Convertiti (spero) tutti i prototipi delle funzioni al nuovo environment...
[gapil.git] / elemtcp.tex
index 94612fa7759e2fd4415015a93c33a0dca7adfaf2..5e5a69cd3c782f2cda80f1e40a864c79352e8d58 100644 (file)
@@ -3,9 +3,10 @@
 
 In questo capitolo inizieremo ad approndire la conoscenza dei socket TCP,
 tratteremo qui dunque il funzionamento delle varie funzioni che si sono usate
 
 In questo capitolo inizieremo ad approndire la conoscenza dei socket TCP,
 tratteremo qui dunque il funzionamento delle varie funzioni che si sono usate
-nei due esempi elementari forniti in precedenza (vedi \ref{sec:net_cli_sample}
-e \ref{sec:net_serv_sample}), previa una descrizione delle principali
-caratteristiche del funzionamento di una connessione TCP.
+nei due esempi elementari forniti in precedenza (vedi
+\secref{sec:net_cli_sample} e \secref{sec:net_serv_sample}), previa una
+descrizione delle principali caratteristiche del funzionamento di una
+connessione TCP.
 
 La seconda parte del capitolo sarà poi dedicata alla scrittura di una prima
 semplice applicazione client/server completa, che implementi il servizio
 
 La seconda parte del capitolo sarà poi dedicata alla scrittura di una prima
 semplice applicazione client/server completa, che implementi il servizio
@@ -31,10 +32,10 @@ l'uso del programma \texttt{netstat}.
 Il processo che porta a creare una connessione TCP è chiamato \textit{three
   way handushake}; la successione tipica degli eventi (la stessa che si
 verifica utilizzando il codice dei due precedenti esempi elementari
 Il processo che porta a creare una connessione TCP è chiamato \textit{three
   way handushake}; la successione tipica degli eventi (la stessa che si
 verifica utilizzando il codice dei due precedenti esempi elementari
-\ref{fig:net_cli_code} e \ref{fig:net_serv_code}) che porta alla creazione di
-una connessione è la seguente:
+\figref{fig:net_cli_code} e \figref{fig:net_serv_code}) che porta alla
+creazione di una connessione è la seguente:
  
  
-\begin{itemize}
+\begin{enumerate}
 \item Il server deve essere preparato per accettare le connessioni in arrivo;
   il procedimento si chiama \textsl{apertura passiva} del socket (in inglese
   \textit{passive open}); questo viene fatto chiamando la sequenza di funzioni
 \item Il server deve essere preparato per accettare le connessioni in arrivo;
   il procedimento si chiama \textsl{apertura passiva} del socket (in inglese
   \textit{passive open}); questo viene fatto chiamando la sequenza di funzioni
@@ -55,7 +56,7 @@ una connessione 
     \texttt{SYN}, \texttt{ACK}, \texttt{URG}, \texttt{FIN}, alcuni di essi,
     come \texttt{SYN} (che sta per \textit{sincronize}) corrispondono a
     funzioni particolari del protocollo e danno il nome al segmento, (per
     \texttt{SYN}, \texttt{ACK}, \texttt{URG}, \texttt{FIN}, alcuni di essi,
     come \texttt{SYN} (che sta per \textit{sincronize}) corrispondono a
     funzioni particolari del protocollo e danno il nome al segmento, (per
-    maggiori dettagli vedere \ref{cha:tcp_protocol})}, in sostanza viene
+    maggiori dettagli vedere \capref{cha:tcp_protocol})}, in sostanza viene
   inviato al server un pacchetto IP che contiene solo gli header IP e TCP (con
   il numero di sequenza iniziale e il flag \texttt{SYN}) e le opzioni di TCP.
   
   inviato al server un pacchetto IP che contiene solo gli header IP e TCP (con
   il numero di sequenza iniziale e il flag \texttt{SYN}) e le opzioni di TCP.
   
@@ -70,7 +71,7 @@ una connessione 
   \texttt{SYN} del server inviando un \texttt{ACK}. Alla ricezione di
   quest'ultimo la funzione \texttt{accept} del server ritorna e la connessione
   è stabilita.
   \texttt{SYN} del server inviando un \texttt{ACK}. Alla ricezione di
   quest'ultimo la funzione \texttt{accept} del server ritorna e la connessione
   è stabilita.
-\end{itemize} 
+\end{enumerate} 
 
 Il procedimento viene chiamato \textit{three way handshake} dato che per
 realizzarlo devono essere scambiati tre segmenti.  In \nfig\ si è
 
 Il procedimento viene chiamato \textit{three way handshake} dato che per
 realizzarlo devono essere scambiati tre segmenti.  In \nfig\ si è
@@ -126,7 +127,7 @@ regolare la connessione. Normalmente vengono usate le seguenti opzioni:
   connesione corrente. È possibile leggere e scrivere questo valore attraverso
   l'opzione del socket \texttt{TCP\_MAXSEG}.
   
   connesione corrente. È possibile leggere e scrivere questo valore attraverso
   l'opzione del socket \texttt{TCP\_MAXSEG}.
   
-\item \textit{window scale option} come spiegato in \ref{cha:tcp_protocol} il
+\item \textit{window scale option} come spiegato in \capref{cha:tcp_protocol} il
   protocollo TCP implementa il controllo di flusso attraverso una
   \textsl{finestra annunciata} (\textit{advertized window}) con la quale
   ciascun capo della comunicazione dichiara quanto spazio disponibile ha in
   protocollo TCP implementa il controllo di flusso attraverso una
   \textsl{finestra annunciata} (\textit{advertized window}) con la quale
   ciascun capo della comunicazione dichiara quanto spazio disponibile ha in
@@ -164,8 +165,8 @@ elevati. In ogni caso linux supporta pienamente entrambe le opzioni.
 
 Mentre per creare una connessione occorre un interscambio di tre segmenti, la
 procedura di chiusura ne richede quattro; ancora una volta si può fare
 
 Mentre per creare una connessione occorre un interscambio di tre segmenti, la
 procedura di chiusura ne richede quattro; ancora una volta si può fare
-riferimento al codice degli esempi \ref{fig:net_cli_code} e
-\ref{fig:net_serv_code}, in questo caso la successione degli eventi è la
+riferimento al codice degli esempi \figref{fig:net_cli_code} e
+\figref{fig:net_serv_code}, in questo caso la successione degli eventi è la
 seguente:
 
 \begin{enumerate}
 seguente:
 
 \begin{enumerate}
@@ -185,7 +186,7 @@ seguente:
 \item Dopo un certo tempo anche il secondo processo chiamerà la funzione
   \texttt{close} sul proprio socket, causando l'emissione di un altro segmento
   FIN. 
 \item Dopo un certo tempo anche il secondo processo chiamerà la funzione
   \texttt{close} sul proprio socket, causando l'emissione di un altro segmento
   FIN. 
-  
+
 \item L'altro capo della connessione riceverà il FIN conclusivo e risponderà
   con un ACK.
 \end{enumerate}
 \item L'altro capo della connessione riceverà il FIN conclusivo e risponderà
   con un ACK.
 \end{enumerate}
@@ -218,17 +219,17 @@ pi
 
 La emissione del FIN avviene quando il socket viene chiuso, questo però non
 avviene solo per la chiamata della funzione \texttt{close} (come in
 
 La emissione del FIN avviene quando il socket viene chiuso, questo però non
 avviene solo per la chiamata della funzione \texttt{close} (come in
-\ref{fig:net_serv_code}), ma anche alla terminazione di un processo (come in
-\ref{fig:net_cli_code}). Questo vuol dire ad esempio che se un processo viene
-terminato da un segnale tutte le connessioni aperte verranno chiuse.
+\figref{fig:net_serv_code}), ma anche alla terminazione di un processo (come
+in \figref{fig:net_cli_code}). Questo vuol dire ad esempio che se un processo
+viene terminato da un segnale tutte le connessioni aperte verranno chiuse.
 
