Ancora reindicizzazioni
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index 7f7dc441883bdc08f345a545e95cfbdbb735a997..7520e3300f590af435762bb65bba1d707c1bb89e 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -505,12 +505,12 @@ essere in una relazione di \textsl{parentela}.
 
 Utilizzando una \textit{fifo} tutti i dati passeranno, come per le
 \textit{pipe}, attraverso un buffer nel kernel, senza transitare dal
-filesystem. Il fatto che siano associate ad un \itindex{inode}
-\textit{inode} presente sul filesystem serve infatti solo a fornire un punto
-di accesso per i processi, che permetta a questi ultimi di accedere alla
-stessa \textit{fifo} senza avere nessuna relazione, con una semplice
-\func{open}. Il comportamento delle funzioni di lettura e scrittura è identico
-a quello illustrato per le \textit{pipe} in sez.~\ref{sec:ipc_pipes}.
+filesystem. Il fatto che siano associate ad un \textit{inode} presente sul
+filesystem serve infatti solo a fornire un punto di accesso per i processi,
+che permetta a questi ultimi di accedere alla stessa \textit{fifo} senza avere
+nessuna relazione, con una semplice \func{open}. Il comportamento delle
+funzioni di lettura e scrittura è identico a quello illustrato per le
+\textit{pipe} in sez.~\ref{sec:ipc_pipes}.
 
 Abbiamo già trattato in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
 \func{mkfifo} che permettono di creare una \textit{fifo}. Per utilizzarne una
@@ -539,9 +539,8 @@ una \textit{fifo} in scrittura anche se non ci sono ancora processi il
 lettura. Infine è possibile anche usare la \textit{fifo} all'interno di un
 solo processo, nel qual caso però occorre stare molto attenti alla possibili
 situazioni di stallo: se si cerca di leggere da una \textit{fifo} che non
-contiene dati si avrà infatti un \itindex{deadlock} \textit{deadlock}
-immediato, dato che il processo si blocca e quindi non potrà mai eseguire le
-funzioni di scrittura.
+contiene dati si avrà infatti un \textit{deadlock} immediato, dato che il
+processo si blocca e quindi non potrà mai eseguire le funzioni di scrittura.
 
 Per la loro caratteristica di essere accessibili attraverso il filesystem, è
 piuttosto frequente l'utilizzo di una \textit{fifo} come canale di
@@ -947,7 +946,7 @@ mantiene varie proprietà ed informazioni associate all'oggetto.
   \end{minipage} 
   \normalsize 
   \caption{La struttura \structd{ipc\_perm}, come definita in
-    \headfile{sys/ipc.h}.}
+    \headfiled{sys/ipc.h}.}
   \label{fig:ipc_ipc_perm}
 \end{figure}
 
@@ -995,12 +994,12 @@ meno significativi.
 
 Il problema è che anche così non c'è la sicurezza che il valore della chiave
 sia univoco, infatti esso è costruito combinando il byte di \param{proj\_id)}
-con i 16 bit meno significativi \itindex{inode} dell'inode del file
-\param{pathname} (che vengono ottenuti attraverso \func{stat}, da cui derivano
-i possibili errori), e gli 8 bit meno significativi del numero del dispositivo
-su cui è il file.  Diventa perciò relativamente facile ottenere delle
-collisioni, specie se i file sono su dispositivi con lo stesso \textit{minor
-  number}, come \file{/dev/hda1} e \file{/dev/sda1}.
+con i 16 bit meno significativi dell'inode del file \param{pathname} (che
+vengono ottenuti attraverso \func{stat}, da cui derivano i possibili errori),
+e gli 8 bit meno significativi del numero del dispositivo su cui è il file.
+Diventa perciò relativamente facile ottenere delle collisioni, specie se i
+file sono su dispositivi con lo stesso \textit{minor number}, come
+\file{/dev/hda1} e \file{/dev/sda1}.
 
 In genere quello che si fa è utilizzare un file comune usato dai programmi che
 devono comunicare (ad esempio un header comune, o uno dei programmi che devono
@@ -1089,7 +1088,7 @@ solo se tutti i controlli elencati falliscono l'accesso è negato. Si noti che
 a differenza di quanto avviene per i permessi dei file, fallire in uno dei
 passi elencati non comporta il fallimento dell'accesso. Un'ulteriore
 differenza rispetto a quanto avviene per i file è che per gli oggetti di IPC
-il valore di \itindex{umask} \textit{umask} (si ricordi quanto esposto in
+il valore di \textit{umask} (si ricordi quanto esposto in
 sez.~\ref{sec:file_perm_management}) non ha alcun significato.
 
 
@@ -1128,8 +1127,8 @@ Il sistema dispone sempre di un numero fisso di oggetti di IPC, fino al kernel
 \const{SHMMNI}, e potevano essere cambiati (come tutti gli altri limiti
 relativi al \textit{SysV-IPC}) solo con una ricompilazione del kernel.  A
 partire dal kernel 2.4.x è possibile cambiare questi valori a sistema attivo
-scrivendo sui file \sysctlrelfile{kernel}{shmmni},
-\sysctlrelfile{kernel}{msgmni} e \sysctlrelfile{kernel}{sem} di
+scrivendo sui file \sysctlrelfiled{kernel}{shmmni},
+\sysctlrelfiled{kernel}{msgmni} e \sysctlrelfiled{kernel}{sem} di
 \file{/proc/sys/kernel} o con l'uso di \func{sysctl}.
 
 \begin{figure}[!htb]
@@ -1309,41 +1308,42 @@ Le code di messaggi sono caratterizzate da tre limiti fondamentali, un tempo
 definiti staticamente e corrispondenti alle prime tre costanti riportate in
 tab.~\ref{tab:ipc_msg_limits}.  Come accennato però con tutte le versioni più
 recenti del kernel con Linux è possibile modificare questi limiti attraverso
-l'uso di \func{sysctl} o scrivendo nei file \sysctlrelfile{kernel}{msgmax},
-\sysctlrelfile{kernel}{msgmnb} e \sysctlrelfile{kernel}{msgmni} di
+l'uso di \func{sysctl} o scrivendo nei file \sysctlrelfiled{kernel}{msgmax},
+\sysctlrelfiled{kernel}{msgmnb} e \sysctlrelfiled{kernel}{msgmni} di
 \file{/proc/sys/kernel/}.
 
 \itindbeg{linked~list}
 
 Una coda di messaggi è costituita da una \textit{linked list}.\footnote{una
-  \itindex{linked~list} \textit{linked list} è una tipica struttura di dati,
-  organizzati in una lista in cui ciascun elemento contiene un puntatore al
-  successivo. In questo modo la struttura è veloce nell'estrazione ed
-  immissione dei dati dalle estremità dalla lista (basta aggiungere un
-  elemento in testa o in coda ed aggiornare un puntatore), e relativamente
-  veloce da attraversare in ordine sequenziale (seguendo i puntatori), è
-  invece relativamente lenta nell'accesso casuale e nella ricerca.}  I nuovi
-messaggi vengono inseriti in coda alla lista e vengono letti dalla cima, in
-fig.~\ref{fig:ipc_mq_schema} si è riportato uno schema semplificato con cui
-queste strutture vengono mantenute dal kernel. Lo schema illustrato in realtà
-è una semplificazione di quello usato fino ai kernel della serie 2.2. A
-partire della serie 2.4 la gestione delle code di messaggi è effettuata in
-maniera diversa (e non esiste una struttura \struct{msqid\_ds} nel kernel), ma
-abbiamo mantenuto lo schema precedente dato che illustra in maniera più che
-adeguata i principi di funzionamento delle code di messaggi.
+  \textit{linked list} è una tipica struttura di dati, organizzati in una
+  lista in cui ciascun elemento contiene un puntatore al successivo. In questo
+  modo la struttura è veloce nell'estrazione ed immissione dei dati dalle
+  estremità dalla lista (basta aggiungere un elemento in testa o in coda ed
+  aggiornare un puntatore), e relativamente veloce da attraversare in ordine
+  sequenziale (seguendo i puntatori), è invece relativamente lenta
+  nell'accesso casuale e nella ricerca.}  I nuovi messaggi vengono inseriti in
+coda alla lista e vengono letti dalla cima, in fig.~\ref{fig:ipc_mq_schema} si
+è riportato uno schema semplificato con cui queste strutture vengono mantenute
+dal kernel. Lo schema illustrato in realtà è una semplificazione di quello
+usato fino ai kernel della serie 2.2. A partire della serie 2.4 la gestione
+delle code di messaggi è effettuata in maniera diversa (e non esiste una
+struttura \kstruct{msqid\_ds} nel kernel), ma abbiamo mantenuto lo schema
+precedente dato che illustra in maniera più che adeguata i principi di
+funzionamento delle code di messaggi.
 
 \itindend{linked~list}
 
 \begin{figure}[!htb]
   \centering \includegraphics[width=13cm]{img/mqstruct}
-  \caption{Schema della struttura di una coda messaggi.}
+  \caption{Schema delle strutture di una coda di messaggi
+    (\kstructd{msqid\_ds} e \kstructd{msg}).}
   \label{fig:ipc_mq_schema}
 \end{figure}
 
 
-A ciascuna coda è associata una struttura \struct{msqid\_ds} la cui
+A ciascuna coda è associata una struttura \kstruct{msqid\_ds} la cui
 definizione è riportata in fig.~\ref{fig:ipc_msqid_ds} ed a cui si accede
-includendo  \headfile{sys/msg.h};
+includendo \headfiled{sys/msg.h};
 %
 % INFO: sotto materiale obsoleto e non interessante
 % In questa struttura il
@@ -1537,13 +1537,13 @@ dovrà essere pari a \const{LENGTH}).
 
 Per capire meglio il funzionamento della funzione riprendiamo in
 considerazione la struttura della coda illustrata in
-fig.~\ref{fig:ipc_mq_schema}. Alla chiamata di \func{msgsnd} il nuovo messaggio
-sarà aggiunto in fondo alla lista inserendo una nuova struttura \struct{msg},
-il puntatore \var{msg\_last} di \struct{msqid\_ds} verrà aggiornato, come pure
-il puntatore al messaggio successivo per quello che era il precedente ultimo
-messaggio; il valore di \var{mtype} verrà mantenuto in \var{msg\_type} ed il
-valore di \param{msgsz} in \var{msg\_ts}; il testo del messaggio sarà copiato
-all'indirizzo specificato da \var{msg\_spot}.
+fig.~\ref{fig:ipc_mq_schema}. Alla chiamata di \func{msgsnd} il nuovo
+messaggio sarà aggiunto in fondo alla lista inserendo una nuova struttura
+\kstruct{msg}, il puntatore \var{msg\_last} di \kstruct{msqid\_ds} verrà
+aggiornato, come pure il puntatore al messaggio successivo per quello che era
+il precedente ultimo messaggio; il valore di \var{mtype} verrà mantenuto in
+\var{msg\_type} ed il valore di \param{msgsz} in \var{msg\_ts}; il testo del
+messaggio sarà copiato all'indirizzo specificato da \var{msg\_spot}.
 
 Il valore dell'argomento \param{flag} permette di specificare il comportamento
 della funzione. Di norma, quando si specifica un valore nullo, la funzione
@@ -1669,8 +1669,7 @@ possono essere utilizzate, e non si ha a disposizione niente di analogo alle
 funzioni \func{select} e \func{poll}. Questo rende molto scomodo usare più di
 una di queste strutture alla volta; ad esempio non si può scrivere un server
 che aspetti un messaggio su più di una coda senza fare ricorso ad una tecnica
-di \itindex{polling} \textit{polling} che esegua un ciclo di attesa su
-ciascuna di esse.
+di \textit{polling} che esegua un ciclo di attesa su ciascuna di esse.
 
 Come esempio dell'uso delle code di messaggi possiamo riscrivere il nostro
 server di \textit{fortunes} usando queste al posto delle \textit{fifo}. In
@@ -1836,9 +1835,9 @@ lettura della risposta, quest'ultima resta nella coda (così come per le
 \textit{fifo} si aveva il problema delle \textit{fifo} che restavano nel
 filesystem). In questo caso però il problemi sono maggiori, sia perché è molto
 più facile esaurire la memoria dedicata ad una coda di messaggi che gli
-\itindex{inode} \textit{inode} di un filesystem, sia perché, con il riutilizzo
-dei \ids{PID} da parte dei processi, un client eseguito in un momento
-successivo potrebbe ricevere un messaggio non indirizzato a lui.
+\textit{inode} di un filesystem, sia perché, con il riutilizzo dei \ids{PID}
+da parte dei processi, un client eseguito in un momento successivo potrebbe
+ricevere un messaggio non indirizzato a lui.
 
 
 \subsection{I semafori}
@@ -2084,7 +2083,7 @@ specificata con \param{cmd}, ed opera o sull'intero insieme specificato da
     \includestruct{listati/semun.h}
   \end{minipage} 
   \normalsize 
-  \caption{La definizione dei possibili valori di una \direct{union}
+  \caption{La definizione dei possibili valori di una \dirct{union}
     \structd{semun}, usata come quarto argomento della funzione
     \func{semctl}.}
   \label{fig:ipc_semun}
@@ -2409,18 +2408,20 @@ versioni delle librerie del C, come le \acr{libc5}).
 
 \begin{figure}[!htb]
   \centering \includegraphics[width=12cm]{img/semtruct}
-  \caption{Schema della struttura di un insieme di semafori.}
+  \caption{Schema delle varie strutture di un insieme di semafori
+    (\kstructd{semid\_ds}, \kstructd{sem}, \kstructd{sem\_queue} e
+    \kstructd{sem\_undo}).}
   \label{fig:ipc_sem_schema}
 \end{figure}
 
 Alla creazione di un nuovo insieme viene allocata una nuova strutture
-\struct{semid\_ds} ed il relativo vettore di strutture \struct{sem}. Quando si
-richiede una operazione viene anzitutto verificato che tutte le operazioni
+\kstruct{semid\_ds} ed il relativo vettore di strutture \kstruct{sem}. Quando
+si richiede una operazione viene anzitutto verificato che tutte le operazioni
 possono avere successo; se una di esse comporta il blocco del processo il
 kernel crea una struttura \kstruct{sem\_queue} che viene aggiunta in fondo
 alla coda di attesa associata a ciascun insieme di semafori, che viene
 referenziata tramite i campi \var{sem\_pending} e \var{sem\_pending\_last} di
-\struct{semid\_ds}.  Nella struttura viene memorizzato il riferimento alle
+\kstruct{semid\_ds}.  Nella struttura viene memorizzato il riferimento alle
 operazioni richieste (nel campo \var{sops}, che è un puntatore ad una
 struttura \struct{sembuf}) e al processo corrente (nel campo \var{sleeper})
 poi quest'ultimo viene messo stato di attesa e viene invocato lo
@@ -2540,7 +2541,7 @@ controllare il valore dei mutex prima di proseguire in una operazione di
 sblocco non servirebbe comunque, dato che l'operazione non sarebbe atomica.
 Vedremo in sez.~\ref{sec:ipc_lock_file} come sia possibile ottenere
 un'interfaccia analoga a quella appena illustrata, senza incorrere in questi
-problemi, usando il \itindex{file~locking} \textit{file locking}.
+problemi, usando il \textit{file locking}.
 
 
 \subsection{Memoria condivisa}
@@ -3389,8 +3390,8 @@ problemi che non lo rendono una alternativa praticabile per la
 sincronizzazione: anzitutto in caso di terminazione imprevista del processo,
 si lascia allocata la risorsa (il \textsl{file di lock}) e questa deve essere
 sempre cancellata esplicitamente.  Inoltre il controllo della disponibilità
-può essere eseguito solo con una tecnica di \itindex{polling}
-\textit{polling}, ed è quindi molto inefficiente.
+può essere eseguito solo con una tecnica di \textit{polling}, ed è quindi
+molto inefficiente.
 
 La tecnica dei file di lock ha comunque una sua utilità, e può essere usata
 con successo quando l'esigenza è solo quella di segnalare l'occupazione di una
@@ -3407,15 +3408,14 @@ accedere alla seriale si limita a segnalare che la risorsa non è disponibile.
 
