Domande da passare a Kerrisk
[gapil.git] / process.tex
index 9f52a4203f5d1c842564a54cc015da1d994848dc..6a37bb0968d2f534ac0571099399027f159732ff 100644 (file)
@@ -1,6 +1,6 @@
 %% process.tex
 %%
-%% Copyright (C) 2000-2012 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2015 by Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -84,11 +84,11 @@ di \cmd{ld.so} e per un approfondimento dell'argomento si può consultare
 sez.~3.1.2 di \cite{AGL}.
 
 Una volta completate le operazioni di inizializzazione di \cmd{ld-linux.so}, il
-sistema fa partire qualunque programma chiamando la funzione \func{main}. Sta
+sistema fa partire qualunque programma chiamando la funzione \code{main}. Sta
 al programmatore chiamare così la funzione principale del programma da cui si
 suppone che inizi l'esecuzione. In ogni caso senza questa funzione lo stesso
 \textit{link-loader} darebbe luogo ad errori.  Lo standard ISO C specifica che
-la funzione \func{main} può non avere argomenti o prendere due argomenti che
+la funzione \code{main} può non avere argomenti o prendere due argomenti che
 rappresentano gli argomenti passati da linea di comando (su cui torneremo in
 sez.~\ref{sec:proc_par_format}), in sostanza un prototipo che va sempre bene è
 il seguente:
@@ -97,7 +97,7 @@ il seguente:
 \itindend{link-loader}
 
 In realtà nei sistemi Unix esiste un altro modo per definire la funzione
-\func{main}, che prevede la presenza di un terzo argomento, \code{char
+\code{main}, che prevede la presenza di un terzo argomento, \code{char
   *envp[]}, che fornisce l'\textsl{ambiente} del programma; questa forma però
 non è prevista dallo standard POSIX.1 per cui se si vogliono scrivere
 programmi portabili è meglio evitarla. Per accedere all'ambiente, come vedremo
@@ -105,9 +105,9 @@ in sez.~\ref{sec:proc_environ} si usa in genere una variabile globale che
 viene sempre definita automaticamente.
 
 Ogni programma viene fatto partire mettendo in esecuzione il codice contenuto
-nella funzione \func{main}, ogni altra funzione usata dal programma, che sia
+nella funzione \code{main}, ogni altra funzione usata dal programma, che sia
 ottenuta da una libreria condivisa, o che sia direttamente definita nel
-codice, dovrà essere invocata a partire dal codice di \func{main}. Nel caso di
+codice, dovrà essere invocata a partire dal codice di \code{main}. Nel caso di
 funzioni definite nel programma occorre tenere conto che, nel momento stesso
 in cui si usano le librerie di sistema (vale a dire la \acr{glibc}) alcuni
 nomi sono riservati e non possono essere utilizzati. 
@@ -310,6 +310,8 @@ sono scritte direttamente in \textit{assembler}.
 % http://davisdoesdownunder.blogspot.com/2011/02/linux-syscall-vsyscall-and-vdso-oh-my.html 
 % http://www.win.tue.nl/~aeb/linux/lk/lk-4.html
 %
+% Altro materiale al riguardo http://lwn.net/Articles/615809/
+% http://man7.org/linux/man-pages/man7/vdso.7.html 
 
 Inoltre alcune \textit{system call} sono state modificate nel corso degli anni
 con lo sviluppo del kernel per aggiungere ad esempio funzionalità in forma di
@@ -359,11 +361,11 @@ direttamente valori numerici.
 \label{sec:proc_conclusion}
 
 Normalmente un programma conclude la sua esecuzione quando si fa ritornare la
-funzione \func{main}, si usa cioè l'istruzione \instruction{return} del
+funzione \code{main}, si usa cioè l'istruzione \instruction{return} del
 linguaggio C all'interno della stessa, o se si richiede esplicitamente la
 chiusura invocando direttamente la funzione \func{exit}. Queste due modalità
 sono assolutamente equivalenti, dato che \func{exit} viene chiamata in maniera
-trasparente anche quando \func{main} ritorna, passandogli come argomento il
+trasparente anche quando \code{main} ritorna, passandogli come argomento il
 valore di ritorno (che essendo .
 
 La funzione \funcd{exit}, che è completamente generale, essendo definita dallo
@@ -389,18 +391,18 @@ vedremo a breve) che completa la terminazione del processo.
 
 \itindbeg{exit~status}
 
-Il valore dell'argomento \param{status} o il valore di ritorno di \func{main},
+Il valore dell'argomento \param{status} o il valore di ritorno di \code{main},
 costituisce quello che viene chiamato lo \textsl{stato di uscita}
 (l'\textit{exit status}) del processo. In generale si usa questo valore per
 fornire al processo padre (come vedremo in sez.~\ref{sec:proc_wait}) delle
 informazioni generiche sulla riuscita o il fallimento del programma appena
 terminato.
 
-Anche se l'argomento \param{status} (ed il valore di ritorno di \func{main})
+Anche se l'argomento \param{status} (ed il valore di ritorno di \code{main})
 sono numeri interi di tipo \ctyp{int}, si deve tener presente che il valore
 dello stato di uscita viene comunque troncato ad 8 bit,
 per cui deve essere sempre compreso fra 0 e 255. Si tenga presente che se si
-raggiunge la fine della funzione \func{main} senza ritornare esplicitamente si
+raggiunge la fine della funzione \code{main} senza ritornare esplicitamente si
 ha un valore di uscita indefinito, è pertanto consigliabile di concludere
 sempre in maniera esplicita detta funzione.
 
