fine (si spera) delle reindicizzazioni
[gapil.git] / network.tex
index 2e1d070102d3c4121b5b699f0d282905b20cb4c5..6470c1fbef3e6cfef0dfa0d1aa42b189aa3c982e 100644 (file)
@@ -627,17 +627,18 @@ protocollo IP sono forniti nell'appendice sez.~\ref{sec:ip_protocol}.
 \subsection{User Datagram Protocol (UDP)}
 \label{sec:net_udp}
 
-UDP è un protocollo di trasporto molto semplice; la sua descrizione completa è
-contenuta dell'\href{http://www.ietf.org/rfc/rfc0768.txt}{RFC~768}, ma in
-sostanza esso è una semplice interfaccia al protocollo IP dal livello di
-trasporto. Quando un'applicazione usa UDP essa scrive un pacchetto di dati (il
-cosiddetto \textit{datagram} che da il nome al protocollo) su un socket, al
-pacchetto viene aggiunto un header molto semplice (per una descrizione più
-accurata vedi sez.~\ref{sec:udp_protocol}), e poi viene passato al livello
-superiore (IPv4 o IPv6 che sia) che lo spedisce verso la destinazione.  Dato
-che né IPv4 né IPv6 garantiscono l'affidabilità niente assicura che il
-pacchetto arrivi a destinazione, né che più pacchetti arrivino nello stesso
-ordine in cui sono stati spediti.
+Il protocollo UDP è un protocollo di trasporto molto semplice; la sua
+descrizione completa è contenuta
+dell'\href{http://www.ietf.org/rfc/rfc0768.txt}{RFC~768}, ma in sostanza esso
+è una semplice interfaccia al protocollo IP dal livello di trasporto. Quando
+un'applicazione usa UDP essa scrive un pacchetto di dati (il cosiddetto
+\textit{datagram} che da il nome al protocollo) su un socket, al pacchetto
+viene aggiunto un header molto semplice (per una descrizione più accurata vedi
+sez.~\ref{sec:udp_protocol}), e poi viene passato al livello superiore (IPv4 o
+IPv6 che sia) che lo spedisce verso la destinazione.  Dato che né IPv4 né IPv6
+garantiscono l'affidabilità niente assicura che il pacchetto arrivi a
+destinazione, né che più pacchetti arrivino nello stesso ordine in cui sono
+stati spediti.
 
 Pertanto il problema principale che si affronta quando si usa UDP è la
 mancanza di affidabilità, se si vuole essere sicuri che i pacchetti arrivino a
@@ -698,9 +699,9 @@ minuti.
 Inoltre, per tenere conto delle diverse condizioni in cui può trovarsi la
 linea di comunicazione, TCP comprende anche un algoritmo di calcolo dinamico
 del tempo di andata e ritorno dei pacchetti fra un client e un server (il
-cosiddetto RTT, \itindex{Round~Trip~Time~(RTT)} \textit{Round Trip Time}), che
-lo rende in grado di adattarsi alle condizioni della rete per non generare
-inutili ritrasmissioni o cadere facilmente in timeout.
+cosiddetto RTT, \textit{Round Trip Time}), che lo rende in grado di adattarsi
+alle condizioni della rete per non generare inutili ritrasmissioni o cadere
+facilmente in timeout.
 
 Inoltre TCP è in grado di preservare l'ordine dei dati assegnando un numero di
 sequenza ad ogni byte che trasmette. Ad esempio se un'applicazione scrive 3000
@@ -846,7 +847,7 @@ annuncia all'altro capo della connessione la dimensione massima dimensione del
 segmento di dati che può essere ricevuto, così da evitare la
 frammentazione. Di norma viene impostato alla dimensione della MTU
 dell'interfaccia meno la lunghezza delle intestazioni di IP e TCP, in Linux il
-default, mantenuto nella costante \const{TCP\_MSS} è 512.
+default, mantenuto nella costante \constd{TCP\_MSS} è 512.
 
 \itindend{Maximum~Transfer~Unit~(MTU)}