Altre correzioni, con esempi sul server fortunes e relativa "demonizzazzione"
[gapil.git] / process.tex
index 88e059d345e7f3b77f76b5b472080ff3c1771660..1fbfc066b28f187c2629615f12537be93288a89d 100644 (file)
+%% process.tex
+%%
+%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
 \chapter{L'interfaccia base con i processi}
 \label{cha:process_interface}
 
-Come accennato nell'introduzione il processo è l'unità di base con cui un
-sistema unix alloca ed utilizza le risorse.  Questo capitolo tratterà
-l'interfaccia base fra il sistema e i processi, su come vengono passati i
-parametri, come viene gestita e allocata la memoria, su come un processo può
-richiedere servizi al sistema, su cosa deve fare quando ha finito la sua
-esecuzione.
+Come accennato nell'introduzione il \textsl{processo} è l'unità di base con
+cui un sistema unix-like alloca ed utilizza le risorse.  Questo capitolo
+tratterà l'interfaccia base fra il sistema e i processi, come vengono passati
+i parametri, come viene gestita e allocata la memoria, come un processo può
+richiedere servizi al sistema e cosa deve fare quando ha finito la sua
+esecuzione. Nella sezione finale accenneremo ad alcune problematiche generiche
+di programmazione.
 
 In genere un programma viene eseguito quando un processo lo fa partire
-eseguendo una funzione della famiglia \texttt{exec}; torneremo su questo e
-sulla la creazione e gestione dei processi nel prossimo capitolo, in questo
-affronteremo l'avvio e il funzionamento di un programma dal punto di vista del
-programma posto in esecuzione.
+eseguendo una funzione della famiglia \func{exec}; torneremo su questo e sulla
+creazione e gestione dei processi nel prossimo capitolo. In questo
+affronteremo l'avvio e il funzionamento di un singolo processo partendo dal
+punto di vista del programma che viene messo in esecuzione.
 
 
-\section{La funzione \texttt{main}} 
+\section{Esecuzione e conclusione di un programma}
+
+Uno dei concetti base di Unix è che un processo esegue sempre uno ed un solo
+programma: si possono avere più processi che eseguono lo stesso programma ma
+ciascun processo vedrà la sua copia del codice (in realtà il kernel fa sì che
+tutte le parti uguali siano condivise), avrà un suo spazio di indirizzi,
+variabili proprie e sarà eseguito in maniera completamente indipendente da
+tutti gli altri.\footnote{questo non è del tutto vero nel caso di un programma
+  \textit{multi-thread}, ma la gestione dei \textit{thread} in Linux sarà
+  trattata a parte.}
+
+
+\subsection{La funzione \func{main}} 
 \label{sec:proc_main}
 
+Quando un programma viene lanciato il kernel esegue un'opportuna routine di
+avvio, usando il programma \cmd{ld-linux.so}.  Questo programma prima carica
+le librerie condivise che servono al programma, poi effettua il link dinamico
+del codice e alla fine lo esegue. Infatti, a meno di non aver specificato il
+flag \texttt{-static} durante la compilazione, tutti i programmi in Linux sono
+incompleti e necessitano di essere \textit{linkati} alle librerie condivise
+quando vengono avviati.  La procedura è controllata da alcune variabili di
+ambiente e dal contenuto di \file{/etc/ld.so.conf}. I dettagli sono riportati
+nella man page di \cmd{ld.so}.
+
+Il sistema fa partire qualunque programma chiamando la funzione \func{main};
+sta al programmatore chiamare così la funzione principale del programma da cui
+si suppone iniziare l'esecuzione; in ogni caso senza questa funzione lo stesso
+\textit{linker} darebbe luogo ad errori.
+
+Lo standard ISO C specifica che la funzione \func{main} può non avere 
+argomenti o prendere due argomenti che rappresentano gli argomenti passati da
+linea di comando, in sostanza un prototipo che va sempre bene è il seguente:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    int main (int argc, char *argv[])
+\end{lstlisting}
+
+In realtà nei sistemi Unix esiste un'altro modo per definire la funzione
+\func{main}, che prevede la presenza di un terzo parametro, \code{char
+  *envp[]}, che fornisce l'\textsl{ambiente} (vedi \secref{sec:proc_environ})
+del programma; questa forma però non è prevista dallo standard POSIX.1 per cui
+se si vogliono scrivere programmi portabili è meglio evitarla.
+
 
+\subsection{Come chiudere un programma}
+\label{sec:proc_conclusion}
 
-\subsection{}
-\label{sec:proc_}
+Normalmente un programma finisce quando la funzione \func{main} ritorna, una
+modalità equivalente di chiudere il programma è quella di chiamare
+direttamente la funzione \func{exit} (che viene comunque chiamata
+automaticamente quando \func{main} ritorna).  Una forma alternativa è quella
+di chiamare direttamente la system call \func{\_exit}, che restituisce il
+controllo direttamente alla routine di conclusione dei processi del kernel.
 
+Oltre alla conclusione ``\textsl{normale}'' esiste anche la possibilità di una
+conclusione ``\textsl{anomala}'' del programma a causa della ricezione di un
+segnale (si veda \capref{cha:signals}) o della chiamata alla funzione
+\func{abort}; torneremo su questo in \secref{sec:proc_termination}.
 
+Il valore di ritorno della funzione \func{main}, o quello usato nelle chiamate
+ad \func{exit} e \func{\_exit}, viene chiamato \textsl{stato di uscita} (o
+\textit{exit status}) e passato al processo che aveva lanciato il programma
+(in genere la shell). In generale si usa questo valore per fornire
+informazioni sulla riuscita o il fallimento del programma; l'informazione è
+necessariamente generica, ed il valore deve essere compreso fra 0 e 255.
 
-\subsection{La funzione \texttt{exit}}
+La convenzione in uso pressoché universale è quella di restituire 0 in caso di
+successo e 1 in caso di fallimento; l'unica eccezione è per i programmi che
+effettuano dei confronti (come \cmd{diff}), che usano 0 per indicare la
+corrispondenza, 1 per indicare la non corrispondenza e 2 per indicare
+l'incapacità di effettuare il confronto. È opportuno adottare una di queste
+convenzioni a seconda dei casi.  Si tenga presente che se si raggiunge la fine
+della funzione \func{main} senza ritornare esplicitamente si ha un valore di
+uscita indefinito, è pertanto consigliabile di concludere sempre in maniera
+esplicita detta funzione.
+
+Un'altra convenzione riserva i valori da 128 a 256 per usi speciali: ad
+esempio 128 viene usato per indicare l'incapacità di eseguire un altro
+programma in un sottoprocesso. Benché questa convenzione non sia
+universalmente seguita è una buona idea tenerne conto.
+
+Si tenga presente inoltre che non è una buona idea usare il codice di errore
+restituito dalla variabile \var{errno} (per i dettagli si veda
+\secref{sec:sys_errors}) come stato di uscita. In generale infatti una shell
+non si cura del valore se non per vedere se è diverso da zero; inoltre il
+valore dello stato di uscita è sempre troncato ad 8 bit, per cui si potrebbe
+incorrere nel caso in cui restituendo un codice di errore 256, si otterrebbe
+uno stato di uscita uguale a zero, che verrebbe interpretato come un successo.
+
+In \file{stdlib.h} sono definite, seguendo lo standard POSIX, le due costanti
+\const{EXIT\_SUCCESS} e \const{EXIT\_FAILURE}, da usare sempre per specificare
+lo stato di uscita di un processo. In Linux esse sono poste rispettivamente ai
+valori di tipo \ctyp{int} 0 e 1.
+
+
+\subsection{Le funzioni \func{exit} e \func{\_exit}}
 \label{sec:proc_exit}
 
+Come accennato le funzioni usate per effettuare un'uscita ``\textit{normale}''
+da un programma sono due, la prima è la funzione \funcd{exit}, che è definita
+dallo standard ANSI C ed il cui prototipo è:
+\begin{prototype}{stdlib.h}{void exit(int status)}
+  Causa la conclusione ordinaria del programma.
+
+  \bodydesc{La funzione non ritorna. Il processo viene terminato.}
+\end{prototype}
+
+La funzione \func{exit} è pensata per eseguire una conclusione pulita di un
+programma che usi le librerie standard del C; essa esegue tutte le funzioni
+che sono state registrate con \func{atexit} e \func{on\_exit} (vedi
+\secref{sec:proc_atexit}), e chiude tutti gli stream effettuando il
+salvataggio dei dati sospesi (chiamando \func{fclose}, vedi
+\secref{sec:file_fopen}), infine passa il controllo al kernel chiamando
+\func{\_exit} e restituendo il valore di \param{status} come stato di uscita.
+
+La system call \funcd{\_exit} restituisce direttamente il controllo al kernel,
+concludendo immediatamente il processo; i dati sospesi nei buffer degli stream
+non vengono salvati e le eventuali funzioni registrate con \func{atexit} e
+\func{on\_exit} non vengono eseguite. Il prototipo della funzione è:
+\begin{prototype}{unistd.h}{void \_exit(int status)}
+  Causa la conclusione immediata del programma.
+
+  \bodydesc{La funzione non ritorna. Il processo viene terminato.}
+\end{prototype}
+
+La funzione chiude tutti i file descriptor appartenenti al processo (si tenga
+presente che questo non comporta il salvataggio dei dati bufferizzati degli
+stream), fa sì che ogni figlio del processo sia ereditato da \cmd{init} (vedi
+\secref{cha:process_handling}), manda un segnale \const{SIGCHLD} al processo
+padre (vedi \secref{sec:sig_job_control}) ed infine ritorna lo stato di uscita
+specificato in \param{status} che può essere raccolto usando la funzione
+\func{wait} (vedi \secref{sec:proc_wait}).
+
+
+\subsection{Le funzioni \func{atexit} e \func{on\_exit}}
+\label{sec:proc_atexit}
+
+Un'esigenza comune che si incontra nella programmazione è quella di dover
+effettuare una serie di operazioni di pulizia (ad esempio salvare dei dati,
+ripristinare delle impostazioni, eliminare dei file temporanei, ecc.) prima
+della conclusione di un programma. In genere queste operazioni vengono fatte
+in un'apposita sezione del programma, ma quando si realizza una libreria
+diventa antipatico dover richiedere una chiamata esplicita ad una funzione di
+pulizia al programmatore che la utilizza.
+
+È invece molto meno soggetto ad errori, e completamente trasparente
+all'utente, avere la possibilità di effettuare automaticamente la chiamata ad
+una funzione che effettui tali operazioni all'uscita dal programma. A questo
+scopo lo standard ANSI C prevede la possibilità di registrare un certo numero
+funzioni che verranno eseguite all'uscita dal programma (sia per la chiamata
+ad \func{exit} che per il ritorno di \func{main}). La prima funzione che si
+può utilizzare a tal fine è \funcd{atexit} il cui prototipo è:
+\begin{prototype}{stdlib.h}{void atexit(void (*function)(void))}
+  Registra la funzione \param{function} per la chiamata all'uscita dal
+  programma.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    fallimento, \var{errno} non viene modificata.}
+\end{prototype}
+\noindent la funzione richiede come argomento l'indirizzo di una opportuna
+funzione di pulizia da chiamare all'uscita del programma, che non deve
+prendere argomenti e non deve ritornare niente (deve essere essere cioè
+definita come \code{void function(void)}).
+
+Un'estensione di \func{atexit} è la funzione \funcd{on\_exit}, che le
+\acr{glibc} includono per compatibilità con SunOS, ma che non è detto sia
+definita su altri sistemi; il suo prototipo è:
+\begin{prototype}{stdlib.h}
+{void on\_exit(void (*function)(int , void *), void *arg)}
+  Registra la funzione \param{function} per la chiamata all'uscita dal
+  programma. 
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    fallimento, \var{errno} non viene modificata.}
+\end{prototype}
+
+In questo caso la funzione da chiamare all'uscita prende i due parametri
+specificati nel prototipo, dovrà cioè essere definita come \code{void
+  function(int status, void *argp)}. Il primo argomento sarà inizializzato
+allo stato di uscita con cui è stata chiamata \func{exit} ed il secondo al
+puntatore \param{arg} passato come secondo argomento di \func{on\_exit}.  Così
+diventa possibile passare dei dati alla funzione di chiusura.
+
+Nella sequenza di chiusura tutte le funzioni registrate verranno chiamate in
+ordine inverso rispetto a quello di registrazione (ed una stessa funzione
+registrata più volte sarà chiamata più volte); poi verranno chiusi tutti gli
+stream aperti, infine verrà chiamata \func{\_exit}.
+
+
+\subsection{Conclusioni}
+\label{sec:proc_term_conclusion}
+
+Data l'importanza dell'argomento è opportuno sottolineare ancora una volta che
+in un sistema Unix l'unico modo in cui un programma può essere eseguito dal
+kernel è attraverso la chiamata alla system call \func{execve} (o attraverso
+una delle funzioni della famiglia \func{exec} che vedremo in
+\secref{sec:proc_exec}).
+
+Allo stesso modo l'unico modo in cui un programma può concludere
+volontariamente la sua esecuzione è attraverso una chiamata alla system call
+\func{\_exit}, o esplicitamente, o in maniera indiretta attraverso l'uso di
+\func{exit} o il ritorno di \func{main}.
+
+Uno schema riassuntivo che illustra le modalità con cui si avvia e conclude
+normalmente un programma è riportato in \figref{fig:proc_prog_start_stop}.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=12cm]{img/proc_beginend}
+  \caption{Schema dell'avvio e della conclusione di un programma.}
+  \label{fig:proc_prog_start_stop}
+\end{figure}
+
+Si ricordi infine che un programma può anche essere interrotto dall'esterno
+attraverso l'uso di un segnale (modalità di conclusione non mostrata in
+\figref{fig:proc_prog_start_stop}); torneremo su questo aspetto in
+\capref{cha:signals}.
+
+
+
+\section{I processi e l'uso della memoria}
+\label{sec:proc_memory}
+
+Una delle risorse base che ciascun processo ha a disposizione è la memoria, e
+la gestione della memoria è appunto uno degli aspetti più complessi di un
+sistema unix-like. In questa sezione, dopo una breve introduzione ai concetti
+base, esamineremo come la memoria viene vista da parte di un programma in
+esecuzione, e le varie funzioni utilizzabili per la sua gestione.
+
+
+\subsection{I concetti generali}
+\label{sec:proc_mem_gen}
+
+Ci sono vari modi in cui i vari sistemi organizzano la memoria (ed i dettagli
+di basso livello dipendono spesso in maniera diretta dall'architettura
+dell'hardware), ma quello più tipico, usato dai sistemi unix-like come Linux è
+la cosiddetta \textsl{memoria virtuale}\index{memoria virtuale} che consiste
+nell'assegnare ad ogni processo uno spazio virtuale di indirizzamento lineare,
+in cui gli indirizzi vanno da zero ad un qualche valore massimo.\footnote{nel
+  caso di Linux fino al kernel 2.2 detto massimo era, per macchine a 32bit, di
+  2Gb. Con il kernel 2.4 ed il supporto per la \textit{high-memory} il limite
+  è stato esteso.}
+
+Come accennato in \capref{cha:intro_unix} questo spazio di indirizzi è
+virtuale e non corrisponde all'effettiva posizione dei dati nella RAM del
+computer; in genere detto spazio non è neppure continuo (cioè non tutti gli
+indirizzi possibili sono utilizzabili, e quelli usabili non sono
+necessariamente adiacenti).
+
+Per la gestione da parte del kernel la memoria virtuale viene divisa in pagine
+di dimensione fissa (che ad esempio sono di 4kb su macchine a 32 bit e 8kb
+sulle alpha, valori strettamente connessi all'hardware di gestione della
+memoria), e ciascuna pagina della memoria virtuale è associata ad un supporto
+che può essere una pagina di memoria reale o ad un dispositivo di stoccaggio
+secondario (in genere lo spazio disco riservato alla swap, o i file che
+contengono il codice).
+
+Lo stesso pezzo di memoria reale (o di spazio disco) può fare da supporto a
+diverse pagine di memoria virtuale appartenenti a processi diversi (come
+accade in genere per le pagine che contengono il codice delle librerie
+condivise). Ad esempio il codice della funzione \func{printf} starà su una
+sola pagina di memoria reale che farà da supporto a tutte le pagine di memoria
+virtuale di tutti i processi che hanno detta funzione nel loro codice.
+
+La corrispondenza fra le pagine della memoria virtuale e quelle della memoria
+fisica della macchina viene gestita in maniera trasparente dall'hardware di
+gestione della memoria (la \textit{Memory Management Unit} del processore).
+Poiché in genere la memoria fisica è solo una piccola frazione della memoria
+virtuale, è necessario un meccanismo che permetta di trasferire le pagine che
+servono dal supporto su cui si trovano in memoria, eliminando quelle che non
+servono. Questo meccanismo è detto \textsl{paginazione}\index{paginazione} (o
+\textit{paging}), ed è uno dei compiti principali del kernel.
+
+Quando un processo cerca di accedere ad una pagina che non è nella memoria
+reale, avviene quello che viene chiamato un 
+\textit{page fault}\index{page fault}; 
+l'hardware di gestione della memoria genera un'interruzione e passa
+il controllo al kernel il quale sospende il processo e si incarica di mettere
+in RAM la pagina richiesta (effettuando tutte le operazioni necessarie per
+reperire lo spazio necessario), per poi restituire il controllo al processo.
+
+Dal punto di vista di un processo questo meccanismo è completamente
+trasparente, e tutto avviene come se tutte le pagine fossero sempre
+disponibili in memoria.  L'unica differenza avvertibile è quella dei tempi di
+esecuzione, che passano dai pochi nanosecondi necessari per l'accesso in RAM,
+a tempi molto più lunghi, dovuti all'intervento del kernel. 
+
+Normalmente questo è il prezzo da pagare per avere un multitasking reale, ed
+in genere il sistema è molto efficiente in questo lavoro; quando però ci siano
+esigenze specifiche di prestazioni è possibile usare delle funzioni che
+permettono di bloccare il meccanismo della paginazione\index{paginazione} e
+mantenere fisse delle pagine in memoria (vedi \ref{sec:proc_mem_lock}).
+
+
+\subsection{La struttura della memoria di un processo}
+\label{sec:proc_mem_layout}
+
+Benché lo spazio di indirizzi virtuali copra un intervallo molto ampio, solo
+una parte di essi è effettivamente allocato ed utilizzabile dal processo; il
+tentativo di accedere ad un indirizzo non allocato è un tipico errore che si
+commette quando si è manipolato male un puntatore e genera quello che viene
+chiamato un \textit{segmentation fault}. Se si tenta cioè di leggere o
+scrivere da un indirizzo per il quale non esiste un'associazione della pagina
+virtuale, il kernel risponde al relativo \textit{page fault}\index{page fault}
+mandando un segnale \const{SIGSEGV} al processo, che normalmente ne causa la
+terminazione immediata.
+
+È pertanto importante capire come viene strutturata \textsl{la memoria
+  virtuale}\index{page fault} di un processo. Essa viene divisa in
+\textsl{segmenti}, cioè un insieme contiguo di indirizzi virtuali ai quali il
+processo può accedere.  Solitamente un programma C viene suddiviso nei
+seguenti segmenti:
+
+\begin{enumerate}
+\item Il segmento di testo o \textit{text segment}. Contiene il codice del
+  programma, delle funzioni di librerie da esso utilizzate, e le costanti.
+  Normalmente viene condiviso fra tutti i processi che eseguono lo stesso
+  programma (e anche da processi che eseguono altri programmi nel caso delle
+  librerie).  Viene marcato in sola lettura per evitare sovrascritture
+  accidentali (o maliziose) che ne modifichino le istruzioni.
+  
+  Viene allocato da \func{exec} all'avvio del programma e resta invariato
+  per tutto il tempo dell'esecuzione.
+  
+\item Il segmento dei dati o \textit{data segment}. Contiene le variabili
+  globali (cioè quelle definite al di fuori di tutte le funzioni che
+  compongono il programma) e le variabili statiche (cioè quelle dichiarate con
+  l'attributo \ctyp{static}). Di norma è diviso in due parti.
+  
+  La prima parte è il segmento dei dati inizializzati, che contiene le
+  variabili il cui valore è stato assegnato esplicitamente. Ad esempio
+  se si definisce:
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    double pi = 3.14;
+  \end{lstlisting}
+  questo valore sarà immagazzinato in questo segmento. La memoria di questo
+  segmento viene preallocata all'avvio del programma e inizializzata ai valori
+  specificati.
+  
+  La seconda parte è il segmento dei dati non inizializzati, che contiene le
+  variabili il cui valore non è stato assegnato esplicitamente. Ad esempio se
+  si definisce:
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    int vect[100];
+  \end{lstlisting}
+  questo vettore sarà immagazzinato in questo segmento. Anch'esso viene
+  allocato all'avvio, e tutte le variabili vengono inizializzate a zero (ed i
+  puntatori a \val{NULL}).\footnote{si ricordi che questo vale solo per le
+    variabili che vanno nel segmento dati, e non è affatto vero in generale.}
+   
+  Storicamente questo segmento viene chiamato BBS (da \textit{block started by
+    symbol}). La sua dimensione è fissa.
+  
+\item Lo \textit{heap}. Tecnicamente lo si può considerare l'estensione del
+  segmento dati, a cui di solito è posto giusto di seguito. È qui che avviene
+  l'allocazione dinamica della memoria; può essere ridimensionato allocando e
+  disallocando la memoria dinamica con le apposite funzioni (vedi
+  \secref{sec:proc_mem_alloc}), ma il suo limite inferiore (quello adiacente
+  al segmento dati) ha una posizione fissa.
+  
+\item Il segmento di \textit{stack}, che contiene lo \textit{stack} del
+  programma.  Tutte le volte che si effettua una chiamata ad una funzione è
+  qui che viene salvato l'indirizzo di ritorno e le informazioni dello stato
+  del chiamante (tipo il contenuto di alcuni registri della CPU). Poi la
+  funzione chiamata alloca qui lo spazio per le sue variabili locali: in
+  questo modo le funzioni possono essere chiamate ricorsivamente. Al ritorno
+  della funzione lo spazio è automaticamente rilasciato e
+  ``\textsl{ripulito}''. La pulizia in C e C++ viene fatta dal
+  chiamante.\footnote{a meno che non sia stato specificato l'utilizzo di una
+    calling convention diversa da quella standard.}
+  
+  La dimensione di questo segmento aumenta seguendo la crescita dello stack
+  del programma, ma non viene ridotta quando quest'ultimo si restringe.
+\end{enumerate}
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=5cm]{img/memory_layout}
+  \caption{Disposizione tipica dei segmenti di memoria di un processo.}
+  \label{fig:proc_mem_layout}
+\end{figure}
+
+Una disposizione tipica di questi segmenti è riportata in
+\figref{fig:proc_mem_layout}. Usando il comando \cmd{size} su un programma se
+ne può stampare le dimensioni dei segmenti di testo e di dati (inizializzati e
+BSS); si tenga presente però che il BSS non è mai salvato sul file che
+contiene l'eseguibile, dato che viene sempre inizializzato a zero al
+caricamento del programma.
+
+
+\subsection{Allocazione della memoria per i programmi C}
+\label{sec:proc_mem_alloc}
+
+Il C supporta, a livello di linguaggio, soltanto due modalità di allocazione
+della memoria: l'\textsl{allocazione statica} e l'\textsl{allocazione
+  automatica}.
+
+L'\textsl{allocazione statica} è quella con cui sono memorizzate le variabili
+globali e le variabili statiche, cioè le variabili il cui valore deve essere
+mantenuto per tutta la durata del programma. Come accennato queste variabili
+vengono allocate nel segmento dei dati all'avvio del programma (come parte
+delle operazioni svolte da \func{exec}) e lo spazio da loro occupato non viene
+liberato fino alla sua conclusione.
+
+L'\textsl{allocazione automatica} è quella che avviene per gli argomenti di
+una funzione e per le sue variabili locali (le cosiddette \textsl{variabili
+  automatiche}), che esistono solo per la durata della funzione.  Lo spazio
+per queste variabili viene allocato nello stack quando viene eseguita la
+funzione e liberato quando si esce dalla medesima.
+
+Esiste però un terzo tipo di allocazione, l'\textsl{allocazione dinamica della
+  memoria}, che non è prevista direttamente all'interno del linguaggio C, ma
+che è necessaria quando il quantitativo di memoria che serve è determinabile
+solo durante il corso dell'esecuzione del programma.
+
+Il C non consente di usare variabili allocate dinamicamente, non è possibile
+cioè definire in fase di programmazione una variabile le cui dimensioni
+possano essere modificate durante l'esecuzione del programma. Per questo le
+librerie del C forniscono una serie opportuna di funzioni per eseguire
+l'allocazione dinamica di memoria (in genere nello heap). Le variabili il
+cui contenuto è allocato in questo modo non potranno essere usate direttamente
+come le altre, ma l'accesso sarà possibile solo in maniera indiretta,
+attraverso dei puntatori.
+
+
+\subsection{Le funzioni \func{malloc}, \func{calloc}, \func{realloc} e
+  \func{free}}
+\label{sec:proc_mem_malloc}
+
+Le funzioni previste dallo standard ANSI C per la gestione della memoria sono
+quattro: \funcd{malloc}, \funcd{calloc}, \funcd{realloc} e \funcd{free}, i
+loro prototipi sono i seguenti:
+\begin{functions}
+\headdecl{stdlib.h}
+\funcdecl{void *calloc(size\_t size)}
+  Alloca \param{size} byte nello heap. La memoria viene inizializzata a 0.
+  
+  La funzione restituisce il puntatore alla zona di memoria allocata in caso
+  di successo e \val{NULL} in caso di fallimento, nel qual caso
+  \var{errno} assumerà il valore \errval{ENOMEM}.
+\funcdecl{void *malloc(size\_t size)}
+  Alloca \param{size} byte nello heap. La memoria non viene inizializzata.
+
+  La funzione restituisce il puntatore alla zona di memoria allocata in caso
+  di successo e \val{NULL} in caso di fallimento, nel qual caso
+  \var{errno} assumerà il valore \errval{ENOMEM}.
+\funcdecl{void *realloc(void *ptr, size\_t size)}
+  Cambia la dimensione del blocco allocato all'indirizzo \param{ptr}
+  portandola a \param{size}.
+
+  La funzione restituisce il puntatore alla zona di memoria allocata in caso
+  di successo e \val{NULL} in caso di fallimento, nel qual caso
+  \var{errno} assumerà il valore \errval{ENOMEM}.
+\funcdecl{void free(void *ptr)}
+  Disalloca lo spazio di memoria puntato da \param{ptr}.
+
+  La funzione non ritorna nulla e non riporta errori.
+\end{functions}
+Il puntatore ritornato dalle funzioni di allocazione è garantito essere sempre
+allineato correttamente per tutti i tipi di dati; ad esempio sulle macchine a
+32 bit in genere è allineato a multipli di 4 byte e sulle macchine a 64 bit a
+multipli di 8 byte.
+
+In genere si usano le funzioni \func{malloc} e \func{calloc} per allocare
+dinamicamente la quantità di memoria necessaria al programma indicata da
+\param{size},\footnote{queste funzioni presentano un comportamento diverso fra
+  le \acr{glibc} e le \acr{uClib} quando il valore di \param{size} è nullo.
+  Nel primo caso viene comunque restituito un puntatore valido, anche se non è
+  chiaro a cosa esso possa fare riferimento, nel secondo caso viene restituito
+  \val{NULL}. Il comportamento è analogo con \code{realloc(NULL, 0)}.} e
+siccome i puntatori ritornati sono di tipo generico non è necessario
+effettuare un cast per assegnarli a puntatori al tipo di variabile per la
+quale si effettua l'allocazione.
+
+La memoria allocata dinamicamente deve essere esplicitamente rilasciata usando
+\func{free}\footnote{le glibc provvedono anche una funzione \func{cfree}
+  definita per compatibilità con SunOS, che è deprecata.} una volta che non
+sia più necessaria. Questa funzione vuole come parametro un puntatore
+restituito da una precedente chiamata a una qualunque delle funzioni di
+allocazione che non sia già stato liberato da un'altra chiamata a \func{free},
+in caso contrario il comportamento della funzione è indefinito.
+
+La funzione \func{realloc} si usa invece per cambiare (in genere aumentare) la
+dimensione di un'area di memoria precedentemente allocata, la funzione vuole
+in ingresso il puntatore restituito dalla precedente chiamata ad una
+\func{malloc} (se è passato un valore \val{NULL} allora la funzione si
+comporta come \func{malloc})\footnote{questo è vero per Linux e
+  l'implementazione secondo lo standard ANSI C, ma non è vero per alcune
+  vecchie implementazioni, inoltre alcune versioni delle librerie del C
+  consentivano di usare \func{realloc} anche per un puntatore liberato con
+  \func{free} purché non ci fossero state nel frattempo altre chiamate a
+  funzioni di allocazione, questa funzionalità è totalmente deprecata e non è
+  consentita sotto Linux.} ad esempio quando si deve far crescere la
+dimensione di un vettore. In questo caso se è disponibile dello spazio
+adiacente al precedente la funzione lo utilizza, altrimenti rialloca altrove
+un blocco della dimensione voluta, copiandoci automaticamente il contenuto; lo
+spazio aggiunto non viene inizializzato.
+
+Si deve sempre avere ben presente il fatto che il blocco di memoria restituito
+da \func{realloc} può non essere un'estensione di quello che gli si è passato
+in ingresso; per questo si dovrà \emph{sempre} eseguire la riassegnazione di
+\param{ptr} al valore di ritorno della funzione, e reinizializzare o provvedere
+ad un adeguato aggiornamento di tutti gli altri puntatori all'interno del
+blocco di dati ridimensionato.
+
+Un errore abbastanza frequente (specie se si ha a che fare con vettori di
+puntatori) è quello di chiamare \func{free} più di una volta sullo stesso
+puntatore; per evitare questo problema una soluzione di ripiego è quella di
+assegnare sempre a \val{NULL} ogni puntatore liberato con \func{free}, dato
+che, quando il parametro è un puntatore nullo, \func{free} non esegue nessuna
+operazione.
+
+Le \acr{glibc} hanno un'implementazione delle routine di allocazione che è
+controllabile dall'utente attraverso alcune variabili di ambiente, in
+particolare diventa possibile tracciare questo tipo di errori usando la
+variabile di ambiente \val{MALLOC\_CHECK\_} che quando viene definita mette in
+uso una versione meno efficiente delle funzioni suddette, che però è più
+tollerante nei confronti di piccoli errori come quello di chiamate doppie a
+\func{free}.  In particolare:
+\begin{itemize}
+\item se la variabile è posta a zero gli errori vengono ignorati.
+\item se è posta ad 1 viene stampato un avviso sullo \textit{standard error}
+  (vedi \secref{sec:file_std_stream}).
+\item se è posta a 2 viene chiamata \func{abort}, che in genere causa
+  l'immediata conclusione del programma.
+\end{itemize}
+
+Il problema più comune e più difficile da risolvere che si incontra con le
+routine di allocazione è quando non viene opportunamente liberata la memoria
+non più utilizzata, quello che in inglese viene chiamato \textit{memory
+  leak}\index{memory leak}, cioè una \textsl{perdita di memoria}.
+
+Un caso tipico che illustra il problema è quello in cui in una subroutine si
+alloca della memoria per uso locale senza liberarla prima di uscire. La
+memoria resta così allocata fino alla terminazione del processo.  Chiamate
+ripetute alla stessa subroutine continueranno ad effettuare altre allocazioni,
+causando a lungo andare un esaurimento della memoria disponibile (e la
+probabile impossibilità di proseguire l'esecuzione del programma).
+
+Il problema è che l'esaurimento della memoria può avvenire in qualunque
+momento, in corrispondenza ad una qualunque chiamata di \func{malloc}, che può
+essere in una sezione del codice che non ha alcuna relazione con la subroutine
+che contiene l'errore. Per questo motivo è sempre molto difficile trovare un
+\textit{memory leak}\index{memory leak}.
+
+In C e C++ il problema è particolarmente sentito. In C++, per mezzo della
+programmazione ad oggetti, il problema dei \textit{memory leak} è notevolmente
+ridimensionato attraverso l'uso accurato di appositi oggetti come gli
+\textit{smartpointers}.  Questo però va a scapito delle performance
+dell'applicazione in esecuzione.
+
+In altri linguaggi come il java e recentemente il C\# il problema non si pone
+nemmeno perché la gestione della memoria viene fatta totalmente in maniera
+automatica, ovvero il programmatore non deve minimamente preoccuparsi di
+liberare la memoria allocata precedentemente quando non serve più, poiché il
+framework gestisce automaticamente la cosiddetta \textit{garbage collection}.
+In tal caso, attraverso meccanismi simili a quelli del \textit{reference
+  counting}, quando una zona di memoria precedentemente allocata non è più
+riferita da nessuna parte del codice in esecuzione, può essere deallocata
+automaticamente in qualunque momento dall'infrastruttura.
+
+Anche questo va a scapito delle performance dell'applicazione in esecuzione
+(inoltre le applicazioni sviluppate con tali linguaggi di solito non sono
+eseguibili compilati, come avviene invece per il C ed il C++, ed è necessaria
+la presenza di una infrastruttura per la loro interpretazione e pertanto hanno
+di per sé delle performance più scadenti rispetto alle stesse applicazioni
+compilate direttamente).  Questo comporta però il problema della non
+predicibilità del momento in cui viene deallocata la memoria precedentemente
+allocata da un oggetto.
+
+Per limitare l'impatto di questi problemi, e semplificare la ricerca di
+eventuali errori, l'implementazione delle routine di allocazione delle
+\acr{glibc} mette a disposizione una serie di funzionalità che permettono di
+tracciare le allocazioni e le disallocazione, e definisce anche una serie di
+possibili \textit{hook} (\textsl{ganci}) che permettono di sostituire alle
+funzioni di libreria una propria versione (che può essere più o meno
+specializzata per il debugging). Esistono varie librerie che forniscono dei
+sostituti opportuni delle routine di allocazione in grado, senza neanche
+ricompilare il programma,\footnote{esempi sono \textit{Dmalloc}
+  \href{http://dmalloc.com/}{http://dmalloc.com/} di Gray Watson ed
+  \textit{Electric Fence} di Bruce Perens.} di eseguire diagnostiche anche
+molto complesse riguardo l'allocazione della memoria.
+
+
+
+\subsection{La funzione \func{alloca}}  
+\label{sec:proc_mem_alloca}
+
+Una possibile alternativa all'uso di \func{malloc}, che non soffre dei
+problemi di \textit{memory leak}\index{memory leak} descritti in precedenza, è
+la funzione \funcd{alloca}, che invece di allocare la memoria nello heap usa
+il segmento di stack della funzione corrente. La sintassi è identica a quella
+di \func{malloc}, il suo prototipo è:
+\begin{prototype}{stdlib.h}{void *alloca(size\_t size)}
+  Alloca \param{size} byte nello stack.
+  
+  \bodydesc{La funzione restituisce il puntatore alla zona di memoria allocata
+    in caso di successo e \val{NULL} in caso di fallimento, nel qual caso
+    \var{errno} assumerà il valore \errval{ENOMEM}.}
+\end{prototype}
+
+La funzione alloca la quantità di memoria (non inizializzata) richiesta
+dall'argomento \param{size} nel segmento di stack della funzione chiamante.
+Con questa funzione non è più necessario liberare la memoria allocata (e
+quindi non esiste un analogo della \func{free}) in quanto essa viene
+rilasciata automaticamente al ritorno della funzione.
+
+Come è evidente questa funzione ha molti vantaggi, anzitutto permette di
+evitare alla radice i problemi di memory leak\index{memory leak}, dato che non
+serve più la deallocazione esplicita; inoltre la deallocazione automatica
+funziona anche quando si usa \func{longjmp} per uscire da una subroutine con
+un salto non locale da una funzione (vedi \secref{sec:proc_longjmp}).
+
+Un altro vantaggio è che in Linux la funzione è molto più veloce di
+\func{malloc} e non viene sprecato spazio, infatti non è necessario gestire un
+pool di memoria da riservare e si evitano così anche i problemi di
+frammentazione di quest'ultimo, che comportano inefficienze sia
+nell'allocazione della memoria che nell'esecuzione dell'allocazione.
+
+Gli svantaggi sono che questa funzione non è disponibile su tutti gli Unix, e
+non è inserita né nello standard POSIX né in SUSv3 (ma è presente in BSD), il
+suo utilizzo quindi limita la portabilità dei programmi. Inoltre la funzione
+non può essere usata nella lista degli argomenti di una funzione, perché lo
+spazio verrebbe allocato nel mezzo degli stessi.
+
+% Questo è riportato solo dal manuale delle glibc, nelle pagine di manuale non c'è 
+% traccia di tutto ciò
+%
+%Inoltre se si
+%cerca di allocare troppa memoria non si ottiene un messaggio di errore, ma un
+%segnale di \textit{segment violation} analogo a quello che si avrebbe da una
+%ricorsione infinita.
+
+Inoltre non è chiaramente possibile usare \func{alloca} per allocare memoria
+che deve poi essere usata anche al di fuori della funzione in cui essa viene
+chiamata, dato che all'uscita dalla funzione lo spazio allocato diventerebbe
+libero, e potrebbe essere sovrascritto all'invocazione di nuove funzioni.
+Questo è lo stesso problema che si può avere con le variabili automatiche, su
+cui torneremo in \secref{sec:proc_auto_var}.
+
+
+\subsection{Le funzioni \func{brk} e \func{sbrk}}  
+\label{sec:proc_mem_sbrk}
+
+Queste due funzioni vengono utilizzate soltanto quando è necessario effettuare
+direttamente la gestione della memoria associata allo spazio dati di un
+processo, ad esempio qualora si debba implementare la propria versione delle
+routine di allocazione della memoria viste in \secref{sec:proc_mem_malloc}. La
+prima funzione è \funcd{brk}, ed il suo prototipo è:
+\begin{prototype}{unistd.h}{int brk(void *end\_data\_segment)}
+  Sposta la fine del segmento dei dati.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    fallimento, nel qual caso \var{errno} assumerà il valore \errval{ENOMEM}.}
+\end{prototype}
+
+La funzione è un'interfaccia diretta all'omonima system call ed imposta
+l'indirizzo finale del segmento dati di un processo all'indirizzo specificato
+da \param{end\_data\_segment}. Quest'ultimo deve essere un valore ragionevole,
+ed inoltre la dimensione totale del segmento non deve comunque eccedere un
+eventuale limite (si veda \secref{sec:sys_resource_limit}) imposto sulle
+dimensioni massime dello spazio dati del processo.
+
+La seconda funzione per la manipolazione delle dimensioni del segmento
+dati\footnote{in questo caso si tratta soltanto di una funzione di libreria, e
+  non di una system call.} è \funcd{sbrk}, ed il suo prototipo è:
+\begin{prototype}{unistd.h}{void *sbrk(ptrdiff\_t increment)} 
+  Incrementa la dimensione dello spazio dati.
+  
+  \bodydesc{La funzione restituisce il puntatore all'inizio della nuova zona
+    di memoria allocata in caso di successo e \val{NULL} in caso di
+    fallimento, nel qual caso \var{errno} assumerà il valore \errval{ENOMEM}.}
+\end{prototype}
+\noindent la funzione incrementa la dimensione lo spazio dati di un programma
+di \param{increment} byte, restituendo il nuovo indirizzo finale dello stesso.
+Un valore nullo permette di ottenere l'attuale posizione della fine del
+segmento dati.
+
+Queste funzioni sono state deliberatamente escluse dallo standard POSIX.1 e
+per i programmi normali è sempre opportuno usare le funzioni di allocazione
+standard descritte in precedenza, che sono costruite su di esse. 
+
+
+% \subsection{La personalizzazione delle funzioni di allocazione} 
+% \label{sec:proc_mem_malloc_custom}
+
+
+\subsection{Il controllo della memoria virtuale\index{memoria virtuale}}  
+\label{sec:proc_mem_lock}
+
+Come spiegato in \secref{sec:proc_mem_gen} il kernel gestisce la memoria
+virtuale in maniera trasparente ai processi, decidendo quando rimuovere pagine
+dalla memoria per metterle nello swap, sulla base dell'utilizzo corrente da
+parte dei vari processi.
+
+Nell'uso comune un processo non deve preoccuparsi di tutto ciò, in quanto il
+meccanismo della paginazione\index{paginazione} riporta in RAM, ed in maniera
+trasparente, tutte le pagine che gli occorrono; esistono però esigenze
+particolari in cui non si vuole che questo meccanismo si attivi. In generale i
+motivi per cui si possono avere di queste necessità sono due:
+\begin{itemize}
+\item \textsl{La velocità}. Il processo della paginazione\index{paginazione} è
+  trasparente solo se il programma in esecuzione non è sensibile al tempo che
+  occorre a riportare la pagina in memoria; per questo motivo processi critici
+  che hanno esigenze di tempo reale o tolleranze critiche nelle risposte (ad
+  esempio processi che trattano campionamenti sonori) possono non essere in
+  grado di sopportare le variazioni della velocità di accesso dovuta alla
+  paginazione.
+  
+  In certi casi poi un programmatore può conoscere meglio dell'algoritmo di
+  allocazione delle pagine le esigenze specifiche del suo programma e decidere
+  quali pagine di memoria è opportuno che restino in memoria per un aumento
+  delle prestazioni. In genere queste sono esigenze particolari e richiedono
+  anche un aumento delle priorità in esecuzione del processo (vedi
+  \secref{sec:proc_real_time}).
+  
+\item \textsl{La sicurezza}. Se si hanno password o chiavi segrete in chiaro
+  in memoria queste possono essere portate su disco dal meccanismo della
+  paginazione\index{paginazione}. Questo rende più lungo il periodo di tempo
+  in cui detti segreti sono presenti in chiaro e più complessa la loro
+  cancellazione (un processo può cancellare la memoria su cui scrive le sue
+  variabili, ma non può toccare lo spazio disco su cui una pagina di memoria
+  può essere stata salvata). Per questo motivo di solito i programmi di
+  crittografia richiedono il blocco di alcune pagine di memoria.
+\end{itemize}
+
+Il meccanismo che previene la paginazione\index{paginazione} di parte della
+memoria virtuale di un processo è chiamato \textit{memory locking} (o
+\textsl{blocco della memoria}). Il blocco è sempre associato alle pagine della
+memoria virtuale del processo, e non al segmento reale di RAM su cui essa
+viene mantenuta.
+
+La regola è che se un segmento di RAM fa da supporto ad almeno una pagina
+bloccata allora esso viene escluso dal meccanismo della
+paginazione\index{paginazione}. I blocchi non si accumulano, se si blocca due
+volte la stessa pagina non è necessario sbloccarla due volte, una pagina o è
+bloccata oppure no.
 
-\section{La gestione della memoria}
-\label{sec:proc_mem_manag}
+Il \textit{memory lock} persiste fintanto che il processo che detiene la
+memoria bloccata non la sblocca. Chiaramente la terminazione del processo
+comporta anche la fine dell'uso della sua memoria virtuale, e quindi anche di
+tutti i suoi \textit{memory lock}.  Infine \textit{memory lock} non sono
+ereditati dai processi figli.\footnote{ma siccome Linux usa il \textit{copy on
+    write}\index{copy on write} (vedi \secref{sec:proc_fork}) gli indirizzi
+  virtuali del figlio sono mantenuti sullo stesso segmento di RAM del padre,
+  quindi fintanto che un figlio non scrive su un segmento, può usufruire del
+  memory lock del padre.}
 
+Siccome la richiesta di un \textit{memory lock} da parte di un processo riduce
+la memoria fisica disponibile nel sistema, questo ha un evidente impatto su
+tutti gli altri processi, per cui solo un processo con i privilegi di
+amministratore (vedremo in \secref{sec:proc_perms} cosa significa) ha la
+capacità di bloccare una pagina.  Ogni processo può però sbloccare le pagine
+relative alla propria memoria.
 
+Il sistema pone dei limiti all'ammontare di memoria di un processo che può
+essere bloccata e al totale di memoria fisica che si può dedicare a questo, lo
+standard POSIX.1 richiede che sia definita in \file{unistd.h} la macro
+\macro{\_POSIX\_MEMLOCK\_RANGE} per indicare la capacità di eseguire il
+\textit{memory locking} e la costante \const{PAGESIZE} in \file{limits.h} per
+indicare la dimensione di una pagina in byte.
 
-\section{Gestione di parametri e opzioni}
-\label{sec:parameter_options}
+Le funzioni per bloccare e sbloccare la paginazione\index{paginazione} di
+singole sezioni di memoria sono \funcd{mlock} e \funcd{munlock}; i loro
+prototipi sono:
+\begin{functions}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int mlock(const void *addr, size\_t len)}
+  Blocca la paginazione su un intervallo di memoria.
+
+  \funcdecl{int munlock(const void *addr, size\_t len)}
+  Rimuove il blocco della paginazione su un intervallo di memoria.
+
+  
+  \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 in
+    caso di errore, nel qual caso \var{errno} assumerà uno dei
+    valori seguenti:
+  \begin{errlist}
+  \item[\errcode{ENOMEM}] alcuni indirizzi dell'intervallo specificato non
+    corrispondono allo spazio di indirizzi del processo o si è ecceduto
+    il numero massimo consentito di pagine bloccate.
+  \item[\errcode{EINVAL}] \param{len} non è un valore positivo.
+  \end{errlist}
+  e, per \func{mlock}, anche \errval{EPERM} quando il processo non ha i
+  privilegi richiesti per l'operazione.}
+\end{functions}
+
+Le due funzioni permettono rispettivamente di bloccare e sbloccare la
+paginazione\index{paginazione} per l'intervallo di memoria specificato dagli
+argomenti, che ne indicano nell'ordine l'indirizzo iniziale e la lunghezza.
+Tutte le pagine che contengono una parte dell'intervallo bloccato sono
+mantenute in RAM per tutta la durata del blocco.
+
+Altre due funzioni, \funcd{mlockall} e \funcd{munlockall}, consentono di
+bloccare genericamente la paginazione\index{paginazione} per l'intero spazio
+di indirizzi di un processo.  I prototipi di queste funzioni sono:
+\begin{functions}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int mlockall(int flags)}
+  Blocca la paginazione per lo spazio di indirizzi del processo corrente. 
+  
+  \funcdecl{int munlockall(void)}
+  Sblocca la paginazione per lo spazio di indirizzi del processo corrente. 
+  
+  \bodydesc{Codici di ritorno ed errori sono gli stessi di \func{mlock}
+    e \func{munlock}.}
+\end{functions}
+
+L'argomento \param{flags} di \func{mlockall} permette di controllarne il
+comportamento; esso può essere specificato come l'OR aritmetico delle due
+costanti: 
+\begin{basedescript}{\desclabelwidth{2.5cm}}
+\item[\const{MCL\_CURRENT}] blocca tutte le pagine correntemente mappate nello
+  spazio di indirizzi del processo.
+\item[\const{MCL\_FUTURE}] blocca tutte le pagine che verranno mappate nello
+  spazio di indirizzi del processo.
+\end{basedescript}
+
+Con \func{mlockall} si possono bloccare tutte le pagine mappate nello spazio
+di indirizzi del processo, sia che comprendano il segmento di testo, di dati,
+lo stack, lo heap e pure le funzioni di libreria chiamate, i file mappati in
+memoria, i dati del kernel mappati in user space, la memoria condivisa.  L'uso
+dei flag permette di selezionare con maggior finezza le pagine da bloccare, ad
+esempio limitandosi a tutte le pagine allocate a partire da un certo momento.
+
+In ogni caso un processo real-time che deve entrare in una sezione critica
+deve provvedere a riservare memoria sufficiente prima dell'ingresso, per
+scongiurare l'occorrenza di un eventuale \textit{page fault}\index{page fault}
+causato dal meccanismo di \textit{copy on write}\index{copy on write}.
+Infatti se nella sezione critica si va ad utilizzare memoria che non è ancora
+stata riportata in RAM si potrebbe avere un page fault durante l'esecuzione
+della stessa, con conseguente rallentamento (probabilmente inaccettabile) dei
+tempi di esecuzione.
+
+In genere si ovvia a questa problematica chiamando una funzione che ha
+allocato una quantità sufficientemente ampia di variabili automatiche, in modo
+che esse vengano mappate in RAM dallo stack, dopo di che, per essere sicuri
+che esse siano state effettivamente portate in memoria, ci si scrive sopra.
+
+
+
+\section{Parametri, opzioni ed ambiente di un processo}
+\label{sec:proc_options}
+
+Tutti i programmi hanno la possibilità di ricevere parametri e opzioni quando
+vengono lanciati. Il passaggio dei parametri è effettuato attraverso gli
+argomenti \param{argc} e \param{argv} della funzione \func{main}, che vengono
+passati al programma dalla shell (o dal processo che esegue la \func{exec},
+secondo le modalità che vedremo in \secref{sec:proc_exec}) quando questo viene
+messo in esecuzione. 
+
+Oltre al passaggio dei parametri, un'altra modalità che permette di passare
+delle informazioni che modifichino il comportamento di un programma è quello
+dell'uso del cosiddetto \textit{environment} (cioè l'uso delle
+\textsl{variabili di ambiente}). In questa sezione esamineremo le funzioni che
+permettono di gestire parametri ed opzioni, e quelle che consentono di
+manipolare ed utilizzare le variabili di ambiente.
 
-Il passaggio dei parametri e delle variabili di ambiente dalla riga di comando
-al singolo programma quando viene lanciato è effettuato attraverso le
-variabili \texttt{argc}, \texttt{argv} che vengono passate al programma
-come argomenti della funzione principale:
 
 \subsection{Il formato dei parametri}
 \label{sec:proc_par_format}
 In genere passaggio dei parametri al programma viene effettuato dalla shell,
 che si incarica di leggere la linea di comando e di effettuarne la scansione
 (il cosiddetto \textit{parsing}) per individuare le parole che la compongono,
-ciascuna delle quali viene considerata un parametro; di default per
-individuare le parole viene usato come separatore lo spazio (comportamento
-modificabile attraverso il settaggio della variabile di ambiente IFS).
+ciascuna delle quali viene considerata un parametro. Di norma per individuare
+le parole viene usato come carattere di separazione lo spazio o il tabulatore,
+ma il comportamento è modificabile attraverso l'impostazione della variabile
+di ambiente \cmd{IFS}.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=11cm]{img/argv_argc}
+  \caption{Esempio dei valori di \param{argv} e \param{argc} generati nella 
+    scansione di una riga di comando.}
+  \label{fig:proc_argv_argc}
+\end{figure}
 
-Nella scansione viene costruito l'array di puntatori \texttt{argv} inserendo
+Nella scansione viene costruito il vettore di puntatori \param{argv} inserendo
 in successione il puntatore alla stringa costituente l'$n$-simo parametro; la
-variabile \texttt{argc} viene inizializzata al numero di parametri trovati, in
-questo modo il primo parametro è sempre il nome del programma (vedi \nfig).
+variabile \param{argc} viene inizializzata al numero di parametri trovati, in
+questo modo il primo parametro è sempre il nome del programma; un esempio di
+questo meccanismo è mostrato in \figref{fig:proc_argv_argc}.
+
 
 \subsection{La gestione delle opzioni}
 \label{sec:proc_opt_handling}
 
-In generale un programma unix riceve da linea di comando sia i parametri che
+In generale un programma Unix riceve da linea di comando sia gli argomenti che
 le opzioni, queste ultime sono standardizzate per essere riconosciute come
-tali: un elemento di \texttt{argv} che inizia con \texttt{-} e che non sia un
-singolo \texttt{-} o \texttt{--} viene considerato un'opzione.  In in genere
-le opzioni sono costituite da un lettera preceduta dal meno e possono avere o
-no un parametro associato; un comando tipico può essere cioè qualcosa del
-tipo:
-\begin{verbatim}
-touch -r riferimento.txt -m questofile.txt
-\end{verbatim}
-ed in questo caso le opzioni sono \texttt{m} ed \texttt{r}.
-
-Per gestire le opzioni all'interno dei parametri passati in \texttt{argv} le
-librerie standard del C forniscono la funzione \texttt{getopt} (accessibile
-includendo \texttt{unistd.h}), che ha il prototipo:
-\begin{verbatim}
-int getopt(int argc, char * const argv[], const char * optstring);
-\end{verbatim}
-
-Questa funzione prende come argomenti le due variabili \texttt{argc} e
-\texttt{argv} ed una stringa che indica quali sono le opzioni valide; la
-funzione effettua la scansione della lista dei parametri ricercando ogni
-stringa che comincia con \texttt{-} e ritorna ogni volta che trova una opzione
-valida.
-
-La stringa \texttt{optstring} indica quali sono le opzioni riconosciute ed è
-costituita da tutti i caratteri usati per identificare le singole opzioni, se
-l'opzione ha un parametro al carattere deve essere fatto seguire un segno di
-due punti \texttt{:} nel caso appena accennato ad esempio la stringa di
-opzioni sarebbe \texttt{"r:m"}.
+tali: un elemento di \param{argv} che inizia con il carattere \texttt{'-'} e
+che non sia un singolo \texttt{'-'} o un \texttt{'--'} viene considerato
+un'opzione.  In genere le opzioni sono costituite da una lettera singola
+(preceduta dal carattere \cmd{'-'}) e possono avere o no un parametro
+associato; un comando tipico può essere quello mostrato in
+\figref{fig:proc_argv_argc}. In quel caso le opzioni sono \cmd{-r} e \cmd{-m}
+e la prima vuole un parametro mentre la seconda no (\cmd{questofile.txt} è un
+argomento del programma, non un parametro di \cmd{-m}).
 
-La modalità di uso è pertanto quella di chiamare più volte la funzione
-all'interno di un ciclo di while fintanto che essa non ritorna il valore
-\texttt{-1} che indica che non ci sono più opzioni. Nel caso si incontri
-un'opzione non dichiarata in \texttt{optstring} viene ritornato un \texttt{?}
-mentre se l'opzione non è seguita da un parametro viene ritornato un
-\texttt{:} infine se viene incontrato il valore \texttt{--} la scansione viene
-considerata conclusa.
+Per gestire le opzioni all'interno dei argomenti a linea di comando passati in
+\param{argv} le librerie standard del C forniscono la funzione \funcd{getopt},
+che ha il seguente prototipo:
+\begin{prototype}{unistd.h}
+{int getopt(int argc, char *const argv[], const char *optstring)}
+Esegue il parsing degli argomenti passati da linea di comando
+riconoscendo le possibili opzioni segnalate con \param{optstring}.
 
-Quando la funzione trova un'opzione essa ritorna il valore numerico del
-carattere, in questo modo si possono prendere le azioni relative usando un
-case; la funzione inizializza inoltre alcune varibili globali:
-\begin{itemize}
-\item \texttt{char * optarg} contiene il puntatore alla stringa argomento
-  dell'opzione.
-\item \texttt{int optind} alla fine della scansione restituisce l'indice del
-  primo argomento che non è un'opzione.
-\item \texttt{int opterr} previene, se posto a zero, la stampa di un messaggio
-  di errore in caso di riconoscimento di opzioni non definite.
-\item \texttt{int optopt} contiene il carattere dell'opzione non riconosciuta.
-\end{itemize}
+\bodydesc{Ritorna il carattere che segue l'opzione, \cmd{':'} se manca un
+  parametro all'opzione, \cmd{'?'} se l'opzione è sconosciuta, e -1 se non
+  esistono altre opzioni.}
+\end{prototype}
 
-In \nfig è mostrato un programma di esempio, 
+Questa funzione prende come argomenti le due variabili \param{argc} e
+\param{argv} passate a \func{main} ed una stringa che indica quali sono le
+opzioni valide; la funzione effettua la scansione della lista degli argomenti
+ricercando ogni stringa che comincia con \cmd{-} e ritorna ogni volta che
+trova un'opzione valida.
+
+La stringa \param{optstring} indica quali sono le opzioni riconosciute ed è
+costituita da tutti i caratteri usati per identificare le singole opzioni, se
+l'opzione ha un parametro al carattere deve essere fatto seguire un segno di
+due punti \texttt{':'}; nel caso di \figref{fig:proc_argv_argc} ad esempio la
+stringa di opzioni avrebbe dovuto contenere \texttt{"r:m"}.
 
+La modalità di uso di \func{getopt} è pertanto quella di chiamare più volte la
+funzione all'interno di un ciclo, fintanto che essa non ritorna il valore -1
+che indica che non ci sono più opzioni. Nel caso si incontri un'opzione non
+dichiarata in \param{optstring} viene ritornato il carattere \texttt{'?'}
+mentre se un opzione che lo richiede non è seguita da un parametro viene
+ritornato il carattere \texttt{':'}, infine se viene incontrato il valore
+\texttt{'--'} la scansione viene considerata conclusa, anche se vi sono altri
+elementi di \param{argv} che cominciano con il carattere \texttt{'-'}.
 
-\begin{figure}[htbp]
+\begin{figure}[htb]
   \footnotesize
     \begin{lstlisting}{}
     opterr = 0;  /* don't want writing to stderr */
-    while ( (i = getopt(argc, argv, "o:a:i:hve")) != -1) {
+    while ( (i = getopt(argc, argv, "hp:c:e:")) != -1) {
         switch (i) {
-        case 'i':   /* input file */
-            in_file=open(optarg,O_RDONLY);
-            if (in_file<0) {
-                perror("Cannot open input file");
-                exit(1);
-            }
-            break;
-        case 'o':   /* output file (overwrite) */
-            out_file=open(optarg,O_WRONLY|O_CREAT);
-            if (out_file<0) {
-                perror("Cannot open output file");
-                exit(1);
-            }
-            break;
+        /* 
+         * Handling options 
+         */ 
+        case 'h':   /* help option */
+            printf("Wrong -h option use\n");
+            usage();
+            return -1;
             break;
-        case 'a':   /* output file (append) */
-            out_file=open(optarg,O_WRONLY|O_CREAT|O_APPEND);
+        case 'c':   /* take wait time for children */
+            wait_child = strtol(optarg, NULL, 10);    /* convert input */
             break;
-        case 'h':   /* print help usage */
-            usage();
+        case 'p':   /* take wait time for children */
+            wait_parent = strtol(optarg, NULL, 10);   /* convert input */
             break;
-        case 'v':   /* set verbose mode */
-            debug("Option -v active\n");
-            verbose=1;
+        case 'e':   /* take wait before parent exit */
+            wait_end = strtol(optarg, NULL, 10);      /* convert input */
             break;
         case '?':   /* unrecognized options */
             printf("Unrecognized options -%c\n",optopt);
             usage();
         default:    /* should not reached */
-            debug("default option\n");
             usage();
         }
     }
@@ -159,18 +996,656 @@ In \nfig 
   \label{fig:proc_options_code}
 \end{figure}
 