@@ -448,10 +450,10 @@ registrate con \func{atexit} e \func{on\_exit} non vengono eseguite. La
 funzione chiude tutti i file descriptor appartenenti al processo, cosa che
 però non comporta il salvataggio dei dati eventualmente presenti nei buffer
 degli \textit{stream}, (torneremo sulle due interfacce dei file in
-cap.~\ref{cha:files_std_interface} e
-cap.~\ref{cha:file_unix_interface})). Infine fa sì che ogni figlio del
-processo sia adottato da \cmd{init} (vedi sez.~\ref{sec:proc_termination}),
-manda un segnale \signal{SIGCHLD} al processo padre (vedi
+sez.~\ref{sec:file_unix_interface} e
+sez.~\ref{sec:files_std_interface}). Infine fa sì che ogni figlio del processo
+sia adottato da \cmd{init} (vedi sez.~\ref{sec:proc_termination}), manda un
+segnale \signal{SIGCHLD} al processo padre (vedi
 sez.~\ref{sec:sig_job_control}) e ritorna lo stato di uscita specificato
 in \param{status} che può essere raccolto usando la funzione \func{wait} (vedi
 sez.~\ref{sec:proc_wait}).
@@ -482,14 +484,18 @@ registrare un certo numero di funzioni che verranno eseguite all'uscita dal
 programma,\footnote{nel caso di \func{atexit} lo standard POSIX.1-2001
   richiede che siano registrabili almeno \const{ATEXIT\_MAX} funzioni (il
   valore può essere ottenuto con \func{sysconf}, vedi
-  sez.~\ref{sec:sys_sysconf}).} sia per la chiamata ad \func{exit} che per il
-ritorno di \func{main}. La prima funzione che si può utilizzare a tal fine è
+  sez.~\ref{sec:sys_limits}).} sia per la chiamata ad \func{exit} che per il
+ritorno di \code{main}. La prima funzione che si può utilizzare a tal fine è
 \funcd{atexit}, il cui prototipo è:
 
-\begin{funcproto}{ \fhead{stdlib.h} \fdecl{void (*function)(void)}
-    \fdesc{Registra la funzione \param{function} per la chiamata all'uscita
-      dal programma.}  } {La funzione ritorna $0$ in caso di successo e
-    $-1$ per un errore, \var{errno} non viene modificata.}
+\begin{funcproto}{ 
+\fhead{stdlib.h} 
+\fdecl{int atexit(void (*function)(void))}
+\fdesc{Registra la funzione \param{function} per la chiamata all'uscita
+      dal programma.}  
+} 
+{La funzione ritorna $0$ in caso di successo e $-1$ per un errore, \var{errno}
+  non viene modificata.}
 \end{funcproto}
 
 La funzione richiede come argomento \param{function} l'indirizzo di una
@@ -504,7 +510,7 @@ definita su altri sistemi,\footnote{non essendo prevista dallo standard POSIX
 
 \begin{funcproto}{ 
 \fhead{stdlib.h} 
-\fdecl{void (*function)(int , void *), void *arg)}
+\fdecl{int on\_exit(void (*function)(int, void *), void *arg))}
 \fdesc{Registra la funzione \param{function} per la chiamata all'uscita dal
   programma.} 
 }
@@ -563,7 +569,7 @@ Allo stesso modo l'unico modo in cui un programma può concludere
 volontariamente la propria esecuzione è attraverso una chiamata alla
 \textit{system call} \func{\_exit}, sia che questa venga fatta esplicitamente,
 o in maniera indiretta attraverso l'uso di \func{exit} o il ritorno di
-\func{main}. 
+\code{main}. 
 
 Uno schema riassuntivo che illustra le modalità con cui si avvia e conclude
 normalmente un programma è riportato in fig.~\ref{fig:proc_prog_start_stop}.
@@ -632,33 +638,33 @@ programma in esecuzione, e le varie funzioni utilizzabili per la sua gestione.
 \subsection{I concetti generali}
 \label{sec:proc_mem_gen}
 
+\index{memoria~virtuale|(}
+
 Ci sono vari modi in cui i sistemi operativi organizzano la memoria, ed i
 dettagli di basso livello dipendono spesso in maniera diretta
 dall'architettura dell'hardware, ma quello più tipico, usato dai sistemi
-unix-like come Linux è la cosiddetta \index{memoria~virtuale} \textsl{memoria
-  virtuale} che consiste nell'assegnare ad ogni processo uno spazio virtuale
-di indirizzamento lineare, in cui gli indirizzi vanno da zero ad un qualche
-valore massimo.\footnote{nel caso di Linux fino al kernel 2.2 detto massimo
-  era, per macchine a 32bit, di 2Gb. Con il kernel 2.4 ed il supporto per la
-  \textit{high-memory} il limite è stato esteso anche per macchine a 32 bit.}
-
-
-Come accennato nel cap.~\ref{cha:intro_unix} questo spazio di indirizzi è
-virtuale e non corrisponde all'effettiva posizione dei dati nella RAM del
-computer. In generale detto spazio non è neppure continuo, cioè non tutti gli
-indirizzi possibili sono utilizzabili, e quelli usabili non sono
-necessariamente adiacenti.
+unix-like come Linux è la cosiddetta \textsl{memoria virtuale} che consiste
+nell'assegnare ad ogni processo uno spazio virtuale di indirizzamento lineare,
+in cui gli indirizzi vanno da zero ad un qualche valore massimo.\footnote{nel
+  caso di Linux fino al kernel 2.2 detto massimo era, per macchine a 32bit, di
+  2Gb. Con il kernel 2.4 ed il supporto per la \textit{high-memory} il limite
+  è stato esteso anche per macchine a 32 bit.}  Come accennato nel
+cap.~\ref{cha:intro_unix} questo spazio di indirizzi è virtuale e non
+corrisponde all'effettiva posizione dei dati nella RAM del computer. In
+generale detto spazio non è neppure continuo, cioè non tutti gli indirizzi
+possibili sono utilizzabili, e quelli usabili non sono necessariamente
+adiacenti.
 
