref{sec:file_perm_management} e 
-                              sez.~\ref{sec:file_file_times}), le impostazioni 
-                              degli attributi estesi (con il comando 
-                              \cmd{chattr}) e delle ACL, poter ignorare lo
-                              \itindex{sticky~bit} \textit{sticky bit} nella
-                              cancellazione dei file (vedi
-                              sez.~\ref{sec:file_special_perm}), la possibilità
-                              di impostare il flag di \const{O\_NOATIME} con
-                              \func{open} e \func{fcntl} (vedi
-                              sez.~\ref{sec:file_open} e
-                              sez.~\ref{sec:file_fcntl}).\\
-    \const{CAP\_FSETID}     & La capacità di evitare la cancellazione
-                              automatica dei bit \itindex{suid~bit} \acr{suid}
-                              e \itindex{sgid~bit} \acr{sgid} quando un file
-                              per i quali sono impostati viene modificato da
-                              un processo senza questa capacità e la capacità
-                              di impostare il bit \acr{sgid} su un file anche
-                              quando questo è relativo ad un gruppo cui non si
-                              appartiene (vedi
-                              sez.~\ref{sec:file_perm_management}).\\ 
-    \const{CAP\_KILL}       & La capacità di mandare segnali a qualunque
-                              processo (vedi sez.~\ref{sec:sig_kill_raise}).\\
-    \const{CAP\_SETGID}     & La capacità di manipolare i group ID dei
-                              processi, sia il principale che i supplementari,
-                              (vedi sez.~\ref{sec:proc_setgroups} che quelli
-                              trasmessi tramite i socket \textit{unix domain}
-                              (vedi sez.~\ref{sec:unix_socket}).\\
-    \const{CAP\_SETUID}     & La capacità di manipolare gli user ID del
-                              processo (con \func{setuid}, \func{setreuid},
-                              \func{setresuid}, \func{setfsuid}) e di
-                              trasmettere un valore arbitrario
-                              dell'\textsl{uid} nel passaggio delle
-                              credenziali coi socket \textit{unix domain} (vedi
-                              sez.~\ref{sec:unix_socket}).\\ 
-%
-% Linux specific capabilities
-%
-\hline
-    \const{CAP\_SETPCAP}    & La capacità di impostare o rimuovere una capacità
-                              (limitatamente a quelle che il processo
-                              chiamante ha nel suo insieme di capacità
-                              permesse) da qualunque processo.\\
-% TODO cambiata nel 2.4.24 rc1 ?
-    \const{CAP\_LINUX\_IMMUTABLE}& La capacità di impostare gli attributi
-                              \textit{immutable} e \itindex{append~mode}
-                              \textit{append only} per i file su un
-                              filesystem che supporta questi 
-                              attributi estesi.\\ 
-    \const{CAP\_NET\_BIND\_SERVICE}& La capacità di porre in ascolto server
-                              su porte riservate (vedi
-                              sez.~\ref{sec:TCP_func_bind}).\\ 
-    \const{CAP\_NET\_BROADCAST}& La capacità di consentire l'uso di socket in
-                              \itindex{broadcast} \textit{broadcast} e
-                              \itindex{multicast} \textit{multicast}.\\ 
-    \const{CAP\_NET\_ADMIN} & La capacità di eseguire alcune operazioni
-                              privilegiate sulla rete (impostare le opzioni
-                              privilegiate dei socket, abilitare il
-                              \itindex{multicast} \textit{multicasting},
-                              impostare interfacce di rete e 
-                              tabella di instradamento).\\
-    \const{CAP\_NET\_RAW}   & La capacità di usare socket \texttt{RAW} e
-                              \texttt{PACKET} (quelli che permettono di creare
-                              pacchetti nei protocolli di basso livello).\\
-    \const{CAP\_IPC\_LOCK}  & La capacità di effettuare il \textit{memory
-                              locking} \itindex{memory~locking} con le
-                              funzioni \func{mlock}, \func{mlockall},
-                              \func{shmctl}, \func{mmap} (vedi
-                              sez.~\ref{sec:proc_mem_lock} e 
-                              sez.~\ref{sec:file_memory_map}). \\  
-    \const{CAP\_IPC\_OWNER} & La capacità di evitare il controllo dei permessi
-                              per le operazioni sugli oggetti di
-                              intercomunicazione fra processi (vedi
-                              sez.~\ref{sec:ipc_sysv}).\\  
-    \const{CAP\_SYS\_MODULE}& La capacità di caricare e rimuovere moduli del
-                              kernel. \\ 
-    \const{CAP\_SYS\_RAWIO} & La capacità di eseguire operazioni sulle porte
-                              di I/O con \func{ioperm} e \func{iopl} (vedi
-                              sez.~\ref{sec:file_io_port}).\\
-    \const{CAP\_SYS\_CHROOT}& La capacità di eseguire la funzione
-                              \func{chroot} (vedi
-                              sez.~\ref{sec:file_chroot}).\\
-    \const{CAP\_SYS\_PTRACE}& Consente di tracciare qualunque processo con
-                              \func{ptrace} (vedi 
-                              sez.~\ref{sec:xxx_ptrace}).\\
-    \const{CAP\_SYS\_PACCT} & La capacità di usare le funzioni di
-                              \textit{accounting} dei processi (vedi
-                              sez.~\ref{sec:sys_bsd_accounting}).\\ 
-    \const{CAP\_SYS\_ADMIN} & La capacità di eseguire una serie di compiti
-                              amministrativi (come impostare le quote,
-                              attivare e disattivare la swap, montare,
-                              rimontare e smontare filesystem, ecc.). \\
-    \const{CAP\_SYS\_BOOT}  & La capacità di fare eseguire un riavvio del
-                              sistema.\\
-    \const{CAP\_SYS\_NICE}  & La capacità di modificare le priorità dei
-                              processi (vedi sez.~\ref{sec:proc_priority}). \\ 
-    \const{CAP\_SYS\_RESOURCE}& La capacità di superare le limitazioni sulle
-                              risorse, aumentare le quote disco, usare lo
-                              spazio disco riservato all'amministratore.\\ 
-    \const{CAP\_SYS\_TIME}  & La capacità di modificare il tempo di sistema
-                              (vedi sez.~\ref{sec:sys_time}).\\ 
-    \const{CAP\_SYS\_TTY\_CONFIG}& La capacità di simulare un \textit{hangup}
-                              della console, con la funzione
-                              \func{vhangup}.\\
-    \const{CAP\_MKNOD}      & La capacità di creare file di dispositivo con la
-                              funzione \func{mknod} (vedi
-                              sez.~\ref{sec:file_mknod}).\footnotemark\\ 
-    \const{CAP\_LEASE}      & La capacità di creare dei \textit{file lease}
-                              \index{file!lease} su di un file (vedi
-                              sez.~\ref{sec:file_asyncronous_lease})
-                              indipendentemente dalla proprietà dello
-                              stesso.\footnotemark\\
-    \const{CAP\_SETFCAP}    & La capacità di impostare le
-                              \textit{capabilities} di un file (non
-                              supportata).\\ 
-    \hline
-  \end{tabular}
-  \caption{Le costanti che identificano le \textit{capabilities} presenti nel
-    kernel.}
-\label{tab:proc_capabilities}
-\end{table}
-
-\footnotetext[21]{questa capacità è presente soltanto a partire dai kernel
-  della serie 2.4.x.}
-
-\footnotetext{questa capacità è presente soltanto a partire dai kernel della
-  serie 2.4.x.}
-
-Per gestire questo nuovo meccanismo ciascun processo porta con sé tre distinti
-insiemi di \textit{capabilities}, che vengono denominati rispettivamente
-\textit{effective}, \textit{permitted} ed \textit{inherited}. Questi insiemi
-vengono mantenuti in forma di tre diverse maschere binarie,\footnote{il kernel
-  li mantiene, come i vari identificatori di sez.~\ref{sec:proc_setuid},
-  all'interno della \struct{task\_struct} di ciascun processo (vedi
-  fig.~\ref{fig:proc_task_struct}), nei tre campi \texttt{cap\_effective},
-  \texttt{cap\_inheritable}, \texttt{cap\_permitted} del tipo
-  \texttt{kernel\_cap\_t}; questo è attualmente definito come intero a 32 bit,
-  il che comporta un massimo di 32 \textit{capabilities} distinte.} in cui
-ciascun bit corrisponde ad una capacità diversa; se ne è riportato
-l'elenco,\footnote{si tenga presente che l'elenco delle \textit{capabilities}
-  presentato questa tabella, ripreso dalla relativa pagina di manuale
-  (accessibile con \texttt{man capabilities}) e dalle definizioni in
-  \texttt{sys/capabilities.h}, è quello aggiornato al kernel 2.6.6.} con una
-breve descrizione, ed il nome delle costanti che identificano i singoli bit,
-in tab.~\ref{tab:proc_capabilities}; la tabella è divisa in due parti, la
-prima riporta le \textit{capabilities} previste nella bozza dello standard
-POSIX1.e, la seconda quelle specifiche di Linux.
-
-L'utilizzo di tre distinti insiemi serve a fornire una interfaccia flessibile
-per l'uso delle \textit{capabilities}, con scopi analoghi a quelli per cui
-sono mantenuti i diversi insiemi di identificatori di
-sez.~\ref{sec:proc_setuid}; il loro significato è il seguente:
-\begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
-\item[\textit{effective}] l'insieme delle \textit{capabilities}
-  ``\textsl{effettive}'', cioè di quelle che vengono effettivamente usate dal
-  kernel quando deve eseguire il controllo di accesso per le varie operazioni
-  compiute dal processo.
-\item[\textit{permitted}] l'insieme delle \textit{capabilities}
-  ``\textsl{permesse}'', cioè l'insieme di quelle capacità che un processo
-  \textsl{può} impostare come \textsl{effettive}. Se un processo cancella una
-  capacità da questo insieme non potrà più riassumerla (almeno che non esegua
-  un programma che è \acr{suid} di root).
-\item[\textit{inherited}] l'insieme delle \textit{capabilities}
-  ``\textsl{ereditabili}'', cioè quelle che vengono trasmesse ad un nuovo
-  programma eseguito attraverso una chiamata ad \func{exec} (con l'eccezione
-  del caso che questo sia \acr{suid} di root).
-\label{sec:capabilities_set}
-\end{basedescript}
-
-Oltre a questi tre insiemi, che sono relativi al singolo processo, il kernel
-mantiene un insieme generale valido per tutto il sistema, chiamato
-\itindex{capabilities~bounding~set} \textit{capabilities bounding set}. Ogni
-volta che un programma viene posto in esecuzione con \func{exec} il contenuto
-degli insiemi \textit{effective} e \textit{permitted} vengono mascherati con
-un \textsl{AND} binario del contenuto corrente del \textit{capabilities
-  bounding set}, così che il nuovo processo potrà disporre soltanto delle
-capacità in esso elencate.
-
-Il \textit{capabilities bounding set} è un parametro di sistema, accessibile
-attraverso il contenuto del file \procfile{/proc/sys/kernel/cap-bound}, che per
-questa sua caratteristica consente di impostare un limite generale alle
-capacità che possono essere accordate ai vari processi.  Questo valore può
-essere impostato ad un valore arbitrario esclusivamente dal primo processo
-eseguito nel sistema (di norma cioè da \texttt{/sbin/init}), ogni processo
-eseguito successivamente (cioè con \textsl{pid} diverso da 1) anche se
-eseguito con privilegi di amministratore potrà soltanto rimuovere uno dei bit
-già presenti dell'insieme: questo significa che una volta rimossa una
-\textit{capability} dal \textit{capabilities bounding set} essa non sarà più
-disponibile, neanche per l'amministratore, a meno di un riavvio.
-
-Quando un programma viene messo in esecuzione\footnote{cioè quando viene
-  eseguita la \func{execve} con cui lo si lancia; in corrispondenza di una
-  \func{fork} le \textit{capabilities} non vengono modificate.} esso eredita
-(nel senso che assume negli insiemi \textit{effective} e \textit{permitted})
-le \textit{capabilities} mantenute nell'insieme \textit{inherited}, a meno che
-non sia eseguito un programma \acr{suid} di root o la \func{exec} sia stata
-eseguita da un programma con \textsl{uid} reale zero; in tal caso il programma
-ottiene tutte le \textit{capabilities} presenti nel \textit{capabilities
-  bounding set}. In questo modo si può far si che ad un processo eseguito in
-un secondo tempo possano essere trasmesse solo un insieme limitato di
-capacità, impedendogli di recuperare quelle assenti nell'insieme
-\textit{inherited}. Si tenga presente invece che attraverso una \func{fork}
-vengono mantenute le stesse capacità del processo padre.
-
-Per la gestione delle \textit{capabilities} il kernel mette a disposizione due
-funzioni che permettono rispettivamente di leggere ed impostare i valori dei
-tre insiemi illustrati in precedenza. Queste due funzioni sono \funcd{capget}
-e \funcd{capset} e costituiscono l'interfaccia di gestione basso livello; i
-loro rispettivi prototipi sono:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int capget(cap\_user\_header\_t hdrp, cap\_user\_data\_t datap)}
-  Legge le \textit{capabilities}.
-
-  \funcdecl{int capset(cap\_user\_header\_t hdrp, const cap\_user\_data\_t
-    datap)} 
-  Imposta le \textit{capabilities}.
-
-  
-  \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 in caso
-    di errore, nel qual caso \var{errno} può assumere i valori:
-    \begin{errlist}
-    \item[\errcode{ESRCH}] si è fatto riferimento ad un processo inesistente.
-    \item[\errcode{EPERM}] si è tentato di aggiungere una capacità
-      nell'insieme delle \textit{capabilities} permesse, o di impostare una
-      capacità non presente nell'insieme di quelle permesse negli insieme
-      delle effettive o ereditate, o si è cercato di impostare una
-      \textit{capability} di un altro processo senza avare
-      \const{CAP\_SETPCAP}. 
-  \end{errlist}
-  ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
-}
-
-\end{functions}
-
-Queste due funzioni prendono come argomenti due tipi di dati dedicati,
-definiti come puntatori a due strutture specifiche di Linux, illustrate in
-fig.~\ref{fig:cap_kernel_struct}. Per poterle utilizzare occorre anche
-cancellare la macro \macro{\_POSIX\_SOURCE}.\footnote{per farlo occorre
-  utilizzare la direttiva di preprocessore \direct{undef}; si dovrà cioè
-  inserire una istruzione \texttt{\#undef \_POSIX\_SOURCE} prima di includere
-  \texttt{sys/capability.h}.} Si tenga presente che le strutture di
-fig.~\ref{fig:cap_kernel_struct}, come i prototipi delle due funzioni
-\func{capget} e \func{capset}, sono soggette ad essere modificate con il
-cambiamento del kernel (in particolare i tipi di dati delle strutture) ed
-anche se finora l'interfaccia è risultata stabile, non c'è nessuna
-assicurazione che questa venga mantenuta. Pertanto se si vogliono scrivere
-programmi portabili che possano essere eseguiti su qualunque versione del
-kernel è opportuno utilizzare le interfacce di alto livello.
-
-\begin{figure}[!htb]
-  \footnotesize
-  \centering
-  \begin{minipage}[c]{15cm}
-    \includestruct{listati/cap_user_header_t.h}
-  \end{minipage} 
-  \normalsize 
-  \caption{Definizione delle strutture a cui fanno riferimento i puntatori
-    \structd{cap\_user\_header\_t} e \structd{cap\_user\_data\_t} usati per
-    l'interfaccia di gestione di basso livello delle \textit{capabilities}.}
-  \label{fig:cap_kernel_struct}
-\end{figure}
-
-La struttura a cui deve puntare l'argomento \param{hdrp} serve ad indicare,
-tramite il campo \var{pid}, il processo del quale si vogliono leggere o
-modificare le \textit{capabilities}. Il campo \var{version} deve essere
-impostato al valore della versione delle usata dal kernel (quello indicato
-dalla costante \const{\_LINUX\_CAPABILITY\_VERSION} di
-fig.~\ref{fig:cap_kernel_struct}) altrimenti le funzioni ritorneranno con un
-errore di \errcode{EINVAL}, restituendo nel campo stesso il valore corretto
-della versione in uso.  La struttura a cui deve puntare l'argomento
-\param{datap} invece conterrà i valori letti o da impostare per i tre insiemi
-delle capacità del processo.
-
-Dato che le precedenti funzioni, oltre ad essere specifiche di Linux, non
-garantiscono la stabilità nell'interfaccia, è sempre opportuno effettuare la
-gestione delle \textit{capabilities} utilizzando le funzioni di libreria a
-questo dedicate. Queste funzioni, che seguono quanto previsto nelle bozze
-dello standard POSIX.1e, non fanno parte delle \acr{glibc} e sono fornite in
-una libreria a parte,\footnote{la libreria è \texttt{libcap2}, nel caso di
-  Debian può essere installata con il pacchetto omonimo.} pertanto se un
-programma le utilizza si dovrà indicare esplicitamente l'uso della suddetta
-libreria attraverso l'opzione \texttt{-lcap} del compilatore.
-
-Le funzioni dell'interfaccia delle bozze di POSIX.1e prevedono l'uso di uno
-tipo di dato opaco, \type{cap\_t}, come puntatore ai dati mantenuti nel
-cosiddetto \textit{capability state},\footnote{si tratta in sostanza di un
-  puntatore ad una struttura interna utilizzata dalle librerie, i cui campi
-  non devono mai essere acceduti direttamente.} in sono memorizzati tutti i
-dati delle \textit{capabilities}. In questo modo è possibile mascherare i
-dettagli della gestione di basso livello, che potranno essere modificati senza
-dover cambiare le funzioni dell'interfaccia, che faranno riferimento soltanto
-ad oggetti di questo tipo.  L'interfaccia pertanto non soltanto fornisce le
-funzioni per modificare e leggere le \textit{capabilities}, ma anche quelle
-per gestire i dati attraverso \type{cap\_t}.
-
-La prima funzione dell'interfaccia è quella che permette di inizializzare un
-\textit{capability state}, allocando al contempo la memoria necessaria per i
-relativi dati. La funzione è \funcd{cap\_init} ed il suo prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{cap\_t cap\_init(void)} 
-  Crea ed inizializza un \textit{capability state}.
-  
-  \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
-    \macro{NULL} in caso di errore, nel qual caso \var{errno} assumerà il
-    valore \errval{ENOMEM}.
-  }
-\end{functions}
-
-La funzione restituisce il puntatore \type{cap\_t} ad uno stato inizializzato
-con tutte le \textit{capabilities} azzerate. In caso di errore (cioè quando
-non c'è memoria sufficiente ad allocare i dati) viene restituito \macro{NULL}
-ed \var{errno} viene impostata a \errval{ENOMEM}.  La memoria necessaria a
-mantenere i dati viene automaticamente allocata da \func{cap\_init}, ma dovrà
-essere disallocata esplicitamente quando non più necessaria utilizzando la
-funzione \funcd{cap\_free}, il cui prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int cap\_free(void *obj\_d)} 
-  Disalloca la memoria allocata per i dati delle \textit{capabilities}.
-  
-  \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
-  }
-\end{functions}
-
-La funzione permette di liberare la memoria allocata dalle altre funzioni
-della libreria sia per un \textit{capability state}, nel qual caso l'argomento
-dovrà essere un dato di tipo \type{cap\_t}, che per una descrizione testuale
-dello stesso,\footnote{cioè quanto ottenuto tramite la funzione
-  \func{cap\_to\_text}.} nel qual caso l'argomento dovrà essere di tipo
-\texttt{char *}. L'argomento \param{obj\_d} deve corrispondere ad un oggetto
-ottenuto tramite altre funzioni della libreria, altrimenti la funzione fallirà
-con un errore di \errval{EINVAL}.
-
-Infine si può creare una copia di un \textit{capability state} ottenuto in
-precedenza tramite la funzione \funcd{cap\_dup}, il cui prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{cap\_t cap\_dup(cap\_t cap\_p)} 
-  Duplica un \textit{capability state} restituendone una copia.
-  
-  \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
-    \macro{NULL} in caso di errore, nel qual caso \var{errno} potrà assumere i
-    valori \errval{ENOMEM} o \errval{EINVAL}.  
-  }
-\end{functions}
-
-La funzione crea una copia del \textit{capability state} posto all'indirizzo
-\param{cap\_p} che si è passato come argomento, restituendo il puntatore alla
-copia, che conterrà gli stessi valori delle \textit{capabilities} presenti
-nell'originale. La memoria necessaria viene allocata automaticamente dalla
-funzione. Una volta effettuata la copia i due \textit{capability state}
-potranno essere modificati in maniera completamente indipendente.
-
-Una seconda classe di funzioni di servizio sono quelle per la gestione dei
-dati contenuti all'interno di un \textit{capability state}; la prima di esse è
-\funcd{cap\_clear}, il cui prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int cap\_clear(cap\_t cap\_p)} 
-  Inizializza un \textit{capability state} cancellando tutte le
-  \textit{capabilities}.
-  
-  \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
-  }
-\end{functions}
-
-La funzione si limita ad azzerare tutte le \textit{capabilities} presenti nel
-\textit{capability state} all'indirizzo \param{cap\_p} passato come argomento,
-restituendo uno stato \textsl{vuoto}, analogo a quello che si ottiene nella
-creazione con \func{cap\_init}.
-
-Per la gestione dei valori delle \textit{capabilities} presenti in un
-\textit{capability state} l'interfaccia prevede due funzioni,
-\funcd{cap\_get\_flag} e \funcd{cap\_set\_flag}, che permettono
-rispettivamente di leggere o impostare il valore di un flag delle
-\textit{capabilities}; i rispettivi prototipi sono:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int cap\_get\_flag(cap\_t cap\_p, cap\_value\_t cap, cap\_flag\_t
-    flag, cap\_flag\_value\_t *value\_p)}
-  Legge il valore di una \textit{capability}.
-
-  \funcdecl{int cap\_set\_flag(cap\_t cap\_p, cap\_flag\_t flag, int ncap,
-    cap\_value\_t *caps, cap\_flag\_value\_t value)} 
-  Imposta il valore di una \textit{capability}.
-  
-  \bodydesc{Le funzioni ritornano 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
-}
-\end{functions}
-
-In entrambe le funzioni l'argomento \param{cap\_p} indica il puntatore al
-\textit{capability state} su cui operare, mentre l'argomento \param{flag}
-indica su quale dei tre insiemi illustrati a
-pag.~\pageref{sec:capabilities_set} si intende operare. Questi devono essere
-specificati con una variabile di tipo \type{cap\_flag\_t} che può assumere
-esclusivamente\footnote{si tratta in effetti di un tipo enumerato, come si può
-  verificare dalla sua definizione che si trova in
-  \texttt{/usr/include/sys/capability.h}.} uno dei valori illustrati in
-tab.~\ref{tab:cap_set_identifier}.
-
-\begin{table}[htb]
-  \centering
-  \footnotesize
-  \begin{tabular}[c]{|l|l|}
-    \hline
-    \textbf{Valore} & \textbf{Significato} \\
-    \hline
-    \hline
-    \const{CAP\_EFFECTIVE}  & Capacità dell'insieme \textsl{effettivo}.\\
-    \const{CAP\_PERMITTED}  & Capacità dell'insieme \textsl{permesso}.\\ 
-    \const{CAP\_INHERITABLE}& Capacità dell'insieme \textsl{ereditabile}.\\
-    \hline
-  \end{tabular}
-  \caption{Valori possibili per il tipo di dato \type{cap\_flag\_t} che
-    identifica gli insiemi delle \textit{capabilities}.}
-  \label{tab:cap_set_identifier}
-\end{table}
-
-La capacità che si intende controllare o impostare invece deve essere
-specificata attraverso una variabile di tipo \type{cap\_value\_t}, che può
-prendere come valore uno qualunque di quelli riportati in
-tab.~\ref{tab:proc_capabilities}, in questo caso però non è possibile
-combinare diversi valori in una maschera binaria, una variabile di tipo
-\type{cap\_value\_t} deve indicare una sola capacità.\footnote{nel file di
-  header citato nella nota precedente il tipo \type{cap\_value\_t} è definito
-  come \ctyp{int}, ma i valori validi sono soltanto quelli di
-  tab.~\ref{tab:proc_capabilities}.}  Infine lo stato di una capacità è
-descritto ad una variabile di tipo \type{cap\_flag\_value\_t}, che a sua volta
-può assumere soltanto uno\footnote{anche questo è un tipo enumerato.} dei
-valori di tab.~\ref{tab:cap_value_type}.
-
-\begin{table}[htb]
-  \centering
-  \footnotesize
-  \begin{tabular}[c]{|l|l|}
-    \hline
-    \textbf{Valore} & \textbf{Significato} \\
-    \hline
-    \hline
-    \const{CAP\_CLEAR}& La capacità non è impostata.\\ 
-    \const{CAP\_SET}  & La capacità è impostata.\\
-    \hline
-  \end{tabular}
-  \caption{Valori possibili per il tipo di dato \type{cap\_flag\_value\_t} che
-    indica lo stato di una capacità.}
-  \label{tab:cap_value_type}
-\end{table}
-
-La funzione \func{cap\_get\_flag} legge lo stato della capacità indicata
-dall'argomento \param{cap} all'interno dell'insieme indicato dall'argomento
-\param{flag} e ne restituisce il valore nella variabile posta all'indirizzo
-puntato dall'argomento \param{value\_p}; è possibile cioè leggere soltanto uno
-stato di una capacità alla volta.
-
-La funzione \func{cap\_set\_flag} può invece impostare in una sola chiamata
-più capacità, anche se solo all'interno dello stesso insieme; per questo essa
-prende un vettore di valori di tipo \type{cap\_value\_t} nell'argomento
-\param{caps}, la cui dimensione è specificata dall'argomento \param{ncap}. Il
-tipo di impostazione da eseguire (cancellazione o impostazione) viene indicato
-dall'argomento \param{value}.
-
-Per la visualizzazione dello stato delle \textit{capabilities} l'interfaccia
-prevede una funzione apposita, \funcd{cap\_to\_text}, il cui prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{char * cap\_to\_text(cap\_t caps, ssize\_t * length\_p)}
-
-  Genera una visualizzazione testuale delle \textit{capabilities}.
-  
-  \bodydesc{La funzione ritorna un puntatore alla stringa con la descrizione
-    delle \textit{capabilities} in caso di successo e \val{NULL} in caso di
-    errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL} o
-    \errval{ENOMEM}.
-  }
-\end{functions}
-
-La funzione ritorna l'indirizzo di una stringa contente la descrizione
-testuale del contenuto del \textit{capabilities state} \param{caps} passato
-come argomento, e, qualora l'argomento \param{length\_p} sia diverso da
-\val{NULL}, restituisce nella variabile intera da questo puntata la lunghezza
-della stringa. La stringa restituita viene allocata automaticamente dalla
-funzione e deve essere liberata con \func{cap\_free}.
-
-Fin quei abbiamo trattato delle funzioni di manipolazione dei
-\textit{capabilities state}; quando si vuole eseguire la lettura delle
-\textit{capabilities} del processo corrente si deve usare la funzione
-\funcd{cap\_get\_proc}, il cui prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{cap\_t cap\_get\_proc(void)}
-  Legge le \textit{capabilities} del processo corrente.
-  
-  \bodydesc{La funzione ritorna un valore diverso da \val{NULL} in caso di
-    successo e \val{NULL} in caso di errore, nel qual caso \var{errno} può
-    assumere i valori \errval{EINVAL}, \errval{EPERM} o \errval{ENOMEM}.  }
-\end{functions}
-
-La funzione legge il valore delle \textit{capabilities} del processo corrente
-e restituisce il puntatore ad un \textit{capabilities state} contenente il
-risultato, che provvede ad allocare autonomamente, e che occorrerà liberare
-con \func{cap\_free} quando non sarà più utilizzato.
-
-Se invece si vogliono leggere le \textit{capabilities} di un processo
-specifico occorre usare la funzione \funcd{capgetp}, il cui
-prototipo\footnote{su alcune pagine di manuale la funzione è descritta con un
-  prototipo sbagliato, che prevede un valore di ritorno di tipo \type{cap\_t},
-  ma il valore di ritorno è intero, come si può verificare anche dalla
-  dichiarazione della stessa in \texttt{sys/capability.h}.} è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int capgetp(pid\_t pid, cap\_t cap\_d)}
-  Legge le \textit{capabilities} del processo indicato da \param{pid}.
-  
-  \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
-    \errval{EPERM} o \errval{ENOMEM}.  
-  }
-\end{functions}
-
-La funzione legge il valore delle \textit{capabilities} del processo indicato
-con l'argomento \param{pid}, salvando il risultato nel \textit{capabilities
-  state} all'indirizzo \param{cap\_d} che deve essere stato creato in
-precedenza. Qualora il processo non esista si avrà un errore di
-\errval{ESRCH}. Gli stessi valori possono essere letti direttamente nel
-filesystem \textit{proc}, nei file \texttt{/proc/<pid>/status}; ad esempio per
-\texttt{init} si otterrà qualcosa del tipo:
-\begin{Verbatim}
-...
-CapInh: 0000000000000000
-CapPrm: 00000000fffffeff
-CapEff: 00000000fffffeff  
-\end{Verbatim}
-
-Infine per impostare le \textit{capabilities} del processo corrente (non
-esiste una funzione che permetta di cambiare le \textit{capabilities} di un
-altro processo) si deve usare la funzione \funcd{cap\_set\_proc}, il cui
-prototipo è:
-\begin{functions}
-  \headdecl{sys/capability.h}
-
-  \funcdecl{int cap\_set\_proc(cap\_t cap\_p)}
-  Imposta le \textit{capabilities} del processo corrente.
-  
-  \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
-    errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
-    \errval{EPERM} o \errval{ENOMEM}.  
-  }
-\end{functions}
-
-La funzione modifica le \textit{capabilities} del processo corrente secondo
-quanto specificato con l'argomento \param{cap\_p}, posto che questo sia
-possibile nei termini spiegati in precedenza (non sarà ad esempio possibile
-impostare capacità non presenti nell'insieme di quelle permesse). In caso di
-successo i nuovi valori saranno effettivi al ritorno della funzione, in caso
-di fallimento invece lo stato delle capacità resterà invariato. Si tenga
-presente che \textsl{tutte} le capacità specificate tramite \param{cap\_p}
-devono essere permesse; se anche una sola non lo è la funzione fallirà, e per
-quanto appena detto, lo stato delle \textit{capabilities} non verrà modificato
-(neanche per le parti eventualmente permesse).
-
-Come esempio di utilizzo di queste funzioni nei sorgenti allegati alla guida
-si è distribuito il programma \texttt{getcap.c}, che consente di leggere le
-\textit{capabilities} del processo corrente\footnote{vale a dire di sé stesso,
-  quando lo si lancia, il che può sembrare inutile, ma serve a mostrarci quali
-  sono le \textit{capabilities} standard che ottiene un processo lanciato
-  dalla riga di comando.} o tramite l'opzione \texttt{-p}, quelle di un
-processo qualunque il cui pid viene passato come parametro dell'opzione.
-
-\begin{figure}[htb]
-  \footnotesize \centering
-  \begin{minipage}[c]{15cm}
-    \includecodesample{listati/getcap.c}
-  \end{minipage} 
-  \normalsize
-  \caption{Corpo principale del programma \texttt{getcap.c}.}
-  \label{fig:proc_getcap}
-\end{figure}
-
-La sezione principale del programma è riportata in fig.~\ref{fig:proc_getcap},
-e si basa su una condizione sulla variabile \var{pid} che se si è usato
-l'opzione \texttt{-p} è impostata (nella sezione di gestione delle opzioni,
-che si è tralasciata) al valore del \textsl{pid} del processo di cui si vuole
-leggere le \textit{capabilities} e nulla altrimenti. Nel primo caso
-(\texttt{\small 1--6}) si utilizza direttamente (\texttt{\small 2})
-\func{cap\_get\_proc} per ottenere lo stato delle capacità del processo, nel
-secondo (\texttt{\small 7--14}) prima si inizializza (\texttt{\small 8}) uno
-stato vuoto e poi (\texttt{\small 9}) si legge il valore delle capacità del
-processo indicato.
-
-Il passo successivo è utilizzare (\texttt{\small 16}) \func{cap\_to\_text} per
-tradurre in una stringa lo stato, e poi (\texttt{\small 17}) stamparlo; infine
-(\texttt{\small 19--20}) si libera la memoria allocata dalle precedenti
-funzioni con \func{cap\_free} per poi ritornare dal ciclo principale della
-funzione.
-
-\itindend{capabilities}
-
-% TODO vedi http://lwn.net/Articles/198557/ e 
-% http://www.madore.org/~david/linux/newcaps/
-% TODO documentare prctl ...
  
-
-% TODO: rivedere alla luce degli aggiornamenti del 2.6 (man sched_setscheduler)
-
 \section{La gestione della priorità di esecuzione}
 \label{sec:proc_priority}
 
@@ -2801,6 +2095,7 @@ attivi.  In particolare prenderemo in esame i vari meccanismi con cui viene
 gestita l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
 gestione.
 
+% TODO: rivedere alla luce degli aggiornamenti del 2.6 (man sched_setscheduler)
 
 \subsection{I meccanismi di \textit{scheduling}}
 \label{sec:proc_sched}
@@ -2814,7 +2109,7 @@ essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
 cui non esiste un meccanismo che sia valido per tutti gli usi.
 
 La caratteristica specifica di un sistema multitasking come Linux è quella del
-cosiddetto \itindex{prehemptive~multitasking} \textit{prehemptive
+cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
   multitasking}: questo significa che al contrario di altri sistemi (che usano
 invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
@@ -2845,7 +2140,7 @@ kernel provvedere a mettere in esecuzione un altro processo.
 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
 processo, in Linux un processo può trovarsi in uno degli stati riportati in
 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
-\textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
+\textbf{Runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
 fintanto che esso si trova in uno qualunque degli altri stati.
 
@@ -2871,7 +2166,12 @@ fintanto che esso si trova in uno qualunque degli altri stati.
                                     \const{SIGSTOP}, o è tracciato.\\
     \textbf{Zombie}\index{zombie} & \texttt{Z} & Il processo è terminato ma il
                                     suo stato di terminazione non è ancora
-                                    stato letto dal padre. \\
+                                    stato letto dal padre.\\
+    \textbf{Killable}& \texttt{D} & Un nuovo stato introdotto con il kernel
+                                    2.6.25, sostanzialmente identico
+                                    all'\textbf{Uninterrutible Sleep} con la
+                                    sola differenza che il processo può
+                                    terminato (con \const{SIGKILL}).\\ 
     \hline
   \end{tabular}
   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
@@ -2933,44 +2233,46 @@ bisogno della CPU.
 A meno che non si abbiano esigenze specifiche, l'unico meccanismo di
 scheduling con il quale si avrà a che fare è quello tradizionale, che prevede
 solo priorità dinamiche. È di questo che, di norma, ci si dovrà preoccupare
-nella programmazione.
-
-Come accennato in Linux tutti i processi ordinari hanno la stessa priorità
-assoluta. Quello che determina quale, fra tutti i processi in attesa di
-esecuzione, sarà eseguito per primo, è la priorità dinamica, che è chiamata
-così proprio perché varia nel corso dell'esecuzione di un processo. Oltre a
-questo la priorità dinamica determina quanto a lungo un processo continuerà ad
-essere eseguito, e quando un processo potrà subentrare ad un altro
-nell'esecuzione.
-
-Il meccanismo usato da Linux è piuttosto semplice,\footnote{in realtà nella
-  serie 2.6.x lo scheduler è stato riscritto da zero e può usare diversi
-  algoritmi, selezionabili sia in fase di compilazione, che, nelle versioni
-  più recenti, all'avvio (addirittura è stato ideato un sistema modulare che
-  permette di cambiare lo scheduler al volo, che comunque non è incluso nel
-  kernel ufficiale).} ad ogni processo è assegnata una \textit{time-slice},
-cioè un intervallo di tempo (letteralmente una fetta) per il quale esso deve
-essere eseguito. Il valore della \textit{time-slice} è controllato dalla
-cosiddetta \textit{nice} (o \textit{niceness}) del processo.  Essa è contenuta
-nel campo \var{nice} di \struct{task\_struct}; tutti i processi vengono creati
-con lo stesso valore, ed essa specifica il valore della durata iniziale della
-\textit{time-slice} che viene assegnato ad un altro campo della struttura
-(\var{counter}) quando il processo viene eseguito per la prima volta e
-diminuito progressivamente ad ogni interruzione del timer.
-
-Durante la sua esecuzione lo scheduler scandisce la coda dei processi in stato
-\textit{runnable} associando, in base al valore di \var{counter}, un peso ad
-ogni processo in attesa di esecuzione,\footnote{il calcolo del peso in realtà
-  è un po' più complicato, ad esempio nei sistemi multiprocessore viene
-  favorito un processo eseguito sulla stessa CPU, e a parità del valore di
-  \var{counter} viene favorito chi ha una priorità più elevata.} chi ha il
-peso più alto verrà posto in esecuzione, ed il precedente processo sarà
-spostato in fondo alla coda.  Dato che ad ogni interruzione del timer il
-valore di \var{counter} del processo corrente viene diminuito, questo assicura
-che anche i processi con priorità più bassa verranno messi in esecuzione.
+nella programmazione.  Come accennato in Linux i processi ordinari hanno tutti
+una priorità assoluta nulla; quello che determina quale, fra tutti i processi
+in attesa di esecuzione, sarà eseguito per primo, è la cosiddetta
+\textsl{priorità dinamica},\footnote{quella che viene mostrata nella colonna
+  \texttt{PR} del comando \texttt{top}.} che è chiamata così proprio perché
+varia nel corso dell'esecuzione di un processo.
+
+Il meccanismo usato da Linux è in realtà piuttosto complesso,\footnote{e
+  dipende strettamente dalla versione di kernel; in particolare a partire
+  dalla serie 2.6.x lo scheduler è stato riscritto completamente, con molte
+  modifiche susseguitesi per migliorarne le prestazioni, per un certo periodo
+  ed è stata anche introdotta la possibilità di usare diversi algoritmi,
+  selezionabili sia in fase di compilazione, che, nelle versioni più recenti,
+  all'avvio (addirittura è stato ideato un sistema modulare che permette di
+  cambiare lo scheduler al volo, che comunque non è incluso nel kernel
+  ufficiale).} ma a grandi linee si può dire che ad ogni processo è assegnata
+una \textit{time-slice}, cioè un intervallo di tempo (letteralmente una fetta)
+per il quale, a meno di eventi esterni, esso viene eseguito senza essere
+interrotto.  Il valore della \textit{time-slice} è stabilito dalla sua
+cosiddetta \textit{nice} (o \textit{niceness}) del processo.  Questo è un
+valore, che di default è nullo, e che oltre a essere associato alla lunghezza
+della \textit{timesllce} viene anche sommato alla priorità dinamica di ciascun
+processo. Questa viene calcolata dallo scheduler e viene \textsl{diminuita}
+tutte le volte che un processo è in stato \textbf{Runnable} ma non viene posto
+in esecuzione. Lo scheduler infatti mette sempre in esecuzione, fra tutti i
+processi in stato \textbf{Runnable}, quello che ha la priorità dinamica più
+bassa.\footnote{in realtà il calcolo della priorità dinamica e la scelta di
+  quale processo mettere in esecuzione avviene con un algoritmo più
+  complicato, (per una buona trattazione vedi \cite{XXX}), ad esempio nei
+  sistemi multiprocessore viene favorito un processo eseguito sulla stessa
+  CPU.}
 
 La priorità di un processo è così controllata attraverso il valore di
-\var{nice}, che stabilisce la durata della \textit{time-slice}; per il
+\var{nice}, che stabilisce la durata della \textit{time-slice} (un valore di
+nice più alto corrisponde ad una \textit{time-sl}, ed ovviamente
+più questa è ampia e più lungo sarà il tempo che esso resta in esecuzione in
+esecuzione. Ma per il meccanismo appana descritto, andando a sommarsi alla
+priorità dianamica, essa tenderà anche a sfavorire (o fa
+
+per il
 meccanismo appena descritto infatti un valore più lungo assicura una maggiore
 attribuzione di CPU.  L'origine del nome di questo parametro sta nel fatto che
 generalmente questo viene usato per diminuire la priorità di un processo, come
@@ -2982,8 +2284,9 @@ attraverso la funzione \funcd{nice}, il cui prototipo 
 {int nice(int inc)}
   Aumenta il valore di \var{nice} per il processo corrente.
   
-  \bodydesc{La funzione ritorna zero in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} può assumere i valori:
+  \bodydesc{La funzione ritorna zero o il nuovo valore di \var{nice} in caso
+    di successo e -1 in caso di errore, nel qual caso \var{errno} può assumere
+    i valori:
   \begin{errlist}
   \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
     specificato un valore di \param{inc} negativo.
@@ -3000,9 +2303,27 @@ priorit
 l'amministratore può specificare valori negativi che permettono di aumentare
 la priorità di un processo.
 
-In SUSv2 la funzione ritorna il nuovo valore di \var{nice}; Linux non segue
-questa convenzione, e per leggere il nuovo valore occorre invece usare la
-funzione \funcd{getpriority}, derivata da BSD, il cui prototipo è:
+Gli standard SUSv2 e POSIX.1 prevedono che la funzione ritorni il nuovo valore
+di \var{nice} del processo; tuttavia la system call di Linux non segue questa
+convenzione e restituisce sempre 0 in caso di successo, questo perché $-1$ è
+un valore di \var{nice} legittimo e questo comporta una confusione con una
+eventuale condizione di errore. 
+
+Fino alle \acr{glibc} 2.2.4 la funzione di libreria riportava direttamente il
+valore ottenuto dalla system call, violando lo standard, per cui per ottenere
+il nuovo valore occorreva una successiva chiamata alla funzione
+\func{getpriority}. A partire dalla \acr{glibc} 2.2.4 \func{nice} è stata
+reimplementata come funzione di libreria, e restituisce il valore di
+\var{nice} come richiesto dallo standard.\footnote{questo viene fatto
+  chiamando al suo interno \func{getpriority}, ed è questo il motivo delle due
+  possibilità per i valori di ritorno citati nella descrizione del prototipo.}
+In questo caso l'unico modo per rilevare in maniera affidabile una condizione
+di errore è quello di azzerare \var{errno} prima della chiamata della funzione
+e verificarne il valore quando \func{nice} restituisce $-1$.
+
+
+Per leggere il valore di nice di un processo occorre usare la funzione
+\funcd{getpriority}, derivata da BSD; il suo prototipo è:
 \begin{prototype}{sys/resource.h}
 {int getpriority(int which, int who)}
   
@@ -3048,12 +2369,12 @@ l'utente correnti.
 \end{table}
 
 La funzione restituisce la priorità più alta (cioè il valore più basso) fra
-quelle dei processi specificati; dato che -1 è un valore possibile, per poter
-rilevare una condizione di errore è necessario cancellare sempre \var{errno}
-prima della chiamata alla funzione, per verificare che essa resti uguale a
-zero.  
+quelle dei processi specificati; di nuovo, dato che $-1$ è un valore
+possibile, per poter rilevare una condizione di errore è necessario cancellare
+sempre \var{errno} prima della chiamata alla funzione per verificare che essa
+resti uguale a zero.
 
-Analoga a \func{getpriority} la funzione \funcd{setpriority} permette di
+Analoga a \func{getpriority} è la funzione \funcd{setpriority} che permette di
 impostare la priorità di uno o più processi; il suo prototipo è:
 \begin{prototype}{sys/resource.h}
 {int setpriority(int which, int who, int prio)}  
@@ -3160,9 +2481,11 @@ La funzione esegue l'impostazione per il processo specificato dall'argomento
 \param{pid}; un valore nullo esegue l'impostazione per il processo corrente.
 La politica di scheduling è specificata dall'argomento \param{policy} i cui
 possibili valori sono riportati in tab.~\ref{tab:proc_sched_policy}; un valore
-negativo per \param{policy} mantiene la politica di scheduling corrente.
-Solo un processo con i privilegi di amministratore può impostare priorità
-assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
+negativo per \param{policy} mantiene la politica di scheduling corrente.  Solo
+un processo con i privilegi di amministratore\footnote{più precisamente con la
+  \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_NICE}, vedi
+  sez.~\ref{sec:proc_capabilities}.} può impostare priorità assolute diverse
+da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
 
 \begin{table}[htb]
   \centering
@@ -3177,7 +2500,8 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
       Robin}. \\
     \const{SCHED\_OTHER}& Scheduling ordinario.\\
     \const{SCHED\_BATCH}& Scheduling ordinario con l'assunzione ulteriore di
-    lavoro \textit{CPU intensive}.\footnotemark\\
+                          lavoro \textit{CPU intensive}.\footnotemark\\
+    \const{SCHED\_IDLE} & Scheduling di priorità estremamente bassa.\\
     \hline
   \end{tabular}
   \caption{Valori dell'argomento \param{policy} per la funzione
@@ -3405,18 +2729,10 @@ problematiche nei nuovi kernel\footnote{le due system call per la gestione
 l'opportuna infrastruttura ed una nuova system call che permette di impostare
 su quali processori far eseguire un determinato processo attraverso una
 \textsl{maschera di affinità}. La corrispondente funzione di libreria è
-\funcd{sched\_setaffinity} ed il suo prototipo\footnote{di questa funzione (e
-  della corrispondente \func{sched\_setaffinity}) esistono versioni diverse
-  per gli argomenti successivi a \param{pid}: la prima (quella riportata nella
-  pagina di manuale) prevedeva due ulteriori argomenti di tipo
-  \texttt{unsigned int len} e \texttt{unsigned long *mask}, poi l'argomento
-  \texttt{len} è stato eliminato, successivamente si è introdotta la versione
-  riportata con però un secondo argomento di tipo \texttt{size\_t cpusetsize}
-  (anche questa citata nella pagina di manuale); la versione citata è quella
-  riportata nel manuale delle \textsl{glibc} e corrispondente alla definizione
-  presente in \file{sched.h}.} è:
+\funcd{sched\_setaffinity} ed il suo prototipo è:
 \begin{prototype}{sched.h}
-  {int sched\_setaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  {int sched\_setaffinity (pid\_t pid, unsigned int cpusetsize, const
+    cpu\_set\_t *cpuset)} 
   Imposta la maschera di affinità del processo \param{pid}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
@@ -3431,6 +2747,21 @@ su quali processori far eseguire un determinato processo attraverso una
   ed inoltre anche \errval{EFAULT}.}
 \end{prototype}
 
+
+Questa funzione e la corrispondente \func{sched\_setaffinity} hanno una storia
+abbastanza complessa, la system call prevede l'uso di due ulteriori argomenti
+di tipo \texttt{unsigned int len} e \texttt{unsigned long *mask}, che
+corrispondono al fatto che la implementazione effettiva usa una semplice
+maschera binaria. Quando le funzioni vennero incluse nelle \acr{glibc}
+assunsero invece il prototipo appena mostrato. A complicare la cosa si
+aggiunge il fatto che nella versione 2.3.3 delle \acr{glibc} l'argomento
+\param{cpusetsize} è stato eliminato, per poi essere ripristinato nella
+versione 2.3.4.\footnote{pertanto se la vostra pagina di manuale non è
+  aggiornata, o usate quella particolare versione delle \acr{glibc}, potrete
+  trovare indicazioni diverse, il prototipo illustrato è quello riportato
+  nella versione corrente (maggio 2008) delle pagine di manuale e
+  corrispondente alla definizione presente in \file{sched.h}.}
+
 La funzione imposta, con l'uso del valore contenuto all'indirizzo
 \param{cpuset}, l'insieme dei processori sui quali deve essere eseguito il
 processo identificato tramite il valore passato in \param{pid}. Come in
@@ -3454,10 +2785,11 @@ o periferiche) pu
 avviene nelle architetture NUMA).
 
 Infine se un gruppo di processi accede alle stesse risorse condivise (ad
-esempio una applicazione con più thread) può avere senso usare lo stesso
-processore in modo da sfruttare meglio l'uso della sua cache; questo
-ovviamente riduce i benefici di un sistema multiprocessore nell'esecuzione
-contemporanea dei thread, ma in certi casi (quando i thread sono inerentemente
+esempio una applicazione con più \itindex{thread} \textit{thread}) può avere
+senso usare lo stesso processore in modo da sfruttare meglio l'uso della sua
+cache; questo ovviamente riduce i benefici di un sistema multiprocessore
+nell'esecuzione contemporanea dei \itindex{thread} \textit{thread}, ma in
+certi casi (quando i \itindex{thread} \textit{thread} sono inerentemente
 serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
 nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
 di processore.
@@ -3505,7 +2837,8 @@ possa essere eseguito su qualunque processore, se pu
 valore per un processo specifico usando la funzione
 \funcd{sched\_getaffinity}, il suo prototipo è:
 \begin{prototype}{sched.h}
-  {int sched\_getaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  {int sched\_getaffinity (pid\_t pid, unsigned int cpusetsize, 
+    const cpu\_set\_t *cpuset)} 
   Legge la maschera di affinità del processo \param{pid}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
@@ -3655,19 +2988,22 @@ eseguire in maniera atomica le operazioni necessarie.
 \subsection{Le funzioni rientranti}
 \label{sec:proc_reentrant}
 
+\index{funzioni!rientranti|(}
+
 Si dice \textsl{rientrante} una funzione che può essere interrotta in
 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
-un altro thread di esecuzione senza che questo comporti nessun problema
-nell'esecuzione della stessa. La problematica è comune nella programmazione
-multi-thread, ma si hanno gli stessi problemi quando si vogliono chiamare
-delle funzioni all'interno dei gestori dei segnali.
+un altro \itindex{thread} \textit{thread} di esecuzione senza che questo
+comporti nessun problema nell'esecuzione della stessa. La problematica è
+comune nella programmazione \itindex{thread} \textit{multi-thread}, ma si
+hanno gli stessi problemi quando si vogliono chiamare delle funzioni
+all'interno dei gestori dei segnali.
 
 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
-queste infatti vengono allocate nello \itindex{stack} stack, ed un'altra
-invocazione non fa altro che allocarne un'altra copia. Una funzione può non
-essere rientrante quando opera su memoria che non è nello \itindex{stack}
-stack.  Ad esempio una funzione non è mai rientrante se usa una variabile
-globale o statica.
+queste infatti vengono allocate nello \itindex{stack} \textit{stack}, ed
+un'altra invocazione non fa altro che allocarne un'altra copia. Una funzione
+può non essere rientrante quando opera su memoria che non è nello
+\itindex{stack} \textit{stack}.  Ad esempio una funzione non è mai rientrante
+se usa una variabile globale o statica.
 
 Nel caso invece la funzione operi su un oggetto allocato dinamicamente, la
 cosa viene a dipendere da come avvengono le operazioni: se l'oggetto è creato
@@ -3681,16 +3017,20 @@ parte del programmatore.
 
 In genere le funzioni di libreria non sono rientranti, molte di esse ad
 esempio utilizzano variabili statiche, le \acr{glibc} però mettono a
-disposizione due macro di compilatore, \macro{\_REENTRANT} e
+disposizione due macro di compilatore,\footnote{si ricordi quanto illustrato
+  in sez.~\ref{sec:intro_gcc_glibc_std}.} \macro{\_REENTRANT} e
 \macro{\_THREAD\_SAFE}, la cui definizione attiva le versioni rientranti di
 varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 \code{\_r} al nome della versione normale.
 
+\index{funzioni!rientranti|)}
+
+
 % LocalWords:  multitasking like VMS child process identifier pid sez shell fig
 % LocalWords:  parent kernel init pstree keventd kswapd table struct linux call
 % LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
 % LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
-% LocalWords:  sid threads thread Ingo Molnar ppid getpid getppid sys unistd LD
+% LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD
 % LocalWords:  void ForkTest tempnam pathname sibling cap errno EAGAIN ENOMEM
 % LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
 % LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
@@ -3715,7 +3055,7 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
 % LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
 % LocalWords:  capability capget capset header ESRCH undef version obj clear PT
-% LocalWords:  pag ssize length proc capgetp prehemptive cache runnable Stopped
+% LocalWords:  pag ssize length proc capgetp preemptive cache runnable Stopped
 % LocalWords:  Uninterrutible SIGSTOP soft slice nice niceness counter which SC
 % LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO First
 % LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
@@ -3731,9 +3071,10 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  cpusetsize cpuset atomic tickless redirezione WCONTINUED stopped
 % LocalWords:  waitid NOCLDSTOP ENOCHLD WIFCONTINUED ifdef endif idtype siginfo
 % LocalWords:  infop ALL WEXITED WSTOPPED WNOWAIT signo CLD EXITED KILLED page
-% LocalWords:  CONTINUED
+% LocalWords:  CONTINUED sources forking Spawned successfully executing exiting
 
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"
 %%% End: 
+% LocalWords:  next cat for COMMAND pts bash defunct