 Dato che i file di lock presentano gli inconvenienti illustrati in precedenza,
 la tecnica alternativa di sincronizzazione più comune è quella di fare ricorso
-al \itindex{file~locking} \textit{file locking} (trattato in
-sez.~\ref{sec:file_locking}) usando \func{fcntl} su un file creato per
-l'occasione per ottenere un write lock. In questo modo potremo usare il lock
-come un \textit{mutex}: per bloccare la risorsa basterà acquisire il lock, per
-sbloccarla basterà rilasciare il lock. Una richiesta fatta con un write lock
-metterà automaticamente il processo in stato di attesa, senza necessità di
-ricorrere al \itindex{polling} \textit{polling} per determinare la
-disponibilità della risorsa, e al rilascio della stessa da parte del processo
-che la occupava si otterrà il nuovo lock atomicamente.
+al \textit{file locking} (trattato in sez.~\ref{sec:file_locking}) usando
+\func{fcntl} su un file creato per l'occasione per ottenere un write lock. In
+questo modo potremo usare il lock come un \textit{mutex}: per bloccare la
+risorsa basterà acquisire il lock, per sbloccarla basterà rilasciare il
+lock. Una richiesta fatta con un write lock metterà automaticamente il
+processo in stato di attesa, senza necessità di ricorrere al \textit{polling}
+per determinare la disponibilità della risorsa, e al rilascio della stessa da
+parte del processo che la occupava si otterrà il nuovo lock atomicamente.
 
 Questo approccio presenta il notevole vantaggio che alla terminazione di un
 processo tutti i lock acquisiti vengono rilasciati automaticamente (alla
@@ -3430,17 +3430,16 @@ leggermente più lento.
     \includecodesample{listati/MutexLocking.c}
   \end{minipage} 
   \normalsize 
-  \caption{Il codice delle funzioni che permettono per la gestione dei 
-    \textit{mutex} con il \itindex{file~locking} \textit{file locking}.}
+  \caption{Il codice delle funzioni che permettono per la gestione dei
+    \textit{mutex} con il \textit{file locking}.}
   \label{fig:ipc_flock_mutex}
 \end{figure}
 
 Il codice delle varie funzioni usate per implementare un mutex utilizzando il
-\textit{file locking} \itindex{file~locking} è riportato in
-fig.~\ref{fig:ipc_flock_mutex}; si è mantenuta volutamente una struttura
-analoga alle precedenti funzioni che usano i semafori, anche se le due
-interfacce non possono essere completamente equivalenti, specie per quanto
-riguarda la rimozione del mutex.
+\textit{file locking} è riportato in fig.~\ref{fig:ipc_flock_mutex}; si è
+mantenuta volutamente una struttura analoga alle precedenti funzioni che usano
+i semafori, anche se le due interfacce non possono essere completamente
+equivalenti, specie per quanto riguarda la rimozione del mutex.
 
 La prima funzione (\texttt{\small 1-5}) è \func{CreateMutex}, e serve a
 creare il mutex; la funzione è estremamente semplice, e si limita
@@ -3453,9 +3452,9 @@ mutex.
 La seconda funzione (\texttt{\small 6-10}) è \func{FindMutex}, che, come la
 precedente, è stata definita per mantenere una analogia con la corrispondente
 funzione basata sui semafori. Anch'essa si limita (\texttt{\small 9}) ad
-aprire il file da usare per il \itindex{file~locking} \textit{file locking},
-solo che in questo caso le opzioni di \func{open} sono tali che il file in
-questione deve esistere di già.
+aprire il file da usare per il \textit{file locking}, solo che in questo caso
+le opzioni di \func{open} sono tali che il file in questione deve esistere di
+già.
 
 La terza funzione (\texttt{\small 11-22}) è \func{LockMutex} e serve per
 acquisire il mutex. La funzione definisce (\texttt{\small 14}) e inizializza
@@ -3470,10 +3469,9 @@ La quarta funzione (\texttt{\small 24-34}) è \func{UnlockMutex} e serve a
 rilasciare il mutex. La funzione è analoga alla precedente, solo che in questo
 caso si inizializza (\texttt{\small 28-31}) la struttura \var{lock} per il
 rilascio del lock, che viene effettuato (\texttt{\small 33}) con la opportuna
-chiamata a \func{fcntl}. Avendo usato il \itindex{file~locking} \textit{file
-  locking} in semantica POSIX (si riveda quanto detto
-sez.~\ref{sec:file_posix_lock}) solo il processo che ha precedentemente
-eseguito il lock può sbloccare il mutex.
+chiamata a \func{fcntl}. Avendo usato il \textit{file locking} in semantica
+POSIX (si riveda quanto detto sez.~\ref{sec:file_posix_lock}) solo il processo
+che ha precedentemente eseguito il lock può sbloccare il mutex.
 
 La quinta funzione (\texttt{\small 36-39}) è \func{RemoveMutex} e serve a
 cancellare il mutex. Anche questa funzione è stata definita per mantenere una
@@ -3511,11 +3509,13 @@ nessun inconveniente.
 \subsection{Il \textit{memory mapping} anonimo}
 \label{sec:ipc_mmap_anonymous}
 
-\itindbeg{memory~mapping} Abbiamo già visto che quando i processi sono
-\textsl{correlati}, se cioè hanno almeno un progenitore comune, l'uso delle
-\textit{pipe} può costituire una valida alternativa alle code di messaggi;
-nella stessa situazione si può evitare l'uso di una memoria condivisa facendo
-ricorso al cosiddetto \textit{memory mapping} anonimo.
+\itindbeg{memory~mapping} 
+
+Abbiamo già visto che quando i processi sono \textsl{correlati}, se cioè hanno
+almeno un progenitore comune, l'uso delle \textit{pipe} può costituire una
+valida alternativa alle code di messaggi; nella stessa situazione si può
+evitare l'uso di una memoria condivisa facendo ricorso al cosiddetto
+\textit{memory mapping} anonimo.
 
 In sez.~\ref{sec:file_memory_map} abbiamo visto come sia possibile mappare il
 contenuto di un file nella memoria di un processo, e che, quando viene usato
@@ -3541,6 +3541,7 @@ il \textit{memory mapping} anonimo.\footnote{nei sistemi derivati da SysV una
   nel \textit{memory mapping} anonimo.} Vedremo come utilizzare questa tecnica
 più avanti, quando realizzeremo una nuova versione del monitor visto in
 sez.~\ref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
+
 \itindend{memory~mapping}
 
 % TODO: fare esempio di mmap anonima
@@ -3571,9 +3572,8 @@ una interfaccia completamente nuova, che tratteremo in questa sezione.
 Oggi Linux supporta tutti gli oggetti definito nello standard POSIX per l'IPC,
 ma a lungo non è stato così; la memoria condivisa è presente a partire dal
 kernel 2.4.x, i semafori sono forniti dalla \acr{glibc} nella sezione che
-implementa i \itindex{thread} \textit{thread} POSIX di nuova generazione che
-richiedono il kernel 2.6, le code di messaggi sono supportate a partire dal
-kernel 2.6.6.
+implementa i \textit{thread} POSIX di nuova generazione che richiedono il
+kernel 2.6, le code di messaggi sono supportate a partire dal kernel 2.6.6.
 
 La caratteristica fondamentale dell'interfaccia POSIX è l'abbandono dell'uso
 degli identificatori e delle chiavi visti nel \textit{SysV-IPC}, per passare ai
@@ -3703,7 +3703,7 @@ una coda di messaggi POSIX è \funcd{mq\_open}, ed il suo prototipo è:
 La funzione apre la coda di messaggi identificata dall'argomento \param{name}
 restituendo il descrittore ad essa associato, del tutto analogo ad un file
 descriptor, con l'unica differenza che lo standard prevede un apposito tipo
-\type{mqd\_t}. Nel caso di Linux si tratta in effetti proprio di un normale
+\typed{mqd\_t}. Nel caso di Linux si tratta in effetti proprio di un normale
 file descriptor; pertanto, anche se questo comportamento non è portabile, lo
 si può tenere sotto osservazione con le funzioni dell'I/O multiplexing (vedi
 sez.~\ref{sec:file_multiplexing}) come possibile alternativa all'uso
@@ -3782,7 +3782,7 @@ I suddetti limiti di sistema sono impostati attraverso altrettanti file in
 \texttt{/proc/sys/fs/mqueue}, in particolare i file che controllano i valori
 dei limiti sono:
 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
-\item[\sysctlfile{fs/mqueue/msg\_max}] Indica il valore massimo del numero di
+\item[\sysctlfiled{fs/mqueue/msg\_max}] Indica il valore massimo del numero di
   messaggi in una coda e agisce come limite superiore per il valore di
   \var{attr->mq\_maxmsg} in \func{mq\_open}. Il suo valore di default è 10. Il
   valore massimo è \const{HARD\_MAX} che vale \code{(131072/sizeof(void *))},
@@ -3791,7 +3791,7 @@ dei limiti sono:
   precisamente con la \textit{capability} \const{CAP\_SYS\_RESOURCE}) ma
   \const{HARD\_MAX} resta comunque non superabile.
 
-\item[\sysctlfile{fs/mqueue/msgsize\_max}] Indica il valore massimo della
+\item[\sysctlfiled{fs/mqueue/msgsize\_max}] Indica il valore massimo della
   dimensione in byte di un messaggio sulla coda ed agisce come limite
   superiore per il valore di \var{attr->mq\_msgsize} in \func{mq\_open}. Il
   suo valore di default è 8192.  Il valore massimo è 1048576 ed il valore
@@ -3800,7 +3800,7 @@ dei limiti sono:
   processi con privilegi amministrativi (con la \textit{capability}
   \const{CAP\_SYS\_RESOURCE}).
 
-\item[\sysctlfile{fs/mqueue/queues\_max}] Indica il numero massimo di code di
+\item[\sysctlfiled{fs/mqueue/queues\_max}] Indica il numero massimo di code di
   messaggi creabili in totale sul sistema, il valore di default è 256 ma si
   può usare un valore qualunque fra $0$ e \const{INT\_MAX}. Il limite non
   viene applicato ai processi con privilegi amministrativi (cioè con la
@@ -4263,9 +4263,9 @@ sez.~\ref{sec:file_open_close}. Inoltre sul file descriptor viene sempre
 impostato il flag \const{FD\_CLOEXEC}.  Chiamate effettuate da diversi
 processi usando lo stesso nome restituiranno file descriptor associati allo
 stesso segmento, così come, nel caso di file ordinari, essi sono associati
-allo stesso \itindex{inode} inode. In questo modo è possibile effettuare una
-chiamata ad \func{mmap} sul file descriptor restituito da \func{shm\_open} ed
-i processi vedranno lo stesso segmento di memoria condivisa.
+allo stesso inode. In questo modo è possibile effettuare una chiamata ad
+\func{mmap} sul file descriptor restituito da \func{shm\_open} ed i processi
+vedranno lo stesso segmento di memoria condivisa.
 
 Quando il nome non esiste si può creare un nuovo segmento specificando
 \const{O\_CREAT}; in tal caso il segmento avrà (così come i nuovi file)
@@ -4382,15 +4382,15 @@ restituendo al chiamante il valore di ritorno.
 \label{sec:ipc_posix_sem}
 
 Fino alla serie 2.4.x del kernel esisteva solo una implementazione parziale
-dei semafori POSIX che li realizzava solo a livello di \itindex{thread}
-\textit{thread} e non di processi,\footnote{questo significava che i semafori
-  erano visibili solo all'interno dei \itindex{thread} \textit{thread} creati
-  da un singolo processo, e non potevano essere usati come meccanismo di
-  sincronizzazione fra processi diversi.} fornita attraverso la sezione delle
-estensioni \textit{real-time} della \acr{glibc} (quelle che si accedono
-collegandosi alla libreria \texttt{librt}). Esisteva inoltre una libreria che
-realizzava (parzialmente) l'interfaccia POSIX usando le funzioni dei semafori
-di \textit{SysV-IPC} (mantenendo così tutti i problemi sottolineati in
+dei semafori POSIX che li realizzava solo a livello di \textit{thread} e non
+di processi,\footnote{questo significava che i semafori erano visibili solo
+  all'interno dei \textit{thread} creati da un singolo processo, e non
+  potevano essere usati come meccanismo di sincronizzazione fra processi
+  diversi.} fornita attraverso la sezione delle estensioni \textit{real-time}
+della \acr{glibc} (quelle che si accedono collegandosi alla libreria
+\texttt{librt}). Esisteva inoltre una libreria che realizzava (parzialmente)
+l'interfaccia POSIX usando le funzioni dei semafori di \textit{SysV-IPC}
+(mantenendo così tutti i problemi sottolineati in
 sez.~\ref{sec:ipc_sysv_sem}).
 
 A partire dal kernel 2.5.7 è stato introdotto un meccanismo di
@@ -4480,10 +4480,9 @@ Si tenga presente che, come accennato in sez.~\ref{sec:ipc_posix_generic}, i
 semafori usano la semantica standard dei file per quanto riguarda i controlli
 di accesso, questo significa che un nuovo semaforo viene sempre creato con
 l'\ids{UID} ed il \ids{GID} effettivo del processo chiamante, e che i permessi
-indicati con \param{mode} vengono filtrati dal valore della \itindex{umask}
-\textit{umask} del processo.  Inoltre per poter aprire un semaforo è
-necessario avere su di esso sia il permesso di lettura che quello di
-scrittura.
+indicati con \param{mode} vengono filtrati dal valore della \textit{umask} del
+processo.  Inoltre per poter aprire un semaforo è necessario avere su di esso
+sia il permesso di lettura che quello di scrittura.
 
 La funzione restituisce in caso di successo un puntatore all'indirizzo del
 semaforo con un valore di tipo \ctyp{sem\_t *}, è questo valore che dovrà
@@ -4567,7 +4566,7 @@ La seconda variante di \func{sem\_wait} è una estensione specifica che può
 essere utilizzata soltanto se viene definita la macro \macro{\_XOPEN\_SOURCE}
 ad un valore di almeno 600 o la macro \macro{\_POSIX\_C\_SOURCE} ad un valore
 uguale o maggiore di \texttt{200112L} prima di includere
-\headfile{semaphore.h}, la funzione è \funcd{sem\_timedwait}, ed il suo
+\headfiled{semaphore.h}, la funzione è \funcd{sem\_timedwait}, ed il suo
 prototipo è:
 
 \begin{funcproto}{
@@ -4624,11 +4623,11 @@ prototipo è:
 
 La funzione incrementa di uno il valore corrente del semaforo indicato
 dall'argomento \param{sem}, se questo era nullo la relativa risorsa risulterà
-sbloccata, cosicché un altro processo (o \itindex{thread} \textit{thread})
-eventualmente bloccato in una \func{sem\_wait} sul semaforo possa essere
-svegliato e rimesso in esecuzione.  Si tenga presente che la funzione è sicura
-\index{funzioni!sicure} per l'uso all'interno di un gestore di segnali (si
-ricordi quanto detto in sez.~\ref{sec:sig_signal_handler}).
+sbloccata, cosicché un altro processo (o \textit{thread}) eventualmente
+bloccato in una \func{sem\_wait} sul semaforo possa essere svegliato e rimesso
+in esecuzione.  Si tenga presente che la funzione è sicura per l'uso
+all'interno di un gestore di segnali (si ricordi quanto detto in
+sez.~\ref{sec:sig_signal_handler}).
 
 Se invece di operare su un semaforo se ne volesse semplicemente leggere il
 valore, si potrà usare la funzione \funcd{sem\_getvalue}, il cui prototipo è:
@@ -4758,9 +4757,9 @@ prototipo è:
 La funzione inizializza un semaforo all'indirizzo puntato dall'argomento
 \param{sem}, e come per \func{sem\_open} consente di impostare un valore
 iniziale con \param{value}. L'argomento \param{pshared} serve ad indicare se
-il semaforo deve essere utilizzato dai \itindex{thread} \textit{thread} di uno
-stesso processo (con un valore nullo) o condiviso fra processi diversi (con un
-valore non nullo).
+il semaforo deve essere utilizzato dai \textit{thread} di uno stesso processo
+(con un valore nullo) o condiviso fra processi diversi (con un valore non
+nullo).
 
 Qualora il semaforo debba essere condiviso dai \textit{thread} di uno stesso
 processo (nel qual caso si parla di \textit{thread-shared semaphore}),
@@ -4806,9 +4805,8 @@ La funzione prende come unico argomento l'indirizzo di un semaforo che deve
 essere stato inizializzato con \func{sem\_init}; non deve quindi essere
 applicata a semafori creati con \func{sem\_open}. Inoltre si deve essere
 sicuri che il semaforo sia effettivamente inutilizzato, la distruzione di un
-semaforo su cui sono presenti processi (o \itindex{thread} \textit{thread}) in
-attesa (cioè bloccati in una \func{sem\_wait}) provoca un comportamento
-indefinito.
+semaforo su cui sono presenti processi (o \textit{thread}) in attesa (cioè
+bloccati in una \func{sem\_wait}) provoca un comportamento indefinito.
 
 Si tenga presente infine che utilizzare un semaforo che è stato distrutto con
 \func{sem\_destroy} di nuovo può dare esito a comportamenti indefiniti.  Nel