Riorganizzazione delle sezioni sulla gestione della memoria e
[gapil.git] / process.tex
index da8710e51a6220e6a7dedab88aed3d427513140a..ae8cb03172edbb5b9e7a771e7a15a9c01b757699 100644 (file)
@@ -1,6 +1,6 @@
 %% process.tex
 %%
-%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2006 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -41,7 +41,7 @@ tutti gli altri.\footnote{questo non 
 \subsection{La funzione \func{main}} 
 \label{sec:proc_main}
 
-Quando un programma viene lanciato il kernel esegue un'opportuna routine di
+Quando un programma viene lanciato il kernel esegue un opportuno codice di
 avvio, usando il programma \cmd{ld-linux.so}.  Questo programma prima carica
 le librerie condivise che servono al programma, poi effettua il collegamento
 dinamico del codice e alla fine lo esegue. Infatti, a meno di non aver
@@ -77,7 +77,7 @@ modalit
 direttamente la funzione \func{exit} (che viene comunque chiamata
 automaticamente quando \func{main} ritorna).  Una forma alternativa è quella
 di chiamare direttamente la system call \func{\_exit}, che restituisce il
-controllo direttamente alla routine di conclusione dei processi del kernel.
+controllo direttamente alla funzione di conclusione dei processi del kernel.
 
 Oltre alla conclusione ``\textsl{normale}'' esiste anche la possibilità di una
 conclusione ``\textsl{anomala}'' del programma a causa della ricezione di un
@@ -283,7 +283,7 @@ dimensione fissa,\footnote{inizialmente questi erano di 4kb sulle macchine a
   comporta una perdita di prestazioni.} e ciascuna pagina nello spazio di
 indirizzi virtuale è associata ad un supporto che può essere una pagina di
 memoria reale o ad un dispositivo di stoccaggio secondario (come lo spazio
-disco riservato alla swap, o i file che contengono il codice). Per ciasun
+disco riservato alla swap, o i file che contengono il codice). Per ciascun
 processo il kernel si cura di mantenere un mappa di queste corrispondenze
 nella cosiddetta \itindex{page~table}\textit{page table}.\footnote{questa è
   una semplificazione brutale, il meccanismo è molto più complesso; una buona
@@ -400,17 +400,17 @@ seguenti segmenti:
   e le informazioni dello stato del chiamante (tipo il contenuto di alcuni
   registri della CPU), poi la funzione chiamata alloca qui lo spazio per le
   sue variabili locali. Tutti questi dati vengono \textit{impilati} (da questo
-  viene il nome \textit{stack}) in sequenza uno sull'altro; in questo modo le
-  funzioni possono essere chiamate ricorsivamente. Al ritorno della funzione
-  lo spazio è automaticamente rilasciato e ``\textsl{ripulito}''. La pulizia
-  in C e C++ viene fatta dal chiamante.\footnote{a meno che non sia stato
-    specificato l'utilizzo di una calling convention diversa da quella
-    standard.}
+  viene il nome \itindex{stack} \textit{stack}) in sequenza uno sull'altro; in
+  questo modo le funzioni possono essere chiamate ricorsivamente. Al ritorno
+  della funzione lo spazio è automaticamente rilasciato e
+  ``\textsl{ripulito}''. La pulizia in C e C++ viene fatta dal
+  chiamante.\footnote{a meno che non sia stato specificato l'utilizzo di una
+    calling convention diversa da quella standard.}
 % TODO verificare le modalità di cambiamento della calling convention
 
   La dimensione di questo segmento aumenta seguendo la crescita dello
-  \textit{stack} del programma, ma non viene ridotta quando quest'ultimo si
-  restringe.
+  \itindex{stack} \textit{stack} del programma, ma non viene ridotta quando
+  quest'ultimo si restringe.
 \end{enumerate}
 
 \begin{figure}[htb]
@@ -461,16 +461,12 @@ librerie del C forniscono una serie opportuna di funzioni per eseguire
 l'allocazione dinamica di memoria (in genere nello \itindex{heap} heap). 
 
 Le variabili il cui contenuto è allocato in questo modo non potranno essere
-usate direttamente come le altre (quelle nello \itindex{stack} stack), ma
-l'accesso sarà possibile solo in maniera indiretta, attraverso i puntatori
-alla memoria loro riservata che si sono ottenuti dalle funzioni di
-allocazione.
+usate direttamente come le altre (quelle nello \itindex{stack}
+\textit{stack}), ma l'accesso sarà possibile solo in maniera indiretta,
+attraverso i puntatori alla memoria loro riservata che si sono ottenuti dalle
+funzioni di allocazione.
 
 
-\subsection{Le funzioni \func{malloc}, \func{calloc}, \func{realloc} e
-  \func{free}}
-\label{sec:proc_mem_malloc}
-
 Le funzioni previste dallo standard ANSI C per la gestione della memoria sono
 quattro: \funcd{malloc}, \funcd{calloc}, \funcd{realloc} e \funcd{free}, i
 loro prototipi sono i seguenti:
@@ -555,23 +551,23 @@ assegnare sempre a \val{NULL} ogni puntatore liberato con \func{free}, dato
 che, quando l'argomento è un puntatore nullo, \func{free} non esegue nessuna
 operazione.
 
-Le \acr{glibc} hanno un'implementazione delle routine di allocazione che è
+Le \acr{glibc} hanno un'implementazione delle funzioni di allocazione che è
 controllabile dall'utente attraverso alcune variabili di ambiente, in
 particolare diventa possibile tracciare questo tipo di errori usando la
 variabile di ambiente \val{MALLOC\_CHECK\_} che quando viene definita mette in
 uso una versione meno efficiente delle funzioni suddette, che però è più
 tollerante nei confronti di piccoli errori come quello di chiamate doppie a
 \func{free}.  In particolare:
-\begin{itemize}
+\begin{itemize*}
 \item se la variabile è posta a zero gli errori vengono ignorati;
 \item se è posta ad 1 viene stampato un avviso sullo \textit{standard error}
   (vedi sez.~\ref{sec:file_std_stream});
 \item se è posta a 2 viene chiamata \func{abort}, che in genere causa
   l'immediata conclusione del programma.
-\end{itemize}
+\end{itemize*}
 
 Il problema più comune e più difficile da risolvere che si incontra con le
-routine di allocazione è quando non viene opportunamente liberata la memoria
+funzioni di allocazione è quando non viene opportunamente liberata la memoria
 non più utilizzata, quello che in inglese viene chiamato \textit{memory
   leak}\itindex{memory~leak}, cioè una \textsl{perdita di memoria}.
 
@@ -616,26 +612,23 @@ genere va a scapito delle prestazioni dell'applicazione in esecuzione.
 % allocata da un oggetto.
 
 Per limitare l'impatto di questi problemi, e semplificare la ricerca di
-eventuali errori, l'implementazione delle routine di allocazione delle
+eventuali errori, l'implementazione delle funzioni di allocazione delle
 \acr{glibc} mette a disposizione una serie di funzionalità che permettono di
 tracciare le allocazioni e le disallocazioni, e definisce anche una serie di
 possibili \textit{hook} (\textsl{ganci}) che permettono di sostituire alle
 funzioni di libreria una propria versione (che può essere più o meno
 specializzata per il debugging). Esistono varie librerie che forniscono dei
-sostituti opportuni delle routine di allocazione in grado, senza neanche
+sostituti opportuni delle funzioni di allocazione in grado, senza neanche
 ricompilare il programma,\footnote{esempi sono \textit{Dmalloc}
   \href{http://dmalloc.com/}{\textsf{http://dmalloc.com/}} di Gray Watson ed
   \textit{Electric Fence} di Bruce Perens.} di eseguire diagnostiche anche
 molto complesse riguardo l'allocazione della memoria.
 
 
-\subsection{Le funzioni \func{alloca}, \func{brk} e \func{sbrk}}  
-\label{sec:proc_mem_sbrk_alloca}
-
 Una possibile alternativa all'uso di \func{malloc}, che non soffre dei
 problemi di \textit{memory leak}\itindex{memory~leak} descritti in precedenza,
 è la funzione \funcd{alloca}, che invece di allocare la memoria nello
-\itindex{heap}\textit{heap} usa il segmento di \itindex{stack}\textit{stack}
+\itindex{heap}\textit{heap} usa il segmento di \itindex{stack} \textit{stack}
 della funzione corrente. La sintassi è identica a quella di \func{malloc}, il
 suo prototipo è:
 \begin{prototype}{stdlib.h}{void *alloca(size\_t size)}
@@ -647,10 +640,10 @@ suo prototipo 
 \end{prototype}
 
 La funzione alloca la quantità di memoria (non inizializzata) richiesta
-dall'argomento \param{size} nel segmento di \itindex{stack}stack della
-funzione chiamante.  Con questa funzione non è più necessario liberare la
-memoria allocata (e quindi non esiste un analogo della \func{free}) in quanto
-essa viene rilasciata automaticamente al ritorno della funzione.
+dall'argomento \param{size} nel segmento di \itindex{stack} \textit{stack}
+della funzione chiamante.  Con questa funzione non è più necessario liberare
+la memoria allocata (e quindi non esiste un analogo della \func{free}) in
+quanto essa viene rilasciata automaticamente al ritorno della funzione.
 
 Come è evidente questa funzione ha molti vantaggi, anzitutto permette di
 evitare alla radice i problemi di \textit{memory leak}\itindex{memory~leak},
@@ -694,9 +687,8 @@ Le due funzioni seguenti\footnote{le due funzioni sono state definite con BSD
   esplicitamente escluse dallo standard POSIX.} vengono utilizzate soltanto
 quando è necessario effettuare direttamente la gestione della memoria
 associata allo spazio dati di un processo, ad esempio qualora si debba
-implementare la propria versione delle routine di allocazione della memoria
-viste in sez.~\ref{sec:proc_mem_malloc}. La prima funzione è \funcd{brk}, ed
-il suo prototipo è:
+implementare la propria versione delle funzioni di allocazione della memoria.
+La prima funzione è \funcd{brk}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}{int brk(void *end\_data\_segment)}
   Sposta la fine del segmento dei dati.
   
@@ -705,7 +697,7 @@ il suo prototipo 
 \end{prototype}
 
 La funzione è un'interfaccia diretta all'omonima system call ed imposta
-l'indirizzo finale del \index{segmento!dati}segmento dati di un processo
+l'indirizzo finale del \index{segmento!dati} segmento dati di un processo
 all'indirizzo specificato da \param{end\_data\_segment}. Quest'ultimo deve
 essere un valore ragionevole, ed inoltre la dimensione totale del segmento non
 deve comunque eccedere un eventuale limite (si veda
@@ -733,12 +725,6 @@ per i programmi normali 
 standard descritte in precedenza, che sono costruite su di esse. 
 
 
-% \subsection{La personalizzazione delle funzioni di allocazione} 
-% \label{sec:proc_mem_malloc_custom}
-
-% TODO documentare \func{madvise}
-% TODO documentare \func{mincore}
-
 \subsection{Il controllo della memoria virtuale}  
 \label{sec:proc_mem_lock}
 
@@ -881,7 +867,7 @@ di indirizzi di un processo.  I prototipi di queste funzioni sono:
   
   \bodydesc{Codici di ritorno ed errori sono gli stessi di \func{mlock} e
     \func{munlock}, con un kernel successivo al 2.6.9 l'uso di
-    func{munlockall} senza la \itindex{capabilities}\textit{capability}
+    \func{munlockall} senza la \itindex{capabilities}\textit{capability}
 \const{CAP\_IPC\_LOCK} genera un errore di \errcode{EPERM}.}
 \end{functions}
 
@@ -920,12 +906,18 @@ che esse vengano mappate in RAM dallo \itindex{stack} stack, dopo di che, per
 essere sicuri che esse siano state effettivamente portate in memoria, ci si
 scrive sopra.  
 
-% TODO: trattare \func{madvise}
+\itindend{memory~locking}
+
+% TODO documentare \func{madvise}
+% TODO documentare \func{mincore}
 
 
 \index{memoria~virtuale|)} 
 
-\itindend{memory~locking}
+
+% \subsection{Gestione avanzata dell'allocazione della memoria} 
+% \label{sec:proc_mem_malloc_custom}
+% TODO: trattare le funzionalità avanzate di \func{malloc}
 
 
 
@@ -949,6 +941,7 @@ manipolare ed utilizzare le variabili di ambiente.
 
 \subsection{Il formato degli argomenti}
 \label{sec:proc_par_format}
+
 In genere il passaggio degli argomenti al programma viene effettuato dalla
 shell, che si incarica di leggere la linea di comando e di effettuarne la
 scansione (il cosiddetto \textit{parsing}) per individuare le parole che la
@@ -1328,7 +1321,7 @@ del passaggio pu
 Il passaggio di una variabile \textit{by value} significa che in realtà quello
 che viene passato alla subroutine è una copia del valore attuale di quella
 variabile, copia che la subroutine potrà modificare a piacere, senza che il
-valore originale nella routine chiamante venga toccato. In questo modo non
+valore originale nella funzione chiamante venga toccato. In questo modo non
 occorre preoccuparsi di eventuali effetti delle operazioni della subroutine
 sulla variabile passata come argomento.
 
@@ -1337,13 +1330,13 @@ vale per qualunque variabile, puntatori compresi; quando per
 subroutine si usano dei puntatori (ad esempio per scrivere in un buffer) in
 realtà si va a modificare la zona di memoria a cui essi puntano, per cui anche
 se i puntatori sono copie, i dati a cui essi puntano sono sempre gli stessi, e
-le eventuali modifiche avranno effetto e saranno visibili anche nella routine
+le eventuali modifiche avranno effetto e saranno visibili anche nella funzione
 chiamante.
 
 Nella maggior parte delle funzioni di libreria e delle system call i puntatori
 vengono usati per scambiare dati (attraverso buffer o strutture) e le
 variabili semplici vengono usate per specificare argomenti; in genere le
-informazioni a riguardo dei risultati vengono passate alla routine chiamante
+informazioni a riguardo dei risultati vengono passate alla funzione chiamante
 attraverso il valore di ritorno.  È buona norma seguire questa pratica anche
 nella programmazione normale.
 
@@ -1598,9 +1591,10 @@ Quando viene eseguita direttamente la funzione ritorna sempre zero, un valore
 diverso da zero viene restituito solo quando il ritorno è dovuto ad una
 chiamata di \func{longjmp} in un'altra parte del programma che ripristina lo
 \itindex{stack} stack effettuando il salto non-locale. Si tenga conto che il
-contesto salvato in \param{env} viene invalidato se la routine che ha chiamato
-\func{setjmp} ritorna, nel qual caso un successivo uso di \func{longjmp} può
-comportare conseguenze imprevedibili (e di norma fatali) per il processo.
+contesto salvato in \param{env} viene invalidato se la funzione che ha
+chiamato \func{setjmp} ritorna, nel qual caso un successivo uso di
+\func{longjmp} può comportare conseguenze imprevedibili (e di norma fatali)
+per il processo.
   
 Come accennato per effettuare un salto non-locale ad
 un punto precedentemente stabilito con \func{setjmp} si usa la funzione
@@ -1686,3 +1680,24 @@ dichiarandole tutte come \direct{volatile}\footnote{la direttiva
 %%% mode: latex
 %%% TeX-master: "gapil"
 %%% End: 
+
+% LocalWords:  like exec kernel thread main ld linux static linker char envp Gb
+% LocalWords:  sez POSIX exit system call cap abort shell diff errno stdlib int
+% LocalWords:  SUCCESS FAILURE void atexit stream fclose unistd descriptor init
+% LocalWords:  SIGCHLD wait function glibc SunOS arg argp execve fig high kb Mb
+% LocalWords:  memory alpha swap table printf Unit MMU paging fault SIGSEGV BSS
+% LocalWords:  multitasking segmentation text segment NULL Block Started Symbol
+% LocalWords:  heap stack calling convention size malloc calloc realloc nmemb
+% LocalWords:  ENOMEM ptr uClib cfree error leak smartpointers hook Dmalloc brk
+% LocalWords:  Gray Watson Electric Fence Bruce Perens sbrk longjmp SUSv BSD ap
+% LocalWords:  ptrdiff increment locking lock copy write capabilities IPC mlock
+% LocalWords:  capability MEMLOCK limits getpagesize RLIMIT munlock sys const
+% LocalWords:  addr len EINVAL EPERM mlockall munlockall flags l'OR CURRENT IFS
+% LocalWords:  argc argv parsing questofile txt getopt optstring switch optarg
+% LocalWords:  optind opterr optopt ForkTest POSIXLY CORRECT long options NdA
+% LocalWords:  option parameter list environ PATH HOME XPG tab LOGNAME LANG PWD
+% LocalWords:  TERM PAGER TMPDIR getenv name SVr setenv unsetenv putenv opz gcc
+% LocalWords:  clearenv libc value overwrite string reference result argument
+% LocalWords:  socket variadic ellipsis header stdarg execl self promoting last
+% LocalWords:  float double short register type dest src extern setjmp jmp buf
+% LocalWords:  env return if while