Una lunga serie di modifiche per tenere conto della riorganizzazione della
[gapil.git] / fileadv.tex
index fb516a3179faf40307aa38ef7400eef1db4df549..2d000d8baa659e3a7e35f4bae109e3203262625b 100644 (file)
 \label{cha:file_advanced}
 
 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
 \label{cha:file_advanced}
 
 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
-dei file, che non sono state trattate in \capref{cha:file_unix_interface},
-dove ci si è limitati ad una panoramica delle funzioni base. In particolare
-tratteremo delle funzioni di input/output avanzato e del \textit{file
-  locking}.
+dei file. In particolare tratteremo delle funzioni di input/output avanzato,
+che permettono una gestione più sofisticata dell'I/O su file, a partire da
+quelle che permettono di gestire l'accesso contemporaneo a più file, per
+concludere con la gestione dell'I/O mappato in memoria. Dedicheremo poi la
+fine del capitolo alle problematiche del \textit{file locking}.
 
 
 
 
-\section{Le funzioni di I/O avanzato}
-\label{sec:file_advanced_io}
+\section{L'\textit{I/O multiplexing}}
+\label{sec:file_multiplexing}
 
 
-In questa sezione esamineremo le funzioni che permettono una gestione più
-sofisticata dell'I/O su file, a partire da quelle che permettono di gestire
-l'accesso contemporaneo a più file, per concludere con la gestione dell'I/O
-mappato in memoria.
+Uno dei problemi che si presentano quando si deve operare contemporaneamente
+su molti file usando le funzioni illustrate in
+\capref{cha:file_unix_interface} e \capref{cha:files_std_interface} è che si
+può essere bloccati nelle operazioni su un file mentre un altro potrebbe
+essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
+problema. In questa sezione forniremo una introduzione a questa problematica
+ed analizzeremo le varie funzioni usate per implementare questa modalità di
+I/O.
 
 
 
 
-\subsection{La modalità di I/O \textsl{non-bloccante}}
+\subsection{La problematica dell'\textit{I/O multiplexing}}
 \label{sec:file_noblocking}
 
 Abbiamo visto in \secref{sec:sig_gen_beha}, affrontando la suddivisione fra
 \label{sec:file_noblocking}
 
 Abbiamo visto in \secref{sec:sig_gen_beha}, affrontando la suddivisione fra
-\textit{fast} e \textit{slow} system call, che in certi casi le funzioni di
-I/O possono bloccarsi indefinitamente.\footnote{si ricordi però che questo può
-  accadere solo per le pipe, i socket\index{socket} ed alcuni file di
-  dispositivo\index{file!di dispositivo}; sui file normali le funzioni di
-  lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni di
-lettura possono bloccarsi quando non ci sono dati disponibili sul descrittore
-su cui si sta operando.
+\textit{fast} e \textit{slow} system call,\index{system call lente} che in
+certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
+  ricordi però che questo può accadere solo per le pipe, i
+  socket\index{socket} ed alcuni file di dispositivo\index{file!di
+    dispositivo}; sui file normali le funzioni di lettura e scrittura
+  ritornano sempre subito.}  Ad esempio le operazioni di lettura possono
+bloccarsi quando non ci sono dati disponibili sul descrittore su cui si sta
+operando.
 
 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
 
 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
-affrontare nelle operazioni di I/O, che è quello che si verifica quando si
-devono eseguire operazioni che possono bloccarsi su più file descriptor:
-mentre si è bloccati su uno di essi su di un'altro potrebbero essere presenti
-dei dati; così che nel migliore dei casi si avrebbe una lettura ritardata
-inutilmente, e nel peggiore si potrebbe addirittura arrivare ad un
-\textit{deadlock}\index{deadlock}.
+affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
+più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
+possibile prevedere quando questo può avvenire (il caso più classico è quello
+di un server in attesa di dati in ingresso da vari client). Quello che può
+accadere è di restare bloccati nell'eseguire una operazione su un file
+descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere
+un'altro disponibile. Questo comporta nel migliore dei casi una operazione
+ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
+nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
+da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
+potrebbe addirittura arrivare ad un \textit{deadlock}\index{deadlock}.
 
 Abbiamo già accennato in \secref{sec:file_open} che è possibile prevenire
 
 Abbiamo già accennato in \secref{sec:file_open} che è possibile prevenire
-questo tipo di comportamento aprendo un file in modalità
-\textsl{non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK} nella
-chiamata di \func{open}. In questo caso le funzioni di input/output che
-altrimenti si sarebbero bloccate ritornano immediatamente, restituendo
-l'errore \errcode{EAGAIN}.
+questo tipo di comportamento delle funzioni di I/O aprendo un file in quella
+che viene chiamata \textsl{modalità non-bloccante}, attraverso l'uso del flag
+\const{O\_NONBLOCK} nella chiamata di \func{open}. In questo caso le funzioni
+di input/output eseguite sul file che si sarebbero bloccate, ritornano
+immediatamente, restituendo l'errore \errcode{EAGAIN}.
 
