Aggiornamento anno note di copyright, dimenticato da gennaio...
[gapil.git] / fileintro.tex
index 6fea57d59babf2a0d8e9770e63ae1686b82486b4..6181d4d8bd6bc1ee42779b69b12b5df5b55a2b8b 100644 (file)
@@ -1,6 +1,6 @@
 %% fileintro.tex
 %%
-%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2008 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
@@ -8,6 +8,7 @@
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
 %%
+
 \chapter{L'architettura dei file}
 \label{cha:file_intro}
 
@@ -19,10 +20,11 @@ file di dati.
 
 Questo significa che si può accedere a qualunque periferica del computer,
 dalla seriale, alla parallela, alla console, e agli stessi dischi attraverso i
-cosiddetti file di dispositivo\index{file!di~dispositivo} (i \textit{device
-  file}). Questi sono dei file speciali agendo sui quali i programmi possono
-leggere, scrivere e compiere operazioni direttamente sulle periferiche, usando
-le stesse funzioni che si usano per i normali file di dati.
+cosiddetti \index{file!di~dispositivo} file di dispositivo (i cosiddetti
+\textit{device file}). Questi sono dei file speciali agendo sui quali i
+programmi possono leggere, scrivere e compiere operazioni direttamente sulle
+periferiche, usando le stesse funzioni che si usano per i normali file di
+dati.
 
 In questo capitolo forniremo una descrizione dell'architettura dei file in
 Linux, iniziando da una panoramica sulle caratteristiche principali delle
@@ -89,14 +91,14 @@ oggetto del filesystem, compresa un'altra directory, si ottiene naturalmente
 un'organizzazione ad albero inserendo nomi di directory in altre directory.
 
 Un file può essere indicato rispetto alla directory corrente semplicemente
-specificandone il nome\footnote{Il manuale delle \acr{glibc} chiama i nomi
-contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
-components}), noi li chiameremo più semplicemente \textsl{nomi} o
-\textsl{voci}.}  da essa contenuto.  All'interno dello stesso albero si
+specificandone il nome\footnote{il manuale delle \acr{glibc} chiama i nomi
+  contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
+    components}), noi li chiameremo più semplicemente \textsl{nomi} o
+  \textsl{voci}.}  da essa contenuto.  All'interno dello stesso albero si
 potranno poi inserire anche tutti gli altri oggetti visti attraverso
-l'interfaccia che manipola i file come le fifo, i link, i socket\index{socket}
-e gli stessi file di dispositivo \index{file!di~dispositivo} (questi ultimi,
-per convenzione, sono inseriti nella directory \file{/dev}).
+l'interfaccia che manipola i file come le fifo, i link, i socket e gli stessi
+\index{file!di~dispositivo} file di dispositivo (questi ultimi, per
+convenzione, sono inseriti nella directory \file{/dev}).
 
 Il nome completo di un file viene chiamato \textit{pathname} ed il
 procedimento con cui si individua il file a cui esso fa riferimento è chiamato
@@ -116,16 +118,15 @@ torneremo in sez.~\ref{sec:file_chroot}) 
 equivale alla directory radice dell'albero dei file: in questo caso si parla
 di un \textsl{pathname assoluto} \itindsub{pathname}{assoluto}.  Altrimenti la
 ricerca parte dalla directory corrente (su cui torneremo in
-sez.~\ref{sec:file_work_dir}) ed il pathname è detto \textsl{pathname
-  relativo} \itindsub{pathname}{relativo}.
+sez.~\ref{sec:file_work_dir}) ed il pathname è detto
+\itindsub{pathname}{relativo} \textsl{pathname relativo}.
 
-I nomi \file{.} e \file{..} hanno un significato speciale e vengono inseriti
-in ogni directory: il primo fa riferimento alla directory corrente e il
-secondo alla directory \textsl{genitrice} (o \textit{parent directory}) cioè
-la directory che contiene il riferimento alla directory corrente; nel caso la
-directory corrente coincida con la directory radice, allora il riferimento è a
-se stessa.
-\itindend{pathname}
+I nomi ``\file{.}'' e ``\file{..}'' hanno un significato speciale e vengono
+inseriti in ogni directory: il primo fa riferimento alla directory corrente e
+il secondo alla directory \textsl{genitrice} (o \textit{parent directory})
+cioè la directory che contiene il riferimento alla directory corrente; nel
+caso la directory corrente coincida con la directory radice, allora il
+riferimento è a se stessa.  \itindend{pathname}
 
 
 \subsection{I tipi di file}
@@ -135,7 +136,7 @@ Come detto in precedenza, in Unix esistono vari tipi di file; in Linux questi
 sono implementati come oggetti del \textit{Virtual File System} (vedi
 sez.~\ref{sec:file_vfs_work}) e sono presenti in tutti i filesystem unix-like
 utilizzabili con Linux. L'elenco dei vari tipi di file definiti dal
-\textit{Virtual File System}\itindex{Virtual~File~System} è riportato in
+\itindex{Virtual~File~System} \textit{Virtual File System} è riportato in
 tab.~\ref{tab:file_file_types}.
 
 Si tenga ben presente che questa classificazione non ha nulla a che fare con
@@ -143,19 +144,19 @@ la classificazione dei file (che in questo caso sono sempre file di dati) in
 base al loro contenuto, o tipo di accesso. Essa riguarda invece il tipo di
 oggetti; in particolare è da notare la presenza dei cosiddetti file speciali.
 Alcuni di essi, come le \textit{fifo} (che tratteremo in
-sez.~\ref{sec:ipc_named_pipe}) ed i \textit{socket}\index{socket} (che
-tratteremo in cap.~\ref{cha:socket_intro}) non sono altro che dei riferimenti
-per utilizzare delle funzionalità di comunicazione fornite dal kernel. Gli
-altri sono i \textsl{file di dispositivo}\index{file!di~dispositivo} (o
-\textit{device file}) che costituiscono una interfaccia diretta per leggere e
-scrivere sui dispositivi fisici; essi vengono suddivisi in due grandi
-categorie, \textsl{a blocchi} e \textsl{a caratteri} a seconda delle modalità
-in cui il dispositivo sottostante effettua le operazioni di I/O.\footnote{in
-  sostanza i dispositivi a blocchi (ad esempio i dischi) corrispondono a
-  periferiche per le quali è richiesto che l'I/O venga effettuato per blocchi
-  di dati di dimensioni fissate (ad esempio le dimensioni di un settore),
-  mentre nei dispositivi a caratteri l'I/O viene effettuato senza nessuna
-  particolare struttura.}
+sez.~\ref{sec:ipc_named_pipe}) ed i \textit{socket} (che tratteremo in
+cap.~\ref{cha:socket_intro}) non sono altro che dei riferimenti per utilizzare
+delle funzionalità di comunicazione fornite dal kernel. Gli altri sono i
+\index{file!di~dispositivo} \textsl{file di dispositivo} (o \textit{device
+  file}) che costituiscono una interfaccia diretta per leggere e scrivere sui
+dispositivi fisici; essi vengono suddivisi in due grandi categorie, \textsl{a
+  blocchi} e \textsl{a caratteri} a seconda delle modalità in cui il
+dispositivo sottostante effettua le operazioni di I/O.\footnote{in sostanza i
+  dispositivi a blocchi (ad esempio i dischi) corrispondono a periferiche per
+  le quali è richiesto che l'I/O venga effettuato per blocchi di dati di
+  dimensioni fissate (ad esempio le dimensioni di un settore), mentre nei
+  dispositivi a caratteri l'I/O viene effettuato senza nessuna particolare
+  struttura.}
 
 \begin{table}[htb]
   \footnotesize
@@ -166,22 +167,22 @@ in cui il dispositivo sottostante effettua le operazioni di I/O.\footnote{in
     \hline
     \hline
       \textit{regular file} & \textsl{file regolare} &
-      un file che contiene dei dati (l'accezione normale di file) \\
+      Un file che contiene dei dati (l'accezione normale di file).\\
       \textit{directory} & \textsl{cartella o direttorio} &
-      un file che contiene una lista di nomi associati a degli
-      \textit{inode}\index{inode} (vedi sez.~\ref{sec:file_vfs}).  \\
+      Un file che contiene una lista di nomi associati a degli
+      \index{inode} \textit{inode} (vedi sez.~\ref{sec:file_vfs}).\\
       \textit{symbolic link} & \textsl{collegamento simbolico} &
-      un file che contiene un riferimento ad un altro file/directory \\
+      Un file che contiene un riferimento ad un altro file/directory.\\
       \textit{char device} & \textsl{dispositivo a caratteri} &
-      un file che identifica una periferica ad accesso a caratteri \\
+      Un file che identifica una periferica ad accesso a caratteri.\\
       \textit{block device} & \textsl{dispositivo a blocchi} &
-      un file che identifica una periferica ad accesso a blocchi \\
+      Un file che identifica una periferica ad accesso a blocchi.\\
       \textit{fifo} & ``\textsl{coda}'' &
-      un file speciale che identifica una linea di comunicazione software
+      Un file speciale che identifica una linea di comunicazione software
       unidirezionale (vedi sez.~\ref{sec:ipc_named_pipe}).\\
-      \textit{socket}\index{socket} & ``\textsl{presa}''&
-      un file speciale che identifica una linea di comunicazione software
-      bidirezionale (vedi cap.~\ref{cha:socket_intro}) \\
+      \textit{socket} & ``\textsl{presa}''&
+      Un file speciale che identifica una linea di comunicazione software
+      bidirezionale (vedi cap.~\ref{cha:socket_intro}).\\
     \hline
     \end{tabular}
     \caption{Tipologia dei file definiti nel VFS}
@@ -198,10 +199,10 @@ VMS.\footnote{questo vale anche per i dispositivi a blocchi: la strutturazione
   dell'I/O in blocchi di dimensione fissa avviene solo all'interno del kernel,
   ed è completamente trasparente all'utente. Inoltre talvolta si parla di
   \textsl{accesso diretto} riferendosi alla capacità, che non ha niente a che
-  fare con tutto ciò, di effettuare, attraverso degli appositi file di
-  dispositivo\index{file!di~dispositivo}, operazioni di I/O direttamente sui
-  dischi senza passare attraverso un filesystem (il cosiddetto \textit{raw
-    access}, introdotto coi kernel della serie 2.4.x).}
+  fare con tutto ciò, di effettuare, attraverso degli appositi
+  \index{file!di~dispositivo} file di dispositivo, operazioni di I/O
+  direttamente sui dischi senza passare attraverso un filesystem (il
+  cosiddetto \textit{raw access}, introdotto coi kernel della serie 2.4.x).}
 
 Una seconda differenza è nel formato dei file ASCII: in Unix la fine riga è
 codificata in maniera diversa da Windows o Mac, in particolare il fine riga è
@@ -246,31 +247,36 @@ L'interfaccia 
 bufferizzato in quanto la lettura e la scrittura vengono eseguite chiamando
 direttamente le system call del kernel (in realtà il kernel effettua al suo
 interno alcune bufferizzazioni per aumentare l'efficienza nell'accesso ai
-dispositivi); i \textit{file descriptor}\index{file!descriptor} sono
+dispositivi); i \index{file!descriptor} \textit{file descriptor} sono
 rappresentati da numeri interi (cioè semplici variabili di tipo \ctyp{int}).
 L'interfaccia è definita nell'header \file{unistd.h}.
 
 La seconda interfaccia è quella che il manuale della \acr{glibc} chiama degli
-\textit{stream}\index{file!stream}. Essa fornisce funzioni più evolute e un
-accesso bufferizzato (controllato dalla implementazione fatta dalle
-\acr{glibc}), la tratteremo in dettaglio nel
+\index{file!stream} \textit{stream}.\footnote{in realtà una interfaccia con lo
+  stesso nome è stata introdotta a livello di kernel negli Unix derivati da
+  \textit{System V}, come strato di astrazione per file e socket; in Linux
+  questa interfaccia, che comunque ha avuto poco successo, non esiste, per cui
+  facendo riferimento agli \index{file!stream} \textit{stream} useremo il
+  significato adottato dal manuale delle \acr{glibc}.} Essa fornisce funzioni
+più evolute e un accesso bufferizzato (controllato dalla implementazione fatta
+dalle \acr{glibc}), la tratteremo in dettaglio nel
 cap.~\ref{cha:files_std_interface}.
 
 Questa è l'interfaccia standard specificata dall'ANSI C e perciò si trova
-anche su tutti i sistemi non Unix. Gli \textit{stream}\index{file!stream} sono
-oggetti complessi e sono rappresentati da puntatori ad un opportuna struttura
-definita dalle librerie del C; si accede ad essi sempre in maniera indiretta
-utilizzando il tipo \ctyp{FILE *}.  L'interfaccia è definita nell'header
-\file{stdio.h}.
+anche su tutti i sistemi non Unix. Gli \index{file!stream} \textit{stream}
+sono oggetti complessi e sono rappresentati da puntatori ad un opportuna
+struttura definita dalle librerie del C; si accede ad essi sempre in maniera
+indiretta utilizzando il tipo \ctyp{FILE *}.  L'interfaccia è definita
+nell'header \file{stdio.h}.
 
 Entrambe le interfacce possono essere usate per l'accesso ai file come agli
-altri oggetti del VFS (fifo, socket\index{socket}, device, sui quali torneremo
-in dettaglio a tempo opportuno), ma per poter accedere alle operazioni di
+altri oggetti del VFS (fifo, socket, dispositivi, sui quali torneremo in
+dettaglio a tempo opportuno), ma per poter accedere alle operazioni di
 controllo (descritte in sez.~\ref{sec:file_fcntl} e sez.~\ref{sec:file_ioctl})
 su un qualunque tipo di oggetto del VFS occorre usare l'interfaccia standard
 di Unix con i \textit{file descriptor}. Allo stesso modo devono essere usati i
-\textit{file descriptor}\index{file!descriptor} se si vuole ricorrere a
-modalità speciali di I/O come il \textit{file locking}\index{file!locking} o
+\index{file!descriptor} \textit{file descriptor} se si vuole ricorrere a
+modalità speciali di I/O come il \index{file!locking} \textit{file locking} o
 l'I/O non-bloccante (vedi cap.~\ref{cha:file_advanced}).
 
 Gli \textit{stream} forniscono un'interfaccia di alto livello costruita sopra
@@ -279,20 +285,20 @@ diversi stili di bufferizzazione.  Il maggior vantaggio degli \textit{stream}
 è che l'interfaccia per le operazioni di input/output è enormemente più ricca
 di quella dei \textit{file descriptor}, che forniscono solo funzioni
 elementari per la lettura/scrittura diretta di blocchi di byte.  In
-particolare gli \textit{stream}\index{file!stream} dispongono di tutte le
+particolare gli \index{file!stream} \textit{stream} dispongono di tutte le
 funzioni di formattazione per l'input e l'output adatte per manipolare anche i
 dati in forma di linee o singoli caratteri.
 
 In ogni caso, dato che gli stream sono implementati sopra l'interfaccia
 standard di Unix, è sempre possibile estrarre il \textit{file descriptor} da
 uno stream ed eseguirvi operazioni di basso livello, o associare in un secondo
-tempo uno \textit{stream}\index{file!stream} ad un \textit{file
-  descriptor}\index{file!descriptor}.
+tempo uno \index{file!stream} \textit{stream} ad un \index{file!descriptor}
+\textit{file descriptor}.
 
 In generale, se non necessitano specificatamente le funzionalità di basso
-livello, è opportuno usare sempre gli \textit{stream}\index{file!stream} per
+livello, è opportuno usare sempre gli \index{file!stream} \textit{stream} per
 la loro maggiore portabilità, essendo questi ultimi definiti nello standard
-ANSI C; l'interfaccia con i \textit{file descriptor}\index{file!descriptor}
+ANSI C; l'interfaccia con i \index{file!descriptor} \textit{file descriptor}
 infatti segue solo lo standard POSIX.1 dei sistemi Unix, ed è pertanto di
 portabilità più limitata.
 
@@ -301,18 +307,18 @@ portabilit
 \section{L'architettura della gestione dei file}
 \label{sec:file_arch_func}
 
-
 In questa sezione esamineremo come viene implementato l'accesso ai file in
 Linux, come il kernel può gestire diversi tipi di filesystem, descrivendo
 prima le caratteristiche generali di un filesystem di un sistema unix-like,
 per poi trattare in maniera un po' più dettagliata il filesystem più usato con
-Linux, l'\acr{ext2}.
+Linux, l'\acr{ext2} (e derivati).
 
 
 \subsection{Il \textit{Virtual File System} di Linux}
 \label{sec:file_vfs}
 
 \itindbeg{Virtual~File~System}
+
 In Linux il concetto di \textit{everything is a file} è stato implementato
 attraverso il \textit{Virtual File System} (da qui in avanti VFS) che è uno
 strato intermedio che il kernel usa per accedere ai più svariati filesystem
@@ -326,7 +332,7 @@ albero delle directory.
 Quando un processo esegue una system call che opera su un file, il kernel
 chiama sempre una funzione implementata nel VFS; la funzione eseguirà le
 manipolazioni sulle strutture generiche e utilizzerà poi la chiamata alle
-opportune routine del filesystem specifico a cui si fa riferimento. Saranno
+opportune funzioni del filesystem specifico a cui si fa riferimento. Saranno
 queste a chiamare le funzioni di più basso livello che eseguono le operazioni
 di I/O sul dispositivo fisico, secondo lo schema riportato in
 fig.~\ref{fig:file_VFS_scheme}.
@@ -341,7 +347,7 @@ fig.~\ref{fig:file_VFS_scheme}.
 Il VFS definisce un insieme di funzioni che tutti i filesystem devono
 implementare. L'interfaccia comprende tutte le funzioni che riguardano i file;
 le operazioni sono suddivise su tre tipi di oggetti: \textit{filesystem},
-\textit{inode}\index{inode} e \textit{file}, corrispondenti a tre apposite
+\index{inode} \textit{inode} e \textit{file}, corrispondenti a tre apposite
 strutture definite nel kernel.
 
 Il VFS usa una tabella mantenuta dal kernel che contiene il nome di ciascun
@@ -357,7 +363,7 @@ VFS pu
 nelle operazioni di montaggio. Quest'ultima è responsabile di leggere da disco
 il superblock (vedi sez.~\ref{sec:file_ext2}), inizializzare tutte le variabili
 interne e restituire uno speciale descrittore dei filesystem montati al VFS;
-attraverso quest'ultimo diventa possibile accedere alle routine specifiche per
+attraverso quest'ultimo diventa possibile accedere alle funzioni specifiche per
 l'uso di quel filesystem.
 
 Il primo oggetto usato dal VFS è il descrittore di filesystem, un puntatore ad
@@ -365,13 +371,13 @@ una apposita struttura che contiene vari dati come le informazioni comuni ad
 ogni filesystem, i dati privati relativi a quel filesystem specifico, e i
 puntatori alle funzioni del kernel relative al filesystem. Il VFS può così
 usare le funzioni contenute nel \textit{filesystem descriptor} per accedere
-alle routine specifiche di quel filesystem.
+alle funzioni specifiche di quel filesystem.
 
 Gli altri due descrittori usati dal VFS sono relativi agli altri due oggetti
 su cui è strutturata l'interfaccia. Ciascuno di essi contiene le informazioni
 relative al file in uso, insieme ai puntatori alle funzioni dello specifico
 filesystem usate per l'accesso dal VFS; in particolare il descrittore
-dell'inode\index{inode} contiene i puntatori alle funzioni che possono essere
+\index{inode} dell'inode contiene i puntatori alle funzioni che possono essere
 usate su qualunque file (come \func{link}, \func{stat} e \func{open}), mentre
 il descrittore di file contiene i puntatori alle funzioni che vengono usate
 sui file già aperti.
@@ -381,17 +387,17 @@ sui file gi
 \label{sec:file_vfs_work}
 
 La funzione più importante implementata dal VFS è la system call \func{open}
-che permette di aprire un file. Dato un \itindex{pathname}\textit{pathname}
+che permette di aprire un file. Dato un \itindex{pathname} \textit{pathname}
 viene eseguita una ricerca dentro la \textit{directory entry cache} (in breve
 \textit{dcache}), una tabella che contiene tutte le \textit{directory entry}
 (in breve \textit{dentry}) che permette di associare in maniera rapida ed
 efficiente il \textit{pathname} a una specifica \textit{dentry}.
 
 Una singola \textit{dentry} contiene in genere il puntatore ad un
-\textit{inode}\index{inode}; quest'ultimo è la struttura base che sta sul
+\index{inode} \textit{inode}; quest'ultimo è la struttura base che sta sul
 disco e che identifica un singolo oggetto del VFS sia esso un file ordinario,
 una directory, un link simbolico, una FIFO, un file di
-dispositivo\index{file!di~dispositivo}, o una qualsiasi altra cosa che possa
+\index{file!di~dispositivo} dispositivo, o una qualsiasi altra cosa che possa
 essere rappresentata dal VFS (i tipi di file riportati in
 tab.~\ref{tab:file_file_types}). A ciascuno di essi è associata pure una
 struttura che sta in memoria, e che, oltre alle informazioni sullo specifico
@@ -399,28 +405,28 @@ file, contiene anche il riferimento alle funzioni (i \textsl{metodi} del VFS)
 da usare per poterlo manipolare.
 
 Le \textit{dentry} ``vivono'' in memoria e non vengono mai salvate su disco,
-vengono usate per motivi di velocità, gli \textit{inode}\index{inode} invece
+vengono usate per motivi di velocità, gli \index{inode} \textit{inode} invece
 stanno su disco e vengono copiati in memoria quando serve, ed ogni cambiamento
-viene copiato all'indietro sul disco, gli inode\index{inode} che stanno in
-memoria sono inode\index{inode} del VFS ed è ad essi che puntano le singole
+viene copiato all'indietro sul disco, gli \index{inode} inode che stanno in
+memoria sono \index{inode} inode del VFS ed è ad essi che puntano le singole
 \textit{dentry}.
 
 La \textit{dcache} costituisce perciò una sorta di vista completa di tutto
 l'albero dei file, ovviamente per non riempire tutta la memoria questa vista è
 parziale (la \textit{dcache} cioè contiene solo le \textit{dentry} per i file
 per i quali è stato richiesto l'accesso), quando si vuole risolvere un nuovo
-\itindex{pathname}\textit{pathname} il VFS deve creare una nuova
-\textit{dentry} e caricare l'inode\index{inode} corrispondente in memoria.
+\itindex{pathname} \textit{pathname} il VFS deve creare una nuova
+\textit{dentry} e caricare \index{inode} l'inode corrispondente in memoria.
 
-Questo procedimento viene eseguito dal metodo \code{lookup()}
-dell'inode\index{inode} della directory che contiene il file; questo viene
-installato nelle relative strutture in memoria quando si effettua il montaggio
-lo specifico filesystem su cui l'inode va a vivere.
+Questo procedimento viene eseguito dal metodo \code{lookup()} \index{inode}
+dell'inode della directory che contiene il file; questo viene installato nelle
+relative strutture in memoria quando si effettua il montaggio lo specifico
+filesystem su cui l'inode va a vivere.
 
 Una volta che il VFS ha a disposizione la \textit{dentry} (ed il relativo
 \textit{inode}) diventa possibile accedere alle varie operazioni sul file come
 la \func{open} per aprire il file o la \func{stat} per leggere i dati
-dell'inode\index{inode} e passarli in user space.
+\index{inode} dell'inode e passarli in user space.
 
 L'apertura di un file richiede comunque un'altra operazione, l'allocazione di
 una struttura di tipo \struct{file} in cui viene inserito un puntatore alla
@@ -440,25 +446,25 @@ tab.~\ref{tab:file_file_operations}.
     \textbf{Funzione} & \textbf{Operazione} \\
     \hline
     \hline
-    \textsl{\code{open}}   & apre il file (vedi sez.~\ref{sec:file_open}). \\
-    \textsl{\code{read}}   & legge dal file (vedi sez.~\ref{sec:file_read}).\\
-    \textsl{\code{write}}  & scrive sul file (vedi 
+    \textsl{\code{open}}   & Apre il file (vedi sez.~\ref{sec:file_open}).\\
+    \textsl{\code{read}}   & Legge dal file (vedi sez.~\ref{sec:file_read}).\\
+    \textsl{\code{write}}  & Scrive sul file (vedi 
                              sez.~\ref{sec:file_write}).\\
-    \textsl{\code{llseek}} & sposta la posizione corrente sul file (vedi
-                             sez.~\ref{sec:file_lseek}). \\
-    \textsl{\code{ioctl}}  & accede alle operazioni di controllo 
+    \textsl{\code{llseek}} & Sposta la posizione corrente sul file (vedi
+                             sez.~\ref{sec:file_lseek}).\\
+    \textsl{\code{ioctl}}  & Accede alle operazioni di controllo 
                              (vedi sez.~\ref{sec:file_ioctl}).\\
-    \textsl{\code{readdir}}& legge il contenuto di una directory \\
-    \textsl{\code{poll}}   & usata nell'I/O multiplexing (vedi
-                             sez.~\ref{sec:file_multiplexing}). \\
-    \textsl{\code{mmap}}   & mappa il file in memoria (vedi 
-                             sez.~\ref{sec:file_memory_map}). \\
-    \textsl{\code{release}}& chiamata quando l'ultimo riferimento a un file 
-                             aperto è chiuso. \\
-    \textsl{\code{fsync}}  & sincronizza il contenuto del file (vedi
-                             sez.~\ref{sec:file_sync}). \\
-    \textsl{\code{fasync}} & abilita l'I/O asincrono (vedi
-                             sez.~\ref{sec:file_asyncronous_io}) sul file. \\
+    \textsl{\code{readdir}}& Legge il contenuto di una directory.\\
+    \textsl{\code{poll}}   & Usata nell'I/O multiplexing (vedi
+                             sez.~\ref{sec:file_multiplexing}).\\
+    \textsl{\code{mmap}}   & Mappa il file in memoria (vedi 
+                             sez.~\ref{sec:file_memory_map}).\\
+    \textsl{\code{release}}& Chiamata quando l'ultimo riferimento a un file 
+                             aperto è chiuso.\\
+    \textsl{\code{fsync}}  & Sincronizza il contenuto del file (vedi
+                             sez.~\ref{sec:file_sync}).\\
+    \textsl{\code{fasync}} & Abilita l'I/O asincrono (vedi
+                             sez.~\ref{sec:file_asyncronous_io}) sul file.\\
     \hline
   \end{tabular}
   \caption{Operazioni sui file definite nel VFS.}
@@ -468,7 +474,7 @@ tab.~\ref{tab:file_file_operations}.
 In questo modo per ciascun file diventano possibili una serie di operazioni
 (non è detto che tutte siano disponibili), che costituiscono l'interfaccia
 astratta del VFS.  Qualora se ne voglia eseguire una, il kernel andrà ad
-utilizzare l'opportuna routine dichiarata in \struct{f\_ops} appropriata al
+utilizzare l'opportuna funzione dichiarata in \struct{f\_ops} appropriata al
 tipo di file in questione.
 
 Pertanto è possibile scrivere allo stesso modo sulla porta seriale come su un
@@ -500,7 +506,7 @@ superblock (ma sulle caratteristiche di \acr{ext2} torneremo in
 sez.~\ref{sec:file_ext2}). È comunque caratteristica comune di tutti i
 filesystem per Unix, indipendentemente da come poi viene strutturata nei
 dettagli questa informazione, prevedere una divisione fra la lista degli
-inode\index{inode} e lo spazio a disposizione per i dati e le directory.
+\index{inode} inode e lo spazio a disposizione per i dati e le directory.
 
 \begin{figure}[htb]
   \centering
@@ -532,13 +538,13 @@ particolare 
 
 \begin{enumerate}
   
-\item L'\textit{inode}\index{inode} contiene tutte le informazioni riguardanti
-  il file: il tipo di file, i permessi di accesso, le dimensioni, i puntatori
-  ai blocchi fisici che contengono i dati e così via; le informazioni che la
-  funzione \func{stat} fornisce provengono dall'\textit{inode}; dentro una
-  directory si troverà solo il nome del file e il numero
-  dell'\textit{inode}\index{inode} ad esso associato, cioè quella che da qui
-  in poi chiameremo una \textsl{voce} (come traduzione dell'inglese
+\item L'\textit{inode} \index{inode} contiene tutte le informazioni
+  riguardanti il file: il tipo di file, i permessi di accesso, le dimensioni,
+  i puntatori ai blocchi fisici che contengono i dati e così via; le
+  informazioni che la funzione \func{stat} fornisce provengono
+  dall'\textit{inode}; dentro una directory si troverà solo il nome del file e
+  il numero \index{inode} dell'\textit{inode} ad esso associato, cioè quella
+  che da qui in poi chiameremo una \textsl{voce} (come traduzione dell'inglese
   \textit{directory entry}, che non useremo anche per evitare confusione con
   le \textit{dentry} del kernel di cui si parlava in sez.~\ref{sec:file_vfs}).
   
@@ -549,18 +555,18 @@ particolare 
   file vengono effettivamente rimossi dal disco. Per questo la funzione per
   cancellare un file si chiama \func{unlink}, ed in realtà non cancella
   affatto i dati del file, ma si limita ad eliminare la relativa voce da una
-  directory e decrementare il numero di riferimenti
-  nell'\textit{inode}\index{inode}.
+  directory e decrementare il numero di riferimenti \index{inode}
+  nell'\textit{inode}.
   
 \item Il numero di \textit{inode} nella voce si riferisce ad un \textit{inode}
   nello stesso filesystem e non ci può essere una directory che contiene
-  riferimenti ad \textit{inode}\index{inode} relativi ad altri filesystem.
+  riferimenti ad \index{inode} \textit{inode} relativi ad altri filesystem.
   Questo limita l'uso del comando \cmd{ln} (che crea una nuova voce per un
   file esistente, con la funzione \func{link}) al filesystem corrente.
   
 \item Quando si cambia nome ad un file senza cambiare filesystem, il contenuto
   del file non viene spostato fisicamente, viene semplicemente creata una
-  nuova voce per l'\textit{inode}\index{inode} in questione e rimossa la
+  nuova voce per \index{inode} l'\textit{inode} in questione e rimossa la
   vecchia (questa è la modalità in cui opera normalmente il comando \cmd{mv}
   attraverso la funzione \func{rename}).
 
@@ -571,7 +577,7 @@ riferimenti anche per le directory; per cui, se a partire dalla situazione
 mostrata in fig.~\ref{fig:file_filesys_detail} creiamo una nuova directory
 \file{img} nella directory \file{gapil}, avremo una situazione come quella in
 fig.~\ref{fig:file_dirs_link}, dove per chiarezza abbiamo aggiunto dei numeri
-di inode\index{inode}.
+di \index{inode} inode.
 
 \begin{figure}[htb]
   \centering 
@@ -582,11 +588,11 @@ di inode\index{inode}.
 
 La nuova directory avrà allora un numero di riferimenti pari a due, in quanto
 è referenziata dalla directory da cui si era partiti (in cui è inserita la
-nuova voce che fa riferimento a \file{img}) e dalla voce \file{.}
-che è sempre inserita in ogni directory; questo vale sempre per ogni directory
-che non contenga a sua volta altre directory. Al contempo, la directory da
-cui si era partiti avrà un numero di riferimenti di almeno tre, in quanto
-adesso sarà referenziata anche dalla voce \file{..} di \file{img}.
+nuova voce che fa riferimento a \texttt{img}) e dalla voce ``\texttt{.}''  che
+è sempre inserita in ogni directory; questo vale sempre per ogni directory che
+non contenga a sua volta altre directory. Al contempo, la directory da cui si
+era partiti avrà un numero di riferimenti di almeno tre, in quanto adesso sarà
+referenziata anche dalla voce ``\texttt{..}'' di \texttt{img}.
 
 
 \subsection{Il filesystem \textsl{ext2}}
@@ -617,7 +623,7 @@ non sono presenti sugli altri filesystem Unix. Le principali sono le seguenti:
   in fase di creazione, a seconda delle sue esigenze (blocchi più grandi
   permettono un accesso più veloce, ma sprecano più spazio disco).
 \item il filesystem implementa link simbolici veloci, in cui il nome del file
-  non è salvato su un blocco, ma tenuto all'interno dell'inode\index{inode}
+  non è salvato su un blocco, ma tenuto all'interno \index{inode} dell'inode
   (evitando letture multiple e spreco di spazio), non tutti i nomi però
   possono essere gestiti così per limiti di spazio (il limite è 60 caratteri).
 \item vengono supportati i file immutabili (che possono solo essere letti) per
@@ -650,18 +656,29 @@ superblock principale.
   \label{fig:file_ext2_dirs}
 \end{figure}
 
-L'utilizzo di raggruppamenti di blocchi ha inoltre degli effetti positivi nelle
-prestazioni dato che viene ridotta la distanza fra i dati e la tabella degli
-inode\index{inode}. 
+L'utilizzo di raggruppamenti di blocchi ha inoltre degli effetti positivi
+nelle prestazioni dato che viene ridotta la distanza fra i dati e la tabella
+degli \index{inode} inode.
 
-Le directory sono implementate come una \itindex{linked~list}\textit{linked
+Le directory sono implementate come una \itindex{linked~list} \textit{linked
   list} con voci di dimensione variabile. Ciascuna voce della lista contiene
-il numero di inode\index{inode}, la sua lunghezza, il nome del file e la sua
+il numero di inode \index{inode}, la sua lunghezza, il nome del file e la sua
 lunghezza, secondo lo schema in fig.~\ref{fig:file_ext2_dirs}; in questo modo
 è possibile implementare nomi per i file anche molto lunghi (fino a 1024
 caratteri) senza sprecare spazio disco.
 
 
+% LocalWords:  everything is device kernel filesystem sez pathname root glibc
+% LocalWords:  path filename bootloader proc name components fifo socket dev LF
+% LocalWords:  resolution chroot parent Virtual System like tab cap l'I regular
+% LocalWords:  inode symbolic char block VFS VMS Windows dell'I raw access Mac
+% LocalWords:  CR dos HFS l'XFS SGI magic number descriptor system call int ext
+% LocalWords:  nell'header unistd stream dall'ANSI stdio locking POSIX fig type
+% LocalWords:  register superblock dell'inode stat entry cache dcache dentry ln
+% LocalWords:  l'inode lookup ops read write llseek ioctl readdir poll nell'I
+% LocalWords:  multiplexing mmap fsync fasync seek MacOs group dall' dell' img
+% LocalWords:  count unlink nell' rename gapil second Tb attributes BSD SVr gid
+% LocalWords:  sgid append only log fs linux extented linked list
 
 
 %%% Local Variables: