Aggiornamenti del copyright all'anno nuovo, e risistemazione delle
[gapil.git] / process.tex
index 7c64e60fd1d1b94070edf2d741b010e718bc6fc3..3f500455336e5b8f1bfb686e4fdbfc1d1a95649a 100644 (file)
@@ -1,6 +1,6 @@
 %% process.tex
 %%
-%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -8,6 +8,7 @@
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
 %%
+
 \chapter{L'interfaccia base con i processi}
 \label{cha:process_interface}
 
@@ -41,7 +42,7 @@ tutti gli altri.\footnote{questo non 
 \subsection{La funzione \func{main}} 
 \label{sec:proc_main}
 
-Quando un programma viene lanciato il kernel esegue un'opportuna routine di
+Quando un programma viene lanciato il kernel esegue un opportuno codice di
 avvio, usando il programma \cmd{ld-linux.so}.  Questo programma prima carica
 le librerie condivise che servono al programma, poi effettua il collegamento
 dinamico del codice e alla fine lo esegue. Infatti, a meno di non aver
@@ -77,7 +78,7 @@ modalit
 direttamente la funzione \func{exit} (che viene comunque chiamata
 automaticamente quando \func{main} ritorna).  Una forma alternativa è quella
 di chiamare direttamente la system call \func{\_exit}, che restituisce il
-controllo direttamente alla routine di conclusione dei processi del kernel.
+controllo direttamente alla funzione di conclusione dei processi del kernel.
 
 Oltre alla conclusione ``\textsl{normale}'' esiste anche la possibilità di una
 conclusione ``\textsl{anomala}'' del programma a causa della ricezione di un
@@ -233,15 +234,15 @@ normalmente un programma 
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=14cm]{img/proc_beginend}
+  \includegraphics[width=9cm]{img/proc_beginend}
   \caption{Schema dell'avvio e della conclusione di un programma.}
   \label{fig:proc_prog_start_stop}
 \end{figure}
 
 Si ricordi infine che un programma può anche essere interrotto dall'esterno
 attraverso l'uso di un segnale (modalità di conclusione non mostrata in
-fig.~\ref{fig:proc_prog_start_stop}); torneremo su questo aspetto in
-cap.~\ref{cha:signals}.
+fig.~\ref{fig:proc_prog_start_stop}); tratteremo nei dettagli i segnali e la
+loro gestione nel capitolo \ref{cha:signals}.
 
 
 
@@ -258,15 +259,15 @@ esecuzione, e le varie funzioni utilizzabili per la sua gestione.
 \subsection{I concetti generali}
 \label{sec:proc_mem_gen}
 
-Ci sono vari modi in cui i vari sistemi organizzano la memoria (ed i dettagli
-di basso livello dipendono spesso in maniera diretta dall'architettura
-dell'hardware), ma quello più tipico, usato dai sistemi unix-like come Linux è
-la cosiddetta \textsl{memoria virtuale}\index{memoria~virtuale} che consiste
-nell'assegnare ad ogni processo uno spazio virtuale di indirizzamento lineare,
-in cui gli indirizzi vanno da zero ad un qualche valore massimo.\footnote{nel
-  caso di Linux fino al kernel 2.2 detto massimo era, per macchine a 32bit, di
-  2Gb. Con il kernel 2.4 ed il supporto per la \textit{high-memory} il limite
-  è stato esteso anche per macchine a 32 bit.}
+Ci sono vari modi in cui i sistemi operativi organizzano la memoria, ed i
+dettagli di basso livello dipendono spesso in maniera diretta
+dall'architettura dell'hardware, ma quello più tipico, usato dai sistemi
+unix-like come Linux è la cosiddetta \index{memoria~virtuale} \textsl{memoria
+  virtuale} che consiste nell'assegnare ad ogni processo uno spazio virtuale
+di indirizzamento lineare, in cui gli indirizzi vanno da zero ad un qualche
+valore massimo.\footnote{nel caso di Linux fino al kernel 2.2 detto massimo
+  era, per macchine a 32bit, di 2Gb. Con il kernel 2.4 ed il supporto per la
+  \textit{high-memory} il limite è stato esteso anche per macchine a 32 bit.}
 
 Come accennato in cap.~\ref{cha:intro_unix} questo spazio di indirizzi è
 virtuale e non corrisponde all'effettiva posizione dei dati nella RAM del
@@ -274,41 +275,46 @@ computer; in genere detto spazio non 
 indirizzi possibili sono utilizzabili, e quelli usabili non sono
 necessariamente adiacenti).
 
-Per la gestione da parte del kernel la memoria virtuale viene divisa in pagine
-di dimensione fissa (che ad esempio sono di 4kb su macchine a 32 bit e 8kb
-sulle alpha, valori strettamente connessi all'hardware di gestione della
-memoria),\footnote{con le versioni più recenti del kernel è possibile anche
-  utilizzare pagine di dimensioni maggiori, per sistemi con grandi
-  quantitativi di memoria in cui l'uso di pagine troppo piccole comporta una
-  perdita di prestazioni.} e ciascuna pagina della memoria virtuale è
-associata ad un supporto che può essere una pagina di memoria reale o ad un
-dispositivo di stoccaggio secondario (in genere lo spazio disco riservato alla
-swap, o i file che contengono il codice).
-
-Lo stesso pezzo di memoria reale (o di spazio disco) può fare da supporto a
-diverse pagine di memoria virtuale appartenenti a processi diversi (come
-accade in genere per le pagine che contengono il codice delle librerie
-condivise). Ad esempio il codice della funzione \func{printf} starà su una
-sola pagina di memoria reale che farà da supporto a tutte le pagine di memoria
-virtuale di tutti i processi che hanno detta funzione nel loro codice.
-
-La corrispondenza fra le pagine della \index{memoria~virtuale}memoria virtuale
-e quelle della memoria fisica della macchina viene gestita in maniera
-trasparente dall'hardware di gestione della memoria (la \textit{Memory
-  Management Unit} del processore).  Poiché in genere la memoria fisica è solo
-una piccola frazione della memoria virtuale, è necessario un meccanismo che
-permetta di trasferire le pagine che servono dal supporto su cui si trovano in
-memoria, eliminando quelle che non servono. Questo meccanismo è detto
-\textsl{paginazione}\index{paginazione} (o \textit{paging}), ed è uno dei
-compiti principali del kernel.
+Per la gestione da parte del kernel la memoria viene divisa in pagine di
+dimensione fissa,\footnote{inizialmente questi erano di 4kb sulle macchine a
+  32 bit e di 8kb sulle alpha, con le versioni più recenti del kernel è
+  possibile anche utilizzare pagine di dimensioni maggiori (4Mb), per sistemi
+  con grandi quantitativi di memoria in cui l'uso di pagine troppo piccole
+  comporta una perdita di prestazioni.} e ciascuna pagina nello spazio di
+indirizzi virtuale è associata ad un supporto che può essere una pagina di
+memoria reale o ad un dispositivo di stoccaggio secondario (come lo spazio
+disco riservato alla swap, o i file che contengono il codice). Per ciascun
+processo il kernel si cura di mantenere un mappa di queste corrispondenze
+nella cosiddetta \itindex{page~table} \textit{page table}.\footnote{questa è
+  una semplificazione brutale, il meccanismo è molto più complesso; una buona
+  trattazione di come Linux gestisce la memoria virtuale si trova su
+  \cite{LinVM}.}
+
+Una stessa pagina di memoria reale può fare da supporto a diverse pagine di
+memoria virtuale appartenenti a processi diversi (come accade in genere per le
+pagine che contengono il codice delle librerie condivise). Ad esempio il
+codice della funzione \func{printf} starà su una sola pagina di memoria reale
+che farà da supporto a tutte le pagine di memoria virtuale di tutti i processi
+che hanno detta funzione nel loro codice.
+
+La corrispondenza fra le pagine della \index{memoria~virtuale} memoria
+virtuale di un processo e quelle della memoria fisica della macchina viene
+gestita in maniera trasparente dal kernel.\footnote{in genere con l'ausilio
+  dell'hardware di gestione della memoria (la \textit{Memory Management Unit}
+  del processore), con i kernel della serie 2.6 è comunque diventato possibile
+  utilizzare Linux anche su architetture che non dispongono di una MMU.}
+Poiché in genere la memoria fisica è solo una piccola frazione della memoria
+virtuale, è necessario un meccanismo che permetta di trasferire le pagine che
+servono dal supporto su cui si trovano in memoria, eliminando quelle che non
+servono.  Questo meccanismo è detto \index{paginazione} \textsl{paginazione}
+(o \textit{paging}), ed è uno dei compiti principali del kernel.
 