 L'utilizzo di questa modalità di I/O permette di risolvere il problema
 controllando a turno i vari file descriptor, in un ciclo in cui si ripete
 l'accesso fintanto che esso non viene garantito.  Ovviamente questa tecnica,
 detta \textit{polling}\index{polling}, è estremamente inefficiente: si tiene
 costantemente impiegata la CPU solo per eseguire in continuazione delle system
 
 L'utilizzo di questa modalità di I/O permette di risolvere il problema
 controllando a turno i vari file descriptor, in un ciclo in cui si ripete
 l'accesso fintanto che esso non viene garantito.  Ovviamente questa tecnica,
 detta \textit{polling}\index{polling}, è estremamente inefficiente: si tiene
 costantemente impiegata la CPU solo per eseguire in continuazione delle system
-call che nella gran parte dei casi falliranno. Per evitare questo, come
-vedremo in \secref{sec:file_multiplexing}, è stata introdotta una nuova
-interfaccia di programmazione, che comporta comunque l'uso della modalità di
-I/O non bloccante.
-
-
-
-\subsection{L'I/O multiplexing}
-\label{sec:file_multiplexing}
-
-Per superare il problema di dover usare il \textit{polling}\index{polling} per
-controllare la possibilità di effettuare operazioni su un gruppo di file
-aperti in modalità non bloccante, sia BSD che System V hanno introdotto delle
-nuove funzioni in grado di sospendere l'esecuzione di un processo fin quando
-l'accesso ad un dato insieme di file diventi possibile.  Il primo ad
-introdurre questa modalità di operazione, chiamata usualmente \textit{I/O
-  multiplexing}, è stato BSD,\footnote{la funzione è apparsa in BSD4.2 e
-  standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
-  supportano i \textit{socket}\index{socket}, compreso le varianti di System
-  V.}  con la funzione \funcd{select}, il cui prototipo è:
+call che nella gran parte dei casi falliranno. 
+
+Per superare questo problema è stato introdotto il concetto di \textit{I/O
+  multiplexing}, una nuova modalità di operazioni che consenta di tenere sotto
+controllo più file descriptor in contemporanea, permettendo di bloccare un
+processo quando le operazioni volute non sono possibili, e di riprenderne
+l'esecuzione una volta che almeno una di quelle richieste sia disponibile, in
+modo da poterla eseguire con la sicurezza di non restare bloccati.
+
+Dato che, come abbiamo già accennato, per i normali file su disco non si ha
+mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
+prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
+tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
+ulteriori dettagli e qualche esempio in \secref{sec:TCP_sock_multiplexing}.
+
+
+\subsection{Le funzioni \func{select} e \func{pselect}}
+\label{sec:file_select}
+
+Il primo ad introdurre una interfaccia per l'\textit{I/O multiplexing} è stato
+BSD,\footnote{la funzione \func{select} è apparsa in BSD4.2 e standardizzata
+  in BSD4.4, ma è stata portata su tutti i sistemi che supportano i
+  \textit{socket}\index{socket}, compreso le varianti di System V.}  con la
+funzione \funcd{select}, il cui prototipo è:
 \begin{functions}
   \headdecl{sys/time.h}
   \headdecl{sys/types.h}
 \begin{functions}
   \headdecl{sys/time.h}
   \headdecl{sys/types.h}
@@ -94,9 +109,10 @@ introdurre questa modalit
     caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
     caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
-  degli insiemi.
+    degli insiemi.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo o
+    un valore non valido per \param{timeout}.
   \end{errlist}
   ed inoltre \errval{ENOMEM}.
 }
   \end{errlist}
   ed inoltre \errval{ENOMEM}.
 }
@@ -111,8 +127,8 @@ degli insiemi specificati (\param{readfds}, \param{writefds} e
 Per specificare quali file descriptor si intende \textsl{selezionare}, la
 funzione usa un particolare oggetto, il \textit{file descriptor set},
 identificato dal tipo \type{fd\_set}, che serve ad identificare un insieme di
 Per specificare quali file descriptor si intende \textsl{selezionare}, la
 funzione usa un particolare oggetto, il \textit{file descriptor set},
 identificato dal tipo \type{fd\_set}, che serve ad identificare un insieme di
-file descriptor, (in maniera analoga a come un \textit{signal set}, vedi
-\secref{sec:sig_sigset}, identifica un insieme di segnali). Per la
+file descriptor, in maniera analoga a come un \textit{signal set} (vedi
+\secref{sec:sig_sigset}) identifica un insieme di segnali. Per la
 manipolazione di questi \textit{file descriptor set} si possono usare delle
 opportune macro di preprocessore:
 \begin{functions}
 manipolazione di questi \textit{file descriptor set} si possono usare delle
 opportune macro di preprocessore:
 \begin{functions}
@@ -146,10 +162,13 @@ dar luogo a comportamenti non prevedibili.
 
 La funzione richiede di specificare tre insiemi distinti di file descriptor;
 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
 
 La funzione richiede di specificare tre insiemi distinti di file descriptor;
 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
-effettuare una lettura, il secondo, \param{writefds}, per verificare la
-possibilità effettuare una scrittura ed il terzo, \param{exceptfds}, per
-verificare l'esistenza di condizioni eccezionali (come i messaggi urgenti su
-un \textit{socket}\index{socket}, vedi \secref{sec:TCP_urgent_data}).
+effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
+  tutti i casi in cui la successiva esecuzione di \func{read} risulti non
+  bloccante, quindi anche in caso di \textit{end-of-file}.} il secondo,
+\param{writefds}, per verificare la possibilità effettuare una scrittura ed il
+terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i
+messaggi urgenti su un \textit{socket}\index{socket}, vedi
+\secref{sec:TCP_urgent_data}).
 
 Dato che in genere non si tengono mai sotto controllo fino a
 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
 
 Dato che in genere non si tengono mai sotto controllo fino a
 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
@@ -204,35 +223,122 @@ numero massimo di 1024 file descriptor per processo, adesso che il numero pu
 essere arbitario si viene a creare una dipendenza del tutto artificiale dalle
 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
 estesa, con ulteriori perdite di prestazioni. 
 essere arbitario si viene a creare una dipendenza del tutto artificiale dalle
 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
 estesa, con ulteriori perdite di prestazioni. 
-Per questo System V, invece di utilizzare l'interfaccia di \func{select}, che
-è una estensione creata nello sviluppo di BSD, ha introdotto una sua
-interfaccia per gestire l'\textit{I/O multiplexing}, basata sulla funzione
-\funcd{poll},\footnote{la funzione è prevista dallo standard XPG4, ed è stata
-  introdotta in Linux come system call a partire dal kernel 2.1.23 e dalle
-  \acr{libc} 5.4.28.} il cui prototipo è:
+
+Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
+  multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
+1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
+l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
+vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
+precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
+\funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
+  l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
+  2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
+  \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
+  senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
+  \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
+  \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
+  maggiore di 600.} il cui prototipo è:
+\begin{prototype}{sys/select.h}
+  {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
+    struct timespec *timeout, sigset\_t *sigmask)}
+  
+  Attende che uno dei file descriptor degli insiemi specificati diventi
+  attivo.
+  
+  \bodydesc{La funzione in caso di successo restituisce il numero di file
+    descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
+    caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
+    degli insiemi.
+  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo o
+    un valore non valido per \param{timeout}.
+  \end{errlist}
+  ed inoltre \errval{ENOMEM}.}
+\end{prototype}
+
+La funzione è sostanzialmente identica a \func{select}, solo che usa una
+struttura \struct{timespec} (vedi \figref{fig:sys_timeval_struct}) per
+indicare con maggiore precisione il timeout e non ne aggiorna il valore in
+caso di interruzione. Inoltre prende un argomento aggiuntivo \param{sigmask}
+che è il puntatore ad una maschera di segnali (si veda
+\secref{sec:sig_sigmask}). La maschera corrente viene sostituita da questa
+immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
+funzione.
+
+L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
+race condition\index{race condition} quando ci si deve porre in attesa sia di
+un segnale che di dati.\footnote{in Linux però non è stata ancora introdotta
+  la relativa system call, pertanto la funzione è implementata nelle
+  \acr{glibc} attraverso \func{select} e la possibilità di race condition
+  permane.} La tecnica classica è quella di utilizzare il gestore per
+impostare una variabile globale e controllare questa nel corpo principale del
+programma; abbiamo visto in \secref{sec:sig_example} come questo lasci spazio
+a possibili race condition, per cui diventa essenziale utilizzare
+\func{sigprocmask} per disabilitare la ricezione del segnale prima di eseguire
+il controllo e riabilitarlo dopo l'esecuzione delle relative operazioni, onde
+evitare l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe
+perso.
+
+Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
+sotto controllo anche dei file descriptor con \func{select}, in questo caso si
+può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
+e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
+alla gestione dati con un ciclo del tipo:
+\includecodesnip{listati/select_race.c} qui però emerge una race
+condition,\index{race condition} perché se il segnale arriva prima della
+chiamata a \func{select}, questa non verrà interrotta, e la ricezione del
+segnale non sarà rilevata.
+
+Per questo è stata introdotta \func{pselect}, che attraverso l'argomento
+\param{sigmask} permette di riabilitare la ricezione il segnale
+contestualmente all'esecuzione della funzione, e ribloccandolo non appena essa
+ritorna. In questo modo il precedente codice potrebbe essere essere modificato
+nel seguente modo: 
+\includecodesnip{listati/pselect_norace.c} 
+in questo caso utilizzando \var{oldmask} durante l'esecuzione di
+\func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
+interruzione si potranno eseguire le relative operazioni.
+
+
+
+\subsection{La funzione \func{poll}}
+\label{sec:file_poll}
+
+Nello sviluppo di System V, invece di utilizzare l'interfaccia di
+\func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
+interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
+  prevista dallo standard XPG4, ed è stata introdotta in Linux come system
+  call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
+cui prototipo è:
 \begin{prototype}{sys/poll.h}
   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
   
   La funzione attende un cambiamento di stato per uno dei file descriptor
   specificati da \param{ufds}.
   
 \begin{prototype}{sys/poll.h}
   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
   
   La funzione attende un cambiamento di stato per uno dei file descriptor
   specificati da \param{ufds}.
   