+Quando la funzione trova un'opzione essa ritorna il valore numerico del
+carattere, in questo modo si possono eseguire azioni specifiche usando uno
+\code{switch}; \func{getopt} inoltre inizializza alcune variabili globali:
+\begin{itemize*}
+\item \var{char *optarg} contiene il puntatore alla stringa parametro
+  dell'opzione.
+\item \var{int optind} alla fine della scansione restituisce l'indice del
+  primo elemento di \param{argv} che non è un'opzione.
+\item \var{int opterr} previene, se posto a zero, la stampa di un messaggio
+  di errore in caso di riconoscimento di opzioni non definite.
+\item \var{int optopt} contiene il carattere dell'opzione non riconosciuta.
+\end{itemize*}
+
+In \figref{fig:proc_options_code} è mostrata la sezione del programma
+\file{ForkTest.c} (che useremo nel prossimo capitolo per effettuare dei test
+sulla creazione dei processi) deputata alla decodifica delle opzioni a riga di
+comando. 
+
+Si può notare che si è anzitutto (\texttt{\small 1}) disabilitata la stampa di
+messaggi di errore per opzioni non riconosciute, per poi passare al ciclo per
+la verifica delle opzioni (\texttt{\small 2-27}); per ciascuna delle opzioni
+possibili si è poi provveduto ad un'azione opportuna, ad esempio per le tre
+opzioni che prevedono un parametro si è effettuata la decodifica del medesimo
+(il cui indirizzo è contenuto nella variabile \var{optarg}) avvalorando la
+relativa variabile (\texttt{\small 12-14}, \texttt{\small 15-17} e
+\texttt{\small 18-20}). Completato il ciclo troveremo in \var{optind} l'indice
+in \code{argv[]} del primo degli argomenti rimanenti nella linea di comando.
+
+Normalmente \func{getopt} compie una permutazione degli elementi di
+\param{argv} cosicché alla fine della scansione gli elementi che non sono
+opzioni sono spostati in coda al vettore. Oltre a questa esistono altre due
+modalità di gestire gli elementi di \param{argv}; se \param{optstring} inizia
+con il carattere \texttt{'+'} (o è impostata la variabile di ambiente
+\macro{POSIXLY\_CORRECT}) la scansione viene fermata non appena si incontra un
+elemento che non è un'opzione. L'ultima modalità, usata quando un programma
+può gestire la mescolanza fra opzioni e argomenti, ma se li aspetta in un
+ordine definito, si attiva quando \param{optstring} inizia con il carattere
+\texttt{'-'}. In questo caso ogni elemento che non è un'opzione viene
+considerato comunque un'opzione e associato ad un valore di ritorno pari ad 1,
+questo permette di identificare gli elementi che non sono opzioni, ma non
+effettua il riordinamento del vettore \param{argv}.
+
+
 \subsection{Opzioni in formato esteso}
 \label{sec:proc_opt_extended}
 
 Un'estensione di questo schema è costituito dalle cosiddette
-\textit{long-options} espresse nella forma \texttt{--option=parameter}, anche
-la gestione di queste ultime è stata standardizzata attraverso l'uso di una
-versione estesa di \texttt{getopt}.
+\textit{long-options} espresse nella forma \cmd{--option=parameter}, anche la
+gestione di queste ultime è stata standardizzata attraverso l'uso di una
+versione estesa di \func{getopt}.
+
+(NdA: da finire).
 