 Quando un processo cerca di accedere ad una pagina che non è nella memoria
-reale, avviene quello che viene chiamato un \textit{page
-  fault}\itindex{page~fault}; l'hardware di gestione della memoria genera
-un'interruzione e passa il controllo al kernel il quale sospende il processo e
-si incarica di mettere in RAM la pagina richiesta (effettuando tutte le
-operazioni necessarie per reperire lo spazio necessario), per poi restituire
-il controllo al processo.
+reale, avviene quello che viene chiamato un \itindex{page~fault} \textit{page
+  fault}; la gestione della memoria genera un'interruzione e passa il
+controllo al kernel il quale sospende il processo e si incarica di mettere in
+RAM la pagina richiesta (effettuando tutte le operazioni necessarie per
+reperire lo spazio necessario), per poi restituire il controllo al processo.
 
 Dal punto di vista di un processo questo meccanismo è completamente
 trasparente, e tutto avviene come se tutte le pagine fossero sempre
@@ -319,8 +325,9 @@ a tempi molto pi
 Normalmente questo è il prezzo da pagare per avere un multitasking reale, ed
 in genere il sistema è molto efficiente in questo lavoro; quando però ci siano
 esigenze specifiche di prestazioni è possibile usare delle funzioni che
-permettono di bloccare il meccanismo della paginazione\index{paginazione} e
+permettono di bloccare il meccanismo della \index{paginazione} paginazione e
 mantenere fisse delle pagine in memoria (vedi sez.~\ref{sec:proc_mem_lock}).
+Inoltre per certe applicazioni gli algoritmi di gestione della memoria
 
 
 \subsection{La struttura della memoria di un processo}
@@ -332,31 +339,32 @@ tentativo di accedere ad un indirizzo non allocato 
 commette quando si è manipolato male un puntatore e genera quello che viene
 chiamato un \textit{segmentation fault}. Se si tenta cioè di leggere o
 scrivere da un indirizzo per il quale non esiste un'associazione della pagina
-virtuale, il kernel risponde al relativo \textit{page
-  fault}\itindex{page~fault} mandando un segnale \const{SIGSEGV} al processo,
-che normalmente ne causa la terminazione immediata.
+virtuale, il kernel risponde al relativo \itindex{page~fault} \textit{page
+  fault} mandando un segnale \const{SIGSEGV} al processo, che normalmente ne
+causa la terminazione immediata.
 
-È pertanto importante capire come viene strutturata \textsl{la memoria
-  virtuale}\index{memoria~virtuale} di un processo. Essa viene divisa in
+È pertanto importante capire come viene strutturata \index{memoria~virtuale}
+\textsl{la memoria virtuale} di un processo. Essa viene divisa in
 \textsl{segmenti}, cioè un insieme contiguo di indirizzi virtuali ai quali il
 processo può accedere.  Solitamente un programma C viene suddiviso nei
 seguenti segmenti:
 
 \begin{enumerate}
-\item Il segmento di testo o \textit{text segment}. Contiene il codice del
-  programma, delle funzioni di librerie da esso utilizzate, e le costanti.
-  Normalmente viene condiviso fra tutti i processi che eseguono lo stesso
-  programma (e anche da processi che eseguono altri programmi nel caso delle
-  librerie).  Viene marcato in sola lettura per evitare sovrascritture
-  accidentali (o maliziose) che ne modifichino le istruzioni.
+\item Il \index{segmento!testo} segmento di testo o \textit{text segment}.
+  Contiene il codice del programma, delle funzioni di librerie da esso
+  utilizzate, e le costanti.  Normalmente viene condiviso fra tutti i processi
+  che eseguono lo stesso programma (e anche da processi che eseguono altri
+  programmi nel caso delle librerie).  Viene marcato in sola lettura per
+  evitare sovrascritture accidentali (o maliziose) che ne modifichino le
+  istruzioni.
   
   Viene allocato da \func{exec} all'avvio del programma e resta invariato
   per tutto il tempo dell'esecuzione.
   
-\item Il segmento dei dati o \textit{data segment}. Contiene le variabili
-  globali (cioè quelle definite al di fuori di tutte le funzioni che
-  compongono il programma) e le variabili statiche (cioè quelle dichiarate con
-  l'attributo \ctyp{static}). Di norma è diviso in due parti.
+\item Il \index{segmento!dati} segmento dei dati o \textit{data segment}.
+  Contiene le variabili globali (cioè quelle definite al di fuori di tutte le
+  funzioni che compongono il programma) e le variabili statiche (cioè quelle
+  dichiarate con l'attributo \ctyp{static}). Di norma è diviso in due parti.
   
   La prima parte è il segmento dei dati inizializzati, che contiene le
   variabili il cui valore è stato assegnato esplicitamente. Ad esempio
@@ -378,62 +386,67 @@ seguenti segmenti:
   Storicamente questa seconda parte del segmento dati viene chiamata BSS (da
   \textit{Block Started by Symbol}). La sua dimensione è fissa.
   
-\item Lo \textit{heap}. Tecnicamente lo si può considerare l'estensione del
-  segmento dati, a cui di solito è posto giusto di seguito. È qui che avviene
-  l'allocazione dinamica della memoria; può essere ridimensionato allocando e
-  disallocando la memoria dinamica con le apposite funzioni (vedi
-  sez.~\ref{sec:proc_mem_alloc}), ma il suo limite inferiore (quello adiacente
-  al segmento dati) ha una posizione fissa.
+\item Lo \itindex{heap} \textit{heap}. Tecnicamente lo si può considerare
+  l'estensione del segmento dati, a cui di solito è posto giusto di seguito. È
+  qui che avviene l'allocazione dinamica della memoria; può essere
+  ridimensionato allocando e disallocando la memoria dinamica con le apposite
+  funzioni (vedi sez.~\ref{sec:proc_mem_alloc}), ma il suo limite inferiore
+  (quello adiacente al segmento dati) ha una posizione fissa.
   
-\item Il segmento di \textit{stack}, che contiene lo \textit{stack} del
-  programma.  Tutte le volte che si effettua una chiamata ad una funzione è
-  qui che viene salvato l'indirizzo di ritorno e le informazioni dello stato
-  del chiamante (tipo il contenuto di alcuni registri della CPU). Poi la
-  funzione chiamata alloca qui lo spazio per le sue variabili locali: in
+\item Il segmento di \itindex{stack} \textit{stack}, che contiene quello che
+  viene chiamato \textit{stack} del programma.  Tutte le volte che si effettua
+  una chiamata ad una funzione è qui che viene salvato l'indirizzo di ritorno
+  e le informazioni dello stato del chiamante (tipo il contenuto di alcuni
+  registri della CPU), poi la funzione chiamata alloca qui lo spazio per le
+  sue variabili locali. Tutti questi dati vengono \textit{impilati} (da questo
+  viene il nome \itindex{stack} \textit{stack}) in sequenza uno sull'altro; in
   questo modo le funzioni possono essere chiamate ricorsivamente. Al ritorno
   della funzione lo spazio è automaticamente rilasciato e
   ``\textsl{ripulito}''. La pulizia in C e C++ viene fatta dal
   chiamante.\footnote{a meno che non sia stato specificato l'utilizzo di una
     calling convention diversa da quella standard.}
-  
-  La dimensione di questo segmento aumenta seguendo la crescita dello stack
-  del programma, ma non viene ridotta quando quest'ultimo si restringe.
+% TODO verificare le modalità di cambiamento della calling convention
+
+  La dimensione di questo segmento aumenta seguendo la crescita dello
+  \itindex{stack} \textit{stack} del programma, ma non viene ridotta quando
+  quest'ultimo si restringe.
 \end{enumerate}
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[height=11cm]{img/memory_layout}
+  \includegraphics[height=12cm]{img/memory_layout}
   \caption{Disposizione tipica dei segmenti di memoria di un processo.}
   \label{fig:proc_mem_layout}
 \end{figure}
 
-Una disposizione tipica di questi segmenti è riportata in
-fig.~\ref{fig:proc_mem_layout}. Usando il comando \cmd{size} su un programma se
-ne può stampare le dimensioni dei segmenti di testo e di dati (inizializzati e
-BSS); si tenga presente però che il BSS non è mai salvato sul file che
-contiene l'eseguibile, dato che viene sempre inizializzato a zero al
+Una disposizione tipica dei vari segmenti (testo, \itindex{heap}
+\textit{heap}, \itindex{stack} \textit{stack}, ecc.) è riportata in
+fig.~\ref{fig:proc_mem_layout}. Usando il comando \cmd{size} su un programma
+se ne può stampare le dimensioni dei segmenti di testo e di dati
+(inizializzati e BSS); si tenga presente però che il BSS non è mai salvato sul
+file che contiene l'eseguibile, dato che viene sempre inizializzato a zero al
 caricamento del programma.
 
 
 \subsection{Allocazione della memoria per i programmi C}
 \label{sec:proc_mem_alloc}
 
-Il C supporta, a livello di linguaggio, soltanto due modalità di allocazione
-della memoria: l'\textsl{allocazione statica} e l'\textsl{allocazione
-  automatica}.
+Il C supporta direttamente, come linguaggio di programmazione, soltanto due
+modalità di allocazione della memoria: l'\textsl{allocazione statica} e
+l'\textsl{allocazione automatica}.
 
 L'\textsl{allocazione statica} è quella con cui sono memorizzate le variabili
 globali e le variabili statiche, cioè le variabili il cui valore deve essere
 mantenuto per tutta la durata del programma. Come accennato queste variabili
-vengono allocate nel segmento dei dati all'avvio del programma (come parte
-delle operazioni svolte da \func{exec}) e lo spazio da loro occupato non viene
-liberato fino alla sua conclusione.
+vengono allocate nel \index{segmento!dati} segmento dei dati all'avvio del
+programma (come parte delle operazioni svolte da \func{exec}) e lo spazio da
+loro occupato non viene liberato fino alla sua conclusione.
 
 L'\textsl{allocazione automatica} è quella che avviene per gli argomenti di
 una funzione e per le sue variabili locali (le cosiddette \textsl{variabili
   automatiche}), che esistono solo per la durata della funzione.  Lo spazio
-per queste variabili viene allocato nello stack quando viene eseguita la
-funzione e liberato quando si esce dalla medesima.
+per queste variabili viene allocato nello \itindex{stack} \textit{stack} quando
+viene eseguita la funzione e liberato quando si esce dalla medesima.
 
 Esiste però un terzo tipo di allocazione, l'\textsl{allocazione dinamica}
 della memoria, che non è prevista direttamente all'interno del linguaggio C,
@@ -444,29 +457,32 @@ Il C non consente di usare variabili allocate dinamicamente, non 
 cioè definire in fase di programmazione una variabile le cui dimensioni
 possano essere modificate durante l'esecuzione del programma. Per questo le
 librerie del C forniscono una serie opportuna di funzioni per eseguire
-l'allocazione dinamica di memoria (in genere nello heap). Le variabili il
-cui contenuto è allocato in questo modo non potranno essere usate direttamente
-come le altre, ma l'accesso sarà possibile solo in maniera indiretta,
-attraverso dei puntatori.
+l'allocazione dinamica di memoria (in genere nello \itindex{heap}
+\textit{heap}).
 
+Le variabili il cui contenuto è allocato in questo modo non potranno essere
+usate direttamente come le altre (quelle nello \itindex{stack}
+\textit{stack}), ma l'accesso sarà possibile solo in maniera indiretta,
+attraverso i puntatori alla memoria loro riservata che si sono ottenuti dalle
+funzioni di allocazione.
 
-\subsection{Le funzioni \func{malloc}, \func{calloc}, \func{realloc} e
-  \func{free}}
-\label{sec:proc_mem_malloc}
 
 Le funzioni previste dallo standard ANSI C per la gestione della memoria sono
 quattro: \funcd{malloc}, \funcd{calloc}, \funcd{realloc} e \funcd{free}, i
 loro prototipi sono i seguenti:
 \begin{functions}
 \headdecl{stdlib.h}
-\funcdecl{void *calloc(size\_t size)}
-  Alloca \param{size} byte nello heap. La memoria viene inizializzata a 0.
+\funcdecl{void *calloc(size\_t nmemb, size\_t size)}
+  Alloca nello \textit{heap} un'area di memoria per un vettore di
+  \param{nmemb} membri di \param{size} byte di dimensione. La memoria viene
+  inizializzata a 0. 
   
   La funzione restituisce il puntatore alla zona di memoria allocata in caso
   di successo e \val{NULL} in caso di fallimento, nel qual caso
   \var{errno} assumerà il valore \errval{ENOMEM}.
 \funcdecl{void *malloc(size\_t size)}
-  Alloca \param{size} byte nello heap. La memoria non viene inizializzata.
+  Alloca \param{size} byte nello \textit{heap}. La memoria non viene
+  inizializzata. 
 
   La funzione restituisce il puntatore alla zona di memoria allocata in caso
   di successo e \val{NULL} in caso di fallimento, nel qual caso
@@ -537,25 +553,25 @@ assegnare sempre a \val{NULL} ogni puntatore liberato con \func{free}, dato
 che, quando l'argomento è un puntatore nullo, \func{free} non esegue nessuna
 operazione.
 
-Le \acr{glibc} hanno un'implementazione delle routine di allocazione che è
+Le \acr{glibc} hanno un'implementazione delle funzioni di allocazione che è
 controllabile dall'utente attraverso alcune variabili di ambiente, in
 particolare diventa possibile tracciare questo tipo di errori usando la
 variabile di ambiente \val{MALLOC\_CHECK\_} che quando viene definita mette in
 uso una versione meno efficiente delle funzioni suddette, che però è più
 tollerante nei confronti di piccoli errori come quello di chiamate doppie a
 \func{free}.  In particolare:
-\begin{itemize}
+\begin{itemize*}
 \item se la variabile è posta a zero gli errori vengono ignorati;
 \item se è posta ad 1 viene stampato un avviso sullo \textit{standard error}
   (vedi sez.~\ref{sec:file_std_stream});
 \item se è posta a 2 viene chiamata \func{abort}, che in genere causa
   l'immediata conclusione del programma.
-\end{itemize}
+\end{itemize*}
 
 Il problema più comune e più difficile da risolvere che si incontra con le
-routine di allocazione è quando non viene opportunamente liberata la memoria
-non più utilizzata, quello che in inglese viene chiamato \textit{memory
-  leak}\itindex{memory~leak}, cioè una \textsl{perdita di memoria}.
+funzioni di allocazione è quando non viene opportunamente liberata la memoria
+non più utilizzata, quello che in inglese viene chiamato \itindex{memory~leak}
+\textit{memory leak}, cioè una \textsl{perdita di memoria}.
 
 Un caso tipico che illustra il problema è quello in cui in una subroutine si
 alloca della memoria per uso locale senza liberarla prima di uscire. La
@@ -568,20 +584,21 @@ Il problema 
 momento, in corrispondenza ad una qualunque chiamata di \func{malloc}, che può
 essere in una sezione del codice che non ha alcuna relazione con la subroutine
 che contiene l'errore. Per questo motivo è sempre molto difficile trovare un
-\textit{memory leak}\itindex{memory~leak}.
+\itindex{memory~leak} \textit{memory leak}.
 
 In C e C++ il problema è particolarmente sentito. In C++, per mezzo della
-programmazione ad oggetti, il problema dei \textit{memory
-  leak}\itindex{memory~leak} è notevolmente ridimensionato attraverso l'uso
-accurato di appositi oggetti come gli \textit{smartpointers}.  Questo però in
-genere va a scapito delle prestazioni dell'applicazione in esecuzione.
+programmazione ad oggetti, il problema dei \itindex{memory~leak}
+\textit{memory leak} è notevolmente ridimensionato attraverso l'uso accurato
+di appositi oggetti come gli \textit{smartpointers}.  Questo però in genere va
+a scapito delle prestazioni dell'applicazione in esecuzione.
 
+% TODO decidere cosa fare di questo che segue
 % In altri linguaggi come il java e recentemente il C\# il problema non si pone
 % nemmeno perché la gestione della memoria viene fatta totalmente in maniera
 % automatica, ovvero il programmatore non deve minimamente preoccuparsi di
 % liberare la memoria allocata precedentemente quando non serve più, poiché
 % l'infrastruttura del linguaggio gestisce automaticamente la cosiddetta
-% \index{\textit{garbage~collection}}\textit{garbage collection}.  In tal caso,
+% \index{\textit{garbage~collection}} \textit{garbage collection}. In tal caso,
 % attraverso meccanismi simili a quelli del \textit{reference counting}, quando
 % una zona di memoria precedentemente allocata non è più riferita da nessuna
 % parte del codice in esecuzione, può essere deallocata automaticamente in
@@ -597,27 +614,25 @@ genere va a scapito delle prestazioni dell'applicazione in esecuzione.
 % allocata da un oggetto.
 
 Per limitare l'impatto di questi problemi, e semplificare la ricerca di
-eventuali errori, l'implementazione delle routine di allocazione delle
+eventuali errori, l'implementazione delle funzioni di allocazione delle
 \acr{glibc} mette a disposizione una serie di funzionalità che permettono di
 tracciare le allocazioni e le disallocazioni, e definisce anche una serie di
 possibili \textit{hook} (\textsl{ganci}) che permettono di sostituire alle
 funzioni di libreria una propria versione (che può essere più o meno
 specializzata per il debugging). Esistono varie librerie che forniscono dei
-sostituti opportuni delle routine di allocazione in grado, senza neanche
+sostituti opportuni delle funzioni di allocazione in grado, senza neanche
 ricompilare il programma,\footnote{esempi sono \textit{Dmalloc}
   \href{http://dmalloc.com/}{\textsf{http://dmalloc.com/}} di Gray Watson ed
   \textit{Electric Fence} di Bruce Perens.} di eseguire diagnostiche anche
 molto complesse riguardo l'allocazione della memoria.
 
 
-\subsection{Le funzioni \func{alloca}, \func{brk} e \func{sbrk}}  
-\label{sec:proc_mem_sbrk_alloca}
-
 Una possibile alternativa all'uso di \func{malloc}, che non soffre dei
-problemi di \textit{memory leak}\itindex{memory~leak} descritti in precedenza,
-è la funzione \funcd{alloca}, che invece di allocare la memoria nello heap usa
-il segmento di stack della funzione corrente. La sintassi è identica a quella
-di \func{malloc}, il suo prototipo è:
+problemi di \itindex{memory~leak} \textit{memory leak} descritti in
+precedenza, è la funzione \funcd{alloca}, che invece di allocare la memoria
+nello \itindex{heap} \textit{heap} usa il segmento di \itindex{stack}
+\textit{stack} della funzione corrente. La sintassi è identica a quella di
+\func{malloc}, il suo prototipo è:
 \begin{prototype}{stdlib.h}{void *alloca(size\_t size)}
   Alloca \param{size} byte nello stack.
   
@@ -627,13 +642,13 @@ di \func{malloc}, il suo prototipo 
 \end{prototype}
 
 La funzione alloca la quantità di memoria (non inizializzata) richiesta
-dall'argomento \param{size} nel segmento di stack della funzione chiamante.
-Con questa funzione non è più necessario liberare la memoria allocata (e
-quindi non esiste un analogo della \func{free}) in quanto essa viene
-rilasciata automaticamente al ritorno della funzione.
+dall'argomento \param{size} nel segmento di \itindex{stack} \textit{stack}
+della funzione chiamante.  Con questa funzione non è più necessario liberare
+la memoria allocata (e quindi non esiste un analogo della \func{free}) in
+quanto essa viene rilasciata automaticamente al ritorno della funzione.
 
 Come è evidente questa funzione ha molti vantaggi, anzitutto permette di
-evitare alla radice i problemi di \textit{memory leak}\itindex{memory~leak},
+evitare alla radice i problemi di \itindex{memory~leak} \textit{memory leak},
 dato che non serve più la deallocazione esplicita; inoltre la deallocazione
 automatica funziona anche quando si usa \func{longjmp} per uscire da una
 subroutine con un salto non locale da una funzione (vedi
@@ -658,6 +673,8 @@ spazio verrebbe allocato nel mezzo degli stessi.
 %cerca di allocare troppa memoria non si ottiene un messaggio di errore, ma un
 %segnale di \textit{segment violation} analogo a quello che si avrebbe da una
 %ricorsione infinita.
+% TODO inserire più informazioni su alloca come da man page
+
 
 Inoltre non è chiaramente possibile usare \func{alloca} per allocare memoria
 che deve poi essere usata anche al di fuori della funzione in cui essa viene
@@ -667,12 +684,13 @@ Questo 
 cui torneremo in sez.~\ref{sec:proc_auto_var}.
 
 
-Le due funzioni seguenti vengono utilizzate soltanto quando è necessario
-effettuare direttamente la gestione della memoria associata allo spazio dati
-di un processo, ad esempio qualora si debba implementare la propria versione
-delle routine di allocazione della memoria viste in
-sez.~\ref{sec:proc_mem_malloc}.  La prima funzione è \funcd{brk}, ed il suo
-prototipo è:
+Le due funzioni seguenti\footnote{le due funzioni sono state definite con BSD
+  4.3, non fanno parte delle librerie standard del C e mentre sono state
+  esplicitamente escluse dallo standard POSIX.} vengono utilizzate soltanto
+quando è necessario effettuare direttamente la gestione della memoria
+associata allo spazio dati di un processo, ad esempio qualora si debba
+implementare la propria versione delle funzioni di allocazione della memoria.
+La prima funzione è \funcd{brk}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}{int brk(void *end\_data\_segment)}
   Sposta la fine del segmento dei dati.
   
@@ -681,15 +699,17 @@ prototipo 
 \end{prototype}
 
 La funzione è un'interfaccia diretta all'omonima system call ed imposta
-l'indirizzo finale del segmento dati di un processo all'indirizzo specificato
-da \param{end\_data\_segment}. Quest'ultimo deve essere un valore ragionevole,
-ed inoltre la dimensione totale del segmento non deve comunque eccedere un
-eventuale limite (si veda sez.~\ref{sec:sys_resource_limit}) imposto sulle
-dimensioni massime dello spazio dati del processo.
-
-La seconda funzione per la manipolazione delle dimensioni del segmento
-dati\footnote{in questo caso si tratta soltanto di una funzione di libreria, e
-  non di una system call.} è \funcd{sbrk}, ed il suo prototipo è:
+l'indirizzo finale del \index{segmento!dati} segmento dati di un processo
+all'indirizzo specificato da \param{end\_data\_segment}. Quest'ultimo deve
+essere un valore ragionevole, ed inoltre la dimensione totale del segmento non
+deve comunque eccedere un eventuale limite (si veda
+sez.~\ref{sec:sys_resource_limit}) imposto sulle dimensioni massime dello
+spazio dati del processo.
+
+Una seconda funzione per la manipolazione delle dimensioni
+\index{segmento!dati} del segmento dati\footnote{in questo caso si tratta
+  soltanto di una funzione di libreria, e non di una system call.} è
+\funcd{sbrk}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}{void *sbrk(ptrdiff\_t increment)} 
   Incrementa la dimensione dello spazio dati.
   
@@ -700,39 +720,36 @@ dati\footnote{in questo caso si tratta soltanto di una funzione di libreria, e
 \noindent la funzione incrementa la dimensione lo spazio dati di un programma
 di \param{increment} byte, restituendo il nuovo indirizzo finale dello stesso.
 Un valore nullo permette di ottenere l'attuale posizione della fine del
-segmento dati.
+\index{segmento!dati} segmento dati.
 
 Queste funzioni sono state deliberatamente escluse dallo standard POSIX.1 e
 per i programmi normali è sempre opportuno usare le funzioni di allocazione
 standard descritte in precedenza, che sono costruite su di esse. 
 
 
-% \subsection{La personalizzazione delle funzioni di allocazione} 
-% \label{sec:proc_mem_malloc_custom}
-
-
 \subsection{Il controllo della memoria virtuale}  
 \label{sec:proc_mem_lock}
 
 \index{memoria~virtuale|(}
+
 Come spiegato in sez.~\ref{sec:proc_mem_gen} il kernel gestisce la memoria
 virtuale in maniera trasparente ai processi, decidendo quando rimuovere pagine
 dalla memoria per metterle nello swap, sulla base dell'utilizzo corrente da
 parte dei vari processi.
 
 Nell'uso comune un processo non deve preoccuparsi di tutto ciò, in quanto il
-meccanismo della paginazione\index{paginazione} riporta in RAM, ed in maniera
+meccanismo della \index{paginazione} paginazione riporta in RAM, ed in maniera
 trasparente, tutte le pagine che gli occorrono; esistono però esigenze
 particolari in cui non si vuole che questo meccanismo si attivi. In generale i
 motivi per cui si possono avere di queste necessità sono due:
 \begin{itemize}
-\item \textsl{La velocità}. Il processo della paginazione\index{paginazione} è
-  trasparente solo se il programma in esecuzione non è sensibile al tempo che
-  occorre a riportare la pagina in memoria; per questo motivo processi critici
-  che hanno esigenze di tempo reale o tolleranze critiche nelle risposte (ad
-  esempio processi che trattano campionamenti sonori) possono non essere in
-  grado di sopportare le variazioni della velocità di accesso dovuta alla
-  paginazione.
+\item \textsl{La velocità}. Il processo della \index{paginazione} paginazione
+  è trasparente solo se il programma in esecuzione non è sensibile al tempo
+  che occorre a riportare la pagina in memoria; per questo motivo processi
+  critici che hanno esigenze di tempo reale o tolleranze critiche nelle
+  risposte (ad esempio processi che trattano campionamenti sonori) possono non
+  essere in grado di sopportare le variazioni della velocità di accesso dovuta
+  alla paginazione.
   
   In certi casi poi un programmatore può conoscere meglio dell'algoritmo di
   allocazione delle pagine le esigenze specifiche del suo programma e decidere
@@ -743,7 +760,7 @@ motivi per cui si possono avere di queste necessit
   
 \item \textsl{La sicurezza}. Se si hanno password o chiavi segrete in chiaro
   in memoria queste possono essere portate su disco dal meccanismo della
-  paginazione\index{paginazione}. Questo rende più lungo il periodo di tempo
+  \index{paginazione} paginazione. Questo rende più lungo il periodo di tempo
   in cui detti segreti sono presenti in chiaro e più complessa la loro
   cancellazione (un processo può cancellare la memoria su cui scrive le sue
   variabili, ma non può toccare lo spazio disco su cui una pagina di memoria
@@ -751,16 +768,15 @@ motivi per cui si possono avere di queste necessit
   crittografia richiedono il blocco di alcune pagine di memoria.
 \end{itemize}
 
-\itindbeg{memory~locking}
-Il meccanismo che previene la paginazione\index{paginazione} di parte della
+\itindbeg{memory~locking} 
+
+Il meccanismo che previene la \index{paginazione} paginazione di parte della
 memoria virtuale di un processo è chiamato \textit{memory locking} (o
 \textsl{blocco della memoria}). Il blocco è sempre associato alle pagine della
 memoria virtuale del processo, e non al segmento reale di RAM su cui essa
-viene mantenuta.
-
-La regola è che se un segmento di RAM fa da supporto ad almeno una pagina
-bloccata allora esso viene escluso dal meccanismo della
-paginazione\index{paginazione}. I blocchi non si accumulano, se si blocca due
+viene mantenuta.  La regola è che se un segmento di RAM fa da supporto ad
+almeno una pagina bloccata allora esso viene escluso dal meccanismo della
+\index{paginazione} paginazione. I blocchi non si accumulano, se si blocca due
 volte la stessa pagina non è necessario sbloccarla due volte, una pagina o è
 bloccata oppure no.
 
@@ -768,27 +784,43 @@ Il \textit{memory lock} persiste fintanto che il processo che detiene la
 memoria bloccata non la sblocca. Chiaramente la terminazione del processo
 comporta anche la fine dell'uso della sua memoria virtuale, e quindi anche di
 tutti i suoi \textit{memory lock}.  Infine i \textit{memory lock} non sono
-ereditati dai processi figli.\footnote{ma siccome Linux usa il
-  \itindex{copy~on~write}\textit{copy on write} (vedi
+ereditati dai processi figli,\footnote{ma siccome Linux usa il
+  \itindex{copy~on~write} \textit{copy on write} (vedi
   sez.~\ref{sec:proc_fork}) gli indirizzi virtuali del figlio sono mantenuti
   sullo stesso segmento di RAM del padre, quindi fintanto che un figlio non
-  scrive su un segmento, può usufruire del \textit{memory lock} del padre.}
+  scrive su un segmento, può usufruire del \textit{memory lock} del padre.} e
+vengono automaticamente rimossi se si pone in esecuzione un altro programma
+con \func{exec} (vedi sez.~\ref{sec:proc_exec}).
 
 Siccome la richiesta di un \textit{memory lock} da parte di un processo riduce
 la memoria fisica disponibile nel sistema, questo ha un evidente impatto su
-tutti gli altri processi, per cui solo un processo con i privilegi di
-amministratore (vedremo in sez.~\ref{sec:proc_perms} cosa significa) ha la
-capacità di bloccare una pagina.  Ogni processo può però sbloccare le pagine
-relative alla propria memoria.
+tutti gli altri processi, per cui fino al kernel 2.6.9 solo un processo con i
+privilegi opportuni (la \itindex{capabilities} \textit{capability}
+\const{CAP\_IPC\_LOCK}, vedi sez.~\ref{sec:proc_capabilities}) aveva la
+capacità di bloccare una pagina.
 
 Il sistema pone dei limiti all'ammontare di memoria di un processo che può
 essere bloccata e al totale di memoria fisica che si può dedicare a questo, lo
 standard POSIX.1 richiede che sia definita in \file{unistd.h} la macro
 \macro{\_POSIX\_MEMLOCK\_RANGE} per indicare la capacità di eseguire il
-\textit{memory locking} e la costante \const{PAGESIZE} in \file{limits.h} per
-indicare la dimensione di una pagina in byte.
-
-Le funzioni per bloccare e sbloccare la paginazione\index{paginazione} di
+\textit{memory locking}. Inoltre in alcuni sistemi è definita la costante
+\const{PAGE\_SIZE} in \file{limits.h} per indicare la dimensione di una pagina
+in byte.\footnote{con Linux questo non avviene e si deve ricorrere alla
+  funzione \func{getpagesize}, vedi sez.~\ref{sec:sys_memory_res}.} 
+
+
+A partire dal kernel 2.6.9 anche un processo normale può bloccare la propria
+memoria\footnote{la funzionalità è stata introdotta per non essere costretti a
+  dare privilegi eccessivi a programmi di crittografia, che necessitano di
+  questa funzionalità, ma che devono essere usati da utenti normali.} ma
+mentre un processo privilegiato non ha limiti sulla quantità di memoria che
+può bloccare, un processo normale è soggetto al limite della risorsa
+\const{RLIMIT\_MEMLOCK} (vedi sez.~\ref{sec:sys_resource_limit}). In generale
+poi ogni processo può sbloccare le pagine relative alla propria memoria, se
+però diversi processi bloccano la stessa pagina questa resterà bloccata
+fintanto che ci sarà almeno un processo che la blocca.
+
+Le funzioni per bloccare e sbloccare la \index{paginazione} paginazione di
 singole sezioni di memoria sono \funcd{mlock} e \funcd{munlock}; i loro
 prototipi sono:
 \begin{functions}
@@ -799,7 +831,6 @@ prototipi sono:
 
   \funcdecl{int munlock(const void *addr, size\_t len)}
   Rimuove il blocco della paginazione su un intervallo di memoria.
-
   
   \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 in
     caso di errore, nel qual caso \var{errno} assumerà uno dei
@@ -809,19 +840,23 @@ prototipi sono:
     corrispondono allo spazio di indirizzi del processo o si è ecceduto
     il numero massimo consentito di pagine bloccate.
   \item[\errcode{EINVAL}] \param{len} non è un valore positivo.
+  \item[\errcode{EPERM}] con un kernel successivo al 2.6.9 il processo non è
+    privilegiato e si un limite nullo per \const{RLIMIT\_MEMLOCK}.
   \end{errlist}
   e, per \func{mlock}, anche \errval{EPERM} quando il processo non ha i
   privilegi richiesti per l'operazione.}
 \end{functions}
 
 Le due funzioni permettono rispettivamente di bloccare e sbloccare la
-paginazione\index{paginazione} per l'intervallo di memoria specificato dagli
+\index{paginazione} paginazione per l'intervallo di memoria specificato dagli
 argomenti, che ne indicano nell'ordine l'indirizzo iniziale e la lunghezza.
 Tutte le pagine che contengono una parte dell'intervallo bloccato sono
-mantenute in RAM per tutta la durata del blocco.
+mantenute in RAM per tutta la durata del blocco.\footnote{con altri kernel si
+  può ottenere un errore di \errcode{EINVAL} se \param{addr} non è un multiplo
+  della dimensione delle pagine di memoria.}
 
 Altre due funzioni, \funcd{mlockall} e \funcd{munlockall}, consentono di
-bloccare genericamente la paginazione\index{paginazione} per l'intero spazio
+bloccare genericamente la \index{paginazione} paginazione per l'intero spazio
 di indirizzi di un processo.  I prototipi di queste funzioni sono:
 \begin{functions}
   \headdecl{sys/mman.h} 
@@ -832,8 +867,10 @@ di indirizzi di un processo.  I prototipi di queste funzioni sono:
   \funcdecl{int munlockall(void)}
   Sblocca la paginazione per lo spazio di indirizzi del processo corrente. 
   
-  \bodydesc{Codici di ritorno ed errori sono gli stessi di \func{mlock}
-    e \func{munlock}.}
+  \bodydesc{Codici di ritorno ed errori sono gli stessi di \func{mlock} e
+    \func{munlock}, con un kernel successivo al 2.6.9 l'uso di
+    \func{munlockall} senza la \itindex{capabilities} \textit{capability}
+\const{CAP\_IPC\_LOCK} genera un errore di \errcode{EPERM}.}
 \end{functions}
 
 L'argomento \param{flags} di \func{mlockall} permette di controllarne il
@@ -847,29 +884,43 @@ costanti:
 \end{basedescript}
 
 Con \func{mlockall} si possono bloccare tutte le pagine mappate nello spazio
-di indirizzi del processo, sia che comprendano il segmento di testo, di dati,
-lo stack, lo heap e pure le funzioni di libreria chiamate, i file mappati in
-memoria, i dati del kernel mappati in user space, la memoria condivisa.  L'uso
-dei flag permette di selezionare con maggior finezza le pagine da bloccare, ad
-esempio limitandosi a tutte le pagine allocate a partire da un certo momento.
-
-In ogni caso un processo real-time che deve entrare in una sezione critica
-deve provvedere a riservare memoria sufficiente prima dell'ingresso, per
-scongiurare l'occorrenza di un eventuale \textit{page
-  fault}\itindex{page~fault} causato dal meccanismo di \textit{copy on
-  write}\itindex{copy~on~write}.  Infatti se nella sezione critica si va ad
-utilizzare memoria che non è ancora stata riportata in RAM si potrebbe avere
-un \itindex{page~fault}\textit{page fault} durante l'esecuzione della stessa,
-con conseguente rallentamento (probabilmente inaccettabile) dei tempi di
-esecuzione.
+di indirizzi del processo, sia che comprendano il \index{segmento!dati}
+\index{segmento!testo} segmento di testo, di dati, lo \itindex{stack}
+\textit{stack}, lo \itindex{heap} \textit{heap} e pure le funzioni di libreria
+chiamate, i file mappati in memoria, i dati del kernel mappati in user space,
+la memoria condivisa.  L'uso dei flag permette di selezionare con maggior
+finezza le pagine da bloccare, ad esempio limitandosi a tutte le pagine
+allocate a partire da un certo momento.
+
+In ogni caso un processo real-time che deve entrare in una
+\index{sezione~critica} sezione critica deve provvedere a riservare memoria
+sufficiente prima dell'ingresso, per scongiurare l'occorrenza di un eventuale
+\itindex{page~fault} \textit{page fault} causato dal meccanismo di
+\itindex{copy~on~write} \textit{copy on write}.  Infatti se nella
+\index{sezione~critica} sezione critica si va ad utilizzare memoria che non è
+ancora stata riportata in RAM si potrebbe avere un \itindex{page~fault}
+\textit{page fault} durante l'esecuzione della stessa, con conseguente
+rallentamento (probabilmente inaccettabile) dei tempi di esecuzione.
 
 In genere si ovvia a questa problematica chiamando una funzione che ha
 allocato una quantità sufficientemente ampia di variabili automatiche, in modo
-che esse vengano mappate in RAM dallo stack, dopo di che, per essere sicuri
-che esse siano state effettivamente portate in memoria, ci si scrive sopra.
-\index{memoria~virtuale|)}
+che esse vengano mappate in RAM dallo \itindex{stack} \textit{stack}, dopo di
+che, per essere sicuri che esse siano state effettivamente portate in memoria,
+ci si scrive sopra.
+
 \itindend{memory~locking}
 
+% TODO documentare \func{madvise}
+% TODO documentare \func{mincore}
+
+
+\index{memoria~virtuale|)} 
+
+
+% \subsection{Gestione avanzata dell'allocazione della memoria} 
+% \label{sec:proc_mem_malloc_custom}
+% TODO: trattare le funzionalità avanzate di \func{malloc}
+
 
 
 \section{Argomenti, opzioni ed ambiente di un processo}
@@ -892,6 +943,7 @@ manipolare ed utilizzare le variabili di ambiente.
 
 \subsection{Il formato degli argomenti}
 \label{sec:proc_par_format}
+
 In genere il passaggio degli argomenti al programma viene effettuato dalla
 shell, che si incarica di leggere la linea di comando e di effettuarne la
 scansione (il cosiddetto \textit{parsing}) per individuare le parole che la
@@ -1025,7 +1077,7 @@ la gestione di queste ultime 
 versione estesa di \func{getopt}.
 
 (NdA: questa parte verrà inserita in seguito).
-
+% TODO opzioni in formato esteso 
 
 \subsection{Le variabili di ambiente}
 \label{sec:proc_environ}
@@ -1224,10 +1276,10 @@ versione del vettore \var{environ} questo sar
 corrente sarà deallocata solo se anch'essa è risultante da un'allocazione
 fatta in precedenza da un'altra \func{putenv}. Questo perché il vettore delle
 variabili di ambiente iniziale, creato dalla chiamata ad \func{exec} (vedi
-sez.~\ref{sec:proc_exec}) è piazzato al di sopra dello stack, (vedi
-fig.~\ref{fig:proc_mem_layout}) e non nello heap e non può essere deallocato.
-Inoltre la memoria associata alle variabili di ambiente eliminate non viene
-liberata.
+sez.~\ref{sec:proc_exec}) è piazzato al di sopra dello \itindex{stack} stack,
+(vedi fig.~\ref{fig:proc_mem_layout}) e non nello \itindex{heap} \textit{heap}
+e non può essere deallocato.  Inoltre la memoria associata alle variabili di
+ambiente eliminate non viene liberata.
 
 L'ultima funzione è \funcd{clearenv}, che viene usata per cancellare
 completamente tutto l'ambiente; il suo prototipo è:
@@ -1271,7 +1323,7 @@ del passaggio pu
 Il passaggio di una variabile \textit{by value} significa che in realtà quello
 che viene passato alla subroutine è una copia del valore attuale di quella
 variabile, copia che la subroutine potrà modificare a piacere, senza che il
-valore originale nella routine chiamante venga toccato. In questo modo non
+valore originale nella funzione chiamante venga toccato. In questo modo non
 occorre preoccuparsi di eventuali effetti delle operazioni della subroutine
 sulla variabile passata come argomento.
 
@@ -1280,19 +1332,19 @@ vale per qualunque variabile, puntatori compresi; quando per
 subroutine si usano dei puntatori (ad esempio per scrivere in un buffer) in
 realtà si va a modificare la zona di memoria a cui essi puntano, per cui anche
 se i puntatori sono copie, i dati a cui essi puntano sono sempre gli stessi, e
-le eventuali modifiche avranno effetto e saranno visibili anche nella routine
+le eventuali modifiche avranno effetto e saranno visibili anche nella funzione
 chiamante.
 
 Nella maggior parte delle funzioni di libreria e delle system call i puntatori
 vengono usati per scambiare dati (attraverso buffer o strutture) e le
 variabili semplici vengono usate per specificare argomenti; in genere le
-informazioni a riguardo dei risultati vengono passate alla routine chiamante
+informazioni a riguardo dei risultati vengono passate alla funzione chiamante
 attraverso il valore di ritorno.  È buona norma seguire questa pratica anche
 nella programmazione normale.
 
 Talvolta però è necessario che la funzione possa restituire indietro alla
 funzione chiamante un valore relativo ad uno dei suoi argomenti.  Per far
-questo si usa il cosiddetto \itindex{value~result~argument}\textit{value
+questo si usa il cosiddetto \itindex{value~result~argument} \textit{value
   result argument}, si passa cioè, invece di una normale variabile, un
 puntatore alla stessa; vedremo alcuni esempi di questa modalità nelle funzioni
 che gestiscono i socket (in sez.~\ref{sec:TCP_functions}), in cui, per
@@ -1305,10 +1357,10 @@ strutture degli indirizzi utilizzate, viene usato questo meccanismo.
 
 Come vedremo nei capitoli successivi, non sempre è possibile specificare un
 numero fisso di argomenti per una funzione.  Lo standard ISO C prevede nella
-sua sintassi la possibilità di definire delle \textit{variadic
-  function}\index{variadic} che abbiano un numero variabile di argomenti,
+sua sintassi la possibilità di definire delle \index{variadic}
+\textit{variadic function} che abbiano un numero variabile di argomenti,
 attraverso l'uso nella dichiarazione della funzione dello speciale costrutto
-``\texttt{\textellipsis}'', che viene chiamato \textit{ellipsis}.  
+``\texttt{\textellipsis}'', che viene chiamato \textit{ellipsis}.
 
 Lo standard però non provvede a livello di linguaggio alcun meccanismo con cui
 dette funzioni possono accedere ai loro argomenti.  L'accesso viene pertanto
@@ -1325,7 +1377,7 @@ tre punti:
   a seguire quelli addizionali.
 \end{itemize}
 
-Lo standard ISO C prevede che una \textit{variadic function}\index{variadic}
+Lo standard ISO C prevede che una \index{variadic} \textit{variadic function}
 abbia sempre almeno un argomento fisso; prima di effettuare la dichiarazione
 deve essere incluso l'apposito header file \file{stdarg.h}; un esempio di
 dichiarazione è il prototipo della funzione \func{execl} che vedremo in
@@ -1350,9 +1402,9 @@ quando la si va a definire. Gli argomenti fissi infatti hanno un loro nome, ma
 quelli variabili vengono indicati in maniera generica dalla \textit{ellipsis}.
 
 L'unica modalità in cui essi possono essere recuperati è pertanto quella
-sequenziale; essi verranno estratti dallo stack secondo l'ordine in cui sono
-stati scritti. Per fare questo in \file{stdarg.h} sono definite delle apposite
-macro; la procedura da seguire è la seguente:
+sequenziale; essi verranno estratti dallo \itindex{stack} \textit{stack}
+secondo l'ordine in cui sono stati scritti. Per fare questo in \file{stdarg.h}
+sono definite delle apposite macro; la procedura da seguire è la seguente:
 \begin{enumerate}
 \item Inizializzare un puntatore alla lista degli argomenti di tipo
   \macro{va\_list} attraverso la macro \macro{va\_start}.
@@ -1408,11 +1460,12 @@ argomenti e poter memorizzare una posizione durante la stessa.  La cosa pi
 naturale in questo caso sembrerebbe quella di copiarsi il puntatore alla lista
 degli argomenti con una semplice assegnazione. Dato che una delle
 realizzazioni più comuni di \macro{va\_list} è quella di un puntatore nello
-stack all'indirizzo dove sono stati salvati gli argomenti, è assolutamente
-normale pensare di poter effettuare questa operazione.
+\itindex{stack} \textit{stack} all'indirizzo dove sono stati salvati gli
+argomenti, è assolutamente normale pensare di poter effettuare questa
+operazione.
 
 In generale però possono esistere anche realizzazioni diverse, per questo
-motivo \macro{va\_list} è definito come \textsl{tipo opaco}\index{tipo!opaco}
+motivo \macro{va\_list} è definito come \index{tipo!opaco} \textsl{tipo opaco}
 e non può essere assegnato direttamente ad un'altra variabile dello stesso
 tipo. Per risolvere questo problema lo standard ISO C99\footnote{alcuni
   sistemi che non hanno questa macro provvedono al suo posto
@@ -1462,9 +1515,9 @@ come ultimo argomento (come fa ad esempio \func{execl} che usa un puntatore
 Uno dei possibili problemi che si possono avere con le subroutine è quello di
 restituire alla funzione chiamante dei dati che sono contenuti in una
 variabile automatica.  Ovviamente quando la subroutine ritorna la sezione
-dello stack che conteneva la variabile automatica potrà essere riutilizzata da
-una nuova funzione, con le immaginabili conseguenze di sovrapposizione e
-sovrascrittura dei dati.
+dello \itindex{stack} \textit{stack} che conteneva la variabile automatica
+potrà essere riutilizzata da una nuova funzione, con le immaginabili
+conseguenze di sovrapposizione e sovrascrittura dei dati.
 
 Per questo una delle regole fondamentali della programmazione in C è che
 all'uscita di una funzione non deve restare nessun riferimento alle variabili
@@ -1510,10 +1563,11 @@ scartando l'input come errato.\footnote{a meno che, come precisa \cite{glibc},
   essere eseguite con un salto non-locale.}
 
 Tutto ciò può essere realizzato proprio con un salto non-locale; questo di
-norma viene realizzato salvando il contesto dello stack nel punto in cui si
-vuole tornare in caso di errore, e ripristinandolo, in modo da tornare nella
-funzione da cui si era partiti, quando serve.  La funzione che permette di
-salvare il contesto dello stack è \funcd{setjmp}, il cui prototipo è:
+norma viene realizzato salvando il contesto dello \itindex{stack}
+\textit{stack} nel punto in cui si vuole tornare in caso di errore, e
+ripristinandolo, in modo da tornare nella funzione da cui si era partiti,
+quando serve.  La funzione che permette di salvare il contesto dello
+\itindex{stack} \textit{stack} è \funcd{setjmp}, il cui prototipo è:
 \begin{functions}
   \headdecl{setjmp.h}
   \funcdecl{int setjmp(jmp\_buf env)}
@@ -1525,10 +1579,10 @@ salvare il contesto dello stack 
     che usa il contesto salvato in precedenza.}
 \end{functions}
   
-Quando si esegue la funzione il contesto corrente dello stack viene salvato
-nell'argomento \param{env}, una variabile di tipo
+Quando si esegue la funzione il contesto corrente dello \itindex{stack}
+\textit{stack} viene salvato nell'argomento \param{env}, una variabile di tipo
 \type{jmp\_buf}\footnote{questo è un classico esempio di variabile di
-  \textsl{tipo opaco}\index{tipo!opaco}. Si definiscono così strutture ed
+  \index{tipo!opaco} \textsl{tipo opaco}. Si definiscono così strutture ed
   altri oggetti usati da una libreria, la cui struttura interna non deve
   essere vista dal programma chiamante (da cui il nome) che li devono
   utilizzare solo attraverso dalle opportune funzioni di gestione.}  che deve
@@ -1539,10 +1593,11 @@ essere viste in tutte le funzioni del programma.
 Quando viene eseguita direttamente la funzione ritorna sempre zero, un valore
 diverso da zero viene restituito solo quando il ritorno è dovuto ad una
 chiamata di \func{longjmp} in un'altra parte del programma che ripristina lo
-stack effettuando il salto non-locale. Si tenga conto che il contesto salvato
-in \param{env} viene invalidato se la routine che ha chiamato \func{setjmp}
-ritorna, nel qual caso un successivo uso di \func{longjmp} può comportare
-conseguenze imprevedibili (e di norma fatali) per il processo.
+\itindex{stack} \textit{stack} effettuando il salto non-locale. Si tenga conto
+che il contesto salvato in \param{env} viene invalidato se la funzione che ha
+chiamato \func{setjmp} ritorna, nel qual caso un successivo uso di
+\func{longjmp} può comportare conseguenze imprevedibili (e di norma fatali)
+per il processo.
   
 Come accennato per effettuare un salto non-locale ad
 un punto precedentemente stabilito con \func{setjmp} si usa la funzione
@@ -1556,12 +1611,14 @@ un punto precedentemente stabilito con \func{setjmp} si usa la funzione
   \bodydesc{La funzione non ritorna.}
 \end{functions}
 
-La funzione ripristina il contesto dello stack salvato da una chiamata a
-\func{setjmp} nell'argomento \param{env}. Dopo l'esecuzione della funzione il
-programma prosegue nel codice successivo al ritorno della \func{setjmp} con
-cui si era salvato \param{env}, che restituirà il valore \param{val} invece di
-zero.  Il valore di \param{val} specificato nella chiamata deve essere diverso
-da zero, se si è specificato 0 sarà comunque restituito 1 al suo posto.
+La funzione ripristina il contesto dello \itindex{stack} \textit{stack}
+salvato da una chiamata a \func{setjmp} nell'argomento \param{env}. Dopo
+l'esecuzione della funzione il programma prosegue nel codice successivo al
+ritorno della \func{setjmp} con cui si era salvato \param{env}, che restituirà
+il valore
+\param{val} invece di zero.  Il valore di \param{val} specificato nella
+chiamata deve essere diverso da zero, se si è specificato 0 sarà comunque
+restituito 1 al suo posto.
 
 In sostanza un \func{longjmp} è analogo ad un \code{return}, solo che invece
 di ritornare alla riga successiva della funzione chiamante, il programma
@@ -1570,10 +1627,11 @@ il ritorno pu
 annidate.
 
 L'implementazione di queste funzioni comporta alcune restrizioni dato che esse
-interagiscono direttamente con la gestione dello stack ed il funzionamento del
-compilatore stesso. In particolare \func{setjmp} è implementata con una macro,
-pertanto non si può cercare di ottenerne l'indirizzo, ed inoltre delle
-chiamate a questa funzione sono sicure solo in uno dei seguenti casi:
+interagiscono direttamente con la gestione dello \itindex{stack}
+\textit{stack} ed il funzionamento del compilatore stesso. In particolare
+\func{setjmp} è implementata con una macro, pertanto non si può cercare di
+ottenerne l'indirizzo, ed inoltre delle chiamate a questa funzione sono sicure
+solo in uno dei seguenti casi:
 \begin{itemize}
 \item come espressione di controllo in un comando condizionale, di selezione
   o di iterazione (come \code{if}, \code{switch} o \code{while});
@@ -1607,20 +1665,44 @@ delle variabili automatiche (o di quelle dichiarate
 Quello che succede infatti è che i valori delle variabili che sono tenute in
 memoria manterranno il valore avuto al momento della chiamata di
 \func{longjmp}, mentre quelli tenuti nei registri del processore (che nella
-chiamata ad un'altra funzione vengono salvati nel contesto nello stack)
-torneranno al valore avuto al momento della chiamata di \func{setjmp}; per
-questo quando si vuole avere un comportamento coerente si può bloccare
-l'ottimizzazione che porta le variabili nei registri dichiarandole tutte come
-\direct{volatile}\footnote{la direttiva \direct{volatile} informa il
-  compilatore che la variabile che è dichiarata può essere modificata, durante
-  l'esecuzione del nostro, da altri programmi. Per questo motivo occorre dire
-  al compilatore che non deve essere mai utilizzata l'ottimizzazione per cui
-  quanto opportuno essa viene mantenuta in un registro, poiché in questo modo
-  si perderebbero le eventuali modifiche fatte dagli altri programmi (che
-  avvengono solo in una copia posta in memoria).}.
+chiamata ad un'altra funzione vengono salvati nel contesto nello
+\itindex{stack} \textit{stack}) torneranno al valore avuto al momento della
+chiamata di \func{setjmp}; per questo quando si vuole avere un comportamento
+coerente si può bloccare l'ottimizzazione che porta le variabili nei registri
+dichiarandole tutte come \direct{volatile}.\footnote{la direttiva
+  \direct{volatile} informa il compilatore che la variabile che è dichiarata
+  può essere modificata, durante l'esecuzione del nostro, da altri programmi.
+  Per questo motivo occorre dire al compilatore che non deve essere mai
+  utilizzata l'ottimizzazione per cui quanto opportuno essa viene mantenuta in
+  un registro, poiché in questo modo si perderebbero le eventuali modifiche
+  fatte dagli altri programmi (che avvengono solo in una copia posta in
+  memoria).}
 
 \index{salto~non-locale|)}
 
+
+
+% LocalWords:  like exec kernel thread main ld linux static linker char envp Gb
+% LocalWords:  sez POSIX exit system call cap abort shell diff errno stdlib int
+% LocalWords:  SUCCESS FAILURE void atexit stream fclose unistd descriptor init
+% LocalWords:  SIGCHLD wait function glibc SunOS arg argp execve fig high kb Mb
+% LocalWords:  memory alpha swap table printf Unit MMU paging fault SIGSEGV BSS
+% LocalWords:  multitasking segmentation text segment NULL Block Started Symbol
+% LocalWords:  heap stack calling convention size malloc calloc realloc nmemb
+% LocalWords:  ENOMEM ptr uClib cfree error leak smartpointers hook Dmalloc brk
+% LocalWords:  Gray Watson Electric Fence Bruce Perens sbrk longjmp SUSv BSD ap
+% LocalWords:  ptrdiff increment locking lock copy write capabilities IPC mlock
+% LocalWords:  capability MEMLOCK limits getpagesize RLIMIT munlock sys const
+% LocalWords:  addr len EINVAL EPERM mlockall munlockall flags l'OR CURRENT IFS
+% LocalWords:  argc argv parsing questofile txt getopt optstring switch optarg
+% LocalWords:  optind opterr optopt ForkTest POSIXLY CORRECT long options NdA
+% LocalWords:  option parameter list environ PATH HOME XPG tab LOGNAME LANG PWD
+% LocalWords:  TERM PAGER TMPDIR getenv name SVr setenv unsetenv putenv opz gcc
+% LocalWords:  clearenv libc value overwrite string reference result argument
+% LocalWords:  socket variadic ellipsis header stdarg execl self promoting last
+% LocalWords:  float double short register type dest src extern setjmp jmp buf
+% LocalWords:  env return if while sottoprocesso Di
+
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"