Altre indicizzazioni e recupero dei pezzi tagliati per sbaglio
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index ff1772d5d07e400a6ea815b262522b10f32daf00..092d40fdc6bc27f655f8a1b35802a49ac7399613 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -122,7 +122,7 @@ fra \const{O\_NONBLOCK} o \const{O\_CLOEXEC} che hanno l'effetto di impostare
 su entrambi i file descriptor restituiti dalla funzione i relativi flag, già
 descritti per \func{open} in tab.~\ref{tab:open_operation_flag}, che attivano
 rispettivamente la modalità di accesso \textsl{non-bloccante} ed il
-\textit{close-on-exec} \itindex{close-on-exec}.
+\textit{close-on-exec}.
 
 Chiaramente creare una \textit{pipe} all'interno di un singolo processo non
 serve a niente; se però ricordiamo quanto esposto in
@@ -228,14 +228,14 @@ direzione del flusso dei dati è data dalle frecce continue.
 Si potrebbe obiettare che sarebbe molto più semplice salvare il risultato
 intermedio su un file temporaneo. Questo però non tiene conto del fatto che un
 \textit{CGI} può essere eseguito più volte in contemporanea, e si avrebbe una
-evidente \itindex{race~condition} \textit{race condition} in caso di accesso
-simultaneo a detto file da istanze diverse. Il problema potrebbe essere
-superato utilizzando un sempre diverso per il file temporaneo, che verrebbe
-creato all'avvio di ogni istanza, utilizzato dai sottoprocessi, e cancellato
-alla fine della sua esecuzione; ma a questo punto le cose non sarebbero più
-tanto semplici.  L'uso di una \textit{pipe} invece permette di risolvere il
-problema in maniera semplice ed elegante, oltre ad essere molto più
-efficiente, dato che non si deve scrivere su disco.
+evidente \textit{race condition} in caso di accesso simultaneo a detto file da
+istanze diverse. Il problema potrebbe essere superato utilizzando un sempre
+diverso per il file temporaneo, che verrebbe creato all'avvio di ogni istanza,
+utilizzato dai sottoprocessi, e cancellato alla fine della sua esecuzione; ma
+a questo punto le cose non sarebbero più tanto semplici.  L'uso di una
+\textit{pipe} invece permette di risolvere il problema in maniera semplice ed
+elegante, oltre ad essere molto più efficiente, dato che non si deve scrivere
+su disco.
 
 Il programma ci servirà anche come esempio dell'uso delle funzioni di
 duplicazione dei file descriptor che abbiamo trattato in
@@ -369,8 +369,8 @@ La funzione restituisce il puntatore ad uno stream associato alla
   input}) in caso di \code{w}. A partire dalla versione 2.9 delle \acr{glibc}
 (questa è una estensione specifica di Linux) all'argomento \param{type} può
 essere aggiunta la lettera ``\texttt{e}'' per impostare automaticamente il
-flag di \textit{close-on-exec} \itindex{close-on-exec} sul file descriptor
-sottostante (si ricordi quanto spiegato in sez.~\ref{sec:file_open_close}).
+flag di \textit{close-on-exec} sul file descriptor sottostante (si ricordi
+quanto spiegato in sez.~\ref{sec:file_open_close}).
 
 Lo \textit{stream} restituito da \func{popen} è identico a tutti gli effetti
 ai \textit{file stream} visti in sez.~\ref{sec:files_std_interface}, anche se
@@ -514,10 +514,10 @@ a quello illustrato per le \textit{pipe} in sez.~\ref{sec:ipc_pipes}.
 
 Abbiamo già trattato in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
 \func{mkfifo} che permettono di creare una \textit{fifo}. Per utilizzarne una
-un processo non avrà che da aprire il relativo \index{file!speciali} file
-speciale o in lettura o scrittura; nel primo caso il processo sarà collegato
-al capo di uscita della \textit{fifo}, e dovrà leggere, nel secondo al capo di
-ingresso, e dovrà scrivere.
+un processo non avrà che da aprire il relativo file speciale o in lettura o
+scrittura; nel primo caso il processo sarà collegato al capo di uscita della
+\textit{fifo}, e dovrà leggere, nel secondo al capo di ingresso, e dovrà
+scrivere.
 
 Il kernel alloca un singolo buffer per ciascuna \textit{fifo} che sia stata
 aperta, e questa potrà essere acceduta contemporaneamente da più processi, sia
@@ -821,21 +821,21 @@ presenta il problema della unidirezionalità del flusso dei dati, è quello dei
 cosiddetti \textsl{socket locali} (o \textit{Unix domain socket}).  Tratteremo
 in generale i socket in cap.~\ref{cha:socket_intro}, nell'ambito
 dell'interfaccia che essi forniscono per la programmazione di rete, e vedremo
-anche (in~sez.~\ref{sec:sock_sa_local}) come si possono utilizzare i
-\index{file!speciali} file speciali di tipo socket, analoghi a quelli
-associati alle \textit{fifo} (si rammenti sez.~\ref{sec:file_file_types}) cui
-si accede però attraverso quella medesima interfaccia; vale però la pena
-esaminare qui una modalità di uso dei socket locali che li rende
-sostanzialmente identici ad una \textit{pipe} bidirezionale.
+anche (in~sez.~\ref{sec:sock_sa_local}) come si possono utilizzare i file
+speciali di tipo socket, analoghi a quelli associati alle \textit{fifo} (si
+rammenti sez.~\ref{sec:file_file_types}) cui si accede però attraverso quella
+medesima interfaccia; vale però la pena esaminare qui una modalità di uso dei
+socket locali che li rende sostanzialmente identici ad una \textit{pipe}
+bidirezionale.
 
 La funzione di sistema \funcd{socketpair}, introdotta da BSD ma supportata in
 genere da qualunque sistema che fornisca l'interfaccia dei socket ed inclusa
 in POSIX.1-2001, consente infatti di creare una coppia di file descriptor
 connessi fra loro (tramite un socket, appunto) senza dover ricorrere ad un
-\index{file!speciali} file speciale sul filesystem. I descrittori sono del
-tutto analoghi a quelli che si avrebbero con una chiamata a \func{pipe}, con
-la sola differenza è che in questo caso il flusso dei dati può essere
-effettuato in entrambe le direzioni. Il prototipo della funzione è:
+file speciale sul filesystem. I descrittori sono del tutto analoghi a quelli
+che si avrebbero con una chiamata a \func{pipe}, con la sola differenza è che
+in questo caso il flusso dei dati può essere effettuato in entrambe le
+direzioni. Il prototipo della funzione è:
 
 \begin{funcproto}{
 \fhead{sys/types.h} 
@@ -1075,8 +1075,7 @@ direttamente (in lettura o scrittura) all'oggetto. In tal caso lo schema dei
 controlli è simile a quello dei file, ed avviene secondo questa sequenza:
 \begin{itemize*}
 \item se il processo ha i privilegi di amministratore (più precisamente la
-  capacità \itindex{capability} \const{CAP\_IPC\_OWNER}) l'accesso è sempre
-  consentito.
+  capacità \const{CAP\_IPC\_OWNER}) l'accesso è sempre consentito.
 \item se l'\ids{UID} effettivo del processo corrisponde o al valore del campo
   \var{cuid} o a quello del campo \var{uid} ed il permesso per il proprietario
   in \var{mode} è appropriato\footnote{per appropriato si intende che è
@@ -1451,9 +1450,9 @@ per \param{cmd} sono:
   occorre essere il proprietario o il creatore della coda, oppure
   l'amministratore e lo stesso vale per \var{msg\_qbytes}. Infine solo
   l'amministratore (più precisamente un processo con la capacità
-  \itindex{capability} \const{CAP\_IPC\_RESOURCE}) ha la facoltà di
-  incrementarne il valore a limiti superiori a \const{MSGMNB}. Se eseguita con
-  successo la funzione aggiorna anche il campo \var{msg\_ctime}.
+  \const{CAP\_IPC\_RESOURCE}) ha la facoltà di incrementarne il valore a
+  limiti superiori a \const{MSGMNB}. Se eseguita con successo la funzione
+  aggiorna anche il campo \var{msg\_ctime}.
 \end{basedescript}
 
 A questi tre valori, che sono quelli previsti dallo standard, su Linux se ne
@@ -1845,14 +1844,13 @@ successivo potrebbe ricevere un messaggio non indirizzato a lui.
 I semafori non sono propriamente meccanismi di intercomunicazione come
 \textit{pipe}, \textit{fifo} e code di messaggi, poiché non consentono di
 scambiare dati fra processi, ma servono piuttosto come meccanismi di
-sincronizzazione o di protezione per le \index{sezione~critica}
-\textsl{sezioni critiche} del codice (si ricordi quanto detto in
-sez.~\ref{sec:proc_race_cond}).  Un semaforo infatti non è altro che un
-contatore mantenuto nel kernel che determina se consentire o meno la
-prosecuzione dell'esecuzione di un programma. In questo modo si può
-controllare l'accesso ad una risorsa condivisa da più processi, associandovi
-un semaforo che assicuri che non possa essere usata da più di un processo alla
-volta.
+sincronizzazione o di protezione per le \textsl{sezioni critiche} del codice
+(si ricordi quanto detto in sez.~\ref{sec:proc_race_cond}).  Un semaforo
+infatti non è altro che un contatore mantenuto nel kernel che determina se
+consentire o meno la prosecuzione dell'esecuzione di un programma. In questo
+modo si può controllare l'accesso ad una risorsa condivisa da più processi,
+associandovi un semaforo che assicuri che non possa essere usata da più di un
+processo alla volta.
 
 Il concetto di semaforo è uno dei concetti base nella programmazione ed è
 assolutamente generico, così come del tutto generali sono modalità con cui lo
@@ -2423,8 +2421,7 @@ referenziata tramite i campi \var{sem\_pending} e \var{sem\_pending\_last} di
 operazioni richieste (nel campo \var{sops}, che è un puntatore ad una
 struttura \struct{sembuf}) e al processo corrente (nel campo \var{sleeper})
 poi quest'ultimo viene messo stato di attesa e viene invocato lo
-\itindex{scheduler} \textit{scheduler} per passare all'esecuzione di un altro
-processo.
+\textit{scheduler} per passare all'esecuzione di un altro processo.
 
 Se invece tutte le operazioni possono avere successo queste vengono eseguite
 immediatamente, dopo di che il kernel esegue una scansione della coda di
@@ -2587,20 +2584,20 @@ di gestione del segmento di memoria condivisa in relazione al sistema della
 memoria virtuale.
 
 Il primo dei due flag è \const{SHM\_HUGETLB} che consente di richiedere la
-creazione del segmento usando una \itindex{huge~page} \textit{huge page}, le
-pagine di memoria di grandi dimensioni introdotte con il kernel 2.6 per
-ottimizzare le prestazioni nei sistemi più recenti che hanno grandi quantità
-di memoria. L'operazione è privilegiata e richiede che il processo abbia la
-\itindex{capability} \textit{capability} \const{CAP\_IPC\_LOCK}. Questa
-funzionalità è specifica di Linux e non è portabile.
+creazione del segmento usando una \textit{huge page}, le pagine di memoria di
+grandi dimensioni introdotte con il kernel 2.6 per ottimizzare le prestazioni
+nei sistemi più recenti che hanno grandi quantità di memoria. L'operazione è
+privilegiata e richiede che il processo abbia la \textit{capability}
+\const{CAP\_IPC\_LOCK}. Questa funzionalità è specifica di Linux e non è
+portabile.
 
 Il secondo flag aggiuntivo, introdotto a partire dal kernel 2.6.15, è
 \const{SHM\_NORESERVE}, ed ha lo stesso scopo del flag \const{MAP\_NORESERVE}
 di \func{mmap} (vedi sez.~\ref{sec:file_memory_map}): non vengono riservate
-delle pagine di swap ad uso del meccanismo del \textit{copy on write}
-\itindex{copy~on~write} per mantenere le modifiche fatte sul segmento. Questo
-significa che caso di scrittura sul segmento quando non c'è più memoria
-disponibile, si avrà l'emissione di un \signal{SIGSEGV}.
+delle pagine di swap ad uso del meccanismo del \textit{copy on write} per
+mantenere le modifiche fatte sul segmento. Questo significa che caso di
+scrittura sul segmento quando non c'è più memoria disponibile, si avrà
+l'emissione di un \signal{SIGSEGV}.
 
 Infine l'argomento \param{size} specifica la dimensione del segmento di
 memoria condivisa; il valore deve essere specificato in byte, ma verrà
@@ -2774,20 +2771,18 @@ consentono di estendere le funzionalità, ovviamente non devono essere usati se
 si ha a cuore la portabilità. Questi comandi aggiuntivi sono:
 
 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
-\item[\const{SHM\_LOCK}] Abilita il \itindex{memory~locking} \textit{memory
-    locking} sul segmento di memoria condivisa, impedendo che la memoria usata
-  per il segmento venga salvata su disco dal meccanismo della
-  \index{memoria~virtuale} memoria virtuale. Come illustrato in
+\item[\const{SHM\_LOCK}] Abilita il \textit{memory locking} sul segmento di
+  memoria condivisa, impedendo che la memoria usata per il segmento venga
+  salvata su disco dal meccanismo della memoria virtuale. Come illustrato in
   sez.~\ref{sec:proc_mem_lock} fino al kernel 2.6.9 solo l'amministratore
   poteva utilizzare questa capacità,\footnote{che richiedeva la
     \textit{capability} \const{CAP\_IPC\_LOCK}.} a partire dal dal kernel
   2.6.10 anche gli utenti normali possono farlo fino al limite massimo
   determinato da \const{RLIMIT\_MEMLOCK} (vedi
   sez.~\ref{sec:sys_resource_limit}).
-\item[\const{SHM\_UNLOCK}] Disabilita il \itindex{memory~locking}
-  \textit{memory locking} sul segmento di memoria condivisa.  Fino al kernel
-  2.6.9 solo l'amministratore poteva utilizzare questo comando in
-  corrispondenza di un segmento da lui bloccato. 
+\item[\const{SHM\_UNLOCK}] Disabilita il \textit{memory locking} sul segmento
+  di memoria condivisa.  Fino al kernel 2.6.9 solo l'amministratore poteva
+  utilizzare questo comando in corrispondenza di un segmento da lui bloccato.
 \end{basedescript}
 
 A questi due, come per \func{msgctl} e \func{semctl}, si aggiungono tre
@@ -2818,7 +2813,7 @@ il suo prototipo è:
 }
 
 {La funzione ritorna l'indirizzo del segmento in caso di successo e $-1$ (in
-  un cast a \type{void *}) per un errore, nel qual caso \var{errno} assumerà
+  un cast a \ctyp{void *}) per un errore, nel qual caso \var{errno} assumerà
   uno dei valori:
   \begin{errlist}
     \item[\errcode{EACCES}] il processo non ha i privilegi per accedere al
@@ -2883,12 +2878,12 @@ indirizzo come arrotondamento.
 
 L'uso di \const{SHM\_RDONLY} permette di agganciare il segmento in sola
 lettura (si ricordi che anche le pagine di memoria hanno dei permessi), in tal
-caso un tentativo di scrivere sul segmento comporterà una
-\itindex{segment~violation} violazione di accesso con l'emissione di un
-segnale di \signal{SIGSEGV}. Il comportamento usuale di \func{shmat} è quello
-di agganciare il segmento con l'accesso in lettura e scrittura (ed il processo
-deve aver questi permessi in \var{shm\_perm}), non è prevista la possibilità
-di agganciare un segmento in sola scrittura.
+caso un tentativo di scrivere sul segmento comporterà una violazione di
+accesso con l'emissione di un segnale di \signal{SIGSEGV}. Il comportamento
+usuale di \func{shmat} è quello di agganciare il segmento con l'accesso in
+lettura e scrittura (ed il processo deve aver questi permessi in
+\var{shm\_perm}), non è prevista la possibilità di agganciare un segmento in
+sola scrittura.
 
 Infine \const{SHM\_REMAP} è una estensione specifica di Linux (quindi non
 portabile) che indica che la mappatura del segmento deve rimpiazzare ogni
@@ -3037,10 +3032,10 @@ ricavare la parte di informazione che interessa.
 
 In fig.~\ref{fig:ipc_dirmonitor_main} si è riportata la sezione principale del
 corpo del programma server, insieme alle definizioni delle altre funzioni
-usate nel programma e delle \index{variabili!globali} variabili globali,
-omettendo tutto quello che riguarda la gestione delle opzioni e la stampa
-delle istruzioni di uso a video; al solito il codice completo si trova con i
-sorgenti allegati nel file \file{DirMonitor.c}.
+usate nel programma e delle variabili globali, omettendo tutto quello che
+riguarda la gestione delle opzioni e la stampa delle istruzioni di uso a
+video; al solito il codice completo si trova con i sorgenti allegati nel file
+\file{DirMonitor.c}.
 
 \begin{figure}[!htbp]
   \footnotesize \centering
@@ -3052,11 +3047,11 @@ sorgenti allegati nel file \file{DirMonitor.c}.
   \label{fig:ipc_dirmonitor_main}
 \end{figure}
 
-Il programma usa delle \index{variabili!globali} variabili globali
-(\texttt{\small 2-14}) per mantenere i valori relativi agli oggetti usati per
-la comunicazione inter-processo; si è definita inoltre una apposita struttura
-\struct{DirProp} che contiene i dati relativi alle proprietà che si vogliono
-mantenere nella memoria condivisa, per l'accesso da parte dei client.
+Il programma usa delle variabili globali (\texttt{\small 2-14}) per mantenere
+i valori relativi agli oggetti usati per la comunicazione inter-processo; si è
+definita inoltre una apposita struttura \struct{DirProp} che contiene i dati
+relativi alle proprietà che si vogliono mantenere nella memoria condivisa, per
+l'accesso da parte dei client.
 
 Il programma, dopo la sezione, omessa, relativa alla gestione delle opzioni da
 riga di comando (che si limitano alla eventuale stampa di un messaggio di
@@ -3069,12 +3064,11 @@ con un messaggio di errore.
 Poi, per verificare che l'argomento specifichi effettivamente una directory,
 si esegue (\texttt{\small 24-26}) su di esso una \func{chdir}, uscendo
 immediatamente in caso di errore.  Questa funzione serve anche per impostare
-la \index{directory~di~lavoro} directory di lavoro del programma nella
-directory da tenere sotto controllo, in vista del successivo uso della
-funzione \func{daemon}. Si noti come si è potuta fare questa scelta,
-nonostante le indicazioni illustrate in sez.~\ref{sec:sess_daemon}, per il
-particolare scopo del programma, che necessita comunque di restare all'interno
-di una directory.
+la directory di lavoro del programma nella directory da tenere sotto
+controllo, in vista del successivo uso della funzione \func{daemon}. Si noti
+come si è potuta fare questa scelta, nonostante le indicazioni illustrate in
+sez.~\ref{sec:sess_daemon}, per il particolare scopo del programma, che
+necessita comunque di restare all'interno di una directory.
 
 Infine (\texttt{\small 27-29}) si installano i gestori per i vari segnali di
 terminazione che, avendo a che fare con un programma che deve essere eseguito
@@ -3103,9 +3097,9 @@ intercomunicazione il programma entra nel ciclo principale (\texttt{\small
 Il primo passo (\texttt{\small 41}) è eseguire \func{daemon} per proseguire
 con l'esecuzione in background come si conviene ad un programma demone; si
 noti che si è mantenuta, usando un valore non nullo del primo argomento, la
-\index{directory~di~lavoro} directory di lavoro corrente.  Una volta che il
-programma è andato in background l'esecuzione prosegue all'interno di un ciclo
-infinito (\texttt{\small 42-48}).
+directory di lavoro corrente.  Una volta che il programma è andato in
+background l'esecuzione prosegue all'interno di un ciclo infinito
+(\texttt{\small 42-48}).
 
 Si inizia (\texttt{\small 43}) bloccando il mutex con \func{MutexLock} per
 poter accedere alla memoria condivisa (la funzione si bloccherà
@@ -3135,11 +3129,11 @@ esse la funzione \func{ComputeValues}, che esegue tutti i calcoli necessari.
 
 
 Il codice di quest'ultima è riportato in fig.~\ref{fig:ipc_dirmonitor_sub}.
-Come si vede la funzione (\texttt{\small 2-16}) è molto semplice e si limita
-chiamare (\texttt{\small 5}) la funzione \func{stat} sul file indicato da
+Come si vede la funzione (\texttt{\small 2-16}) è molto semplice e si limita a
+chiamare (\texttt{\small 5}) la funzione \func{stat} sul file indicato da
 ciascuna voce, per ottenerne i dati, che poi utilizza per incrementare i vari
-contatori nella memoria condivisa, cui accede grazie alla
-\index{variabili!globali} variabile globale \var{shmptr}.
+contatori nella memoria condivisa, cui accede grazie alla variabile globale
+\var{shmptr}.
 
 Dato che la funzione è chiamata da \myfunc{dir\_scan}, si è all'interno del
 ciclo principale del programma, con un mutex acquisito, perciò non è
@@ -3347,12 +3341,12 @@ directory, \file{/var/lock}, nella standardizzazione del \textit{Filesystem
 prevede\footnote{questo è quanto dettato dallo standard POSIX.1, ciò non
   toglie che in alcune implementazioni questa tecnica possa non funzionare; in
   particolare per Linux, nel caso di NFS, si è comunque soggetti alla
-  possibilità di una \itindex{race~condition} \textit{race condition}.} che
-essa ritorni un errore quando usata con i flag di \const{O\_CREAT} e
-\const{O\_EXCL}. In tal modo la creazione di un \textsl{file di lock} può
-essere eseguita atomicamente, il processo che crea il file con successo si può
-considerare come titolare del lock (e della risorsa ad esso associata) mentre
-il rilascio si può eseguire con una chiamata ad \func{unlink}.
+  possibilità di una \textit{race condition}.} che essa ritorni un errore
+quando usata con i flag di \const{O\_CREAT} e \const{O\_EXCL}. In tal modo la
+creazione di un \textsl{file di lock} può essere eseguita atomicamente, il
+processo che crea il file con successo si può considerare come titolare del
+lock (e della risorsa ad esso associata) mentre il rilascio si può eseguire
+con una chiamata ad \func{unlink}.
 
 Un esempio dell'uso di questa funzione è mostrato dalle funzioni
 \func{LockFile} ed \func{UnlockFile} riportate in fig.~\ref{fig:ipc_file_lock}
@@ -3791,9 +3785,8 @@ dei limiti sono:
   valore massimo è \const{HARD\_MAX} che vale \code{(131072/sizeof(void *))},
   ed il valore minimo 1 (ma era 10 per i kernel precedenti il 2.6.28). Questo
   limite viene ignorato per i processi con privilegi amministrativi (più
-  precisamente con la \itindex{capability} \textit{capability}
-  \const{CAP\_SYS\_RESOURCE}) ma \const{HARD\_MAX} resta comunque non
-  superabile.
+  precisamente con la \textit{capability} \const{CAP\_SYS\_RESOURCE}) ma
+  \const{HARD\_MAX} resta comunque non superabile.
 
 \item[\sysctlfile{fs/mqueue/msgsize\_max}] Indica il valore massimo della
   dimensione in byte di un messaggio sulla coda ed agisce come limite
@@ -3801,14 +3794,14 @@ dei limiti sono:
   suo valore di default è 8192.  Il valore massimo è 1048576 ed il valore
   minimo 128 (ma per i kernel precedenti il 2.6.28 detti limiti erano
   rispettivamente \const{INT\_MAX} e 8192). Questo limite viene ignorato dai
-  processi con privilegi amministrativi (con la \itindex{capability}
-  \textit{capability} \const{CAP\_SYS\_RESOURCE}).
+  processi con privilegi amministrativi (con la \textit{capability}
+  \const{CAP\_SYS\_RESOURCE}).
 
 \item[\sysctlfile{fs/mqueue/queues\_max}] Indica il numero massimo di code di
   messaggi creabili in totale sul sistema, il valore di default è 256 ma si
   può usare un valore qualunque fra $0$ e \const{INT\_MAX}. Il limite non
   viene applicato ai processi con privilegi amministrativi (cioè con la
-  \itindex{capability} \textit{capability} \const{CAP\_SYS\_RESOURCE}).
+  \textit{capability} \const{CAP\_SYS\_RESOURCE}).
 
 \end{basedescript}
 
@@ -4152,12 +4145,12 @@ che se si vuole mantenere il meccanismo di notifica occorre ripetere la
 registrazione chiamando nuovamente \func{mq\_notify} all'interno del gestore
 del segnale di notifica. A differenza della situazione simile che si aveva con
 i segnali non affidabili (l'argomento è stato affrontato in
-\ref{sec:sig_semantics}) questa caratteristica non configura una
-\itindex{race~condition} \textit{race condition} perché l'invio di un segnale
-avviene solo se la coda è vuota; pertanto se si vuole evitare di correre il
-rischio di perdere eventuali ulteriori segnali inviati nel lasso di tempo che
-occorre per ripetere la richiesta di notifica basta avere cura di eseguire
-questa operazione prima di estrarre i messaggi presenti dalla coda.
+\ref{sec:sig_semantics}) questa caratteristica non configura una \textit{race
+  condition} perché l'invio di un segnale avviene solo se la coda è vuota;
+pertanto se si vuole evitare di correre il rischio di perdere eventuali
+ulteriori segnali inviati nel lasso di tempo che occorre per ripetere la
+richiesta di notifica basta avere cura di eseguire questa operazione prima di
+estrarre i messaggi presenti dalla coda.
 
 L'invio del segnale di notifica avvalora alcuni campi di informazione
 restituiti al gestore attraverso la struttura \struct{siginfo\_t} (definita in
@@ -4766,12 +4759,11 @@ il semaforo deve essere utilizzato dai \itindex{thread} \textit{thread} di uno
 stesso processo (con un valore nullo) o condiviso fra processi diversi (con un
 valore non nullo).
 
-Qualora il semaforo debba essere condiviso dai \itindex{thread}
-\textit{thread} di uno stesso processo (nel qual caso si parla di
-\textit{thread-shared semaphore}), occorrerà che \param{sem} sia l'indirizzo
-di una variabile visibile da tutti i \itindex{thread} \textit{thread}, si
-dovrà usare cioè una \index{variabili!globali} variabile globale o una
-variabile allocata dinamicamente nello \itindex{heap} \textit{heap}.
+Qualora il semaforo debba essere condiviso dai \textit{thread} di uno stesso
+processo (nel qual caso si parla di \textit{thread-shared semaphore}),
+occorrerà che \param{sem} sia l'indirizzo di una variabile visibile da tutti i
+\textit{thread}, si dovrà usare cioè una variabile globale o una variabile
+allocata dinamicamente nello \textit{heap}.
 
 Qualora il semaforo debba essere condiviso fra più processi (nel qual caso si
 parla di \textit{process-shared semaphore}) la sola scelta possibile per
@@ -4852,9 +4844,9 @@ dall'altro programma prima di averla finita di stampare.
 
 La parte iniziale del programma contiene le definizioni (\texttt{\small 1-8})
 del gestore del segnale usato per liberare le risorse utilizzate, delle
-\index{variabili!globali} variabili globali contenenti i nomi di default del
-segmento di memoria condivisa e del semaforo (il default scelto è
-\texttt{messages}), e delle altre variabili utilizzate dal programma.
+variabili globali contenenti i nomi di default del segmento di memoria
+condivisa e del semaforo (il default scelto è \texttt{messages}), e delle
+altre variabili utilizzate dal programma.
 
 Come prima istruzione (\texttt{\small 10}) si è provveduto ad installare un
 gestore di segnale che consentirà di effettuare le operazioni di pulizia
@@ -4883,12 +4875,12 @@ notazione ottale). Infine il semaforo verrà inizializzato ad un valore nullo
 A questo punto (\texttt{\small 22}) si potrà inizializzare il messaggio posto
 nel segmento di memoria condivisa usando la stringa passata come argomento al
 programma. Essendo il semaforo stato creato già bloccato non ci si dovrà
-preoccupare di eventuali \itindex{race~condition} \textit{race condition}
-qualora il programma di modifica del messaggio venisse lanciato proprio in
-questo momento.  Una volta inizializzato il messaggio occorrerà però
-rilasciare il semaforo (\texttt{\small 24-27}) per consentirne l'uso; in
-tutte queste operazioni si provvederà ad uscire dal programma con un opportuno
-messaggio in caso di errore.
+preoccupare di eventuali \textit{race condition} qualora il programma di
+modifica del messaggio venisse lanciato proprio in questo momento.  Una volta
+inizializzato il messaggio occorrerà però rilasciare il semaforo
+(\texttt{\small 24-27}) per consentirne l'uso; in tutte queste operazioni si
+provvederà ad uscire dal programma con un opportuno messaggio in caso di
+errore.
 
 Una volta completate le inizializzazioni il ciclo principale del programma
 (\texttt{\small 29-47}) viene ripetuto indefinitamente (\texttt{\small 29})
@@ -4959,8 +4951,8 @@ argomento.
 Una volta completate con successo le precedenti inizializzazioni, il passo
 seguente (\texttt{\small 21-24}) è quello di acquisire il semaforo, dopo di
 che sarà possibile eseguire la sostituzione del messaggio (\texttt{\small 25})
-senza incorrere in possibili \itindex{race~condition} \textit{race condition}
-con la stampa dello stesso da parte di \file{message\_getter}.
+senza incorrere in possibili \textit{race condition} con la stampa dello
+stesso da parte di \file{message\_getter}.
 
 Una volta effettuata la modifica viene stampato (\texttt{\small 26}) il tempo
 di attesa impostato con l'opzione ``\texttt{-t}'' dopo di che (\texttt{\small
@@ -5087,10 +5079,10 @@ testo alla terminazione di quest'ultimo.
 % LocalWords:  SysV capability short RESOURCE INFO UNDEFINED EFBIG semtimedop
 % LocalWords:  scan HUGETLB huge page NORESERVE copy RLIMIT MEMLOCK REMAP UTC
 % LocalWords:  readmon Hierarchy defaults queues MSGQUEUE effective fstat
+% LocalWords:  fchown fchmod Epoch January
 
 
 %%% Local Variables: 
 %%% mode: latex
 %%% TeX-master: "gapil"
 %%% End: 
-% LocalWords:  fchown fchmod Epoch January