-\bodydesc{La funzione restituisce il numero di file descriptor con attività in
-  caso di successo, o 0 se c'è stato un timeout; in caso di errore viene
-  restituito  -1 ed \var{errno} assumerà uno dei valori:
+  \bodydesc{La funzione restituisce il numero di file descriptor con attività
+    in caso di successo, o 0 se c'è stato un timeout; in caso di errore viene
+    restituito -1 ed \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
     degli insiemi.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
   \begin{errlist}
   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
     degli insiemi.
   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Il valore di \param{nfds} eccede il limite
+    \macro{RLIMIT\_NOFILE}.
   \end{errlist}
   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
 \end{prototype}
 
   \end{errlist}
   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
 \end{prototype}
 
-La funzione tiene sotto controllo un numero \param{ndfs} di file descriptor
-specificati attraverso un vettore di puntatori a strutture \struct{pollfd}, la
-cui definizione è riportata in \figref{fig:file_pollfd}.  Come \func{select}
-anche \func{poll} permette di interrompere l'attesa dopo un certo tempo, che
-va specificato attraverso \param{timeout} in numero di millisecondi (un valore
-negativo indica un'attesa indefinita).
+La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
+file descriptor, specificati attraverso il puntatore \param{ufds} ad un
+vettore di strutture \struct{pollfd}.  Come con \func{select} si può
+interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
+l'argomento \param{timeout} in numero di millisecondi: un valore negativo
+indica un'attesa indefinita, mentre un valore comporta il ritorno immediato (e
+può essere utilizzato per impiegare \func{poll} in modalità
+\textsl{non-bloccante}).
 
 \begin{figure}[!htb]
   \footnotesize \centering
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -245,12 +351,26 @@ negativo indica un'attesa indefinita).
   \label{fig:file_pollfd}
 \end{figure}
 
   \label{fig:file_pollfd}
 \end{figure}
 
-Per ciascun file da controllare deve essere opportunamente predisposta una
-struttura \struct{pollfd}; nel campo \var{fd} deve essere specificato il file
-descriptor, mentre nel campo \var{events} il tipo di evento su cui si vuole
-attendere; quest'ultimo deve essere specificato come maschera binaria dei
-primi tre valori riportati in \tabref{tab:file_pollfd_flags} (gli altri
-vengono utilizzati solo per \var{revents} come valori in uscita).
+Per ciascun file da controllare deve essere inizializzata una struttura
+\struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
+struttura, la cui definizione è riportata in \figref{fig:file_pollfd}, prevede
+tre campi: in \var{fd} deve essere indicato il numero del file descriptor da
+controllare, in \var{events} deve essere specificata una maschera binaria di
+flag che indichino il tipo di evento che si vuole controllare, mentre in
+\var{revents} il kernel restituirà il relativo risultato.  Usando un valore
+negativo per \param{fd} la corrispondente struttura sarà ignorata da
+\func{poll}. Dato che i dati in ingresso sono del tutto indipendenti da quelli
+in uscita (che vengono restituiti in \var{revents}) non è necessario
+reinizializzare tutte le volte il valore delle strutture \struct{pollfd} a
+meno di non voler cambiare qualche condizione.
+
+Le costanti che definiscono i valori relativi ai bit usati nelle maschere
+binarie dei campi \var{events} e \var{revents} sono riportati in
+\tabref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
+suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
+per controllare l'attività in ingresso, nel secondo quelli per l'attività in
+uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
+nel campo \var{revents} per notificare delle condizioni di errore. 
 
 \begin{table}[htb]
   \centering
 
 \begin{table}[htb]
   \centering
@@ -260,22 +380,20 @@ vengono utilizzati solo per \var{revents} come valori in uscita).
     \textbf{Flag}  & \textbf{Significato} \\
     \hline
     \hline
     \textbf{Flag}  & \textbf{Significato} \\
     \hline
     \hline
-    \const{POLLIN}    & È possibile la lettura immediata.\\
-    \const{POLLPRI}   & Sono presenti dati urgenti.\\
+    \const{POLLIN}    & È possibile la lettura.\\
+    \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
+    \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari. \\
+    \const{POLLPRI}   & È possibile la lettura di dati urgenti.\\
+    \hline
     \const{POLLOUT}   & È possibile la scrittura immediata.\\
     \const{POLLOUT}   & È possibile la scrittura immediata.\\
+    \const{POLLWRNORM}& È possibile la scrittura di dati normali.  \\ 
+    \const{POLLWRBAND}& È possibile la scrittura di dati prioritari. \\
     \hline
     \const{POLLERR}   & C'è una condizione di errore.\\
     \const{POLLHUP}   & Si è verificato un hung-up.\\
     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
     \hline
     \hline
     \const{POLLERR}   & C'è una condizione di errore.\\
     \const{POLLHUP}   & Si è verificato un hung-up.\\
     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
     \hline
-    \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
-    \const{POLLRDBAND}& Sono disponibili in lettura dati ad alta 
-                        priorità. \\
-    \const{POLLWRNORM}& È possibile la scrittura di dati normali.  \\ 
-    \const{POLLWRBAND}& È possibile la scrittura di dati ad 
-                        alta priorità. \\
-    \const{POLLMSG}   & Un segnale \const{SIGPOLL} è arrivato alla
-                        cima dello stream (non usato).\\
+    \const{POLLMSG}   & Definito per compatobilità con SysV.\\
     \hline    
   \end{tabular}
   \caption{Costanti per l'identificazione dei vari bit dei campi
     \hline    
   \end{tabular}
   \caption{Costanti per l'identificazione dei vari bit dei campi
@@ -283,86 +401,53 @@ vengono utilizzati solo per \var{revents} come valori in uscita).
   \label{tab:file_pollfd_flags}
 \end{table}
 
   \label{tab:file_pollfd_flags}
 \end{table}
 
-La funzione ritorna, restituendo il numero di file per i quali si è verificata
-una delle condizioni di attesa richieste od un errore. Lo stato dei file
-all'uscita della funzione viene restituito nel campo \var{revents} della
-relativa struttura \struct{pollfd}, che viene impostato alla maschera binaria
-dei valori riportati in \tabref{tab:file_pollfd_flags}, ed oltre alle tre
-condizioni specificate tramite \var{events} può riportare anche l'occorrere di
-una condizione di errore.
-
-Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
-  multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
-1003.1g-2000 e POSIX 1003.1-2001). Esso prevede che tutte le funzioni ad esso
-relative vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
-precedenti, ed aggiunge a \func{select} una nuova funzione
-\funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
-  l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
-  2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
-  \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
-  senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
-  \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
-  \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
-  maggiore di 600.} il cui prototipo è:
-\begin{prototype}{sys/select.h}
-  {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
-    struct timespec *timeout, sigset\_t *sigmask)}
-  
-  Attende che uno dei file descriptor degli insiemi specificati diventi
-  attivo.
-  
-  \bodydesc{La funzione in caso di successo restituisce il numero di file
-    descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
-    caso \var{errno} assumerà uno dei valori:
-  \begin{errlist}
-  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
-  degli insiemi.
-  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
-  \end{errlist}
-  ed inoltre \errval{ENOMEM}.}
-\end{prototype}
-
-La funzione è sostanzialmente identica a \func{select}, solo che usa una
-struttura \struct{timespec} per indicare con maggiore precisione il timeout e
-non ne aggiorna il valore in caso di interruzione, inoltre prende un argomento
-aggiuntivo \param{sigmask} che è il puntatore ad una maschera di segnali (si
-veda \secref{sec:sig_sigmask}). La maschera corrente viene sostituita da
-questa immediatamente prima di eseguire l'attesa, e ripristinata al ritorno
-della funzione.
-
-L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
-race condition\footnote{in Linux però, non esistendo una system call apposita,
-  la funzione è implementata nelle \acr{glibc} usando \func{select}, e la
-  possibilità di una race condition\index{race condition} resta.} quando si
-deve eseguire un test su una variabile assegnata da un gestore sulla base
-dell'occorrenza di un segnale per decidere se lanciare \func{select}. Fra il
-test e l'esecuzione è presente una finestra in cui potrebbe arrivare il
-segnale che non sarebbe rilevato; la race condition\index{race condition}
-diventa superabile disabilitando il segnale prima del test e riabilitandolo
-poi grazie all'uso di \param{sigmask}.
-
-Dato che l'I/O multiplexing serve a risolvere il problema di dover attendere
-la disponibilità di accesso ad un insieme di file, esso viene utilizzato
-prevalentemente per programmi in cui l'accesso ad un file descriptor può
-essere bloccante. Abbiamo già accennato come questo non avvenga mai per i
-normali file su disco; l'uso più comune di queste funzioni infatti è nei
-server di rete, in cui esse vengono utilizzate per tenere sotto controllo vari
-socket; pertanto ritorneremo su di esse con maggiori dettagli e con qualche
-esempio in \secref{sec:TCP_sock_multiplexing}.
-
-
-
-\subsection{L'I/O asincrono}
-\label{sec:file_asyncronous_io}
-
-Una modalità alternativa all'uso dell'\textit{I/O multiplexing} è quella di
-fare ricorso al cosiddetto \textsl{I/O asincrono}. Il concetto base
-dell'\textsl{I/O asincrono} è che le funzioni di I/O non attendono il
-completamento delle operazioni prima di ritornare, così che il processo non
-viene bloccato.  In questo modo diventa ad esempio possibile effettuare una
-richiesta preventiva di dati, in modo da poter effettuare in contemporanea le
-operazioni di calcolo e quelle di I/O.
+Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
+compatibilità con l'implementazione di SysV che usa gli
+\textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
+  presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
+  delle librerie standard del C.} è da questi che derivano i nomi di alcune
+costanti, in quanto per essi sono definite tre classi di dati:
+\textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
+distinzione ha senso solo per i dati \textit{out-of-band} dei socket (vedi
+\secref{sec:TCP_urgent_data}), ma su questo e su come \func{poll} reagisce
+alle varie condizioni dei socket torneremo in \secref{sec:TCP_serv_poll}, dove
+vedremo anche un esempio del suo utilizzo. Si tenga conto comunque che le
+costanti relative ai diversi tipi di dati (come \macro{POLLRDNORM} e
+\macro{POLLRDBAND}) sono utilizzabili soltanto qualora si sia definito
+\macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
+  file, definirla soltanto prima di includere \file{sys/poll.h} non è
+  sufficiente.}
+
+In caso di successo funzione ritorna restituendo il numero di file (un valore
+positivo) per i quali si è verificata una delle condizioni di attesa richieste
+o per i quali si è verificato un errore (nel qual caso vengono utilizzati i
+valori di \tabref{tab:file_pollfd_flags} esclusivi di \var{revents}). Un
+valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
+indica un errore nella chiamata, il cui codice viene riportato al solito
+tramite \var{errno}.
+
+
+%\subsection{L'interfaccia di \textit{epoll}}
+%\label{sec:file_epoll}
+% placeholder ...
+
+%da fare
+
+\section{L'accesso \textsl{asincrono} ai file}
+\label{sec:file_asyncronous_access}
+
+Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
+le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
+debba operare su più file contemporaneamente, esistono altre modalità di
+gestione delle stesse problematiche. In particolare sono importanti in questo
+contesto le modalità di accesso ai file eseguibili in maniera
+\textsl{asincrona}, senza cioè che un processo debba bloccarsi, ed utilizzi
+invece un meccanismo di notifica asincrono, come un segnale, per rilevare la
+possibilità di eseguire le operazioni volute.
+
+
+\subsection{Operazioni asincrone sui file}
+\label{sec:file_asyncronous_operation}
 
 Abbiamo accennato in \secref{sec:file_open} che è possibile, attraverso l'uso
 del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e dei
 
 Abbiamo accennato in \secref{sec:file_open} che è possibile, attraverso l'uso
 del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e dei
@@ -370,37 +455,49 @@ del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e dei
   di Linux e BSD.} aprire un file in modalità asincrona, così come è possibile
 attivare in un secondo tempo questa modalità impostando questo flag attraverso
 l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
   di Linux e BSD.} aprire un file in modalità asincrona, così come è possibile
 attivare in un secondo tempo questa modalità impostando questo flag attraverso
 l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
-\secref{sec:file_fcntl}).
-
-In realtà in questo caso non si tratta di I/O asincrono vero e proprio, quanto
-di un meccanismo asincrono di notifica delle variazione dello stato del file
-descriptor; quello che succede è che il sistema genera un segnale (normalmente
-\const{SIGIO}, ma è possibile usarne altri) tutte le volte che diventa
-possibile leggere o scrivere dal file descriptor che si è posto in questa
-modalità. Si può inoltre selezionare, con il comando \const{F\_SETOWN} di
-\func{fcntl}, quale processo (o gruppo di processi) riceverà il segnale. 
+\secref{sec:file_fcntl}). 
+
+In realtà in questo caso non si tratta di eseguire delle operazioni di lettura
+o scrittura del file in modo asincrono (tratteremo questo, che più
+propriamente è detto \textsl{I/O asincrono} in
+\secref{sec:file_asyncronous_io}), quanto di un meccanismo asincrono di
+notifica delle variazione dello stato del file descriptor aperto in questo
+modo.
+
+Quello che succede è che il sistema genera un segnale (normalmente
+\const{SIGIO}, ma è possibile usarne altri con il comando \const{F\_SETSIG} di
+\func{fcntl}) tutte le volte che diventa possibile leggere o scrivere dal file
+descriptor che si è posto in questa modalità. Si può inoltre selezionare, con
+il comando \const{F\_SETOWN} di \func{fcntl}, quale processo (o gruppo di
+processi) riceverà il segnale. Se pertanto si effettuano le operazioni in
+risposta alla ricezione del segnale non ci sarà più la necessità di restare
+bloccati in attesa della disponibilità di accesso ai file.
 
 In questo modo si può evitare l'uso delle funzioni \func{poll} o \func{select}
 che, quando vengono usate con un numero molto grande di file descriptor, non
 
 In questo modo si può evitare l'uso delle funzioni \func{poll} o \func{select}
 che, quando vengono usate con un numero molto grande di file descriptor, non
-hanno buone prestazioni. In tal caso infatti la maggior parte del loro tempo
+hanno buone prestazioni. % aggiungere cenno a epoll quando l'avrò scritta
+ In tal caso infatti la maggior parte del loro tempo
 di esecuzione è impegnato ad eseguire una scansione su tutti i file descriptor
 tenuti sotto controllo per determinare quali di essi (in genere una piccola
 percentuale) sono diventati attivi.
 
 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
 di esecuzione è impegnato ad eseguire una scansione su tutti i file descriptor
 tenuti sotto controllo per determinare quali di essi (in genere una piccola
 percentuale) sono diventati attivi.
 
 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
-presenta notevoli problemi, dato che non è possibile determinare, quando sono
-più di uno, qual'è il file descriptor responsabile dell'emissione del segnale.
-Linux però supporta le estensioni POSIX.1b dei segnali che permettono di
-superare il problema facendo ricorso alle informazioni aggiuntive restituite
-attraverso la struttura \struct{siginfo\_t}, utilizzando la forma estesa
-\var{sa\_sigaction} del gestore (si riveda quanto illustrato in
+presenta notevoli problemi, dato che non è possibile determinare, quando i
+file descriptor sono più di uno, qual'è quello responsabile dell'emissione del
+segnale; inoltre dato che i segnali normali non si accumulano, in presenza di
+più file descriptor attivi contemporaneamente, più segnali emessi nello stesso
+tempo verrebbero notificati una volta sola. Linux però supporta le estensioni
+POSIX.1b dei segnali real-time, che possono accumularsi e che permettono di
+riconoscere il file descriptor facendo ricorso alle informazioni aggiuntive
+restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
+estesa \var{sa\_sigaction} del gestore (si riveda quanto illustrato in
 \secref{sec:sig_sigaction}).
 
 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
 (vedi \secref{sec:sig_real_time}) impostando esplicitamente con il comando
 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
 \secref{sec:sig_sigaction}).
 
 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
 (vedi \secref{sec:sig_real_time}) impostando esplicitamente con il comando
 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
-gestore tutte le volte che riceverà \const{SI\_SIGIO} come valore del
+gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del
 campo \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia
   il segnale che si è associato all'I/O asincrono, ed indica appunto che il
   segnale è stato generato a causa di attività nell'I/O asincrono.} di
 campo \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia
   il segnale che si è associato all'I/O asincrono, ed indica appunto che il
   segnale è stato generato a causa di attività nell'I/O asincrono.} di
@@ -416,17 +513,30 @@ come \func{poll} e \func{select}, almeno fintanto che non si satura la coda;
 si eccedono le dimensioni di quest'ultima; in tal caso infatti il kernel, non
 potendo più assicurare il comportamento corretto per un segnale real-time,
 invierà al suo posto un \const{SIGIO}, su cui si accumuleranno tutti i segnali
 si eccedono le dimensioni di quest'ultima; in tal caso infatti il kernel, non
 potendo più assicurare il comportamento corretto per un segnale real-time,
 invierà al suo posto un \const{SIGIO}, su cui si accumuleranno tutti i segnali
-in eccesso, e si dovrà determinare al solito modo quali sono i file diventati
+in eccesso, e si dovrà determinare con un ciclo quali sono i file diventati
 attivi.
 
 attivi.
 
+
+\subsection{L'interfaccia POSIX per l'I/O asincrono}
+\label{sec:file_asyncronous_io}
+
+Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
+dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
+  asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
+di I/O non attendono il completamento delle operazioni prima di ritornare,
+così che il processo non viene bloccato.  In questo modo diventa ad esempio
+possibile effettuare una richiesta preventiva di dati, in modo da poter
+effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
+
 Benché la modalità di apertura asincrona di un file possa risultare utile in
 varie occasioni (in particolar modo con i socket\index{socket} e gli altri
 Benché la modalità di apertura asincrona di un file possa risultare utile in
 varie occasioni (in particolar modo con i socket\index{socket} e gli altri
-file per i quali le funzioni di I/O sono system call lente), essa è comunque
-limitata alla notifica della disponibilità del file descriptor per le
-operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
-standard POSIX.1b definisce anche una interfaccia apposita per l'I/O
-asincrono, che prevede un insieme di funzioni dedicate, completamente separate
-rispetto a quelle usate normalmente.
+file per i quali le funzioni di I/O sono \index{system call lente}system call
+lente), essa è comunque limitata alla notifica della disponibilità del file
+descriptor per le operazioni di I/O, e non ad uno svolgimento asincrono delle
+medesime.  Lo standard POSIX.1b definisce una interfaccia apposita per l'I/O
+asincrono vero e proprio, che prevede un insieme di funzioni dedicate per la
+lettura e la scrittura dei file, completamente separate rispetto a quelle
+usate normalmente.
 
 In generale questa interfaccia è completamente astratta e può essere
 implementata sia direttamente nel kernel, che in user space attraverso l'uso
 
 In generale questa interfaccia è completamente astratta e può essere
 implementata sia direttamente nel kernel, che in user space attraverso l'uso
@@ -496,7 +606,7 @@ che serve a specificare il modo in cui si vuole che venga effettuata la
 notifica del completamento delle operazioni richieste. La struttura è
 riportata in \secref{fig:file_sigevent}; il campo \var{sigev\_notify} è quello
 che indica le modalità della notifica, esso può assumere i tre valori:
 notifica del completamento delle operazioni richieste. La struttura è
 riportata in \secref{fig:file_sigevent}; il campo \var{sigev\_notify} è quello
 che indica le modalità della notifica, esso può assumere i tre valori:
-\begin{basedescript}{\desclabelwidth{3.0cm}}
+\begin{basedescript}{\desclabelwidth{2.6cm}}
 \item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
 \item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
   chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
 \item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
 \item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
   chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
@@ -766,6 +876,16 @@ la notifica del completamento di tutte le richieste, impostando l'argomento
 di \struct{aiocb}.
 
 
 di \struct{aiocb}.
 
 
+\section{Altre modalità di I/O avanzato}
+\label{sec:file_advanced_io}
+
+Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
+  asincrono}, esistono altre funzioni che implementano delle modalità di
+accesso ai file più evolute rispetto alle normali funzioni di lettura e
+scrittura che abbiamo esaminato in \secref{sec:file_base_func}. In questa
+sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
+  vettorizzato} e per l'\textsl{I/O mappato in memoria}.
+
 
 \subsection{I/O vettorizzato}
 \label{sec:file_multiple_io}
 
 \subsection{I/O vettorizzato}
 \label{sec:file_multiple_io}
@@ -852,9 +972,9 @@ file in una sezione dello spazio di indirizzi del processo. Il meccanismo 
 illustrato in \figref{fig:file_mmap_layout}, una sezione del file viene
 riportata direttamente nello spazio degli indirizzi del programma. Tutte le
 operazioni su questa zona verranno riportate indietro sul file dal meccanismo
 illustrato in \figref{fig:file_mmap_layout}, una sezione del file viene
 riportata direttamente nello spazio degli indirizzi del programma. Tutte le
 operazioni su questa zona verranno riportate indietro sul file dal meccanismo
-della memoria virtuale che trasferirà il contenuto di quel segmento sul file
-invece che nella swap, per cui si può parlare tanto di file mappato in
-memoria, quanto di memoria mappata su file.
+della memoria virtuale\index{memoria virtuale} che trasferirà il contenuto di
+quel segmento sul file invece che nella swap, per cui si può parlare tanto di
+file mappato in memoria, quanto di memoria mappata su file.
 
 \begin{figure}[htb]
   \centering
 
 \begin{figure}[htb]
   \centering
@@ -873,16 +993,16 @@ memoria solo le parti del file che sono effettivamente usate ad un dato
 istante.
 
 Infatti, dato che l'accesso è fatto direttamente attraverso la memoria
 istante.
 
 Infatti, dato che l'accesso è fatto direttamente attraverso la memoria
-virtuale, la sezione di memoria mappata su cui si opera sarà a sua volta letta
-o scritta sul file una pagina alla volta e solo per le parti effettivamente
-usate, il tutto in maniera completamente trasparente al processo; l'accesso
-alle pagine non ancora caricate avverrà allo stesso modo con cui vengono
-caricate in memoria le pagine che sono state salvate sullo swap.  Infine in
-situazioni in cui la memoria è scarsa, le pagine che mappano un file vengono
-salvate automaticamente, così come le pagine dei programmi vengono scritte
-sulla swap; questo consente di accedere ai file su dimensioni il cui solo
-limite è quello dello spazio di indirizzi disponibile, e non della memoria su
-cui possono esserne lette delle porzioni.
+virtuale,\index{memoria virtuale} la sezione di memoria mappata su cui si
+opera sarà a sua volta letta o scritta sul file una pagina alla volta e solo
+per le parti effettivamente usate, il tutto in maniera completamente
+trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
+allo stesso modo con cui vengono caricate in memoria le pagine che sono state
+salvate sullo swap.  Infine in situazioni in cui la memoria è scarsa, le
+pagine che mappano un file vengono salvate automaticamente, così come le
+pagine dei programmi vengono scritte sulla swap; questo consente di accedere
+ai file su dimensioni il cui solo limite è quello dello spazio di indirizzi
+disponibile, e non della memoria su cui possono esserne lette delle porzioni.
 
 L'interfaccia prevede varie funzioni per la gestione del \textit{memory mapped
   I/O}, la prima di queste è \funcd{mmap}, che serve ad eseguire la mappatura
 
 L'interfaccia prevede varie funzioni per la gestione del \textit{memory mapped
   I/O}, la prima di queste è \funcd{mmap}, che serve ad eseguire la mappatura
@@ -1035,11 +1155,19 @@ come maschera binaria ottenuta dall'OR di uno o pi
 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
 piuttosto complessi, essi si possono comprendere solo tenendo presente che
 tutto quanto è comunque basato sul basato sul meccanismo della memoria
 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
 piuttosto complessi, essi si possono comprendere solo tenendo presente che
 tutto quanto è comunque basato sul basato sul meccanismo della memoria
-virtuale. Questo comporta allora una serie di conseguenze. La più ovvia è che
-se si cerca di scrivere su una zona mappata in sola lettura si avrà
-l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}), dato che
-i permessi sul segmento di memoria relativo non consentono questo tipo di
-accesso.
+virtuale.\index{memoria virtuale} Questo comporta allora una serie di
+conseguenze. La più ovvia è che se si cerca di scrivere su una zona mappata in
+sola lettura si avrà l'emissione di un segnale di violazione di accesso
+(\const{SIGSEGV}), dato che i permessi sul segmento di memoria relativo non
+consentono questo tipo di accesso.
+
+\begin{figure}[!htb]
+  \centering
+  \includegraphics[width=10cm]{img/mmap_boundary}
+  \caption{Schema della mappatura in memoria di una sezione di file di
+    dimensioni non corrispondenti al bordo di una pagina.}
+  \label{fig:file_mmap_boundary}
+\end{figure}
 
 È invece assai diversa la questione relativa agli accessi al di fuori della
 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
 
 È invece assai diversa la questione relativa agli accessi al di fuori della
 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
@@ -1054,15 +1182,6 @@ file non rientra nei confini di una pagina: in tal caso verr
 mappato su un segmento di memoria che si estende fino al bordo della pagina
 successiva.
 
 mappato su un segmento di memoria che si estende fino al bordo della pagina
 successiva.
 
-\begin{figure}[htb]
-  \centering
-  \includegraphics[width=10cm]{img/mmap_boundary}
-  \caption{Schema della mappatura in memoria di una sezione di file di
-    dimensioni non corrispondenti al bordo di una pagina.}
-  \label{fig:file_mmap_boundary}
-\end{figure}
-
-
 In questo caso è possibile accedere a quella zona di memoria che eccede le
 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
 In questo caso è possibile accedere a quella zona di memoria che eccede le
 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
 poiché essa è presente nello spazio di indirizzi del processo, anche se non è