Grande ristrutturazione volta alla eliminazione del capitolo 4, i cui
[gapil.git] / fileintro.tex
index 14e4f274eb7ef4ef6ce9fafb414f67f1900e97c3..995129189d236fba35bf549e48a1364276c2cba9 100644 (file)
-\chapter{L'architettura dei file}
-\label{cha:file_intro}
-
-Uno dei concetti fondamentali dell'architettura di un sistema Unix è il
-cosiddetto \textit{everything is a file}, cioè il fatto che l'accesso ai vari
-dispositivi di input/output del computer viene effettuato attraverso
-un'interfaccia astratta che tratta le periferiche allo stesso modo dei normali
-file di dati.
-
-Questo significa che si può accedere a qualunque periferica del computer,
-dalla seriale, alla parallela, alla console, e agli stessi dischi attraverso i
-cosiddetti file di dispositivo (i \textit{device file}). Questi sono dei file
-speciali agendo sui quali i programmi possono leggere, scrivere e compiere
-operazioni direttamente sulle periferiche, usando le stesse funzioni che si
-usano per i normali file di dati.
-
-In questo capitolo forniremo una descrizione dell'architettura dei file in
-Linux, iniziando da una panoramica sulle caratteristiche principali delle
-interfacce con cui i processi accedono ai file (che tratteremo in dettaglio
-nei capitoli seguenti), per poi passare ad una descrizione più dettagliata
-delle modalità con cui detto accesso viene realizzato dal sistema.
-
-
-
-\section{L'architettura generale}
-\label{sec:file_access_arch}
-
-Per poter accedere ai file, il kernel deve mettere a disposizione dei
-programmi le opportune interfacce che consentano di leggerne il contenuto; il
-sistema cioè deve provvedere ad organizzare e rendere accessibile in maniera
-opportuna l'informazione tenuta sullo spazio grezzo disponibile sui dischi.
-Questo viene fatto strutturando l'informazione sul disco attraverso quello che
-si chiama un \textit{filesystem} (vedi \ref{sec:file_arch_func}), essa poi
-viene resa disponibile ai processi attraverso quello che viene chiamato il
-\textsl{montaggio} del \textit{filesystem}.
-% (approfondiremo tutto ciò in \secref{sec:file_arch_func}).
-
-In questa sezione faremo una panormamica generica su come il sistema presenta
-i file ai processi, trattando l'organizzazione di file e directory, i tipi di
-file ed introducendo le interfacce disponibili e le loro caratteristiche.
-
-
-\subsection{L'organizzazione di file e directory}
-\label{sec:file_organization}
-
-In Unix, a differenza di quanto avviene in altri sistemi operativi, tutti i
-file vengono tenuti all'interno di un unico albero la cui radice (quella che
-viene chiamata \textit{root directory}) viene montata all'avvio.  Un file
-viene identificato dall'utente usando quello che viene chiamato
-\textit{pathname}\footnote{il manuale della \acr{glibc} depreca questa
-  nomenclatura, che genererebbe confusione poiché \textit{path} indica anche
-  un insieme di directory su cui effettuare una ricerca (come quello in cui si
-  cercano i comandi). Al suo posto viene proposto l'uso di \textit{filename} e
-  di componente per il nome del file all'interno della directory. Non
-  seguiremo questa scelta dato che l'uso della parola \textit{pathname} è
-  ormai così comune che mantenerne l'uso è senz'altro più chiaro
-  dell'alternativa proposta.}, cioè il percorso che si deve fare per accedere
-al file a partire dalla \textit{root directory}, che è composto da una serie
-di nomi separati da una \file{/}.
-
-All'avvio del sistema, completata la fase di inizializzazione, il kernel
-riceve dal boot loader l'indicazione di quale dispositivo contiene il
-filesystem da usare come punto di partenza e questo viene montato come radice
-dell'albero (cioè nella directory \file{/}); tutti gli ulteriori filesystem
-che possono essere su altri dispositivi dovranno poi essere inseriti
-nell'albero montandoli su opportune directory del filesystem montato come
-radice.
-
-Alcuni filesystem speciali (come \file{/proc} che contiene un'interfaccia ad
-alcune strutture interne del kernel) sono generati automaticamente dal kernel
-stesso, ma anche essi devono essere montati all'interno dell'albero dei file.
-
-Una directory, come vedremo in maggior dettaglio in
-\secref{sec:file_vfs_work}, è anch'essa un file, solo che è un file
-particolare che il kernel riconosce come tale. Il suo scopo è quello di
-contenere una lista di nomi di file e le informazioni che associano ciascun
-nome al contenuto. Dato che questi nomi possono corrispondere ad un qualunque
-oggetto del filesystem, compresa un'altra directory, si ottiene naturalmente
-un'organizzazione ad albero inserendo directory in altre directory.
-
-Un file può essere indicato rispetto alla directory corrente semplicemente
-specificandone il nome\footnote{Il manuale delle \acr{glibc} chiama i nomi
-  contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
-    components}), noi li chiameremo più semplicemente \textit{nomi}.} da essa
-contenuto.  All'interno dello stesso albero si potranno poi inserire anche
-tutti gli altri oggetti visti attraverso l'interfaccia che manipola i file
-come le fifo, i link, i socket e gli stessi i file di dispositivo (questi
-ultimi, per convenzione, sono inseriti nella directory \file{/dev}).
-
-Il nome completo di un file viene chiamato \textit{pathname} ed il
-procedimento con cui si individua il file a cui esso fa riferimento è chiamato
-risoluzione del nome (\textit{file name resolution} o \textit{pathname
-  resolution}).  La risoluzione viene fatta esaminando il \textit{pathname} da
-sinistra a destra e localizzando ogni nome nella directory indicata dal nome
-precedente usando \file{/} come separatore\footnote{nel caso di nome vuoto, il
-  costrutto \file{//} viene considerato equivalente a \file{/}.}: ovviamente,
-perché il procedimento funzioni, occorre che i nomi indicati come directory
-esistano e siano effettivamente directory, inoltre i permessi (si veda
-\secref{sec:file_access_control}) devono consentire l'accesso all'intero
-\textit{pathname}.
-
-Se il \textit{pathname} comincia per \file{/} la ricerca parte dalla directory
-radice del processo; questa, a meno di un \func{chroot} (su cui torneremo in
-\secref{sec:file_chroot}) è la stessa per tutti i processi ed equivale alla
-directory radice dell'albero dei file: in questo caso si parla di un
-\textsl{pathname assoluto}\index{pathname assoluto}. Altrimenti la ricerca
-parte dalla directory corrente (su cui torneremo in
-\secref{sec:file_work_dir}) ed il pathname è detto \textsl{pathname
-  relativo}\index{pathname relativo}.
-
-I nomi \file{.} e \file{..} hanno un significato speciale e vengono inseriti
-in ogni directory: il primo fa riferimento alla directory corrente e il
-secondo alla directory \textsl{genitrice} (o \textit{parent directory}) cioè
-la directory che contiene il riferimento alla directory corrente; nel caso
-questa sia la directory radice, allora il riferimento è a se stessa.
-
-
-\subsection{I tipi di file}
-\label{sec:file_file_types}
-
-Come detto in precedenza, in Unix esistono vari tipi di file; in Linux questi
-sono implementati come oggetti del \textit{Virtual File System} (vedi
-\secref{sec:file_vfs_work}) e sono presenti in tutti i filesystem unix-like
-utilizzabili con Linux. L'elenco dei vari tipi di file definiti dal
-\textit{Virtual File System}\index{Virtual File System} è riportato in \ntab.
-
-Si tenga ben presente che questa classificazione non ha nulla a che fare con
-la classificazione sui tipi di file (che in questo caso sono sempre file di
-dati) in base al loro contenuto, o tipo di accesso.
-
-\begin{table}[htb]
-  \footnotesize
-  \centering
-    \begin{tabular}[c]{|l|l|p{7cm}|}
-    \hline
-    \multicolumn{2}{|c|}{\textbf{Tipo di file}} & \textbf{Descrizione} \\
-    \hline
-    \hline
-      \textit{regular file} & \textsl{file normale} &
-      un file che contiene dei dati (l'accezione normale di file) \\
-      \textit{directory} & \textsl{cartella o direttorio} &
-      un file che contiene una lista di nomi associati a degli \textit{inodes}
-      (vedi \secref{sec:file_vfs}).  \\
-      \textit{symbolic link} & \textsl{collegamento simbolico} &
-      un file che contiene un riferimento ad un altro file/directory \\
-      \textit{char device} & \textsl{dispositivo a caratteri} &
-      un file che identifica una periferica ad accesso a caratteri \\
-      \textit{block device} & \textsl{dispositivo a blocchi} &
-      un file che identifica una periferica ad accesso a blocchi \\
-      \textit{fifo} & \textsl{``coda''} &
-      un file speciale che identifica una linea di comunicazione software
-      (unidirezionale) \\
-      \textit{socket} & \textsl{``presa''} &
-      un file speciale che identifica una linea di comunicazione software
-      (bidirezionale) \\
-    \hline
-    \end{tabular}
-    \caption{Tipologia dei file definiti nel VFS}
-    \label{tab:file_file_types}
-\end{table}
-
-Infatti una delle differenze principali con altri sistemi operativi (come il
-VMS o Windows) è che per Unix tutti i file di dati sono identici e contengono
-un flusso continuo di byte. Non esiste cioè differenza per come vengono visti
-dal sistema file di diverso contenuto o formato (come nel caso di quella fra
-file di testo e binari che c'è in Windows) né c'è una strutturazione a record
-per il cosiddetto ``accesso diretto'' come nel caso del VMS.\footnote{con i
-  kernel della serie 2.4 è disponibile, attraverso dei device file appositi,
-  una forma di accesso diretto ai dischi (il \textit{raw access}) che però non
-  ha nulla a che fare con questo, trattandosi solo di operazioni fatte senza
-  passare attraverso un filesystem.}
-
-Una seconda differenza è nel formato dei file ASCII: in Unix la fine riga è
-codificata in maniera diversa da Windows o Mac, in particolare il fine riga è
-il carattere \texttt{LF} (o \verb|\n|) al posto del \texttt{CR} (\verb|\r|)
-del Mac e del \texttt{CR LF} di Windows.\footnote{per questo esistono in Linux
-  dei programmi come \cmd{unix2dos} e \cmd{dos2unix} che effettuano una
-  conversione fra questi due formati di testo.} Questo può causare alcuni
-problemi qualora nei programmi si facciano assunzioni sul terminatore della
-riga.
-
-Si ricordi infine che in ambiente Unix non esistono tipizzazioni dei file di
-dati e che non c'è nessun supporto del sistema per le estensioni come parte
-del filesystem. Ciò nonostante molti programmi adottano delle convenzioni per
-i nomi dei file, ad esempio il codice C normalmente si mette in file con
-l'estensione \file{.c}, ma questa è, per quanto usata ed accettata in maniera
-universale, solo una convenzione.
-
-
-\subsection{Le due interfacce ai file}
-\label{sec:file_io_api}
-
-In Linux le modalità di accesso ai file e le relative interfacce di
-programmazione sono due, basate su due diversi meccanismi con cui è possibile
-accedere al loro contenuto.
-
-La prima è l'interfaccia standard di Unix, quella che il manuale delle
-\acr{glibc} chiama interfaccia dei descrittori di file (o \textit{file
-  descriptor}).  È un'interfaccia specifica dei sistemi unix-like e fornisce 
-un accesso non bufferizzato; la tratteremo in dettaglio in
-\capref{cha:file_unix_interface}.
-
-L'interfaccia è primitiva ed essenziale, l'accesso viene detto non
-bufferizzato in quanto la lettura e la scrittura vengono eseguite chiamando
-direttamente le system call del kernel (in realtà il kernel effettua al suo
-interno alcune bufferizzazioni per aumentare l'efficienza nell'accesso ai
-dispositivi); i \textit{file descriptor}\index{file descriptor} sono
-rappresentati da numeri interi (cioè semplici variabili di tipo \ctyp{int}).
-L'interfaccia è definita nell'header \file{unistd.h}.
-
-La seconda interfaccia è quella che il manuale della \acr{glibc} chiama degli
-\textit{stream}\index{stream}. Essa fornisce funzioni più evolute e un accesso
-bufferizzato (controllato dalla implementazione fatta dalle \acr{glibc}), la
-tratteremo in dettaglio nel \capref{cha:files_std_interface}.
-
-Questa è l'interfaccia standard specificata dall'ANSI C e perciò si trova
-anche su tutti i sistemi non Unix. Gli \textit{stream} sono oggetti complessi
-e sono rappresentati da puntatori ad un opportuna struttura definita dalle
-librerie del C; si accede ad essi sempre in maniera indiretta utilizzando il
-tipo \ctyp{FILE *}.  L'interfaccia è definita nell'header \file{stdio.h}.
-
-Entrambe le interfacce possono essere usate per l'accesso ai file come agli
-altri oggetti del VFS (fifo, socket, device, sui quali torneremo in dettaglio
-a tempo opportuno), ma per poter accedere alle operazioni di controllo
-(descritte in \ref{sec:file_fcntl} e \ref{sec:file_ioctl}) su un qualunque
-tipo di oggetto del VFS occorre usare l'interfaccia standard di Unix con i
-\textit{file descriptor}. Allo stesso modo devono essere usati i \textit{file
-  descriptor} se si vuole ricorrere a modalità speciali di I/O come il polling
-o il non-bloccante (vedi \capref{cha:file_advanced}).
-
-Gli \textit{stream} forniscono un'interfaccia di alto livello costruita sopra
-quella dei \textit{file descriptor}, che permette di poter scegliere tra
-diversi stili di bufferizzazione.  Il maggior vantaggio degli \textit{stream}
-è che l'interfaccia per le operazioni di input/output è enormemente più ricca
-di quella dei \textit{file descriptor}, che forniscono solo funzioni
-elementari per la lettura/scrittura diretta di blocchi di byte.  In
-particolare gli \textit{stream} dispongono di tutte le funzioni di
-formattazione per l'input e l'output adatte per manipolare anche i dati in
-forma di linee o singoli caratteri.
-
-In ogni caso, dato che gli stream sono implementati sopra l'interfaccia
-standard di Unix, è sempre possibile estrarre il \textit{file descriptor} da
-uno stream ed eseguirvi operazioni di basso livello, o associare in un secondo
-tempo uno \textit{stream} ad un \textit{file descriptor}.
-
-In generale, se non necessitano specificatamente le funzionalità di basso
-livello, è opportuno usare sempre gli \textit{stream} per la loro maggiore
-portabilità, essendo questi ultimi definiti nello standard ANSI C;
-l'interfaccia con i \textit{file descriptor} infatti segue solo lo standard
-POSIX.1 dei sistemi Unix, ed è pertanto di portabilità più limitata.
-
-
-% \subsection{Caratteristiche specifiche dei file in Unix}
-% \label{sec:fileint_unix_spec}
-
-% Essendo un sistema multitasking e multiutente esistono alcune caratteristiche
-% specifiche di un sistema unix-like che devono essere tenute in conto
-% nell'accesso ai file. È infatti normale che più processi o programmi possano
-% accedere contemporaneamente allo stesso file e devono poter eseguire le loro
-% operazioni indipendentemente da quello che fanno gli altri processi.
-
-% Per questo motivo le strutture usate per all'accesso ai file sono relative al
-% processo che effettua l'accesso.  All'apertura di ogni file infatti viene
-% creata all'interno del processo una apposita struttura in cui sono memorizzati
-% tutti gli attributi del medesimo, che viene utilizzata per tutte le
-% operazioni. Questa è una struttura che resta locale al processo stesso; in
-% questo modo processi diversi possono usare le proprie strutture locali per
-% accedere ai file (che può essere sempre lo stesso) in maniera assolutamente
-% indipendente.
-
-% Questo ha delle conseguenze di cui è bene tenere conto; ad esempio in tutti i
-% sistemi POSIX uno degli attributi di un file aperto è la posizione corrente nel
-% file, cioè il punto nel file in cui verrebbe letto o scritto alla operazione
-% successiva. Essa è rappresentata da un numero intero che indica il numero di
-% byte dall'inizio del file, che viene (a meno che non si apra il file in
-% append) inizializzato a zero all'apertura del medesimo.
-
-% Questo è uno dei dati che viene mantenuto nella suddetta struttura, per cui
-% ogni processo avrà la sua posizione corrente nel file, che non sarà
-% influenzata da quello che altri processi possono fare. Anzi, aprire un file
-% significa appunto creare ed inizializzare una tale struttura, per cui se si
-% apre due volte lo stesso file all'interno dello stesso processo, si otterranno
-% due file descriptor o due stream che avranno ancora una posizione corrente nel
-% file assolutamente indipendente.
-
-% Si tenga conto inoltre che un'altro dei dati contenuti nella struttura di
-% accesso è un riferimento all'inode del file, pertanto anche se il file viene
-% cancellato da un altro processo, sarà sempre possibile mantenere l'accesso ai
-% dati, e lo spazio su disco non verrà rilasciato fintanto che il file non sarà
-% chiuso e l'ultimo riferimento cancellato. È pertanto possibile (come vedremo
-% in dettaglio in \secref{sec:file_link}) aprire un file provvisorio per
-% cancellarlo immediatamente dopo; in questo modo all'uscita del programma il
-% file scomparirà definitivamente dal disco, ma il file ed il suo contenuto
-% saranno disponibili per tutto il tempo in cui il processo è attivo.
-
-% Ritorneremo su questo più avanti in \secref{sec:file_fd}, quando tratteremo
-% l'input/output sui file, esaminando in dettaglio come tutto ciò viene
-% realizzato.
-
-
-\section{L'architettura della gestione dei file}
-\label{sec:file_arch_func}
-
-Per capire fino in fondo le proprietà di file e directory in un sistema
-unix-like ed il comportamento delle relative funzioni di manipolazione occorre
-una breve introduzione al funzionamento gestione dei file da parte del kernel
-e sugli oggetti su cui è basato un filesystem. In particolare occorre tenere
-presente dov'è che si situa la divisione fondamentale fra kernel space e user
-space che tracciavamo al \capref{cha:intro_unix}.
-
-In questa sezione esamineremo come viene implementato l'accesso ai file in
-Linux, come il kernel può gestire diversi tipi di filesystem, descrivendo
-prima le caratteristiche generali di un filesystem di un sistema unix-like,
-per poi trattare in maniera un po' più dettagliata il filesystem standard di
-Linux, l'\acr{ext2}.
-
-% in particolare si riprenderà, approfondendolo sul piano dell'uso nelle
-% funzioni di libreria, il concetto di \textit{inode} di cui abbiamo brevemente
-% accennato le caratteristiche (dal lato dell'implementazione nel kernel) in
-% \secref{sec:file_vfs}.
-
-
-\subsection{Il \textit{Virtual Filesystem} di Linux}
-\label{sec:file_vfs}
-
-% Questa sezione riporta informazioni sui dettagli di come il kernel gestisce i
-% file.  L'argomento è abbastanza ``esoterico'' e questa sezione può essere
-% saltata ad una prima lettura; è bene però tenere presente che vengono
-% introdotti qui alcuni termini che potranno comparire in seguito, come
-% \textit{inode}, \textit{dentry}, \textit{dcache}.
-
-In Linux il concetto di \textit{everything is a file} è stato implementato
-attraverso il \textit{Virtual Filesystem} (da qui in avanti VFS) che è uno
-strato intermedio che il kernel usa per accedere ai più svariati filesystem
-mantenendo la stessa interfaccia per i programmi in user space. Esso fornisce
-un livello di indirezione che permette di collegare le operazioni di
-manipolazione sui file alle operazioni di I/O, e gestisce l'organizzazione di
-queste ultime nei vari modi in cui i diversi filesystem le effettuano,
-permettendo la coesistenza di filesystem differenti all'interno dello stesso
-albero delle directory.
-
-Quando un processo esegue una system call che opera su un file, il kernel
-chiama sempre una funzione implementata nel VFS; la funzione eseguirà le
-manipolazioni sulle strutture generiche e utilizzerà poi la chiamata alle
-opportune routine del filesystem specifico a cui si fa riferimento. Saranno
-queste a chiamare le funzioni di più basso livello che eseguono le operazioni
-di I/O sul dispositivo fisico, secondo lo schema riportato in
-\figref{fig:file_VFS_scheme}.
-
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=7cm]{img/vfs}
-  \caption{Schema delle operazioni del VFS.}
-  \label{fig:file_VFS_scheme}
-\end{figure}
-
-Il VFS definisce un insieme di funzioni che tutti i filesystem devono
-implementare. L'interfaccia comprende tutte le funzioni che riguardano i file;
-le operazioni sono suddivise su tre tipi di oggetti: \textit{filesystem},
-\textit{inode} e \textit{file}, corrispondenti a tre apposite strutture
-definite nel kernel.
-
-Il VFS usa una tabella mantenuta dal kernel che contiene il nome di ciascun
-filesystem supportato: quando si vuole inserire il supporto di un nuovo
-filesystem tutto quello che occorre è chiamare la funzione
-\code{register\_filesystem} passandole un'apposita struttura
-(\var{file\_system\_type}) che contiene i dettagli per il riferimento
-all'implementazione del medesimo, che sarà aggiunta alla citata tabella.
-
-In questo modo quando viene effettuata la richiesta di montare un nuovo disco
-(o qualunque altro \textit{block device} che può contenere un filesystem), il
-VFS può ricavare dalla citata tabella il puntatore alle funzioni da chiamare
-nelle operazioni di montaggio. Quest'ultima è responsabile di leggere da disco
-il superblock (vedi \secref{sec:file_ext2}), inizializzare tutte le variabili
-interne e restituire uno speciale descrittore dei filesystem montati al VFS;
-attraverso quest'ultimo diventa possibile accedere alle routine specifiche per
-l'uso di quel filesystem.
-
-Il primo oggetto usato dal VFS è il descrittore di filesystem, un puntatore ad
-una apposita struttura che contiene vari dati come le informazioni comuni ad
-ogni filesystem, i dati privati relativi a quel filesystem specifico, e i
-puntatori alle funzioni del kernel relative al filesystem. Il VFS può così
-usare le funzioni contenute nel \textit{filesystem descriptor} per accedere
-alle routine specifiche di quel filesystem.
-
-Gli altri due descrittori usati dal VFS sono relativi agli altri due oggetti
-su cui è strutturata l'interfaccia. Ciascuno di essi contiene le informazioni
-relative al file in uso, insieme ai puntatori alle funzioni dello specifico
-filesystem usate per l'accesso dal VFS; in particolare il descrittore
-dell'inode contiene i puntatori alle funzioni che possono essere usate su
-qualunque file (come \func{link}, \func{stat} e \func{open}), mentre il
-descrittore di file contiene i puntatori alle funzioni che vengono usate sui
-file già aperti.
-
-
-\subsection{Il funzionamento del VFS}
-\label{sec:file_vfs_work}
-
-La funzione più importante implementata dal VFS è la system call \func{open}
-che permette di aprire un file. Dato un pathname viene eseguita una ricerca
-dentro la \textit{directory entry cache} (in breve \textit{dcache}), una
-tabella che contiene tutte le \textit{directory entry} (in breve
-\textit{dentry}) che permette di associare in maniera rapida ed efficiente il
-pathname a una specifica \textit{dentry}.
-
-Una singola \textit{dentry} contiene in genere il puntatore ad un
-\textit{inode}; quest'ultimo è la struttura base che sta sul disco e che
-identifica un singolo oggetto del VFS sia esso un file ordinario, una
-directory, un link simbolico, una FIFO, un file di dispositivo, o una
-qualsiasi altra cosa che possa essere rappresentata dal VFS (i tipi di
-``file'' riportati in \tabref{tab:file_file_types}). A ciascuno di essi è
-associata pure una struttura che sta in memoria, e che, oltre alle
-informazioni sullo specifico file, contiene anche il riferimento alle funzioni
-(i \textsl{metodi} del VFS) da usare per poterlo manipolare.
-
-Le \textit{dentry} ``vivono'' in memoria e non vengono mai salvate su disco,
-vengono usate per motivi di velocità, gli \textit{inode} invece stanno su
-disco e vengono copiati in memoria quando serve, ed ogni cambiamento viene
-copiato all'indietro sul disco, gli inode che stanno in memoria sono inode del
-VFS ed è ad essi che puntano le singole \textit{dentry}.
-
-La \textit{dcache} costituisce perciò una sorta di vista completa di tutto
-l'albero dei file, ovviamente per non riempire tutta la memoria questa vista è
-parziale (la \textit{dcache} cioè contiene solo le \textit{dentry} per i file
-per i quali è stato richiesto l'accesso), quando si vuole risolvere un nuovo
-pathname il VFS deve creare una nuova \textit{dentry} e caricare l'inode
-corrispondente in memoria.
-
-Questo procedimento viene eseguito dal metodo \code{lookup()} dell'inode
-della directory che contiene il file; questo viene installato nelle relative
-strutture in memoria quando si effettua il montaggio lo specifico filesystem
-su cui l'inode va a vivere.
-
-Una volta che il VFS ha a disposizione la \textit{dentry} (ed il relativo
-\textit{inode}) diventa possibile accedere alle varie operazioni sul file come
-la \func{open} per aprire il file o la \func{stat} per leggere i dati
-dell'inode e passarli in user space.
-
-L'apertura di un file richiede comunque un'altra operazione, l'allocazione di
-una struttura di tipo \var{file} in cui viene inserito un puntatore alla
-\textit{dentry} e una struttura \var{f\_ops} che contiene i puntatori ai
-metodi che implementano le operazioni disponibili sul file. In questo modo i
-processi in user space possono accedere alle operazioni attraverso detti
-metodi, che saranno diversi a seconda del tipo di file (o dispositivo) aperto
-(su questo torneremo in dettaglio in \secref{sec:file_fd}). Un elenco delle
-operazioni previste dal kernel è riportato in \ntab.
-
-\begin{table}[htb]
-  \centering
-  \footnotesize
-  \begin{tabular}[c]{|l|p{7cm}|}
-    \hline
-    \textbf{Funzione} & \textbf{Operazione} \\
-    \hline
-    \hline
-    \textsl{\code{open}}   & apre il file \\
-    \textsl{\code{read}}   & legge dal file \\
-    \textsl{\code{write}}  & scrive sul file \\ 
-    \textsl{\code{llseek}} & sposta la posizione corrente sul file \\
-    \textsl{\code{ioctl}}  & accede alle operazioni di controllo 
-                       (tramite la \func{ioctl})\\
-    \textsl{\code{readdir}}& per leggere il contenuto di una directory \\
-    \textsl{\code{poll}}   & \\
-    \textsl{\code{mmap}}   & chiamata dalla system call \func{mmap}. 
-                       mappa il file in memoria\\
-    \textsl{\code{release}}& chiamata quando l'ultima referenza a un file 
-                       aperto è chiusa\\
-    \textsl{\code{fsync}}  & chiamata dalla system call \func{fsync} \\
-    \textsl{\code{fasync}} & chiamate da \func{fcntl} quando è abilitato 
-                           il modo asincrono per l'I/O su file. \\
-    \hline
-  \end{tabular}
-  \caption{Operazioni sui file definite nel VFS.}
-  \label{tab:file_file_operations}
-\end{table}
-
-In questo modo per ciascun file diventano possibili una serie di operazioni
-(non è detto che tutte siano disponibili), che costituiscono l'interfaccia
-astratta del VFS.  Qualora se ne voglia eseguire una, il kernel andrà ad
-utilizzare l'opportuna routine dichiarata in \var{f\_ops} appropriata al tipo
-di file in questione.
-
-In questo modo è possibile scrivere allo stesso modo sulla porta seriale come
-su normale un file di dati; ovviamente certe operazioni (nel caso della
-seriale ad esempio la \code{seek}) non saranno disponibili, però con questo
-sistema l'utilizzo di diversi filesystem (come quelli usati da Windows o
-MacOs) è immediato e (relativamente) trasparente per l'utente ed il
-programmatore.
-
-
-\subsection{Il funzionamento di un filesystem Unix}
-\label{sec:file_filesystem}
-
-Come già accennato in \secref{sec:file_organization} Linux (ed ogni sistema
-unix-like) organizza i dati che tiene su disco attraverso l'uso di un
-filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
-quella di poter supportare, grazie al VFS, una enorme quantità di filesystem
-diversi, ognuno dei quali ha una sua particolare struttura e funzionalità
-proprie.  Per questo, per il momento non entreremo nei dettagli di un
-filesystem specifico, ma daremo una descrizione a grandi linee che si adatta
-alle caratteristiche comuni di qualunque filesystem di sistema unix-like.
-
-Lo spazio fisico di un disco viene usualmente diviso in partizioni; ogni
-partizione può contenere un filesystem. La strutturazione tipica
-dell'informazione su un disco è riportata in \nfig; in essa si fa riferimento
-alla struttura del filesystem \acr{ext2}, che prevede una separazione dei dati
-in \textit{blocks group} che replicano il superblock (ma sulle caratteristiche
-di \acr{ext2} torneremo in \secref{sec:file_ext2}). È comunque caratteristica
-comune di tutti i filesystem per Unix, indipendentemente da come poi viene
-strutturata nei dettagli questa informazione, prevedere una divisione fra la
-lista degli inodes e lo spazio a disposizione per i dati e le directory.
-
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=12cm]{img/disk_struct}
-  \caption{Organizzazione dello spazio su un disco in partizioni e
-  filesystem.}
-  \label{fig:file_disk_filesys}
-\end{figure}
-
-Se si va ad esaminare con maggiore dettaglio la strutturazione
-dell'informazione all'interno del singolo filesystem (tralasciando i dettagli
-relativi al funzionamento del filesystem stesso come la strutturazione in
-gruppi dei blocchi, il superblock e tutti i dati di gestione) possiamo
-esemplificare la situazione con uno schema come quello esposto in \nfig.
-
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=12cm]{img/filesys_struct}
-  \caption{Strutturazione dei dati all'interno di un filesystem.}
-  \label{fig:file_filesys_detail}
-\end{figure}
-
-Da \curfig\ si evidenziano alcune delle caratteristiche di base di un
-filesystem, sulle quali è bene porre attenzione visto che sono fondamentali
-per capire il funzionamento delle funzioni che manipolano i file e le
-directory che tratteremo nel prossimo capitolo; in particolare è opportuno
-ricordare sempre che:
-
-\begin{enumerate}
-  
-\item L'\textit{inode} contiene tutte le informazioni riguardanti il file: il
-  tipo di file, i permessi di accesso, le dimensioni, i puntatori ai blocchi
-  fisici che contengono i dati e così via; le informazioni che la funzione
-  \func{stat} fornisce provengono dall'\textit{inode}; dentro una directory si
-  troverà solo il nome del file e il numero dell'\textit{inode} ad esso
-  associato, cioè quella che da qui in poi chiameremo una \textsl{voce}
-  (traduzione approssimata dell'inglese \textit{directory entry}, che non
-  useremo anche per evitare confusione con le \textit{dentry} del kernel di
-  cui si parlava in \secref{sec:file_vfs}).
-
-\item Come mostrato in \curfig\ si possono avere più voci che puntano allo
-  stesso \textit{inode}. Ogni \textit{inode} ha un contatore che contiene il
-  numero di riferimenti (\textit{link count}) che sono stati fatti ad esso;
-  solo quando questo contatore si annulla i dati del file vengono
-  effettivamente rimossi dal disco. Per questo la funzione per cancellare un
-  file si chiama \func{unlink}, ed in realtà non cancella affatto i dati del
-  file, ma si limita ad eliminare la relativa voce da una directory e
-  decrementare il numero di riferimenti nell'\textit{inode}.
-
-\item Il numero di \textit{inode} nella voce si riferisce ad un \textit{inode}
-  nello stesso filesystem e non ci può essere una directory che contiene
-  riferimenti ad \textit{inodes} relativi ad altri filesystem. Questo limita
-  l'uso del comando \cmd{ln} (che crea una nuova voce per un file
-  esistente, con la funzione \func{link}) al filesystem corrente.
-  
-\item Quando si cambia nome ad un file senza cambiare filesystem, il contenuto
-  del file non viene spostato fisicamente, viene semplicemente creata una
-  nuova voce per l'\textit{inode} in questione e rimossa la vecchia (questa è
-  la modalità in cui opera normalmente il comando \cmd{mv} attraverso la
-  funzione \func{rename}).
-
-\end{enumerate}
-
-Infine è bene avere presente che, essendo file pure loro, esiste un numero di
-riferimenti anche per le directory; per cui, se a partire dalla situazione
-mostrata in \curfig\ creiamo una nuova directory \file{img} nella directory
-\file{gapil}, avremo una situazione come quella in \nfig, dove per chiarezza
-abbiamo aggiunto dei numeri di inode.
-
-\begin{figure}[htb]
-  \centering 
-  \includegraphics[width=12cm]{img/dir_links}
-  \caption{Organizzazione dei link per le directory.}
-  \label{fig:file_dirs_link}
-\end{figure}
-
-La nuova directory avrà allora un numero di riferimenti pari a due, in quanto
-è referenziata dalla directory da cui si era partiti (in cui è inserita la
-nuova voce che fa riferimento a \file{img}) e dalla voce \file{.}
-che è sempre inserita in ogni directory; questo vale sempre per ogni directory
-che non contenga a sua volta altre directory. Al contempo, la directory da
-cui si era partiti avrà un numero di riferimenti di almeno tre, in quanto
-adesso sarà referenziata anche dalla voce \file{..} di \file{img}.
-
-
-\subsection{Il filesystem \textsl{ext2}}
-\label{sec:file_ext2}
-
-Il filesystem standard usato da Linux è il cosiddetto \textit{second extended
-  filesystem}, identificato dalla sigla \acr{ext2}. Esso supporta tutte le
-caratteristiche di un filesystem standard Unix, è in grado di gestire nomi di
-file lunghi (256 caratteri, estendibili a 1012) con una dimensione massima di
-4~Tb.
-
-Oltre alle caratteristiche standard, \acr{ext2} fornisce alcune estensioni che
-non sono presenti sugli altri filesystem Unix. Le principali sono le seguenti:
-\begin{itemize}
-\item i \textit{file attributes} consentono di modificare il comportamento del
-  kernel quando agisce su gruppi di file. Possono essere settati su file e
-  directory e in quest'ultimo caso i nuovi file creati nella directory
-  ereditano i suoi attributi.
-\item sono supportate entrambe le semantiche di BSD e SVr4 come opzioni di
-  montaggio. La semantica BSD comporta che i file in una directory sono creati
-  con lo stesso identificatore di gruppo della directory che li contiene. La
-  semantica SVr4 comporta che i file vengono creati con l'identificatore del
-  gruppo primario del processo, eccetto il caso in cui la directory ha il bit
-  di \acr{sgid} settato (per una descrizione dettagliata del significato di
-  questi termini si veda \secref{sec:file_access_control}), nel qual caso file
-  e subdirectory ereditano sia il \acr{gid} che lo \acr{sgid}.
-\item l'amministratore può scegliere la dimensione dei blocchi del filesystem
-  in fase di creazione, a seconda delle sue esigenze (blocchi più grandi
-  permettono un accesso più veloce, ma sprecano più spazio disco).
-\item il filesystem implementa link simbolici veloci, in cui il nome del file
-  non è salvato su un blocco, ma tenuto all'interno dell'inode (evitando
-  letture multiple e spreco di spazio), non tutti i nomi però possono essere
-  gestiti così per limiti di spazio (il limite è 60 caratteri). 
-\item vengono supportati i file immutabili (che possono solo essere letti) per
-  la protezione di file di configurazione sensibili, o file
-  \textit{append-only} che possono essere aperti in scrittura solo per
-  aggiungere dati (caratteristica utilizzabile per la protezione dei file di
-  log).
-\end{itemize}
-
-La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD:
-un filesystem è composto da un insieme di blocchi, la struttura generale è
-quella riportata in \figref{fig:file_filesys_detail}, in cui la partizione
-è divisa in gruppi di blocchi.
-
-Ciascun gruppo di blocchi contiene una copia delle informazioni essenziali del
-filesystem (superblock e descrittore del filesystem sono quindi ridondati) per
-una maggiore affidabilità e possibilità di recupero in caso di corruzione del
-superblock principale.
-
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=9cm]{img/dir_struct}  
-  \caption{Struttura delle directory nel \textit{second extented filesystem}.}
-  \label{fig:file_ext2_dirs}
-\end{figure}
-
-L'utilizzo di raggruppamenti di blocchi ha inoltre degli effetti positivi nelle
-prestazioni dato che viene ridotta la distanza fra i dati e la tabella degli
-inode. 
-
-Le directory sono implementate come una linked list con voci di dimensione
-variabile. Ciascuna voce della lista contiene il numero di inode, la sua
-lunghezza, il nome del file e la sua lunghezza, secondo lo schema in \curfig;
-in questo modo è possibile implementare nomi per i file anche molto lunghi
-(fino a 1024 caratteri) senza sprecare spazio disco.
-
-
+%% fileintro.tex
+%%
+%% Copyright (C) 2000-2011 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
+
+%\chapter{L'architettura dei file}
+%\label{cha:file_intro}
+
+% capitolo eliminato, inglobando altrove
+
+% LocalWords:  everything is device kernel filesystem sez pathname root glibc
+% LocalWords:  path filename bootloader proc name components fifo socket dev LF
+% LocalWords:  resolution chroot parent Virtual System like tab cap l'I regular
+% LocalWords:  inode symbolic char block VFS VMS Windows dell'I raw access Mac
+% LocalWords:  CR dos HFS l'XFS SGI magic number descriptor system call int ext
+% LocalWords:  nell'header unistd stream dall'ANSI stdio locking POSIX fig type
+% LocalWords:  register superblock dell'inode stat entry cache dcache dentry ln
+% LocalWords:  l'inode lookup ops read write llseek ioctl readdir poll nell'I
+% LocalWords:  multiplexing mmap fsync fasync seek group dall' dell' img
+% LocalWords:  count unlink nell' rename gapil second Tb attributes BSD SVr gid
+% LocalWords:  sgid append only log fs linux extented linked list third MacOS
 
 
 %%% Local Variables: