Rinominati app_a e app_b
[gapil.git] / process.tex
index 6058959bdd6986fb0e9f711ef396db1019148dde..e663713f93584f9029a0cc657cbee66cd7bed344 100644 (file)
@@ -53,15 +53,15 @@ linker darebbe luogo ad errori.
 Lo standard ISO C specifica che la funzione \texttt{main} può o non avere
 argomenti o prendere due argomenti che rappresentano gli argomenti passati da
 linea di comando, in sostanza un prototipo che va sempre bene è il seguente:
 Lo standard ISO C specifica che la funzione \texttt{main} può o non avere
 argomenti o prendere due argomenti che rappresentano gli argomenti passati da
 linea di comando, in sostanza un prototipo che va sempre bene è il seguente:
-\begin{verbatim}
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
      int main (int argc, char *argv[])
      int main (int argc, char *argv[])
-\end{verbatim}
+\end{lstlisting}
 
 In realtà nei sistemi unix esiste un'altro modo per definire la funzione
 \texttt{main}, che prevede la presenza di un terzo parametro, \texttt{char
 
 In realtà nei sistemi unix esiste un'altro modo per definire la funzione
 \texttt{main}, che prevede la presenza di un terzo parametro, \texttt{char
-  *envp[]}, che fornisce l'\textsl{ambiente} (vedi \secref{proc_environ}) del
-programma; questa forma però non è prevista dallo standard POSIX.1 per cui se
-si vogliono scrivere programmi portabili è meglio evitarla.
+  *envp[]}, che fornisce l'\textsl{ambiente} (vedi \secref{sec:proc_environ})
+del programma; questa forma però non è prevista dallo standard POSIX.1 per cui
+se si vogliono scrivere programmi portabili è meglio evitarla.
 
 
 \subsection{Come chiudere un programma}
 
 
 \subsection{Come chiudere un programma}
@@ -77,7 +77,7 @@ che passa il controllo direttamente al kernel.
 Oltre alla conclusione ``normale'' esiste anche la possibilità di una
 conclusione ``anomala'' del programma a causa di segnali o della chiamata alla
 funzione \texttt{abort} (che comunque genera un segnale che termina il
 Oltre alla conclusione ``normale'' esiste anche la possibilità di una
 conclusione ``anomala'' del programma a causa di segnali o della chiamata alla
 funzione \texttt{abort} (che comunque genera un segnale che termina il
-programma); torneremo su questo in \secref{sec:sig_abort}.
+programma); torneremo su questo in \secref{sec:sig_prog_error}.
 
 Il valore di ritorno della funzione main, o quello usato nelle chiamate ad
 \texttt{exit} e \texttt{\_exit}, viene chiamato \textit{exit status} e passato
 
 Il valore di ritorno della funzione main, o quello usato nelle chiamate ad
 \texttt{exit} e \texttt{\_exit}, viene chiamato \textit{exit status} e passato
@@ -116,7 +116,7 @@ Infine occorre distinguere fra lo stato di uscita di un programma
 possibile un processo possa essere terminato (da un segnale) prima che il
 programma in esecuzione si sia concluso. In caso di conclusione normale del
 programma però lo stato di uscita diventa parte dello stato di conclusione del
 possibile un processo possa essere terminato (da un segnale) prima che il
 programma in esecuzione si sia concluso. In caso di conclusione normale del
 programma però lo stato di uscita diventa parte dello stato di conclusione del
-processo (vedi \secref{sec:prochand_XXX}).
+processo (vedi \secref{sec:prochand_xxx}).
 
 
 \subsection{Le funzioni \texttt{exit} e \texttt{\_exit}}
 
 
 \subsection{Le funzioni \texttt{exit} e \texttt{\_exit}}
@@ -155,7 +155,7 @@ La funzione chiude tutti i file descriptor appartenenti al processo (sui tenga
 presente che questo non comporta il salvataggio dei dati bufferizzati degli
 stream), fa si che ogni figlio del processo sia ereditato da \texttt{init}
 (vedi \secref{cha:process_handling}), manda un segnale \texttt{SIGCHLD} al
 presente che questo non comporta il salvataggio dei dati bufferizzati degli
 stream), fa si che ogni figlio del processo sia ereditato da \texttt{init}
 (vedi \secref{cha:process_handling}), manda un segnale \texttt{SIGCHLD} al
-processo padre (vedi \ref{sec:sig_sigchild}) ed infine ritorna lo stato di
+processo padre (vedi \ref{sec:sig_job_control}) ed infine ritorna lo stato di
 uscita specificato in \texttt{status} che può essere raccolto usando la
 funzione \texttt{wait} (vedi \secref{sec:prochand_wait}).
 
 uscita specificato in \texttt{status} che può essere raccolto usando la
 funzione \texttt{wait} (vedi \secref{sec:prochand_wait}).
 
@@ -347,9 +347,9 @@ programma C viene suddiviso nei seguenti segmenti:
   La prima parte è il segmento dei dati inizializzati, che contiene le
   variabili globali il cui valore è stato assegnato esplicitamente. Ad esempio
   se si definisce:
   La prima parte è il segmento dei dati inizializzati, che contiene le
   variabili globali il cui valore è stato assegnato esplicitamente. Ad esempio
   se si definisce:
-\begin{verbatim}
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
     double pi = 3.14;
     double pi = 3.14;
-\end{verbatim}
+\end{lstlisting}
   questo valore sarà immagazzinato in questo segmento. La memoria di questo
   segmento viene preallocato dalla \texttt{exec} e inizializzata ai valori
   specificati.
   questo valore sarà immagazzinato in questo segmento. La memoria di questo
   segmento viene preallocato dalla \texttt{exec} e inizializzata ai valori
   specificati.
@@ -357,9 +357,9 @@ programma C viene suddiviso nei seguenti segmenti:
   La seconda parte è il segmento dei dati non inizializzati, che contiene le
   variabili globali il cui valore è stato non è assegnato esplicitamente. Ad
   esempio se si definisce:
   La seconda parte è il segmento dei dati non inizializzati, che contiene le
   variabili globali il cui valore è stato non è assegnato esplicitamente. Ad
   esempio se si definisce:
-\begin{verbatim}
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
     int vect[100];
     int vect[100];
-\end{verbatim}
+\end{lstlisting}
   questo valore sarà immagazzinato in questo segmento. Anch'esso viene
   allocato all'avvio, e tutte le variabili vengono inizializzate a
   zero (ed i puntatori a \texttt{NULL}). 
   questo valore sarà immagazzinato in questo segmento. Anch'esso viene
   allocato all'avvio, e tutte le variabili vengono inizializzate a
   zero (ed i puntatori a \texttt{NULL}). 
@@ -388,7 +388,7 @@ programma C viene suddiviso nei seguenti segmenti:
 
 \begin{figure}[htb]
   \centering
 
 \begin{figure}[htb]
   \centering
-  
+  \includegraphics[width=5cm]{img/memory_layout.eps}
   \caption{Disposizione tipica dei segmenti di memoria di un processo}
   \label{fig:proc_mem_layout}
 \end{figure}
   \caption{Disposizione tipica dei segmenti di memoria di un processo}
   \label{fig:proc_mem_layout}
 \end{figure}
@@ -496,13 +496,12 @@ la funzione lo utilzza, altrimenti rialloca altrove un blocco della dimensione
 voluta copiandoci automaticamente il contenuto, lo spazio in più non viene
 inizializzato. 
 
 voluta copiandoci automaticamente il contenuto, lo spazio in più non viene
 inizializzato. 
 
-Il fatto che il blocco di memoria restituito da \texttt{realloc} possa
-camabiare comporta che si deve sempre riassegnare al puntatore passato per il
+Il fatto che il blocco di memoria restituito da \func{realloc} possa
+cambiare comporta che si deve sempre riassegnare al puntatore passato per il
 ridimensionamento il valore di ritorno della funzione, e che non ci devono
 essere altri puntatori che puntino all'interno di un'area che si vuole
 ridimensionare.
 
 ridimensionamento il valore di ritorno della funzione, e che non ci devono
 essere altri puntatori che puntino all'interno di un'area che si vuole
 ridimensionare.
 
-
 Uno degli errori più comuni (specie se si ha a che fare con array di
 puntatori) è infatti quello di chiamare \texttt{free} più di una volta sullo
 stesso puntatore; per evitare questo problema una soluzione di ripiego è
 Uno degli errori più comuni (specie se si ha a che fare con array di
 puntatori) è infatti quello di chiamare \texttt{free} più di una volta sullo
 stesso puntatore; per evitare questo problema una soluzione di ripiego è
@@ -533,11 +532,12 @@ l'errore.
 
 Per questo motivo l'implementazione delle routine di allocazione delle glibc
 mette a disposizione una serie di funzionalità (su cui torneremo in
 
 Per questo motivo l'implementazione delle routine di allocazione delle glibc
 mette a disposizione una serie di funzionalità (su cui torneremo in
-\secref{sec:proc_mem_advanced}) che permettono di tracciare le allocazioni e
+\secref{sec:xxx_advanced}) che permettono di tracciare le allocazioni e
 le disallocazione, e definisce anche una serie di possibili agganci che
 permettono di sostituire alle funzioni di libreria una propria versione (che
 può essere più o meno specializzata per il debugging).
 
 le disallocazione, e definisce anche una serie di possibili agganci che
 permettono di sostituire alle funzioni di libreria una propria versione (che
 può essere più o meno specializzata per il debugging).
 
+
 \subsection{La funzione \texttt{alloca}}  
 \label{sec:proc_mem_alloca}
 
 \subsection{La funzione \texttt{alloca}}  
 \label{sec:proc_mem_alloca}
 
@@ -559,8 +559,8 @@ viene rilasciata automaticamente al ritorno della funzione.
 Come è evidente questa funzione ha molti vantaggi, e permette di evitare i
 problemi di memory leak non essendo più necessaria la deallocazione esplicita;
 una delle ragioni principali per usarla è però che funziona anche quando si
 Come è evidente questa funzione ha molti vantaggi, e permette di evitare i
 problemi di memory leak non essendo più necessaria la deallocazione esplicita;
 una delle ragioni principali per usarla è però che funziona anche quando si
-usa \texttt{longjump} per uscire con un salto non locale da una funzione (vedi
-\secref{sec:proc_longjmp}), 
+usa \func{longjump} per uscire con un salto non locale da una funzione (vedi
+\secref{sec:proc_longjmp}),
 
 Un altro vantaggio e che in Linux la funzione è molto veloce e non viene
 sprecato spazio, infatti non è necessario gestire un pool di memoria da
 
 Un altro vantaggio e che in Linux la funzione è molto veloce e non viene
 sprecato spazio, infatti non è necessario gestire un pool di memoria da
@@ -573,6 +573,17 @@ cerca di allocare troppa memoria non si ottiene un messaggio di errore, ma un
 segnale di \textit{segmentation violation} analogo a quello che si avrebbe da
 una ricorsione infinita.
 
 segnale di \textit{segmentation violation} analogo a quello che si avrebbe da
 una ricorsione infinita.
 
+Inoltre non è chiaramente possibile usare questa funzione per allocare memoria
+che deve poi essere usata anche al di fuori della funzione in cui questa viene
+chiamata, in quanto all'uscita dalla funzione lo spazio allocato diventerebbe
+libero, e potrebbe essere sovrascritto all'invocazione di nuove funzioni con
+conseguenze imprevedibili. 
+
+Questo è lo stesso problema potenziale che si può avere con le variabili
+automatiche; un errore comune infatti è quello di restituire al chiamante un
+puntatore ad una di queste variabili, che sarà automaticamente distrutta
+all'uscita della funzione, con gli stessi problemi appena citati per
+\func{alloca}.
 
 \subsection{Le funzioni \texttt{brk} e \texttt{sbrk}}  
 \label{sec:proc_mem_sbrk}
 
 \subsection{Le funzioni \texttt{brk} e \texttt{sbrk}}  
 \label{sec:proc_mem_sbrk}
@@ -608,7 +619,7 @@ del segmento dati.
 
 
 \subsection{Il controllo della memoria virtuale}  
 
 
 \subsection{Il controllo della memoria virtuale}  
-\label{sec:proc_mem_mlock}
+\label{sec:proc_mem_lock}
 
 Come spiegato in \secref{sec:proc_mem_gen} il kernel gestisce la memoria in
 maniera trasparente ai processi, decidendo quando rimuovere pagine dalla
 
 Come spiegato in \secref{sec:proc_mem_gen} il kernel gestisce la memoria in
 maniera trasparente ai processi, decidendo quando rimuovere pagine dalla
@@ -668,14 +679,12 @@ memoria di un processo che pu
 che può dedicare a questo.
 
 
 che può dedicare a questo.
 
 
-
-
 \section{Il controllo di flusso non locale}
 \label{sec:proc_longjmp}
 
 Il controllo del flusso di un programma in genere viene effettuato con le
 varie istruzioni del linguaggio C, la più bistrattata delle quali è il
 \section{Il controllo di flusso non locale}
 \label{sec:proc_longjmp}
 
 Il controllo del flusso di un programma in genere viene effettuato con le
 varie istruzioni del linguaggio C, la più bistrattata delle quali è il
-\texttt{goto} ampiamente deprecato in favore di costrutti più puliti; esiste
+\texttt{goto}, ampiamente deprecato in favore di costrutti più puliti; esiste
 però un caso in l'uso di questa istruzione porta all'implementazione più
 efficiente, quello dell'uscita in caso di errore.
 
 però un caso in l'uso di questa istruzione porta all'implementazione più
 efficiente, quello dell'uscita in caso di errore.
 
@@ -818,5 +827,55 @@ versione estesa di \texttt{getopt}.
 
 
 \subsection{Le variabili di ambiente}
 
 
 \subsection{Le variabili di ambiente}
-\label{sec:proc_env_var}
+\label{sec:proc_environ}
+
+Oltre ai parametri passati da linea di comando ogni processo riceve dal
+sistema un \textsl{ambiente}, nella forma di una lista di variabili
+(\textit{environment list}) messa a disposizione dal processo costruita nella
+chiamata ad \func{exec} che lo ha lanciato.
+
+Come per la lista dei parametri anche questa lista è un array di puntatori a
+caratteri, ciascuno dei quali punta ad una stringa (terminata da un null). A
+differenza di \var{argv[]} però in questo caso non si ha la lunghezza
+dell'array dato da un equivalente di \var{argc}, ma la lista è terminata da un
+puntatore nullo.
+
+L'indirizzo della lista delle variabili di ambiente è passato attraverso la
+variabile globale \var{environ}, a cui si può accedere attraverso una semplice
+dichiarazione del tipo:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+extern char ** environ;
+\end{lstlisting}
+un esempio del contenuto dell'ambiente, in si è riportato un estratto delle
+variabili che normalmente sono definite dal sistema, è riportato in \nfig.
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=11cm]{img/environ_var.eps}
+  \caption{Esempio di lista delle variabili di ambiente.}
+  \label{fig:proc_envirno_list}
+\end{figure}
+
+Per convenzione le stringhe che definiscono l'ambiente sono tutte del tipo
+\textsl{\texttt{nome=valore}}. Inoltre alcune variabili, come quelle elencate
+in \curfig, sono definite dal sistema per queste c'è la convezione di usare
+nomi espressi in caratteri maiuscoli.
+
+Il kernel non usa mai queste variabili, il loro uso e la loro intepretazione è
+riservata alle applicazioni e ad alcune funzioni di libreria; in genere esse
+costituiscono un modo comodo per definire un comportamento specifico senza
+dover ricorrere all'uso di opzioni a linea di comando o di file di
+configurazione. 
+
+La shell ad esempio ne usa molte per il suo funzionamento (come \var{PATH} per
+la ricerca dei comadi), e alcune di esse (come \var{HOME}, \var{USER}, etc.)
+sono definite al login. In genere è cura dell'amministratore definire le
+opportune variabili di ambiente in uno script di avvio. Alcune servono poi
+come riferimento generico per molti programmi (come \var{EDITOR} che indica
+l'editor preferito da invocare in caso di ncessità).
+
+Gli standard POSIX e XPG3 definiscono alcune di queste variabili (le più
+comuni), come riportato in \ntab. GNU/Linux le supporta tutte e ne definisce
+anche altre per una lista parziale si può controllare \cmd{man environ}
+
+