Note TODO per kernel 3.7 e glibc 2.16.
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index f3a2ec75f9ad64d8adc21a1c330fdc08d5fdcf2a..458c8fac4b4fd688bfae67ecae5a14bd83421b3e 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -74,6 +74,9 @@ illustrato in fig.~\ref{fig:ipc_pipe_singular}, in cui sono illustrati i due
 capi della pipe, associati a ciascun file descriptor, con le frecce che
 indicano la direzione del flusso dei dati.
 
 capi della pipe, associati a ciascun file descriptor, con le frecce che
 indicano la direzione del flusso dei dati.
 
+% TODO: la dimensione è cambiata a 64k (vedi man 7 pipe) e può essere
+% modificata con F_SETPIPE_SZ dal 2.6.35 (vedi fcntl)
+
 \begin{figure}[!htb]
   \centering
   \includegraphics[height=5cm]{img/pipe}
 \begin{figure}[!htb]
   \centering
   \includegraphics[height=5cm]{img/pipe}
@@ -82,7 +85,7 @@ indicano la direzione del flusso dei dati.
 \end{figure}
 
 Chiaramente creare una pipe all'interno di un singolo processo non serve a
 \end{figure}
 
 Chiaramente creare una pipe all'interno di un singolo processo non serve a
-niente; se però ricordiamo quanto esposto in sez.~\ref{sec:file_sharing}
+niente; se però ricordiamo quanto esposto in sez.~\ref{sec:file_shared_access}
 riguardo al comportamento dei file descriptor nei processi figli, è immediato
 capire come una pipe possa diventare un meccanismo di intercomunicazione. Un
 processo figlio infatti condivide gli stessi file descriptor del padre,
 riguardo al comportamento dei file descriptor nei processi figli, è immediato
 capire come una pipe possa diventare un meccanismo di intercomunicazione. Un
 processo figlio infatti condivide gli stessi file descriptor del padre,
@@ -184,11 +187,10 @@ Il programma ci servirà anche come esempio dell'uso delle funzioni di
 duplicazione dei file descriptor che abbiamo trattato in
 sez.~\ref{sec:file_dup}, in particolare di \func{dup2}. È attraverso queste
 funzioni infatti che è possibile dirottare gli stream standard dei processi
 duplicazione dei file descriptor che abbiamo trattato in
 sez.~\ref{sec:file_dup}, in particolare di \func{dup2}. È attraverso queste
 funzioni infatti che è possibile dirottare gli stream standard dei processi
-(che abbiamo visto in sez.~\ref{sec:file_std_descr} e
-sez.~\ref{sec:file_std_stream}) sulla pipe. In
-fig.~\ref{fig:ipc_barcodepage_code} abbiamo riportato il corpo del programma,
-il cui codice completo è disponibile nel file \file{BarCodePage.c} che si
-trova nella directory dei sorgenti.
+(che abbiamo visto in tab.~\ref{tab:file_std_files} e
+sez.~\ref{sec:file_stream}) sulla pipe. In fig.~\ref{fig:ipc_barcodepage_code}
+abbiamo riportato il corpo del programma, il cui codice completo è disponibile
+nel file \file{BarCodePage.c} che si trova nella directory dei sorgenti.
 
 \begin{figure}[!htbp]
   \footnotesize \centering
 
 \begin{figure}[!htbp]
   \footnotesize \centering
@@ -302,9 +304,9 @@ che sarà aperto in sola lettura (e quindi associato allo standard output del
 programma indicato) in caso si sia indicato \code{"r"}, o in sola scrittura (e
 quindi associato allo standard input) in caso di \code{"w"}.
 
 programma indicato) in caso si sia indicato \code{"r"}, o in sola scrittura (e
 quindi associato allo standard input) in caso di \code{"w"}.
 
-Lo stream restituito da \func{popen} è identico a tutti gli effetti ai file
-stream visti in cap.~\ref{cha:files_std_interface}, anche se è collegato ad
-una pipe e non ad un file, e viene sempre aperto in modalità
+Lo \textit{stream} restituito da \func{popen} è identico a tutti gli effetti
+ai \textit{file stream} visti in sez.~\ref{sec:files_std_interface}, anche se
+è collegato ad una pipe e non ad un file, e viene sempre aperto in modalità
 \textit{fully-buffered} (vedi sez.~\ref{sec:file_buffering}); l'unica
 differenza con gli usuali stream è che dovrà essere chiuso dalla seconda delle
 due nuove funzioni, \funcd{pclose}, il cui prototipo è:
 \textit{fully-buffered} (vedi sez.~\ref{sec:file_buffering}); l'unica
 differenza con gli usuali stream è che dovrà essere chiuso dalla seconda delle
 due nuove funzioni, \funcd{pclose}, il cui prototipo è:
@@ -431,9 +433,10 @@ quello illustrato per le pipe in sez.~\ref{sec:ipc_pipes}.
 
 Abbiamo già visto in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
 \func{mkfifo} che permettono di creare una fifo; per utilizzarne una un
 
 Abbiamo già visto in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
 \func{mkfifo} che permettono di creare una fifo; per utilizzarne una un
-processo non avrà che da aprire il relativo file speciale o in lettura o
-scrittura; nel primo caso sarà collegato al capo di uscita della fifo, e dovrà
-leggere, nel secondo al capo di ingresso, e dovrà scrivere.
+processo non avrà che da aprire il relativo \index{file!speciali} file
+speciale o in lettura o scrittura; nel primo caso sarà collegato al capo di
+uscita della fifo, e dovrà leggere, nel secondo al capo di ingresso, e dovrà
+scrivere.
 
 Il kernel crea una singola pipe per ciascuna fifo che sia stata aperta, che può
 essere acceduta contemporaneamente da più processi, sia in lettura che in
 
 Il kernel crea una singola pipe per ciascuna fifo che sia stata aperta, che può
 essere acceduta contemporaneamente da più processi, sia in lettura che in
@@ -727,20 +730,20 @@ dei socket in cap.~\ref{cha:socket_intro},\footnote{si tratta comunque di
   oggetti di comunicazione che, come le pipe, sono utilizzati attraverso dei
   file descriptor.} nell'ambito dell'interfaccia generale che essi forniscono
 per la programmazione di rete; e vedremo anche
   oggetti di comunicazione che, come le pipe, sono utilizzati attraverso dei
   file descriptor.} nell'ambito dell'interfaccia generale che essi forniscono
 per la programmazione di rete; e vedremo anche
-(in~sez.~\ref{sec:sock_sa_local}) come si possono definire dei file speciali
-(di tipo socket, analoghi a quello associati alle fifo) cui si accede però
-attraverso quella medesima interfaccia; vale però la pena esaminare qui una
-modalità di uso dei socket locali\footnote{la funzione \func{socketpair} è
-  stata introdotta in BSD4.4, ma è supportata in genere da qualunque sistema
-  che fornisca l'interfaccia dei socket.} che li rende sostanzialmente
-identici ad una pipe bidirezionale.
+(in~sez.~\ref{sec:sock_sa_local}) come si possono definire dei
+\index{file!speciali} file speciali (di tipo socket, analoghi a quello
+associati alle fifo) cui si accede però attraverso quella medesima
+interfaccia; vale però la pena esaminare qui una modalità di uso dei socket
+locali\footnote{la funzione \func{socketpair} è stata introdotta in BSD4.4, ma
+  è supportata in genere da qualunque sistema che fornisca l'interfaccia dei
+  socket.} che li rende sostanzialmente identici ad una pipe bidirezionale.
 
 La funzione \funcd{socketpair} infatti consente di creare una coppia di file
 descriptor connessi fra di loro (tramite un socket, appunto), senza dover
 
 La funzione \funcd{socketpair} infatti consente di creare una coppia di file
 descriptor connessi fra di loro (tramite un socket, appunto), senza dover
-ricorrere ad un file speciale sul filesystem, i descrittori sono del tutto
-analoghi a quelli che si avrebbero con una chiamata a \func{pipe}, con la sola
-differenza è che in questo caso il flusso dei dati può essere effettuato in
-entrambe le direzioni. Il prototipo della funzione è:
+ricorrere ad un \index{file!speciali} file speciale sul filesystem, i
+descrittori sono del tutto analoghi a quelli che si avrebbero con una chiamata
+a \func{pipe}, con la sola differenza è che in questo caso il flusso dei dati
+può essere effettuato in entrambe le direzioni. Il prototipo della funzione è:
 \begin{functions}
   \headdecl{sys/types.h} 
   \headdecl{sys/socket.h} 
 \begin{functions}
   \headdecl{sys/types.h} 
   \headdecl{sys/socket.h} 
@@ -1222,7 +1225,7 @@ cui queste strutture vengono mantenute dal kernel.\footnote{lo schema
   \label{fig:ipc_msqid_ds}
 \end{figure}
 
   \label{fig:ipc_msqid_ds}
 \end{figure}
 
-A ciascuna coda è associata una struttura \struct{msgid\_ds}, la cui
+A ciascuna coda è associata una struttura \struct{msqid\_ds}, la cui
 definizione, è riportata in fig.~\ref{fig:ipc_msqid_ds}. In questa struttura
 il kernel mantiene le principali informazioni riguardo lo stato corrente della
 coda.\footnote{come accennato questo vale fino ai kernel della serie 2.2.x,
 definizione, è riportata in fig.~\ref{fig:ipc_msqid_ds}. In questa struttura
 il kernel mantiene le principali informazioni riguardo lo stato corrente della
 coda.\footnote{come accennato questo vale fino ai kernel della serie 2.2.x,
@@ -2064,6 +2067,10 @@ vengono effettuate con la funzione \funcd{semop}, il cui prototipo è:
 }
 \end{functions}
 
 }
 \end{functions}
 
+
+%TODO manca semtimedop, trattare qui, referenziata in
+%sez.~\ref{sec:sig_gen_beha}.
+
 La funzione permette di eseguire operazioni multiple sui singoli semafori di
 un insieme. La funzione richiede come primo argomento l'identificatore
 \param{semid} dell'insieme su cui si vuole operare. Il numero di operazioni da
 La funzione permette di eseguire operazioni multiple sui singoli semafori di
 un insieme. La funzione richiede come primo argomento l'identificatore
 \param{semid} dell'insieme su cui si vuole operare. Il numero di operazioni da
@@ -2167,7 +2174,7 @@ Dato che, come già accennato in precedenza, in caso di uscita inaspettata i
 semafori possono restare occupati, abbiamo visto come \func{semop} permetta di
 attivare un meccanismo di ripristino attraverso l'uso del flag
 \const{SEM\_UNDO}. Il meccanismo è implementato tramite una apposita struttura
 semafori possono restare occupati, abbiamo visto come \func{semop} permetta di
 attivare un meccanismo di ripristino attraverso l'uso del flag
 \const{SEM\_UNDO}. Il meccanismo è implementato tramite una apposita struttura
-\struct{sem\_undo}, associata ad ogni processo per ciascun semaforo che esso
+\kstruct{sem\_undo}, associata ad ogni processo per ciascun semaforo che esso
 ha modificato; all'uscita i semafori modificati vengono ripristinati, e le
 strutture disallocate.  Per mantenere coerente il comportamento queste
 strutture non vengono ereditate attraverso una \func{fork} (altrimenti si
 ha modificato; all'uscita i semafori modificati vengono ripristinati, e le
 strutture disallocate.  Per mantenere coerente il comportamento queste
 strutture non vengono ereditate attraverso una \func{fork} (altrimenti si
@@ -2208,7 +2215,7 @@ Se invece tutte le operazioni possono avere successo queste vengono eseguite
 immediatamente, dopo di che il kernel esegue una scansione della coda di
 attesa (a partire da \var{sem\_pending}) per verificare se qualcuna delle
 operazioni sospese in precedenza può essere eseguita, nel qual caso la
 immediatamente, dopo di che il kernel esegue una scansione della coda di
 attesa (a partire da \var{sem\_pending}) per verificare se qualcuna delle
 operazioni sospese in precedenza può essere eseguita, nel qual caso la
-struttura \struct{sem\_queue} viene rimossa e lo stato del processo associato
+struttura \kstruct{sem\_queue} viene rimossa e lo stato del processo associato
 all'operazione (\var{sleeper}) viene riportato a \textit{running}; il tutto
 viene ripetuto fin quando non ci sono più operazioni eseguibili o si è
 svuotata la coda.  Per gestire il meccanismo del ripristino tutte le volte che
 all'operazione (\var{sleeper}) viene riportato a \textit{running}; il tutto
 viene ripetuto fin quando non ci sono più operazioni eseguibili o si è
 svuotata la coda.  Per gestire il meccanismo del ripristino tutte le volte che
@@ -2218,6 +2225,8 @@ contiene (nel vettore puntato dal campo \var{semadj}) un valore di
 aggiustamento per ogni semaforo cui viene sommato l'opposto del valore usato
 per l'operazione.
 
 aggiustamento per ogni semaforo cui viene sommato l'opposto del valore usato
 per l'operazione.
 
+%TODO verificare queste strutture \kstruct{sem\_queue} e \kstruct{sem\_undo}
+
 Queste strutture sono mantenute in due liste,\footnote{rispettivamente
   attraverso i due campi \var{id\_next} e \var{proc\_next}.} una associata
 all'insieme di cui fa parte il semaforo, che viene usata per invalidare le
 Queste strutture sono mantenute in due liste,\footnote{rispettivamente
   attraverso i due campi \var{id\_next} e \var{proc\_next}.} una associata
 all'insieme di cui fa parte il semaforo, che viene usata per invalidare le
@@ -2832,12 +2841,12 @@ condivisa (la funzione si bloccherà automaticamente se qualche client sta
 leggendo), poi (\texttt{\small 44}) si cancellano i valori precedentemente
 immagazzinati nella memoria condivisa con \func{memset}, e si esegue
 (\texttt{\small 45}) un nuovo calcolo degli stessi utilizzando la funzione
 leggendo), poi (\texttt{\small 44}) si cancellano i valori precedentemente
 immagazzinati nella memoria condivisa con \func{memset}, e si esegue
 (\texttt{\small 45}) un nuovo calcolo degli stessi utilizzando la funzione
-\func{DirScan}; infine (\texttt{\small 46}) si sblocca il mutex con
+\myfunc{dir\_scan}; infine (\texttt{\small 46}) si sblocca il mutex con
 \func{MutexUnlock}, e si attende (\texttt{\small 47}) per il periodo di tempo
 specificato a riga di comando con l'opzione \code{-p} con una \func{sleep}.
 
 Si noti come per il calcolo dei valori da mantenere nella memoria condivisa si
 \func{MutexUnlock}, e si attende (\texttt{\small 47}) per il periodo di tempo
 specificato a riga di comando con l'opzione \code{-p} con una \func{sleep}.
 
 Si noti come per il calcolo dei valori da mantenere nella memoria condivisa si
-sia usata ancora una volta la funzione \func{DirScan}, già utilizzata (e
+sia usata ancora una volta la funzione \myfunc{dir\_scan}, già utilizzata (e
 descritta in dettaglio) in sez.~\ref{sec:file_dir_read}, che ci permette di
 effettuare la scansione delle voci della directory, chiamando per ciascuna di
 esse la funzione \func{ComputeValues}, che esegue tutti i calcoli necessari.
 descritta in dettaglio) in sez.~\ref{sec:file_dir_read}, che ci permette di
 effettuare la scansione delle voci della directory, chiamando per ciascuna di
 esse la funzione \func{ComputeValues}, che esegue tutti i calcoli necessari.
@@ -2849,10 +2858,10 @@ ciascuna voce, per ottenerne i dati, che poi utilizza per incrementare i vari
 contatori nella memoria condivisa, cui accede grazie alla
 \index{variabili!globali} variabile globale \var{shmptr}.
 
 contatori nella memoria condivisa, cui accede grazie alla
 \index{variabili!globali} variabile globale \var{shmptr}.
 
-Dato che la funzione è chiamata da \func{DirScan}, si è all'interno del ciclo
-principale del programma, con un mutex acquisito, perciò non è necessario
-effettuare nessun controllo e si può accedere direttamente alla memoria
-condivisa usando \var{shmptr} per riempire i campi della struttura
+Dato che la funzione è chiamata da \myfunc{dir\_scan}, si è all'interno del
+ciclo principale del programma, con un mutex acquisito, perciò non è
+necessario effettuare nessun controllo e si può accedere direttamente alla
+memoria condivisa usando \var{shmptr} per riempire i campi della struttura
 \struct{DirProp}; così prima (\texttt{\small 6--7}) si sommano le dimensioni
 dei file ed il loro numero, poi, utilizzando le macro di
 tab.~\ref{tab:file_type_macro}, si contano (\texttt{\small 8--14}) quanti ce
 \struct{DirProp}; così prima (\texttt{\small 6--7}) si sommano le dimensioni
 dei file ed il loro numero, poi, utilizzando le macro di
 tab.~\ref{tab:file_type_macro}, si contano (\texttt{\small 8--14}) quanti ce
@@ -3050,7 +3059,7 @@ La prima possibilità, utilizzata fin dalle origini di Unix, è quella di usare
 dei \textsl{file di lock} (per i quali esiste anche una opportuna directory,
 \file{/var/lock}, nel filesystem standard). Per questo si usa la
 caratteristica della funzione \func{open} (illustrata in
 dei \textsl{file di lock} (per i quali esiste anche una opportuna directory,
 \file{/var/lock}, nel filesystem standard). Per questo si usa la
 caratteristica della funzione \func{open} (illustrata in
-sez.~\ref{sec:file_open}) che prevede\footnote{questo è quanto dettato dallo
+sez.~\ref{sec:file_open_close}) che prevede\footnote{questo è quanto dettato dallo
   standard POSIX.1, ciò non toglie che in alcune implementazioni questa
   tecnica possa non funzionare; in particolare per Linux, nel caso di NFS, si
   è comunque soggetti alla possibilità di una \itindex{race~condition}
   standard POSIX.1, ciò non toglie che in alcune implementazioni questa
   tecnica possa non funzionare; in particolare per Linux, nel caso di NFS, si
   è comunque soggetti alla possibilità di una \itindex{race~condition}
@@ -3082,7 +3091,7 @@ cancella con \func{unlink}.
 \end{figure}
 
 Uno dei limiti di questa tecnica è che, come abbiamo già accennato in
 \end{figure}
 
 Uno dei limiti di questa tecnica è che, come abbiamo già accennato in
-sez.~\ref{sec:file_open}, questo comportamento di \func{open} può non
+sez.~\ref{sec:file_open_close}, questo comportamento di \func{open} può non
 funzionare (la funzione viene eseguita, ma non è garantita l'atomicità
 dell'operazione) se il filesystem su cui si va ad operare è su NFS; in tal
 caso si può adottare una tecnica alternativa che prevede l'uso della
 funzionare (la funzione viene eseguita, ma non è garantita l'atomicità
 dell'operazione) se il filesystem su cui si va ad operare è su NFS; in tal
 caso si può adottare una tecnica alternativa che prevede l'uso della
@@ -3252,7 +3261,12 @@ più avanti, quando realizzeremo una nuova versione del monitor visto in
 sez.~\ref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
 \itindend{memory~mapping}
 
 sez.~\ref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
 \itindend{memory~mapping}
 
-% TODO fare esempio di mmap anonima
+% TODO: fare esempio di mmap anonima
+
+% TODO: con il kernel 3.2 è stata introdotta un nuovo meccanismo di
+% intercomunicazione veloce chiamato Cross Memory Attach, da capire se e come
+% trattarlo qui, vedi http://lwn.net/Articles/405346/
+% https://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=fcf634098c00dd9cd247447368495f0b79be12d1
 
 \section{L'intercomunicazione fra processi di POSIX}
 \label{sec:ipc_posix}
 
 \section{L'intercomunicazione fra processi di POSIX}
 \label{sec:ipc_posix}
@@ -3411,7 +3425,7 @@ diversi.
 La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
 possono essere specificati per \param{oflag}, che deve essere specificato come
 maschera binaria; i valori possibili per i vari bit sono quelli visti in
 La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
 possono essere specificati per \param{oflag}, che deve essere specificato come
 maschera binaria; i valori possibili per i vari bit sono quelli visti in
-tab.~\ref{tab:file_open_flags} dei quali però \func{mq\_open} riconosce solo i
+sez.~\ref{sec:file_open_close} dei quali però \func{mq\_open} riconosce solo i
 seguenti:
 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{O\_RDONLY}] Apre la coda solo per la ricezione di messaggi. Il
 seguenti:
 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{O\_RDONLY}] Apre la coda solo per la ricezione di messaggi. Il
@@ -3841,7 +3855,7 @@ La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
 possono essere specificati per \param{oflag}, che deve essere specificato come
 maschera binaria comprendente almeno uno dei due valori \const{O\_RDONLY} e
 \const{O\_RDWR}; i valori possibili per i vari bit sono quelli visti in
 possono essere specificati per \param{oflag}, che deve essere specificato come
 maschera binaria comprendente almeno uno dei due valori \const{O\_RDONLY} e
 \const{O\_RDWR}; i valori possibili per i vari bit sono quelli visti in
-tab.~\ref{tab:file_open_flags} dei quali però \func{shm\_open} riconosce solo
+sez.~\ref{sec:file_open_close} dei quali però \func{shm\_open} riconosce solo
 i seguenti:
 \begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{O\_RDONLY}] Apre il file descriptor associato al segmento di
 i seguenti:
 \begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{O\_RDONLY}] Apre il file descriptor associato al segmento di
@@ -3863,7 +3877,7 @@ In caso di successo la funzione restituisce un file descriptor associato al
 segmento di memoria condiviso con le stesse modalità di
 \func{open}\footnote{in realtà, come accennato, \func{shm\_open} è un semplice
   wrapper per \func{open}, usare direttamente quest'ultima avrebbe lo stesso
 segmento di memoria condiviso con le stesse modalità di
 \func{open}\footnote{in realtà, come accennato, \func{shm\_open} è un semplice
   wrapper per \func{open}, usare direttamente quest'ultima avrebbe lo stesso
-  effetto.}  viste in sez.~\ref{sec:file_open}; in particolare viene impostato
+  effetto.}  viste in sez.~\ref{sec:file_open_close}; in particolare viene impostato
 il flag \const{FD\_CLOEXEC}.  Chiamate effettuate da diversi processi usando
 lo stesso nome, restituiranno file descriptor associati allo stesso segmento
 (così come, nel caso di file di dati, essi sono associati allo stesso
 il flag \const{FD\_CLOEXEC}.  Chiamate effettuate da diversi processi usando
 lo stesso nome, restituiranno file descriptor associati allo stesso segmento
 (così come, nel caso di file di dati, essi sono associati allo stesso
@@ -4029,7 +4043,7 @@ automaticamente un nome nella forma \texttt{sem.qualchenome}.\footnote{si ha
 L'argomento \param{oflag} è quello che controlla le modalità con cui opera la
 funzione, ed è passato come maschera binaria; i bit corrispondono a quelli
 utilizzati per l'analogo argomento di \func{open}, anche se dei possibili
 L'argomento \param{oflag} è quello che controlla le modalità con cui opera la
 funzione, ed è passato come maschera binaria; i bit corrispondono a quelli
 utilizzati per l'analogo argomento di \func{open}, anche se dei possibili
-valori visti in sez.~\ref{sec:file_open} sono utilizzati soltanto
+valori visti in sez.~\ref{sec:file_open_close} sono utilizzati soltanto
 \const{O\_CREAT} e \const{O\_EXCL}.
 