 Infine è da sottolineare che, benché nella figura (e nell'esempio che vedremo
 
 Infine è da sottolineare che, benché nella figura (e nell'esempio che vedremo
-in \ref{sec:TCPel_echo_example}) sia il client ad eseguire la chiusura attiva,
-nella realtà questa può essere eseguita da uno qualunque dei due capi della
-comunicazione (come in fatto in precedenza da \ref{fig:net_serv_code}), e
-benché quello del client sia il caso più comune ci sono alcuni servizi, il
-principale dei quali è l'HTTP, per i quali è il server ad effettuare la
-chiusura attiva.
+in \secref{sec:TCPel_echo_example}) sia il client ad eseguire la chiusura
+attiva, nella realtà questa può essere eseguita da uno qualunque dei due capi
+della comunicazione (come in fatto in precedenza da
+\figref{fig:net_serv_code}), e benché quello del client sia il caso più comune
+ci sono alcuni servizi, il principale dei quali è l'HTTP, per i quali è il
+server ad effettuare la chiusura attiva.
 
 \subsection{Un esempio di connessione}
 \label{sec:TCPel_conn_dia}
 
 \subsection{Un esempio di connessione}
 \label{sec:TCPel_conn_dia}
@@ -242,26 +243,26 @@ che vengono riportati del comando \texttt{netstat} nel campo \textit{State}.
 
 Una descrizione completa del funzionamento del protocollo va al di là degli
 obiettivi di questo libro; un approfondimento sugli aspetti principali si
 
 Una descrizione completa del funzionamento del protocollo va al di là degli
 obiettivi di questo libro; un approfondimento sugli aspetti principali si
-trova in \ref{cha:tcp_protocol}, ma per una trattazione esauriente il miglior
+trova in \capref{cha:tcp_protocol}, ma per una trattazione esauriente il miglior
 riferimento resta (FIXME citare lo Stevens); qui ci limiteremo a descrivere
 brevemente un semplice esempio di connessione e le transizioni che avvengono
 nei due casi appena citati (creazione e terminazione della connessione).
 
 riferimento resta (FIXME citare lo Stevens); qui ci limiteremo a descrivere
 brevemente un semplice esempio di connessione e le transizioni che avvengono
 nei due casi appena citati (creazione e terminazione della connessione).
 
-In assenza di connessione lo stato del TCP è \textsl{CLOSED}; quando una
+In assenza di connessione lo stato del TCP è \texttt{CLOSED}; quando una
 applicazione esegue una apertura attiva il TCP emette un SYN e lo stato
 applicazione esegue una apertura attiva il TCP emette un SYN e lo stato
-diventa \textsl{SYN\_SENT}; quando il TCP riceve la risposta del SYN$+$ACK
-emette un ACK e passa allo stato \textsl{ESTABLISHED}; questo è lo stato
+diventa \texttt{SYN\_SENT}; quando il TCP riceve la risposta del SYN$+$ACK
+emette un ACK e passa allo stato \texttt{ESTABLISHED}; questo è lo stato
 finale in cui avviene la gran parte del trasferimento dei dati.
 
 Dal lato server in genere invece il passaggio che si opera con l'apertura
 finale in cui avviene la gran parte del trasferimento dei dati.
 
 Dal lato server in genere invece il passaggio che si opera con l'apertura
-passiva è quello di portare il socket dallo stato \textsl{CLOSED} allo
-stato \textsl{LISTEN} in cui vengono accettate le connessioni.
+passiva è quello di portare il socket dallo stato \texttt{CLOSED} allo
+stato \texttt{LISTEN} in cui vengono accettate le connessioni.
 
 
-Dallo stato \textsl{ESTABLISHED} si può uscire in due modi; se un'applicazione
+Dallo stato \texttt{ESTABLISHED} si può uscire in due modi; se un'applicazione
 chiama la \texttt{close} prima di aver ricevuto un end of file (chiusura
 chiama la \texttt{close} prima di aver ricevuto un end of file (chiusura
-attiva) la transizione è verso lo stato \textsl{FIN\_WAIT\_1}; se invece
-l'applicazione riceve un FIN nello stato \textsl{ESTABLISHED} (chiusura
-passiva) la transizione è verso lo stato \textsl{CLOSE\_WAIT}.
+attiva) la transizione è verso lo stato \texttt{FIN\_WAIT\_1}; se invece
+l'applicazione riceve un FIN nello stato \texttt{ESTABLISHED} (chiusura
+passiva) la transizione è verso lo stato \texttt{CLOSE\_WAIT}.
 
 In \nfig\ è riportato lo schema dello scambio dei pacchetti che avviene per
 una un esempio di connessione, insieme ai vari stati che il protocollo viene
 
 In \nfig\ è riportato lo schema dello scambio dei pacchetti che avviene per
 una un esempio di connessione, insieme ai vari stati che il protocollo viene
@@ -289,9 +290,9 @@ caso contrario si avrebbe prima l'emissione di un ACK e poi l'invio della
 risposta.
 
 Infine si ha lo scambio dei quattro segmenti che terminano la connessione
 risposta.
 
 Infine si ha lo scambio dei quattro segmenti che terminano la connessione
-secondo quanto visto in \ref{sec:TCPel_conn_term}; si noti che il capo della
+secondo quanto visto in \secref{sec:TCPel_conn_term}; si noti che il capo della
 connessione che esegue la chiusura attiva entra nello stato
 connessione che esegue la chiusura attiva entra nello stato
-\textsl{TIME\_WAIT} su cui torneremo fra poco.
+\texttt{TIME\_WAIT} su cui torneremo fra poco.
 
 È da notare come per effettuare uno scambio di due pacchetti (uno di richiesta
 e uno di risposta) il TCP necessiti di ulteriori otto segmenti, se invece si
 
 È da notare come per effettuare uno scambio di due pacchetti (uno di richiesta
 e uno di risposta) il TCP necessiti di ulteriori otto segmenti, se invece si
@@ -329,7 +330,7 @@ La MSL 
 sulla rete; questo tempo è limitato perché ogni pacchetto IP può essere
 ritrasmesso dai router un numero massimo di volte (detto \textit{hop limit}).
 Il numero di ritrasmissioni consentito è indicato dal campo TTL dell'header di
 sulla rete; questo tempo è limitato perché ogni pacchetto IP può essere
 ritrasmesso dai router un numero massimo di volte (detto \textit{hop limit}).
 Il numero di ritrasmissioni consentito è indicato dal campo TTL dell'header di
-IP (per maggiori dettagli vedi \ref{sec:appA_xxx}), e viene decrementato ad
+IP (per maggiori dettagli vedi \secref{sec:appA_xxx}), e viene decrementato ad
 ogni passaggio da un router; quando si annulla il pacchetto viene scartato.
 Siccome il numero è ad 8 bit il numero massimo di ``salti'' è di 255, pertanto
 anche se il TTL (da \textit{time to live}) non è propriamente un limite sul
 ogni passaggio da un router; quando si annulla il pacchetto viene scartato.
 Siccome il numero è ad 8 bit il numero massimo di ``salti'' è di 255, pertanto
 anche se il TTL (da \textit{time to live}) non è propriamente un limite sul
@@ -338,16 +339,16 @@ pi
 
 Ogni implementazione del TCP deve scegliere un valore per la MSL (l'RFC1122
 raccomanda 2 minuti, linux usa 30 secondi), questo comporta una durata dello
 
 Ogni implementazione del TCP deve scegliere un valore per la MSL (l'RFC1122
 raccomanda 2 minuti, linux usa 30 secondi), questo comporta una durata dello
-stato \textsl{TIME\_WAIT} che a seconda delle implementazioni può variare fra
+stato \texttt{TIME\_WAIT} che a seconda delle implementazioni può variare fra
 1 a 4 minuti.
 
 Lo stato \texttt{TIME\_WAIT} viene utilizzato dal protocollo per due motivi
 principali:
 1 a 4 minuti.
 
 Lo stato \texttt{TIME\_WAIT} viene utilizzato dal protocollo per due motivi
 principali:
-\begin{itemize}
+\begin{enumerate}
 \item implementare in maniera affidabile la terminazione della connessione
   in entrambe le direzioni.
 \item consentire l'eliminazione dei segmenti duplicati dalla rete. 
 \item implementare in maniera affidabile la terminazione della connessione
   in entrambe le direzioni.
 \item consentire l'eliminazione dei segmenti duplicati dalla rete. 
-\end{itemize}
+\end{enumerate}
 
 Il punto è che entrambe le ragioni sono importanti, anche se spesso si fa
 riferimento solo alla prima; ma è solo se si tiene conto della seconda che si
 
 Il punto è che entrambe le ragioni sono importanti, anche se spesso si fa
 riferimento solo alla prima; ma è solo se si tiene conto della seconda che si
@@ -422,7 +423,7 @@ In un ambiente multitasking in un dato momento pi
 usare sia UDP che TCP, e ci devono poter essere più connessioni in
 contemporanea. Per poter tenere distinte le diverse connessioni entrambi i
 protocolli usano i \textsl{numeri di porta}, che fanno parte, come si può
 usare sia UDP che TCP, e ci devono poter essere più connessioni in
 contemporanea. Per poter tenere distinte le diverse connessioni entrambi i
 protocolli usano i \textsl{numeri di porta}, che fanno parte, come si può
-vedere in \ref{sec:sock_sa_ipv4} e \ref{sec:sock_sa_ipv6} pure delle strutture
+vedere in \secref{sec:sock_sa_ipv4} e \secref{sec:sock_sa_ipv6} pure delle strutture
 degli indirizzi del socket.
 
 Quando un client contatta un server deve poter identificare con quale dei vari
 degli indirizzi del socket.
 
 Quando un client contatta un server deve poter identificare con quale dei vari
@@ -508,7 +509,7 @@ campi \textit{Local Address} e \textit{Foreing Address}.
 
 Per capire meglio l'uso delle porte e come vengono utilizzate quando si ha a
 che fare con un'applicazione client/server (come quella che scriveremo in
 
 Per capire meglio l'uso delle porte e come vengono utilizzate quando si ha a
 che fare con un'applicazione client/server (come quella che scriveremo in
-\ref{sec:TCPel_echo_example}) esaminaremo cosa accade con le connessioni nel
+\secref{sec:TCPel_echo_example}) esaminaremo cosa accade con le connessioni nel
 caso di un server TCP che deve gestire connessioni multiple.
 
 Se esguiamo un \texttt{netstat} su una macchina di prova (che supponiamo avere
 caso di un server TCP che deve gestire connessioni multiple.
 
 Se esguiamo un \texttt{netstat} su una macchina di prova (che supponiamo avere
@@ -600,14 +601,14 @@ alla porta 21101 al secondo.
 
 In questa sezione descriveremo in dettaglio le varie funzioni necessarie per
 l'uso dei socket TCP già citate in precedenza (e utilizzate nei due esempi
 
 In questa sezione descriveremo in dettaglio le varie funzioni necessarie per
 l'uso dei socket TCP già citate in precedenza (e utilizzate nei due esempi
-\ref{sec:net_cli_sample} e \ref{sec:net_serv_sample}) con l'eccezione della
-funzione \texttt{socket} che è già stata esaminata in dettaglio in
-\ref{sec:sock_socket}.
+\secref{sec:net_cli_sample} e \secref{sec:net_serv_sample}) con l'eccezione
+della funzione \texttt{socket} che è già stata esaminata in dettaglio in
+\secref{sec:sock_socket}.
 
 In \nfig\ abbiamo un tipico schema di funzionamento di un'applicazione
 client-server che usa i socket TCP: prima il server viene avviato ed in
 seguito il client si connette, in questo caso, a differenza di quanto accadeva
 
 In \nfig\ abbiamo un tipico schema di funzionamento di un'applicazione
 client-server che usa i socket TCP: prima il server viene avviato ed in
 seguito il client si connette, in questo caso, a differenza di quanto accadeva
-con gli esempi elementari del Cap.~\ref{cha:network} si assume che sia il
+con gli esempi elementari del Cap.~\capref{cha:network} si assume che sia il
 client ad effettuare delle richieste a cui il server risponde, il client
 notifica poi di avere concluso inviando un end-of-file a cui il server
 risponderà anche lui chiudendo la connessione per aspettarne una nuova.
 client ad effettuare delle richieste a cui il server risponde, il client
 notifica poi di avere concluso inviando un end-of-file a cui il server
 risponderà anche lui chiudendo la connessione per aspettarne una nuova.
@@ -621,7 +622,7 @@ risponder
 \end{figure}
 
 Useremo questo schema per l'esempio di implementazione del servizio
 \end{figure}
 
 Useremo questo schema per l'esempio di implementazione del servizio
-\texttt{echo} che illustreremo in \ref{sec:TCPel_echo_example}. 
+\texttt{echo} che illustreremo in \secref{sec:TCPel_echo_example}. 
 
 
 \subsection{La funzione \texttt{bind}}
 
 
 \subsection{La funzione \texttt{bind}}
@@ -635,27 +636,25 @@ ci si porr
 
 Il prototipo della funzione, definito in \texttt{sys/socket.h}, è il seguente:
 
 
 Il prototipo della funzione, definito in \texttt{sys/socket.h}, è il seguente:
 
-\begin{itemize}
-\item \texttt{int bind(int sockfd, const struct sockaddr *serv\_addr,
+\begin{prototype}{int bind(int sockfd, const struct sockaddr *serv\_addr,
     socklen\_t addrlen) }
   
   Il primo argomento è un file descriptor ottenuto da una precedente chiamata
   a \texttt{socket}, mentre il secondo e terzo argomento sono rispettivamente
   l'indirizzo (locale) del socket e la dimensione della struttura che lo
     socklen\_t addrlen) }
   
   Il primo argomento è un file descriptor ottenuto da una precedente chiamata
   a \texttt{socket}, mentre il secondo e terzo argomento sono rispettivamente
   l'indirizzo (locale) del socket e la dimensione della struttura che lo
-  contiene, secondo quanto già trattato in \ref{sec:sock_sockaddr}.
+  contiene, secondo quanto già trattato in \secref{sec:sock_sockaddr}.
 
   La funzione restituisce zero in caso di successo e -1 per un errore, in caso
   di errore. La variabile \texttt{errno} viene settata secondo i seguenti
   codici di errore:
 
   La funzione restituisce zero in caso di successo e -1 per un errore, in caso
   di errore. La variabile \texttt{errno} viene settata secondo i seguenti
   codici di errore:
-  \begin{itemize}
+  \begin{errlist}
   \item \texttt{EBADF} Il file descriptor non è valido.
   \item \texttt{EINVAL} Il socket ha già un indirizzo assegnato.
   \item \texttt{ENOTSOCK} Il file descriptor non è associato ad un socket.
   \item \texttt{EACCESS} Si è cercato di usare un indirizzo riservato senza
     essere root. 
   \item \texttt{EBADF} Il file descriptor non è valido.
   \item \texttt{EINVAL} Il socket ha già un indirizzo assegnato.
   \item \texttt{ENOTSOCK} Il file descriptor non è associato ad un socket.
   \item \texttt{EACCESS} Si è cercato di usare un indirizzo riservato senza
     essere root. 
-  \end{itemize}
-
-\end{itemize}
+  \end{errlist}
+\end{prototype}
 
 Con il TCP la chiamata \texttt{bind} permette di specificare l'indirizzo, la
 porta, entrambi o nessuno dei due. In genere i server utilizzano una porta
 
 Con il TCP la chiamata \texttt{bind} permette di specificare l'indirizzo, la
 porta, entrambi o nessuno dei due. In genere i server utilizzano una porta
@@ -685,7 +684,7 @@ client.
 
 Per specificare un indirizzo generico con IPv4 si usa il valore
 \texttt{INADDR\_ANY}, il cui valore, come visto anche negli esempi precedenti
 
 Per specificare un indirizzo generico con IPv4 si usa il valore
 \texttt{INADDR\_ANY}, il cui valore, come visto anche negli esempi precedenti
-è pari a zero, nell'esempio \ref{fig:net_serv_sample} si è usata
+è pari a zero, nell'esempio \figref{fig:net_serv_sample} si è usata
 un'assegnazione immediata del tipo:
 \begin{verbatim}
    serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
 un'assegnazione immediata del tipo:
 \begin{verbatim}
    serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
@@ -717,19 +716,18 @@ La funzione \texttt{connect} 
 connessione con un server TCP, il prototipo della funzione, definito in
 \texttt{sys/socket.h}, è il seguente:
 
 connessione con un server TCP, il prototipo della funzione, definito in
 \texttt{sys/socket.h}, è il seguente:
 
-\begin{itemize}
-\item \texttt{int connect(int sockfd, const struct sockaddr *serv\_addr,
+\begin{prototype}{int connect(int sockfd, const struct sockaddr *serv\_addr,
     socklen\_t addrlen) }
   
   Il primo argomento è un file descriptor ottenuto da una precedente chiamata
   a \texttt{socket}, mentre il secondo e terzo argomento sono rispettivamente
   l'indirizzo e la dimensione della struttura che contiene l'indirizzo del
     socklen\_t addrlen) }
   
   Il primo argomento è un file descriptor ottenuto da una precedente chiamata
   a \texttt{socket}, mentre il secondo e terzo argomento sono rispettivamente
   l'indirizzo e la dimensione della struttura che contiene l'indirizzo del
-  socket, già descritta in \ref{sec:sock_sockaddr}.
+  socket, già descritta in \secref{sec:sock_sockaddr}.
 
   La funzione restituisce zero in caso di successo e -1 per un errore, in caso
   di errore. La variabile \texttt{errno} viene settata secondo i seguenti
   codici di errore:
 
   La funzione restituisce zero in caso di successo e -1 per un errore, in caso
   di errore. La variabile \texttt{errno} viene settata secondo i seguenti
   codici di errore:
-  \begin{itemize}
+  \begin{errlist}
   \item \texttt{EBADF} Il file descriptor non è valido.
   \item \texttt{EFAULT} L'indirizzo della struttura di indirizzi è al di fuori
     dello spazio di indirizzi dell'utente.
   \item \texttt{EBADF} Il file descriptor non è valido.
   \item \texttt{EFAULT} L'indirizzo della struttura di indirizzi è al di fuori
     dello spazio di indirizzi dell'utente.
@@ -750,13 +748,13 @@ connessione con un server TCP, il prototipo della funzione, definito in
   \item \texttt{EACCESS, EPERM} Si è tentato di eseguire una connessione ad un
     indirizzo broacast senza che il socket fosse stato abilitato per il
     broadcast.
   \item \texttt{EACCESS, EPERM} Si è tentato di eseguire una connessione ad un
     indirizzo broacast senza che il socket fosse stato abilitato per il
     broadcast.
-  \end{itemize}
-\end{itemize}
+  \end{errlist}
+\end{prototype}
 
 La struttura dell'indirizzo deve essere inizializzata con l'indirizzo IP e il
 numero di porta del server a cui ci si vuole connettere, come mostrato
 
 La struttura dell'indirizzo deve essere inizializzata con l'indirizzo IP e il
 numero di porta del server a cui ci si vuole connettere, come mostrato
-nell'esempio \ref{sec:net_cli_sample} usando le funzioni illustrate in
-\ref{sec:sock_addr_func}.
+nell'esempio \secref{sec:net_cli_sample} usando le funzioni illustrate in
+\secref{sec:sock_addr_func}.
 
 Nel caso di socket TCP la funzione \texttt{connect} avvia il three way
 handshake, e ritorna solo quando la connessione è stabilita o si è verificato
 
 Nel caso di socket TCP la funzione \texttt{connect} avvia il three way
 handshake, e ritorna solo quando la connessione è stabilita o si è verificato
@@ -802,7 +800,7 @@ da errori o problemi nella chiamata della funzione sono le seguenti:
 \end{enumerate}
 
 Se si fa riferimento al diagramma degli stati del TCP riportato in
 \end{enumerate}
 
 Se si fa riferimento al diagramma degli stati del TCP riportato in
-\ref{fig:appB:tcp_state_diag} la funzione \texttt{connect} porta un socket
+\figref{fig:appB:tcp_state_diag} la funzione \texttt{connect} porta un socket
 dallo stato \texttt{CLOSED} (lo stato iniziale in cui si trova un socket
 appena creato) prima allo stato \texttt{SYN\_SENT} e poi, al ricevimento del
 ACK, nello stato \texttt{ESTABLISHED}. Se invece la connessione fallisce il
 dallo stato \texttt{CLOSED} (lo stato iniziale in cui si trova un socket
 appena creato) prima allo stato \texttt{SYN\_SENT} e poi, al ricevimento del
 ACK, nello stato \texttt{ESTABLISHED}. Se invece la connessione fallisce il