 Per la gestione da parte del kernel la memoria viene divisa in pagine di
 dimensione fissa. Inizialmente queste pagine erano di 4kb sulle macchine a 32
 bit e di 8kb sulle alpha. Con le versioni più recenti del kernel è possibile
-anche utilizzare pagine di dimensioni maggiori (di 4Mb, dette \textit{huge
-  page}), per sistemi con grandi quantitativi di memoria in cui l'uso di
-pagine troppo piccole comporta una perdita di prestazioni. In alcuni sistemi
-la costante \const{PAGE\_SIZE}, definita in \headfile{limits.h}, indica la
-dimensione di una pagina in byte, con Linux questo non avviene e per ottenere
-questa dimensione si deve ricorrere alla funzione \func{getpagesize} (vedi
-sez.~\ref{sec:sys_memory_res}).
+anche utilizzare pagine di dimensioni maggiori (di 4Mb, dette
+\itindex{huge~page} \textit{huge page}), per sistemi con grandi quantitativi
+di memoria in cui l'uso di pagine troppo piccole comporta una perdita di
+prestazioni. In alcuni sistemi la costante \const{PAGE\_SIZE}, definita in
+\headfile{limits.h}, indica la dimensione di una pagina in byte, con Linux
+questo non avviene e per ottenere questa dimensione si deve ricorrere alla
+funzione \func{getpagesize} (vedi sez.~\ref{sec:sys_memory_res}).
 
 Ciascuna pagina di memoria nello spazio di indirizzi virtuale è associata ad
 un supporto che può essere una pagina di memoria reale o ad un dispositivo di
@@ -677,24 +683,28 @@ della funzione \func{printf} starà su una sola pagina di memoria reale che
 farà da supporto a tutte le pagine di memoria virtuale di tutti i processi che
 hanno detta funzione nel loro codice.
 
-La corrispondenza fra le pagine della \index{memoria~virtuale} memoria
-virtuale di un processo e quelle della memoria fisica della macchina viene
-gestita in maniera trasparente dal kernel.\footnote{in genere con l'ausilio
-  dell'hardware di gestione della memoria (la \textit{Memory Management Unit}
-  del processore), con i kernel della serie 2.6 è comunque diventato possibile
-  utilizzare Linux anche su architetture che non dispongono di una MMU.}
-Poiché in genere la memoria fisica è solo una piccola frazione della memoria
-virtuale, è necessario un meccanismo che permetta di trasferire le pagine che
-servono dal supporto su cui si trovano in memoria, eliminando quelle che non
-servono.  Questo meccanismo è detto \index{paginazione} \textsl{paginazione}
-(o \textit{paging}), ed è uno dei compiti principali del kernel.
+\index{paginazione|(}
+
+La corrispondenza fra le pagine della memoria virtuale di un processo e quelle
+della memoria fisica della macchina viene gestita in maniera trasparente dal
+kernel.\footnote{in genere con l'ausilio dell'hardware di gestione della
+  memoria (la \textit{Memory Management Unit} del processore), con i kernel
+  della serie 2.6 è comunque diventato possibile utilizzare Linux anche su
+  architetture che non dispongono di una MMU.}  Poiché in genere la memoria
+fisica è solo una piccola frazione della memoria virtuale, è necessario un
+meccanismo che permetta di trasferire le pagine che servono dal supporto su
+cui si trovano in memoria, eliminando quelle che non servono.  Questo
+meccanismo è detto \textsl{paginazione} (o \textit{paging}), ed è uno dei
+compiti principali del kernel.
+
+\itindbeg{page~fault} 
 
 Quando un processo cerca di accedere ad una pagina che non è nella memoria
-reale, avviene quello che viene chiamato un \itindex{page~fault} \textit{page
-  fault}; la gestione della memoria genera un'interruzione e passa il
-controllo al kernel il quale sospende il processo e si incarica di mettere in
-RAM la pagina richiesta, effettuando tutte le operazioni necessarie per
-reperire lo spazio necessario, per poi restituire il controllo al processo.
+reale, avviene quello che viene chiamato un \textit{page fault}; la gestione
+della memoria genera un'interruzione e passa il controllo al kernel il quale
+sospende il processo e si incarica di mettere in RAM la pagina richiesta,
+effettuando tutte le operazioni necessarie per reperire lo spazio necessario,
+per poi restituire il controllo al processo.
 
 Dal punto di vista di un processo questo meccanismo è completamente
 trasparente, e tutto avviene come se tutte le pagine fossero sempre
@@ -704,12 +714,16 @@ se la pagina è direttamente disponibile, a tempi estremamente più lunghi,
 dovuti all'intervento del kernel, qualora sia necessario reperire pagine
 riposte nella \textit{swap}.
 
+\itindend{page~fault} 
+
 Normalmente questo è il prezzo da pagare per avere un multitasking reale, ed
 in genere il sistema è molto efficiente in questo lavoro; quando però ci siano
 esigenze specifiche di prestazioni è possibile usare delle funzioni che
-permettono di bloccare il meccanismo della \index{paginazione} paginazione e
-mantenere fisse delle pagine in memoria (vedi sez.~\ref{sec:proc_mem_lock}).
+permettono di bloccare il meccanismo della paginazione e mantenere fisse delle
+pagine in memoria (vedi sez.~\ref{sec:proc_mem_lock}).
 
+\index{paginazione|)}
+\index{memoria~virtuale|)}
 
 \subsection{La struttura della memoria di un processo}
 \label{sec:proc_mem_layout}
@@ -721,19 +735,19 @@ commette quando si è manipolato male un puntatore e genera quella che viene
 chiamata una \itindex{segment~violation} \textit{segment violation}. Se si
 tenta cioè di leggere o scrivere con un indirizzo per il quale non esiste
 un'associazione nella memoria virtuale, il kernel risponde al relativo
-\itindex{page~fault} \textit{page fault} mandando un segnale \signal{SIGSEGV}
-al processo, che normalmente ne causa la terminazione immediata.
+\textit{page fault} mandando un segnale \signal{SIGSEGV} al processo, che
+normalmente ne causa la terminazione immediata.
 
-È pertanto importante capire come viene strutturata \index{memoria~virtuale}
-la memoria virtuale di un processo. Essa viene divisa in \textsl{segmenti},
-cioè un insieme contiguo di indirizzi virtuali ai quali il processo può
-accedere.  Solitamente un programma C viene suddiviso nei seguenti segmenti:
+È pertanto importante capire come viene strutturata la memoria virtuale di un
+processo. Essa viene divisa in \textsl{segmenti}, cioè un insieme contiguo di
+indirizzi virtuali ai quali il processo può accedere.  Solitamente un
+programma C viene suddiviso nei seguenti segmenti:
 \begin{enumerate*}
 \item Il \index{segmento!testo} segmento di testo o \textit{text segment}.
   Contiene il codice del programma, delle funzioni di librerie da esso
   utilizzate, e le costanti.  Normalmente viene condiviso fra tutti i processi
   che eseguono lo stesso programma e nel caso delle librerie anche da processi
-  che eseguono altri programmi.  
+  che eseguono altri programmi.
 
   Quando l'architettura hardware lo supporta viene marcato in sola lettura per
   evitare sovrascritture accidentali (o maliziose) che ne modifichino le
@@ -931,8 +945,8 @@ semplicemente allocati \param{size} byte e l'area di memoria non viene
 inizializzata.
 
 Una volta che non sia più necessaria la memoria allocata dinamicamente deve
-essere esplicitamente rilasciata usando la funzione \func{free},\footnote{le
-  glibc provvedono anche una funzione \func{cfree} definita per compatibilità
+essere esplicitamente rilasciata usando la funzione \funcd{free},\footnote{le
+  glibc provvedono anche una funzione \funcm{cfree} definita per compatibilità
   con SunOS, che è deprecata.} il suo prototipo è:
 
 \begin{funcproto}{ 
@@ -1006,15 +1020,15 @@ sez.~\ref{sec:proc_environ}), in particolare diventa possibile tracciare
 questo tipo di errori usando la variabile di ambiente \envvar{MALLOC\_CHECK\_}
 che quando viene definita mette in uso una versione meno efficiente delle
 funzioni suddette, che però è più tollerante nei confronti di piccoli errori
-come quello dei \itindex{double~free} \textit{double~free} o i
-\itindex{buffer~overrun} \textit{buffer overrun} di un byte.\footnote{uno
-  degli errori più comuni, causato ad esempio dalla scrittura di una stringa
-  di dimensione pari a quella del buffer, in cui ci si dimentica dello zero di
-  terminazione finale.}  In particolare:
+come quello dei \itindex{double~free} \textit{double~free} o i \textit{buffer
+  overrun} di un byte.\footnote{uno degli errori più comuni, causato ad
+  esempio dalla scrittura di una stringa di dimensione pari a quella del
+  buffer, in cui ci si dimentica dello zero di terminazione finale.}  In
+particolare:
 \begin{itemize*}
 \item se la variabile è posta a $0$ gli errori vengono ignorati;
 \item se la variabile è posta a $1$ viene stampato un avviso sullo
-  \textit{standard error} (vedi sez.~\ref{sec:file_std_stream});
+  \textit{standard error} (vedi sez.~\ref{sec:file_fd});
 \item se la variabile è posta a $2$ viene chiamata la funzione \func{abort}
   (vedi sez.~\ref{sec:sig_alarm_abort}), che in genere causa l'immediata
   terminazione del programma;
@@ -1141,6 +1155,9 @@ dando luogo ad una \itindex{segment~violation} \textit{segment violation} la
 prima volta che cercherà di accedere alla memoria non effettivamente
 disponibile. 
 
+
+\index{segmento!dati|(}
+
 Le due funzioni seguenti\footnote{le due funzioni sono state definite con BSD
   4.3, sono marcate obsolete in SUSv2 e non fanno parte delle librerie
   standard del C e mentre sono state esplicitamente rimosse dallo standard
@@ -1162,25 +1179,25 @@ prototipo è:
 \end{funcproto}
 
 La funzione è un'interfaccia all'omonima \textit{system call} ed imposta
-l'indirizzo finale del \index{segmento!dati} segmento dati di un processo (più
-precisamente dello \itindex{heap} \textit{heap}) all'indirizzo specificato
+l'indirizzo finale del segmento dati di un processo (più precisamente dello
+\itindex{heap} \textit{heap}) all'indirizzo specificato
 da \param{addr}. Quest'ultimo deve essere un valore ragionevole, e la
 dimensione totale non deve comunque eccedere un eventuale limite (vedi
 sez.~\ref{sec:sys_resource_limit}) imposto sulle dimensioni massime del
-\index{segmento!dati} segmento dati del processo.
+segmento dati del processo.
 
 Il valore di ritorno della funzione fa riferimento alla versione fornita dalla
 \acr{glibc}, in realtà in Linux la \textit{system call} corrispondente
-restituisce come valore di ritorno il nuovo valore della fine del
-\index{segmento!dati} segmento dati in caso di successo e quello corrente in
-caso di fallimento, è la funzione di interfaccia usata dalla \acr{glibc} che
-fornisce i valori di ritorno appena descritti; se si usano librerie diverse
-questo potrebbe non accadere.
+restituisce come valore di ritorno il nuovo valore della fine del segmento
+dati in caso di successo e quello corrente in caso di fallimento, è la
+funzione di interfaccia usata dalla \acr{glibc} che fornisce i valori di
+ritorno appena descritti; se si usano librerie diverse questo potrebbe non
+accadere.
 
-Una seconda funzione per la manipolazione diretta delle dimensioni
-\index{segmento!dati} del segmento dati\footnote{in questo caso si tratta
-  soltanto di una funzione di libreria, anche se basata sulla stessa
-  \textit{system call}.} è \funcd{sbrk}, ed il suo prototipo è:
+Una seconda funzione per la manipolazione diretta delle dimensioni del
+segmento dati\footnote{in questo caso si tratta soltanto di una funzione di
+  libreria, anche se basata sulla stessa \textit{system call}.} è
+\funcd{sbrk}, ed il suo prototipo è:
 
 \begin{funcproto}{ 
 \fhead{unistd.h} 
@@ -1198,8 +1215,7 @@ nuovo indirizzo finale dello stesso.  L'argomento è definito come di tipo
 \type{intptr\_t}, ma a seconda della versione delle librerie e del sistema può
 essere indicato con una serie di tipi equivalenti come \type{ptrdiff\_t},
 \type{ssize\_t}, \ctyp{int}. Se invocata con un valore nullo la funzione
-permette di ottenere l'attuale posizione della fine del \index{segmento!dati}
-segmento dati.
+permette di ottenere l'attuale posizione della fine del segmento dati.
 
 Queste due funzioni sono state deliberatamente escluse dallo standard POSIX.1
 dato che per i normali programmi è sempre opportuno usare le funzioni di
@@ -1207,6 +1223,8 @@ allocazione standard descritte in precedenza, a meno di non voler realizzare
 per proprio conto un diverso meccanismo di gestione della memoria del segmento
 dati.
 
+\index{segmento!dati|)}
+
 
 \subsection{Il controllo della memoria virtuale}  
 \label{sec:proc_mem_lock}
@@ -1219,18 +1237,17 @@ dalla memoria per metterle nell'area di \textit{swap}, sulla base
 dell'utilizzo corrente da parte dei vari processi.
 
 Nell'uso comune un processo non deve preoccuparsi di tutto ciò, in quanto il
-meccanismo della \index{paginazione} paginazione riporta in RAM, ed in maniera
-trasparente, tutte le pagine che gli occorrono; esistono però esigenze
-particolari in cui non si vuole che questo meccanismo si attivi. In generale i
-motivi per cui si possono avere di queste necessità sono due:
+meccanismo della paginazione riporta in RAM, ed in maniera trasparente, tutte
+le pagine che gli occorrono; esistono però esigenze particolari in cui non si
+vuole che questo meccanismo si attivi. In generale i motivi per cui si possono
+avere di queste necessità sono due:
 \begin{itemize*}
-\item \textsl{La velocità}. Il processo della \index{paginazione} paginazione
-  è trasparente solo se il programma in esecuzione non è sensibile al tempo
-  che occorre a riportare la pagina in memoria; per questo motivo processi
-  critici che hanno esigenze di tempo reale o tolleranze critiche nelle
-  risposte (ad esempio processi che trattano campionamenti sonori) possono non
-  essere in grado di sopportare le variazioni della velocità di accesso dovuta
-  alla paginazione.
+\item \textsl{La velocità}. Il processo della paginazione è trasparente solo
+  se il programma in esecuzione non è sensibile al tempo che occorre a
+  riportare la pagina in memoria; per questo motivo processi critici che hanno
+  esigenze di tempo reale o tolleranze critiche nelle risposte (ad esempio
+  processi che trattano campionamenti sonori) possono non essere in grado di
+  sopportare le variazioni della velocità di accesso dovuta alla paginazione.
   
   In certi casi poi un programmatore può conoscere meglio dell'algoritmo di
   allocazione delle pagine le esigenze specifiche del suo programma e decidere
@@ -1241,20 +1258,20 @@ motivi per cui si possono avere di queste necessità sono due:
   
 \item \textsl{La sicurezza}. Se si hanno password o chiavi segrete in chiaro
   in memoria queste possono essere portate su disco dal meccanismo della
-  \index{paginazione} paginazione. Questo rende più lungo il periodo di tempo
-  in cui detti segreti sono presenti in chiaro e più complessa la loro
-  cancellazione: un processo infatti può cancellare la memoria su cui scrive
-  le sue variabili, ma non può toccare lo spazio disco su cui una pagina di
-  memoria può essere stata salvata. Per questo motivo di solito i programmi
-  di crittografia richiedono il blocco di alcune pagine di memoria.
+  paginazione. Questo rende più lungo il periodo di tempo in cui detti segreti
+  sono presenti in chiaro e più complessa la loro cancellazione: un processo
+  infatti può cancellare la memoria su cui scrive le sue variabili, ma non può
+  toccare lo spazio disco su cui una pagina di memoria può essere stata
+  salvata. Per questo motivo di solito i programmi di crittografia richiedono
+  il blocco di alcune pagine di memoria.
 \end{itemize*}
 
 Per ottenere informazioni sulle modalità in cui un programma sta usando la
-memoria virtuale è disponibile una apposita funzione, \funcd{mincore}, che
-però non è standardizzata da POSIX e pertanto non è disponibile su tutte le
-versioni di kernel unix-like;\footnote{nel caso di Linux devono essere
-  comunque definite le macro \macro{\_BSD\_SOURCE} e \macro{\_SVID\_SOURCE}.}
-il suo prototipo è:
+memoria virtuale è disponibile una apposita funzione di sistema,
+\funcd{mincore}, che però non è standardizzata da POSIX e pertanto non è
+disponibile su tutte le versioni di kernel unix-like;\footnote{nel caso di
+  Linux devono essere comunque definite le macro \macro{\_BSD\_SOURCE} e
+  \macro{\_SVID\_SOURCE}.}  il suo prototipo è:
 
 \begin{funcproto}{
 \fhead{unistd.h}
@@ -1311,15 +1328,14 @@ mantenimento di una pagina sulla memoria.
 
 \itindbeg{memory~locking} 
 
-Il meccanismo che previene la \index{paginazione} paginazione di parte della
-memoria virtuale di un processo è chiamato \textit{memory locking} (o
-\textsl{blocco della memoria}). Il blocco è sempre associato alle pagine della
-memoria virtuale del processo, e non al segmento reale di RAM su cui essa
-viene mantenuta.  La regola è che se un segmento di RAM fa da supporto ad
-almeno una pagina bloccata allora esso viene escluso dal meccanismo della
-\index{paginazione} paginazione. I blocchi non si accumulano, se si blocca due
-volte la stessa pagina non è necessario sbloccarla due volte, una pagina o è
-bloccata oppure no.
+Il meccanismo che previene la paginazione di parte della memoria virtuale di
+un processo è chiamato \textit{memory locking} (o \textsl{blocco della
+  memoria}). Il blocco è sempre associato alle pagine della memoria virtuale
+del processo, e non al segmento reale di RAM su cui essa viene mantenuta.  La
+regola è che se un segmento di RAM fa da supporto ad almeno una pagina
+bloccata allora esso viene escluso dal meccanismo della paginazione. I blocchi
+non si accumulano, se si blocca due volte la stessa pagina non è necessario
+sbloccarla due volte, una pagina o è bloccata oppure no.
 
 Il \textit{memory lock} persiste fintanto che il processo che detiene la
 memoria bloccata non la sblocca. Chiaramente la terminazione del processo
@@ -1342,10 +1358,9 @@ standard POSIX.1 richiede che sia definita in \headfile{unistd.h} la macro
 Siccome la richiesta di un \textit{memory lock} da parte di un processo riduce
 la memoria fisica disponibile nel sistema per gli altri processi, questo ha un
 evidente impatto su tutti gli altri processi, per cui fino al kernel 2.6.9
-solo un processo dotato di privilegi amministrativi (la \itindex{capabilities}
-\textit{capability} \const{CAP\_IPC\_LOCK}, vedi
-sez.~\ref{sec:proc_capabilities}) aveva la capacità di bloccare una pagina di
-memoria.
+solo un processo dotato di privilegi amministrativi (la \textit{capability}
+\const{CAP\_IPC\_LOCK}, vedi sez.~\ref{sec:proc_capabilities}) aveva la
+capacità di bloccare una pagina di memoria.
 
 A partire dal kernel 2.6.9 anche un processo normale può bloccare la propria
 memoria\footnote{la funzionalità è stata introdotta per non essere costretti a
@@ -1358,32 +1373,9 @@ poi ogni processo può sbloccare le pagine relative alla propria memoria, se
 però diversi processi bloccano la stessa pagina questa resterà bloccata
 fintanto che ci sarà almeno un processo che la blocca.
 
-Le funzioni per bloccare e sbloccare la \index{paginazione} paginazione di
-singole sezioni di memoria sono rispettivamente \funcd{mlock} e
-\funcd{munlock}; i loro prototipi sono:
-% \begin{functions}
-%   \headdecl{sys/mman.h} 
-
-%   \funcdecl{int mlock(const void *addr, size\_t len)}
-%   Blocca la paginazione su un intervallo di memoria.
-
-%   \funcdecl{int munlock(const void *addr, size\_t len)}
-%   Rimuove il blocco della paginazione su un intervallo di memoria.
-  
-%   \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e $-1$ in
-%     caso di errore, nel qual caso \var{errno} assumerà uno dei
-%     valori:
-%   \begin{errlist}
-%   \item[\errcode{ENOMEM}] alcuni indirizzi dell'intervallo specificato non
-%     corrispondono allo spazio di indirizzi del processo o si è ecceduto
-%     il numero massimo consentito di pagine bloccate.
-%   \item[\errcode{EINVAL}] \param{len} non è un valore positivo.
-%   \item[\errcode{EPERM}] con un kernel successivo al 2.6.9 il processo non è
-%     privilegiato e si un limite nullo per \const{RLIMIT\_MEMLOCK}.
-%   \end{errlist}
-%   e, per \func{mlock}, anche \errval{EPERM} quando il processo non ha i
-%   privilegi richiesti per l'operazione.}
-% \end{functions}
+Le funzioni di sistema per bloccare e sbloccare la paginazione di singole
+sezioni di memoria sono rispettivamente \funcd{mlock} e \funcd{munlock}; i
+loro prototipi sono:
 
 \begin{funcproto}{
   \fhead{sys/mman.h} 
@@ -1416,9 +1408,10 @@ la durata del blocco. Con kernel diversi da Linux si può ottenere un errore di
 pagine di memoria, pertanto se si ha a cuore la portabilità si deve avere cura
 di allinearne correttamente il valore.
 
-Altre due funzioni, \funcd{mlockall} e \funcd{munlockall}, consentono di
-bloccare genericamente la \index{paginazione} paginazione per l'intero spazio
-di indirizzi di un processo.  I prototipi di queste funzioni sono:
+Altre due funzioni di sistema, \funcd{mlockall} e \funcd{munlockall},
+consentono di bloccare genericamente la \index{paginazione} paginazione per
+l'intero spazio di indirizzi di un processo.  I prototipi di queste funzioni
+sono:
 
 \begin{funcproto}{ 
 \fhead{sys/mman.h} 
@@ -1465,15 +1458,15 @@ selezionare con maggior finezza le pagine da bloccare, ad esempio usando
 \const{MCL\_FUTURE} ci si può limitare a tutte le pagine allocate a partire
 dalla chiamata della funzione.
 
-In ogni caso un processo real-time che deve entrare in una
+In ogni caso un processo \textit{real-time} che deve entrare in una
 \index{sezione~critica} sezione critica deve provvedere a riservare memoria
 sufficiente prima dell'ingresso, per scongiurare l'occorrenza di un eventuale
-\itindex{page~fault} \textit{page fault} causato dal meccanismo di
-\itindex{copy~on~write} \textit{copy on write}.  Infatti se nella
-\index{sezione~critica} sezione critica si va ad utilizzare memoria che non è
-ancora stata riportata in RAM si potrebbe avere un \itindex{page~fault}
-\textit{page fault} durante l'esecuzione della stessa, con conseguente
-rallentamento (probabilmente inaccettabile) dei tempi di esecuzione.
+\textit{page fault} causato dal meccanismo di \itindex{copy~on~write}
+\textit{copy on write}.  Infatti se nella \index{sezione~critica} sezione
+critica si va ad utilizzare memoria che non è ancora stata riportata in RAM si
+potrebbe avere un \textit{page fault} durante l'esecuzione della stessa, con
+conseguente rallentamento (probabilmente inaccettabile) dei tempi di
+esecuzione.
 
 In genere si ovvia a questa problematica chiamando una funzione che ha
 allocato una quantità sufficientemente ampia di \index{variabili!automatiche}
@@ -1581,8 +1574,7 @@ errori di programmazione. Esempi di questi errori sono i \itindex{double~free}
 allocazione,\footnote{entrambe queste operazioni causano in genere la
   corruzione dei dati di controllo delle funzioni di allocazione, che vengono
   anch'essi mantenuti nello \itindex{heap} \textit{heap} per tenere traccia
-  delle zone di memoria allocata.} o i classici \itindex{memory~leak}
-\textit{memory leak}.
+  delle zone di memoria allocata.} o i classici \textit{memory leak}.
 
 Abbiamo visto in sez.~\ref{sec:proc_mem_lock} come una prima funzionalità di
 ausilio nella ricerca di questi errori sia l'uso della variabile di ambiente
@@ -1617,7 +1609,7 @@ errore ed agire di conseguenza.
 Nonostante la scarsa leggibilità del prototipo si tratta semplicemente di
 definire una funzione di tipo \code{void abortfn(enum mcheck\_status status)},
 che non deve restituire nulla e che deve avere un unico argomento di tipo
-\type{mcheck\_status}. In caso di errore la funzione verrà eseguita ricevendo
+\code{mcheck\_status}. In caso di errore la funzione verrà eseguita ricevendo
 un opportuno valore di \param{status} che è un tipo enumerato che può assumere
 soltanto i valori di tab.~\ref{tab:mcheck_status_value} che indicano la
 tipologia di errore riscontrata.
@@ -1630,20 +1622,20 @@ tipologia di errore riscontrata.
     \textbf{Valore} & \textbf{Significato} \\
     \hline
     \hline
-    \const{MCHECK\_OK}      & riportato a \func{mprobe} se nessuna
+    \const{MCHECK\_OK}      & Riportato a \func{mprobe} se nessuna
                               inconsistenza è presente.\\
-    \const{MCHECK\_DISABLED}& riportato a \func{mprobe} se si è chiamata
+    \const{MCHECK\_DISABLED}& Riportato a \func{mprobe} se si è chiamata
                               \func{mcheck} dopo aver già usato
                               \func{malloc}.\\
-    \const{MCHECK\_HEAD}    & i dati immediatamente precedenti il buffer sono
+    \const{MCHECK\_HEAD}    & I dati immediatamente precedenti il buffer sono
                               stati modificati, avviene in genere quando si
                               decrementa eccessivamente il valore di un
                               puntatore scrivendo poi prima dell'inizio del
                               buffer.\\
-    \const{MCHECK\_TAIL}    & i dati immediatamente seguenti il buffer sono
+    \const{MCHECK\_TAIL}    & I dati immediatamente seguenti il buffer sono
                               stati modificati, succede quando si va scrivere
                               oltre la dimensione corretta del buffer.\\
-    \const{MCHECK\_FREE}    & il buffer è già stato disallocato.\\
+    \const{MCHECK\_FREE}    & Il buffer è già stato disallocato.\\
     \hline
   \end{tabular}
   \caption{Valori dello stato dell'allocazione di memoria ottenibili dalla
@@ -1693,7 +1685,7 @@ operazioni.
 Tutti i programmi hanno la possibilità di ricevere argomenti e opzioni quando
 vengono lanciati e come accennato in sez.~\ref{sec:proc_main} questo viene
 effettuato attraverso gli argomenti \param{argc} e \param{argv} ricevuti nella
-funzione \func{main} all'avvio del programma. Questi argomenti vengono passati
+funzione \code{main} all'avvio del programma. Questi argomenti vengono passati
 al programma dalla shell o dal processo che esegue la \func{exec} (secondo le
 modalità che vedremo in sez.~\ref{sec:proc_exec}) quando questo viene messo in
 esecuzione.
@@ -1780,7 +1772,7 @@ in \param{argv} la libreria standard del C fornisce la funzione
 \fhead{unistd.h} 
 \fdecl{int getopt(int argc, char * const argv[], const char *optstring)}
 \fdesc{Esegue la scansione delle opzioni negli argomenti della funzione
-  \func{main}.} 
+  \code{main}.} 
 }
 {Ritorna il carattere che segue l'opzione, ``\texttt{:}'' se manca un
   parametro all'opzione, ``\texttt{?}'' se l'opzione è sconosciuta, e $-1$ se
@@ -1788,7 +1780,7 @@ in \param{argv} la libreria standard del C fornisce la funzione
 \end{funcproto}
 
 Questa funzione prende come argomenti le due variabili \param{argc} e
-\param{argv} che devono essere quelle passate come argomenti di \func{main}
+\param{argv} che devono essere quelle passate come argomenti di \code{main}
 all'esecuzione del programma, ed una stringa \param{optstring} che indica
 quali sono le opzioni valide. La funzione effettua la scansione della lista
 degli argomenti ricercando ogni stringa che comincia con il carattere
@@ -1845,8 +1837,9 @@ possibili si è poi provveduto ad un'azione opportuna, ad esempio per le tre
 opzioni che prevedono un parametro si è effettuata la decodifica del medesimo,
 il cui indirizzo è contenuto nella variabile \var{optarg}), avvalorando la
 relativa variabile (\texttt{\small 12-14}, \texttt{\small 15-17} e
-\texttt{\small 18-20}). Completato il ciclo troveremo in \var{optind} l'indice
-in \code{argv[]} del primo degli argomenti rimanenti nella linea di comando.
+\texttt{\small 18-20}). Completato il ciclo troveremo in \var{optind}
+l'indice in \code{argv[]} del primo degli argomenti rimanenti nella linea di
+comando.
 
 Normalmente \func{getopt} compie una permutazione degli elementi di
 \param{argv} cosicché alla fine della scansione gli elementi che non sono
@@ -1980,22 +1973,22 @@ queste ed ulteriori variabili si può ottenere con il comando \cmd{man 7
     & \textbf{Linux} & \textbf{Descrizione} \\
     \hline
     \hline
-    \texttt{USER}   &$\bullet$&$\bullet$&$\bullet$& Nome utente\\
-    \texttt{LOGNAME}&$\bullet$&$\bullet$&$\bullet$& Nome di login\\
+    \texttt{USER}   &$\bullet$&$\bullet$&$\bullet$& Nome utente.\\
+    \texttt{LOGNAME}&$\bullet$&$\bullet$&$\bullet$& Nome di login.\\
     \texttt{HOME}   &$\bullet$&$\bullet$&$\bullet$& Directory base
-                                                    dell'utente\\
-    \texttt{LANG}   &$\bullet$&$\bullet$&$\bullet$& Localizzazione\\
+                                                    dell'utente.\\
+    \texttt{LANG}   &$\bullet$&$\bullet$&$\bullet$& Localizzazione.\\
     \texttt{PATH}   &$\bullet$&$\bullet$&$\bullet$& Elenco delle directory
-                                                    dei programmi\\
-    \texttt{PWD}    &$\bullet$&$\bullet$&$\bullet$& Directory corrente\\
-    \texttt{SHELL}  &$\bullet$&$\bullet$&$\bullet$& Shell in uso\\
-    \texttt{TERM}   &$\bullet$&$\bullet$&$\bullet$& Tipo di terminale\\
+                                                    dei programmi.\\
+    \texttt{PWD}    &$\bullet$&$\bullet$&$\bullet$& Directory corrente.\\
+    \texttt{SHELL}  &$\bullet$&$\bullet$&$\bullet$& Shell in uso.\\
+    \texttt{TERM}   &$\bullet$&$\bullet$&$\bullet$& Tipo di terminale.\\
     \texttt{PAGER}  &$\bullet$&$\bullet$&$\bullet$& Programma per vedere i
-                                                    testi\\
-    \texttt{EDITOR} &$\bullet$&$\bullet$&$\bullet$& Editor preferito\\
-    \texttt{BROWSER}&$\bullet$&$\bullet$&$\bullet$& Browser preferito\\
+                                                    testi.\\
+    \texttt{EDITOR} &$\bullet$&$\bullet$&$\bullet$& Editor preferito.\\
+    \texttt{BROWSER}&$\bullet$&$\bullet$&$\bullet$& Browser preferito.\\
     \texttt{TMPDIR} &$\bullet$&$\bullet$&$\bullet$& Directory dei file
-                                                    temporanei\\
+                                                    temporanei.\\
     \hline
   \end{tabular}
   \caption{Esempi delle variabili di ambiente più comuni definite da vari
@@ -2219,6 +2212,10 @@ versione ``\textsl{sicura}'' da zero.
 
 % TODO opzioni in formato esteso
 
+% TODO trattare il vettore ausiliario e getauxval (vedi
+% http://lwn.net/Articles/519085/)
+
+
 \section{Problematiche di programmazione generica}
 \label{sec:proc_gen_prog}
 
@@ -2540,7 +2537,7 @@ Il C però non consente di effettuare un salto ad una etichetta definita in
 un'altra funzione, per cui se l'errore avviene in una funzione, e la sua
 gestione ordinaria è in un'altra, occorre usare quello che viene chiamato un
 \textsl{salto non-locale}.  Il caso classico in cui si ha questa necessità,
-citato sia in \cite{APUE} che in \cite{glibc}, è quello di un programma nel
+citato sia in \cite{APUE} che in \cite{GlibcMan}, è quello di un programma nel
 cui corpo principale vengono letti dei dati in ingresso sui quali viene
 eseguita, tramite una serie di funzioni di analisi, una scansione dei
 contenuti, da cui si ottengono le indicazioni per l'esecuzione di opportune
@@ -2553,10 +2550,10 @@ caso si dovrebbe gestire, per ciascuna fase, tutta la casistica del passaggio
 all'indietro di tutti gli errori rilevabili dalle funzioni usate nelle fasi
 successive.  Questo comporterebbe una notevole complessità, mentre sarebbe
 molto più comodo poter tornare direttamente al ciclo di lettura principale,
-scartando l'input come errato.\footnote{a meno che, come precisa \cite{glibc},
-  alla chiusura di ciascuna fase non siano associate operazioni di pulizia
-  specifiche (come deallocazioni, chiusure di file, ecc.), che non potrebbero
-  essere eseguite con un salto non-locale.}
+scartando l'input come errato.\footnote{a meno che, come precisa
+  \cite{GlibcMan}, alla chiusura di ciascuna fase non siano associate
+  operazioni di pulizia specifiche (come deallocazioni, chiusure di file,
+  ecc.), che non potrebbero essere eseguite con un salto non-locale.}
 
 Tutto ciò può essere realizzato proprio con un salto non-locale; questo di
 norma viene realizzato salvando il contesto dello \itindex{stack}
@@ -2708,30 +2705,26 @@ una variabile per poi ristamparne il contenuto leggendolo un byte alla volta.
 Il codice di detto programma, \file{endtest.c}, è nei sorgenti allegati,
 allora se lo eseguiamo su un normale PC compatibile, che è \textit{little
   endian} otterremo qualcosa del tipo:
-\begin{Command}
-[piccardi@gont sources]$ ./endtest
-\end{Command}
-%$
-\begin{Terminal}
+\begin{Console}
+[piccardi@gont sources]$ \textbf{./endtest}
 Using value ABCDEF01
 val[0]= 1
 val[1]=EF
 val[2]=CD
 val[3]=AB
-\end{Terminal}
+\end{Console}
+%$
 mentre su un vecchio Macintosh con PowerPC, che è \textit{big endian} avremo
 qualcosa del tipo:
-\begin{Command}
-piccardi@anarres:~/gapil/sources$ ./endtest
-\end{Command}
-%$
-\begin{Terminal}
+\begin{Console}
+piccardi@anarres:~/gapil/sources$ \textbf{./endtest}
 Using value ABCDEF01
 val[0]=AB
 val[1]=CD
 val[2]=EF
 val[3]= 1
-\end{Terminal}
+\end{Console}
+%$
 
 L'attenzione alla \textit{endianness} nella programmazione è importante, perché
 se si fanno assunzioni relative alla propria architettura non è detto che
@@ -2815,7 +2808,7 @@ basterà scegliere una volta per tutte quale usare e attenersi alla scelta.
 % LocalWords:  capability MEMLOCK limits getpagesize RLIMIT munlock sys const
 % LocalWords:  addr len EINVAL EPERM mlockall munlockall flags l'OR CURRENT IFS
 % LocalWords:  argc argv parsing questofile txt getopt optstring switch optarg
-% LocalWords:  optind opterr optopt ForkTest POSIXLY CORRECT long options NdA
+% LocalWords:  optind opterr optopt POSIXLY CORRECT long options NdA
 % LocalWords:  option parameter list environ PATH HOME XPG tab LOGNAME LANG PWD
 % LocalWords:  TERM PAGER TMPDIR getenv name SVr setenv unsetenv putenv opz gcc
 % LocalWords:  clearenv libc value overwrite string reference result argument