 
 \subsection{Le variabili di ambiente}
-\label{sec:proc_env_var}
+\label{sec:proc_environ}
+
+Oltre agli argomenti passati a linea di comando ogni processo riceve dal
+sistema un \textsl{ambiente}, nella forma di una lista di variabili (detta
+\textit{environment list}) messa a disposizione dal processo, e costruita
+nella chiamata alla funzione \func{exec} quando questo viene lanciato.
+
+Come per la lista dei parametri anche questa lista è un vettore di puntatori a
+caratteri, ciascuno dei quali punta ad una stringa, terminata da un
+\val{NULL}. A differenza di \code{argv[]} in questo caso non si ha una
+lunghezza del vettore data da un equivalente di \param{argc}, ma la lista è
+terminata da un puntatore nullo.
+
+L'indirizzo della lista delle variabili di ambiente è passato attraverso la
+variabile globale \var{environ}, a cui si può accedere attraverso una semplice
+dichiarazione del tipo:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+extern char ** environ;
+\end{lstlisting}
+un esempio della struttura di questa lista, contenente alcune delle variabili
+più comuni che normalmente sono definite dal sistema, è riportato in
+\figref{fig:proc_envirno_list}.
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=11cm]{img/environ_var}
+  \caption{Esempio di lista delle variabili di ambiente.}
+  \label{fig:proc_envirno_list}
+\end{figure}
+
+Per convenzione le stringhe che definiscono l'ambiente sono tutte del tipo
+\textsl{\texttt{nome=valore}}.  Inoltre alcune variabili, come quelle elencate
+in \figref{fig:proc_envirno_list}, sono definite dal sistema per essere usate
+da diversi programmi e funzioni: per queste c'è l'ulteriore convenzione di
+usare nomi espressi in caratteri maiuscoli.\footnote{la convenzione vuole che
+  si usino dei nomi maiuscoli per le variabili di ambiente di uso generico, i
+  nomi minuscoli sono in genere riservati alle variabili interne degli script
+  di shell.}
+
+Il kernel non usa mai queste variabili, il loro uso e la loro interpretazione è
+riservata alle applicazioni e ad alcune funzioni di libreria; in genere esse
+costituiscono un modo comodo per definire un comportamento specifico senza
+dover ricorrere all'uso di opzioni a linea di comando o di file di
+configurazione. É di norma cura della shell, quando esegue un comando, passare
+queste variabili al programma messo in esecuzione attraverso un uso opportuno
+delle relative chiamate (si veda \secref{sec:proc_exec}).
+
+La shell ad esempio ne usa molte per il suo funzionamento (come \var{PATH} per
+la ricerca dei comandi, o \cmd{IFS} per la scansione degli argomenti), e
+alcune di esse (come \var{HOME}, \var{USER}, etc.) sono definite al login (per
+i dettagli si veda \secref{sec:sess_login}). In genere è cura
+dell'amministratore definire le opportune variabili di ambiente in uno script
+di avvio. Alcune servono poi come riferimento generico per molti programmi
+(come \var{EDITOR} che indica l'editor preferito da invocare in caso di
+necessità).
+
+Gli standard POSIX e XPG3 definiscono alcune di queste variabili (le più
+comuni), come riportato in \tabref{tab:proc_env_var}. GNU/Linux le supporta
+tutte e ne definisce anche altre: per una lista più completa si può
+controllare \cmd{man environ}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|c|p{7cm}|}
+    \hline
+    \textbf{Variabile} & \textbf{POSIX} & \textbf{XPG3} 
+    & \textbf{Linux} & \textbf{Descrizione} \\
+    \hline
+    \hline
+    \val{USER} & $\bullet$ & $\bullet$ & $\bullet$ & Nome utente\\
+    \val{LOGNAME} & $\bullet$ & $\bullet$ & $\bullet$ & Nome di login\\
+    \val{HOME} & $\bullet$ & $\bullet$ & $\bullet$ & 
+    Directory base dell'utente\\
+    \val{LANG} & $\bullet$ & $\bullet$ & $\bullet$ & Localizzazione\\
+    \val{PATH} & $\bullet$ & $\bullet$ & $\bullet$ & Elenco delle directory
+                                                     dei programmi\\
+    \val{PWD} & $\bullet$ & $\bullet$ & $\bullet$ & Directory corrente\\
+    \val{SHELL} & $\bullet$ & $\bullet$ & $\bullet$ & Shell in uso\\
+    \val{TERM} & $\bullet$ & $\bullet$ & $\bullet$ & Tipo di terminale\\
+    \val{PAGER} & $\bullet$ & $\bullet$ & $\bullet$ & Programma per vedere i
+                                                      testi\\
+    \val{EDITOR} & $\bullet$ & $\bullet$ & $\bullet$ & Editor preferito\\
+    \val{BROWSER} & $\bullet$ & $\bullet$ & $\bullet$ & Browser preferito\\
+    \val{TMPDIR} & $\bullet$ & $\bullet$ & $\bullet$ & Directory dei file
+                                                       temporanei\\
+    \hline
+  \end{tabular}
+  \caption{Esempi delle variabili di ambiente più comuni definite da vari
+    standard.} 
+  \label{tab:proc_env_var}
+\end{table}
+
+Lo standard ANSI C prevede l'esistenza di un ambiente, e pur non entrando
+nelle specifiche di come sono strutturati i contenuti, definisce la funzione
+\funcd{getenv} che permette di ottenere i valori delle variabili di ambiente;
+il suo prototipo è:
+\begin{prototype}{stdlib.h}{char *getenv(const char *name)}
+  Esamina l'ambiente del processo cercando una stringa che corrisponda a
+  quella specificata da \param{name}. 
+  
+  \bodydesc{La funzione ritorna \val{NULL} se non trova nulla, o il
+    puntatore alla stringa che corrisponde (di solito nella forma
+    \cmd{NOME=valore}).}
+\end{prototype}
+
+Oltre a questa funzione di lettura, che è l'unica definita dallo standard ANSI
+C, nell'evoluzione dei sistemi Unix ne sono state proposte altre, da
+utilizzare per impostare e per cancellare le variabili di ambiente. Uno schema
+delle funzioni previste nei vari standard e disponibili in Linux è riportato
+in \tabref{tab:proc_env_func}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|c|c|c|c|}
+    \hline
+    \textbf{Funzione} & \textbf{ANSI C} & \textbf{POSIX.1} & \textbf{XPG3} & 
+    \textbf{SVr4} & \textbf{BSD} & \textbf{Linux} \\
+    \hline
+    \hline
+    \func{getenv} & $\bullet$ &  $\bullet$ & $\bullet$ & 
+      $\bullet$ & $\bullet$ & $\bullet$ \\
+    \func{setenv} &   &   &    & 
+        & $\bullet$ & $\bullet$ \\
+    \func{unsetenv} &  &   &    & 
+        & $\bullet$ & $\bullet$ \\
+    \func{putenv} &  & opz.  & $\bullet$ & 
+        & $\bullet$ & $\bullet$ \\
+    \func{clearenv} &  & opz.  &    & 
+        &  &  $\bullet$ \\
+    \hline
+  \end{tabular}
+  \caption{Funzioni per la gestione delle variabili di ambiente.}
+  \label{tab:proc_env_func}
+\end{table}
+
+In Linux\footnote{in realtà nelle libc4 e libc5 sono definite solo le prime
+  quattro, \func{clearenv} è stata introdotta con le \acr{glibc} 2.0.} sono
+definite tutte le funzioni elencate in \tabref{tab:proc_env_func}. La prima,
+\func{getenv}, l'abbiamo appena esaminata; delle restanti le prime due,
+\funcd{putenv} e \funcd{setenv}, servono per assegnare nuove variabili di
+ambiente, i loro prototipi sono i seguenti:
+\begin{functions}
+  \headdecl{stdlib.h} 
+  
+  \funcdecl{int setenv(const char *name, const char *value, int overwrite)}
+  Imposta la variabile di ambiente \param{name} al valore \param{value}.
+  
+  \funcdecl{int putenv(char *string)} Aggiunge la stringa \param{string}
+  all'ambiente.
+  
+  \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 per un
+    errore, che è sempre \errval{ENOMEM}.}
+\end{functions}
+\noindent la terza, \funcd{unsetenv}, serve a cancellare una variabile di
+ambiente; il suo prototipo è:
+\begin{functions}
+  \headdecl{stdlib.h}
+  
+  \funcdecl{void unsetenv(const char *name)} Rimuove la variabile di ambiente
+  \param{name}.
+\end{functions}
+\noindent questa funzione elimina ogni occorrenza della variabile specificata;
+se essa non esiste non succede nulla. Non è prevista (dato che la funzione è
+\ctyp{void}) nessuna segnalazione di errore.
+
+Per modificare o aggiungere una variabile di ambiente si possono usare sia
+\func{setenv} che \func{putenv}. La prima permette di specificare
+separatamente nome e valore della variabile di ambiente, inoltre il valore di
+\param{overwrite} specifica il comportamento della funzione nel caso la
+variabile esista già, sovrascrivendola se diverso da zero, lasciandola
+immutata se uguale a zero.
+
+La seconda funzione prende come parametro una stringa analoga quella
+restituita da \func{getenv}, e sempre nella forma \code{NOME=valore}. Se la
+variabile specificata non esiste la stringa sarà aggiunta all'ambiente, se
+invece esiste il suo valore sarà impostato a quello specificato da
+\param{string}. Si tenga presente che, seguendo lo standard SUSv2, le
+\acr{glibc} successive alla versione 2.1.2 aggiungono\footnote{il
+  comportamento è lo stesso delle vecchie \acr{libc4} e \acr{libc5}; nelle
+  \acr{glibc}, dalla versione 2.0 alla 2.1.1, veniva invece fatta una copia,
+  seguendo il comportamento di BSD4.4; dato che questo può dar luogo a perdite
+  di memoria e non rispetta lo standard. Il comportamento è stato modificato a
+  partire dalle 2.1.2, eliminando anche, sempre in conformità a SUSv2,
+  l'attributo \ctyp{const} dal prototipo.} \param{string} alla lista delle
+variabili di ambiente; pertanto ogni cambiamento alla stringa in questione si
+riflette automaticamente sull'ambiente, e quindi si deve evitare di passare a
+questa funzione una variabile automatica (per evitare i problemi esposti in
+\secref{sec:proc_auto_var}).
+
+Si tenga infine presente che se si passa a \func{putenv} solo il nome di una
+variabile (cioè \param{string} è nella forma \texttt{NAME} e non contiene un
+carattere \texttt{'='}) allora questa viene cancellata dall'ambiente. Infine
+se la chiamata di \func{putenv} comporta la necessità di allocare una nuova
+versione del vettore \var{environ} questo sarà allocato, ma la versione
+corrente sarà deallocata solo se anch'essa è risultante da un'allocazione
+fatta in precedenza da un'altra \func{putenv}. Questo perché il vettore delle
+variabili di ambiente iniziale, creato dalla chiamata ad \func{exec} (vedi
+\secref{sec:proc_exec}) è piazzato al di sopra dello stack, (vedi
+\figref{fig:proc_mem_layout}) e non nello heap e non può essere deallocato.
+Inoltre la memoria associata alle variabili di ambiente eliminate non viene
+liberata.
+
+L'ultima funzione è \funcd{clearenv}, che viene usata per cancellare
+completamente tutto l'ambiente; il suo prototipo è:
+\begin{functions}
+  \headdecl{stdlib.h}
+  
+  \funcdecl{int clearenv(void)} 
+  Cancella tutto l'ambiente.
+  
+  \bodydesc{la funzione restituisce 0 in caso di successo e un valore diverso
+    da zero per un errore.}
+\end{functions}
+
+In genere si usa questa funzione in maniera precauzionale per evitare i
+problemi di sicurezza connessi nel trasmettere ai programmi che si invocano un
+ambiente che può contenere dei dati non controllati. In tal caso si provvede
+alla cancellazione di tutto l'ambiente per costruirne una versione
+``\textsl{sicura}'' da zero.
+
+
+\section{Problematiche di programmazione generica}
+\label{sec:proc_gen_prog}
+
+Benché questo non sia un libro di C, è opportuno affrontare alcune delle
+problematiche generali che possono emergere nella programmazione e di quali
+precauzioni o accorgimenti occorre prendere per risolverle. Queste
+problematiche non sono specifiche di sistemi unix-like o multitasking, ma
+avendo trattato in questo capitolo il comportamento dei processi visti come
+entità a sé stanti, le riportiamo qui.
+
+
+\subsection{Il passaggio delle variabili e dei valori di ritorno}
+\label{sec:proc_var_passing}
+
+Una delle caratteristiche standard del C è che le variabili vengono passate
+alle subroutine attraverso un meccanismo che viene chiamato \textit{by value}
+(diverso ad esempio da quanto avviene con il Fortran, dove le variabili sono
+passate, come suol dirsi, \textit{by reference}, o dal C++ dove la modalità
+del passaggio può essere controllata con l'operatore \cmd{\&}).
+
+Il passaggio di una variabile \textit{by value} significa che in realtà quello
+che viene passato alla subroutine è una copia del valore attuale di quella
+variabile, copia che la subroutine potrà modificare a piacere, senza che il
+valore originale nella routine chiamante venga toccato. In questo modo non
+occorre preoccuparsi di eventuali effetti delle operazioni della subroutine
+sulla variabile passata come parametro.
+
+Questo però va inteso nella maniera corretta. Il passaggio \textit{by value}
+vale per qualunque variabile, puntatori compresi; quando però in una
+subroutine si usano dei puntatori (ad esempio per scrivere in un buffer) in
+realtà si va a modificare la zona di memoria a cui essi puntano, per cui anche
+se i puntatori sono copie, i dati a cui essi puntano sono sempre gli stessi, e
+le eventuali modifiche avranno effetto e saranno visibili anche nella routine
+chiamante.
+
+Nella maggior parte delle funzioni di libreria e delle system call i puntatori
+vengono usati per scambiare dati (attraverso buffer o strutture) e le
+variabili semplici vengono usate per specificare parametri; in genere le
+informazioni a riguardo dei risultati vengono passate alla routine chiamante
+attraverso il valore di ritorno.  È buona norma seguire questa pratica anche
+nella programmazione normale.
+
+Talvolta però è necessario che la funzione possa restituire indietro alla
+funzione chiamante un valore relativo ad uno dei suoi parametri.  Per far
+questo si usa il cosiddetto \textit{value result argument}, si passa cioè,
+invece di una normale variabile, un puntatore alla stessa; vedremo alcuni
+esempi di questa modalità nelle funzioni che gestiscono i socket (in
+\secref{sec:TCPel_functions}), in cui, per permettere al kernel di restituire
+informazioni sulle dimensioni delle strutture degli indirizzi utilizzate,
+viene usato questo meccanismo.
+
+
+\subsection{Il passaggio di un numero variabile di argomenti}
+\label{sec:proc_variadic}
+
+Come vedremo nei capitoli successivi, non sempre è possibile specificare un
+numero fisso di parametri per una funzione.  Lo standard ISO C prevede nella
+sua sintassi la possibilità di definire delle \textit{variadic
+  function}\index{variadic} che abbiano un numero variabile di argomenti,
+attraverso l'uso della \textit{ellipsis} \code{...} nella dichiarazione della
+funzione; ma non provvede a livello di linguaggio alcun meccanismo con cui
+dette funzioni possono accedere ai loro argomenti.
+
+L'accesso viene invece realizzato dalle librerie standard che provvedono gli
+strumenti adeguati.  L'uso delle \textit{variadic function} prevede tre punti:
+\begin{itemize*}
+\item \textsl{Dichiarare} la funzione come \textit{variadic} usando un
+  prototipo che contenga una \textit{ellipsis}.
+\item \textsl{Definire} la funzione come \textit{variadic} usando lo stesso
+  \textit{ellipsis}, ed utilizzare le apposite macro che consentono la
+  gestione di un numero variabile di argomenti.
+\item \textsl{Chiamare} la funzione specificando prima gli argomenti fissi, e
+  a seguire gli addizionali.
+\end{itemize*}
+
+Lo standard ISO C prevede che una \textit{variadic function}\index{variadic}
+abbia sempre almeno un argomento fisso; prima di effettuare la dichiarazione
+deve essere incluso l'apposito header file \file{stdarg.h}; un esempio di
+dichiarazione è il prototipo della funzione \func{execl} che vedremo in
+\secref{sec:proc_exec}:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+  int execl(const char *path, const char *arg, ...);
+\end{lstlisting}
+in questo caso la funzione prende due parametri fissi ed un numero variabile
+di altri parametri (che verranno a costituire gli elementi successivi al primo
+del vettore \param{argv} passato al nuovo processo). Lo standard ISO C richiede
+inoltre che l'ultimo degli argomenti fissi sia di tipo
+\textit{self-promoting}\footnote{il linguaggio C prevede che quando si
+  mescolano vari tipi di dati, alcuni di essi possano essere \textsl{promossi}
+  per compatibilità; ad esempio i tipi \ctyp{float} vengono convertiti
+  automaticamente a \ctyp{double} ed i \ctyp{char} e gli \ctyp{short} ad
+  \ctyp{int}. Un tipo \textit{self-promoting} è un tipo che verrebbe promosso
+  a sé stesso.} il che esclude vettori, puntatori a funzioni e interi di tipo
+\ctyp{char} o \ctyp{short} (con segno o meno). Una restrizione ulteriore di
+alcuni compilatori è di non dichiarare l'ultimo parametro fisso come
+\ctyp{register}.
+
+Una volta dichiarata la funzione il secondo passo è accedere ai vari parametri
+quando la si va a definire. I parametri fissi infatti hanno un loro nome, ma
+quelli variabili vengono indicati in maniera generica dalla ellipsis.
+
+L'unica modalità in cui essi possono essere recuperati è pertanto quella
+sequenziale; essi verranno estratti dallo stack secondo l'ordine in cui sono
+stati scritti. Per fare questo in \file{stdarg.h} sono definite delle apposite
+macro; la procedura da seguire è la seguente:
+\begin{enumerate*}
+\item Inizializzare un puntatore alla lista degli argomenti di tipo
+  \macro{va\_list} attraverso la macro \macro{va\_start}.
+\item Accedere ai vari argomenti opzionali con chiamate successive alla macro
+  \macro{va\_arg}, la prima chiamata restituirà il primo argomento, la seconda
+  il secondo e così via.
+\item Dichiarare la conclusione dell'estrazione dei parametri invocando la
+  macro \macro{va\_end}.
+\end{enumerate*}
+in generale è perfettamente legittimo richiedere meno argomenti di quelli che
+potrebbero essere stati effettivamente forniti, e nella esecuzione delle
+\macro{va\_arg} ci si può fermare in qualunque momento ed i restanti argomenti
+saranno ignorati; se invece si richiedono più argomenti di quelli forniti si
+otterranno dei valori indefiniti. Nel caso del \cmd{gcc} l'uso della macro
+\macro{va\_end} è inutile, ma si consiglia di usarlo ugualmente per
+compatibilità.
+
+Le definizioni delle tre macro sono le seguenti:
+\begin{functions}
+  \headdecl{stdarg.h}
+  
+  \funcdecl{void va\_start(va\_list ap, last)} Inizializza il puntatore alla
+  lista di argomenti \param{ap}; il parametro \param{last} \emph{deve} essere
+  l'ultimo dei parametri fissi.
+  
+  \funcdecl{type va\_arg(va\_list ap, type)} Restituisce il valore del
+  successivo parametro opzionale, modificando opportunamente \param{ap}; la
+  macro richiede che si specifichi il tipo dell'argomento attraverso il
+  parametro \param{type} che deve essere il nome del tipo dell'argomento in
+  questione. Il tipo deve essere \textit{self-promoting}.
+
+  \funcdecl{void va\_end(va\_list ap)} Conclude l'uso di \param{ap}.
+\end{functions}
+
+In generale si possono avere più puntatori alla lista degli argomenti,
+ciascuno andrà inizializzato con \macro{va\_start} e letto con \macro{va\_arg}
+e ciascuno potrà scandire la lista degli argomenti per conto suo. 
+
+Dopo l'uso di \macro{va\_end} la variabile \param{ap} diventa indefinita e
+successive chiamate a \macro{va\_arg} non funzioneranno. Si avranno risultati
+indefiniti anche chiamando \macro{va\_arg} specificando un tipo che non
+corrisponde a quello del parametro.
+
+Un altro limite delle macro è che i passi 1) e 3) devono essere eseguiti nel
+corpo principale della funzione, il passo 2) invece può essere eseguito anche
+in una subroutine passandole il puntatore alla lista di argomenti; in questo
+caso però si richiede che al ritorno della funzione il puntatore non venga più
+usato (lo standard richiederebbe la chiamata esplicita di \macro{va\_end}),
+dato che il valore di \param{ap} risulterebbe indefinito.
+
+Esistono dei casi in cui è necessario eseguire più volte la scansione dei
+parametri e poter memorizzare una posizione durante la stessa.  La cosa più
+naturale in questo caso sembrerebbe quella di copiarsi il puntatore alla lista
+degli argomenti con una semplice assegnazione. Dato che una delle
+realizzazioni più comuni di \macro{va\_list} è quella di un puntatore nello
+stack all'indirizzo dove sono stati salvati i parametri, è assolutamente
+normale pensare di poter effettuare questa operazione.
+
+In generale però possono esistere anche realizzazioni diverse, per questo
+motivo \macro{va\_list} è definito come \textsl{tipo opaco}\index{tipo opaco}
+e non può essere assegnato direttamente ad un'altra variabile dello stesso
+tipo. Per risolvere questo problema lo standard ISO C99\footnote{alcuni
+  sistemi che non hanno questa macro provvedono al suo posto
+  \macro{\_\_va\_copy} che era il nome proposto in una bozza dello standard.}
+ha previsto una macro ulteriore che permette di eseguire la copia di un
+puntatore alla lista degli argomenti:
+\begin{prototype}{stdarg.h}{void va\_copy(va\_list dest, va\_list src)}
+  Copia l'attuale valore \param{src} del puntatore alla lista degli argomenti
+  su \param{dest}.
+\end{prototype}
+\noindent anche in questo caso è buona norma chiudere ogni esecuzione di una
+\macro{va\_copy} con una corrispondente \macro{va\_end} sul nuovo puntatore
+alla lista degli argomenti.
+
+La chiamata di una funzione con un numero variabile di argomenti, posto che la
+si sia dichiarata e definita come tale, non prevede nulla di particolare;
+l'invocazione è identica alle altre, con i parametri, sia quelli fissi che
+quelli opzionali, separati da virgole. Quello che però è necessario tenere
+presente è come verranno convertiti gli argomenti variabili. 
+
+In Linux gli argomenti dello stesso tipo sono passati allo stesso modo, sia
+che siano fissi sia che siano opzionali (alcuni sistemi trattano diversamente
+gli opzionali), ma dato che il prototipo non può specificare il tipo degli
+argomenti opzionali, questi verranno sempre promossi, pertanto nella ricezione
+dei medesimi occorrerà tenerne conto (ad esempio un \ctyp{char} verrà visto da
+\macro{va\_arg} come \ctyp{int}).
+
+Uno dei problemi che si devono affrontare con le funzioni con un numero
+variabile di argomenti è che non esiste un modo generico che permetta di
+stabilire quanti sono i parametri passati effettivamente in una chiamata.
+
+Esistono varie modalità per affrontare questo problema; una delle più
+immediate è quella di specificare il numero degli argomenti opzionali come uno
+degli argomenti fissi. Una variazione di questo metodo è l'uso di un parametro
+per specificare anche il tipo degli argomenti (come fa la stringa di formato
+per \func{printf}).
+
+Una modalità diversa, che può essere applicata solo quando il tipo dei
+parametri lo rende possibile, è quella che prevede di usare un valore speciale
+come ultimo argomento (come fa ad esempio \func{execl} che usa un puntatore
+\val{NULL} per indicare la fine della lista degli argomenti).
+
+
+\subsection{Potenziali problemi con le variabili automatiche}
+\label{sec:proc_auto_var}
+
+Uno dei possibili problemi che si possono avere con le subroutine è quello di
+restituire alla funzione chiamante dei dati che sono contenuti in una
+variabile automatica.  Ovviamente quando la subroutine ritorna la sezione
+dello stack che conteneva la variabile automatica potrà essere riutilizzata da
+una nuova funzione, con le immaginabili conseguenze di sovrapposizione e
+sovrascrittura dei dati.
+
+Per questo una delle regole fondamentali della programmazione in C è che
+all'uscita di una funzione non deve restare nessun riferimento alle variabili
+locali; qualora sia necessario utilizzare variabili che possano essere viste
+anche dalla funzione chiamante queste devono essere allocate esplicitamente, o
+in maniera statica (usando variabili di tipo \ctyp{static} o \ctyp{extern}), o
+dinamicamente con una delle funzioni della famiglia \func{malloc}.
+
+
+\subsection{Il controllo di flusso non locale}
+\label{sec:proc_longjmp}
+
+Il controllo del flusso di un programma in genere viene effettuato con le
+varie istruzioni del linguaggio C; fra queste la più bistrattata è il
+\code{goto}, che viene deprecato in favore dei costrutti della programmazione
+strutturata, che rendono il codice più leggibile e mantenibile. Esiste però un
+caso in cui l'uso di questa istruzione porta all'implementazione più
+efficiente e più chiara anche dal punto di vista della struttura del
+programma: quello dell'uscita in caso di errore.
+
+Il C però non consente di effettuare un salto ad una etichetta definita in
+un'altra funzione, per cui se l'errore avviene in una funzione, e la sua
+gestione ordinaria è in un'altra, occorre usare quello che viene chiamato un
+\textsl{salto non-locale}\index{salto non-locale}.  Il caso classico in cui si
+ha questa necessità, citato sia da \cite{APUE} che da \cite{glibc}, è quello
+di un programma nel cui corpo principale vengono letti dei dati in ingresso
+sui quali viene eseguita, tramite una serie di funzioni di analisi, una
+scansione dei contenuti da si ottengono le indicazioni per l'esecuzione delle
+opportune operazioni.
+
+Dato che l'analisi può risultare molto complessa, ed opportunamente suddivisa
+in fasi diverse, la rilevazione di un errore nei dati in ingresso può accadere
+all'interno di funzioni profondamente annidate l'una nell'altra. In questo
+caso si dovrebbe gestire, per ciascuna fase, tutta la casistica del passaggio
+all'indietro di tutti gli errori rilevabili dalle funzioni usate nelle fasi
+successive.  Questo comporterebbe una notevole complessità, mentre sarebbe
+molto più comodo poter tornare direttamente al ciclo di lettura principale,
+scartando l'input come errato.\footnote{a meno che, come precisa \cite{glibc},
+  alla chiusura di ciascuna fase non siano associate operazioni di pulizia
+  specifiche (come deallocazioni, chiusure di file, ecc.), che non potrebbero
+  essere eseguite con un salto non-locale\index{salto non-locale}.}
+
+Tutto ciò può essere realizzato proprio con un salto non-locale; questo di
+norma viene realizzato salvando il contesto dello stack nel punto in cui si
+vuole tornare in caso di errore, e ripristinandolo, in modo da tornare nella
+funzione da cui si era partiti, quando serve.  La funzione che permette di
+salvare il contesto dello stack è \funcd{setjmp}, il cui prototipo è:
+\begin{functions}
+  \headdecl{setjmp.h}
+  \funcdecl{void setjmp(jmp\_buf env)}
+  
+  Salva il contesto dello stack. 
+
+  \bodydesc{La funzione ritorna zero quando è chiamata direttamente e un
+    valore diverso da zero quando ritorna da una chiamata di \func{longjmp}
+    che usa il contesto salvato in precedenza.}
+\end{functions}
+  
+Quando si esegue la funzione il contesto corrente dello stack viene salvato
+nell'argomento \param{env}, una variabile di tipo
+\type{jmp\_buf}\footnote{questo è un classico esempio di variabile di
+  \textsl{tipo opaco}\index{tipo!opaco}. Si definiscono così strutture ed
+  altri oggetti usati da una libreria, la cui struttura interna non deve
+  essere vista dal programma chiamante (da cui il nome) che li devono
+  utilizzare solo attraverso dalle opportune funzioni di gestione.}  che deve
+essere stata definita in precedenza. In genere le variabili di tipo
+\type{jmp\_buf} vengono definite come variabili globali in modo da poter
+essere viste in tutte le funzioni del programma.
+
+Quando viene eseguita direttamente la funzione ritorna sempre zero, un valore
+diverso da zero viene restituito solo quando il ritorno è dovuto ad una
+chiamata di \func{longjmp} in un'altra parte del programma che ripristina lo
+stack effettuando il salto non-locale\index{salto non-locale}. Si tenga conto
+che il contesto salvato in \param{env} viene invalidato se la routine che ha
+chiamato \func{setjmp} ritorna, nel qual caso un successivo uso di
+\func{longjmp} può comportare conseguenze imprevedibili (e di norma fatali)
+per il processo.
+  
+Come accennato per effettuare un salto non-locale\index{salto non-locale} ad
+un punto precedentemente stabilito con \func{setjmp} si usa la funzione
+\funcd{longjmp}; il suo prototipo è:
+\begin{functions}
+  \headdecl{setjmp.h}
+  \funcdecl{void longjmp(jmp\_buf env, int val)}
+  
+  Ripristina il contesto dello stack.
+  
+  \bodydesc{La funzione non ritorna.}
+\end{functions}
+
+La funzione ripristina il contesto dello stack salvato da una chiamata a
+\func{setjmp} nell'argomento \param{env}. Dopo l'esecuzione della funzione
+programma prosegue nel codice successivo al ritorno della \func{setjmp} con
+cui si era salvato \param{env}, che restituirà il valore \param{val} invece di
+zero.  Il valore di \param{val} specificato nella chiamata deve essere diverso
+da zero, se si è specificato 0 sarà comunque restituito 1 al suo posto.
+
+In sostanza un \func{longjmp} è analogo ad un \code{return}, solo che invece
+di ritornare alla riga successiva della funzione chiamante, il programma
+ritorna alla posizione della relativa \func{setjmp}, l'altra differenza è che
+il ritorno può essere effettuato anche attraverso diversi livelli di funzioni
+annidate.
+
+L'implementazione di queste funzioni comporta alcune restrizioni dato che esse
+interagiscono direttamente con la gestione dello stack ed il funzionamento del
+compilatore stesso. In particolare \func{setjmp} è implementata con una macro,
+pertanto non si può cercare di ottenerne l'indirizzo, ed inoltre delle
+chiamate a questa funzione sono sicure solo in uno dei seguenti casi:
+\begin{itemize}
+\item come espressione di controllo in un comando condizionale, di selezione
+  o di iterazione (come \code{if}, \code{switch} o \code{while}).
+\item come operando per un operatore di uguaglianza o confronto in una
+  espressione di controllo di un comando condizionale, di selezione o di
+  iterazione.
+\item come operando per l'operatore di negazione (\code{!}) in una espressione
+  di controllo di un comando condizionale, di selezione o di iterazione.
+\item come espressione a sé stante.
+\end{itemize}
+
+In generale, dato che l'unica differenza fra la chiamata diretta e quella
+ottenuta da un \func{longjmp}, è il valore di ritorno di \func{setjmp}, essa è
+usualmente chiamata all'interno di un comando \code{if}. 
+
+Uno dei punti critici dei salti non-locali\index{salto non-locale} è quello
+del valore delle variabili, ed in particolare quello delle variabili
+automatiche della funzione a cui si ritorna. In generale le variabili globali
+e statiche mantengono i valori che avevano al momento della chiamata di
+\func{longjmp}, ma quelli delle variabili automatiche (o di quelle dichiarate
+\direct{register}\footnote{la direttiva \direct{register} del compilatore
+  chiede che la variabile dichiarata tale sia mantenuta, nei limiti del
+  possibile, all'interno di un registro del processore. Questa direttiva
+  origina dai primi compilatori, quando stava al programmatore scrivere codice
+  ottimizzato, riservando esplicitamente alle variabili più usate l'uso dei
+  registri del processore. Oggi questa direttiva oggi è in disuso dato che
+  tutti i compilatori sono normalmente in grado di valutare con maggior
+  efficacia degli stessi programmatori quando sia il caso di eseguire questa
+  ottimizzazione.}) sono in genere indeterminati.
+
+Quello che succede infatti è che i valori delle variabili che sono tenute in
+memoria manterranno il valore avuto al momento della chiamata di
+\func{longjmp}, mentre quelli tenuti nei registri del processore (che nella
+chiamata ad un'altra funzioni vengono salvati nel contesto nello stack)
+torneranno al valore avuto al momento della chiamata di \func{setjmp}; per
+questo quando si vuole avere un comportamento coerente si può bloccare
+l'ottimizzazione che porta le variabili nei registri dichiarandole tutte come
+\direct{volatile}\footnote{la direttiva \ctyp{volatile} informa il compilatore
+  che la variabile che è dichiarata può essere modificata, durante
+  l'esecuzione del nostro, da altri programmi. Per questo motivo occorre dire
+  al compilatore che non deve essere mai utilizzata l'ottimizzazione per cui
+  quanto opportuno essa viene mantenuta in un registro, poiché in questo modo
+  si perderebbero le eventuali modifiche fatte dagli altri programmi (che
+  avvengono solo in una copia posta in memoria).}.
 
-Questo va fatto.
 
 
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: