Rinominati app_a e app_b
[gapil.git] / intro.tex
index 4e8dd690c553288de0a130874ccb3b4d888f0173..ebbc5e2e0920dab23fa340bf4c6350decd677e4d 100644 (file)
--- a/intro.tex
+++ b/intro.tex
@@ -1,18 +1,24 @@
-\chapter{Introduzione}
+\chapter{L'architettura di GNU/Linux}
 \label{cha:intro_unix}
 
 In questo primo capitolo sarà fatta un'introduzione ai concetti generali su
 \label{cha:intro_unix}
 
 In questo primo capitolo sarà fatta un'introduzione ai concetti generali su
-cui è basato un sistema di tipo unix, per fornire una base di comprensione
-mirata a sottolineare le peculiarità che saranno poi importanti per quello
-che riguarda la programmazione; in particolare faremo una panoramica sulla
-struttura di un sistema \textit{unix-like} come Linux.
+cui è basato un sistema di tipo unix come GNU/Linux, per fornire una base di
+comprensione mirata a sottolineare le peculiarità che saranno poi importanti
+per quello che riguarda la programmazione. 
 
 
-Chi avesse già una conoscenza di questa materia può tranquillamente saltare
-il capitolo.
+Dopo un introduzione sulle caratteristiche principali di un sistema di tipo
+unix passeremo ad illustrare alcuni dei concetti basi dell'architettura di
+Linux (che sono comunque comuni a tutti i sistemi \textit{unix-like}) ed
+introdurremo alcunoi degli standard princincipali a cui si fa riferimento.
 
 
-\section{La struttura di un sistema Unix}
+
+\section{Una panoramica sulla struttura}
 \label{sec:intro_unix_struct}
 
 \label{sec:intro_unix_struct}
 
+In questa prima sezione faremo una panoramica sulla struttura di un sistema
+\textit{unix-like} come Linux.  Chi avesse già una conoscenza di questa
+materia può tranquillamente saltare questa sezione.
+
 Il concetto base di un sistema unix-like é quello di un nucleo del sistema (il
 cosiddetto \textit{kernel}) a cui si demanda la gestione delle risorse
 essenziali (la CPU, la memoria, le periferiche) mentre tutto il resto, quindi
 Il concetto base di un sistema unix-like é quello di un nucleo del sistema (il
 cosiddetto \textit{kernel}) a cui si demanda la gestione delle risorse
 essenziali (la CPU, la memoria, le periferiche) mentre tutto il resto, quindi
@@ -44,12 +50,11 @@ o alle porte di input/output).
 
 Una parte del kernel, lo \textit{scheduler}, si occupa di stabilire, ad
 intervalli fissi e sulla base di un opportuno calcolo delle priorità, quale
 
 Una parte del kernel, lo \textit{scheduler}, si occupa di stabilire, ad
 intervalli fissi e sulla base di un opportuno calcolo delle priorità, quale
-``processo'' (vedi \capref{cha:process}) deve essere posto in esecuzione (il
-cosiddetto \textit{prehemptive scheduling}). Questo verrà comunque eseguito
-in modalità protetta; quando necessario il processo potrà accedere alle
-risorse hardware soltanto attraverso delle opportune chiamate al sistema
-(\textit{system call}) con un'interfaccia ben definita e standardizzata che
-restituiranno il controllo al kernel.
+``processo'' deve essere posto in esecuzione (il cosiddetto
+\textit{prehemptive scheduling}). Questo verrà comunque eseguito in modalità
+protetta; quando necessario il processo potrà accedere alle risorse hardware
+soltanto attraverso delle opportune chiamate al sistema che restituiranno il
+controllo al kernel.
 
 La memoria viene sempre gestita del kernel attraverso il meccanismo della
 memoria virtuale, che consente di assegnare a ciascun processo uno spazio di
 
 La memoria viene sempre gestita del kernel attraverso il meccanismo della
 memoria virtuale, che consente di assegnare a ciascun processo uno spazio di
@@ -68,16 +73,16 @@ livello 
 
 
 \section{User space e kernel space}
 
 
 \section{User space e kernel space}
-\label{sec:intro_userkernel}
+\label{sec:intro_user_kernel_space}
 
 
-L'architettura appena descritta fa sì che nei sistemi unix esista una
-distinzione essenziale fra il cosiddetto \textit{user space}, che
+Uno dei concetti fondamentale su cui si basa l'architettura dei sistemi unix è
+quello della distinzione fra il cosiddetto \textit{user space}, che
 contraddistingue l'ambiente in cui vengono eseguiti i programmi, e il
 \textit{kernel space} che é l'ambiente in cui viene eseguito il kernel. Ogni
 contraddistingue l'ambiente in cui vengono eseguiti i programmi, e il
 \textit{kernel space} che é l'ambiente in cui viene eseguito il kernel. Ogni
-programma vede se stesso come se avesse la piena disponibilità della CPU
-della memoria ed è, salvo i meccanismi di comunicazione previsti
-dall'architettura (che esamineremo nel \capref{cha:IPC}) completamente ignaro
-del fatto che altri programmi possono essere messi in esecuzione dal kernel.
+programma vede se stesso come se avesse la piena disponibilità della CPU e
+della memoria ed è, salvo i meccanismi di comunicazione previsti
+dall'architettura completamente ignaro del fatto che altri programmi possono
+essere messi in esecuzione dal kernel.
 
 Per questa separazione non è possibile ad un singolo programma disturbare
 l'azione di un altro programma o del sistema e questo è il principale motivo
 
 Per questa separazione non è possibile ad un singolo programma disturbare
 l'azione di un altro programma o del sistema e questo è il principale motivo
@@ -90,21 +95,9 @@ all'hardware non pu
 kernel il programmatore deve usare le opportune interfacce che quest'ultimo
 fornisce allo user space. 
 
 kernel il programmatore deve usare le opportune interfacce che quest'ultimo
 fornisce allo user space. 
 
-In genere queste vanno sotto il nome di chiamate al sistema (le cosiddette
-\textit{system call}), cioè un insieme di routine che un programma può
-chiamare per le quali viene generata una interruzione del medesimo e il
-controllo è passato dal programma al kernel, il quale (oltre a fare una serie
-di altre cose come controllare a quale processo tocca essere messo in
-esecuzione) eseguirà la funzione richiesta in kernel space passando indietro i
-risultati.
-
-È da chiarire poi che di solito i programmi non chiamano direttamente le
-singole system call, ma usano un insieme di funzioni standard (definite dallo
-standard internazionale POSIX1003.a(?)) che sono comuni a tutti gli unix.
 
 
-
-\section{Il kernel e il resto}
-\label{sec:intro_kernandlib}
+\subsection{Il kernel e il sistema}
+\label{sec:intro_kern_and_sys}
 
 Per capire meglio la distinzione fra kernel space e user space si può prendere
 in esame la procedura di avvio di un sistema unix; all'avvio il BIOS (o in
 
 Per capire meglio la distinzione fra kernel space e user space si può prendere
 in esame la procedura di avvio di un sistema unix; all'avvio il BIOS (o in
@@ -138,26 +131,58 @@ operativo utilizzabile 
 programmi di utilità che permettono di eseguire le normali operazioni che ci
 si aspetta da un sistema operativo.
 
 programmi di utilità che permettono di eseguire le normali operazioni che ci
 si aspetta da un sistema operativo.
 
-Questo è importante anche dal punto di vista della programmazione, infatti
-programmare in Linux significa anzitutto essere in grado di usare la Libreria
-Standard del C, in quanto né il kernel né il linguaggio C implementano
-direttamente operazioni comuni come la gestione della memoria, l'input/output
-o la manipolazione delle stringhe presenti in qualunque programma.
-
-Per questo in GNU/Linux una parte essenziale del sistema (senza la quale nulla
-funziona) è la realizzazione fatta dalla FSF della suddetta libreria (la
-\textit{glibc}), in cui sono state implementate tutte le funzioni essenziali
-definite negli standard POSIX e ANSI C, che viene utilizzata da qualunque
-programma.
 
 
-
-\section{Utenti e gruppi, permessi e protezioni}
-\label{sec:intro_usergroup}
-
-Unix nasce fin dall'inizio come sistema multiutente, cioè in grado di fare
-lavorare più persone in contemporanea. Per questo esistono una serie di
-meccanismi base di sicurezza che non sono previsti in sistemi operativi
-monoutente.
+\subsection{Chiamate al sistema e librerie di funzioni}
+\label{sec:intro_syscall}
+
+Come accennato le interfacce con cui i programmi possono accedere all'hardware
+vanno sotto il nome di chiamate al sistema (le cosiddette \textit{system
+  call}), si tratta di un insieme di routine che un programma può chiamare per
+le quali viene generata una interruzione e il controllo è passato dal
+programma al kernel. Sarà poi quest'ultimo che (oltre a compiere una serie di
+operazioni interne come la gestione del multitaskin e il l'allocazione della
+memoria) eseguirà la funzione richiesta in kernel space restituendo i
+risultati al chiamante.
+
+Ogni versione unix ha storicamente sempre avuto un certo numero di queste
+chiamate, che sono riportate nella seconda sezione del \textsl{Manuale della
+  programmazione di unix} (quella che si accede con il comando \texttt{man 2})
+e linux non fa eccezione. Queste sono poi state codificate da vari standard,
+che esamineremo brevemente in \secref{sec:intro_standard}.
+
+Normalmente ciascuna di queste chiamate al sistema viene rimappata in
+opportune funzioni con lo stesso nome definite dentro la Libreria Standard del
+C, che oltre alle interfacce alle system call contiene anche tutta una serie
+di ulteriori funzioni usate comunemente nella programmazione.
+
+Questo è importante da capire perché programmare in Linux significa anzitutto
+essere in grado di usare la Libreria Standard del C, in quanto né il kernel né
+il linguaggio C implementano direttamente operazioni comuni come la
+allocazione dinamica della memoria, l'input/output bufferizzato o la
+manipolazione delle stringhe presenti in qualunque programma.
+
+Per questo in Linux è in effetti GNU/Linux, in quanto una parte essenziale del
+sistema (senza la quale niente può funzionare) è la realizzazione fatta dalla
+Free Software Foundation della suddetta libreria (la GNU Standard C Library,
+in breve \textit{glibc}), in cui sono state implementate tutte le funzioni
+essenziali definite negli standard POSIX e ANSI C, e che viene utilizzata da
+qualunque programma.
+
+Le funzioni di questa libreria sono quelle riportate dalla terza sezione del
+Manuale di Programmazione di Unix, e sono costruite sulla base delle chiamate
+al sistema del kernel; è importante avere presente questa distinzione,
+fondamentale dal punto di vista dell'implementazione, anche se poi nella
+relizzazione di normali programmi non si hanno differenze pratiche fra l'uso
+di una funzione di libreria e quello di una chiamata al sistema.
+
+
+\subsection{Un sistema multiutente}
+\label{sec:intro_multiuser}
+
+Linux, come gli altri unix, nasce fin dall'inizio come sistema multiutente,
+cioè in grado di fare lavorare più persone in contemporanea. Per questo
+esistono una serie di meccanismi di sicurezza che non sono previsti in sistemi
+operativi monoutente e che occorre tenere presente.
 
 Il concetto base è quello di utente (\textit{user}) del sistema, utente che ha
 dei ben definiti limiti e capacità rispetto a quello che può fare. Sono così
 
 Il concetto base è quello di utente (\textit{user}) del sistema, utente che ha
 dei ben definiti limiti e capacità rispetto a quello che può fare. Sono così
@@ -185,14 +210,14 @@ L'utente e il gruppo sono identificati da due numeri (la cui corrispondenza ad
 un nome in espresso in caratteri \`e inserita nei due files
 \texttt{/etc/passwd} e \texttt{/etc/groups}). Questi numeri sono
 l'\textit{user identifier}, detto in breve \textit{uid} e il \textit{group
 un nome in espresso in caratteri \`e inserita nei due files
 \texttt{/etc/passwd} e \texttt{/etc/groups}). Questi numeri sono
 l'\textit{user identifier}, detto in breve \textit{uid} e il \textit{group
- identifier}, detto in breve \textit{gid} che sono quelli che identificano
 identifier}, detto in breve \textit{gid} che sono quelli che identificano
 l'utente di fronte al sistema.
 l'utente di fronte al sistema.
-
 In questo modo il sistema è in grado di tenere traccia per ogni processo
 dell'utente a cui appartiene ed impedire ad altri utenti di interferire con
 esso. Inoltre con questo sistema viene anche garantita una forma base di
 sicurezza interna in quanto anche l'accesso ai file (vedi
 In questo modo il sistema è in grado di tenere traccia per ogni processo
 dell'utente a cui appartiene ed impedire ad altri utenti di interferire con
 esso. Inoltre con questo sistema viene anche garantita una forma base di
 sicurezza interna in quanto anche l'accesso ai file (vedi
-\secref{sec:fileintr_access_ctrl}) è regolato da questo meccanismo di
+\secref{sec:filedir_access_control}) è regolato da questo meccanismo di
 identificazione.
 
 Un utente speciale del sistema è \textit{root}, il cui uid è zero. Esso
 identificazione.
 
 Un utente speciale del sistema è \textit{root}, il cui uid è zero. Esso
@@ -201,5 +226,78 @@ qualunque operazione; pertanto per l'utente root i meccanismi di controllo
 descritti in precedenza sono disattivati.
 
 
 descritti in precedenza sono disattivati.
 
 
-
+\section{Gli standard di unix e GNU/Linux}
+\label{sec:intro_standard}
+
+In questa sezione prenderemo in esame alcune caratteristiche generali del
+sistema e gli standard adottati per le funzioni, i prototipi, gli errori, i
+tipi di dati.
+
+\subsection{Prototipi e puntatori}
+\label{sec:intro_function}
+
+\subsection{La misura del tempo in unix}
+\label{sec:intro_unix_time}
+
+Storicamente i sistemi unix-like hanno sempre mantenuto due distinti valori
+per i tempi all'interno del sistema, chiamati rispettivamente \textit{calendar
+  time} e \textit{process time}, secondo le definizioni:
+\begin{itemize}
+\item \textit{calendar time}: è il numero di secondi dalla mezzanotte del
+  primo gennaio 1970, in tempo universale coordinato (o UTC, data che viene
+  usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
+    Epoch}). Viene chiamato anche GMT (Greenwich Mean Time) dato che l'UTC
+  corrisponde all'ora locale di Greenwich.  E' il tempo su cui viene mantenuto
+  l'orologio del calcolatore, e viene usato ad esempio per indicare le date di
+  modifica dei file o quelle di avvio dei processi. Per memorizzare questo
+  tempo è stato riservato il tipo primitivo \func{time\_t}.
+\item \textit{process time}: talvolta anche detto tempo di CPU. Viene misurato
+  in \textit{clock tick}, corripondenti al numero di interruzioni effettuate
+  dal timer di sistema, e che per Linux sono ogni centesimo di secondo
+  (eccetto per la piattaforma alpha). Il dato primitivo usato per questo tempo
+  è \func{clock\_t}, inoltre la costante \macro{HZ} restituisce la frequenza
+  di operazione del timer, e corrisponde dunque al numero di tick al secondo
+  (Posix definisce allo stesso modo la costante \macro{CLK\_TCK}); questo
+  valore può comunque essere ottenuto con \func{sysconf} (vedi
+  \secref{sec:intro_limits}).
+\end{itemize}
+
+In genere si usa il \textit{calendar time} per tenere le date dei file e le
+informazioni analoghe che riguardano i tempi di ``orologio'' (usati ad esempio
+per i demoni che compiono lavori amministrativi ad ore definite, come
+\cmd{cron}). Di solito questo vene convertito automaticamente dal valore in
+UTC al tempo locale, utilizzando le opportune informazioni di localizzazione
+(specificate in \file{/etc/timezone}). E da tenere presente che questo tempo è
+mantenuto dal sistema e non corrisponde all'orologio hardware del calcolatore.
+
+Il \textit{process time} di solito si esprime in secondi e viene usato appunto
+per tenere conto dei tempi di esecuzione dei processi. Per ciascun processo il
+kernel tiene tre di questi tempi: 
+\begin{itemize}
+\item \textit{clock time}
+\item \textit{user time}
+\item \textit{system time}
+\end{itemize}
+il primo è il tempo ``reale'' (viene anche chiamato \textit{wall clock time})
+dall'avvio del processo, e misura il tempo trascorso fino alla sua
+conclusione; chiaramente un tale tempo dipede anche dal carico del sistema e
+da quanti altri processi stavano girando nello stesso periodo. Il secondo
+tempo è quello che la CPU ha speso nell'esecuzione delle istruzioni del
+processo in user space. Il terzo è il tempo impiegato dal kernel per eseguire
+delle system call per conto del processo medesimo (tipo quello usato per
+eseguire una \func{write} su un file). In genere la somma di user e system
+time viene chiamato \textit{CPU time}. 
+
+\subsection{Lo standard ANSI C}
+\label{sec:intro_ansiC}
+
+\subsection{Lo standard POSIX}
+\label{sec:intro_posix}
+
+\subsection{Valori e limiti del sistema}
+\label{sec:intro_limits}
+
+
+\subsection{Tipi di dati primitivi}
+\label{sec:intro_data_types}