Aggiornamenti del copyright all'anno nuovo, e risistemazione delle
[gapil.git] / fileadv.tex
index 5fdc8a01ab4ab963508b821f071b9102d72a4743..b4c7d0012595d51cd65f87f041d978b6a19b3875 100644 (file)
@@ -1,9 +1,9 @@
 %% fileadv.tex
 %%
-%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
-%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
 \label{cha:file_advanced}
 
 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
-dei file, che non sono state trattate in \capref{cha:file_unix_interface},
-dove ci si è limitati ad una panoramica delle funzioni base. In particolare
-tratteremo delle funzioni di input/output avanzato e del \textit{file
-  locking}.
+dei file. In particolare tratteremo delle funzioni di input/output avanzato,
+che permettono una gestione più sofisticata dell'I/O su file, a partire da
+quelle che permettono di gestire l'accesso contemporaneo a più file, per
+concludere con la gestione dell'I/O mappato in memoria. Dedicheremo poi la
+fine del capitolo alle problematiche del \textit{file locking}.
 
 
-\section{Le funzioni di I/O avanzato}
-\label{sec:file_advanced_io}
+\section{L'\textit{I/O multiplexing}}
+\label{sec:file_multiplexing}
 
-In questa sezione esamineremo le funzioni che permettono una gestione più
-sofisticata dell'I/O su file, a partire da quelle che permettono di gestire
-l'accesso contemporaneo a più file, per concludere con la gestione dell'I/O
-mappato in memoria.
+Uno dei problemi che si presentano quando si deve operare contemporaneamente
+su molti file usando le funzioni illustrate in
+cap.~\ref{cha:file_unix_interface} e cap.~\ref{cha:files_std_interface} è che
+si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
+essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
+problema. In questa sezione forniremo una introduzione a questa problematica
+ed analizzeremo le varie funzioni usate per implementare questa modalità di
+I/O.
 
 
-\subsection{La modalità di I/O \textsl{non-bloccante}}
+\subsection{La problematica dell'\textit{I/O multiplexing}}
 \label{sec:file_noblocking}
 
-Abbiamo visto in \secref{sec:sig_gen_beha}, affrontando la suddivisione fra
-\textit{fast} e \textit{slow} system call, che in certi casi le funzioni di
-I/O possono bloccarsi indefinitamente.\footnote{si ricordi però che questo può
-  accadere solo per le pipe, i socket\index{socket} ed alcuni file di
-  dispositivo\index{file!di dispositivo}; sui file normali le funzioni di
-  lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni di
-lettura possono bloccarsi quando non ci sono dati disponibili sul descrittore
-su cui si sta operando.
+Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
+\textit{fast} e \textit{slow} system call,\index{system~call~lente} che in
+certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
+  ricordi però che questo può accadere solo per le pipe, i socket ed alcuni
+  file di dispositivo\index{file!di~dispositivo}; sui file normali le funzioni
+  di lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni
+di lettura possono bloccarsi quando non ci sono dati disponibili sul
+descrittore su cui si sta operando.
 
 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
-affrontare nelle operazioni di I/O, che è quello che si verifica quando si
-devono eseguire operazioni che possono bloccarsi su più file descriptor:
-mentre si è bloccati su uno di essi su di un'altro potrebbero essere presenti
-dei dati; così che nel migliore dei casi si avrebbe una lettura ritardata
-inutilmente, e nel peggiore si potrebbe addirittura arrivare ad un
-\textit{deadlock}\index{deadlock}.
-
-Abbiamo già accennato in \secref{sec:file_open} che è possibile prevenire
-questo tipo di comportamento aprendo un file in modalità
-\textsl{non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK} nella
-chiamata di \func{open}. In questo caso le funzioni di input/output che
-altrimenti si sarebbero bloccate ritornano immediatamente, restituendo
-l'errore \errcode{EAGAIN}.
-
-L'utilizzo di questa modalità di I/O permette di risolvere il problema
-controllando a turno i vari file descriptor, in un ciclo in cui si ripete
-l'accesso fintanto che esso non viene garantito.  Ovviamente questa tecnica,
-detta \textit{polling}\index{polling}, è estremamente inefficiente: si tiene
-costantemente impiegata la CPU solo per eseguire in continuazione delle system
-call che nella gran parte dei casi falliranno. Per evitare questo, come
-vedremo in \secref{sec:file_multiplexing}, è stata introdotta una nuova
-interfaccia di programmazione, che comporta comunque l'uso della modalità di
-I/O non bloccante.
-
-
-
-\subsection{L'I/O multiplexing}
-\label{sec:file_multiplexing}
-
-Per superare il problema di dover usare il \textit{polling}\index{polling} per
-controllare la possibilità di effettuare operazioni su un file aperto in
-modalità non bloccante, sia BSD che System V hanno introdotto delle nuove
-funzioni in grado di sospendere l'esecuzione di un processo in attesa che
-l'accesso diventi possibile.  Il primo ad introdurre questa modalità di
-operazione, chiamata usualmente \textit{I/O multiplexing}, è stato
-BSD,\footnote{la funzione è apparsa in BSD4.2 e standardizzata in BSD4.4, ma è
-  stata portata su tutti i sistemi che supportano i
-  \textit{socket}\index{socket}, compreso le varianti di System V.}  con la
-funzione \func{select}, il cui prototipo è:
+affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
+più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
+possibile prevedere quando questo può avvenire (il caso più classico è quello
+di un server in attesa di dati in ingresso da vari client). Quello che può
+accadere è di restare bloccati nell'eseguire una operazione su un file
+descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
+altro disponibile. Questo comporta nel migliore dei casi una operazione
+ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
+nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
+da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
+potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
+
+Abbiamo già accennato in sez.~\ref{sec:file_open} che è possibile prevenire
+questo tipo di comportamento delle funzioni di I/O aprendo un file in
+\textsl{modalità non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK}
+nella chiamata di \func{open}. In questo caso le funzioni di input/output
+eseguite sul file che si sarebbero bloccate, ritornano immediatamente,
+restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa modalità di I/O
+permette di risolvere il problema controllando a turno i vari file descriptor,
+in un ciclo in cui si ripete l'accesso fintanto che esso non viene garantito.
+Ovviamente questa tecnica, detta \itindex{polling} \textit{polling}, è
+estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
+eseguire in continuazione delle system call che nella gran parte dei casi
+falliranno.
+
+Per superare questo problema è stato introdotto il concetto di \textit{I/O
+  multiplexing}, una nuova modalità di operazioni che consenta di tenere sotto
+controllo più file descriptor in contemporanea, permettendo di bloccare un
+processo quando le operazioni volute non sono possibili, e di riprenderne
+l'esecuzione una volta che almeno una di quelle richieste sia disponibile, in
+modo da poterla eseguire con la sicurezza di non restare bloccati.
+
+Dato che, come abbiamo già accennato, per i normali file su disco non si ha
+mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
+prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
+tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
+ulteriori dettagli e qualche esempio in sez.~\ref{sec:TCP_sock_multiplexing}.
+
+
+\subsection{Le funzioni \func{select} e \func{pselect}}
+\label{sec:file_select}
+
+Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
+  multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
+  BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
+  supportano i socket, compreso le varianti di System V.}  con la funzione
+\funcd{select}, il cui prototipo è:
 \begin{functions}
   \headdecl{sys/time.h}
   \headdecl{sys/types.h}
@@ -94,418 +107,775 @@ funzione \func{select}, il cui prototipo 
     caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
-  degli insiemi.
+    degli insiemi.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo o
+    un valore non valido per \param{timeout}.
   \end{errlist}
   ed inoltre \errval{ENOMEM}.
 }
 \end{functions}
 
 La funzione mette il processo in stato di \textit{sleep} (vedi
-\tabref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
+tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
 degli insiemi specificati (\param{readfds}, \param{writefds} e
 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
 \param{timeout}.
 
+\itindbeg{file~descriptor~set} 
+
 Per specificare quali file descriptor si intende \textsl{selezionare}, la
 funzione usa un particolare oggetto, il \textit{file descriptor set},
 identificato dal tipo \type{fd\_set}, che serve ad identificare un insieme di
-file descriptor, (in maniera analoga a come un \textit{signal set}, vedi
-\secref{sec:sig_sigset}, identifica un insieme di segnali). Per la
-manipolazione di questi \textit{file descriptor set} si possono usare delle
-opportune macro di preprocessore:
+file descriptor, in maniera analoga a come un \itindex{signal~set}
+\textit{signal set} (vedi sez.~\ref{sec:sig_sigset}) identifica un insieme di
+segnali. Per la manipolazione di questi \textit{file descriptor set} si
+possono usare delle opportune macro di preprocessore:
 \begin{functions}
   \headdecl{sys/time.h}
   \headdecl{sys/types.h}
   \headdecl{unistd.h}
-  \funcdecl{FD\_ZERO(fd\_set *set)}
+  \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
   Inizializza l'insieme (vuoto).
 
-  \funcdecl{FD\_SET(int fd, fd\_set *set)}
+  \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
   Inserisce il file descriptor \param{fd} nell'insieme.
 
-  \funcdecl{FD\_CLR(int fd, fd\_set *set)}
+  \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
   Rimuove il file descriptor \param{fd} nell'insieme.
   
-  \funcdecl{FD\_ISSET(int fd, fd\_set *set)}
+  \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
   Controlla se il file descriptor \param{fd} è nell'insieme.
 \end{functions}
 
 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
-  fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma
+  fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
 quando, come nelle versioni più recenti del kernel, non c'è più un limite
 massimo, esso indica le dimensioni massime dei numeri usati nei \textit{file
-  descriptor set}.
+  descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
+  1003.1-2001, è definito in \file{sys/select.h}, ed è pari a 1024.} Si tenga
+presente che i \textit{file descriptor set} devono sempre essere inizializzati
+con \macro{FD\_ZERO}; passare a \func{select} un valore non inizializzato può
+dar luogo a comportamenti non prevedibili.
 
 La funzione richiede di specificare tre insiemi distinti di file descriptor;
 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
-effettuare una lettura, il secondo, \param{writefds}, per verificare la
-possibilità effettuare una scrittura ed il terzo, \param{exceptfds}, per
-verificare l'esistenza di condizioni eccezionali (come i messaggi urgenti su
-un \textit{socket}\index{socket}, vedi \secref{sec:xxx_urgent}).
-
-La funzione inoltre richiede anche di specificare, tramite l'argomento
-\param{n}, un valore massimo del numero dei file descriptor usati
-nell'insieme; si può usare il già citato \const{FD\_SETSIZE}, oppure il numero
-più alto dei file descriptor usati nei tre insiemi, aumentato di uno.
-
-Infine l'argomento \param{timeout}, specifica un tempo massimo di
-attesa\footnote{il tempo è valutato come \textit{elapsed time}.} prima che la
-funzione ritorni; se impostato a \val{NULL} la funzione attende
-indefinitamente. Si può specificare anche un tempo nullo (cioè una \var{struct
-  timeval} con i campi impostati a zero), qualora si voglia semplicemente
-controllare lo stato corrente dei file descriptor.
-
-La funzione restituisce il totale dei file descriptor pronti nei tre insiemi,
-il valore zero indica sempre che si è raggiunto un timeout. Ciascuno dei tre
-insiemi viene sovrascritto per indicare quale file descriptor è pronto per le
-operazioni ad esso relative, in modo da poterlo controllare con la macro
-\const{FD\_ISSET}. In caso di errore la funzione restituisce -1 e gli insiemi
-non vengono toccati.
+effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
+  tutti i casi in cui la successiva esecuzione di \func{read} risulti non
+  bloccante, quindi anche in caso di \textit{end-of-file}.} il secondo,
+\param{writefds}, per verificare la possibilità effettuare una scrittura ed il
+terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i dati
+urgenti \itindex{out-of-band} su un socket, vedi
+sez.~\ref{sec:TCP_urgent_data}).
+
+Dato che in genere non si tengono mai sotto controllo fino a
+\const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
+specificare qual è il numero massimo dei file descriptor indicati nei tre
+insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
+e far controllare al kernel una quantità di memoria superiore a quella
+necessaria. Questo limite viene indicato tramite l'argomento \param{n}, che
+deve corrispondere al valore massimo aumentato di uno.\footnote{i file
+  descriptor infatti sono contati a partire da zero, ed il valore indica il
+  numero di quelli da tenere sotto controllo; dimenticarsi di aumentare di uno
+  il valore di \param{n} è un errore comune.}  Infine l'argomento
+\param{timeout}, specifica un tempo massimo di attesa prima che la funzione
+ritorni; se impostato a \val{NULL} la funzione attende indefinitamente. Si può
+specificare anche un tempo nullo (cioè una struttura \struct{timeval} con i
+campi impostati a zero), qualora si voglia semplicemente controllare lo stato
+corrente dei file descriptor.
+
+La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
+  il comportamento previsto dallo standard, ma la standardizzazione della
+  funzione è recente, ed esistono ancora alcune versioni di Unix che non si
+  comportano in questo modo.}  e ciascun insieme viene sovrascritto per
+indicare quali sono i file descriptor pronti per le operazioni ad esso
+relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
+ha un timeout viene restituito un valore nullo e gli insiemi non vengono
+modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
+insiemi sono indefiniti e non si può fare nessun affidamento sul loro
+contenuto.
+
+\itindend{file~descriptor~set}
 
 In Linux \func{select} modifica anche il valore di \param{timeout},
-impostandolo al tempo restante; questo è utile quando la funzione viene
-interrotta da un segnale, in tal caso infatti si ha un errore di
-\errcode{EINTR}, ed occorre rilanciare la funzione; in questo modo non è
-necessario ricalcolare tutte le volte il tempo rimanente.\footnote{questo può
-  causare problemi di portabilità sia quando si trasporta codice scritto su
-  Linux che legge questo valore, sia quando si usano programmi scritti per
-  altri sistemi che non dispongono di questa caratteristica e ricalcolano
-  \param{timeout} tutte le volte. In genere la caratteristica è disponibile
-  nei sistemi che derivano da System V e non disponibile per quelli che
-  derivano da BSD.}
-
-Come accennato l'interfaccia di \func{select} è una estensione di BSD; anche
-System V ha introdotto una sua interfaccia per gestire l'\textit{I/O
-  multiplexing}, basata sulla funzione \func{poll},\footnote{la funzione è
+impostandolo al tempo restante in caso di interruzione prematura; questo è
+utile quando la funzione viene interrotta da un segnale, in tal caso infatti
+si ha un errore di \errcode{EINTR}, ed occorre rilanciare la funzione; in
+questo modo non è necessario ricalcolare tutte le volte il tempo
+rimanente.\footnote{questo può causare problemi di portabilità sia quando si
+  trasporta codice scritto su Linux che legge questo valore, sia quando si
+  usano programmi scritti per altri sistemi che non dispongono di questa
+  caratteristica e ricalcolano \param{timeout} tutte le volte. In genere la
+  caratteristica è disponibile nei sistemi che derivano da System V e non
+  disponibile per quelli che derivano da BSD.}
+
+Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
+comportamento dipende dal valore del file descriptor che si vuole tenere sotto
+controllo.  Infatti il kernel riceve con \param{n} un valore massimo per tale
+valore, e per capire quali sono i file descriptor da tenere sotto controllo
+dovrà effettuare una scansione su tutto l'intervallo, che può anche essere
+anche molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
+ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
+
+Inoltre c'è anche il problema che il numero massimo dei file che si possono
+tenere sotto controllo, la funzione è nata quando il kernel consentiva un
+numero massimo di 1024 file descriptor per processo, adesso che il numero può
+essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
+dimensioni della struttura \type{fd\_set}, che può necessitare di essere
+estesa, con ulteriori perdite di prestazioni. 
+
+Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
+  multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
+1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
+l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
+vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
+precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
+\funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
+  l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
+  2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
+  \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
+  senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
+  \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
+  \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
+  maggiore di 600.} il cui prototipo è:
+\begin{prototype}{sys/select.h}
+  {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
+    struct timespec *timeout, sigset\_t *sigmask)}
+  
+  Attende che uno dei file descriptor degli insiemi specificati diventi
+  attivo.
+  
+  \bodydesc{La funzione in caso di successo restituisce il numero di file
+    descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
+    caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
+    degli insiemi.
+  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo o
+    un valore non valido per \param{timeout}.
+  \end{errlist}
+  ed inoltre \errval{ENOMEM}.}
+\end{prototype}
+
+La funzione è sostanzialmente identica a \func{select}, solo che usa una
+struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timeval_struct}) per
+indicare con maggiore precisione il timeout e non ne aggiorna il valore in
+caso di interruzione. Inoltre prende un argomento aggiuntivo \param{sigmask}
+che è il puntatore ad una maschera di segnali (si veda
+sez.~\ref{sec:sig_sigmask}). La maschera corrente viene sostituita da questa
+immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
+funzione.
+
+L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
+\textit{race condition} \itindex{race~condition} quando ci si deve porre in
+attesa sia di un segnale che di dati. La tecnica classica è quella di
+utilizzare il gestore per impostare una variabile globale e controllare questa
+nel corpo principale del programma; abbiamo visto in
+sez.~\ref{sec:sig_example} come questo lasci spazio a possibili race
+condition, per cui diventa essenziale utilizzare \func{sigprocmask} per
+disabilitare la ricezione del segnale prima di eseguire il controllo e
+riabilitarlo dopo l'esecuzione delle relative operazioni, onde evitare
+l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe perso.
+
+Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
+sotto controllo anche dei file descriptor con \func{select}, in questo caso si
+può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
+e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
+alla gestione dati con un ciclo del tipo:
+\includecodesnip{listati/select_race.c} 
+qui però emerge una \itindex{race~condition} \textit{race condition}, perché
+se il segnale arriva prima della chiamata a \func{select}, questa non verrà
+interrotta, e la ricezione del segnale non sarà rilevata.
+
+Per questo è stata introdotta \func{pselect} che attraverso l'argomento
+\param{sigmask} permette di riabilitare la ricezione il segnale
+contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
+  kernel 2.6.16, non è presente la relativa system call, e la funzione è
+  implementata nelle \acr{glibc} attraverso \func{select} (vedi \texttt{man
+    select\_tut}) per cui la possibilità di \itindex{race~condition}
+  \textit{race condition} permane; esiste però una soluzione, chiamata
+  \itindex{self-pipe trick} \textit{self-pipe trick}, che consiste nell'aprire
+  una pipe (vedi sez.~\ref{sec:ipc_pipes}) ed usare \func{select} sul capo in
+  lettura della stessa, e indicare l'arrivo di un segnale scrivendo sul capo
+  in scrittura all'interno del gestore dello stesso; in questo modo anche se
+  il segnale va perso prima della chiamata di \func{select} questa lo
+  riconoscerà comunque dalla presenza di dati sulla pipe.} ribloccandolo non
+appena essa ritorna, così che il precedente codice potrebbe essere riscritto
+nel seguente modo:
+\includecodesnip{listati/pselect_norace.c} 
+in questo caso utilizzando \var{oldmask} durante l'esecuzione di
+\func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
+interruzione si potranno eseguire le relative operazioni.
+
+% TODO pselect è stata introdotta nel kernel 2.6.16 (o 15 o 17?) insieme a
+% ppoll mettere e verificare, vedi articolo LWN http://lwn.net/Articles/176750/
+
+
+\subsection{La funzione \func{poll}}
+\label{sec:file_poll}
+
+Nello sviluppo di System V, invece di utilizzare l'interfaccia di
+\func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
+interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
-  call a partire dal kernel 2.1.23 e dalle \acr{libc} 5.4.28.} il cui
-prototipo è:
+  call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
+cui prototipo è:
 \begin{prototype}{sys/poll.h}
   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
-
-La funzione attente un cambiamento di stato per uno dei file descriptor
-specificati da \param{ufds}.
   
-\bodydesc{La funzione restituisce il numero di file descriptor con attività in
-  caso di successo, o 0 se c'è stato un timeout; in caso di errore viene
-  restituito  -1 ed \var{errno} assumerà uno dei valori:
+  La funzione attende un cambiamento di stato su un insieme di file
+  descriptor.
+  
+  \bodydesc{La funzione restituisce il numero di file descriptor con attività
+    in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
+    ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
-  degli insiemi.
+    degli insiemi.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Il valore di \param{nfds} eccede il limite
+    \macro{RLIMIT\_NOFILE}.
   \end{errlist}
   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
 \end{prototype}
 
-La funzione tiene sotto controllo un numero \param{ndfs} di file descriptor
-specificati attraverso un vettore di puntatori a strutture di tipo
-\type{pollfd}, la cui definizione è riportata in \figref{fig:file_pollfd}.
-Come \func{select} anche \func{poll} permette di interrompere l'attesa dopo un
-certo tempo, che va specificato attraverso \param{timeout} in numero di
-millisecondi (un valore negativo indica un'attesa indefinita).
+La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
+file descriptor, specificati attraverso il puntatore \param{ufds} ad un
+vettore di strutture \struct{pollfd}.  Come con \func{select} si può
+interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
+l'argomento \param{timeout} in numero di millisecondi: un valore negativo
+indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
+immediato (e può essere utilizzato per impiegare \func{poll} in modalità
+\textsl{non-bloccante}).
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct pollfd {
-        int fd;           /* file descriptor */
-        short events;     /* requested events */
-        short revents;    /* returned events */
-};
-    \end{lstlisting}
+    \includestruct{listati/pollfd.h}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{pollfd}, utilizzata per specificare le modalità
-    di controllo di un file descriptor alla funzione \func{poll}.}
+  \caption{La struttura \structd{pollfd}, utilizzata per specificare le
+    modalità di controllo di un file descriptor alla funzione \func{poll}.}
   \label{fig:file_pollfd}
 \end{figure}
 
-Per ciascun file da controllare deve essere opportunamente predisposta una
-struttura \type{pollfd}; nel campo \var{fd} deve essere specificato il file
-descriptor, mentre nel campo \var{events} il tipo di evento su cui si vuole
-attendere; quest'ultimo deve essere specificato come maschera binaria dei
-primi tre valori riportati in \tabref{tab:file_pollfd_flags} (gli altri
-vengono utilizzati solo per \var{revents} come valori in uscita).
+Per ciascun file da controllare deve essere inizializzata una struttura
+\struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
+struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
+prevede tre campi: in \var{fd} deve essere indicato il numero del file
+descriptor da controllare, in \var{events} deve essere specificata una
+maschera binaria di flag che indichino il tipo di evento che si vuole
+controllare, mentre in \var{revents} il kernel restituirà il relativo
+risultato.  Usando un valore negativo per \param{fd} la corrispondente
+struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
+tutto indipendenti da quelli in uscita (che vengono restituiti in
+\var{revents}) non è necessario reinizializzare tutte le volte il valore delle
+strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
+
+Le costanti che definiscono i valori relativi ai bit usati nelle maschere
+binarie dei campi \var{events} e \var{revents} sono riportati in
+tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
+suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
+per controllare l'attività in ingresso, nel secondo quelli per l'attività in
+uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
+nel campo \var{revents} per notificare delle condizioni di errore. 
 
 \begin{table}[htb]
   \centering
   \footnotesize
-  \begin{tabular}[c]{|l|c|l|}
+  \begin{tabular}[c]{|l|l|}
     \hline
-    \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
+    \textbf{Flag}  & \textbf{Significato} \\
     \hline
     \hline
-    \const{POLLIN}    & 0x001 & È possibile la lettura immediata.\\
-    \const{POLLPRI}   & 0x002 & Sono presenti dati urgenti.\\
-    \const{POLLOUT}   & 0x004 & È possibile la scrittura immediata.\\
+    \const{POLLIN}    & È possibile la lettura.\\
+    \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
+    \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari. \\
+    \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
+                        urgenti.\\ 
     \hline
-    \const{POLLERR}   & 0x008 & C'è una condizione di errore.\\
-    \const{POLLHUP}   & 0x010 & Si è verificato un hung-up.\\
-    \const{POLLNVAL}  & 0x020 & Il file descriptor non è aperto.\\
+    \const{POLLOUT}   & È possibile la scrittura immediata.\\
+    \const{POLLWRNORM}& È possibile la scrittura di dati normali.  \\ 
+    \const{POLLWRBAND}& È possibile la scrittura di dati prioritari. \\
     \hline
-    \const{POLLRDNORM}& 0x040 & Sono disponibili in lettura dati normali.\\ 
-    \const{POLLRDBAND}& 0x080 & Sono disponibili in lettura dati ad alta 
-                                priorità. \\
-    \const{POLLWRNORM}& 0x100 & È possibile la scrittura di dati normali.  \\ 
-    \const{POLLWRBAND}& 0x200 & È possibile la scrittura di dati ad 
-                                alta priorità. \\
-    \const{POLLMSG}   & 0x400 & Estensione propria di Linux.\\
+    \const{POLLERR}   & C'è una condizione di errore.\\
+    \const{POLLHUP}   & Si è verificato un hung-up.\\
+    \const{POLLNVAL}  & Il file descriptor non è aperto.\\
+    \hline
+    \const{POLLMSG}   & Definito per compatibilità con SysV.\\
     \hline    
   \end{tabular}
   \caption{Costanti per l'identificazione dei vari bit dei campi
-    \var{events} e \var{revents} di \type{pollfd}.}
+    \var{events} e \var{revents} di \struct{pollfd}.}
   \label{tab:file_pollfd_flags}
 \end{table}
 
-La funzione ritorna, restituendo il numero di file per i quali si è verificata
-una delle condizioni di attesa richieste od un errore. Lo stato dei file
-all'uscita della funzione viene restituito nel campo \var{revents} della
-relativa struttura \type{pollfd}, che viene impostato alla maschera binaria
-dei valori riportati in \tabref{tab:file_pollfd_flags}, ed oltre alle tre
-condizioni specificate tramite \var{events} può riportare anche l'occorrere di
-una condizione di errore.
-
-Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
-  multiplexing}, che è stata introdotto con le ultime revisioni dello standard
-(POSIX 1003.1g-2000 e POSIX 1003.1-2001). Esso prevede che tutte le funzioni
-ad esso relative vengano dichiarate nell'header \file{sys/select.h}, che
-sostituisce i precedenti, ed aggiunge a \func{select} una nuova funzione
-\func{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
-  l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
-  2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
-  \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
-  senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
-  \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
-  \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
-  maggiore di 600.} il cui prototipo è:
-\begin{prototype}{sys/select.h}
-  {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
-    struct timespec *timeout, sigset\_t *sigmask)}
-  
-  Attende che uno dei file descriptor degli insiemi specificati diventi
-  attivo.
-  
-  \bodydesc{La funzione in caso di successo restituisce il numero di file
-    descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
-    caso \var{errno} assumerà uno dei valori:
-  \begin{errlist}
-  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
-  degli insiemi.
-  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
-  \end{errlist}
-  ed inoltre \errval{ENOMEM}.}
-\end{prototype}
-
-La funzione è sostanzialmente identica a \func{select}, solo che usa una
-struttura \type{timespec} per indicare con maggiore precisione il timeout e
-non ne aggiorna il valore in caso di interruzione, inoltre prende un argomento
-aggiuntivo \param{sigmask} che è il puntatore ad una maschera di segnali (si
-veda \secref{sec:sig_sigmask}). La maschera corrente viene sostituita da
-questa immediatamente prima di eseguire l'attesa, e ripristinata al ritorno
-della funzione.
-
-L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
-race condition\footnote{in Linux però, non esistendo una system call apposita,
-  la funzione è implementata nelle \acr{glibc} usando \func{select}, e la
-  possibilità di una race condition resta.} quando si deve eseguire un test su
-una variabile assegnata da un manipolatore sulla base dell'occorrenza di un
-segnale per decidere se lanciare \func{select}. Fra il test e l'esecuzione è
-presente una finestra in cui potrebbe arrivare il segnale che non sarebbe
-rilevato; la race condition diventa superabile disabilitando il segnale prima
-del test e riabilitandolo poi grazie all'uso di \param{sigmask}.
-
-
-
-\subsection{L'I/O asincrono}
-\label{sec:file_asyncronous_io}
-
-Una modalità alternativa all'uso dell'\textit{I/O multiplexing} è quella di
-fare ricorso al cosiddetto \textsl{I/O asincrono}. Il concetto base
-dell'\textsl{I/O asincrono} è che le funzioni di I/O non attendono il
-completamento delle operazioni prima di ritornare, così che il processo non
-viene bloccato.  In questo modo diventa ad esempio possibile effettuare una
-richiesta preventiva di dati, in modo da poter effettuare in contemporanea le
-operazioni di calcolo e quelle di I/O.
-
-Abbiamo accennato in \secref{sec:file_open} che è possibile, attraverso l'uso
+Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
+compatibilità con l'implementazione di SysV che usa gli
+\textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
+  presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
+  delle librerie standard del C.} è da questi che derivano i nomi di alcune
+costanti, in quanto per essi sono definite tre classi di dati:
+\textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
+distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
+(vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
+reagisce alle varie condizioni dei socket torneremo in
+sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
+Si tenga conto comunque che le costanti relative ai diversi tipi di dati (come
+\const{POLLRDNORM} e \const{POLLRDBAND}) sono utilizzabili soltanto qualora si
+sia definita la macro \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di
+  farlo sempre in testa al file, definirla soltanto prima di includere
+  \file{sys/poll.h} non è sufficiente.}
+
+In caso di successo funzione ritorna restituendo il numero di file (un valore
+positivo) per i quali si è verificata una delle condizioni di attesa richieste
+o per i quali si è verificato un errore (nel qual caso vengono utilizzati i
+valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}). Un
+valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
+indica un errore nella chiamata, il cui codice viene riportato al solito
+tramite \var{errno}.
+
+
+% TODO accennare a ppoll
+
+%\subsection{L'interfaccia di \textit{epoll}}
+%\label{sec:file_epoll}
+% placeholder ...
+
+% TODO epoll
+
+\section{L'accesso \textsl{asincrono} ai file}
+\label{sec:file_asyncronous_access}
+
+Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
+le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
+debba operare su più file contemporaneamente, esistono altre modalità di
+gestione delle stesse problematiche. In particolare sono importanti in questo
+contesto le modalità di accesso ai file eseguibili in maniera
+\textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
+attesa della disponibilità dell'accesso al file, ma può proseguire
+nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
+norma un segnale), per essere avvisato della possibilità di eseguire le
+operazioni di I/O volute.
+
+
+\subsection{Operazioni asincrone sui file}
+\label{sec:file_asyncronous_operation}
+
+Abbiamo accennato in sez.~\ref{sec:file_open} che è possibile, attraverso l'uso
 del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e dei
   comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è specifico
   di Linux e BSD.} aprire un file in modalità asincrona, così come è possibile
 attivare in un secondo tempo questa modalità impostando questo flag attraverso
 l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
-\secref{sec:file_fcntl}).
-
-In realtà in questo caso non si tratta di I/O asincrono vero e proprio, quanto
-di un meccanismo asincrono di notifica delle variazione dello stato del file
-descriptor; quello che succede è che il sistema genera un segnale (normalmente
-\const{SIGIO}, ma è possibile usarne altri) tutte le volte che diventa
-possibile leggere o scrivere dal file descriptor che si è posto in questa
-modalità. Si può inoltre selezionare, con il comando \const{F\_SETOWN} di
-\func{fcntl}, quale processo (o gruppo di processi) riceverà il segnale. 
+sez.~\ref{sec:file_fcntl}). 
+
+In realtà in questo caso non si tratta di eseguire delle operazioni di lettura
+o scrittura del file in modo asincrono (tratteremo questo, che più
+propriamente è detto \textsl{I/O asincrono} in
+sez.~\ref{sec:file_asyncronous_io}), quanto di un meccanismo asincrono di
+notifica delle variazione dello stato del file descriptor aperto in questo
+modo.
+
+Quello che succede in questo caso è che il sistema genera un segnale
+(normalmente \const{SIGIO}, ma è possibile usarne altri con il comando
+\const{F\_SETSIG} di \func{fcntl}) tutte le volte che diventa possibile
+leggere o scrivere dal file descriptor che si è posto in questa modalità. Si
+può inoltre selezionare, con il comando \const{F\_SETOWN} di \func{fcntl},
+quale processo (o gruppo di processi) riceverà il segnale. Se pertanto si
+effettuano le operazioni di I/O in risposta alla ricezione del segnale non ci
+sarà più la necessità di restare bloccati in attesa della disponibilità di
+accesso ai file; per questo motivo Stevens chiama questa modalità
+\textit{signal driven I/O}.
 
 In questo modo si può evitare l'uso delle funzioni \func{poll} o \func{select}
 che, quando vengono usate con un numero molto grande di file descriptor, non
-hanno buone prestazioni. In tal caso infatti la maggior parte del loro tempo
+hanno buone prestazioni. % aggiungere cenno a epoll quando l'avrò scritta
+ In tal caso infatti la maggior parte del loro tempo
 di esecuzione è impegnato ad eseguire una scansione su tutti i file descriptor
 tenuti sotto controllo per determinare quali di essi (in genere una piccola
 percentuale) sono diventati attivi.
 
 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
-presenta notevoli problemi, dato che non è possibile determinare, quando sono
-più di uno, qual'è il file descriptor responsabile dell'emissione del segnale.
-Linux però supporta le estensioni POSIX.1b dei segnali che permettono di
-superare il problema facendo ricorso alle informazioni aggiuntive restituite
-attraverso la struttura \type{siginfo\_t}, utilizzando la forma estesa
-\var{sa\_sigaction} del manipolatore (si riveda quanto illustrato in
-\secref{sec:sig_sigaction}).
+presenta notevoli problemi, dato che non è possibile determinare, quando i
+file descriptor sono più di uno, qual è quello responsabile dell'emissione del
+segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
+illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
+descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
+verrebbero notificati una volta sola. Linux però supporta le estensioni
+POSIX.1b dei segnali real-time, che vengono accodati e che permettono di
+riconoscere il file descriptor che li ha emessi. In questo caso infatti si può
+fare ricorso alle informazioni aggiuntive restituite attraverso la struttura
+\struct{siginfo\_t}, utilizzando la forma estesa \var{sa\_sigaction} del
+gestore installata con il flag \const{SA\_SIGINFO} (si riveda quanto
+illustrato in sez.~\ref{sec:sig_sigaction}).
 
 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
-(vedi \secref{sec:sig_real_time}) impostando esplicitamente con il comando
+(vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
-manipolatore tutte le volte che riceverà \const{SI\_SIGIO} come valore del
+gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del
 campo \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia
   il segnale che si è associato all'I/O asincrono, ed indica appunto che il
   segnale è stato generato a causa di attività nell'I/O asincrono.} di
-\type{siginfo\_t}, troverà nel campo \var{si\_fd} il valore del file
+\struct{siginfo\_t}, troverà nel campo \var{si\_fd} il valore del file
 descriptor che ha generato il segnale.
 
-Un secondo vantaggio dell'uso dei segnali real-time è che essendo dotati di
-una coda di consegna ogni segnale sarà associato ad uno solo file descriptor;
-inoltre sarà possibile stabilire delle priorità nella risposta a seconda del
-segnale usato. In questo modo si può identificare immediatamente un file su
-cui l'accesso è diventato possibile evitando completamente l'uso di funzioni
-come \func{poll} e \func{select}, almeno fintanto che non si satura la coda;
-si eccedono le dimensioni di quest'ultima; in tal caso infatti il kernel, non
+Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
+ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
+file descriptor; inoltre sarà possibile stabilire delle priorità nella
+risposta a seconda del segnale usato, dato che i segnali real-time supportano
+anche questa funzionalità. In questo modo si può identificare immediatamente
+un file su cui l'accesso è diventato possibile evitando completamente l'uso di
+funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
+la coda.  Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non
 potendo più assicurare il comportamento corretto per un segnale real-time,
-invierà al suo posto un \var{SIGIO}, su cui si accumuleranno tutti i segnali
-in eccesso, e si dovrà determinare al solito modo quali sono i file diventati
-attivi.
+invierà al suo posto un solo \const{SIGIO}, su cui si saranno accumulati tutti
+i segnali in eccesso, e si dovrà allora determinare con un ciclo quali sono i
+file diventati attivi.
+
+% TODO fare esempio che usa O_ASYNC
+
+
+\subsection{I meccanismi di notifica asincrona.}
+\label{sec:file_asyncronous_lease}
+
+Una delle domande più frequenti nella programmazione in ambiente unix-like è
+quella di come fare a sapere quando un file viene modificato. La
+risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
+  \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
+    Question}.} è che nell'architettura classica di Unix questo non è
+possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
+non prevede alcun meccanismo per cui un processo possa essere
+\textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
+motivo per cui i demoni devono essere \textsl{avvisati} in qualche
+modo\footnote{in genere questo vien fatto inviandogli un segnale di
+  \const{SIGHUP} che, per convenzione adottata dalla gran parte di detti
+  programmi, causa la rilettura della configurazione.} se il loro file di
+configurazione è stato modificato, perché possano rileggerlo e riconoscere le
+modifiche.
+
+Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
+generale comporterebbe un notevole aumento di complessità dell'architettura
+della gestione dei file, per fornire una funzionalità necessaria soltanto in
+casi particolari. Dato che all'origine di Unix i soli programmi che potevano
+avere una tale esigenza erano i demoni, attenendosi a uno dei criteri base
+della progettazione, che era di far fare al kernel solo le operazioni
+strettamente necessarie e lasciare tutto il resto a processi in user space,
+non era stata prevista nessuna funzionalità di notifica.
+
+Visto però il crescente interesse nei confronti di una funzionalità di questo
+tipo (molto richiesta specialmente nello sviluppo dei programmi ad interfaccia
+grafica) sono state successivamente introdotte delle estensioni che
+permettessero la creazione di meccanismi di notifica più efficienti dell'unica
+soluzione disponibile con l'interfaccia tradizionale, che è quella del
+\itindex{polling} \textit{polling}.
+
+Queste nuove funzionalità sono delle estensioni specifiche, non
+standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
+supportano meccanismi simili). Esse sono realizzate, e solo a partire dalla
+versione 2.4 del kernel, attraverso l'uso di alcuni \textsl{comandi}
+aggiuntivi per la funzione \func{fcntl} (vedi sez.~\ref{sec:file_fcntl}), che
+divengono disponibili soltanto se si è definita la macro \macro{\_GNU\_SOURCE}
+prima di includere \file{fcntl.h}.
+
+\index{file!lease|(} 
+
+La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
+questo è un meccanismo che consente ad un processo, detto \textit{lease
+  holder}, di essere notificato quando un altro processo, chiamato a sua volta
+\textit{lease breaker}, cerca di eseguire una \func{open} o una
+\func{truncate} sul file del quale l'\textit{holder} detiene il
+\textit{lease}.
+
+La notifica avviene in maniera analoga a come illustrato in precedenza per
+l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
+il segnale \const{SIGIO}, ma questo segnale può essere modificato usando il
+comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
+  può rispecificare lo stesso \const{SIGIO}.} Se si è fatto questo\footnote{è
+  in genere è opportuno farlo, come in precedenza, per utilizzare segnali
+  real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
+si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
+valore del file descriptor del file sul quale è stato compiuto l'accesso; in
+questo modo un processo può mantenere anche più di un \textit{file lease}.
+
+Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
+di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
+un altro processo esegue l'apertura del file in scrittura o usa
+\func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
+il file viene aperto il lettura; in quest'ultimo caso però il \textit{lease}
+può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
+
+Come accennato in sez.~\ref{sec:file_fcntl} il comando di \func{fcntl} che
+consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che viene
+utilizzato anche per rilasciarlo. In tal caso il file descriptor \param{fd}
+passato a \func{fcntl} servirà come riferimento per il file su cui si vuole
+operare, mentre per indicare il tipo di operazione (acquisizione o rilascio)
+occorrerà specificare come valore dell'argomento \param{arg} di \func{fcntl}
+uno dei tre valori di tab.~\ref{tab:file_lease_fctnl}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore}  & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
+    \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
+    \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
+    \hline    
+  \end{tabular}
+  \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
+    \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
+    \const{F\_GETLEASE}.} 
+  \label{tab:file_lease_fctnl}
+\end{table}
+
+Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
+occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
+comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
+uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
+presenza del rispettivo tipo di \textit{lease}, o, nel caso di
+\const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
+
+Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
+su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
+(pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
+può ottenere un \textit{lease} soltanto per un file appartenente ad un
+\acr{uid} corrispondente a quello del processo. Soltanto un processo con
+privilegi di amministratore (cioè con la \itindex{capabilities} capability
+\const{CAP\_LEASE}) può acquisire \textit{lease} su qualunque file.
+
+Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
+esegue una \func{truncate} o una \func{open} che confligge con
+esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
+  se eseguita in sola lettura, non confligge se si tratta di un \textit{read
+    lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
+  con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
+  di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
+  holder}, così che questo possa completare le sue operazioni sul file e
+rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
+rilevano i tentativi di accedere al file per modificarne i dati da parte di un
+altro processo, mentre con un \textit{write lease} si rilevano anche i
+tentativi di accesso in lettura.  Si noti comunque che le operazioni di
+notifica avvengono solo in fase di apertura del file e non sulle singole
+operazioni di lettura e scrittura.
+
+L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
+assicurare la consistenza di un file, a seconda dei due casi, prima che un
+altro processo inizi con le sue operazioni di scrittura o di lettura su di
+esso. In genere un \textit{lease holder} che riceve una notifica deve
+provvedere a completare le necessarie operazioni (ad esempio scaricare
+eventuali buffer), per poi rilasciare il \textit{lease} così che il
+\textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
+comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
+\const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
+operazione di lettura, declassando il \textit{lease} a lettura con
+\const{F\_RDLCK}.
+
+Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
+il numero di secondi specificato dal parametro di sistema mantenuto in
+\file{/proc/sys/fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
+declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
+  evitare che un processo blocchi indefinitamente l'accesso ad un file
+  acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
+rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
+kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
+\textit{lease breaker} rimaste bloccate proseguono automaticamente.
+
+
+\index{file!dnotify|(}
+
+Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
+parte di più processi, l'uso dei \textit{file lease} non consente comunque di
+risolvere il problema di rilevare automaticamente quando un file viene
+modificato, che è quanto necessario ad esempio ai programma di gestione dei
+file dei vari desktop grafici.  
+
+Per risolvere questo problema è stata allora creata un'altra interfaccia,
+chiamata \textit{dnotify}, che consente di richiedere una notifica quando una
+directory, o di uno qualunque dei file in essa contenuti, viene modificato.
+Come per i \textit{file lease} la notifica avviene di default attraverso il
+segnale \const{SIGIO}, ma questo può essere modificato e si può ottenere nel
+gestore il file descriptor che è stato modificato dal contenuto della
+struttura \struct{siginfo\_t}.
+
+\index{file!lease|)}
+
+Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
+certa directory eseguendo \func{fcntl} su un file descriptor \param{fd}
+associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
+l'argomento \param{arg} serve ad indicare per quali classi eventi si vuole
+ricevere la notifica, e prende come valore una maschera binaria composta
+dall'OR aritmetico di una o più delle costanti riportate in
+tab.~\ref{tab:file_notify}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{8cm}|}
+    \hline
+    \textbf{Valore}  & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
+                         \func{read}, \func{pread}, \func{readv}.\\ 
+    \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
+                         fra \func{write}, \func{pwrite}, \func{writev}, 
+                         \func{truncate}, \func{ftruncate}.\\ 
+    \const{DN\_CREATE} & È stato creato un file nella directory, con
+                         l'esecuzione di una fra \func{open}, \func{creat},
+                         \func{mknod}, \func{mkdir}, \func{link},
+                         \func{symlink}, \func{rename} (da un'altra
+                         directory).\\
+    \const{DN\_DELETE} & È stato cancellato un file dalla directory con
+                         l'esecuzione di una fra \func{unlink}, \func{rename}
+                         (su un'altra directory), \func{rmdir}.\\
+    \const{DN\_RENAME} & È stato rinominato un file all'interno della
+                         directory (con \func{rename}).\\
+    \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
+                         l'esecuzione di una fra \func{chown}, \func{chmod},
+                         \func{utime}.\\ 
+    \const{DN\_MULTISHOT}& richiede una notifica permanente di tutti gli
+                         eventi.\\ 
+    \hline    
+  \end{tabular}
+  \caption{Le costanti che identificano le varie classi di eventi per i quali
+    si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
+  \label{tab:file_notify}
+\end{table}
+
+A meno di non impostare in maniera esplicita una notifica permanente usando
+\const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una sola
+volta quando si verifica uno qualunque fra gli eventi per i quali la si è
+richiesta. Questo significa che un programma deve registrarsi un'altra volta se
+desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
+chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
+ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
+specificate in chiamate successive vengono aggiunte a quelle già impostate
+nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
+specificare un valore nullo.
+\index{file!dnotify|)}
+
+
+
+\index{file!inotify|)}
+% TODO inserire anche inotify, vedi http://www.linuxjournal.com/article/8478
+\index{file!inotify|(}
+
+
+
+\subsection{L'interfaccia POSIX per l'I/O asincrono}
+\label{sec:file_asyncronous_io}
+
+Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
+dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
+  asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
+di I/O non attendono il completamento delle operazioni prima di ritornare,
+così che il processo non viene bloccato.  In questo modo diventa ad esempio
+possibile effettuare una richiesta preventiva di dati, in modo da poter
+effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
 
 Benché la modalità di apertura asincrona di un file possa risultare utile in
-varie occasioni (in particolar modo con i socket\index{socket} e gli altri
-file per i quali le funzioni di I/O sono system call lente), essa è comunque
-limitata alla notifica della disponibilità del file descriptor per le
+varie occasioni (in particolar modo con i socket e gli altri file per i quali
+le funzioni di I/O sono \index{system~call~lente} system call lente), essa è
+comunque limitata alla notifica della disponibilità del file descriptor per le
 operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
-standard POSIX.1b definisce anche una interfaccia apposita per l'I/O
-asincrono, che prevede un insieme di funzioni dedicate, completamente separate
-rispetto a quelle usate normalmente.
+standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono vero
+e proprio, che prevede un insieme di funzioni dedicate per la lettura e la
+scrittura dei file, completamente separate rispetto a quelle usate
+normalmente.
 
 In generale questa interfaccia è completamente astratta e può essere
 implementata sia direttamente nel kernel, che in user space attraverso l'uso
-di thread. Al momento\footnote{fino ai kernel della serie 2.4.x, nella serie
-  2.5.x è però iniziato un lavoro completo di riscrittura di tutto il sistema
-  di I/O, che prevede anche l'introduzione di un nuovo layer per l'I/O
-  asincrono (effettuato a partire dal 2.5.32).} esiste una sola versione
-stabile di questa interfaccia, quella delle \acr{glibc}, che è realizzata
-completamente in user space.  Esistono comunque vari progetti sperimentali
-(come il KAIO della SGI, o i patch di Benjamin La Haise) che prevedono un
-supporto diretto da parte del kernel.
+di thread. Per le versioni del kernel meno recenti esiste una implementazione
+di questa interfaccia fornita delle \acr{glibc}, che è realizzata
+completamente in user space, ed è accessibile linkando i programmi con la
+libreria \file{librt}. Nelle versioni più recenti (a partire dalla 2.5.32) è
+stato introdotto direttamente nel kernel un nuovo layer per l'I/O asincrono.
 
 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
-attraverso l'uso di una apposita struttura \type{aiocb} (il cui nome sta per
+attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
 \textit{asyncronous I/O control block}), che viene passata come argomento a
 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
-\file{aio.h}, è riportata in \figref{fig:file_aiocb}. Nello steso file è
+\file{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
 disponibilità dell'interfaccia per l'I/O asincrono.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct aiocb
-{
-    int aio_fildes;               /* File descriptor.  */
-    off_t aio_offset;             /* File offset */
-    int aio_lio_opcode;           /* Operation to be performed.  */
-    int aio_reqprio;              /* Request priority offset.  */
-    volatile void *aio_buf;       /* Location of buffer.  */
-    size_t aio_nbytes;            /* Length of transfer.  */
-    struct sigevent aio_sigevent; /* Signal number and value.  */
-};
-    \end{lstlisting}
+    \includestruct{listati/aiocb.h}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{aiocb}, usata per il controllo dell'I/O
+  \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
     asincrono.}
   \label{fig:file_aiocb}
 \end{figure}
 
 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
-aperto; il file deve inoltre supportare la funzione \func{lseek},
-pertanto terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
-contemporanee effettuabili su un singolo file.
-
-Ogni operazione deve inizializzare opportunamente un \textit{control block}.
-Il file descriptor su cui operare deve essere specificato tramite il campo
-\var{aio\_fildes}; dato che più operazioni possono essere eseguita in maniera
-asincrona, il concetto di posizione corrente sul file viene a mancare;
-pertanto si deve sempre specificare nel campo \var{aio\_offset} la posizione
-sul file da cui i dati saranno letti o scritti.  Nel campo \var{aio\_buf} deve
-essere specificato l'indirizzo del buffer usato per l'I/O, ed in
-\var{aio\_nbytes} la lunghezza del blocco di dati da trasferire.
+aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
+terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
+contemporanee effettuabili su un singolo file.  Ogni operazione deve
+inizializzare opportunamente un \textit{control block}.  Il file descriptor su
+cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
+che più operazioni possono essere eseguita in maniera asincrona, il concetto
+di posizione corrente sul file viene a mancare; pertanto si deve sempre
+specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
+saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
+l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
+del blocco di dati da trasferire.
 
 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
   piattaforma supporti questa caratteristica, questo viene indicato definendo
   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
-partire da quella del processo chiamante (vedi \secref{sec:proc_priority}),
-cui viene sottratto il valore di questo campo.
-
-Il campo \var{aio\_lio\_opcode} è usato soltanto dalla funzione
-\func{lio\_listio}, che, come vedremo più avanti, permette di eseguire con una
-sola chiamata una serie di operazioni, usando un vettore di \textit{control
-  block}. Tramite questo campo si specifica quale è la natura di ciascuna di
-esse.
+partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
+cui viene sottratto il valore di questo campo.  Il campo
+\var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
+come vedremo, permette di eseguire con una sola chiamata una serie di
+operazioni, usando un vettore di \textit{control block}. Tramite questo campo
+si specifica quale è la natura di ciascuna di esse.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct sigevent
-{
-    sigval_t sigev_value;
-    int sigev_signo;
-    int sigev_notify;
-    sigev_notify_function;
-    sigev_notify_attributes;
-};
-    \end{lstlisting}
+    \includestruct{listati/sigevent.h}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{sigevent}, usata per specificare le modalità di
-    notifica degli eventi relativi alle operazioni di I/O asincrono.}
+  \caption{La struttura \structd{sigevent}, usata per specificare le modalità
+    di notifica degli eventi relativi alle operazioni di I/O asincrono.}
   \label{fig:file_sigevent}
 \end{figure}
 
-Infine il campo \var{aio\_sigevent} è una struttura di tipo \type{sigevent}
+Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
 che serve a specificare il modo in cui si vuole che venga effettuata la
 notifica del completamento delle operazioni richieste. La struttura è
-riportata in \secref{fig:file_sigevent}; il campo \var{sigev\_notify} è quello
-che indica le modalità della notifica, esso può assumere i tre valori:
-\begin{basedescript}{\desclabelwidth{3.0cm}}
-\item[\const{SIGEV\_NONE}]   Non viene inviata nessuna notifica.
+riportata in fig.~\ref{fig:file_sigevent}; il campo \var{sigev\_notify} è
+quello che indica le modalità della notifica, esso può assumere i tre valori:
+\begin{basedescript}{\desclabelwidth{2.6cm}}
+\item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
 \item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
-  chiamante il segnale specificato nel campo \var{sigev\_signo}, se il
-  manipolatore è installato con \const{SA\_SIGINFO}, il gli verrà restituito
-  il valore di \var{sigev\_value} in come valore del campo \var{si\_value} per
-  \type{siginfo\_t}.
+  chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
+  questo è stato installato con \const{SA\_SIGINFO} gli verrà restituito il
+  valore di \var{sigev\_value} (la cui definizione è in
+  fig.~\ref{fig:sig_sigval}) come valore del campo \var{si\_value} di
+  \struct{siginfo\_t}.
 \item[\const{SIGEV\_THREAD}] La notifica viene effettuata creando un nuovo
-  thread che esegue la funzione specificata da \var{sigev\_notify\_function},
-  con gli attributi specificati da \var{sigev\_notify\_attribute}.
+  thread che esegue la funzione specificata da \var{sigev\_notify\_function}
+  con argomento \var{sigev\_value}, e con gli attributi specificati da
+  \var{sigev\_notify\_attribute}.
 \end{basedescript}
 
 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
-\func{aio\_read} ed \func{aio\_write}.  Esse permettono di richiedere una
-lettura od una scrittura asincrona di dati, usando la struttura \type{aiocb}
+\funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
+lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
 appena descritta; i rispettivi prototipi sono:
 \begin{functions}
   \headdecl{aio.h}
@@ -534,25 +904,25 @@ richiesta, o in caso di errore. Non 
 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
-il file non sia stato aperto in \textit{append mode} (vedi
-\secref{sec:file_open}), nel qual caso le scritture vengono effettuate
+il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
+(vedi sez.~\ref{sec:file_open}), nel qual caso le scritture vengono effettuate
 comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
 
 Si tenga inoltre presente che deallocare la memoria indirizzata da
 \param{aiocbp} o modificarne i valori prima della conclusione di una
 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
-richiesta.  Questo comporta che occorre evitare di usare per \param{aiocbp}
+richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
 variabili automatiche e che non si deve riutilizzare la stessa struttura per
-un ulteriore operazione fintanto che la precedente non sia stata ultimata. In
-generale per ogni operazione di I/O asincrono si deve utilizzare una diversa
-struttura \type{aiocb}.
+un'altra operazione fintanto che la precedente non sia stata ultimata. In
+generale per ogni operazione si deve utilizzare una diversa struttura
+\struct{aiocb}.
 
 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
 \func{aio\_write} non implica che le operazioni siano state effettivamente
 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
-prima è \func{aio\_error}, che serve a determinare un eventuale stato di
+prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
 errore; il suo prototipo è:
 \begin{prototype}{aio.h}
   {int aio\_error(const struct aiocb *aiocbp)}  
@@ -576,8 +946,8 @@ del caso, i codici di errore delle system call \func{read}, \func{write} e
 \func{fsync}.
 
 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
-che una chiamata ad \func{aio\_error} non ha restituito \errcode{EINPROGRESS},
-si potrà usare la seconda funzione dell'interfaccia, \func{aio\_return}, che
+che una chiamata ad \func{aio\_error} non ha restituito
+\errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
 permette di verificare il completamento delle operazioni di I/O asincrono; il
 suo prototipo è:
 \begin{prototype}{aio.h}
@@ -604,12 +974,12 @@ asincrono non verrebbero liberate, rischiando di arrivare ad un loro
 esaurimento.
 
 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
-disposizione un'altra operazione, quella di sincronizzazione dell'I/O, essa è
-compiuta dalla funzione \func{aio\_fsync}, che ha lo stesso effetto della
+disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
+compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
 è:
 \begin{prototype}{aio.h}
-{ssize\_t aio\_return(int op, struct aiocb *aiocbp)} 
+{int aio\_fsync(int op, struct aiocb *aiocbp)} 
 
 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
   
@@ -625,7 +995,7 @@ di lettura e scrittura. L'argomento \param{op} permette di indicare la
 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
-\secref{sec:file_sync}).
+sez.~\ref{sec:file_sync}).
 
 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
@@ -635,7 +1005,7 @@ operazioni di sincronizzazione dei dati saranno completate.
 
 In alcuni casi può essere necessario interrompere le operazioni (in genere
 quando viene richiesta un'uscita immediata dal programma), per questo lo
-standard POSIX.1b prevede una funzioni apposita, \func{aio\_cancel}, che
+standard POSIX.1b prevede una funzioni apposita, \funcd{aio\_cancel}, che
 permette di cancellare una operazione richiesta in precedenza; il suo
 prototipo è:
 \begin{prototype}{aio.h}
@@ -678,7 +1048,7 @@ corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
 del loro avvenuto completamento.
 
 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
-fornisce anche una apposita funzione, \func{aio\_suspend}, che permette di
+fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
 sospendere l'esecuzione del processo chiamante fino al completamento di una
 specifica operazione; il suo prototipo è:
 \begin{prototype}{aio.h}
@@ -705,12 +1075,12 @@ La funzione permette di bloccare il processo fintanto che almeno una delle
 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
-con delle strutture \var{aiocb} relative ad operazioni effettivamente
+con delle strutture \struct{aiocb} relative ad operazioni effettivamente
 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
 siano specificati valori non validi l'effetto è indefinito.  Un valore
 \val{NULL} per \param{timout} comporta l'assenza di timeout.
 
-Lo standard POSIX.1b infine ha previsto pure una funzione, \func{lio\_listio},
+Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
 che permette di effettuare la richiesta di una intera lista di operazioni di
 lettura o scrittura; il suo prototipo è:
 \begin{prototype}{aio.h}
@@ -725,6 +1095,9 @@ lettura o scrittura; il suo prototipo 
     \begin{errlist}
     \item[\errcode{EAGAIN}] Nessuna operazione è stata completata entro
       \param{timeout}.
+    \item[\errcode{EINVAL}] Si è passato un valore di \param{mode} non valido
+      o un numero di operazioni \param{nent} maggiore di
+      \const{AIO\_LISTIO\_MAX}.
     \item[\errcode{ENOSYS}] La funzione non è implementata.
     \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
     \end{errlist}
@@ -753,8 +1126,19 @@ specifica \const{LIO\_NOWAIT} la funzione ritorna immediatamente dopo aver
 messo in coda tutte le richieste. In questo caso il chiamante può richiedere
 la notifica del completamento di tutte le richieste, impostando l'argomento
 \param{sig} in maniera analoga a come si fa per il campo \var{aio\_sigevent}
-di \type{aiocb}.
+di \struct{aiocb}.
+
 
+\section{Altre modalità di I/O avanzato}
+\label{sec:file_advanced_io}
+
+Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
+  asincrono}, esistono altre funzioni che implementano delle modalità di
+accesso ai file più evolute rispetto alle normali funzioni di lettura e
+scrittura che abbiamo esaminato in sez.~\ref{sec:file_base_func}. In questa
+sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
+  vettorizzato} e per l'\textsl{I/O mappato in memoria} e la funzione
+\func{sendfile}.
 
 
 \subsection{I/O vettorizzato}
@@ -769,10 +1153,10 @@ chiamate, ci sono casi in cui si vuole poter contare sulla atomicit
 operazioni.
 
 Per questo motivo BSD 4.2\footnote{Le due funzioni sono riprese da BSD4.4 ed
-  integrate anche dallo standard Unix 98; fino alle libc5 Linux usava
+  integrate anche dallo standard Unix 98. Fino alle libc5, Linux usava
   \type{size\_t} come tipo dell'argomento \param{count}, una scelta logica,
   che però è stata dismessa per restare aderenti allo standard.} ha introdotto
-due nuove system call, \func{readv} e \func{writev}, che permettono di
+due nuove system call, \funcd{readv} e \funcd{writev}, che permettono di
 effettuare con una sola chiamata una lettura o una scrittura su una serie di
 buffer (quello che viene chiamato \textsl{I/O vettorizzato}. I relativi
 prototipi sono:
@@ -802,87 +1186,90 @@ prototipi sono:
   \end{errlist}
   ed inoltre \errval{EISDIR}, \errval{ENOMEM}, \errval{EFAULT} (se non sono
   stato allocati correttamente i buffer specificati nei campi
-  \func{iov\_base}), più tutti gli ulteriori errori che potrebbero avere le
+  \var{iov\_base}), più tutti gli ulteriori errori che potrebbero avere le
   usuali funzioni di lettura e scrittura eseguite su \param{fd}.}
 \end{functions}
 
-Entrambe le funzioni usano una struttura \type{iovec}, definita in
-\figref{fig:file_iovec}, che definisce dove i dati devono essere letti o
+Entrambe le funzioni usano una struttura \struct{iovec}, definita in
+fig.~\ref{fig:file_iovec}, che definisce dove i dati devono essere letti o
 scritti. Il primo campo, \var{iov\_base}, contiene l'indirizzo del buffer ed
 il secondo, \var{iov\_len}, la dimensione dello stesso. 
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct iovec {
-    __ptr_t iov_base;    /* Starting address */
-    size_t iov_len;      /* Length in bytes  */
-};
-    \end{lstlisting}
+    \includestruct{listati/iovec.h}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{iovec}, usata dalle operazioni di I/O
+  \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
     vettorizzato.} 
   \label{fig:file_iovec}
 \end{figure}
 
 I buffer da utilizzare sono indicati attraverso l'argomento \param{vector} che
-è un vettore di strutture \var{iovec}, la cui lunghezza è specificata da
+è un vettore di strutture \struct{iovec}, la cui lunghezza è specificata da
 \param{count}.  Ciascuna struttura dovrà essere inizializzata per
 opportunamente per indicare i vari buffer da/verso i quali verrà eseguito il
 trasferimento dei dati. Essi verranno letti (o scritti) nell'ordine in cui li
-si sono specificati nel vettore \var{vector}.
+si sono specificati nel vettore \param{vector}.
 
 
 \subsection{File mappati in memoria}
 \label{sec:file_memory_map}
 
+\itindbeg{memory~mapping}
 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
-rispetto a quella classica vista in \capref{cha:file_unix_interface}, è il
+rispetto a quella classica vista in cap.~\ref{cha:file_unix_interface}, è il
 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
-\textsl{paginazione}\index{paginazione} usato dalla memoria virtuale (vedi
-\secref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
-file in una sezione dello spazio di indirizzi del processo. Il meccanismo è
-illustrato in \figref{fig:file_mmap_layout}, una sezione del file viene
-riportata direttamente nello spazio degli indirizzi del programma. Tutte le
-operazioni su questa zona verranno riportate indietro sul file dal meccanismo
-della memoria virtuale che trasferirà il contenuto di quel segmento sul file
-invece che nella swap, per cui si può parlare tanto di file mappato in
-memoria, quanto di memoria mappata su file.
+\textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
+sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
+file in una sezione dello spazio di indirizzi del processo. 
+
+Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
+file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
+programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
+in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
+del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
+che in maniera analoga a quanto avviene per le pagine che vengono salvate e
+rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
+segmento di memoria con quello del file mappato su di esso.  Per questo motivo
+si può parlare tanto di \textsl{file mappato in memoria}, quanto di
+\textsl{memoria mappata su file}.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=9.5cm]{img/mmap_layout}
+  \includegraphics[width=14cm]{img/mmap_layout}
   \caption{Disposizione della memoria di un processo quando si esegue la
   mappatura in memoria di un file.}
   \label{fig:file_mmap_layout}
 \end{figure}
 
-Tutto questo comporta una notevole semplificazione delle operazioni di I/O, in
-quanto non sarà più necessario utilizzare dei buffer intermedi su cui
-appoggiare i dati da traferire, ma questi potranno essere acceduti
-direttamente nella sezione di memoria mappata; inoltre questa interfaccia è
-più efficiente delle usuali funzioni di I/O, in quanto permette di caricare in
-memoria solo le parti del file che sono effettivamente usate ad un dato
-istante.
-
-Infatti, dato che l'accesso è fatto direttamente attraverso la memoria
-virtuale, la sezione di memoria mappata su cui si opera sarà a sua volta letta
-o scritta sul file una pagina alla volta e solo per le parti effettivamente
-usate, il tutto in maniera completamente trasparente al processo; l'accesso
-alle pagine non ancora caricate avverrà allo stesso modo con cui vengono
-caricate in memoria le pagine che sono state salvate sullo swap.
-
-Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un
-file vengono salvate automaticamente, così come le pagine dei programmi
-vengono scritte sulla swap; questo consente di accedere ai file su dimensioni
-il cui solo limite è quello dello spazio di indirizzi disponibile, e non della
+L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
+operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
+intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
+acceduti direttamente nella sezione di memoria mappata; inoltre questa
+interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
+di caricare in memoria solo le parti del file che sono effettivamente usate ad
+un dato istante.
+
+Infatti, dato che l'accesso è fatto direttamente attraverso la
+\index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
+cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
+solo per le parti effettivamente usate, il tutto in maniera completamente
+trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
+allo stesso modo con cui vengono caricate in memoria le pagine che sono state
+salvate sullo swap.
+
+Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
+vengono salvate automaticamente, così come le pagine dei programmi vengono
+scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
+solo limite è quello dello spazio di indirizzi disponibile, e non della
 memoria su cui possono esserne lette delle porzioni.
 
-L'interfaccia prevede varie funzioni per la gestione del \textit{memory mapped
-  I/O}, la prima di queste è \func{mmap}, che serve ad eseguire la mappatura
-in memoria di un file; il suo prototipo è:
+L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
+gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
+eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
+è:
 \begin{functions}
   
   \headdecl{unistd.h}
@@ -891,7 +1278,7 @@ in memoria di un file; il suo prototipo 
   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
     fd, off\_t offset)}
   
-  Esegue la mappatura in memoria del file \param{fd}.
+  Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
   
   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
@@ -899,22 +1286,28 @@ in memoria di un file; il suo prototipo 
     \begin{errlist}
     \item[\errcode{EBADF}] Il file descriptor non è valido, e non si è usato
       \const{MAP\_ANONYMOUS}.
-    \item[\errcode{EACCES}] Il file descriptor non si riferisce ad un file
-      regolare, o si è richiesto \const{MAP\_PRIVATE} ma \param{fd} non è
-      aperto in lettura, o si è richiesto \const{MAP\_SHARED} e impostato
-      \const{PROT\_WRITE} ed \param{fd} non è aperto in lettura/scrittura, o
-      si è impostato \const{PROT\_WRITE} ed \param{fd} è in
-      \textit{append-only}.
+    \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
+      o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
+      o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
+      \param{fd} non è aperto in lettura/scrittura, o si è impostato
+      \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
     \item[\errcode{EINVAL}] I valori di \param{start}, \param{length} o
       \param{offset} non sono validi (o troppo grandi o non allineati sulla
       dimensione delle pagine).
     \item[\errcode{ETXTBSY}] Si è impostato \const{MAP\_DENYWRITE} ma
       \param{fd} è aperto in scrittura.
-    \item[\errcode{EAGAIN}] Il file è bloccato, o si è bloccata troppa memoria.
+    \item[\errcode{EAGAIN}] Il file è bloccato, o si è bloccata troppa memoria
+      rispetto a quanto consentito dai limiti di sistema (vedi
+      sez.~\ref{sec:sys_resource_limit}).
     \item[\errcode{ENOMEM}] Non c'è memoria o si è superato il limite sul
       numero di mappature possibili.
     \item[\errcode{ENODEV}] Il filesystem di \param{fd} non supporta il memory
       mapping.
+    \item[\errcode{EPERM}] L'argomento \param{prot} ha richiesto
+      \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
+      l'opzione \texttt{noexec}.
+    \item[\errcode{ENFILE}] Si è superato il limite del sistema sul numero di
+      file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
     \end{errlist}
   }
 \end{functions}
@@ -948,21 +1341,21 @@ multiplo della dimensione di una pagina di memoria.
 Il valore dell'argomento \param{prot} indica la protezione\footnote{in Linux
   la memoria reale è divisa in pagine: ogni processo vede la sua memoria
   attraverso uno o più segmenti lineari di memoria virtuale.  Per ciascuno di
-  questi segmenti il kernel mantiene nella \textit{page table} la mappatura
-  sulle pagine di memoria reale, ed le modalità di accesso (lettura,
-  esecuzione, scrittura); una loro violazione causa quella che si chiama una
-  \textit{segment violation}, e la relativa emissione del segnale
-  \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
+  questi segmenti il kernel mantiene nella \itindex{page~table} \textit{page
+    table} la mappatura sulle pagine di memoria reale, ed le modalità di
+  accesso (lettura, esecuzione, scrittura); una loro violazione causa quella
+  che si chiama una \textit{segment violation}, e la relativa emissione del
+  segnale \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
-riportati in \tabref{tab:file_mmap_flag}; il valore specificato deve essere
+riportati in tab.~\ref{tab:file_mmap_flag}; il valore specificato deve essere
 compatibile con la modalità di accesso con cui si è aperto il file.
 
-L'argomento \param{flags} specifica infine qual'è il tipo di oggetto mappato,
+L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
 modalità con cui le modifiche alla memoria mappata vengono condivise o
 mantenute private al processo che le ha effettuate. Deve essere specificato
 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
-\tabref{tab:file_mmap_flag}.
+tab.~\ref{tab:file_mmap_flag}.
 
 \begin{table}[htb]
   \centering
@@ -982,83 +1375,104 @@ come maschera binaria ottenuta dall'OR di uno o pi
                              visibili agli altri processi che mappano lo stesso
                              file.\footnotemark Il file su disco però non sarà
                              aggiornato fino alla chiamata di \func{msync} o
-                             \func{unmap}), e solo allora le modifiche saranno
+                             \func{munmap}), e solo allora le modifiche saranno
                              visibili per l'I/O convenzionale. Incompatibile
                              con \const{MAP\_PRIVATE}. \\ 
     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
                              riportati sul file. Ne viene fatta una copia
                              privata cui solo il processo chiamante ha
                              accesso.  Le modifiche sono mantenute attraverso
-                             il meccanismo del 
-                             \textit{copy on write}\index{copy on write} e
+                             il meccanismo del \textit{copy on
+                               write} \itindex{copy~on~write} e 
                              salvate su swap in caso di necessità. Non è
                              specificato se i cambiamenti sul file originale
                              vengano riportati sulla regione
                              mappata. Incompatibile con \const{MAP\_SHARED}. \\
     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
-                             \textit{DoS}\index{DoS} (veniva usato per
-                             segnalare che tentativi di scrittura sul file
-                             dovevano fallire con \errcode{ETXTBSY}).\\
+                             \textit{DoS} \itindex{Denial~of~Service~(DoS)}
+                             (veniva usato per segnalare che tentativi di
+                             scrittura sul file dovevano fallire con
+                             \errcode{ETXTBSY}).\\ 
     \const{MAP\_EXECUTABLE}& Ignorato. \\
     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
-                             delle pagine di swap ad uso del meccanismo di
-                             \textit{copy on write}\index{copy on write}
+                             delle pagine di swap ad uso del meccanismo del
+                             \textit{copy on write} \itindex{copy~on~write}
                              per mantenere le
                              modifiche fatte alla regione mappata, in
                              questo caso dopo una scrittura, se non c'è più
                              memoria disponibile, si ha l'emissione di
                              un \const{SIGSEGV}. \\
     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
-                             mappate. \\
-    \const{MAP\_GROWSDOWN} & Usato per gli stack. Indica 
+                             mappate.\\
+    \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} stack. Indica 
                              che la mappatura deve essere effettuata con gli
                              indirizzi crescenti verso il basso.\\
     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
                              argomenti \param{fd} e \param{offset} sono
                              ignorati.\footnotemark\\
     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
-    \const{MAP\_FILE}      & Valore di compatibilità, deprecato.\\
+    \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
+    \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2GiB dello spazio
+                             degli indirizzi, viene supportato solo sulle
+                             piattaforme \texttt{x86-64} per compatibilità con
+                             le applicazioni a 32 bit. Viene ignorato se si è
+                             richiesto \const{MAP\_FIXED}.\\
+    \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
+                             \textit{prefaulting} delle pagine di memoria
+                             necessarie alla mappatura. \\
+    \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
+                             non causa I/O.\footnotemark \\
+%     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
+%                              mappata con \func{mremap}, proposto ma pare non
+%                              implementato.\\
     \hline
   \end{tabular}
   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
   \label{tab:file_mmap_flag}
 \end{table}
 
-\footnotetext{Dato che tutti faranno riferimento alle stesse pagine di
-  memoria.}  
-\footnotetext{L'uso di questo flag con \const{MAP\_SHARED} è
-  stato implementato in Linux a partire dai kernel della serie 2.4.x.}
 
 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
 piuttosto complessi, essi si possono comprendere solo tenendo presente che
-tutto quanto è comunque basato sul basato sul meccanismo della memoria
-virtuale. Questo comporta allora una serie di conseguenze. La più ovvia è che
-se si cerca di scrivere su una zona mappata in sola lettura si avrà
-l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}), dato che
-i permessi sul segmento di memoria relativo non consentono questo tipo di
-accesso.
+tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
+memoria virtuale. Questo comporta allora una serie di conseguenze. La più
+ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
+avrà l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}),
+dato che i permessi sul segmento di memoria relativo non consentono questo
+tipo di accesso.
 
 È invece assai diversa la questione relativa agli accessi al di fuori della
 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
-paginazione, la mappatura in memoria non può che essere eseguita su un
-segmento di dimensioni rigorosamente multiple di quelle di una pagina, ed in
-generale queste potranno non corrispondere alle dimensioni effettive del file
-o della sezione che si vuole mappare. Il caso più comune è quello illustrato
-in \figref{fig:file_mmap_boundary}, in cui la sezione di file non rientra nei
-confini di una pagina: in tal caso verrà il file sarà mappato su un segmento
-di memoria che si estende fino al bordo della pagina successiva.
+paginazione \index{paginazione}, la mappatura in memoria non può che essere
+eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
+pagina, ed in generale queste potranno non corrispondere alle dimensioni
+effettive del file o della sezione che si vuole mappare.
 
-\begin{figure}[htb]
+\footnotetext[20]{Dato che tutti faranno riferimento alle stesse pagine di
+  memoria.}  
+\footnotetext[21]{L'uso di questo flag con \const{MAP\_SHARED} è
+  stato implementato in Linux a partire dai kernel della serie 2.4.x.}
+
+\footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
+  introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
+  parleremo più avanti.}
+
+\begin{figure}[!htb] 
   \centering
-  \includegraphics[width=10cm]{img/mmap_boundary}
+  \includegraphics[width=12cm]{img/mmap_boundary}
   \caption{Schema della mappatura in memoria di una sezione di file di
     dimensioni non corrispondenti al bordo di una pagina.}
   \label{fig:file_mmap_boundary}
 \end{figure}
 
 
+Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
+in cui la sezione di file non rientra nei confini di una pagina: in tal caso
+verrà il file sarà mappato su un segmento di memoria che si estende fino al
+bordo della pagina successiva.
+
 In questo caso è possibile accedere a quella zona di memoria che eccede le
 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
@@ -1071,31 +1485,31 @@ file mappato sono pi
 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
 quella della mappatura in memoria.
 
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=13cm]{img/mmap_exceed}
-  \caption{Schema della mappatura in memoria di file di dimensioni inferiori
-    alla lunghezza richiesta.}
-  \label{fig:file_mmap_exceed}
-\end{figure}
-
 In questa situazione, per la sezione di pagina parzialmente coperta dal
 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
 sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
-\const{SIGBUS}, come illustrato in \figref{fig:file_mmap_exceed}.
+\const{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
 
 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
-in \figref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
+in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
 comporta che ad esempio non è possibile mappare in memoria file descriptor
 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
-dispongono della relativa operazione \var{mmap} (si ricordi quanto esposto in
-\secref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi di
-dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
+dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
+sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
+di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
 che sono utilizzabili solo con questa interfaccia.
 
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=12cm]{img/mmap_exceed}
+  \caption{Schema della mappatura in memoria di file di dimensioni inferiori
+    alla lunghezza richiesta.}
+  \label{fig:file_mmap_exceed}
+\end{figure}
+
 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
@@ -1107,7 +1521,7 @@ sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
 nuovo programma.
 
 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
-esso associati (di cui si è trattato in \secref{sec:file_file_times}). Il
+esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
 una pagina mappata su un file aggiorna questo tempo.  I valori di
@@ -1117,25 +1531,25 @@ consentita la scrittura sul file (cio
 o in corrispondenza di una eventuale \func{msync}.
 
 Dato per i file mappati in memoria le operazioni di I/O sono gestite
-direttamente dalla memoria virtuale, occorre essere consapevoli delle
-interazioni che possono esserci con operazioni effettuate con l'interfaccia
-standard dei file di \capref{cha:file_unix_interface}. Il problema è che una
-volta che si è mappato un file, le operazioni di lettura e scrittura saranno
-eseguite sulla memoria, e riportate su disco in maniera autonoma dal sistema
-della memoria virtuale.
+direttamente dalla \index{memoria~virtuale}memoria virtuale, occorre essere
+consapevoli delle interazioni che possono esserci con operazioni effettuate
+con l'interfaccia standard dei file di cap.~\ref{cha:file_unix_interface}. Il
+problema è che una volta che si è mappato un file, le operazioni di lettura e
+scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
+autonoma dal sistema della memoria virtuale.
 
 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
 potranno essere visibili o meno a seconda del momento in cui la memoria
 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
 del tutto imprevedibile il risultato della modifica di un file nei confronti
-del contenuto della memoria mappata su cui è mappato.
-
-Per quanto appena visto, è sempre sconsigliabile eseguire scritture su file
-attraverso l'interfaccia standard, quando lo si è mappato in memoria, è invece
-possibile usare l'interfaccia standard per leggere un file mappato in memoria,
-purché si abbia una certa cura; infatti l'interfaccia dell'I/O mappato in
-memoria mette a disposizione la funzione \func{msync} per sincronizzare il
-contenuto della memoria mappata con il file su disco; il suo prototipo è:
+del contenuto della memoria su cui è mappato.
+
+Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
+l'interfaccia standard, quando lo si è mappato in memoria, è invece possibile
+usare l'interfaccia standard per leggere un file mappato in memoria, purché si
+abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
+a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
+memoria mappata con il file su disco; il suo prototipo è:
 \begin{functions}  
   \headdecl{unistd.h}
   \headdecl{sys/mman.h} 
@@ -1147,8 +1561,9 @@ contenuto della memoria mappata con il file su disco; il suo prototipo 
   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
     errore nel qual caso \var{errno} assumerà uno dei valori:
     \begin{errlist}
-    \item[\errcode{EINVAL}] O \param{start} non è multiplo di \const{PAGESIZE},
-    o si è specificato un valore non valido per \param{flags}.
+    \item[\errcode{EINVAL}] O \param{start} non è multiplo di
+      \const{PAGE\_SIZE}, o si è specificato un valore non valido per
+      \param{flags}.
     \item[\errcode{EFAULT}] L'intervallo specificato non ricade in una zona
       precedentemente mappata.
     \end{errlist}
@@ -1181,7 +1596,7 @@ del file aggiornato.
 \end{table}
 
 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
-dei valori riportati in \tabref{tab:file_mmap_rsync}, di questi però
+dei valori riportati in tab.~\ref{tab:file_mmap_rsync}, di questi però
 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
@@ -1191,7 +1606,7 @@ le mappature dello stesso file, cos
 aggiornate ai nuovi valori.
 
 Una volta che si sono completate le operazioni di I/O si può eliminare la
-mappatura della memoria usando la funzione \func{munmap}, il suo prototipo è:
+mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
 \begin{functions}  
   \headdecl{unistd.h}
   \headdecl{sys/mman.h} 
@@ -1209,39 +1624,270 @@ mappatura della memoria usando la funzione \func{munmap}, il suo prototipo 
   }
 \end{functions}
 
-La funzione cancella la mappatura per l'intervallo specificato attraverso
-\param{start} e \param{length}, ed ogni successivo accesso a tale regione
-causerà un errore di accesso in memoria. L'argomento \param{start} deve essere
-allineato alle dimensioni di una pagina di memoria, e la mappatura di tutte le
-pagine contenute (anche parzialmente) nell'intervallo indicato, verrà rimossa.
-Indicare un intervallo che non contiene pagine mappate non è un errore.
+La funzione cancella la mappatura per l'intervallo specificato con
+\param{start} e \param{length}; ogni successivo accesso a tale regione causerà
+un errore di accesso in memoria. L'argomento \param{start} deve essere
+allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
+contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
+Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
+presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
+automaticamente rilasciata, mentre la chiusura del file descriptor usato per
+il \textit{memory mapping} non ha alcun effetto su di esso.
+
+Lo standard POSIX prevede anche una funzione che permetta di cambiare le
+protezioni delle pagine di memoria; lo standard prevede che essa si applichi
+solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
+la funzione può essere usata con qualunque pagina valida nella memoria
+virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
+\begin{functions}  
+%  \headdecl{unistd.h}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
+  
+  Modifica le protezioni delle pagine di memoria comprese nell'intervallo
+  specificato.
+
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
+      multiplo di \const{PAGE\_SIZE}.
+    \item[\errcode{EACCESS}] l'operazione non è consentita, ad esempio si è
+      cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
+      ha solo accesso in lettura.
+%     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
+%       necessarie all'interno del kernel.
+%     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
+%       accessibile.
+    \end{errlist}
+    ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
+  } 
+\end{functions}
+
+
+La funzione prende come argomenti un indirizzo di partenza in \param{addr},
+allineato alle dimensioni delle pagine di memoria, ed una dimensione
+\param{size}. La nuova protezione deve essere specificata in \param{prot} con
+una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
+protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
+dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
+
+Infine Linux supporta alcune operazioni specifiche non disponibili su altri
+kernel unix-like. La prima di queste è la possibilità di modificare un
+precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
+Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
+\begin{functions}  
+  \headdecl{unistd.h}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
+    new\_size, unsigned long flags)}
+  
+  Restringe o allarga una mappatura in memoria di un file.
+
+  \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
+    caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
+      -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
+    valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
+      puntatore valido.
+    \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
+      specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
+      mappature di tipo non corrispondente a quella richiesta.
+    \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
+      memoria non può essere espansa all'indirizzo virtuale corrente, e non si
+      è specificato \const{MREMAP\_MAYMOVE} nei flag.
+    \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
+      essere rimappato.
+    \end{errlist}
+  }
+\end{functions}
+
+La funzione richiede come argomenti \param{old\_address} (che deve essere
+allineato alle dimensioni di una pagina di memoria) che specifica il
+precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
+indica la dimensione. Con \param{new\_size} si specifica invece la nuova
+dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
+maschera binaria per i flag che controllano il comportamento della funzione.
+Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
+  utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
+  di includere \file{sys/mman.h}.}  che consente di eseguire l'espansione
+anche quando non è possibile utilizzare il precedente indirizzo. Per questo
+motivo, se si è usato questo flag, la funzione può restituire un indirizzo
+della nuova zona di memoria che non è detto coincida con \param{old\_address}.
+
+La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
+virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
+e le pagine di memoria, modificando i dati direttamente nella
+\itindex{page~table} \textit{page table} del processo. Come per
+\func{mprotect} la funzione può essere usata in generale, anche per pagine di
+memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
+implementare la funzione \func{realloc} in maniera molto efficiente.
+
+Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
+memoria di un file viene eseguita in maniera lineare, cioè parti successive di
+un file vengono mappate linearmente su indirizzi successivi in memoria.
+Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
+  dai database o dai programmi che realizzano macchine virtuali.} in cui è
+utile poter mappare sezioni diverse di un file su diverse zone di memoria.
+
+Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
+\func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
+in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
+  anche con Linux prima che fossero introdotte queste estensioni.} ma questo
+approccio ha delle conseguenze molto pesanti in termini di prestazioni.
+Infatti per ciascuna mappatura in memoria deve essere definita nella
+\itindex{page~table} \textit{page table} del processo una nuova area di
+memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
+  (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
+questa diventi visibile nello spazio degli indirizzi come illustrato in
+fig.~\ref{fig:file_mmap_layout}.
+
+Quando un processo esegue un gran numero di mappature diverse\footnote{si può
+  arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
+non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
+\textit{page table}, e lo stesso accadrà per tutti gli altri processi che
+utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
+esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
+impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
+  delle \itindex{page~table} \textit{page table}, che di CPU per il loro
+  aggiornamento.} solo per mantenere i dati di una gran quantità di
+\textit{memory mapping}.
+
+Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
+Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
+una caratteristica specifica di Linux, non presente in altri sistemi
+unix-like.  Diventa così possibile utilizzare una sola mappatura
+iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
+  \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
+piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
+nuova system call, \funcd{remap\_file\_pages}, il cui prototipo è:
+\begin{functions}  
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
+    ssize\_t pgoff, int flags)}
+  
+  Permette di rimappare non linearmente un precedente \textit{memory mapping}.
+
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] Si è usato un valore non valido per uno degli
+      argomenti o \param{start} non fa riferimento ad un \textit{memory
+        mapping} valido creato con \const{MAP\_SHARED}.
+    \end{errlist}
+  }
+\end{functions}
+
+Per poter utilizzare questa funzione occorre anzitutto effettuare
+preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
+definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
+chiamerà questa funzione per modificare le corrispondenze fra pagine di
+memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
+permette anche di mappare la stessa pagina di un file in più pagine della
+regione mappata.
+
+La funzione richiede che si identifichi la sezione del file che si vuole
+riposizionare all'interno del \textit{memory mapping} con gli argomenti
+\param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
+un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
+partire dal quale la sezione di file indicata verrà rimappata. L'argomento
+\param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
+valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
+flag solo \const{MAP\_NONBLOCK} non viene ignorato.
+
+Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
+stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
+\const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
+del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
+per migliorare le prestazioni in certe condizioni di utilizzo del
+\textit{memory mapping}. 
+
+Il problema si pone tutte le volte che si vuole mappare in memoria un file di
+grosse dimensioni. Il comportamento normale del sistema della
+\index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
+viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
+i dati verranno effettivamente utilizzati (si avrà cioè un
+\itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
+memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
+interessate dal \textit{memory mapping}. 
+
+Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
+pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
+  fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
+immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
+\textit{prefaulting} in cui tutte le pagine di memoria interessate alla
+mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
+comportamento viene abilitato quando si usa con \func{mmap} il flag
+\const{MAP\_POPULATE}.
+
+Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
+rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
+flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
+\textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
+mappatura che già si trovano nella cache del kernel.\footnote{questo può
+  essere utile per il linker dinamico, in particolare quando viene effettuato
+  il \textit{prelink} delle applicazioni.}
+
+\itindend{memory~mapping}
+
+
+\subsection{L'I/O diretto fra file descriptor con \func{sendfile}}
+\label{sec:file_sendfile}
+
+Uno dei problemi 
+
+NdA è da finire, sul perché non è abilitata fra file vedi:
+
+\href{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}
+{\texttt{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}}
+% TODO documentare la funzione sendfile
+
+
+
+% i raw device 
+%\subsection{I \textit{raw} device}
+%\label{sec:file_raw_device}
+%
+% TODO i raw device
+
+
+%\subsection{L'utilizzo delle porte di I/O}
+%\label{sec:file_io_port}
+%
+% TODO l'I/O sulle porte di I/O 
+% consultare le manpage di ioperm, iopl e outb
+
 
-Alla conclusione del processo, ogni pagina mappata verrà automaticamente
-rilasciata, mentre la chiusura del file descriptor usato per effettuare la
-mappatura in memoria non ha alcun effetto sulla stessa.
 
 
 \section{Il file locking}
 \label{sec:file_locking}
 
 \index{file!locking|(}
-In \secref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
+
+In sez.~\ref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
 sistema unix-like gestisce la condivisione dei file da parte di processi
 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
-in \textit{append mode}, quando più processi scrivono contemporaneamente sullo
-stesso file non è possibile determinare la sequenza in cui essi opereranno.
+in \itindex{append~mode} \textit{append mode}, quando più processi scrivono
+contemporaneamente sullo stesso file non è possibile determinare la sequenza
+in cui essi opereranno.
 
-Questo causa la possibilità di race condition\index{race condition}; in
-generale le situazioni più comuni sono due: l'interazione fra un processo che
-scrive e altri che leggono, in cui questi ultimi possono leggere informazioni
-scritte solo in maniera parziale o incompleta; o quella in cui diversi
-processi scrivono, mescolando in maniera imprevedibile il loro output sul
-file.
+Questo causa la possibilità di una \itindex{race~condition} \textit{race
+  condition}; in generale le situazioni più comuni sono due: l'interazione fra
+un processo che scrive e altri che leggono, in cui questi ultimi possono
+leggere informazioni scritte solo in maniera parziale o incompleta; o quella
+in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
+output sul file.
 
 In tutti questi casi il \textit{file locking} è la tecnica che permette di
-evitare le race condition, attraverso una serie di funzioni che permettono di
-bloccare l'accesso al file da parte di altri processi, così da evitare le
-sovrapposizioni, e garantire la atomicità delle operazioni di scrittura.
+evitare le \textit{race condition} \itindex{race~condition}, attraverso una
+serie di funzioni che permettono di bloccare l'accesso al file da parte di
+altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
+delle operazioni di scrittura.
 
 
 
@@ -1252,7 +1898,7 @@ La prima modalit
 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
-  \acr{glibc}; nelle pagine di manuale si parla di \textit{discretionary file
+  \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
@@ -1261,10 +1907,11 @@ sistemi unix-like 
   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
 processi, e non il sistema, che si incaricano di asserire e verificare se
 esistono delle condizioni di blocco per l'accesso ai file.  Questo significa
-che le funzioni \func{read} o \func{write} non risentono affatto della
-presenza di un eventuale \textit{lock}, e che sta ai vari processi controllare
-esplicitamente lo stato dei file condivisi prima di accedervi, implementando
-un opportuno protocollo.
+che le funzioni \func{read} o \func{write} vengono eseguite comunque e non
+risentono affatto della presenza di un eventuale \textit{lock}; pertanto è
+sempre compito dei vari processi che intendono usare il file locking,
+controllare esplicitamente lo stato dei file condivisi prima di accedervi,
+utilizzando le relative funzioni.
 
 In generale si distinguono due tipologie di \textit{file lock}:\footnote{di
   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
@@ -1273,17 +1920,17 @@ In generale si distinguono due tipologie di \textit{file lock}:\footnote{di
   processo (cioè la condizione in cui il processo viene posto in stato di
   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
-file affinché non venga modificato mentre lo si legge. Si parla appunto di
-\textsl{blocco condiviso} in quanto più processi possono richiedere
-contemporaneamente uno \textit{shared lock} su un file per proteggere il loro
-accesso in lettura.
+file affinché il suo contenuto non venga modificato mentre lo si legge. Si
+parla appunto di \textsl{blocco condiviso} in quanto più processi possono
+richiedere contemporaneamente uno \textit{shared lock} su un file per
+proteggere il loro accesso in lettura.
 
 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
 lettura che in scrittura) da parte di altri processi mentre lo si sta
 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
 processo alla volta può richiedere un \textit{exclusive lock} su un file per
-proteggere il suo accesso in scrittura. 
+proteggere il suo accesso in scrittura.
 
 \begin{table}[htb]
   \centering
@@ -1317,12 +1964,17 @@ lettura) prima di eseguire l'accesso ad un file.  Se il lock viene acquisito
 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
 le operazioni sul file si deve provvedere a rimuovere il lock. La situazione
-delle varie possibilità è riassunta in \tabref{tab:file_file_lock}.
-
-Si tenga presente infine che il controllo di accesso è effettuato quando si
-apre un file, l'unico controllo residuo è che il tipo di lock che si vuole
-ottenere deve essere compatibile con le modalità di apertura dello stesso (di
-lettura per un read lock e di scrittura per un write lock).
+delle varie possibilità è riassunta in tab.~\ref{tab:file_file_lock}, dove si
+sono riportati, per le varie tipologie di lock presenti su un file, il
+risultato che si ha in corrispondenza alle due tipologie di \textit{file lock}
+menzionate, nel successo della richiesta.
+
+Si tenga presente infine che il controllo di accesso e la gestione dei
+permessi viene effettuata quando si apre un file, l'unico controllo residuo
+che si può avere riguardo il \textit{file locking} è che il tipo di lock che
+si vuole ottenere su un file deve essere compatibile con le modalità di
+apertura dello stesso (in lettura per un read lock e in scrittura per un write
+lock).
 
 %%  Si ricordi che
 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
@@ -1330,12 +1982,12 @@ lettura per un read lock e di scrittura per un write lock).
 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
 
 
-\subsection{La funzione \func{flock}}
+\subsection{La funzione \func{flock}} 
 \label{sec:file_flock}
 
 La prima interfaccia per il file locking, quella derivata da BSD, permette di
 eseguire un blocco solo su un intero file; la funzione usata per richiedere e
-rimuovere un \textit{file lock} è \func{flock}, ed il suo prototipo è:
+rimuovere un \textit{file lock} è \funcd{flock}, ed il suo prototipo è:
 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
   
   Applica o rimuove un \textit{file lock} sul file \param{fd}.
@@ -1353,7 +2005,7 @@ La funzione pu
 a seconda di quanto specificato tramite il valore dell'argomento
 \param{operation}, questo viene interpretato come maschera binaria, e deve
 essere passato utilizzando le costanti riportate in
-\tabref{tab:file_flock_operation}.
+tab.~\ref{tab:file_flock_operation}.
 
 \begin{table}[htb]
   \centering
@@ -1387,16 +2039,16 @@ confronti delle due funzioni \func{dup} e \func{fork}.  Per capire queste
 differenze occorre descrivere con maggiore dettaglio come viene realizzato il
 file locking nel kernel in entrambe le interfacce.
 
-In \figref{fig:file_flock_struct} si è riportato uno schema essenziale
+In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
 dell'implementazione del file locking in stile BSD in Linux; il punto
 fondamentale da capire è che un lock, qualunque sia l'interfaccia che si usa,
 anche se richiesto attraverso un file descriptor, agisce sempre su un file;
 perciò le informazioni relative agli eventuali \textit{file lock} sono
 mantenute a livello di inode\index{inode},\footnote{in particolare, come
-  accennato in \figref{fig:file_flock_struct}, i \textit{file lock} sono
-  mantenuti un una \textit{linked list}\index{linked list} di strutture
-  \var{file\_lock}. La lista è referenziata dall'indirizzo di partenza
-  mantenuto dal campo \var{i\_flock} della struttura \var{inode} (per le
+  accennato in fig.~\ref{fig:file_flock_struct}, i \textit{file lock} sono
+  mantenuti in una \itindex{linked~list} \textit{linked list} di strutture
+  \struct{file\_lock}. La lista è referenziata dall'indirizzo di partenza
+  mantenuto dal campo \var{i\_flock} della struttura \struct{inode} (per le
   definizioni esatte si faccia riferimento al file \file{fs.h} nei sorgenti
   del kernel).  Un bit del campo \var{fl\_flags} di specifica se si tratta di
   un lock in semantica BSD (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}
@@ -1405,7 +2057,7 @@ diversi che aprono lo stesso file.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=12.5cm]{img/file_flock}
+  \includegraphics[width=14cm]{img/file_flock}
   \caption{Schema dell'architettura del file locking, nel caso particolare  
     del suo utilizzo da parte dalla funzione \func{flock}.}
   \label{fig:file_flock_struct}
@@ -1413,45 +2065,49 @@ diversi che aprono lo stesso file.
 
 La richiesta di un file lock prevede una scansione della lista per determinare
 se l'acquisizione è possibile, ed in caso positivo l'aggiunta di un nuovo
-elemento.\footnote{cioè una nuova struttura \var{file\_lock}.}  Nel caso dei
-lock creati con \func{flock} la semantica della funzione prevede che sia
+elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}  Nel caso
+dei lock creati con \func{flock} la semantica della funzione prevede che sia
 \func{dup} che \func{fork} non creino ulteriori istanze di un file lock quanto
 piuttosto degli ulteriori riferimenti allo stesso. Questo viene realizzato dal
-kernel secondo lo schema di \figref{fig:file_flock_struct}, associando ad ogni
-nuovo \textit{file lock} un puntatore\footnote{il puntatore è mantenuto nel
-  campo \var{fl\_file} di \var{file\_lock}, e viene utilizzato solo per i lock
-  creati con la semantica BSD.} alla voce nella \textit{file table} da cui si
-è richiesto il lock, che così ne identifica il titolare.
+kernel secondo lo schema di fig.~\ref{fig:file_flock_struct}, associando ad
+ogni nuovo \textit{file lock} un puntatore\footnote{il puntatore è mantenuto
+  nel campo \var{fl\_file} di \struct{file\_lock}, e viene utilizzato solo per
+  i lock creati con la semantica BSD.} alla voce nella \itindex{file~table}
+\textit{file table} da cui si è richiesto il lock, che così ne identifica il
+titolare.
 
 Questa struttura prevede che, quando si richiede la rimozione di un file lock,
 il kernel acconsenta solo se la richiesta proviene da un file descriptor che
-fa riferimento ad una voce nella file table corrispondente a quella registrata
-nel lock.  Allora se ricordiamo quanto visto in \secref{sec:file_dup} e
-\secref{sec:file_sharing}, e cioè che i file descriptor duplicati e quelli
-ereditati in un processo figlio puntano sempre alla stessa voce nella file
-table, si può capire immediatamente quali sono le conseguenze nei confronti
-delle funzioni \func{dup} e \func{fork}.
+fa riferimento ad una voce nella \itindex{file~table} \textit{file table}
+corrispondente a quella registrata nel lock.  Allora se ricordiamo quanto
+visto in sez.~\ref{sec:file_dup} e sez.~\ref{sec:file_sharing}, e cioè che i
+file descriptor duplicati e quelli ereditati in un processo figlio puntano
+sempre alla stessa voce nella \itindex{file~table} \textit{file table}, si può
+capire immediatamente quali sono le conseguenze nei confronti delle funzioni
+\func{dup} e \func{fork}.
 
 Sarà così possibile rimuovere un file lock attraverso uno qualunque dei file
-descriptor che fanno riferimento alla stessa voce nella file table, anche se
-questo è diverso da quello con cui lo si è creato,\footnote{attenzione, questo
-  non vale se il file descriptor fa riferimento allo stesso file, ma
-  attraverso una voce diversa della file table, come accade tutte le volte che
-  si apre più volte lo stesso file.} o se si esegue la rimozione in un
-processo figlio; inoltre una volta tolto un file lock, la rimozione avrà
-effetto su tutti i file descriptor che condividono la stessa voce nella file
-table, e quindi, nel caso di file descriptor ereditati attraverso una
-\func{fork}, anche su processi diversi.
+descriptor che fanno riferimento alla stessa voce nella \itindex{file~table}
+\textit{file table}, anche se questo è diverso da quello con cui lo si è
+creato,\footnote{attenzione, questo non vale se il file descriptor fa
+  riferimento allo stesso file, ma attraverso una voce diversa della
+  \itindex{file~table} \textit{file table}, come accade tutte le volte che si
+  apre più volte lo stesso file.} o se si esegue la rimozione in un processo
+figlio; inoltre una volta tolto un file lock, la rimozione avrà effetto su
+tutti i file descriptor che condividono la stessa voce nella
+\itindex{file~table} \textit{file table}, e quindi, nel caso di file
+descriptor ereditati attraverso una \func{fork}, anche su processi diversi.
 
 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
 dei file lock, quando un file viene chiuso il kernel provveda anche a
 rimuovere tutti i lock ad esso associati. Anche in questo caso occorre tenere
 presente cosa succede quando si hanno file descriptor duplicati; in tal caso
 infatti il file non verrà effettivamente chiuso (ed il lock rimosso) fintanto
-che non viene rilasciata la relativa voce nella file table; e questo avverrà
-solo quando tutti i file descriptor che fanno riferimento alla stessa voce
-sono stati chiusi.  Quindi, nel caso ci siano duplicati o processi figli che
-mantengono ancora aperto un file descriptor, il lock non viene rilasciato.
+che non viene rilasciata la relativa voce nella \itindex{file~table}
+\textit{file table}; e questo avverrà solo quando tutti i file descriptor che
+fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
+siano duplicati o processi figli che mantengono ancora aperto un file
+descriptor, il lock non viene rilasciato.
 
 Si tenga presente infine che \func{flock} non è in grado di funzionare per i
 file mantenuti su NFS, in questo caso, se si ha la necessità di eseguire il
@@ -1466,7 +2122,7 @@ server supportino questa funzionalit
 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
-\secref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
+sez.~\ref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
 essa viene usata solo secondo il prototipo:
 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
   
@@ -1483,7 +2139,7 @@ essa viene usata solo secondo il prototipo:
     \item[\errcode{EDEADLK}] Si è richiesto un lock su una regione bloccata da
       un altro processo che è a sua volta in attesa dello sblocco di un lock
       mantenuto dal processo corrente; si avrebbe pertanto un
-      \textit{deadlock}\index{deadlock}. Non è garantito che il sistema
+      \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
       riconosca sempre questa situazione.
     \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale prima
       di poter acquisire un lock.
@@ -1496,28 +2152,20 @@ Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
 relative agli eventuali lock preesistenti.  Per poter fare tutto questo la
-funzione utilizza come terzo argomento una apposita struttura \var{flock} (la
-cui definizione è riportata in \figref{fig:struct_flock}) nella quale inserire
-tutti i dati relativi ad un determinato lock. Si tenga presente poi che un
-lock fa sempre riferimento ad una regione, per cui si potrà avere un conflitto
-anche se c'è soltanto una sovrapposizione parziale con un'altra regione
-bloccata.
+funzione utilizza come terzo argomento una apposita struttura \struct{flock}
+(la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
+inserire tutti i dati relativi ad un determinato lock. Si tenga presente poi
+che un lock fa sempre riferimento ad una regione, per cui si potrà avere un
+conflitto anche se c'è soltanto una sovrapposizione parziale con un'altra
+regione bloccata.
 
 \begin{figure}[!bht]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct flock {
-    short int l_type;   /* Type of lock: F_RDLCK, F_WRLCK, or F_UNLCK.  */
-    short int l_whence; /* Where `l_start' is relative to (like `lseek').  */
-    off_t l_start;      /* Offset where the lock begins.  */
-    off_t l_len;        /* Size of the locked area; zero means until EOF.  */
-    pid_t l_pid;        /* Process holding the lock.  */
-};
-    \end{lstlisting}
+    \includestruct{listati/flock.h}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{flock}, usata da \func{fcntl} per il file
+  \caption{La struttura \structd{flock}, usata da \func{fcntl} per il file
     locking.} 
   \label{fig:struct_flock}
 \end{figure}
@@ -1530,7 +2178,7 @@ lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
-relative descrizioni in \secref{sec:file_lseek}). 
+relative descrizioni in sez.~\ref{sec:file_lseek}). 
 
 Si tenga presente che un lock può essere richiesto anche per una regione al di
 là della corrente fine del file, così che una eventuale estensione dello
@@ -1540,14 +2188,6 @@ file; in questo modo 
 un certo punto fino alla fine del file, coprendo automaticamente quanto
 eventualmente aggiunto in coda allo stesso.
 
-Il tipo di file lock richiesto viene specificato dal campo \var{l\_type}, esso
-può assumere i tre valori definiti dalle costanti riportate in
-\tabref{tab:file_flock_type}, che permettono di richiedere rispettivamente uno
-\textit{shared lock}, un \textit{esclusive lock}, e la rimozione di un lock
-precedentemente acquisito. Infine il campo \var{l\_pid} viene usato solo in
-caso di lettura, quando si chiama \func{fcntl} con \const{F\_GETLK}, e riporta
-il \acr{pid} del processo che detiene il lock.
-
 \begin{table}[htb]
   \centering
   \footnotesize
@@ -1561,13 +2201,21 @@ il \acr{pid} del processo che detiene il lock.
     \const{F\_UNLCK} & Richiede l'eliminazione di un file lock.\\
     \hline    
   \end{tabular}
-  \caption{Valori possibili per il campo \var{l\_type} di \func{flock}.}
+  \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
   \label{tab:file_flock_type}
 \end{table}
 
-Oltre a quanto richiesto tramite i campi di \var{flock}, l'operazione
+Il tipo di file lock richiesto viene specificato dal campo \var{l\_type}, esso
+può assumere i tre valori definiti dalle costanti riportate in
+tab.~\ref{tab:file_flock_type}, che permettono di richiedere rispettivamente
+uno \textit{shared lock}, un \textit{esclusive lock}, e la rimozione di un
+lock precedentemente acquisito. Infine il campo \var{l\_pid} viene usato solo
+in caso di lettura, quando si chiama \func{fcntl} con \const{F\_GETLK}, e
+riporta il \acr{pid} del processo che detiene il lock.
+
+Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
-\param{cmd} che, come già riportato in \secref{sec:file_fcntl}, specifica
+\param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl}, specifica
 l'azione da compiere; i valori relativi al file locking sono tre:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\const{F\_GETLK}] verifica se il file lock specificato dalla struttura
@@ -1611,23 +2259,24 @@ stato effettivamente acquisito.
 
 \begin{figure}[htb]
   \centering \includegraphics[width=9cm]{img/file_lock_dead}
-  \caption{Schema di una situazione di \textit{deadlock}\index{deadlock}.}
+  \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
   \label{fig:file_flock_dead}
 \end{figure}
 
 Non operando a livello di interi file, il file locking POSIX introduce
 un'ulteriore complicazione; consideriamo la situazione illustrata in
-\figref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
+fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
 processo B la regione 2. Supponiamo che successivamente il processo A richieda
 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
-porta ad un \textit{deadlock}\index{deadlock}, dato che a quel punto anche il
-processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo. Per
-questo motivo il kernel si incarica di rilevare situazioni di questo tipo, ed
-impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che cerca
-di acquisire un lock che porterebbe ad un \textit{deadlock}.
+porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
+il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
+Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
+ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
+cerca di acquisire un lock che porterebbe ad un \itindex{deadlock}
+\textit{deadlock}.
 
 \begin{figure}[!bht]
   \centering \includegraphics[width=13cm]{img/file_posix_lock}
@@ -1638,28 +2287,30 @@ di acquisire un lock che porterebbe ad un \textit{deadlock}.
 
 
 Per capire meglio il funzionamento del file locking in semantica POSIX (che
-differisce alquanto rispetto da quello di BSD, visto \secref{sec:file_flock})
-esaminiamo più in dettaglio come viene gestito dal kernel. Lo schema delle
-strutture utilizzate è riportato in \figref{fig:file_posix_lock}; come si vede
-esso è molto simile all'analogo di \figref{fig:file_flock_struct}:\footnote{in
-  questo caso nella figura si sono evidenziati solo i campi di
-  \var{file\_lock} significativi per la semantica POSIX, in particolare adesso
-  ciascuna struttura contiene, oltre al \acr{pid} del processo in
-  \var{fl\_pid}, la sezione di file che viene bloccata grazie ai campi
-  \var{fl\_start} e \var{fl\_end}.  La struttura è comunque la stessa, solo
-  che in questo caso nel campo \var{fl\_flags} è impostato il bit
-  \const{FL\_POSIX} ed il campo \var{fl\_file} non viene usato.} il lock è
-sempre associato all'inode\index{inode}, solo che in questo caso la titolarità
-non viene identificata con il riferimento ad una voce nella file table, ma con
-il valore del \acr{pid} del processo.
+differisce alquanto rispetto da quello di BSD, visto
+sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
+kernel. Lo schema delle strutture utilizzate è riportato in
+fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
+di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
+  sono evidenziati solo i campi di \struct{file\_lock} significativi per la
+  semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
+  \acr{pid} del processo in \var{fl\_pid}, la sezione di file che viene
+  bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
+  comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
+  impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
+  usato.} il lock è sempre associato \index{inode} all'inode, solo che in
+questo caso la titolarità non viene identificata con il riferimento ad una
+voce nella \itindex{file~table} \textit{file table}, ma con il valore del
+\acr{pid} del processo.
 
 Quando si richiede un lock il kernel effettua una scansione di tutti i lock
-presenti sul file\footnote{scandisce cioè la linked list delle strutture
-  \var{file\_lock}, scartando automaticamente quelle per cui \var{fl\_flags}
-  non è \const{FL\_POSIX}, così che le due interfacce restano ben separate.}
-per verificare se la regione richiesta non si sovrappone ad una già bloccata,
-in caso affermativo decide in base al tipo di lock, in caso negativo il nuovo
-lock viene comunque acquisito ed aggiunto alla lista.
+presenti sul file\footnote{scandisce cioè la \itindex{linked~list}
+  \textit{linked list} delle strutture \struct{file\_lock}, scartando
+  automaticamente quelle per cui \var{fl\_flags} non è \const{FL\_POSIX}, così
+  che le due interfacce restano ben separate.}  per verificare se la regione
+richiesta non si sovrappone ad una già bloccata, in caso affermativo decide in
+base al tipo di lock, in caso negativo il nuovo lock viene comunque acquisito
+ed aggiunto alla lista.
 
 Nel caso di rimozione invece questa viene effettuata controllando che il
 \acr{pid} del processo richiedente corrisponda a quello contenuto nel lock.
@@ -1682,7 +2333,7 @@ lock relativi al file cui esso faceva riferimento, anche se questi fossero
 stati creati usando altri file descriptor che restano aperti.
 
 Dato che il controllo sull'accesso ai lock viene eseguito sulla base del
-\acr{pid} del processo, possiamo anche prendere in considerazione un'altro
+\acr{pid} del processo, possiamo anche prendere in considerazione un altro
 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
 richiedono dei lock su regioni che si sovrappongono fra loro all'interno
 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
@@ -1711,60 +2362,7 @@ necessario a soddisfare l'operazione richiesta.
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}{}
-int main(int argc, char *argv[])
-{
-    int type = F_UNLCK;            /* lock type: default to unlock (invalid) */
-    off_t start = 0;             /* start of the locked region: default to 0 */
-    off_t len = 0;              /* length of the locked region: default to 0 */
-    int fd, res, i;                                    /* internal variables */
-    int bsd = 0;                          /* semantic type: default to POSIX */
-    int cmd = F_SETLK;              /* lock command: default to non-blocking */
-    struct flock lock;                                /* file lock structure */
-    ...
-    if ((argc - optind) != 1) {          /* There must be remaing parameters */
-        printf("Wrong number of arguments %d\n", argc - optind);
-        usage();
-    }
-    if (type == F_UNLCK) {            /* There must be a -w or -r option set */
-        printf("You should set a read or a write lock\n");
-        usage();
-    }
-    fd = open(argv[optind], O_RDWR);           /* open the file to be locked */
-    if (fd < 0) {                                           /* on error exit */
-        perror("Wrong filename");
-        exit(1);
-    }
-    /* do lock */
-    if (bsd) {                                             /* if BSD locking */
-        /* rewrite cmd for suitables flock operation values */ 
-        if (cmd == F_SETLKW) {                             /* if no-blocking */
-            cmd = LOCK_NB;              /* set the value for flock operation */
-        } else {                                                     /* else */
-            cmd = 0;                                      /* default is null */
-        }
-        if (type == F_RDLCK) cmd |= LOCK_SH;          /* set for shared lock */
-        if (type == F_WRLCK) cmd |= LOCK_EX;       /* set for exclusive lock */
-        res = flock(fd, cmd);                                /* esecute lock */
-    } else {                                             /* if POSIX locking */
-        /* setting flock structure */
-        lock.l_type = type;                       /* set type: read or write */
-        lock.l_whence = SEEK_SET;    /* start from the beginning of the file */
-        lock.l_start = start;          /* set the start of the locked region */
-        lock.l_len = len;             /* set the length of the locked region */
-        res = fcntl(fd, cmd, &lock);                              /* do lock */
-    }
-    /* check lock results */
-    if (res) {                                              /* on error exit */
-        perror("Failed lock");
-        exit(1);
-    } else {                                           /* else write message */
-        printf("Lock acquired\n");
-    }
-    pause();                       /* stop the process, use a signal to exit */
-    return 0;
-}
-    \end{lstlisting}
+    \includecodesample{listati/Flock.c}
   \end{minipage} 
   \normalsize 
   \caption{Sezione principale del codice del programma \file{Flock.c}.}
@@ -1773,7 +2371,7 @@ int main(int argc, char *argv[])
 
 Per fare qualche esempio sul file locking si è scritto un programma che
 permette di bloccare una sezione di un file usando la semantica POSIX, o un
-intero file usando la semantica BSD; in \figref{fig:file_flock_code} è
+intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
 riportata il corpo principale del codice del programma, (il testo completo è
 allegato nella directory dei sorgenti).
 
@@ -1791,7 +2389,7 @@ POSIX), e la variabile \var{cmd} che specifica la modalit
 lock (bloccante o meno), a seconda dell'opzione \cmd{-b}.
 
 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
-un parametro (il file da bloccare), che sia stato scelto (\texttt{\small
+un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
   15--18}) il tipo di lock, dopo di che apre (\texttt{\small 19}) il file,
 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
@@ -1967,7 +2565,7 @@ Abbiamo visto come l'interfaccia POSIX per il file locking sia molto pi
 potente e flessibile di quella di BSD, questo comporta anche una maggiore
 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
-che utilizza la funzione \func{lockf}, il cui prototipo è:
+che utilizza la funzione \funcd{lockf}, il cui prototipo è:
 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
   
   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
@@ -1987,7 +2585,7 @@ che utilizza la funzione \func{lockf}, il cui prototipo 
 
 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
 che specifica quale azione eseguire; i valori possibili sono riportati in
-\tabref{tab:file_lockf_type}.
+tab.~\ref{tab:file_lockf_type}.
 
 \begin{table}[htb]
   \centering
@@ -2007,7 +2605,7 @@ che specifica quale azione eseguire; i valori possibili sono riportati in
                       con un OR aritmetico dei valori.\\ 
     \hline    
   \end{tabular}
-  \caption{Valori possibili per il campo \var{cmd} di \func{lockf}.}
+  \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
   \label{tab:file_lockf_type}
 \end{table}
 
@@ -2022,6 +2620,8 @@ affatto equivalente a \func{flock}).
 \subsection{Il \textit{mandatory locking}}
 \label{sec:file_mand_locking}
 
+\itindbeg{mandatory~locking|(}
+
 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
 per introdurre un file locking che, come dice il nome, fosse effettivo
 indipendentemente dai controlli eseguiti da un processo. Con il
@@ -2030,32 +2630,34 @@ direttamente al sistema, cos
 opportune verifiche nei processi, questo verrebbe comunque rispettato.
 
 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
-utilizzo particolare del bit \acr{sgid}. Se si ricorda quanto esposto in
-\secref{sec:file_suid_sgid}), esso viene di norma utilizzato per cambiare il
-groupid effettivo con cui viene eseguito un programma, ed è pertanto sempre
-associato alla presenza del permesso di esecuzione per il gruppo. Impostando
-questo bit su un file senza permesso di esecuzione in un sistema che supporta
-il \textit{mandatory locking}, fa sì che quest'ultimo venga attivato per il
-file in questione. In questo modo una combinazione dei permessi
-originariamente non contemplata, in quanto senza significato, diventa
-l'indicazione della presenza o meno del \textit{mandatory
+utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
+quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
+utilizzato per cambiare il group-ID effettivo con cui viene eseguito un
+programma, ed è pertanto sempre associato alla presenza del permesso di
+esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
+esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
+quest'ultimo venga attivato per il file in questione. In questo modo una
+combinazione dei permessi originariamente non contemplata, in quanto senza
+significato, diventa l'indicazione della presenza o meno del \textit{mandatory
   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
-  \secref{sec:file_chmod} e cioè che il bit \acr{sgid} viene cancellato (come
-  misura di sicurezza) quando di scrive su un file, questo non vale quando
-  esso viene utilizzato per attivare il \textit{mandatory locking}.}
+  sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
+  cancellato (come misura di sicurezza) quando di scrive su un file, questo
+  non vale quando esso viene utilizzato per attivare il \textit{mandatory
+    locking}.}
 
 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
-neanche root può passare sopra ad un lock; pertanto un processo che blocchi un
-file cruciale può renderlo completamente inaccessibile, rendendo completamente
-inutilizzabile il sistema\footnote{il problema si potrebbe risolvere
-  rimuovendo il bit \acr{sgid}, ma non è detto che sia così facile fare questa
-  operazione con un sistema bloccato.} inoltre con il \textit{mandatory
-  locking} si può bloccare completamente un server NFS richiedendo una lettura
-su un file su cui è attivo un lock. Per questo motivo l'abilitazione del
-mandatory locking è di norma disabilitata, e deve essere attivata filesystem
-per filesystem in fase di montaggio (specificando l'apposita opzione di
-\func{mount} riportata in \tabref{tab:sys_mount_flags}, o con l'opzione
-\cmd{mand} per il comando).
+neanche l'amministratore può passare sopra ad un lock; pertanto un processo
+che blocchi un file cruciale può renderlo completamente inaccessibile,
+rendendo completamente inutilizzabile il sistema\footnote{il problema si
+  potrebbe risolvere rimuovendo il bit \itindex{sgid~bit} \acr{sgid}, ma non è
+  detto che sia così facile fare questa operazione con un sistema bloccato.}
+inoltre con il \textit{mandatory locking} si può bloccare completamente un
+server NFS richiedendo una lettura su un file su cui è attivo un lock. Per
+questo motivo l'abilitazione del mandatory locking è di norma disabilitata, e
+deve essere attivata filesystem per filesystem in fase di montaggio
+(specificando l'apposita opzione di \func{mount} riportata in
+tab.~\ref{tab:sys_mount_flags}, o con l'opzione \code{-o mand} per il comando
+omonimo).
 
 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
@@ -2092,7 +2694,7 @@ dimensioni del file vada a sovrapporsi ad una regione bloccata).
 
 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
-abbiamo trattato in \secref{sec:file_memory_map}); anche in tal caso infatti,
+abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso infatti,
 quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si ha un
 accesso al contenuto del file. Lo standard SVID prevede che sia impossibile
 eseguire il memory mapping di un file su cui sono presenti dei
@@ -2106,9 +2708,47 @@ implementativa\footnote{per i dettagli si possono leggere le note relative
 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
 possibilità di modificare il file.
-\index{file!locking|)}
 
+\index{file!locking|)}
 
+\itindend{mandatory~locking|(}
+
+
+% LocalWords:  dell'I locking multiplexing cap dell' sez system call socket BSD
+% LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
+% LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
+% LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
+% LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
+% LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
+% LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
+% LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
+% LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
+% LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
+% LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
+% LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
+% LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
+% LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
+% LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
+% LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
+% LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
+% LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
+% LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
+% LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
+% LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
+% LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
+% LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
+% LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
+% LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
+% LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
+% LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
+% LocalWords:  GROWSDOWN ANON GiB POPULATE prefaulting SIGBUS fifo VME fork old
+% LocalWords:  exec atime ctime mtime mprotect addr EACCESS mremap address new
+% LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
+% LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
+% LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
+% LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
+% LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
+% LocalWords:  SVID UX Documentation sendfile
 
 
 %%% Local Variables: