revisioni varie
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index d8703b1e1b102f5fafe4f73e4f576ea0105db450..3bf821c56c6da3fb19dcf4028754f089f0b0c4f1 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -6,7 +6,7 @@ Uno degli aspetti fondamentali della programmazione in un sistema unix-like 
 la comunicazione fra processi. In questo capitolo affronteremo solo i
 meccanismi più elementari che permettono di mettere in comunicazione processi
 diversi, come quelli tradizionali che coinvolgono \textit{pipe} e
-\textit{fifo} e i meccanismi di intercomunicazione di System V.
+\textit{fifo} e i meccanismi di intercomunicazione di System V e quelli POSIX.
 
 Tralasceremo invece tutte le problematiche relative alla comunicazione
 attraverso la rete (e le relative interfacce) che saranno affrontate in
@@ -20,12 +20,11 @@ implementati con un ulteriore livello sopra i meccanismi elementari.
 \section{La comunicazione fra processi tradizionale}
 \label{sec:ipc_unix}
 
-Il primo meccanismo di comunicazione fra processi usato dai sistemi unix-like,
-e quello che viene correntemente usato di più, è quello delle \textit{pipe},
-che sono una delle caratteristiche peculiari del sistema, in particolar modo
-dell'interfaccia a linea di comando. In questa sezione descriveremo le sue
-basi, le funzioni che ne gestiscono l'uso e le varie forme in cui si è
-evoluto.
+Il primo meccanismo di comunicazione fra processi introdotto nei sistemi Unix,
+è quello delle cosiddette \textit{pipe}; esse costituiscono una delle
+caratteristiche peculiari del sistema, in particolar modo dell'interfaccia a
+linea di comando. In questa sezione descriveremo le sue basi, le funzioni che
+ne gestiscono l'uso e le varie forme in cui si è evoluto.
 
 
 \subsection{Le \textit{pipe} standard}
@@ -33,39 +32,36 @@ evoluto.
 
 Le \textit{pipe} nascono sostanzialmente con Unix, e sono il primo, e tuttora
 uno dei più usati, meccanismi di comunicazione fra processi. Si tratta in
-sostanza di uno speciale tipo di file descriptor, più precisamente una coppia
-di file descriptor,\footnote{si tenga presente che le pipe sono oggetti creati
-  dal kernel e non risiedono su disco.}  su cui da una parte si scrive e da
-un'altra si legge. Si viene così a costituire un canale di comunicazione
-tramite i due file descriptor, nella forma di un \textsl{tubo} (da cui il
-nome) in cui in genere un processo immette dati che poi arriveranno ad un
-altro.
-
-La funzione che permette di creare una pipe è appunto \func{pipe}; il suo
-prototipo è:
+sostanza di una una coppia di file descriptor\footnote{si tenga presente che
+  le pipe sono oggetti creati dal kernel e non risiedono su disco.} connessi
+fra di loro in modo che se quanto scrive su di uno si può rileggere
+dall'altro. Si viene così a costituire un canale di comunicazione tramite i
+due file descriptor, nella forma di un \textsl{tubo} (da cui il nome)
+attraverso cui fluiscono i dati.
+
+La funzione che permette di creare questa speciale coppia di file descriptor
+associati ad una \textit{pipe} è appunto \func{pipe}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}
 {int pipe(int filedes[2])} 
   
-Crea una coppia di file descriptor associati ad una pipe.
+Crea una coppia di file descriptor associati ad una \textit{pipe}.
   
   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
     errore, nel qual caso \var{errno} potrà assumere i valori \macro{EMFILE},
     \macro{ENFILE} e \macro{EFAULT}.}
 \end{prototype}
 
-La funzione restituisce una coppia di file descriptor nell'array
-\param{filedes}; il primo aperto in lettura ed il secondo in scrittura. Il
-concetto di funzionamento di una pipe è relativamente semplice, quello che si
+La funzione restituisce la coppia di file descriptor nell'array
+\param{filedes}; il primo è aperto in lettura ed il secondo in scrittura. Come
+accennato concetto di funzionamento di una pipe è semplice: quello che si
 scrive nel file descriptor aperto in scrittura viene ripresentato tale e quale
-nel file descriptor aperto in lettura, da cui può essere riletto.
-
-I file descriptor infatti non sono connessi a nessun file reale, ma ad un
-buffer nel kernel, la cui dimensione è specificata dalla costante
-\macro{PIPE\_BUF}, (vedi \secref{sec:sys_file_limits}); lo schema di
-funzionamento di una pipe è illustrato in \figref{fig:ipc_pipe_singular}, in
-cui sono illustrati i due capi della pipe, associati a ciascun file
-descriptor, con le frecce che indicano la direzione del flusso dei dati
-attraverso la pipe.
+nel file descriptor aperto in lettura. I file descriptor infatti non sono
+connessi a nessun file reale, ma ad un buffer nel kernel, la cui dimensione è
+specificata dalla costante \macro{PIPE\_BUF}, (vedi
+\secref{sec:sys_file_limits}). Lo schema di funzionamento di una pipe è
+illustrato in \figref{fig:ipc_pipe_singular}, in cui sono illustrati i due
+capi della pipe, associati a ciascun file descriptor, con le frecce che
+indicano la direzione del flusso dei dati.
 
 \begin{figure}[htb]
   \centering
@@ -74,12 +70,12 @@ attraverso la pipe.
   \label{fig:ipc_pipe_singular}
 \end{figure}
 
-Chiaramente creare una pipe all'interno di un processo non serve a niente; se
-però ricordiamo quanto esposto in \secref{sec:file_sharing} riguardo al
-comportamento dei file descriptor nei processi figli, è immediato capire come
-una pipe possa diventare un meccanismo di intercomunicazione. Un processo
-figlio infatti condivide gli stessi file descriptor del padre, compresi quelli
-associati ad una pipe (secondo la situazione illustrata in
+Chiaramente creare una pipe all'interno di un singolo processo non serve a
+niente; se però ricordiamo quanto esposto in \secref{sec:file_sharing}
+riguardo al comportamento dei file descriptor nei processi figli, è immediato
+capire come una pipe possa diventare un meccanismo di intercomunicazione. Un
+processo figlio infatti condivide gli stessi file descriptor del padre,
+compresi quelli associati ad una pipe (secondo la situazione illustrata in
 \figref{fig:ipc_pipe_fork}). In questo modo se uno dei processi scrive su un
 capo della pipe, l'altro può leggere.
 
@@ -92,16 +88,16 @@ capo della pipe, l'altro pu
 \end{figure}
 
 Tutto ciò ci mostra come sia immediato realizzare un meccanismo di
-comunicazione fra processi attraverso una pipe, utilizzando le ordinarie
-proprietà dei file, ma ci mostra anche qual'è il principale\footnote{Stevens
+comunicazione fra processi attraverso una pipe, utilizzando le proprietà
+ordinarie dei file, ma ci mostra anche qual'è il principale\footnote{Stevens
   in \cite{APUE} riporta come limite anche il fatto che la comunicazione è
-  unidirezionale, in realtà questo è un limite facilmente superabile usando
+  unidirezionale, ma in realtà questo è un limite facilmente superabile usando
   una coppia di pipe.} limite nell'uso delle pipe. È necessario infatti che i
 processi possano condividere i file descriptor della pipe, e per questo essi
-devono comunque derivare da uno stesso processo padre che ha aperto la pipe,
-o, più comunemente, essere nella relazione padre/figlio.
+devono comunque derivare da uno stesso processo padre in cui è avvenuta la
+creazione della pipe, o, più comunemente, essere nella relazione padre/figlio.
 
-A differenza di quanto avviene con i file normali la lettura da una pipe può
+A differenza di quanto avviene con i file normali, la lettura da una pipe può
 essere bloccante (qualora non siano presenti dati), inoltre se si legge da una
 pipe il cui capo in scrittura è stato chiuso, si avrà la ricezione di un EOF
 (vale a dire che la funzione \func{read} ritornerà restituendo 0).  Se invece
@@ -122,14 +118,14 @@ da altri processi.
 \subsection{Un esempio dell'uso delle pipe}
 \label{sec:ipc_pipe_use}
 
-Per capire meglio il funzionamento di una pipe faremo un esempio di quello che
+Per capire meglio il funzionamento delle pipe faremo un esempio di quello che
 è il loro uso più comune, analogo a quello effettuato della shell, e che
 consiste nell'inviare l'output di un processo (lo standard output) sull'input
-di un'altro. Realizzeremo il programma nella forma di un
-\textit{CGI}\footnote{Un CGI (\textit{Common Gateway Interface}) è un programma
-  che permette la creazione dinamica di un oggetto da inserire all'interno di
-  una pagina HTML.}  per apache, che genera una immagine JPEG di un codice a
-barre, specificato come parametro di input.
+di un'altro. Realizzeremo il programma di esempio nella forma di un
+\textit{CGI}\footnote{Un CGI (\textit{Common Gateway Interface}) è un
+  programma che permette la creazione dinamica di un oggetto da inserire
+  all'interno di una pagina HTML.}  per apache, che genera una immagine JPEG
+di un codice a barre, specificato come parametro di input.
 
 Un programma che deve essere eseguito come \textit{CGI} deve rispondere a
 delle caratteristiche specifiche, esso infatti non viene lanciato da una
@@ -143,13 +139,13 @@ che ne descrive il mime-type) sullo standard output, in modo che il web-server
 possa reinviarlo al browser che ha effettuato la richiesta, che in questo modo
 è in grado di visualizzarlo opportunamente.
 
-Per fare questo useremo in sequenza i programmi \cmd{barcode} e \cmd{gs}, il
-primo infatti è in grado di generare immagini postscript di codici a barre
-corrispondenti ad una qualunque stringa, mentre il secondo serve per poter
-effettuare la conversione della stessa immagine in formato JPEG. Usando una
-pipe potremo inviare l'output del primo sull'input del secondo, secondo lo
-schema mostrato in \figref{fig:ipc_pipe_use}, in cui la direzione del flusso
-dei dati è data dalle frecce continue.
+Per realizzare quanto voluto useremo in sequenza i programmi \cmd{barcode} e
+\cmd{gs}, il primo infatti è in grado di generare immagini postscript di
+codici a barre corrispondenti ad una qualunque stringa, mentre il secondo
+serve per poter effettuare la conversione della stessa immagine in formato
+JPEG. Usando una pipe potremo inviare l'output del primo sull'input del
+secondo, secondo lo schema mostrato in \figref{fig:ipc_pipe_use}, in cui la
+direzione del flusso dei dati è data dalle frecce continue.
 
 \begin{figure}[htb]
   \centering
@@ -188,7 +184,7 @@ nel file \file{BarCodePage.c} che si trova nella directory dei sorgenti.
 int main(int argc, char *argv[], char *envp[])
 {
     ...
-    /* create two pipes to handle process communication */
+    /* create two pipes, pipein and pipeout, to handle communication */
     if ( (retval = pipe(pipein)) ) {
         WriteMess("input pipe creation error");
         exit(0);        
@@ -208,14 +204,14 @@ int main(int argc, char *argv[], char *envp[])
         dup2(pipein[0], STDIN_FILENO);   /* remap stdin to pipe read end */
         close(pipeout[0]);
         dup2(pipeout[1], STDOUT_FILENO); /* remap stdout in pipe output */
-        execlp("barcode", "barcode", size, NULL); //"-o", "-",  NULL);
+        execlp("barcode", "barcode", size, NULL);
     } 
     close(pipein[0]);                    /* close input side of input pipe */
     write(pipein[1], argv[1], strlen(argv[1]));  /* write parameter to pipe */
     close(pipein[1]);                    /* closing write end */
     waitpid(pid, NULL, 0);               /* wait child completion */
     /* Second fork: use child to run ghostscript */
-    if ( (pid = fork()) == -1) {          /* on error exit */
+    if ( (pid = fork()) == -1) {
         WriteMess("child creation error");
         exit(0);
     }
@@ -244,7 +240,7 @@ La prima operazione del programma (\texttt{\small 4--12}) 
 le due pipe che serviranno per la comunicazione fra i due comandi utilizzati
 per produrre il codice a barre; si ha cura di controllare la riuscita della
 chiamata, inviando in caso di errore un messaggio invece dell'immagine
-richiesta.\footnote{la funzione \func{WriteMess}, non è riportata in
+richiesta.\footnote{la funzione \func{WriteMess} non è riportata in
   \secref{fig:ipc_barcodepage_code}; essa si incarica semplicemente di
   formattare l'uscita alla maniera dei CGI, aggiungendo l'opportuno
   \textit{mime type}, e formattando il messaggio in HTML, in modo che
@@ -375,26 +371,27 @@ approccio diverso. Una possibilit
 programma, \cmd{epstopsf}, per convertire in PDF un file EPS (che può essere
 generato da \cmd{barcode} utilizzando lo switch \cmd{-E}).  Utilizzando un PDF
 al posto di un EPS \cmd{gs} esegue la conversione rispettando le dimensioni
-originarie del codice a barre e produce un JPEG delle dimensioni adeguate.
-
-Questo però ci porta a scontrarci con una caratteristica peculiare delle pipe,
-che a prima vista non è evidente. Per poter effettuare la conversione di un
-PDF infatti è necessario, per la struttura del formato, dover eseguire delle
-\func{lseek} sul file da convertire; se si esegue \cmd{gs} su un file normale
-non ci sono problemi, ma una pipe però è rigidamente sequenziale, ed il
-tentativo di eseguire detta operazione su una pipe comporta l'immediato
-fallimento con un errore di \macro{ESPIPE}.  Questo ci dice che in generale la
-concatenazione di vari programmi funzionerà soltanto quando tutti prevedono
-una lettura sequenziale del loro input.
-
-Per questo motivo si è dovuto utilizzare una strada diversa, che prevede la
-conversione attraverso \cmd{gs} del PS in un altro formato intermedio, il
-PPM,\footnote{il \textit{Portable PixMap file format} è un formato usato
-  spesso come formato intermedio per effettuare conversioni, è estremamente
-  inefficiente, ma molto facile da manipolare dato che usa caratteri ASCII per
-  memorizzare le immagini.} dal quale poi si può ottenere un'immagine di
-dimensioni corrette attraverso vari programmi di manipolazione (\cmd{pnmcrop},
-\cmd{pnmmargin}) che può essere infine trasformata in PNG (con \cmd{pnm2png}).
+originarie del codice a barre e produce un JPEG di dimensioni corrette.
+
+Questo approccio però non funziona, per via di una delle caratteristiche
+principali delle pipe. Per poter effettuare la conversione di un PDF infatti è
+necessario, per la struttura del formato, potersi spostare (con \func{lseek})
+all'interno del file da convertire; se si eseguela conversione con \cmd{gs} su
+un file regolare non ci sono problemi, una pipe però è rigidamente
+sequenziale, e l'uso di \func{lseek} su di essa fallisce sempre con un errore
+di \macro{ESPIPE}, rendendo impossibile la conversione.  Questo ci dice che in
+generale la concatenazione di vari programmi funzionerà soltanto quando tutti
+prevedono una lettura sequenziale del loro input.
+
+Per questo motivo si è dovuto utilizzare un procedimento diverso, eseguendo
+prima la conversione (sempre con \cmd{gs}) del PS in un altro formato
+intermedio, il PPM,\footnote{il \textit{Portable PixMap file format} è un
+  formato usato spesso come formato intermedio per effettuare conversioni, è
+  infatti molto facile da manipolare, dato che usa caratteri ASCII per
+  memorizzare le immagini, anche se per questo è estremamente inefficiente.}
+dal quale poi si può ottenere un'immagine di dimensioni corrette attraverso
+vari programmi di manipolazione (\cmd{pnmcrop}, \cmd{pnmmargin}) che può
+essere infine trasformata in PNG (con \cmd{pnm2png}).
 
 In questo caso però occorre eseguire in sequenza ben quattro comandi diversi,
 inviando l'output di ciascuno all'input del successivo, per poi ottenere il
@@ -473,7 +470,7 @@ Alla fine tutto quello che resta da fare 
 primo processo della catena, che nel caso è \cmd{barcode}, e scrivere
 (\texttt{\small 23}) la stringa del codice a barre sulla pipe, che è collegata
 al suo standard input, infine si può eseguire (\texttt{\small 24--27}) un
-ciclo, che chiuda, nell'ordine inverso rispetto a quello in cui le si sono
+ciclo che chiuda, nell'ordine inverso rispetto a quello in cui le si sono
 create, tutte le pipe create con \func{pclose}.
 
 
@@ -513,48 +510,48 @@ nel qual caso l'apertura del capo in lettura avr
 l'altro capo è aperto, mentre l'apertura del capo in scrittura restituirà
 l'errore di \macro{ENXIO} fintanto che non verrà aperto il capo in lettura.
 
-In Linux\footnote{lo standard POSIX lascia indefinito questo comportamento.} è
-possibile aprire le fifo anche in lettura/scrittura, operazione che avrà
-sempre successo immediato qualunque sia la modalità di apertura (bloccante e
-non bloccante); questo può essere utilizzato per aprire comunque una fifo in
-scrittura anche se non ci sono ancora processi il lettura; è possibile anche
-usare la fifo all'interno di un solo processo, nel qual caso però occorre
-stare molto attenti alla possibili deadlock.\footnote{se si cerca di leggere
-  da una fifo che non contiene dati si avrà un deadlock immediato, dato che il
-  processo si blocca e non potrà quindi mai eseguire le funzioni di
-  scrittura.}
+In Linux è possibile aprire le fifo anche in lettura/scrittura,\footnote{lo
+  standard POSIX lascia indefinito il comportamento in questo caso.}
+operazione che avrà sempre successo immediato qualunque sia la modalità di
+apertura (bloccante e non bloccante); questo può essere utilizzato per aprire
+comunque una fifo in scrittura anche se non ci sono ancora processi il
+lettura; è possibile anche usare la fifo all'interno di un solo processo, nel
+qual caso però occorre stare molto attenti alla possibili
+deadlock.\footnote{se si cerca di leggere da una fifo che non contiene dati si
+  avrà un deadlock immediato, dato che il processo si blocca e non potrà
+  quindi mai eseguire le funzioni di scrittura.}
 
 Per la loro caratteristica di essere accessibili attraverso il filesystem, è
 piuttosto frequente l'utilizzo di una fifo come canale di comunicazione nelle
-situazioni un processo deve ricevere informazioni dagli altri. In questo caso
-è fondamentale che le operazioni di scrittura siano atomiche; per questo si
-deve sempre tenere presente che questo è vero soltanto fintanto che non si
-supera il limite delle dimensioni di \macro{PIPE\_BUF} (si ricordi quanto
-detto in \secref{sec:ipc_pipes}).
-
-A parte il precedente, che resta probabilmente il più comune, Stevens riporta
-in \cite{APUE} altre due casistiche principali per l'uso delle fifo:
+situazioni un processo deve ricevere informazioni da altri. In questo caso è
+fondamentale che le operazioni di scrittura siano atomiche; per questo si deve
+sempre tenere presente che questo è vero soltanto fintanto che non si supera
+il limite delle dimensioni di \macro{PIPE\_BUF} (si ricordi quanto detto in
+\secref{sec:ipc_pipes}).
+
+A parte il caso precedente, che resta probabilmente il più comune, Stevens
+riporta in \cite{APUE} altre due casistiche principali per l'uso delle fifo:
 \begin{itemize}
 \item Da parte dei comandi di shell, per evitare la creazione di file
   temporanei quando si devono inviare i dati di uscita di un processo
   sull'input di parecchi altri (attraverso l'uso del comando \cmd{tee}).
   
-\item Come canale di comunicazione fra un client ed un server (il modello
+\item Come canale di comunicazione fra client ed server (il modello
   \textit{client-server} è illustrato in \secref{sec:net_cliserv}).
 \end{itemize}
 
-Nel primo caso quello che si fa è creare tante pipe quanti sono i processi a
-cui i vogliono inviare i dati, da usare come standard input per gli stessi; una
-volta che li si saranno posti in esecuzione ridirigendo lo standard input si
-potrà eseguire il processo iniziale replicandone, con il comando \cmd{tee},
-l'output sulle pipe.
+Nel primo caso quello che si fa è creare tante fifo, da usare come standard
+input, quanti sono i processi a cui i vogliono inviare i dati, questi ultimi
+saranno stati posti in esecuzione ridirigendo lo standard input dalle fifo, si
+potrà poi eseguire il processo che fornisce l'output replicando quest'ultimo,
+con il comando \cmd{tee}, sulle varie fifo.
 
 Il secondo caso è relativamente semplice qualora si debba comunicare con un
-processo alla volta (nel qual caso basta usare due pipe, una per leggere ed
+processo alla volta (nel qual caso basta usare due fifo, una per leggere ed
 una per scrivere), le cose diventano invece molto più complesse quando si
 vuole effettuare una comunicazione fra il server ed un numero imprecisato di
 client; se il primo infatti può ricevere le richieste attraverso una fifo
-``nota'', per le risposte non si può fare altrettanto, dato che per la
+``nota'', per le risposte non si può fare altrettanto, dato che, per la
 struttura sequenziale delle fifo, i client dovrebbero sapere, prima di
 leggerli, quando i dati inviati sono destinati a loro.
 
@@ -571,27 +568,55 @@ sistema 
 generale infatti l'interfaccia delle fifo non è adatta a risolvere questo tipo
 di problemi, che possono essere affrontati in maniera più semplice ed efficace
 o usando i \textit{socket}\index{socket} (che tratteremo in dettaglio a
-partire da \capref{cha:socket_intro}) o ricorrendo a diversi meccanismi di
-comunicazione, come quelli che esamineremo in \secref{sec:ipc_sysv}.
+partire da \capref{cha:socket_intro}) o ricorrendo a meccanismi di
+comunicazione diversi, come quelli che esamineremo in seguito.
 
 
 
 \section{La comunicazione fra processi di System V}
 \label{sec:ipc_sysv}
 
-Benché le pipe (e le fifo) siano ancora ampiamente usate, esse presentano
-numerosi limiti, il principale dei quali è che il meccanismo di comunicazione
-è rigidamente sequenziale; per cui una situazione in cui un processo scrive
-qualcosa che molti altri devono poter leggere non può essere implementata in
-maniera semplice con una pipe.
-
-Per superarne questi limiti nello sviluppo di System V vennero introdotti una
-serie di nuovi oggetti di comunicazione e relative interfacce di
-programmazione che garantissero una maggiore flessibilità; in questa sezione
-esamineremo quello che viene ormai chiamato il \textsl{Sistema di
-  comunicazione inter-processo} di System V , più comunemente noto come
+Benché le pipe e le fifo siano ancora ampiamente usate, esse scontano il
+limite fondamentale che il meccanismo di comunicazione che forniscono è
+rigidamente sequenziale: una situazione in cui un processo scrive qualcosa che
+molti altri devono poter leggere non può essere implementata con una pipe.
+
+Per questo nello sviluppo di System V vennero introdotti una serie di nuovi
+oggetti per la comunicazione fra processi ed una nuova interfaccia di
+programmazione, che fossero in grado di garantire una maggiore flessibilità;
+in questa sezione esamineremo quello che viene ormai chiamato il
+\textsl{Sistema di comunicazione inter-processo} di System V, (o
 \textit{System V IPC (Inter-Process Comunication)}.
+
+
+
+\subsection{Considerazioni generali}
+\label{sec:ipc_sysv_generic}
+
+La principale caratteristica del sistema di IPC di System V è quella di essere
+basato su oggetti permanenti che risiedono nel kernel. Questi, a differenza di
+quanto avviene per i file descriptor, non mantengono un contatore dei
+riferimenti, e non vengono cancellati dal sistema una volta che non sono più
+in uso. Questo comporta che, al contrario di quanto avviene per pipe e fifo,
+la memoria allocata per questi oggetti non viene rilasciata automaticamente,
+ed essi devono essere cancellati esplicitamente, altrimenti resteranno attivi
+fino al riavvio del sistema.
+
+Gli oggetti usati nel System V IPC vengono creati direttamente dal kernel, e
+sono accessibili solo specificando il relativo \textsl{identificatore}. Questo
+è il numero progressivo che il kernel assengna a ciascuno di questi oggetti
+quanto vengono creati (il prodedimento è simile a quello con cui si assegna il
+\acr{pid} ai processi).
+
+L'identificatore è in genere restituito dalle funzioni che creano l'oggetto,
+nasce quindi il problema di come processi diversi possono accedere allo stesso
+oggetto. Per far questo a ciascuno di essi viene anche associata una
+\textsl{chiave}, che può essere indicata in fasi di creazione. Usando la
+stessa chiave due processi diversi potranno ricavare l'identificatore
+associato ad un oggetto e accedervi entrambi. 
+
+Il problema che sorge a questo punto è come due processi diversi possono
+
 
 \subsection{Code di messaggi}
 \label{sec:ipc_messque}
@@ -611,6 +636,20 @@ Il secondo oggetto introdotto dal \textit{System V IPC} 
 Il terzo oggetto introdotto dal \textit{System V IPC} è quello della memoria
 condivisa.
 
+
+
+
+\section{La comunicazione fra processi di POSIX}
+\label{sec:ipc_posix}
+
+Lo standard POSIX.1b ha introdotto dei nuovi meccanismi di comunicazione,
+rifacendosi a quelli di System V, introducendo una nuova interfaccia che
+evitasse i principali problemi evidenziati in coda a
+\secref{sec:ipc_sysv_generic}.
+
+
+
+
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"