 Se si usa \const{O\_CREAT} si richiede la creazione del semaforo qualora
 \const{O\_CREAT} e \const{O\_EXCL}.
 
 Se si usa \const{O\_CREAT} si richiede la creazione del semaforo qualora
@@ -4275,7 +4289,7 @@ prende un valore identico a quello usato per creare il semaforo stesso con
 il semaforo viene effettivamente cancellato dal sistema soltanto quando tutti
 i processi che lo avevano aperto lo chiudono. Si segue cioè la stessa
 semantica usata con \func{unlink} per i file, trattata in dettaglio in
 il semaforo viene effettivamente cancellato dal sistema soltanto quando tutti
 i processi che lo avevano aperto lo chiudono. Si segue cioè la stessa
 semantica usata con \func{unlink} per i file, trattata in dettaglio in
-sez.~\ref{sec:file_link}.
+sez.~\ref{sec:link_symlink_rename}.
 
 Una delle caratteristiche peculiari dei semafori POSIX è che questi possono
 anche essere utilizzati anche in forma anonima, senza necessità di fare
 
 Una delle caratteristiche peculiari dei semafori POSIX è che questi possono
 anche essere utilizzati anche in forma anonima, senza necessità di fare
@@ -4607,7 +4621,7 @@ testo alla terminazione di quest'ultimo.
 % LocalWords:  dtime lpid cpid nattac shmall shmmax SHMLBA SHMSEG EOVERFLOW brk
 % LocalWords:  memory shmat shmdt void shmaddr shmflg SVID RND RDONLY rounded
 % LocalWords:  SIGSEGV nattch exit SharedMem ShmCreate memset fill ShmFind home
 % LocalWords:  dtime lpid cpid nattac shmall shmmax SHMLBA SHMSEG EOVERFLOW brk
 % LocalWords:  memory shmat shmdt void shmaddr shmflg SVID RND RDONLY rounded
 % LocalWords:  SIGSEGV nattch exit SharedMem ShmCreate memset fill ShmFind home
-% LocalWords:  ShmRemove DirMonitor DirProp chdir GaPiL shmptr DirScan ipcs NFS
+% LocalWords:  ShmRemove DirMonitor DirProp chdir GaPiL shmptr ipcs NFS
 % LocalWords:  ComputeValues ReadMonitor touch SIGTERM dirmonitor unlink fcntl
 % LocalWords:  LockFile UnlockFile CreateMutex FindMutex LockMutex SETLKW GETLK
 % LocalWords:  UnlockMutex RemoveMutex ReadMutex UNLCK WRLCK RDLCK mapping MAP
 % LocalWords:  ComputeValues ReadMonitor touch SIGTERM dirmonitor unlink fcntl
 % LocalWords:  LockFile UnlockFile CreateMutex FindMutex LockMutex SETLKW GETLK
 % LocalWords:  UnlockMutex RemoveMutex ReadMutex UNLCK WRLCK RDLCK mapping MAP