Aggiornamento anno note di copyright, dimenticato da gennaio...
[gapil.git] / intro.tex
index ebbc5e2e0920dab23fa340bf4c6350decd677e4d..1fa1d24e303760926581831852ebf3c0388ea2a9 100644 (file)
--- a/intro.tex
+++ b/intro.tex
-\chapter{L'architettura di GNU/Linux}
+%% intro.tex
+%%
+%% Copyright (C) 2000-2008 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
+
+\chapter{L'architettura del sistema}
 \label{cha:intro_unix}
 
 In questo primo capitolo sarà fatta un'introduzione ai concetti generali su
-cui è basato un sistema di tipo unix come GNU/Linux, per fornire una base di
-comprensione mirata a sottolineare le peculiarità che saranno poi importanti
-per quello che riguarda la programmazione. 
+cui è basato un sistema operativo di tipo Unix come GNU/Linux, in questo modo
+potremo fornire una base di comprensione mirata a sottolineare le peculiarità
+del sistema che sono più rilevanti per quello che riguarda la programmazione.
 
-Dopo un introduzione sulle caratteristiche principali di un sistema di tipo
-unix passeremo ad illustrare alcuni dei concetti basi dell'architettura di
-Linux (che sono comunque comuni a tutti i sistemi \textit{unix-like}) ed
-introdurremo alcunoi degli standard princincipali a cui si fa riferimento.
+Dopo un'introduzione sulle caratteristiche principali di un sistema di tipo
+Unix passeremo ad illustrare alcuni dei concetti base dell'architettura di
+GNU/Linux (che sono comunque comuni a tutti i sistemi \textit{unix-like}) ed
+introdurremo alcuni degli standard principali a cui viene fatto riferimento.
 
 
-\section{Una panoramica sulla struttura}
+\section{Una panoramica}
 \label{sec:intro_unix_struct}
 
-In questa prima sezione faremo una panoramica sulla struttura di un sistema
-\textit{unix-like} come Linux.  Chi avesse già una conoscenza di questa
-materia può tranquillamente saltare questa sezione.
+In questa prima sezione faremo una breve panoramica sull'architettura del
+sistema. Chi avesse già una conoscenza di questa materia può tranquillamente
+saltare questa sezione.
 
-Il concetto base di un sistema unix-like é quello di un nucleo del sistema (il
-cosiddetto \textit{kernel}) a cui si demanda la gestione delle risorse
-essenziali (la CPU, la memoria, le periferiche) mentre tutto il resto, quindi
-anche la parte che prevede l'interazione con l'utente, deve venire realizzato
-tramite programmi eseguiti dal kernel e che accedano alle risorse hardware
-tramite delle richieste a quest'ultimo.
 
-Fin dall'inizio unix si presenta come un sistema operativo
+\subsection{Concetti base}
+\label{sec:intro_base_concept}
+
+Il concetto base di un sistema unix-like è quello di un nucleo del sistema (il
+cosiddetto \textit{kernel}, nel nostro caso Linux) a cui si demanda la
+gestione delle risorse essenziali (la CPU, la memoria, le periferiche) mentre
+tutto il resto, quindi anche la parte che prevede l'interazione con l'utente,
+dev'essere realizzato tramite programmi eseguiti dal kernel, che accedano
+alle risorse hardware tramite delle richieste a quest'ultimo.
+
+Fin dall'inizio uno Unix si presenta come un sistema operativo
 \textit{multitasking}, cioè in grado di eseguire contemporaneamente più
-programmi, e multiutente, in cui é possibile che più utenti siano connessi ad
-una macchina eseguendo più programmi ``in contemporanea'' (in realtà, almeno
-per macchine a processore singolo, i programmi vengono eseguiti singolarmente
-a rotazione).
+programmi, e multiutente, in cui è possibile che più utenti siano connessi ad
+una macchina eseguendo più programmi ``\textsl{in contemporanea}''; in realtà,
+almeno per macchine a processore singolo, i programmi vengono eseguiti
+singolarmente a rotazione.
 
-% Questa e' una distinzione essenziale da capire,
+% Questa e` una distinzione essenziale da capire,
 %specie nei confronti dei sistemi operativi successivi, nati per i personal
 %computer (e quindi per un uso personale), sui quali l'hardware (allora
 %limitato) non consentiva la realizzazione di un sistema evoluto come uno unix.
 
-Gli unix più recenti, come Linux, sono stati realizzati usando alcune
+I kernel Unix più recenti, come Linux, sono realizzati sfruttando alcune
 caratteristiche dei processori moderni come la gestione hardware della memoria
 e la modalità protetta. In sostanza con i processori moderni si può
 disabilitare temporaneamente l'uso di certe istruzioni e l'accesso a certe
-zone di memoria fisica.  Quello che succede é che il kernel é il solo
+zone di memoria fisica.  Quello che succede è che il kernel è il solo
 programma ad essere eseguito in modalità privilegiata, con il completo accesso
 all'hardware, mentre i programmi normali vengono eseguiti in modalità protetta
-(e non possono accedere direttamente alle zone di memoria riservate
-o alle porte di input/output).
-
-Una parte del kernel, lo \textit{scheduler}, si occupa di stabilire, ad
-intervalli fissi e sulla base di un opportuno calcolo delle priorità, quale
-``processo'' deve essere posto in esecuzione (il cosiddetto
-\textit{prehemptive scheduling}). Questo verrà comunque eseguito in modalità
-protetta; quando necessario il processo potrà accedere alle risorse hardware
-soltanto attraverso delle opportune chiamate al sistema che restituiranno il
-controllo al kernel.
-
-La memoria viene sempre gestita del kernel attraverso il meccanismo della
-memoria virtuale, che consente di assegnare a ciascun processo uno spazio di
-indirizzi ``virtuale'' (vedi \secref{sec:proc_memory}) che il kernel stesso,
-con l'ausilio della unità di gestione della memoria, si incaricherà di
-rimappare automaticamente sulla memoria disponibile, salvando quando
-necessario su disco (nella cosiddetta \textit{swap}) le pagine di memoria in
-eccedenza.
+e non possono accedere direttamente alle zone di memoria riservate o alle
+porte di input/output.
+
+Una parte del kernel, lo \itindex{scheduler} \textit{scheduler}, si occupa di
+stabilire, ad intervalli fissi e sulla base di un opportuno calcolo delle
+priorità, quale ``\textsl{processo}'' deve essere posto in esecuzione (il
+cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
+  multitasking}).  Questo verrà comunque eseguito in modalità protetta; quando
+necessario il processo potrà accedere alle risorse hardware soltanto
+attraverso delle opportune chiamate al sistema che restituiranno il controllo
+al kernel.
+
+La memoria viene sempre gestita dal kernel attraverso il meccanismo della
+\index{memoria~virtuale} \textsl{memoria virtuale}, che consente di assegnare
+a ciascun processo uno spazio di indirizzi ``\textsl{virtuale}'' (vedi
+sez.~\ref{sec:proc_memory}) che il kernel stesso, con l'ausilio della unità di
+gestione della memoria, si incaricherà di rimappare automaticamente sulla
+memoria disponibile, salvando su disco quando necessario (nella cosiddetta
+area di \textit{swap}) le pagine di memoria in eccedenza.
 
 Le periferiche infine vengono viste in genere attraverso un'interfaccia
 astratta che permette di trattarle come fossero file, secondo il concetto per
-cui \textit{everything is a file}, vedi \capref{cha:files_intro}, (questo non
-è vero per le interfacce di rete, che hanno un'interfaccia diversa, ma resta
-valido il concetto generale che tutto il lavoro di accesso e gestione a basso
-livello è effettuato dal kernel).
+cui \textit{everything is a file}, su cui torneremo in dettaglio in
+cap.~\ref{cha:file_intro}. Questo non è vero per le interfacce di rete, che
+hanno un'interfaccia diversa, ma resta valido il concetto generale che tutto
+il lavoro di accesso e gestione a basso livello è effettuato dal kernel.
 
 
-\section{User space e kernel space}
-\label{sec:intro_user_kernel_space}
+\subsection{Il kernel e il sistema}
+\label{sec:intro_kern_and_sys}
 
-Uno dei concetti fondamentale su cui si basa l'architettura dei sistemi unix è
+Uno dei concetti fondamentali su cui si basa l'architettura dei sistemi Unix è
 quello della distinzione fra il cosiddetto \textit{user space}, che
 contraddistingue l'ambiente in cui vengono eseguiti i programmi, e il
-\textit{kernel space} che é l'ambiente in cui viene eseguito il kernel. Ogni
-programma vede se stesso come se avesse la piena disponibilità della CPU e
+\textit{kernel space}, che è l'ambiente in cui viene eseguito il kernel. Ogni
+programma vede sé stesso come se avesse la piena disponibilità della CPU e
 della memoria ed è, salvo i meccanismi di comunicazione previsti
-dall'architettura completamente ignaro del fatto che altri programmi possono
+dall'architettura, completamente ignaro del fatto che altri programmi possono
 essere messi in esecuzione dal kernel.
 
 Per questa separazione non è possibile ad un singolo programma disturbare
 l'azione di un altro programma o del sistema e questo è il principale motivo
-della stabilità di un sistema unix nei confronti di altri sistemi in cui i
-processi non hanno di questi limiti, o che vengono per vari motivi eseguiti al
-livello del kernel.
-
-Pertanto deve essere chiaro a chi programma in unix che l'accesso diretto
-all'hardware non può avvenire se non all'interno del kernel, al di fuori dal
-kernel il programmatore deve usare le opportune interfacce che quest'ultimo
-fornisce allo user space. 
-
-
-\subsection{Il kernel e il sistema}
-\label{sec:intro_kern_and_sys}
+della stabilità di un sistema unix-like nei confronti di altri sistemi in cui
+i processi non hanno di questi limiti, o che vengono per vari motivi eseguiti
+al livello del kernel. Pertanto deve essere chiaro a chi programma in Unix che
+l'accesso diretto all'hardware non può avvenire se non all'interno del kernel;
+al di fuori dal kernel il programmatore deve usare le opportune interfacce che
+quest'ultimo fornisce allo user space.
 
 Per capire meglio la distinzione fra kernel space e user space si può prendere
-in esame la procedura di avvio di un sistema unix; all'avvio il BIOS (o in
-generale il software di avvio posto nelle EPROM) eseguirà il \textit{boot}
-incaricandosi di caricare il kernel in memoria e di farne partire
-l'esecuzione; quest'ultimo, dopo aver inizializzato le periferiche farà
-partire il primo processo, \textit{init} che è quello che si incaricherà di
-far partire tutti i processi successivi, come quello che si occupa di
-dialogare con la tastiera e lo schermo della console, mettendo a disposizione
-dell'utente che si vuole collegare un terminale e la stessa \textit{shell} da
-cui inviare i comandi.
+in esame la procedura di avvio di un sistema unix-like; all'avvio il BIOS (o
+in generale il software di avvio posto nelle EPROM) eseguirà la procedura di
+avvio del sistema (il cosiddetto \textit{bootstrap}\footnote{il nome deriva da
+  un'espressione gergale che significa ``sollevarsi da terra tirandosi per le
+  stringhe delle scarpe'', per indicare il compito, almeno apparentemente
+  impossibile, di far eseguire un programma a partire da un computer appena
+  acceso che appunto non ne contiene nessuno; non è impossibile perché in
+  realtà c'è un programma iniziale, che è il BIOS.}), incaricandosi di
+caricare il kernel in memoria e di farne partire l'esecuzione; quest'ultimo,
+dopo aver inizializzato le periferiche, farà partire il primo processo,
+\cmd{init}, che è quello che a sua volta farà partire tutti i processi
+successivi. Fra questi ci sarà pure quello che si occupa di dialogare con la
+tastiera e lo schermo della console, e quello che mette a disposizione
+dell'utente che si vuole collegare, un terminale e la \textit{shell} da cui
+inviare i comandi.
 
 E' da rimarcare come tutto ciò, che usualmente viene visto come parte del
 sistema, non abbia in realtà niente a che fare con il kernel, ma sia
 effettuato da opportuni programmi che vengono eseguiti, allo stesso modo di un
-programma di scrittura o di disegno, in user space.
+qualunque programma di scrittura o di disegno, in user space.
 
-Questo significa ad esempio che il sistema di per sé non dispone di primitive
-per tutta una serie di operazioni (come la copia di un file) che altri sistemi
-(come Windows) hanno invece al loro interno. Per questo può capitare che
-alcune operazioni, come quella in esempio, siano implementate come normali
-programmi.
+Questo significa, ad esempio, che il sistema di per sé non dispone di
+primitive per tutta una serie di operazioni (come la copia di un file) che
+altri sistemi (come Windows) hanno invece al loro interno. Pertanto buona
+parte delle operazioni di normale amministrazione di un sistema, come quella
+in esempio, sono implementate come normali programmi.
 
 %Una delle caratteristiche base di unix \`e perci\`o che \`e possibile
 %realizzare un sistema di permessi e controlli che evitano che i programmi
 %eseguano accessi non autorizzati. 
 
-Per questo motivo è più corretto parlare di sistema GNU/Linux, in quanto da
-solo il kernel è assolutamente inutile, quello che costruisce un sistema
-operativo utilizzabile è la presenza di tutta una serie di librerie e
-programmi di utilità che permettono di eseguire le normali operazioni che ci
-si aspetta da un sistema operativo.
+Per questo motivo quando ci si riferisce al sistema nella sua interezza è
+corretto parlare di un sistema GNU/Linux: da solo il kernel è assolutamente
+inutile; quello che costruisce un sistema operativo utilizzabile è la presenza
+di tutta una serie di librerie e programmi di utilità (che di norma sono
+quelli realizzati dal progetto GNU della Free Software Foundation) che
+permettono di eseguire le normali operazioni che ci si aspetta da un sistema
+operativo.
 
 
 \subsection{Chiamate al sistema e librerie di funzioni}
@@ -137,167 +155,867 @@ si aspetta da un sistema operativo.
 
 Come accennato le interfacce con cui i programmi possono accedere all'hardware
 vanno sotto il nome di chiamate al sistema (le cosiddette \textit{system
-  call}), si tratta di un insieme di routine che un programma può chiamare per
-le quali viene generata una interruzione e il controllo è passato dal
-programma al kernel. Sarà poi quest'ultimo che (oltre a compiere una serie di
-operazioni interne come la gestione del multitaskin e il l'allocazione della
-memoria) eseguirà la funzione richiesta in kernel space restituendo i
+  call}), si tratta di un insieme di funzioni che un programma può chiamare,
+per le quali viene generata un'interruzione del processo passando il controllo
+dal programma al kernel. Sarà poi quest'ultimo che (oltre a compiere una serie
+di operazioni interne come la gestione del multitasking e l'allocazione della
+memoria) eseguirà la funzione richiesta in \textit{kernel space} restituendo i
 risultati al chiamante.
 
-Ogni versione unix ha storicamente sempre avuto un certo numero di queste
-chiamate, che sono riportate nella seconda sezione del \textsl{Manuale della
-  programmazione di unix} (quella che si accede con il comando \texttt{man 2})
-e linux non fa eccezione. Queste sono poi state codificate da vari standard,
-che esamineremo brevemente in \secref{sec:intro_standard}.
+Ogni versione di Unix ha storicamente sempre avuto un certo numero di queste
+chiamate, che sono riportate nella seconda sezione del \textsl{Manuale di
+  programmazione di Unix} (quella cui si accede con il comando \cmd{man 2
+  <nome>}) e Linux non fa eccezione. Queste sono poi state codificate da vari
+standard, che esamineremo brevemente in sez.~\ref{sec:intro_standard}. Uno
+schema elementare della struttura del sistema è riportato in
+fig.~\ref{fig:intro_sys_struct}.
+
+\begin{figure}[htb]
+  \centering
+%  \includegraphics[width=10cm]{img/struct_sys}
+  \begin{tikzpicture}
+    \filldraw[fill=black!20] (0,0) rectangle (7.5,1);
+    \draw (3.75,0.5) node {System Call Interface};
+    \filldraw[fill=black!35] (0,1) rectangle (7.5,4);
+    \draw (3.75,2.5) node {\huge{kernel}};
+    \filldraw[fill=black!20] (0,4) rectangle (2.5,5);
+    \draw (1.25,4.5) node {scheduler};
+    \filldraw[fill=black!20] (2.5,4) rectangle (5,5);
+    \draw (3.75,4.5) node {VM};
+    \filldraw[fill=black!20] (5,4) rectangle (7.5,5);
+    \draw (6.25,4.5) node {driver};
+
+    \draw (1.25,7) node(cpu) [ellipse,draw] {CPU};
+    \draw (3.75,7) node(mem) [ellipse,draw] {memoria};
+    \draw (6.25,7) node(disk) [ellipse,draw] {disco};
+
+    \draw[<->] (cpu) -- (1.25,5);
+    \draw[<->] (mem) -- (3.75,5);
+    \draw[<->] (disk) -- (6.25,5);
+
+    \draw (7.5,0) node [anchor=base west] {kernel space};
+    \draw (7.5,-1) node [anchor=west] {user space};
+
+    \draw (-1,-0.5) -- (8.5, -0.5);
+
+    \draw (0,-2) rectangle (7.5,-1);
+    \draw (3.75, -1.5) node {GNU C Library};
+    \draw[->] (1.25,-1) -- (1.25,0);
+    \draw[->] (3.75,-1) -- (3.75,0);
+    \draw[->] (6.25,-1) -- (6.25,0);
+
+    \draw (1.25,-3) node(proc1) [rectangle,draw] {processo};
+    \draw (3.75,-3) node(proc2) [rectangle,draw] {processo};
+    \draw (6.25,-3) node(proc3) [rectangle,draw] {processo};
+
+    \draw[->] (1.25,-2) -- (proc1);
+    \draw[->] (3.75,-2) -- (proc2);
+    \draw[->] (6.25,-2) -- (proc3);
+  \end{tikzpicture}
+  \caption{Schema di massima della struttura di interazione fra processi,
+    kernel e dispositivi in Linux.}
+  \label{fig:intro_sys_struct}
+\end{figure}
 
 Normalmente ciascuna di queste chiamate al sistema viene rimappata in
 opportune funzioni con lo stesso nome definite dentro la Libreria Standard del
-C, che oltre alle interfacce alle system call contiene anche tutta una serie
-di ulteriori funzioni usate comunemente nella programmazione.
+C, che, oltre alle interfacce alle system call, contiene anche tutta la serie
+delle ulteriori funzioni definite dai vari standard, che sono comunemente
+usate nella programmazione.
 
 Questo è importante da capire perché programmare in Linux significa anzitutto
-essere in grado di usare la Libreria Standard del C, in quanto né il kernel né
-il linguaggio C implementano direttamente operazioni comuni come la
-allocazione dinamica della memoria, l'input/output bufferizzato o la
-manipolazione delle stringhe presenti in qualunque programma.
-
-Per questo in Linux è in effetti GNU/Linux, in quanto una parte essenziale del
-sistema (senza la quale niente può funzionare) è la realizzazione fatta dalla
-Free Software Foundation della suddetta libreria (la GNU Standard C Library,
-in breve \textit{glibc}), in cui sono state implementate tutte le funzioni
-essenziali definite negli standard POSIX e ANSI C, e che viene utilizzata da
-qualunque programma.
+essere in grado di usare le varie interfacce contenute nella Libreria Standard
+del C, in quanto né il kernel, né il linguaggio C implementano direttamente
+operazioni comuni come l'allocazione dinamica della memoria, l'input/output
+bufferizzato o la manipolazione delle stringhe, presenti in qualunque
+programma.
+
+Quanto appena illustrato mette in evidenza il fatto che nella stragrande
+maggioranza dei casi,\footnote{esistono implementazioni diverse delle librerie
+  Standard del C, come le \textit{libc5} o le \textit{uClib}, che non derivano
+  dal progetto GNU. Le \textit{libc5} oggi sono, tranne casi particolari,
+  completamente soppiantate dalle \acr{glibc}, le \textit{uClib} pur non
+  essendo complete come le \acr{glibc}, restano invece molto diffuse nel mondo
+  embedded per le loro dimensioni ridotte (e soprattutto la possibilità di
+  togliere le parti non necessarie), e pertanto costituiscono un valido
+  rimpiazzo delle \acr{glibc} in tutti quei sistemi specializzati che
+  richiedono una minima occupazione di memoria.} si dovrebbe usare il nome
+GNU/Linux (piuttosto che soltanto Linux) in quanto una parte essenziale del
+sistema (senza la quale niente funzionerebbe) è la GNU Standard C Library (in
+breve \acr{glibc}), ovvero la libreria realizzata dalla Free Software
+Foundation nella quale sono state implementate tutte le funzioni essenziali
+definite negli standard POSIX e ANSI C, utilizzabili da qualunque programma.
 
 Le funzioni di questa libreria sono quelle riportate dalla terza sezione del
-Manuale di Programmazione di Unix, e sono costruite sulla base delle chiamate
-al sistema del kernel; è importante avere presente questa distinzione,
-fondamentale dal punto di vista dell'implementazione, anche se poi nella
-relizzazione di normali programmi non si hanno differenze pratiche fra l'uso
-di una funzione di libreria e quello di una chiamata al sistema.
+\textsl{Manuale di Programmazione di Unix} (cioè accessibili con il comando
+\cmd{man 3 <nome>}) e sono costruite sulla base delle chiamate al sistema del
+kernel; è importante avere presente questa distinzione, fondamentale dal punto
+di vista dell'implementazione, anche se poi, nella realizzazione di normali
+programmi, non si hanno differenze pratiche fra l'uso di una funzione di
+libreria e quello di una chiamata al sistema.
 
 
 \subsection{Un sistema multiutente}
 \label{sec:intro_multiuser}
 
-Linux, come gli altri unix, nasce fin dall'inizio come sistema multiutente,
-cioè in grado di fare lavorare più persone in contemporanea. Per questo
-esistono una serie di meccanismi di sicurezza che non sono previsti in sistemi
-operativi monoutente e che occorre tenere presente.
+Linux, come gli altri kernel Unix, nasce fin dall'inizio come sistema
+multiutente, cioè in grado di fare lavorare più persone in contemporanea. Per
+questo esistono una serie di meccanismi di sicurezza, che non sono previsti in
+sistemi operativi monoutente, e che occorre tenere presente.
 
-Il concetto base è quello di utente (\textit{user}) del sistema, utente che ha
-dei ben definiti limiti e capacità rispetto a quello che può fare. Sono così
-previsti una serie di meccanismi per identificare i singoli utenti ed una
-serie di permessi e protezioni per impedire che utenti diversi possano
+Il concetto base è quello di utente (\textit{user}) del sistema, le cui
+capacità rispetto a quello che può fare sono sottoposte a ben precisi limiti.
+Sono così previsti una serie di meccanismi per identificare i singoli utenti
+ed una serie di permessi e protezioni per impedire che utenti diversi possano
 danneggiarsi a vicenda o danneggiare il sistema.
 
-Ad ogni utente è dato un nome \textit{username}, che è quello che viene
-richiesto all'ingresso nel sistema dalla procedura di \textit{login}. Questa
-procedura si incarica di verificare la identità dell'utente (in genere
-attraverso la richiesta di una parola d'ordine, anche se sono possibili
-meccanismi diversi).
+Ogni utente è identificato da un nome (l'\textit{username}), che è quello che
+viene richiesto all'ingresso nel sistema dalla procedura di \textit{login}
+(descritta in dettaglio in sez.~\ref{sec:sess_login}).  Questa procedura si
+incarica di verificare l'identità dell'utente, in genere attraverso la
+richiesta di una parola d'ordine (la \textit{password}), anche se sono
+possibili meccanismi diversi.\footnote{ad esempio usando la libreria PAM
+  (\textit{Pluggable Autentication Methods}) è possibile astrarre
+  completamente dai meccanismi di autenticazione e sostituire ad esempio l'uso
+  delle password con meccanismi di identificazione biometrica.}
 
 Eseguita la procedura di riconoscimento in genere il sistema manda in
 esecuzione un programma di interfaccia (che può essere la \textit{shell} su
-terminale o uninterfaccia grafica) che mette a disposizione dell'utente un
+terminale o un'interfaccia grafica) che mette a disposizione dell'utente un
 meccanismo con cui questo può impartire comandi o eseguire altri programmi.
 
-Ogni utente appartiene anche ad almeno un gruppo (\textit{group}), ma può
-essere associato a più gruppi, questo permette di gestire i permessi di
+Ogni utente appartiene anche ad almeno un gruppo (il cosiddetto
+\textit{default group}), ma può essere associato ad altri gruppi (i
+\textit{supplementary group}), questo permette di gestire i permessi di
 accesso ai file e quindi anche alle periferiche, in maniera più flessibile,
-definendo gruppi di lavoro, di accesso a determinate risorse, etc.
-
-L'utente e il gruppo sono identificati da due numeri (la cui corrispondenza ad
-un nome in espresso in caratteri \`e inserita nei due files
-\texttt{/etc/passwd} e \texttt{/etc/groups}). Questi numeri sono
-l'\textit{user identifier}, detto in breve \textit{uid} e il \textit{group
-  identifier}, detto in breve \textit{gid} che sono quelli che identificano
-l'utente di fronte al sistema.
+definendo gruppi di lavoro, di accesso a determinate risorse, ecc.
+
+L'utente e il gruppo sono identificati da due numeri, la cui corrispondenza ad
+un nome espresso in caratteri è inserita nei due file \conffile{/etc/passwd} e
+\conffile{/etc/group}.\footnote{in realtà negli sistemi più moderni, come
+  vedremo in sez.~\ref{sec:sys_user_group} queste informazioni possono essere
+  mantenute, con l'uso del \itindex{Name~Service~Switch} \textit{Name Service
+    Switch}, su varie tipologie di supporti, compresi server centralizzati
+  come LDAP.}  Questi numeri sono l'\textit{user identifier}, detto in breve
+\textsl{user-ID}, ed indicato dall'acronimo \acr{uid}, e il \textit{group
+  identifier}, detto in breve \textsl{group-ID}, ed identificato dall'acronimo
+\acr{gid}, e sono quelli che vengono usati dal kernel per identificare
+l'utente.
  
-In questo modo il sistema è in grado di tenere traccia per ogni processo
-dell'utente a cui appartiene ed impedire ad altri utenti di interferire con
-esso. Inoltre con questo sistema viene anche garantita una forma base di
-sicurezza interna in quanto anche l'accesso ai file (vedi
-\secref{sec:filedir_access_control}) è regolato da questo meccanismo di
+In questo modo il sistema è in grado di tenere traccia dell'utente a cui
+appartiene ciascun processo ed impedire ad altri utenti di interferire con
+quest'ultimo.  Inoltre con questo sistema viene anche garantita una forma base
+di sicurezza interna in quanto anche l'accesso ai file (vedi
+sez.~\ref{sec:file_access_control}) è regolato da questo meccanismo di
 identificazione.
 
-Un utente speciale del sistema è \textit{root}, il cui uid è zero. Esso
-identifica l'amministratore del sistema, che deve essere in grado di fare
-qualunque operazione; pertanto per l'utente root i meccanismi di controllo
-descritti in precedenza sono disattivati.
+Infine in ogni Unix è presente un utente speciale privilegiato, il cosiddetto
+\textit{superuser}, il cui username è di norma \textit{root}, ed il cui
+\acr{uid} è zero. Esso identifica l'amministratore del sistema, che deve
+essere in grado di fare qualunque operazione; per l'utente \textit{root}
+infatti i meccanismi di controllo descritti in precedenza sono
+disattivati.\footnote{i controlli infatti vengono sempre eseguiti da un codice
+  del tipo: ``\code{if (uid) \{ \textellipsis\ \}}''.}
 
 
-\section{Gli standard di unix e GNU/Linux}
+\section{Gli standard}
 \label{sec:intro_standard}
 
-In questa sezione prenderemo in esame alcune caratteristiche generali del
-sistema e gli standard adottati per le funzioni, i prototipi, gli errori, i
-tipi di dati.
-
-\subsection{Prototipi e puntatori}
-\label{sec:intro_function}
-
-\subsection{La misura del tempo in unix}
-\label{sec:intro_unix_time}
-
-Storicamente i sistemi unix-like hanno sempre mantenuto due distinti valori
-per i tempi all'interno del sistema, chiamati rispettivamente \textit{calendar
-  time} e \textit{process time}, secondo le definizioni:
-\begin{itemize}
-\item \textit{calendar time}: è il numero di secondi dalla mezzanotte del
-  primo gennaio 1970, in tempo universale coordinato (o UTC, data che viene
-  usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
-    Epoch}). Viene chiamato anche GMT (Greenwich Mean Time) dato che l'UTC
-  corrisponde all'ora locale di Greenwich.  E' il tempo su cui viene mantenuto
-  l'orologio del calcolatore, e viene usato ad esempio per indicare le date di
-  modifica dei file o quelle di avvio dei processi. Per memorizzare questo
-  tempo è stato riservato il tipo primitivo \func{time\_t}.
-\item \textit{process time}: talvolta anche detto tempo di CPU. Viene misurato
-  in \textit{clock tick}, corripondenti al numero di interruzioni effettuate
-  dal timer di sistema, e che per Linux sono ogni centesimo di secondo
-  (eccetto per la piattaforma alpha). Il dato primitivo usato per questo tempo
-  è \func{clock\_t}, inoltre la costante \macro{HZ} restituisce la frequenza
-  di operazione del timer, e corrisponde dunque al numero di tick al secondo
-  (Posix definisce allo stesso modo la costante \macro{CLK\_TCK}); questo
-  valore può comunque essere ottenuto con \func{sysconf} (vedi
-  \secref{sec:intro_limits}).
-\end{itemize}
-
-In genere si usa il \textit{calendar time} per tenere le date dei file e le
-informazioni analoghe che riguardano i tempi di ``orologio'' (usati ad esempio
-per i demoni che compiono lavori amministrativi ad ore definite, come
-\cmd{cron}). Di solito questo vene convertito automaticamente dal valore in
-UTC al tempo locale, utilizzando le opportune informazioni di localizzazione
-(specificate in \file{/etc/timezone}). E da tenere presente che questo tempo è
-mantenuto dal sistema e non corrisponde all'orologio hardware del calcolatore.
-
-Il \textit{process time} di solito si esprime in secondi e viene usato appunto
-per tenere conto dei tempi di esecuzione dei processi. Per ciascun processo il
-kernel tiene tre di questi tempi: 
-\begin{itemize}
-\item \textit{clock time}
-\item \textit{user time}
-\item \textit{system time}
-\end{itemize}
-il primo è il tempo ``reale'' (viene anche chiamato \textit{wall clock time})
-dall'avvio del processo, e misura il tempo trascorso fino alla sua
-conclusione; chiaramente un tale tempo dipede anche dal carico del sistema e
-da quanti altri processi stavano girando nello stesso periodo. Il secondo
-tempo è quello che la CPU ha speso nell'esecuzione delle istruzioni del
-processo in user space. Il terzo è il tempo impiegato dal kernel per eseguire
-delle system call per conto del processo medesimo (tipo quello usato per
-eseguire una \func{write} su un file). In genere la somma di user e system
-time viene chiamato \textit{CPU time}. 
+In questa sezione faremo una breve panoramica relativa ai vari standard che
+nel tempo sono stati formalizzati da enti, associazioni, consorzi e
+organizzazioni varie al riguardo del sistema o alle caratteristiche che si
+sono stabilite come standard di fatto in quanto facenti parte di alcune
+implementazioni molto diffuse come BSD o System V.
 
-\subsection{Lo standard ANSI C}
-\label{sec:intro_ansiC}
+Ovviamente prenderemo in considerazione solo gli standard riguardanti
+interfacce di programmazione e le altre caratteristiche di un sistema
+unix-like (alcuni standardizzano pure i comandi base del sistema e la shell)
+ed in particolare ci concentreremo sul come ed in che modo essi sono
+supportati sia per quanto riguarda il kernel che le librerie del C (con una
+particolare attenzione alle \acr{glibc}).
 
-\subsection{Lo standard POSIX}
-\label{sec:intro_posix}
-
-\subsection{Valori e limiti del sistema}
-\label{sec:intro_limits}
 
+\subsection{Lo standard ANSI C}
+\label{sec:intro_ansiC}
 
-\subsection{Tipi di dati primitivi}
+Lo standard ANSI C è stato definito nel 1989 dall'\textit{American National
+  Standard Institute} come prima standardizzazione del linguaggio C e per
+questo si fa riferimento ad esso anche come C89. L'anno successivo è stato
+adottato dalla ISO (\textit{International Standard Organisation}) come
+standard internazionale con la sigla ISO/IEC 9899:1990, e per questo è noto
+anche sotto il nome di standard ISO C, o ISO C90.
+
+Nel 1999 è stata pubblicata una revisione dello standard C89, che viene
+usualmente indicata come C99, anche questa è stata ratificata dalla ISO con la
+sigla ISO/IEC 9899:1990, per cui vi si fa riferimento anche come ISO C99.
+
+Scopo dello standard è quello di garantire la portabilità dei programmi C fra
+sistemi operativi diversi, ma oltre alla sintassi ed alla semantica del
+linguaggio C (operatori, parole chiave, tipi di dati) lo standard prevede
+anche una libreria di funzioni che devono poter essere implementate su
+qualunque sistema operativo.
+
+Per questo motivo, anche se lo standard non ha alcun riferimento ad un sistema
+di tipo Unix, GNU/Linux (per essere precisi le \acr{glibc}), come molti Unix
+moderni, provvede la compatibilità con questo standard, fornendo le funzioni
+di libreria da esso previste. Queste sono dichiarate in una serie di
+\textit{header file}\footnote{i file di dichiarazione di variabili, tipi e
+  funzioni, usati normalmente da un compilatore C. Per poter accedere alle
+  funzioni occorre includere con la direttiva \code{\#include} questi file nei
+  propri programmi; per ciascuna funzione che tratteremo in seguito
+  indicheremo anche gli \textit{header file} necessari ad usarla.}  (anch'essi
+provvisti dalla \acr{glibc}), In tab.~\ref{tab:intro_posix_header} si sono
+riportati i principali \textit{header file} definiti nello standard POSIX ed
+ANSI C, che sono anche quelli definiti negli altri standard descritti nelle
+sezioni successive.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|l|c|c|l|}
+    \hline
+    \multirow{2}{*}{\textbf{Header}}&
+    \multicolumn{2}{|c|}{\textbf{Standard}}&
+    \multirow{2}{*}{\textbf{Contenuto}} \\
+    \cline{2-3}
+    & ANSI C& POSIX& \\
+    \hline
+    \hline
+    \file{assert.h}&$\bullet$&         & Verifica le asserzioni fatte in un
+                                         programma.\\ 
+    \file{ctype.h} &$\bullet$&         & Tipi standard.\\
+    \file{dirent.h}&         &$\bullet$& Manipolazione delle directory.\\
+    \file{errno.h} &         &$\bullet$& Errori di sistema.\\
+    \file{fcntl.h} &         &$\bullet$& Controllo sulle opzioni dei file.\\
+    \file{limits.h}&         &$\bullet$& Limiti e parametri del sistema.\\
+    \file{malloc.h}&$\bullet$&         & Allocazione della memoria.\\
+    \file{setjmp.h}&$\bullet$&         & Salti non locali.\\
+    \file{signal.h}&         &$\bullet$& Gestione dei segnali.\\
+    \file{stdarg.h}&$\bullet$&         & Gestione di funzioni a argomenti
+                                         variabili.\\ 
+    \file{stdio.h} &$\bullet$&         & I/O bufferizzato in standard ANSI C.\\
+    \file{stdlib.h}&$\bullet$&         & Definizioni della libreria standard.\\
+    \file{string.h}&$\bullet$&         & Manipolazione delle stringhe.\\
+    \file{time.h}  &         &$\bullet$& Gestione dei tempi.\\
+    \file{times.h} &$\bullet$&         & Gestione dei tempi.\\
+    \file{unistd.h}&         &$\bullet$& Unix standard library.\\
+    \file{utmp.h}  &         &$\bullet$& Registro connessioni utenti.\\
+    \hline
+  \end{tabular}
+  \caption{Elenco dei vari header file definiti dallo standard POSIX.}
+  \label{tab:intro_posix_header}
+\end{table}
+
+In realtà \acr{glibc} ed i relativi header file definiscono un insieme di
+funzionalità in cui sono incluse come sottoinsieme anche quelle previste dallo
+standard ANSI C. È possibile ottenere una conformità stretta allo standard
+(scartando le funzionalità addizionali) usando il \cmd{gcc} con l'opzione
+\cmd{-ansi}. Questa opzione istruisce il compilatore a definire nei vari
+header file soltanto le funzionalità previste dallo standard ANSI C e a non
+usare le varie estensioni al linguaggio e al preprocessore da esso supportate.
+
+
+\subsection{I tipi di dati primitivi}
 \label{sec:intro_data_types}
 
+Uno dei problemi di portabilità del codice più comune è quello dei tipi di
+dati utilizzati nei programmi, che spesso variano da sistema a sistema, o
+anche da una architettura ad un'altra (ad esempio passando da macchine con
+processori 32 bit a 64). In particolare questo è vero nell'uso dei cosiddetti
+\index{tipo!elementare} \textit{tipi elementari}del linguaggio C (come
+\ctyp{int}) la cui dimensione varia a seconda dell'architettura hardware.
+
+Storicamente alcuni tipi nativi dello standard ANSI C sono sempre stati
+associati ad alcune variabili nei sistemi Unix, dando per scontata la
+dimensione. Ad esempio la posizione corrente all'interno di un file è sempre
+stata associata ad un intero a 32 bit, mentre il numero di dispositivo è
+sempre stato associato ad un intero a 16 bit. Storicamente questi erano
+definiti rispettivamente come \ctyp{int} e \ctyp{short}, ma tutte le volte
+che, con l'evolversi ed il mutare delle piattaforme hardware, alcuni di questi
+tipi si sono rivelati inadeguati o sono cambiati, ci si è trovati di fronte ad
+una infinita serie di problemi di portabilità.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Tipo} & \textbf{Contenuto} \\
+    \hline
+    \hline
+    \type{caddr\_t} & Core address.\\
+    \type{clock\_t} & Contatore del tempo di sistema.\\
+    \type{dev\_t}   & Numero di dispositivo (vedi sez.~\ref{sec:file_mknod}).\\
+    \type{gid\_t}   & Identificatore di un gruppo.\\
+    \type{ino\_t}   & Numero di \index{inode} \textit{inode}.\\
+    \type{key\_t}   & Chiave per il System V IPC.\\
+    \type{loff\_t}  & Posizione corrente in un file.\\
+    \type{mode\_t}  & Attributi di un file.\\
+    \type{nlink\_t} & Contatore dei link su un file.\\
+    \type{off\_t}   & Posizione corrente in un file.\\
+    \type{pid\_t}   & Identificatore di un processo.\\
+    \type{rlim\_t}  & Limite sulle risorse.\\
+    \type{sigset\_t}& Insieme di segnali.\\
+    \type{size\_t}  & Dimensione di un oggetto.\\
+    \type{ssize\_t} & Dimensione in numero di byte ritornata dalle funzioni.\\
+    \type{ptrdiff\_t}& Differenza fra due puntatori.\\
+    \type{time\_t}  & Numero di secondi (in tempo di calendario).\\
+    \type{uid\_t}   & Identificatore di un utente.\\
+    \hline
+  \end{tabular}
+  \caption{Elenco dei tipi primitivi, definiti in \file{sys/types.h}.}
+  \label{tab:intro_primitive_types}
+\end{table}
+
+Per questo motivo tutte le funzioni di libreria di solito non fanno
+riferimento ai tipi elementari dello standard del linguaggio C, ma ad una
+serie di \index{tipo!primitivo} \textsl{tipi primitivi} del sistema, riportati
+in tab.~\ref{tab:intro_primitive_types}, e definiti nell'header file
+\file{sys/types.h}, in modo da mantenere completamente indipendenti i tipi
+utilizzati dalle funzioni di sistema dai tipi elementari supportati dal
+compilatore C.
+
+
+\subsection{Lo standard System V}
+\label{sec:intro_sysv}
+
+Come noto Unix nasce nei laboratori della AT\&T, che ne registrò il nome come
+marchio depositato, sviluppandone una serie di versioni diverse; nel 1983 la
+versione supportata ufficialmente venne rilasciata al pubblico con il nome di
+Unix System V, e si fa rifermento a questa implementazione con la sigla SysV o
+SV.
+
+Negli anni successivi l'AT\&T proseguì lo sviluppo rilasciando varie versioni
+con aggiunte e integrazioni, ed in particolare la \textit{release 2} nel 1985,
+a cui si fa riferimento con SVr2 e la \textit{release 3} nel 1986 (denominata
+SVr3). Le interfacce di programmazione di queste due versioni vennero
+descritte formalmente in due documenti denominati \textit{System V Interface
+  Definition} (o SVID), pertanto nel 1995 venne rilasciata la specifica SVID 1
+e nel 1986 la specifica SVID 2.
+
+Nel 1989 un accordo fra vari venditori (AT\&T, Sun, HP, ed altri) portò ad una
+versione di System V che provvedeva un'unificazione delle interfacce
+comprendente anche Xenix e BSD, questa venne denominata \textit{release 4} o
+SVr4. Anche le relative interfacce vennero descritte in un documento dal
+titolo \textit{System V Interface Description}, venendo a costituire lo
+standard SVID 3, che viene considerato la specifica finale di System V, ed a
+cui spesso si fa riferimento semplicemente con SVID. Anche SVID costituisce un
+sovrainsieme delle interfacce definite dallo standard POSIX.  
+
+Nel 1992 venne rilasciata una seconda versione del sistema, la SVr4.2; l'anno
+successivo la divisione della AT\&T (già a suo tempo rinominata in Unix System
+Laboratories) venne acquistata dalla Novell, che poi trasferì il marchio Unix
+al consorzio X/Open. L'ultima versione di System V fu la SVr4.2MP rilasciata
+nel Dicembre 93. Infine nel 1995 è stata rilasciata da SCO, che aveva
+acquisito alcuni diritti sul codice di System V, una ulteriore versione delle
+\textit{System V Interface Description}, che va sotto la denominazione di SVID
+4.
+
+Linux e le \acr{glibc} implementano le principali funzionalità richieste dalle
+specifiche SVID che non sono già incluse negli standard POSIX ed ANSI C, per
+compatibilità con lo Unix System V e con altri Unix (come SunOS) che le
+includono. Tuttavia le funzionalità più oscure e meno utilizzate (che non sono
+presenti neanche in System V) sono state tralasciate.
+
+Le funzionalità implementate sono principalmente il meccanismo di
+intercomunicazione fra i processi e la memoria condivisa (il cosiddetto System
+V IPC, che vedremo in sez.~\ref{sec:ipc_sysv}) le funzioni della famiglia
+\func{hsearch} e \func{drand48}, \func{fmtmsg} e svariate funzioni
+matematiche.
+
+
+\subsection{Lo ``\textsl{standard}'' BSD}
+\label{sec:intro_bsd}
+
+Lo sviluppo di BSD iniziò quando la fine della collaborazione fra l'Università
+di Berkeley e la AT\&T generò una delle prime e più importanti fratture del
+mondo Unix.  L'università di Berkeley proseguì nello sviluppo della base di
+codice di cui disponeva, e che presentava parecchie migliorie rispetto alle
+versioni allora disponibili, fino ad arrivare al rilascio di una versione
+completa di Unix, chiamata appunto BSD, del tutto indipendente dal codice
+della AT\&T.
+
+Benché BSD non sia mai stato uno standard formalizzato, l'implementazione
+dello Unix dell'Università di Berkeley nella sua storia ha introdotto una
+serie di estensioni e interfacce di grandissima rilevanza, come i link
+simbolici, la funzione \code{select} ed i socket di rete. Per questo motivo si
+fa spesso riferimento esplicito alle interfacce presenti nelle varie versioni
+dello Unix di Berkeley con una apposita sigla.
+
+Nel 1983, con il rilascio della versione 4.2 di BSD, venne definita una
+implementazione delle funzioni di interfaccia a cui si fa riferimento con la
+sigla 4.2BSD. Per fare riferimento alle precedenti versioni si usano poi le
+sigle 3BSD e 4BSD (per le due versioni pubblicate nel 1980), e 4.1BSD per
+quella pubblicata nel 1981.
+
+Le varie estensioni ideate a Berkeley sono state via via aggiunte al sistema
+nelle varie versioni succedutesi negli anni, che vanno sotto il nome di
+4.3BSD, per la versione rilasciata nel 1986 e 4.4BSD, per la versione
+rilasciata nel 1993, che costituisce l'ultima release ufficiale
+dell'università di Berkeley. Si tenga presente che molte di queste interfacce
+sono presenti in derivati commerciali di BSD come SunOS. Il kernel Linux e le
+\acr{glibc} forniscono tutte queste estensioni che sono state in gran parte
+incorporate negli standard successivi.
+
+
+\subsection{Gli standard IEEE -- POSIX}
+\label{sec:intro_posix}
+
+Lo standard ufficiale creato da un organismo indipendente più attinente alle
+interfacce di un sistema unix-like nel suo complesso (e che concerne sia il
+kernel che le librerie che i comandi) è stato lo standard POSIX. Esso prende
+origine dallo standard ANSI C, che contiene come sottoinsieme, prevedendo
+ulteriori capacità per le funzioni in esso definite, ed aggiungendone di
+nuove.
+
+In realtà POSIX è una famiglia di standard diversi, il cui nome, suggerito da
+Richard Stallman, sta per \textit{Portable Operating System Interface}, ma la
+X finale denuncia la sua stretta relazione con i sistemi Unix. Esso nasce dal
+lavoro dell'IEEE (\textit{Institute of Electrical and Electronics Engeneers})
+che ne produsse una prima versione, nota come \textsl{IEEE 1003.1-1988},
+mirante a standardizzare l'interfaccia con il sistema operativo.
+
+Ma gli standard POSIX non si limitano alla standardizzazione delle funzioni di
+libreria, e in seguito sono stati prodotti anche altri standard per la shell e
+i comandi di sistema (1003.2), per le estensioni \textit{real-time} e per i
+\itindex{thread} \textit{thread} (rispettivamente 1003.1d e 1003.1c) per i
+socket (1003.1g) e vari altri.  In tab.~\ref{tab:intro_posix_std} è riportata
+una classificazione sommaria dei principali documenti prodotti, e di come sono
+identificati fra IEEE ed ISO; si tenga conto inoltre che molto spesso si usa
+l'estensione IEEE anche come aggiunta al nome POSIX; ad esempio è più comune
+parlare di POSIX.4 come di POSIX.1b.
+
+Si tenga presente inoltre che nuove specifiche e proposte di standardizzazione
+si aggiungono continuamente, mentre le versioni precedenti vengono riviste;
+talvolta poi i riferimenti cambiano nome, per cui anche solo seguire le
+denominazioni usate diventa particolarmente faticoso; una pagina dove si
+possono recuperare varie (e di norma piuttosto intricate) informazioni è
+\href{http://www.pasc.org/standing/sd11.html}
+{\textsf{http://www.pasc.org/standing/sd11.html}}.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|l|l|l|l|}
+    \hline
+    \textbf{Standard} & \textbf{IEEE} & \textbf{ISO} & \textbf{Contenuto} \\
+    \hline
+    \hline
+    POSIX.1 & 1003.1 & 9945-1& Interfacce di base                           \\
+    POSIX.1a& 1003.1a& 9945-1& Estensioni a POSIX.1                         \\
+    POSIX.2 & 1003.2 & 9945-2& Comandi                                      \\
+    POSIX.3 & 2003   &TR13210& Metodi di test                               \\
+    POSIX.4 & 1003.1b &  --- & Estensioni real-time                         \\
+    POSIX.4a& 1003.1c &  --- & \itindex{thread} Thread                      \\
+    POSIX.4b& 1003.1d &9945-1& Ulteriori estensioni real-time               \\
+    POSIX.5 & 1003.5  & 14519& Interfaccia per il linguaggio ADA            \\
+    POSIX.6 & 1003.2c,1e& 9945-2& Sicurezza                                 \\
+    POSIX.8 & 1003.1f& 9945-1& Accesso ai file via rete                     \\
+    POSIX.9 & 1003.9  &  --- & Interfaccia per il Fortran-77                \\
+    POSIX.12& 1003.1g& 9945-1& Socket                                       \\
+    \hline
+  \end{tabular}
+  \caption{Elenco dei vari standard POSIX e relative denominazioni.}
+  \label{tab:intro_posix_std}
+\end{table}
+
+Benché l'insieme degli standard POSIX siano basati sui sistemi Unix, essi
+definiscono comunque un'interfaccia di programmazione generica e non fanno
+riferimento ad una implementazione specifica (ad esempio esiste
+un'implementazione di POSIX.1 anche sotto Windows NT).  
+
+Linux e le \acr{glibc} implementano tutte le funzioni definite nello standard
+POSIX.1, queste ultime forniscono in più alcune ulteriori capacità (per
+funzioni di \textit{pattern matching} e per la manipolazione delle
+\textit{regular expression}), che vengono usate dalla shell e dai comandi di
+sistema e che sono definite nello standard POSIX.2.
+
+Nelle versioni più recenti del kernel e delle librerie sono inoltre supportate
+ulteriori funzionalità aggiunte dallo standard POSIX.1c per quanto riguarda i
+\itindex{thread} \textit{thread} (vedi cap.~\ref{cha:threads}), e dallo
+standard POSIX.1b per quanto riguarda i segnali e lo \itindex{scheduler}
+scheduling real-time (sez.~\ref{sec:sig_real_time} e
+sez.~\ref{sec:proc_real_time}), la misura del tempo, i meccanismi di
+intercomunicazione (sez.~\ref{sec:ipc_posix}) e l'I/O asincrono
+(sez.~\ref{sec:file_asyncronous_io}).
+
+Lo standard principale resta comunque POSIX.1, che continua ad evolversi; la
+versione più nota, cui gran parte delle implementazioni fanno riferimento, e
+che costituisce una base per molti altri tentativi di standardizzazione, è
+stata rilasciata anche come standard internazionale con la sigla
+\textsl{ISO/IEC 9945-1:1996} ed include i precedenti POSIX.1b e POSIX.1c. In
+genere si fa riferimento ad essa come POSIX.1-1996.
+
+Nel 2001 è stata poi eseguita una sintesi degli standard POSIX.1, POSIX.2 e
+SUSv3 (vedi sez.~\ref{sec:intro_xopen}) in un unico documento, redatto sotto
+gli auspici del cosiddetto gruppo Austin che va sotto il nome di POSIX.1-2001.
+Questo standard definisce due livelli di conformità, quello POSIX, in cui sono
+presenti solo le interfacce di base, e quello XSI che richiede la presenza di
+una serie di estensioni opzionali per lo standard POSIX, riprese da SUSv3.
+Inoltre lo standard è stato allineato allo standard C99, e segue lo stesso
+nella definizione delle interfacce.
+
+A questo standard sono stati aggiunti due documenti di correzione e
+perfezionamento denominati \textit{Technical Corrigenda}, il TC1 del 2003 ed
+il TC2 del 2004, e talvolta si fa riferimento agli stessi con le sigle
+POSIX.1-2003 e POSIX.1-2004.
+
+Infine è in corso una ulteriore revisione degli standard POSIX e SUS, che
+dovrebbe essere completata entro l'anno 2008 e che andrà presumibilmente
+sotto il nome di POSIX.1-2008. È prevista l'incorporazione di molte interfacce
+opzionali dentro le specifiche di base, oltre che le solite precisazioni ed
+aggiornamenti. Anche in questo caso è prevista la suddivisione in una
+conformità di base, e delle interfacce aggiuntive.
+
+% vedi anche man standards
+
+\subsection{Gli standard X/Open -- Opengroup -- Unix}
+\label{sec:intro_xopen}
+
+Il consorzio X/Open nacque nel 1984 come consorzio di venditori di sistemi
+Unix per giungere ad un'armonizzazione delle varie implementazioni.  Per far
+questo iniziò a pubblicare una serie di documentazioni e specifiche sotto il
+nome di \textit{X/Open Portability Guide} a cui di norma si fa riferimento con
+l'abbreviazione XPG$n$, con $n$ che indica la versione.
+
+Nel 1989 il consorzio produsse una terza versione di questa guida
+particolarmente voluminosa (la \textit{X/Open Portability Guide, Issue 3}),
+contenente una dettagliata standardizzazione dell'interfaccia di sistema di
+Unix, che venne presa come riferimento da vari produttori. Questo standard,
+detto anche XPG3 dal nome della suddetta guida, è sempre basato sullo standard
+POSIX.1, ma prevede una serie di funzionalità aggiuntive fra cui le specifiche
+delle API\footnote{le \textit{Application Programmable Interface}, in sostanze
+  le interfacce di programmazione.} per l'interfaccia grafica (X11).
+
+Nel 1992 lo standard venne rivisto con una nuova versione della guida, la
+Issue 4, da cui la sigla XPG4, che aggiungeva l'interfaccia XTI (\textit{X
+  Transport Interface}) mirante a soppiantare (senza molto successo)
+l'interfaccia dei socket derivata da BSD. Una seconda versione della guida fu
+rilasciata nel 1994; questa è nota con il nome di Spec 1170 (dal numero delle
+interfacce, header e comandi definiti) ma si fa riferimento ad essa anche come
+XPG4v2.
+
+Nel 1993 il marchio Unix passò di proprietà dalla Novell (che a sua volta lo
+aveva comprato dalla AT\&T) al consorzio X/Open che iniziò a pubblicare le sue
+specifiche sotto il nome di \textit{Single UNIX Specification} o SUS, l'ultima
+versione di Spec 1170 diventò così la prima versione delle \textit{Single UNIX
+  Specification}, detta SUS o SUSv1, ma più comunemente nota anche come
+\textit{Unix 95}.
+
+Nel 1996 la fusione del consorzio X/Open con la Open Software Foundation (nata
+da un gruppo di aziende concorrenti rispetto ai fondatori di X/Open) portò
+alla costituzione dell'\textit{Open Group}, un consorzio internazionale che
+raccoglie produttori, utenti industriali, entità accademiche e governative.
+Attualmente il consorzio è detentore del marchio depositato Unix, e prosegue
+il lavoro di standardizzazione delle varie implementazioni, rilasciando
+periodicamente nuove specifiche e strumenti per la verifica della conformità
+alle stesse.
+
+Nel 1997 fu annunciata la seconda versione delle \textit{Single UNIX
+  Specification}, nota con la sigla SUSv2, in questa versione le interfacce
+specificate salgono a 1434, e addirittura a 3030 se si considerano le stazioni
+di lavoro grafiche, per le quali sono inserite pure le interfacce usate da CDE
+che richiede sia X11 che Motif. La conformità a questa versione permette l'uso
+del nome \textit{Unix 98}, usato spesso anche per riferirsi allo standard. Un
+altro nome alternativo di queste specifiche, date le origini, è XPG5.
+
+Come accennato nel 2001, con il rilascio dello standard POSIX.1-2001, è stato
+effettuato uno sforzo di sintesi in cui sono state comprese, nella parte di
+interfacce estese, anche le interfacce definite nelle \textit{Single UNIX
+  Specification}, pertanto si può fare riferimento a detto standard, quando
+comprensivo del rispetto delle estensioni XSI, come SUSv3, e fregiarsi del
+marchio UNIX 03 se conformi ad esso. 
+
+Infine con la prossima revisione dello standard POSIX.1 è previsto che, come
+avviene per il POSIX.1-2001, la conformità completa a tutte quelle che saranno
+le nuove estensioni XSI previste dall'aggiornamento andrà a definire la nuova
+versione delle \textit{Single UNIX Specification} che verranno chiamate SUSv4.
+
+
+\subsection{Il controllo di aderenza agli standard}
+\label{sec:intro_gcc_glibc_std}
+
+In Linux, grazie alle \acr{glibc}, la conformità agli standard appena
+descritti può essere richiesta sia attraverso l'uso di opportune opzioni del
+compilatore (il \texttt{gcc}) che definendo delle specifiche costanti prima
+dell'inclusione dei file di dichiarazione (gli \textit{header file}) che
+definiscono le funzioni di libreria.
+
+Ad esempio se si vuole che i programmi seguano una stretta attinenza allo
+standard ANSI C si può usare l'opzione \texttt{-ansi} del compilatore, e non
+potrà essere utilizzata nessuna funzione non riconosciuta dalle specifiche
+standard ISO per il C.  Il \texttt{gcc} possiede inoltre una specifica opzione
+per richiedere la conformità ad uno standard, nella forma \texttt{-std=nome},
+dove \texttt{nome} può essere \texttt{c89} per indicare lo standard ANSI C
+(vedi sez.~\ref{sec:intro_ansiC}) o \texttt{c99} per indicare la conformità
+allo standard C99.\footnote{che non è al momento completa, esistono anche le
+  possibilità di usare i valori \texttt{gnu89}, l'attuale default, che indica
+  l'uso delle estensioni GNU al C89, riprese poi dal C99, o \texttt{gnu89} che
+  indica il dialetto GNU del C99, che diventerà il default quando la
+  conformità a quest'ultimo sarà completa.}
+
+Per attivare le varie opzioni di controllo di aderenza agli standard è poi
+possibile definire delle macro di preprocessore che controllano le
+funzionalità che le \acr{glibc} possono mettere a disposizione:\footnote{le
+  macro sono definite nel file di dichiarazione \file{<features.h>}, ma non è
+  necessario includerlo nei propri programmi in quanto viene automaticamente
+  incluso da tutti gli altri file di dichiarazione che utilizzano le macro in
+  esso definite; si tenga conto inoltre che il file definisce anche delle
+  ulteriori macro interne, in genere con un doppio prefisso di \texttt{\_},
+  che non devono assolutamente mai essere usate direttamente. } questo può
+essere fatto attraverso l'opzione \texttt{-D} del compilatore, ma è buona
+norma farlo inserendo gli opportuni \code{\#define} prima della inclusione dei
+propri \textit{header file}.
+
+Le macro disponibili per controllare l'aderenza ai vari standard messe a
+disposizione delle \acr{glibc}, che rendono disponibili soltanto le funzioni
+in esse definite, sono illustrate nel seguente elenco:
+\begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
+\item[\macro{\_\_STRICT\_ANSI\_\_}] richiede l'aderenza stretta allo standard
+  C ISO; viene automaticamente predefinita qualora si invochi il \texttt{gcc}
+  con le opzione \texttt{-ansi} o \texttt{-std=c99}.
+
+\item[\macro{\_POSIX\_SOURCE}] definendo questa macro (considerata obsoleta)
+  si rendono disponibili tutte le funzionalità dello standard POSIX.1 (la
+  versione IEEE Standard 1003.1) insieme a tutte le funzionalità dello
+  standard ISO C. Se viene anche definita con un intero positivo la macro
+  \macro{\_POSIX\_C\_SOURCE} lo stato di questa non viene preso in
+  considerazione.
+
+\item[\macro{\_POSIX\_C\_SOURCE}] definendo questa macro ad un valore intero
+  positivo si controlla quale livello delle funzionalità specificate da POSIX
+  viene messa a disposizione; più alto è il valore maggiori sono le
+  funzionalità:
+  \begin{itemize}
+  \item un valore uguale a ``\texttt{1}'' rende disponibili le funzionalità
+    specificate nella edizione del 1990 (IEEE Standard 1003.1-1990);
+  \item valori maggiori o uguali a ``\texttt{2}'' rendono disponibili le
+    funzionalità previste dallo standard POSIX.2 specificate nell'edizione del
+    1992 (IEEE Standard 1003.2-1992),
+  \item un valore maggiore o uguale a ``\texttt{199309L}'' rende disponibili
+    le funzionalità previste dallo standard POSIX.1b specificate nell'edizione
+    del 1993 (IEEE Standard 1003.1b-1993);
+  \item un valore maggiore o uguale a ``\texttt{199506L}'' rende disponibili
+    le funzionalità previste dallo standard POSIX.1 specificate nell'edizione
+    del 1996 (\textit{ISO/IEC 9945-1:1996}), ed in particolare le definizioni
+    dello standard POSIX.1c per i \itindex{thread} \textit{thread};
+  \item a partire dalla versione 2.3.3 delle \acr{glibc} un valore maggiore o
+    uguale a ``\texttt{200112L}'' rende disponibili le funzionalità di base
+    previste dallo standard POSIX.1-2001, escludendo le estensioni XSI;
+  \item in futuro valori superiori potranno abilitare ulteriori estensioni.
+  \end{itemize}
+
+\item[\macro{\_BSD\_SOURCE}] definendo questa macro si rendono disponibili le
+  funzionalità derivate da BSD4.3, insieme a quelle previste dagli standard
+  ISO C, POSIX.1 e POSIX.2; alcune delle funzionalità previste da BSD sono
+  però in conflitto con le corrispondenti definite nello standard POSIX.1, in
+  questo caso se la macro è definita le definizioni previste da BSD4.3 avranno
+  la precedenza rispetto a POSIX.
+
+  A causa della natura dei conflitti con POSIX per ottenere una piena
+  compatibilità con BSD4.3 può essere necessario anche usare una libreria di
+  compatibilità, dato che alcune funzioni sono definite in modo diverso. In
+  questo caso occorrerà anche usare l'opzione \cmd{-lbsd-compat} con il
+  compilatore per indicargli di utilizzare le versioni nella libreria di
+  compatibilità prima di quelle normali.
+
+  Si tenga inoltre presente che la preferenza verso le versioni delle funzioni
+  usate da BSD viene mantenuta soltanto se nessuna delle ulteriori macro di
+  specificazione di standard successivi (vale a dire una fra
+  \macro{\_POSIX\_C\_SOURCE}, \macro{\_POSIX\_SOURCE}, \macro{\_SVID\_SOURCE},
+  \macro{\_XOPEN\_SOURCE}, \macro{\_XOPEN\_SOURCE\_EXTENDED} o
+  \macro{\_GNU\_SOURCE}) è stata a sua volta attivata, nel qual caso queste
+  hanno la precedenza. Se però si definisce \macro{\_BSD\_SOURCE} dopo aver
+  definito una di queste macro, l'effetto sarà quello di dare la precedenza
+  alle funzioni in forma BSD.
+
+\item[\macro{\_SVID\_SOURCE}] definendo questa macro si rendono disponibili le
+  funzionalità derivate da SVID. Esse comprendono anche quelle definite negli
+  standard ISO C, POSIX.1, POSIX.2, e X/Open (XPG$n$) illustrati in
+  precedenza.
+
+\item[\macro{\_XOPEN\_SOURCE}] definendo questa macro si rendono disponibili
+  le funzionalità descritte nella \textit{X/Open Portability Guide}. Anche
+  queste sono un sovrainsieme di quelle definite negli standard POSIX.1 e
+  POSIX.2 ed in effetti sia \macro{\_POSIX\_SOURCE} che
+  \macro{\_POSIX\_C\_SOURCE} vengono automaticamente definite. Sono incluse
+  anche ulteriori funzionalità disponibili in BSD e SVID, più una serie di
+  estensioni a secondo dei seguenti valori:
+  \begin{itemize}
+  \item la definizione della macro ad un valore qualunque attiva le
+    funzionalità specificate negli standard POSIX.1, POSIX.2 e XPG4;
+  \item un valore di ``\texttt{500}'' o superiore rende disponibili anche le
+    funzionalità introdotte con SUSv2, vale a dire la conformità ad Unix98;
+  \item a partire dalla versione 2.2 delle \acr{glibc} un valore uguale a
+    ``\texttt{600}'' o superiore rende disponibili anche le funzionalità
+    introdotte con SUSv3, corrispondenti allo standard POSIX.1-2001 più le
+    estensioni XSI.
+  \end{itemize}
+
+\item[\macro{\_XOPEN\_SOURCE\_EXTENDED}] definendo questa macro si rendono
+  disponibili le ulteriori funzionalità necessarie ad essere conformi al
+  rilascio del marchio \textit{X/Open Unix} corrispondenti allo standard
+  Unix95, vale a dire quelle specificate da SUSv1/XPG4v2. Questa macro viene
+  definita implicitamente tutte le volte che si imposta
+  \macro{\_XOPEN\_SOURCE} ad un valore maggiore o uguale a 500.
+
+\item[\macro{\_ISOC99\_SOURCE}] definendo questa macro si rendono disponibili
+  le funzionalità previste per la revisione delle librerie standard del C
+  introdotte con lo standard ISO C99. La macro è definita a partire dalla
+  versione 2.1.3 delle \acr{glibc}. 
+
+  Le precedenti versioni della serie 2.1.x riconoscevano le stesse estensioni
+  con la macro \macro{\_ISOC9X\_SOURCE}, dato che lo standard non era stato
+  finalizzato, ma le \acr{glibc} avevano già un'implementazione completa che
+  poteva essere attivata definendo questa macro. Benché questa sia obsoleta
+  viene tuttora riconosciuta come equivalente di \macro{\_ISOC99\_SOURCE} per
+  compatibilità. 
+
+\item[\macro{\_GNU\_SOURCE}] definendo questa macro si rendono disponibili
+  tutte le funzionalità disponibili nei vari standard oltre a varie estensioni
+  specifiche presenti solo nelle \acr{glibc} ed in Linux. Gli standard coperti
+  sono: ISO C89, ISO C99, POSIX.1, POSIX.2, BSD, SVID, X/Open, SUS.
+
+  L'uso di \macro{\_GNU\_SOURCE} è equivalente alla definizione contemporanea
+  delle macro: \macro{\_BSD\_SOURCE}, \macro{\_SVID\_SOURCE},
+  \macro{\_POSIX\_SOURCE}, \macro{\_ISOC99\_SOURCE}, inoltre
+  \macro{\_POSIX\_C\_SOURCE} con valore ``\texttt{200112L}'' (o
+  ``\texttt{199506L}'' per le versioni delle \acr{glibc} precedenti la 2.5),
+  \macro{\_XOPEN\_SOURCE\_EXTENDED} e \macro{\_XOPEN\_SOURCE} con valore 600
+  (o 500 per le versioni delle \acr{glibc} precedenti la 2.2); oltre a queste
+  vengono pure attivate le ulteriori due macro \macro{\_ATFILE\_SOURCE} e
+  \macro{\_LARGEFILE64\_SOURCE} che definiscono funzioni previste
+  esclusivamente dalle \acr{glibc}.
+\end{basedescript}
+
+Benché Linux supporti in maniera estensiva gli standard più diffusi, esistono
+comunque delle estensioni e funzionalità specifiche, non presenti in altri
+standard e lo stesso vale per le \acr{glibc} stesse, che definiscono anche
+delle ulteriori funzioni di libreria. Ovviamente l'uso di queste funzionalità
+deve essere evitato se si ha a cuore la portabilità, ma qualora questo non sia
+un requisito esse possono rivelarsi molto utili.
+
+Come per l'aderenza ai vari standard, le funzionalità aggiuntive possono
+essere rese esplicitamente disponibili tramite la definizione di opportune
+macro di preprocessore, alcune di queste vengono attivate con la definizione
+di \macro{\_GNU\_SOURCE}, mentre altre devono essere attivate esplicitamente,
+inoltre alcune estensioni possono essere attivate indipendentemente tramite
+una opportuna macro; queste estensioni sono illustrate nel seguente elenco:
+
+\begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
+
+\item[\macro{\_LARGEFILE\_SOURCE}] definendo questa macro si rendono
+  disponibili alcune funzioni che consentono di superare una inconsistenza
+  presente negli standard con i file di grandi dimensioni, ed in particolare
+  definire le due funzioni \func{fseeko} e \func{ftello} che al contrario
+  delle corrispettive \func{fseek} e \func{ftell} usano il tipo di dato
+  specifico \ctyp{off\_t} (vedi sez.~\ref{sec:file_fseek}).
+
+\item[\macro{\_LARGEFILE64\_SOURCE}] definendo questa macro si rendono
+  disponibili le funzioni di una interfaccia alternativa al supporto di valori
+  a 64 bit nelle funzioni di gestione dei file (non supportati in certi
+  sistemi), caratterizzate dal suffisso \texttt{64} aggiunto ai vari nomi di
+  tipi di dato e funzioni (come \ctyp{off64\_t} al posto di \ctyp{off\_t} o
+  \func{lseek64} al posto di \func{lseek}).
+
+  Le funzioni di questa interfaccia alternativa sono state proposte come una
+  estensione ad uso di transizione per le \textit{Single UNIX Specification},
+  per consentire la gestione di file di grandi dimensioni anche nei sistemi a
+  32 bit, in cui la dimensione massima, espressa con un intero, non poteva
+  superare i 2 gigabyte.  Nei nuovi programmi queste funzioni devono essere
+  evitate, a favore dell'uso macro \macro{\_FILE\_OFFSET\_BITS}, che definita
+  al valore di \texttt{64} consente di usare in maniera trasparente le
+  funzioni dell'interfaccia classica.
+
+\item[\macro{\_FILE\_OFFSET\_BITS}] la definizione di questa macro al valore
+  di \texttt{64} consente di attivare la conversione automatica di tutti i
+  riferimenti a dati e funzioni a 32 bit nelle funzioni di interfaccia ai file
+  con le equivalenti a 64 bit, senza dover utilizzare esplicitamente
+  l'interfaccia alternativa appena illustrata. In questo modo diventa
+  possibile usare le ordinarie funzioni per effettuare operazioni a 64 bit sui
+  file anche su sistemi a 32 bit.\footnote{basterà ricompilare il programma
+    dopo averla definita, e saranno usate in modo trasparente le funzioni a 64
+    bit.}
+
+  Se la macro non è definita o è definita con valore \texttt{32} questo
+  comportamento viene disabilitato, e sui sistemi a 32 bit verranno usate le
+  ordinarie funzioni a 32 bit, non avendo più il supporto per file di grandi
+  dimensioni. Su sistemi a 64 bit invece, dove il problema non sussiste, la
+  macro non ha nessun effetto.
+
+\item[\macro{\_ATFILE\_SOURCE}] definendo questa macro si rendono disponibili
+  le estensioni delle funzioni di creazione di file e directory che risolvono
+  i problemi di sicurezza insiti nell'uso di pathname relativi con programmi
+  \itindex{thread} \textit{multi-thread} illustrate in
+  sez.~\ref{sec:file_openat}. 
+
+\item[\macro{\_REENTRANT}] definendo questa macro, o la equivalente
+  \macro{\_THREAD\_SAFE} (fornita per compatibilità) si rendono disponibili le
+  versioni \index{funzioni!rientranti} rientranti (vedi
+  sez.~\ref{sec:proc_reentrant}) di alcune funzioni, necessarie quando si
+  usano i \itindex{thread} \textit{thread}.  Alcune di queste funzioni sono
+  anche previste nello standard POSIX.1c, ma ve ne sono altre che sono
+  disponibili soltanto su alcuni sistemi, o specifiche del \acr{glibc}, e
+  possono essere utilizzate una volta definita la macro.
+
+\item[\macro{\_FORTIFY\_SOURCE}] definendo questa macro viene abilitata
+  l'inserimento di alcuni controlli per alcune funzioni di allocazione e
+  manipolazione di memoria e stringhe che consentono di rilevare
+  automaticamente alcuni errori di \textit{buffer overflow} nell'uso delle
+  stesse. La funzionalità è stata introdotta a partire dalla versione 2.3.4
+  delle \acr{glibc} e richiede anche il supporto da parte del compilatore, che
+  è disponibile solo a partire dalla versione 4.0 del \texttt{gcc}.
+
+  Le funzioni di libreria che vengono messe sotto controllo quando questa
+  funzionalità viene attivata sono, al momento della stesura di queste note,
+  le seguenti: \func{memcpy}, \func{mempcpy}, \func{memmove}, \func{memset},
+  \func{stpcpy}, \func{strcpy}, \func{strncpy}, \func{strcat}, \func{strncat},
+  \func{sprintf}, \func{snprintf}, \func{vsprintf}, \func{vsnprintf}, e
+  \func{gets}.
+
+  La macro prevede due valori, con \texttt{1} vengono eseguiti dei controlli
+  di base che non cambiano il comportamento dei programmi se si richiede una
+  ottimizzazione di livello uno o superiore,\footnote{vale a dire se si usa
+    l'opzione \texttt{-O1} o superiore del \texttt{gcc}.}  mentre con il
+  valore \texttt{2} vengono aggiunti maggiori controlli.
+
+\end{basedescript}
+
+Se non è stata specificata esplicitamente nessuna di queste macro il default
+assunto è che siano definite \macro{\_BSD\_SOURCE}, \macro{\_SVID\_SOURCE},
+\macro{\_POSIX\_SOURCE}, e \macro{\_POSIX\_C\_SOURCE} con valore
+``\texttt{200112L}'' (o ``\texttt{199506L}'' per le versioni delle \acr{glibc}
+precedenti la 2.4). Si ricordi infine che perché queste macro abbiano effetto
+devono essere sempre definite prima dell'inclusione dei file di dichiarazione.
+
+
+% vedi anche man feature_test_macros
+
+% LocalWords:  like kernel multitasking scheduler preemptive sez swap is cap VM
+% LocalWords:  everything bootstrap init shell Windows Foundation system call
+% LocalWords:  fig libc uClib glibc embedded Library POSIX username PAM Methods
+% LocalWords:  Pluggable Autentication group supplementary Name Service Switch
+% LocalWords:  LDAP identifier uid gid superuser root if BSD SVr dall' American
+% LocalWords:  National Institute International Organisation IEC header tab gcc
+% LocalWords:  assert ctype dirent errno fcntl limits malloc setjmp signal utmp
+% LocalWords:  stdarg stdio stdlib string times unistd library int short caddr
+% LocalWords:  address clock dev ino inode key IPC loff nlink off pid rlim size
+% LocalWords:  sigset ssize ptrdiff sys nell'header IEEE Richard Portable of TR
+% LocalWords:  Operating Interface dell'IEEE Electrical and Electronics thread
+% LocalWords:  Engeneers Socket NT matching regular expression scheduling l'I
+% LocalWords:  XPG Portability Issue Application Programmable XTI Transport AT
+% LocalWords:  socket Spec Novell Specification SUSv CDE Motif Berkley select
+% LocalWords:  SunOS l'AT Sun HP Xenix Description SVID Laboratories MP hsearch
+% LocalWords:  drand fmtmsg define SOURCE lbsd compat XOPEN version ISOC Large
+% LocalWords:  LARGEFILE Support LFS dell' black rectangle node fill cpu draw
+% LocalWords:  ellipse mem anchor west proc SysV SV Definition SCO Austin XSI
+% LocalWords:  Technical TC SUS Opengroup features STRICT std ATFILE fseeko
+% LocalWords:  ftello fseek ftell lseek FORTIFY REENTRANT SAFE overflow memcpy
+% LocalWords:  mempcpy memmove memset stpcpy strcpy strncpy strcat strncat gets
+% LocalWords:  sprintf snprintf vsprintf vsnprintf
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: