a0d5475419d740c766d4bfd8493494cb5b78997e
[gapil.git] / fileio.tex
1 %% fileio.tex (merge fileunix.tex - filestd.tex)
2 %%
3 %% Copyright (C) 2000-2019 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione dell'I/O su file}
13 \label{cha:file_IO_interface}
14
15 Esamineremo in questo capitolo le due interfacce di programmazione che
16 consentono di gestire i dati mantenuti nei file. Cominceremo con quella nativa
17 del sistema, detta dei \textit{file descriptor}, che viene fornita
18 direttamente dalle \textit{system call} e che non prevede funzionalità evolute
19 come la bufferizzazione o funzioni di lettura o scrittura
20 formattata. Esamineremo poi anche l'interfaccia definita dallo standard ANSI
21 C, che viene chiamata dei \textit{file stream} o anche più brevemente degli
22 \textit{stream}. Per entrambe dopo una introduzione alle caratteristiche
23 generali tratteremo le funzioni base per la gestione dell'I/O, lasciando per
24 ultime le caratteristiche più avanzate.
25
26
27 \section{L'interfaccia dei \textit{file descriptor}}
28 \label{sec:file_unix_interface}
29
30
31 Come visto in sez.~\ref{sec:file_vfs_work} il kernel mette a disposizione
32 tramite il \textit{Virtual File System} una serie di \textit{system call} che
33 consentono di operare sui file in maniera generale. Abbiamo trattato quelle
34 relative alla gestione delle proprietà dei file nel precedente capitolo,
35 vedremo quelle che si applicano al contenuto dei file in questa sezione,
36 iniziando con una breve introduzione sull'architettura dei \textit{file
37   descriptor} per poi trattare le funzioni di base e le modalità con cui
38 consentono di gestire i dati memorizzati sui file.
39
40
41 \subsection{I \textit{file descriptor}}
42 \label{sec:file_fd}
43
44 \itindbeg{file~descriptor} 
45
46 L'accesso al contenuto dei file viene effettuato, sia pure con differenze
47 nella realizzazione pratica, in maniera sostanzialmente identica in tutte le
48 implementazioni di un sistema unix-like, ricorrendo a quella che viene
49 chiamata l'interfaccia dei \textit{file descriptor}.
50
51 Per poter accedere al contenuto di un file occorre creare un canale di
52 comunicazione con il kernel che renda possibile operare su di esso. Questo si
53 fa aprendo il file con la funzione \func{open} (vedi
54 sez.~\ref{sec:file_open_close}) che provvederà a localizzare l'\textit{inode}
55 del file e inizializzare i puntatori che rendono disponibili le funzioni che
56 il VFS mette a disposizione (quelle di
57 tab.~\ref{tab:file_file_operations}). Una volta terminate le operazioni, il 
58 file dovrà essere chiuso, e questo chiuderà il canale di comunicazione
59 impedendo ogni ulteriore operazione.
60
61 All'interno di ogni processo i file aperti sono identificati da un numero
62 intero non negativo, che viene chiamato appunto \textit{file descriptor}.
63 Quando un file viene aperto la funzione \func{open} restituisce questo numero,
64 tutte le ulteriori operazioni dovranno essere compiute specificando questo
65 stesso numero come argomento alle varie funzioni dell'interfaccia.
66
67 \itindbeg{process~table}
68 \itindbeg{file~table}
69
70 Per capire come funziona il meccanismo occorre spiegare a grandi linee come il
71 kernel gestisce l'interazione fra processi e file.  Abbiamo già accennato in
72 sez.~\ref{sec:proc_hierarchy} come il kernel mantenga un elenco di tutti
73 processi nella cosiddetta \textit{process table}. Lo stesso, come accennato in
74 sez.~\ref{sec:file_vfs_work}, vale anche per tutti i file aperti, il cui
75 elenco viene mantenuto nella cosiddetta \textit{file table}.
76
77 La \textit{process table} è una tabella che contiene una voce per ciascun
78 processo attivo nel sistema. Ciascuna voce è costituita dal puntatore a una
79 struttura di tipo \kstruct{task\_struct} nella quale sono raccolte tutte le
80 informazioni relative al processo, fra queste informazioni c'è anche il
81 puntatore ad una ulteriore struttura di tipo
82 \kstruct{files\_struct},\footnote{la definizione corrente di questa struttura
83   si trova nel file \texttt{include/linux/fdtable.h} dei sorgenti del kernel,
84   quella mostrata in fig.~\ref{fig:file_proc_file} è una versione pesantemente
85   semplificata.} che contiene le informazioni relative ai file che il processo
86 ha aperto.
87
88 La \textit{file table} è una tabella che contiene una voce per ciascun file
89 che è stato aperto nel sistema. Come accennato in sez.~\ref{sec:file_vfs_work}
90 per ogni file aperto viene allocata una struttura \kstruct{file} e la
91 \textit{file table} è costituita da un elenco di puntatori a ciascuna di
92 queste strutture, che, come illustrato in fig.~\ref{fig:kstruct_file},
93 contengono le informazioni necessarie per la gestione dei file, ed in
94 particolare:
95 \begin{itemize*}
96 \item i flag di stato del file nel campo \var{f\_flags}.
97 \item la posizione corrente nel file, il cosiddetto \textit{offset}, nel campo
98   \var{f\_pos}.
99 \item un puntatore alla struttura \kstruct{inode} che identifica
100   l'\textit{inode} del file.\footnote{nel kernel 2.4.x si è in realtà passati
101     ad un puntatore ad una struttura \kstruct{dentry} che punta a sua volta
102     all'\textit{inode} passando per la nuova struttura del VFS.}
103 \item un puntatore \var{f\_op} alla tabella delle funzioni che si possono
104   usare sul file.\footnote{quelle della struttura \kstruct{file\_operation},
105     descritte sommariamente in tab.~\ref{tab:file_file_operations}.}
106 \end{itemize*}
107
108 \begin{figure}[!htb]
109   \centering
110   \includegraphics[width=12cm]{img/procfile}
111   \caption{Schema della architettura dell'accesso ai file attraverso
112   l'interfaccia dei file descriptor.}
113   \label{fig:file_proc_file}
114 \end{figure}
115
116 In fig.~\ref{fig:file_proc_file} si è riportato uno schema semplificato in cui
117 è illustrata questa architettura, ed in cui si sono evidenziate le
118 interrelazioni fra la \textit{file table}, la \textit{process table} e le
119 varie strutture di dati che il kernel mantiene per ciascun file e ciascun
120 processo.
121
122 \itindend{process~table}
123
124 Come si può notare alla fine il collegamento che consente di porre in
125 relazione i file ed i processi è effettuato attraverso i dati mantenuti nella
126 struttura \kstruct{files\_struct}, essa infatti contiene alcune informazioni
127 essenziali come:
128 \begin{itemize*}
129 \item i flag relativi ai file aperti dal processo.
130 \item il numero di file aperti dal processo.
131 \item la \itindex{file~descriptor~table} \textit{file descriptor table}, una
132   tabella con i puntatori, per ciascun file aperto, alla relativa voce nella
133   \textit{file table}.
134 \end{itemize*}
135
136 In questa infrastruttura un file descriptor non è altro che l'intero positivo
137 che indicizza quest'ultima tabella, e che consente di recuperare il puntatore
138 alla struttura \kstruct{file} corrispondente al file aperto dal processo a cui
139 era stato assegnato questo indice. Una volta ottenuta grazie al file
140 descriptor la struttura \kstruct{file} corrispondente al file voluto nella
141 \textit{file table}, il kernel potrà usare le funzioni messe disposizione dal
142 VFS per eseguire sul file tutte le operazioni necessarie.
143
144 Il meccanismo dell'apertura dei file prevede che venga sempre fornito il primo
145 file descriptor libero nella tabella, e per questo motivo essi vengono
146 assegnati in successione tutte le volte che si apre un nuovo file, posto che
147 non ne sia stato chiuso nessuno in precedenza.
148
149 \itindbeg{standard~input} 
150 \itindbeg{standard~output}
151 \itindbeg{standard~error}
152
153 In tutti i sistemi unix-like esiste una convenzione generale per cui ogni
154 processo si aspetta di avere sempre tre file aperti che, per quanto appena
155 detto, avranno come \textit{file descriptor} i valori 0, 1 e 2.  Il primo file
156 è sempre associato al cosiddetto \textit{standard input}, è cioè il file da
157 cui un processo si aspetta di dover leggere i dati in ingresso. Il secondo
158 file è il cosiddetto \textit{standard output}, cioè quello su cui ci si
159 aspetta di dover scrivere i dati in uscita. Il terzo è lo \textit{standard
160   error}, su cui vengono scritti i dati relativi agli errori.
161
162 \itindend{file~descriptor} 
163
164
165 Benché questa sia alla fine soltanto una convenzione, essa è seguita dalla
166 totalità delle applicazioni, e non aderirvi potrebbe portare a problemi di
167 interoperabilità.  Nel caso della shell tutti questi file sono associati al
168 terminale di controllo, e corrispondono quindi alla lettura della tastiera per
169 l'ingresso e alla scrittura sul terminale per l'uscita.  Lo standard POSIX.1
170 provvede, al posto dei valori numerici, tre costanti simboliche, definite in
171 tab.~\ref{tab:file_std_files}.
172
173 \begin{table}[htb]
174   \centering
175   \footnotesize
176   \begin{tabular}[c]{|l|l|}
177     \hline
178     \textbf{File} & \textbf{Significato} \\
179     \hline
180     \hline
181     \constd{STDIN\_FILENO}  & file descriptor dello \textit{standard input}.\\ 
182     \constd{STDOUT\_FILENO} & file descriptor dello \textit{standard output}.\\
183     \constd{STDERR\_FILENO} & file descriptor dello \textit{standard error}.\\
184     \hline
185   \end{tabular}
186   \caption{Costanti definite in \headfile{unistd.h} per i file standard.}
187   \label{tab:file_std_files}
188 \end{table}
189
190 \itindend{standard~input} 
191 \itindend{standard~output}
192 \itindend{standard~error}
193
194 In fig.~\ref{fig:file_proc_file} si è rappresentata una situazione diversa
195 rispetto a quella usuale della shell, in cui tutti e tre questi file fanno
196 riferimento al terminale su cui si opera. Nell'esempio invece viene illustrata
197 la situazione di un programma in cui lo \textit{standard input} è associato ad
198 un file mentre lo \textit{standard output} e lo \textit{standard error} sono
199 associati ad un altro file.  Si noti poi come per questi ultimi le strutture
200 \kstruct{file} nella \textit{file table}, pur essendo distinte, fanno
201 riferimento allo stesso \textit{inode}, dato che il file che è stato aperto lo
202 stesso. Questo è quello che avviene normalmente quando si apre più volte lo
203 stesso file.
204
205 Si ritrova quindi anche con le voci della \textit{file table} una situazione
206 analoga di quella delle voci di una directory, con la possibilità di avere più
207 voci che fanno riferimento allo stesso \textit{inode}. L'analogia è in realtà
208 molto stretta perché quando si cancella un file, il kernel verifica anche che
209 non resti nessun riferimento in una qualunque voce della \textit{file table}
210 prima di liberare le risorse ad esso associate e disallocare il relativo
211 \textit{inode}.
212
213 Nelle vecchie versioni di Unix (ed anche in Linux fino al kernel 2.0.x) il
214 numero di file aperti era anche soggetto ad un limite massimo dato dalle
215 dimensioni del vettore di puntatori con cui era realizzata la tabella dei file
216 descriptor dentro \kstruct{files\_struct}. Questo limite intrinseco nei kernel
217 più recenti non sussiste più, dato che si è passati da un vettore ad una
218 lista, ma restano i limiti imposti dall'amministratore (vedi
219 sez.~\ref{sec:sys_limits}).
220
221 \itindend{file~table}
222
223
224 \subsection{Apertura, creazione e chiusura di un file}
225 \label{sec:file_open_close}
226
227 La funzione di sistema \funcd{open} è la principale funzione dell'interfaccia
228 di gestione dei file, quella che dato un \textit{pathname} consente di
229 ottenere un file descriptor ``\textsl{aprendo}'' il file
230 corrispondente,\footnote{è \func{open} che alloca \kstruct{file}, la inserisce
231   nella \textit{file table} e crea il riferimento nella
232   \kstruct{files\_struct} del processo.} il suo prototipo è:
233
234 \begin{funcproto}{
235 \fhead{sys/types.h}
236 \fhead{sys/stat.h}
237 \fhead{fcntl.h}
238 \fdecl{int open(const char *pathname, int flags)}
239 \fdecl{int open(const char *pathname, int flags, mode\_t mode)}
240
241 \fdesc{Apre un file.} 
242 }
243
244 {La funzione ritorna il file descriptor in caso di successo e $-1$ per un
245   errore, nel qual caso \var{errno} assumerà uno dei valori:
246   \begin{errlist}
247   \item[\errcode{EEXIST}] \param{pathname} esiste e si è specificato
248     \const{O\_CREAT} e \const{O\_EXCL}.
249   \item[\errcode{EINTR}] la funzione era bloccata ed è stata interrotta da un
250     segnale (vedi sez.~\ref{sec:sig_gen_beha}).
251   \item[\errcode{EINVAL}] si è usato \const{O\_CREAT} indicando un pathname
252     con caratteri non supportati dal filesystem sottostante o si è richiesto
253     \const{O\_TMPFILE} senza indicare \const{O\_WRONLY} o \const{O\_RDWR} o si
254     è usato \const{O\_DIRECT} per un filesystem che non lo supporta.
255   \item[\errcode{EISDIR}] \param{pathname} indica una directory e o si è
256     tentato un accesso che prevede la scrittura o si è usato
257     \const{O\_TMPFILE} con accesso che prevede la scrittura ma il kernel non
258     supporta la funzionalità.
259   \item[\errcode{EFBIG}] il file è troppo grande per essere aperto, in genere
260     dovuto al fatto che si è compilata una applicazione a 32 bit senza
261     abilitare il supporto per le dimensioni a 64 bit; questo è il valore
262     restituito fino al kernel 2.6.23, coi successivi viene restituito
263     \errcode{EOVERFLOW} come richiesto da POSIX.1.
264   \item[\errcode{ELOOP}] si sono incontrati troppi collegamenti simbolici nel
265     risolvere \param{pathname} o si è indicato \const{O\_NOFOLLOW} e
266     \param{pathname} è un collegamento simbolico (e non si è usato
267     \const{O\_PATH}).
268   \item[\errcode{ENODEV}] \param{pathname} si riferisce a un file di
269     dispositivo che non esiste.
270   \item[\errcode{ENOENT}] \param{pathname} non esiste e non si è richiesto
271     \const{O\_CREAT}, o non esiste un suo componente, o si riferisce ad una
272     directory inesistente, si è usato \const{O\_TMPFILE} con accesso che
273     prevede la scrittura ma il kernel non supporta la funzionalità.
274   \item[\errcode{ENOTDIR}] si è specificato \const{O\_DIRECTORY} e
275     \param{pathname} non è una directory.
276   \item[\errcode{ENXIO}] si sono impostati \const{O\_NONBLOCK} o
277     \const{O\_WRONLY} ed il file è una \textit{fifo} che non viene letta da
278     nessun processo o \param{pathname} è un file di dispositivo ma il
279     dispositivo è assente.
280   \item[\errcode{EPERM}] si è specificato \const{O\_NOATIME} e non si è né
281     amministratori né proprietari del file.
282   \item[\errcode{ETXTBSY}] si è cercato di accedere in scrittura all'immagine
283     di un programma in esecuzione.
284   \item[\errcode{EWOULDBLOCK}] la funzione si sarebbe bloccata ma si è
285     richiesto \const{O\_NONBLOCK}.
286   \end{errlist}
287   ed inoltre \errval{EACCES}, \errval{EDQUOT}, \errval{EFAULT}, \errval{EMFILE},
288   \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOMEM}, \errval{ENOSPC},
289   \errval{EROFS}, nel loro significato generico.}
290 \end{funcproto}
291
292 La funzione apre il file indicato da \param{pathname} nella modalità indicata
293 da \param{flags}. Essa può essere invocata in due modi diversi, specificando
294 opzionalmente un terzo argomento \param{mode}. Qualora il file non esista e
295 venga creato, questo argomento consente di indicare quali permessi dovranno
296 essergli assegnati.\footnote{questo è possibile solo se si è usato in
297   \param{flags} uno fra \const{O\_CREATE} e \const{O\_TMPFILE}, in tutti gli
298   altri casi sarà ignorato.} I valori possibili sono gli stessi già visti in
299 sez.~\ref{sec:file_perm_overview} e possono essere specificati come OR binario
300 delle costanti descritte in tab.~\ref{tab:file_bit_perm}. Questi permessi sono
301 comunque filtrati dal valore della \textit{umask} (vedi
302 sez.~\ref{sec:file_perm_management}) del processo.
303
304 La funzione restituisce sempre il primo file descriptor libero, una
305 caratteristica che permette di prevedere qual è il valore del file descriptor
306 che si otterrà al ritorno di \func{open}, e che viene spesso usata dalle
307 applicazioni per sostituire i file corrispondenti ai file standard visti in
308 tab.~\ref{tab:file_std_files}. Se ad esempio si chiude lo \textit{standard
309   input} e si apre subito dopo un nuovo file questo diventerà il nuovo
310 \textit{standard input} dato che avrà il file descriptor 0.
311
312 Al momento dell'apertura il nuovo file descriptor non è condiviso con nessun
313 altro processo (torneremo sul significato della condivisione dei file
314 descriptor, che in genere si ottiene dopo una \func{fork}, in
315 sez.~\ref{sec:file_shared_access}) ed è impostato, come accennato in
316 sez.~\ref{sec:proc_exec}, per restare aperto attraverso una
317 \func{exec}. Inoltre la posizione sul file, il cosiddetto \textit{offset}, è
318 impostata all'inizio del file. Una volta aperto un file si potrà operare su di
319 esso direttamente tramite il file descriptor, e quanto avviene al
320 \textit{pathname} con cui lo si è aperto sarà del tutto ininfluente.
321
322 \itindbeg{file~status~flags}
323
324 Il comportamento della funzione, e le diverse modalità con cui può essere
325 aperto il file, vengono controllati dall'argomento \param{flags} il cui valore
326 deve essere indicato come maschera binaria in cui ciascun bit ha un
327 significato specifico.  Alcuni di questi bit vanno anche a costituire i
328 cosiddetti \textit{file status flags} (i \textsl{flag di stato} del file), che
329 vengono mantenuti nel campo \var{f\_flags} della struttura \kstruct{file} che
330 abbiamo riportato anche in fig.~\ref{fig:file_proc_file}).
331
332 Ciascun flag viene identificato da una apposita costante, ed il valore
333 di \param{flags} deve essere specificato come OR aritmetico di queste
334 costanti. Inoltre per evitare problemi di compatibilità con funzionalità che
335 non sono previste o non ancora supportate in versioni meno recenti del kernel,
336 la \func{open} di Linux ignora i flag che non riconosce, pertanto
337 l'indicazione di un flag inesistente non provoca una condizione di errore.
338
339 I vari bit che si possono usare come componenti di \param{flags} sono divisi
340 in tre gruppi principali. Il primo gruppo è quello dei cosiddetti flag delle
341 \textsl{modalità di accesso} (o \textit{access mode flags}), che specificano
342 che tipo di accesso si effettuerà sul file, fra lettura, scrittura e
343 lettura/scrittura. Questa modalità deve essere indicata usando una delle
344 costanti di tab.~\ref{tab:open_access_mode_flag}.
345
346 \begin{table}[htb]
347   \centering
348   \footnotesize
349     \begin{tabular}[c]{|l|l|}
350       \hline
351       \textbf{Flag} & \textbf{Significato} \\
352       \hline
353       \hline
354       \constd{O\_RDONLY} & Apre il file in sola lettura.\\
355       \constd{O\_WRONLY} & Apre il file in sola scrittura.\\
356       \constd{O\_RDWR}   & Apre il file sia in lettura che in scrittura.\\
357       \hline
358     \end{tabular}
359     \caption{Le tre costanti che identificano le modalità di accesso
360       nell'apertura di un file.}
361   \label{tab:open_access_mode_flag}
362 \end{table}
363
364 A differenza di tutti gli altri flag che vedremo in seguito, in questo caso
365 non si ha a che fare con singoli bit separati dell'argomento \param{flags}, ma
366 con un numero composto da due bit. Questo significa ad esempio che la
367 combinazione \code{\const{O\_RDONLY}|\const{O\_WRONLY}} non è affatto
368 equivalente a \const{O\_RDWR}, e non deve essere usata.\footnote{in realtà
369   su Linux, dove i valori per le tre costanti di
370   tab.~\ref{tab:open_access_mode_flag} sono rispettivamente $0$, $1$ e $2$, il
371   valore $3$ viene usato con un significato speciale, ed assolutamente fuori
372   standard, disponibile solo per i file di dispositivo e solo per alcuni
373   driver, in cui si richiede la verifica della capacità di accesso in lettura
374   e scrittura ma viene restituito un file descriptor che non può essere letto
375   o scritto, ma solo usato con una \func{ioctl} (vedi
376   sez.~\ref{sec:file_fcntl_ioctl}).}
377
378 La modalità di accesso deve sempre essere specificata quando si apre un file,
379 il valore indicato in \param{flags} viene salvato nei \textit{file status
380   flags}, e può essere riletto con \func{fcntl} (vedi
381 sez.~\ref{sec:file_fcntl_ioctl}), il relativo valore può essere poi ottenuto
382 un AND aritmetico della maschera binaria \constd{O\_ACCMODE}, ma non può essere
383 modificato. Nella \acr{glibc} sono definite inoltre \constd{O\_READ} come
384 sinonimo di \const{O\_RDONLY} e \constd{O\_WRITE} come sinonimo di
385 \const{O\_WRONLY}.\footnote{si tratta di definizioni completamente fuori
386   standard, attinenti, insieme a \constd{O\_EXEC} che permetterebbe l'apertura
387   di un file per l'esecuzione, ad un non meglio precisato ``\textit{GNU
388     system}''; pur essendo equivalenti alle definizioni classiche non è
389   comunque il caso di utilizzarle.}
390
391 \itindend{file~status~flags}
392
393 Il secondo gruppo di flag è quello delle \textsl{modalità di
394   apertura},\footnote{la pagina di manuale di \func{open} parla di
395   \textit{file creation flags}, ma alcuni di questi flag non hanno nulla a che
396   fare con la creazione dei file, mentre il manuale dalla \acr{glibc} parla di
397   più correttamente di \textit{open-time flags}, dato che si tratta di flag il
398   cui significato ha senso solo al momento dell'apertura del file.} che
399 permettono di specificare alcune delle caratteristiche del comportamento di
400 \func{open} nel momento in viene eseguita per aprire un file. Questi flag
401 hanno effetto solo nella chiamata della funzione, non sono memorizzati fra i
402 \textit{file status flags} e non possono essere riletti da \func{fcntl} (vedi
403 sez.~\ref{sec:file_fcntl_ioctl}).
404
405 \begin{table}[htb]
406   \centering
407   \footnotesize
408     \begin{tabular}[c]{|l|p{10 cm}|}
409       \hline
410       \textbf{Flag} & \textbf{Significato} \\
411       \hline
412       \hline
413       \constd{O\_CREAT}  & Se il file non esiste verrà creato, con le regole
414                            di titolarità del file viste in
415                            sez.~\ref{sec:file_ownership_management}. Se si
416                            imposta questo flag l'argomento \param{mode} deve
417                            essere sempre specificato.\\  
418       \constd{O\_DIRECTORY}& Se \param{pathname} non è una directory la
419                              chiamata fallisce. Questo flag, introdotto con il
420                              kernel 2.1.126, è specifico di Linux e
421                              serve ad evitare dei possibili
422                              \itindex{Denial~of~Service~(DoS)}
423                              \textit{DoS}\footnotemark quando \func{opendir} 
424                              viene chiamata su una \textit{fifo} o su un
425                              dispositivo associato ad una unità a nastri. Non
426                              viene usato al di fuori dell'implementazione di
427                              \func{opendir}, ed è utilizzabile soltanto se si è
428                              definita la macro \macro{\_GNU\_SOURCE}.\\
429       \constd{O\_EXCL}   & Deve essere usato in congiunzione con
430                            \const{O\_CREAT} ed in tal caso impone che il file
431                            indicato da \param{pathname} non sia già esistente
432                            (altrimenti causa il fallimento della chiamata con
433                            un errore di \errcode{EEXIST}).\\
434       \constd{O\_LARGEFILE}& Viene usato sui sistemi a 32 bit per richiedere
435                              l'apertura di file molto grandi, la cui
436                              dimensione non è rappresentabile con la versione a
437                              32 bit del tipo \type{off\_t}, utilizzando
438                              l'interfaccia alternativa abilitata con la
439                              macro \macro{\_LARGEFILE64\_SOURCE}. Come
440                              illustrato in sez.~\ref{sec:intro_gcc_glibc_std} è
441                              sempre preferibile usare la conversione automatica
442                              delle funzioni che si attiva assegnando a $64$ la
443                              macro \macro{\_FILE\_OFFSET\_BITS}, e non usare mai
444                              questo flag.\\
445       \constd{O\_NOCTTY} & Se \param{pathname} si riferisce ad un dispositivo
446                            di terminale, questo non diventerà il terminale di
447                            controllo, anche se il processo non ne ha ancora
448                            uno (si veda sez.~\ref{sec:sess_ctrl_term}).\\ 
449       \constd{O\_NOFOLLOW}& Se \param{pathname} è un collegamento simbolico
450                             la chiamata fallisce. Questa è un'estensione BSD
451                             aggiunta in Linux a partire dal kernel
452                             2.1.126, ed utilizzabile soltanto se si è definita
453                             la macro \macro{\_GNU\_SOURCE}.\\
454       \const{O\_TMPFILE} & Consente di creare un file temporaneo anonimo, non
455                            visibile con un pathname sul filesystem, ma
456                            leggibile e scrivibile all'interno del processo.
457                            Introdotto con il kernel 3.11, è specifico di
458                            Linux.\\ 
459       \constd{O\_TRUNC}  & Se usato su un file di dati aperto in scrittura,
460                            ne tronca la lunghezza a zero; con un terminale o
461                            una \textit{fifo} viene ignorato, negli altri casi
462                            il comportamento non è specificato.\\ 
463       \hline
464     \end{tabular}
465     \caption{Le costanti che identificano le \textit{modalità di apertura} di
466       un file.} 
467   \label{tab:open_time_flag}
468 \end{table}
469
470 \footnotetext{acronimo di \itindex{Denial~of~Service~(DoS)} \textit{Denial of
471     Service}, si chiamano così attacchi miranti ad impedire un servizio
472   causando una qualche forma di carico eccessivo per il sistema, che resta
473   bloccato nelle risposte all'attacco.}
474
475 Si è riportato in tab.~\ref{tab:open_time_flag} l'elenco dei flag delle
476 \textsl{modalità di apertura}.\footnote{la \acr{glibc} definisce anche i due
477   flag \constd{O\_SHLOCK}, che aprirebbe il file con uno \textit{shared lock}
478   e \constd{O\_EXLOCK} che lo aprirebbe con un \textit{exclusive lock} (vedi
479   sez.~\ref{sec:file_locking}), si tratta di opzioni specifiche di BSD, che non
480   esistono con Linux.}  Uno di questi, \const{O\_EXCL}, ha senso solo se usato
481 in combinazione a \const{O\_CREAT} quando si vuole creare un nuovo file per
482 assicurarsi che questo non esista di già, e lo si usa spesso per creare i
483 cosiddetti ``\textsl{file di lock}'' (vedi sez.~\ref{sec:ipc_file_lock}).
484
485 Si tenga presente che questa opzione è supportata su NFS solo a partire da
486 NFSv3 e con il kernel 2.6, nelle versioni precedenti la funzionalità viene
487 emulata controllando prima l'esistenza del file per cui usarla per creare un
488 file di lock potrebbe dar luogo a una \textit{race condition}, in tal caso
489 infatti un file potrebbe venir creato fra il controllo la successiva apertura
490 con \const{O\_CREAT}; la cosa si può risolvere comunque creando un file con un
491 nome univoco ed usando la funzione \func{link} per creare il file di lock,
492 (vedi sez.~\ref{sec:ipc_file_lock}).
493
494 Se si usa \const{O\_EXCL} senza \const{O\_CREAT} il comportamento è
495 indefinito, escluso il caso in cui viene usato con \const{O\_TMPFILE} su cui
496 torneremo più avanti; un'altra eccezione è quello in cui lo si usa da solo su
497 un file di dispositivo, in quel caso se questo è in uso (ad esempio se è
498 relativo ad un filesystem che si è montato) si avrà un errore di
499 \errval{EBUSY}, e pertanto può essere usato in questa modalità per rilevare lo
500 stato del dispositivo.
501
502 Nella creazione di un file con \const{O\_CREAT} occorre sempre specificare
503 l'argomento di \param{mode}, che altrimenti è ignorato. Si tenga presente che
504 indipendentemente dai permessi che si possono assegnare, che in seguito
505 potrebbero non consentire lettura o scrittura, quando il file viene aperto
506 l'accesso viene garantito secondo quanto richiesto con i flag di
507 tab.~\ref{tab:open_access_mode_flag}.  Quando viene creato un nuovo file
508 \const{O\_CREAT} con tutti e tre i tempi del file di
509 tab.~\ref{tab:file_file_times} vengono impostati al tempo corrente. Se invece
510 si tronca il file con \const{O\_TRUNC} verranno impostati soltanto il
511 \textit{modification time} e lo \textit{status change time}.
512
513 Il flag \label{open_o_tmpfile_flag} \constd{O\_TMPFILE}, introdotto con il
514 kernel 3.11,\footnote{inizialmente solo su alcuni filesystem (i vari
515   \acr{extN}, \acr{Minix}, \acr{UDF}, \acr{shmem}) poi progressivamente esteso
516   ad altri (\acr{XFS} con il 3.15, \acr{Btrfs} e \acr{F2FS} con il 3.16,
517   \acr{ubifs} con il 4.9).}  consente di aprire un file temporaneo senza che
518 questo venga associato ad un nome e compaia nel filesystem. In questo caso la
519 funzione restituirà un file descriptor da poter utilizzare per leggere e
520 scrivere dati, ma il contenuto dell'argomento \param{path} verrà usato
521 solamente per determinare, in base alla directory su cui si verrebbe a trovare
522 il \textit{pathname} indicato, il filesystem all'interno del quale deve essere
523 allocato l'\textit{inode} e lo spazio disco usato dal file
524 descriptor. L'\textit{inode} resterà anonimo e l'unico riferimento esistente
525 sarà quello contenuto nella \textit{file table} del processo che ha chiamato
526 \func{open}.
527
528 Lo scopo principale del flag è quello fornire una modalità atomica, semplice e
529 sicura per applicare la tecnica della creazione di un file temporaneo seguita
530 dalla sua immediata cancellazione con \func{unlink} per non lasciare rimasugli
531 sul filesystem, di cui è parlato in sez.~\ref{sec:link_symlink_rename}.
532 Inoltre, dato che il file non compare nel filesystem, si evitano alla radice
533 tutti gli eventuali problemi di \textit{race condition} o \textit{symlink
534   attack} e non ci si deve neanche preoccupare di ottenere un opportuno nome
535 univoco con l'uso delle funzioni di sez.~\ref{sec:file_temp_file}.
536
537 Una volta aperto il file vi si potrà leggere o scrivere a seconda che siano
538 utilizzati \const{O\_RDWR} o \const{O\_WRONLY}, mentre l'uso di
539 \func{O\_RDONLY} non è consentito, non avendo molto senso ottenere un file
540 descriptor su un file che nasce vuoto per cui non si potrà comunque leggere
541 nulla. L'unico altro flag che può essere utilizzato insieme a
542 \const{O\_TMPFILE} è \const{O\_EXCL}, che in questo caso assume però un
543 significato diverso da quello ordinario, dato che in questo caso il file
544 associato al file descriptor non esiste comunque.
545
546 L'uso di \const{O\_EXCL} attiene infatti all'altro possibile impiego di
547 \const{O\_TMPFILE} oltre a quello citato della creazione sicura di un file
548 temporaneo come sostituto sicuro di \func{tmpfile}: la possibilità di creare
549 un contenuto iniziale per un file ed impostarne permessi, proprietario e
550 attributi estesi con \func{fchmod}, \func{fchown} e \func{fsetxattr}, senza
551 possibilità di \textit{race condition} ed interferenze esterne, per poi far
552 apparire il tutto sul filesystem in un secondo tempo utilizzando \func{linkat}
553 sul file descriptor (torneremo su questo in sez.~\ref{sec:file_openat}) per
554 dargli un nome. Questa operazione però non sarà possibile se si è usato
555 \const{O\_EXCL}, che in questo caso viene ad assumere il significato di
556 escludere la possibilità di far esistere il file anche in un secondo tempo.
557
558 % NOTE: per O_TMPFILE vedi: http://kernelnewbies.org/Linux_3.11
559 % https://lwn.net/Articles/558598/ http://lwn.net/Articles/619146/
560
561
562 \begin{table}[!htb]
563   \centering
564   \footnotesize
565     \begin{tabular}[c]{|l|p{10 cm}|}
566       \hline
567       \textbf{Flag} & \textbf{Significato} \\
568       \hline
569       \hline
570       \constd{O\_APPEND} & Il file viene aperto in \textit{append mode}. La
571                            posizione sul file (vedi sez.~\ref{sec:file_lseek})
572                            viene sempre mantenuta sulla sua coda, per cui
573                            quanto si scrive viene sempre aggiunto al contenuto
574                            precedente. Con NFS questa funzionalità non è
575                            supportata e viene emulata, per questo possono
576                            verificarsi \textit{race condition} con una
577                            sovrapposizione dei dati se più di un processo
578                            scrive allo stesso tempo.\\ 
579       \constd{O\_ASYNC}  & Apre il file per l'I/O in modalità asincrona (vedi
580                            sez.~\ref{sec:signal_driven_io}). Quando è
581                            impostato viene generato il segnale \signal{SIGIO}
582                            tutte le volte che il file è pronto per le
583                            operazioni di lettura o scrittura. Questo flag si
584                            può usare solo terminali, pseudo-terminali e socket
585                            e, a partire dal kernel 2.6, anche sulle
586                            \textit{fifo}. Per un bug dell'implementazione non
587                            è opportuno usarlo in fase di apertura del file,
588                            deve invece essere attivato successivamente con
589                            \func{fcntl}.\\
590       \constd{O\_CLOEXEC}& Attiva la modalità di \textit{close-on-exec} (vedi
591                            sez.~\ref{sec:proc_exec}) sul file. Il flag è 
592                            previsto dallo standard POSIX.1-2008, ed è stato
593                            introdotto con il kernel 2.6.23 per evitare una
594                            \textit{race condition} che si potrebbe verificare
595                            con i \textit{thread} fra l'apertura del file e
596                            l'impostazione della suddetta modalità con
597                            \func{fcntl} (vedi
598                            sez.~\ref{sec:file_fcntl_ioctl}).\\ 
599       \const{O\_DIRECT}  & Esegue l'I/O direttamente dalla memoria in
600                            \textit{user space} in maniera sincrona, in modo da
601                            scavalcare i meccanismi di bufferizzazione del
602                            kernel. Introdotto con il kernel 2.4.10 ed
603                            utilizzabile soltanto se si è definita la 
604                            macro \macro{\_GNU\_SOURCE}.\\ 
605       \constd{O\_NOATIME}& Blocca l'aggiornamento dei tempi di accesso dei
606                            file (vedi sez.~\ref{sec:file_file_times}). Per
607                            molti filesystem questa funzionalità non è
608                            disponibile per il singolo file ma come opzione
609                            generale da specificare in fase di
610                            montaggio. Introdotto con il kernel 2.6.8 ed 
611                            utilizzabile soltanto se si è definita la 
612                            macro \macro{\_GNU\_SOURCE}.\\ 
613       \constd{O\_NONBLOCK}& Apre il file in \textsl{modalità non bloccante} per
614                             le operazioni di I/O (vedi
615                             sez.~\ref{sec:file_noblocking}). Questo significa
616                             il fallimento delle successive operazioni di
617                             lettura o scrittura qualora il file non sia pronto
618                             per la loro esecuzione immediata, invece del 
619                             blocco delle stesse in attesa di una successiva
620                             possibilità di esecuzione come avviene
621                             normalmente. Questa modalità ha senso solo per le
622                             \textit{fifo}, vedi sez.~\ref{sec:ipc_named_pipe}),
623                             o quando si vuole aprire un file di dispositivo
624                             per eseguire una \func{ioctl} (vedi
625                             sez.~\ref{sec:file_fcntl_ioctl}).\\ 
626       \constd{O\_NDELAY} & In Linux è un sinonimo di \const{O\_NONBLOCK}, ma
627                            origina da SVr4, dove però causava il ritorno da
628                            una \func{read} con un valore nullo e non con un
629                            errore, questo introduce un'ambiguità, dato che
630                            come vedremo in sez.~\ref{sec:file_read} il ritorno
631                            di un valore nullo da parte di \func{read} ha 
632                            il significato di una \textit{end-of-file}.\\
633       \const{O\_PATH}    & Ottiene un file descriptor io cui uso è limitato
634                            all'indicare una posizione sul filesystem o
635                            eseguire operazioni che operano solo a livello del
636                            file descriptor (e non di accesso al contenuto del
637                            file). Introdotto con il kernel 2.6.39, è specifico
638                            di Linux.\\
639       \constd{O\_SYNC}   & Apre il file per l'input/output sincrono. Ogni
640                            scrittura si bloccherà fino alla conferma
641                            dell'arrivo di tutti i dati e di tutti i metadati
642                            sull'hardware sottostante (in questo significato
643                            solo dal kernel 2.6.33).\\
644       \constd{O\_DSYNC}  & Apre il file per l'input/output sincrono. Ogni
645                            scrittura di dati si bloccherà fino alla conferma
646                            dell'arrivo degli stessi e della parte di metadati
647                            ad essi relativa sull'hardware sottostante (in
648                            questo significato solo dal kernel 2.6.33).\\
649       \hline
650     \end{tabular}
651     \caption{Le costanti che identificano le \textit{modalità di operazione} di
652       un file.} 
653   \label{tab:open_operation_flag}
654 \end{table}
655
656 Il terzo gruppo è quello dei flag delle \textsl{modalità di operazione},
657 riportati in tab.~\ref{tab:open_operation_flag}, che permettono di specificare
658 varie caratteristiche del comportamento delle operazioni di I/O che verranno
659 eseguite sul file o le modalità in cui lo si potrà utilizzare. Tutti questi,
660 tranne \const{O\_CLOEXEC}, che viene mantenuto per ogni singolo file
661 descriptor, vengono salvati nel campo \var{f\_flags} della struttura
662 \kstruct{file} insieme al valore della \textsl{modalità di accesso}, andando
663 far parte dei \textit{file status flags}. Il loro valore viene impostato alla
664 chiamata di \func{open}, ma possono venire riletti in un secondo tempo con
665 \func{fcntl}, inoltre alcuni di essi possono anche essere modificati tramite
666 questa funzione, con conseguente effetto sulle caratteristiche operative che
667 controllano (torneremo sull'argomento in sez.~\ref{sec:file_fcntl_ioctl}).
668
669 Il flag \const{O\_ASYNC} (che, per compatibilità con BSD, si può indicare
670 anche con la costante \constd{FASYNC}) è definito come possibile valore per
671 \func{open}, ma per un bug dell'implementazione,\footnote{segnalato come
672   ancora presente nella pagina di manuale, almeno fino al novembre 2018.} non
673 solo non attiva il comportamento citato, ma se usato richiede di essere
674 esplicitamente disattivato prima di essere attivato in maniera effettiva con
675 l'uso di \func{fcntl}. Per questo motivo, non essendovi nessuna necessità
676 specifica di definirlo in fase di apertura del file, è sempre opportuno
677 attivarlo in un secondo tempo con \func{fcntl} (vedi
678 sez.~\ref{sec:file_fcntl_ioctl}).
679
680 Il flag \constd{O\_DIRECT} non è previsto da nessuno standard, anche se è
681 presente in alcuni kernel unix-like.\footnote{il flag è stato introdotto dalla
682   SGI in IRIX, ma è presente senza limiti di allineamento dei buffer anche in
683   FreeBSD.} Per i kernel della serie 2.4 si deve garantire che i buffer in
684 \textit{user space} da cui si effettua il trasferimento diretto dei dati siano
685 allineati alle dimensioni dei blocchi del filesystem. Con il kernel 2.6 in
686 genere basta che siano allineati a multipli di 512 byte, ma le restrizioni
687 possono variare a seconda del filesystem, ed inoltre su alcuni filesystem
688 questo flag può non essere supportato, nel qual caso si avrà un errore di
689 \errval{EINVAL}.
690
691 Lo scopo di \const{O\_DIRECT} è consentire un completo controllo sulla
692 bufferizzazione dei propri dati per quelle applicazioni (in genere database)
693 che hanno esigenze specifiche che non vengono soddisfatte nella maniera più
694 efficiente dalla politica generica utilizzata dal kernel. In genere l'uso di
695 questo flag peggiora le prestazioni tranne quando le applicazioni sono in
696 grado di ottimizzare la propria bufferizzazione in maniera adeguata. Se lo si
697 usa si deve avere cura di non mescolare questo tipo di accesso con quello
698 ordinario, in quante le esigenze di mantenere coerenti i dati porterebbero ad
699 un peggioramento delle prestazioni. Lo stesso dicasi per l'interazione con
700 eventuale mappatura in memoria del file (vedi sez.~\ref{sec:file_memory_map}).
701
702 Si tenga presente infine che anche se l'uso di \const{O\_DIRECT} comporta una
703 scrittura sincrona dei dati dei buffer in \textit{user space}, questo non è
704 completamente equivalente all'uso di \const{O\_SYNC} che garantisce anche
705 sulla scrittura sincrona dei metadati associati alla scrittura dei dati del
706 file.\footnote{la situazione si complica ulteriormente per NFS, in cui l'uso
707   del flag disabilita la bufferizzazione solo dal lato del client, e può
708   causare problemi di prestazioni.} Per questo in genere se si usa
709 \const{O\_DIRECT} è opportuno richiedere anche \const{O\_SYNC}.
710
711 Si tenga presente infine che la implementazione di \const{O\_SYNC} di Linux
712 differisce da quanto previsto dallo standard POSIX.1 che prevede, oltre a
713 questo flag che dovrebbe indicare la sincronizzazione completa di tutti i dati
714 e di tutti i metadati, altri due flag \const{O\_DSYNC} e \const{O\_RSYNC}. 
715
716 Il primo dei due richiede la scrittura sincrona di tutti i dati del file e dei
717 metadati che ne consentono l'immediata rilettura, ma non di tutti i metadati,
718 per evitare la perdita di prestazioni relativa alla sincronizzazione di
719 informazioni ausiliarie come i tempi dei file.  Il secondo, da usare in
720 combinazione con \const{O\_SYNC} o \const{O\_DSYNC} ne sospende l'effetto,
721 consentendo al kernel di bufferizzare le scritture, ma soltanto finché non
722 avviene una lettura, in quel caso i dati ed i metadati dovranno essere
723 sincronizzati immediatamente (secondo le modalità indicate da \const{O\_SYNC}
724 e \const{O\_DSYNC}) e la lettura verrà bloccata fintanto che detta
725 sincronizzazione non sia completata.
726
727 Nel caso di Linux, fino al kernel 2.6.33, esisteva solo \const{O\_SYNC}, ma
728 con il comportamento previsto dallo standard per \const{O\_DSYNC}, e sia
729 questo che \const{O\_RSYNC} erano definiti (fin dal kernel 2.1.130) come
730 sinonimi di \const{O\_SYNC}.  Con il kernel 2.6.33 il significato di
731 \const{O\_SYNC} è diventato quello dello standard, ma gli è stato assegnato un
732 valore diverso, mantenendo quello originario, con il comportamento
733 corrispondete, per \const{O\_DSYNC} in modo che applicazioni compilate con
734 versioni precedenti delle librerie e del kernel non trovassero un
735 comportamento diverso.  Inoltre il nuovo \const{O\_SYNC} è stato definito in
736 maniera opportuna in modo che su versioni del kernel precedenti la 2.6.33
737 torni a corrispondere al valore di \const{O\_DSYNC}.
738
739 % NOTE: per le differenze fra O_DSYNC, O_SYNC e O_RSYNC introdotte nella  
740 % nello sviluppo del kernel 2.6.33, vedi http://lwn.net/Articles/350219/ 
741
742 Il flag \constd{O\_PATH},\label{open_o_path_flag} introdotto con il kernel
743 2.6.39, viene usato per limitare l'uso del file descriptor restituito da
744 \func{open} o all'identificazione di una posizione sul filesystem (ad uso
745 delle \textit{at-functions} che tratteremo in sez.~\ref{sec:file_openat}) o
746 alle operazioni che riguardano il file descriptor in quanto tale, senza
747 consentire operazioni sul file; in sostanza se si apre un file con
748 \const{O\_PATH} si potrà soltanto:
749 \begin{itemize*}
750 \item usare il file descriptor come indicatore della directory di partenza con
751   una delle \textit{at-functions} (vedi sez.~\ref{sec:file_openat});
752 \item cambiare directory di lavoro con \func{fchdir} se il file descriptor fa
753   riferimento a una directory (dal kernel 3.5);
754 \item usare le funzioni che duplicano il file descriptor (vedi
755   sez.~\ref{sec:file_dup});
756 \item passare il file descriptor ad un altro processo usando un socket
757   \const{PF\_UNIX} (vedi sez.~\ref{sec:unix_socket})
758 \item ottenere le informazioni relative al file con \func{fstat} (dal kernel
759   3.6) o al filesystem con \func{fstatfs} (dal kernel 3.12);
760 \item ottenere il valore dei \textit{file descriptor flags} (fra cui comparirà
761   anche lo stesso \const{O\_PATH}) o impostare o leggere i \textit{file status
762     flags} con \func{fcntl} (rispettivamente con le operazioni
763   \const{F\_GETFL}, \const{F\_SETFD} e \const{F\_GETFD}, vedi
764   sez.~\ref{sec:file_fcntl_ioctl}).
765 \item chiudere il file con \func{close}.
766 \end{itemize*}
767
768 In realtà usando \const{O\_PATH} il file non viene effettivamente aperto, per
769 cui ogni tentativo di usare il file descriptor così ottenuto con funzioni che
770 operano effettivamente sul file (come ad esempio \func{read}, \func{write},
771 \func{fchown}, \func{fchmod}, \func{ioctl}, ecc.) fallirà con un errore di
772 \errval{EBADF}, come se questo non fosse un file descriptor valido. Per questo
773 motivo usando questo flag non è necessario avere nessun permesso per aprire un
774 file, neanche quello di lettura (ma occorre ovviamente avere il permesso di
775 esecuzione per le directory sovrastanti).
776
777 Questo consente di usare il file descriptor con funzioni che non richiedono
778 permessi sul file, come \func{fstat}, laddove un'apertura con
779 \const{O\_RDONLY} sarebbe fallita. I permessi verranno eventualmente
780 controllati, se necessario, nelle operazioni seguenti, ad esempio per usare
781 \func{fchdir} con il file descriptor (se questo fa riferimento ad una
782 directory) occorrerà avere il permesso di esecuzione.
783
784 Se si usa \const{O\_PATH} tutti gli altri flag eccettuati \const{O\_CLOEXEC},
785 \const{O\_DIRECTORY} e \const{O\_NOFOLLOW} verranno ignorati. I primi due
786 mantengono il loro significato usuale, mentre \const{O\_NOFOLLOW} fa si che se
787 il file indicato è un un link simbolico venga aperto quest'ultimo (cambiando
788 quindi il comportamento ordinario che prova il fallimento della chiamata),
789 così da poter usare il file descriptor ottenuto per le funzioni
790 \func{fchownat}, \func{fstatat}, \func{linkat} e \func{readlinkat} che ne
791 supportano l'uso come come primo argomento (torneremo su questo in
792 sez.~\ref{sec:file_openat}).
793
794 Nelle prime versioni di Unix i valori di \param{flag} specificabili per
795 \func{open} erano solo quelli relativi alle modalità di accesso del file.  Per
796 questo motivo per creare un nuovo file c'era una \textit{system call}
797 apposita, \funcd{creat}, nel caso di Linux questo non è più necessario ma la
798 funzione è definita ugualmente; il suo prototipo è:
799
800 \begin{funcproto}{
801 \fhead{fcntl.h}
802 \fdecl{int creat(const char *pathname, mode\_t mode)}
803 \fdesc{Crea un nuovo file vuoto.} 
804 }
805
806 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
807   caso \var{errno} assumerà gli stessi valori che si otterrebbero con
808   \func{open}.}
809 \end{funcproto}
810
811 La funzione crea un nuovo file vuoto, con i permessi specificati
812 dall'argomento \param{mode}. È del tutto equivalente a \code{open(filedes,
813   O\_CREAT|O\_WRONLY|O\_TRUNC, mode)} e resta solo per compatibilità con i
814 vecchi programmi.
815
816 Una volta che l'accesso ad un file non sia più necessario la funzione di
817 sistema \funcd{close} permette di ``\textsl{chiuderlo}'', in questo modo il
818 file non sarà più accessibile ed il relativo file descriptor ritornerà
819 disponibile; il suo prototipo è:
820
821 \begin{funcproto}{
822 \fhead{unistd.h}
823 \fdecl{int close(int fd)}
824 \fdesc{Chiude un file.} 
825 }
826
827 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
828   caso \var{errno} assumerà uno dei valori: 
829   \begin{errlist}
830     \item[\errcode{EBADF}]  \param{fd} non è un descrittore valido.
831     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
832   \end{errlist}
833   ed inoltre \errval{EIO} nel suo significato generico.}
834 \end{funcproto}
835
836 La funzione chiude il file descriptor \param{fd}. La chiusura rilascia ogni
837 eventuale blocco (il \textit{file locking} è trattato in
838 sez.~\ref{sec:file_locking}) che il processo poteva avere acquisito su di
839 esso. Se \param{fd} è l'ultimo riferimento (di eventuali copie, vedi
840 sez.~\ref{sec:file_shared_access} e \ref{sec:file_dup}) ad un file aperto,
841 tutte le risorse nella \textit{file table} vengono rilasciate. Infine se il
842 file descriptor era l'ultimo riferimento ad un file su disco quest'ultimo
843 viene cancellato.
844
845 Si ricordi che quando un processo termina tutti i suoi file descriptor vengono
846 automaticamente chiusi, molti programmi sfruttano questa caratteristica e non
847 usano esplicitamente \func{close}. In genere comunque chiudere un file senza
848 controllare lo stato di uscita di \func{close} un è errore; molti filesystem
849 infatti implementano la tecnica del cosiddetto \itindex{write-behind}
850 \textit{write-behind}, per cui una \func{write} può avere successo anche se i
851 dati non sono stati effettivamente scritti su disco. In questo caso un
852 eventuale errore di I/O avvenuto in un secondo tempo potrebbe sfuggire, mentre
853 verrebbe riportato alla chiusura esplicita del file. Per questo motivo non
854 effettuare il controllo può portare ad una perdita di dati
855 inavvertita.\footnote{in Linux questo comportamento è stato osservato con NFS
856   e le quote su disco.}
857
858 In ogni caso una \func{close} andata a buon fine non garantisce che i dati
859 siano stati effettivamente scritti su disco, perché il kernel può decidere di
860 ottimizzare l'accesso a disco ritardandone la scrittura. L'uso della funzione
861 \func{sync} (vedi sez.~\ref{sec:file_sync}) effettua esplicitamente lo scarico
862 dei dati, ma anche in questo caso resta l'incertezza dovuta al comportamento
863 dell'hardware, che a sua volta può introdurre ottimizzazioni dell'accesso al
864 disco che ritardano la scrittura dei dati. Da questo deriva l'abitudine di
865 alcuni sistemisti di ripetere tre volte il comando omonimo prima di eseguire
866 lo shutdown di una macchina.
867
868 Si tenga comunque presente che ripetere la chiusura in caso di fallimento non
869 è opportuno, una volta chiamata \func{close} il file descriptor viene comunque
870 rilasciato, indipendentemente dalla presenza di errori, e se la riesecuzione
871 non comporta teoricamente problemi (se non la sua inutilità) se fatta
872 all'interno di un processo singolo, nel caso si usino i \textit{thread} si
873 potrebbe chiudere un file descriptor aperto nel contempo da un altro
874 \textit{thread}.
875
876 \subsection{La gestione della posizione nel file}
877 \label{sec:file_lseek}
878
879 Come già accennato in sez.~\ref{sec:file_fd} a ciascun file aperto è associata
880 una \textsl{posizione corrente nel file} (il cosiddetto \textit{file offset},
881 mantenuto nel campo \var{f\_pos} di \kstruct{file}) espressa da un numero
882 intero positivo che esprime il numero di byte dall'inizio del file. Tutte le
883 operazioni di lettura e scrittura avvengono a partire da questa posizione che
884 viene automaticamente spostata in avanti del numero di byte letti o scritti.
885
886 In genere, a meno di non avere richiesto la modalità di scrittura in
887 \textit{append} (vedi sez.~\ref{sec:file_write}) con \const{O\_APPEND}, questa
888 posizione viene impostata a zero all'apertura del file. È possibile impostarla
889 ad un valore qualsiasi con la funzione di sistema \funcd{lseek}, il cui
890 prototipo è:
891
892 \begin{funcproto}{
893 \fhead{sys/types.h}
894 \fhead{unistd.h}
895 \fdecl{off\_t lseek(int fd, off\_t offset, int whence)}
896 \fdesc{Imposta la posizione sul file.} 
897 }
898
899 {La funzione ritorna il valore della posizione sul file in caso di successo e
900   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
901   \begin{errlist}
902     \item[\errcode{EINVAL}] \param{whence} non è un valore valido.
903     \item[\errcode{EOVERFLOW}] \param{offset} non può essere rappresentato nel
904       tipo \type{off\_t}.
905     \item[\errcode{ESPIPE}] \param{fd} è una \textit{pipe}, un socket o una
906       \textit{fifo}.
907   \end{errlist}
908   ed inoltre \errval{EBADF} nel suo significato generico.}
909 \end{funcproto}
910
911 La funzione imposta la nuova posizione sul file usando il valore indicato
912 da \param{offset}, che viene sommato al riferimento dato
913 dall'argomento \param{whence}, che deve essere indicato con una delle costanti
914 riportate in tab.~\ref{tab:lseek_whence_values}.\footnote{per compatibilità
915   con alcune vecchie notazioni questi valori possono essere rimpiazzati
916   rispettivamente con 0, 1 e 2 o con \constd{L\_SET}, \constd{L\_INCR} e
917   \constd{L\_XTND}.} Si tenga presente che la chiamata a \func{lseek} non causa
918 nessun accesso al file, si limita a modificare la posizione corrente (cioè il
919 campo \var{f\_pos} della struttura \kstruct{file}, vedi
920 fig.~\ref{fig:file_proc_file}).  Dato che la funzione ritorna la nuova
921 posizione, usando il valore zero per \param{offset} si può riottenere la
922 posizione corrente nel file con \code{lseek(fd, 0, SEEK\_CUR)}.
923
924 \begin{table}[htb]
925   \centering
926   \footnotesize
927   \begin{tabular}[c]{|l|p{10cm}|}
928     \hline
929     \textbf{Costante} & \textbf{Significato} \\
930     \hline
931     \hline
932     \constd{SEEK\_SET}& Si fa riferimento all'inizio del file: il valore, che 
933                         deve essere positivo, di \param{offset} indica
934                         direttamente la nuova posizione corrente.\\
935     \constd{SEEK\_CUR}& Si fa riferimento alla posizione corrente del file:
936                         ad essa viene sommato \param{offset}, che può essere
937                         negativo e positivo, per ottenere la nuova posizione
938                         corrente.\\
939     \constd{SEEK\_END}& Si fa riferimento alla fine del file: alle dimensioni
940                         del file viene sommato \param{offset}, che può essere
941                         negativo e positivo, per ottenere la nuova posizione
942                         corrente.\\
943     \hline
944     \constd{SEEK\_DATA}&Sposta la posizione nel file sull'inizio del primo
945                         blocco di dati dopo un \textit{hole} che segue (o
946                         coincide) con la posizione indicata da \param{offset}
947                         (dal kernel 3.1).\\
948     \constd{SEEK\_HOLE}&Sposta la posizione sul file all'inizio del primo
949                         \textit{hole} nel file che segue o inizia
950                         con \param{offset}, oppure si porta su \param{offset} 
951                         se questo è all'interno di un \textit{hole}, oppure si
952                         porta alla fine del file se non ci sono \textit{hole}
953                         dopo \param{offset} (dal kernel 3.1).\\ 
954     \hline
955   \end{tabular}  
956   \caption{Possibili valori per l'argomento \param{whence} di \func{lseek}.} 
957   \label{tab:lseek_whence_values}
958 \end{table}
959
960
961 % NOTE: per SEEK_HOLE e SEEK_DATA, inclusi nel kernel 3.1, vedi
962 % http://lwn.net/Articles/439623/ 
963
964 Si tenga presente inoltre che usare \const{SEEK\_END} non assicura affatto che
965 la successiva scrittura avvenga alla fine del file, infatti se questo è stato
966 aperto anche da un altro processo che vi ha scritto, la fine del file può
967 essersi spostata, ma noi scriveremo alla posizione impostata in precedenza
968 (questa è una potenziale sorgente di \textit{race condition}, vedi
969 sez.~\ref{sec:file_shared_access}).
970
971 Non tutti i file supportano la capacità di eseguire una \func{lseek}, in
972 questo caso la funzione ritorna l'errore \errcode{ESPIPE}. Questo, oltre che
973 per i tre casi citati nel prototipo, vale anche per tutti quei dispositivi che
974 non supportano questa funzione, come ad esempio per i file di
975 terminale.\footnote{altri sistemi, usando \const{SEEK\_SET}, in questo caso
976   ritornano il numero di caratteri che vi sono stati scritti.} Lo standard
977 POSIX però non specifica niente in proposito. Inoltre alcuni file speciali, ad
978 esempio \file{/dev/null}, non causano un errore ma restituiscono un valore
979 indefinito.
980
981 \itindbeg{sparse~file} 
982 \index{file!\textit{hole}|(} 
983
984 Infine si tenga presente che, come accennato in sez.~\ref{sec:file_file_size},
985 con \func{lseek} è possibile impostare una posizione anche oltre la corrente
986 fine del file. In tal caso alla successiva scrittura il file sarà esteso a
987 partire da detta posizione, con la creazione di quello che viene chiamato un
988 ``\textsl{buco}'' (in gergo \textit{hole}) nel file.  Il nome deriva dal fatto
989 che nonostante la dimensione del file sia cresciuta in seguito alla scrittura
990 effettuata, lo spazio vuoto fra la precedente fine del file e la nuova parte,
991 scritta dopo lo spostamento, non corrisponde ad una allocazione effettiva di
992 spazio su disco, che sarebbe inutile dato che quella zona è effettivamente
993 vuota.
994
995 Questa è una delle caratteristiche specifiche della gestione dei file di un
996 sistema unix-like e quando si ha questa situazione si dice che il file in
997 questione è uno \textit{sparse file}. In sostanza, se si ricorda la struttura
998 di un filesystem illustrata in fig.~\ref{fig:file_filesys_detail}, quello che
999 accade è che nell'\textit{inode} del file viene segnata l'allocazione di un
1000 blocco di dati a partire dalla nuova posizione, ma non viene allocato nulla
1001 per le posizioni intermedie. In caso di lettura sequenziale del contenuto del
1002 file il kernel si accorgerà della presenza del buco, e restituirà degli zeri
1003 come contenuto di quella parte del file.
1004
1005 Questa funzionalità comporta una delle caratteristiche della gestione dei file
1006 su Unix che spesso genera più confusione in chi non la conosce, per cui
1007 sommando le dimensioni dei file si può ottenere, se si hanno molti
1008 \textit{sparse file}, un totale anche maggiore della capacità del proprio
1009 disco e comunque maggiore della dimensione che riporta un comando come
1010 \cmd{du}, che calcola lo spazio disco occupato in base al numero dei blocchi
1011 effettivamente allocati per il file.
1012
1013 Tutto ciò avviene proprio perché in un sistema unix-like la dimensione di un
1014 file è una caratteristica del tutto indipendente dalla quantità di spazio
1015 disco effettivamente allocato, e viene registrata sull'\textit{inode} come le
1016 altre proprietà del file. La dimensione viene aggiornata automaticamente
1017 quando si estende un file scrivendoci, e viene riportata dal campo
1018 \var{st\_size} di una struttura \struct{stat} quando si effettua la chiamata
1019 ad una delle funzioni \texttt{*stat} viste in sez.~\ref{sec:file_stat}.
1020
1021 Questo comporta che la dimensione di un file, fintanto che lo si è scritto
1022 sequenzialmente, sarà corrispondente alla quantità di spazio disco da esso
1023 occupato, ma possono esistere dei casi, come questo in cui ci si sposta in una
1024 posizione oltre la fine corrente del file, o come quello accennato in
1025 sez.~\ref{sec:file_file_size} in cui si estende la dimensione di un file con
1026 una \func{truncate}, in cui si modifica soltanto il valore della dimensione di
1027 \var{st\_size} senza allocare spazio su disco. Così è possibile creare
1028 inizialmente file di dimensioni anche molto grandi, senza dover occupare da
1029 subito dello spazio disco che in realtà sarebbe inutilizzato.
1030
1031 \itindend{sparse~file}
1032
1033 A partire dal kernel 3.1, riprendendo una interfaccia adottata su Solaris,
1034 sono state aggiunti due nuovi valori per l'argomento \param{whence}, riportati
1035 nella seconda sezione di tab.~\ref{tab:lseek_whence_values}, che consentono di
1036 riconoscere la presenza di \textit{hole} all'interno dei file ad uso di quelle
1037 applicazioni (come i programmi di backup) che possono salvare spazio disco
1038 nella copia degli \textit{sparse file}. Una applicazione può così determinare
1039 la presenza di un \textit{hole} usando \const{SEEK\_HOLE} all'inizio del file
1040 e determinare poi l'inizio della successiva sezione di dati usando
1041 \const{SEEK\_DATA}. Per compatibilità con i filesystem che non supportano
1042 questa funzionalità è previsto comunque che in tal caso \const{SEEK\_HOLE}
1043 riporti sempre la fine del file e \const{SEEK\_DATA} il valore
1044 di \param{offset}.
1045
1046 Inoltre la decisione di come riportare (o di non riportare) la presenza di un
1047 buco in un file è lasciata all'implementazione del filesystem, dato che oltre
1048 a quelle classiche appena esposte esistono vari motivi per cui una sezione di
1049 un file può non contenere dati ed essere riportata come tale (ad esempio può
1050 essere stata preallocata con \func{fallocate}, vedi
1051 sez.~\ref{sec:file_fadvise}). Questo significa che l'uso di questi nuovi
1052 valori non garantisce la mappatura della effettiva allocazione dello spazio
1053 disco di un file, per il quale esiste una specifica operazione di controllo
1054 (vedi sez.~\ref{sec:file_fcntl_ioctl}).
1055
1056 \index{file!\textit{hole}|)} 
1057
1058
1059 \subsection{Le funzioni per la lettura di un file}
1060 \label{sec:file_read}
1061
1062 Una volta che un file è stato aperto (con il permesso in lettura) si possono
1063 leggere i dati che contiene utilizzando la funzione di sistema \funcd{read},
1064 il cui prototipo è:
1065
1066 \begin{funcproto}{
1067 \fhead{unistd.h}
1068 \fdecl{ssize\_t read(int fd, void * buf, size\_t count)}
1069 \fdesc{Legge i dati da un file.} 
1070 }
1071
1072 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1073   caso \var{errno} assumerà uno dei valori: 
1074   \begin{errlist}
1075   \item[\errcode{EAGAIN}] la funzione non ha nessun dato da restituire e si è
1076     aperto il file con \const{O\_NONBLOCK}.
1077   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1078   \item[\errcode{EINVAL}] \param{fd} è associato ad un oggetto non leggibile,
1079     o lo si è ottenuto da \func{timerfd\_create} (vedi
1080     sez.~\ref{sec:sig_signalfd_eventfd}) e si è usato un valore sbagliato
1081     per \param{size} o si è usato \const{O\_DIRECT} ed il buffer non è
1082     allineato.
1083   \item[\errval{EIO}] si è tentata la lettura dal terminale di controllo
1084     essendo in background ignorando o bloccando \const{SIGTTIN} (vedi
1085     sez.~\ref{sec:term_io_design}) o per errori di basso livello sul supporto.
1086   \end{errlist}
1087   ed inoltre \errval{EBADF}, \errval{EFAULT} e \errval{EISDIR}, nel loro
1088   significato generico.}
1089 \end{funcproto}
1090
1091 La funzione tenta di leggere \param{count} byte dal file \param{fd} a partire
1092 dalla posizione corrente, scrivendoli nel buffer \param{buf}.\footnote{fino ad
1093   un massimo di \const{0x7ffff000} byte, indipendentemente che l'architettura
1094   sia a 32 o 64 bit.} Dopo la lettura la posizione sul file è spostata
1095 automaticamente in avanti del numero di byte letti. Se \param{count} è zero la
1096 funzione restituisce zero senza nessun altro risultato. Inoltre che non è
1097 detto che la funzione \func{read} restituisca il numero di byte richiesto, ci
1098 sono infatti varie ragioni per cui la funzione può restituire un numero di
1099 byte inferiore: questo è un comportamento normale, e non un errore, che
1100 bisogna sempre tenere presente.
1101
1102 La prima e più ovvia di queste ragioni è che si è chiesto di leggere più byte
1103 di quanto il file ne contenga. In questo caso il file viene letto fino alla
1104 sua fine, e la funzione ritorna regolarmente il numero di byte letti
1105 effettivamente. Raggiunta la fine del file, alla ripetizione di un'operazione
1106 di lettura, otterremmo il ritorno immediato di \func{read} con uno zero.  La
1107 condizione di raggiungimento della fine del file non è un errore, e viene
1108 segnalata appunto da un valore di ritorno di \func{read} nullo. Ripetere
1109 ulteriormente la lettura non avrebbe nessun effetto se non quello di
1110 continuare a ricevere zero come valore di ritorno.
1111
1112 Con i \textsl{file regolari} questa è l'unica situazione in cui si può avere
1113 un numero di byte letti inferiore a quello richiesto, ma questo non è vero
1114 quando si legge da un terminale, da una \textit{fifo} o da una
1115 \textit{pipe}. In tal caso infatti, se non ci sono dati in ingresso, la
1116 \func{read} si blocca (a meno di non aver selezionato la modalità non
1117 bloccante, vedi sez.~\ref{sec:file_noblocking}) e ritorna solo quando ne
1118 arrivano; se il numero di byte richiesti eccede quelli disponibili la funzione
1119 ritorna comunque, ma con un numero di byte inferiore a quelli richiesti.
1120
1121 Lo stesso comportamento avviene caso di lettura dalla rete (cioè su un socket,
1122 come vedremo in sez.~\ref{sec:sock_io_behav}), o per la lettura da certi file
1123 di dispositivo, come le unità a nastro, che restituiscono sempre i dati ad un
1124 singolo blocco alla volta, o come le linee seriali, che restituiscono solo i
1125 dati ricevuti fino al momento della lettura, o i terminali, per i quali si
1126 applicano anche ulteriori condizioni che approfondiremo in
1127 sez.~\ref{sec:sess_terminal_io}.
1128
1129 Infine anche le due condizioni segnalate dagli errori \errcode{EINTR} ed
1130 \errcode{EAGAIN} non sono propriamente degli errori. La prima si verifica
1131 quando la \func{read} è bloccata in attesa di dati in ingresso e viene
1132 interrotta da un segnale. In tal caso l'azione da intraprendere è quella di
1133 rieseguire la funzione, torneremo in dettaglio sull'argomento in
1134 sez.~\ref{sec:sig_gen_beha}.  La seconda si verifica quando il file è aperto
1135 in modalità non bloccante (con \const{O\_NONBLOCK}) e non ci sono dati in
1136 ingresso: la funzione allora ritorna immediatamente con un errore
1137 \errcode{EAGAIN}\footnote{in BSD si usa per questo errore la costante
1138   \errcode{EWOULDBLOCK}, in Linux, con la \acr{glibc}, questa è sinonima di
1139   \errcode{EAGAIN}, ma se si vuole essere completamente portabili occorre
1140   verificare entrambi i valori, dato che POSIX.1-2001 non richiede che siano
1141   coincidenti.} che indica soltanto che non essendoci al momento dati
1142 disponibili occorre provare a ripetere la lettura in un secondo tempo,
1143 torneremo sull'argomento in sez.~\ref{sec:file_noblocking}.
1144
1145 La funzione \func{read} è una delle \textit{system call} fondamentali,
1146 esistenti fin dagli albori di Unix, ma nella seconda versione delle
1147 \textit{Single Unix Specification}\footnote{questa funzione, e l'analoga
1148   \func{pwrite} sono state aggiunte nel kernel 2.1.60, il supporto nella
1149   \acr{glibc}, compresa l'emulazione per i vecchi kernel che non hanno la
1150   \textit{system call}, è stato aggiunto con la versione 2.1, in versioni
1151   precedenti sia del kernel che delle librerie la funzione non è disponibile.}
1152 (quello che viene chiamato normalmente Unix98, vedi
1153 sez.~\ref{sec:intro_xopen}) è stata introdotta la definizione di un'altra
1154 funzione di sistema, \funcd{pread}, il cui prototipo è:
1155
1156 \begin{funcproto}{
1157 \fhead{unistd.h}
1158 \fdecl{ssize\_t pread(int fd, void * buf, size\_t count, off\_t offset)}
1159 \fdesc{Legge a partire da una posizione sul file.} 
1160 }
1161
1162 {La funzione ritorna il numero di byte letti in caso di successo e $-1$ per un
1163   errore, nel qual caso \var{errno} assumerà i valori già visti per
1164   \func{read} e \func{lseek}.}
1165 \end{funcproto}
1166
1167 La funzione prende esattamente gli stessi argomenti di \func{read} con lo
1168 stesso significato, a cui si aggiunge l'argomento \param{offset} che indica
1169 una posizione sul file a partire dalla quale verranno letti i \param{count}
1170 byte. Identico è il comportamento ed il valore di ritorno, ma la posizione
1171 corrente sul file resterà invariata.  Il valore di \param{offset} fa sempre
1172 riferimento all'inizio del file.
1173
1174 L'uso di \func{pread} è equivalente all'esecuzione di una \func{lseek} alla
1175 posizione indicata da \param{offset} seguita da una \func{read}, seguita da
1176 un'altra \func{lseek} che riporti al valore iniziale della posizione corrente
1177 sul file, ma permette di eseguire l'operazione atomicamente. Questo può essere
1178 importante quando la posizione sul file viene condivisa da processi diversi
1179 (vedi sez.~\ref{sec:file_shared_access}) ed è particolarmente utile in caso di
1180 programmazione \textit{multi-thread} (vedi sez.~\ref{cha:threads}) quando
1181 all'interno di un processo si vuole che le operazioni di un \textit{thread}
1182 non possano essere influenzata da eventuali variazioni della posizione sul
1183 file effettuate da altri \textit{thread}.
1184
1185 La funzione \func{pread} è disponibile anche in Linux, però diventa
1186 accessibile solo attivando il supporto delle estensioni previste dalle
1187 \textit{Single Unix Specification} con un valore della macro
1188 \macro{\_XOPEN\_SOURCE} maggiore o uguale a 500 o a partire dalla \acr{glibc}
1189 2.12 con un valore dalla macro \macro{\_POSIX\_C\_SOURCE} maggiore o uguale al
1190 valore \val{200809L}.  Si ricordi di definire queste macro prima
1191 dell'inclusione del file di dichiarazione \headfile{unistd.h}.
1192
1193
1194 \subsection{Le funzioni per la scrittura di un file}
1195 \label{sec:file_write}
1196
1197 Una volta che un file è stato aperto (con il permesso in scrittura) si può
1198 scrivere su di esso utilizzando la funzione di sistema \funcd{write}, il cui
1199 prototipo è:
1200
1201 \begin{funcproto}{
1202 \fhead{unistd.h}
1203 \fdecl{ssize\_t write(int fd, void * buf, size\_t count)}
1204 \fdesc{Scrive i dati su un file.} 
1205 }
1206
1207 {La funzione ritorna il numero di byte scritti in caso di successo e $-1$ per
1208   un errore, nel qual caso \var{errno} assumerà uno dei valori:
1209   \begin{errlist}
1210   \item[\errcode{EAGAIN}] ci si sarebbe bloccati, ma il file era aperto in
1211     modalità \const{O\_NONBLOCK}.
1212   \item[\errcode{EDESTADDRREQ}] si è eseguita una scrittura su un socket di
1213     tipo \textit{datagram} (vedi sez.~\ref{sec:sock_type}) senza aver prima
1214     connesso il corrispondente con \func{connect} (vedi
1215     sez.~\ref{sec:UDP_sendto_recvfrom}).
1216   \item[\errcode{EFBIG}] si è cercato di scrivere oltre la dimensione massima
1217     consentita dal filesystem o il limite per le dimensioni dei file del
1218     processo o su una posizione oltre il massimo consentito.
1219   \item[\errcode{EINTR}] si è stati interrotti da un segnale prima di aver
1220     potuto scrivere qualsiasi dato.
1221   \item[\errcode{EINVAL}] \param{fd} è connesso ad un oggetto che non consente
1222     la scrittura o si è usato \const{O\_DIRECT} ed il buffer non è allineato.
1223   \item[\errcode{EPERM}] la scrittura è proibita da un \textit{file seal}
1224     (vedi sez.~\ref{sec:file_fcntl_ioctl}).
1225   \item[\errcode{EPIPE}] \param{fd} è connesso ad una \textit{pipe} il cui
1226     altro capo è chiuso in lettura; in questo caso viene anche generato il
1227     segnale \signal{SIGPIPE}, se questo viene gestito (o bloccato o ignorato)
1228     la funzione ritorna questo errore.
1229   \end{errlist}
1230   ed inoltre \errval{EBADF}, \errval{EDQUOT}, \errval{EFAULT}, \errval{EIO},
1231   \errval{EISDIR}, \errval{ENOSPC} nel loro significato generico.}
1232 \end{funcproto}
1233
1234
1235 \itindbeg{append~mode}
1236
1237 Come nel caso di \func{read} la funzione tenta di scrivere \param{count} byte
1238 a partire dalla posizione corrente nel file e sposta automaticamente la
1239 posizione in avanti del numero di byte scritti. Se il file è aperto in
1240 modalità \textit{append} con \const{O\_APPEND} i dati vengono sempre scritti
1241 alla fine del file.  Lo standard POSIX richiede che i dati scritti siano
1242 immediatamente disponibili ad una \func{read} chiamata dopo che la
1243 \func{write} che li ha scritti è ritornata; ma dati i meccanismi di caching
1244 non è detto che tutti i filesystem supportino questa capacità.
1245
1246 \itindend{append~mode}
1247
1248 Se \param{count} è zero la funzione restituisce zero senza fare nient'altro.
1249 Per i file ordinari il numero di byte scritti è sempre uguale a quello
1250 indicato da \param{count}, a meno di un errore. Negli altri casi si ha lo
1251 stesso comportamento di \func{read}.
1252
1253 Anche per \func{write} lo standard Unix98 (ed i successivi POSIX.1-2001 e
1254 POSIX.1-2008) definiscono un'analoga \funcd{pwrite} per scrivere alla
1255 posizione indicata senza modificare la posizione corrente nel file, il suo
1256 prototipo è:
1257
1258 \begin{funcproto}{
1259 \fhead{unistd.h}
1260 \fdecl{ssize\_t pwrite(int fd, void * buf, size\_t count, off\_t offset)}
1261 \fdesc{Scrive a partire da una posizione sul file.} 
1262 }
1263
1264 {La funzione ritorna il numero di byte letti in caso di successo e $-1$ per un
1265   errore, nel qual caso \var{errno} assumerà i valori già visti per
1266   \func{write} e \func{lseek}.}
1267 \end{funcproto}
1268
1269 \noindent per questa funzione valgono le stesse considerazioni fatte per
1270 \func{pread}, a cui si aggiunge il fatto che su Linux, a differenza di quanto
1271 previsto dallo standard POSIX che richiederebbe di ignorarlo, se si è aperto
1272 il file con \const{O\_APPEND} i dati saranno comunque scritti in coda al file,
1273 ignorando il valore di \param{offset}.
1274
1275
1276 \section{Caratteristiche avanzate}
1277 \label{sec:file_adv_func}
1278
1279 In questa sezione approfondiremo alcune delle caratteristiche più sottili
1280 della gestione file in un sistema unix-like, esaminando in dettaglio il
1281 comportamento delle funzioni base, inoltre tratteremo le funzioni che
1282 permettono di eseguire alcune operazioni avanzate con i file (il grosso
1283 dell'argomento sarà comunque affrontato nel cap.~\ref{cha:file_advanced}).
1284
1285
1286 \subsection{La gestione dell'accesso concorrente ai files}
1287 \label{sec:file_shared_access}
1288
1289 In sez.~\ref{sec:file_fd} abbiamo descritto brevemente l'architettura
1290 dell'interfaccia con i file da parte di un processo, mostrando in
1291 fig.~\ref{fig:file_proc_file} le principali strutture usate dal kernel;
1292 esamineremo ora in dettaglio le conseguenze che questa architettura ha nei
1293 confronti dell'accesso concorrente allo stesso file da parte di processi
1294 diversi.
1295
1296 \begin{figure}[!htb]
1297   \centering
1298   \includegraphics[width=11cm]{img/filemultacc}
1299   \caption{Schema dell'accesso allo stesso file da parte di due processi 
1300     diversi}
1301   \label{fig:file_mult_acc}
1302 \end{figure}
1303
1304 Il primo caso è quello in cui due processi indipendenti aprono lo stesso file
1305 su disco; sulla base di quanto visto in sez.~\ref{sec:file_fd} avremo una
1306 situazione come quella illustrata in fig.~\ref{fig:file_mult_acc}: ciascun
1307 processo avrà una sua voce nella \textit{file table} referenziata da un
1308 diverso file descriptor nella sua \kstruct{file\_struct}. Entrambe le voci
1309 nella \textit{file table} faranno però riferimento allo stesso \textit{inode}
1310 su disco.
1311
1312 Questo significa che ciascun processo avrà la sua posizione corrente sul file,
1313 la sua modalità di accesso e versioni proprie di tutte le proprietà che
1314 vengono mantenute nella sua voce della \textit{file table}. Questo ha
1315 conseguenze specifiche sugli effetti della possibile azione simultanea sullo
1316 stesso file, in particolare occorre tenere presente che:
1317 \begin{itemize*}
1318 \item ciascun processo può scrivere indipendentemente, dopo ciascuna
1319   \func{write} la posizione corrente sarà cambiata solo nel processo
1320   scrivente. Se la scrittura eccede la dimensione corrente del file questo
1321   verrà esteso automaticamente con l'aggiornamento del campo \var{i\_size}
1322   della struttura \kstruct{inode}.
1323 \item se un file è in modalità \const{O\_APPEND} tutte le volte che viene
1324   effettuata una scrittura la posizione corrente viene prima impostata alla
1325   dimensione corrente del file letta dalla struttura \kstruct{inode}. Dopo la
1326   scrittura il file viene automaticamente esteso. Questa operazione avviene
1327   atomicamente, ogni altro processo che usi \const{O\_APPEND} vedrà la
1328   dimensione estesa e continuerà a scrivere in coda al file.
1329 \item l'effetto di \func{lseek} è solo quello di cambiare il campo
1330   \var{f\_pos} nella struttura \kstruct{file} della \textit{file table}, non
1331   c'è nessuna operazione sul file su disco. Quando la si usa per porsi alla
1332   fine del file la posizione viene impostata leggendo la attuale dimensione
1333   corrente dalla struttura \kstruct{inode}.
1334 \end{itemize*}
1335
1336 \begin{figure}[!htb]
1337   \centering
1338   \includegraphics[width=11cm]{img/fileshar}
1339   \caption{Schema dell'accesso ai file da parte di un processo figlio}
1340   \label{fig:file_acc_child}
1341 \end{figure}
1342
1343 Il secondo caso è quello in cui due file descriptor di due processi diversi
1344 puntano alla stessa voce nella \textit{file table}.  Questo è ad esempio il
1345 caso dei file aperti che vengono ereditati dal processo figlio all'esecuzione
1346 di una \func{fork} (si ricordi quanto detto in sez.~\ref{sec:proc_fork}). La
1347 situazione è illustrata in fig.~\ref{fig:file_acc_child}; dato che il processo
1348 figlio riceve una copia dello spazio di indirizzi del padre, riceverà anche
1349 una copia di \kstruct{file\_struct} e della relativa tabella dei file aperti.
1350
1351 Questo significa che il figlio avrà gli stessi file aperti del padre in
1352 quanto la sua \kstruct{file\_struct}, pur essendo allocata in maniera
1353 indipendente, contiene gli stessi valori di quella del padre e quindi i suoi
1354 file descriptor faranno riferimento alla stessa voce nella \textit{file
1355   table}, condividendo così la posizione corrente sul file. Questo ha le
1356 conseguenze descritte a suo tempo in sez.~\ref{sec:proc_fork}: in caso di
1357 scrittura o lettura da parte di uno dei due processi, la posizione corrente
1358 nel file varierà per entrambi, in quanto verrà modificato il campo
1359 \var{f\_pos} della struttura \kstruct{file}, che è la stessa per
1360 entrambi. Questo consente una sorta di ``\textsl{sincronizzazione}''
1361 automatica della posizione sul file fra padre e figlio che occorre tenere
1362 presente.
1363
1364 Si noti inoltre che in questo caso anche i flag di stato del file, essendo
1365 mantenuti nella struttura \kstruct{file} della \textit{file table}, vengono
1366 condivisi, per cui una modifica degli stessi con \func{fcntl} (vedi
1367 sez.~\ref{sec:file_fcntl_ioctl}) si applicherebbe a tutti processi che
1368 condividono la voce nella \textit{file table}. Ai file però sono associati
1369 anche altri flag, dei quali l'unico usato al momento è \constd{FD\_CLOEXEC},
1370 detti \itindex{file~descriptor~flags} \textit{file descriptor flags}; questi
1371 invece sono mantenuti in \kstruct{file\_struct}, e perciò sono locali per
1372 ciascun processo e non vengono modificati dalle azioni degli altri anche in
1373 caso di condivisione della stessa voce della \textit{file table}.
1374
1375 Si tenga presente dunque che in un sistema unix-like è sempre possibile per
1376 più processi accedere in contemporanea allo stesso file e che non esistono, a
1377 differenza di altri sistemi operativi, dei meccanismi di blocco o di
1378 restrizione dell'accesso impliciti quando più processi vogliono accedere allo
1379 stesso file. Questo significa che le operazioni di lettura e scrittura vengono
1380 sempre fatte da ogni processo in maniera indipendente, utilizzando una
1381 posizione corrente nel file che normalmente, a meno di non trovarsi nella
1382 situazione di fig.~\ref{fig:file_acc_child}, è locale a ciascuno di essi.
1383
1384 Dal punto di vista della lettura dei dati questo comporta la possibilità di
1385 poter leggere dati non coerenti in caso di scrittura contemporanea da parte di
1386 un altro processo. Dal punto di vista della scrittura invece si potranno avere
1387 sovrapposizioni imprevedibili quando due processi scrivono nella stessa
1388 sezione di file, dato che ciascuno lo farà in maniera indipendente.  Il
1389 sistema però fornisce in alcuni casi la possibilità di eseguire alcune
1390 operazioni di scrittura in maniera coordinata anche senza utilizzare dei
1391 meccanismi di sincronizzazione espliciti come il \textit{file locking}, che
1392 esamineremo in sez.~\ref{sec:file_locking}.
1393
1394 Un caso tipico di necessità di accesso condiviso in scrittura è quello in cui
1395 vari processi devono scrivere alla fine di un file (ad esempio un file di
1396 log). Come accennato in sez.~\ref{sec:file_lseek} impostare la posizione alla
1397 fine del file con \func{lseek} e poi scrivere con \func{write} può condurre ad
1398 una \textit{race condition}; infatti può succedere che un secondo processo
1399 scriva alla fine del file fra la \func{lseek} e la \func{write}. In questo
1400 caso, come abbiamo appena visto, il file sarà esteso, ma il primo processo,
1401 avrà una posizione corrente che aveva impostato con \func{lseek} che non
1402 corrisponde più alla fine del file, e la sua successiva \func{write}
1403 sovrascriverà i dati del secondo processo.
1404
1405 Il problema deriva dal fatto che usare due \textit{system call} in successione
1406 non è mai un'operazione atomica dato che il kernel può interrompere
1407 l'esecuzione del processo fra le due. Nel caso specifico il problema è stato
1408 risolto introducendo la modalità di scrittura in \textit{append}, attivabile
1409 con il flag \const{O\_APPEND}. In questo caso infatti, come abbiamo illustrato
1410 in sez.~\ref{sec:file_open_close}, è il kernel che aggiorna automaticamente la
1411 posizione alla fine del file prima di effettuare la scrittura, e poi estende
1412 il file.  Tutto questo avviene all'interno di una singola \textit{system
1413   call}, la \func{write}, che non essendo interrompibile da un altro processo
1414 realizza un'operazione atomica.
1415
1416
1417 \subsection{La duplicazione dei file descriptor}
1418 \label{sec:file_dup}
1419
1420 Abbiamo già visto in sez.~\ref{sec:file_shared_access} come un processo figlio
1421 condivida gli stessi file descriptor del padre; è possibile però ottenere un
1422 comportamento analogo all'interno di uno stesso processo con la cosiddetta
1423 \textit{duplicazione} di un file descriptor. Per far questo si usa la funzione
1424 di sistema \funcd{dup}, il cui prototipo è:
1425
1426 \begin{funcproto}{
1427 \fhead{unistd.h}
1428 \fdecl{int dup(int oldfd)}
1429 \fdesc{Crea un file descriptor duplicato.} 
1430 }
1431
1432 {La funzione ritorna il nuovo file descriptor in caso di successo e $-1$ per
1433   un errore, nel qual caso \var{errno} assumerà uno dei valori:
1434   \begin{errlist}
1435   \item[\errcode{EBADF}] \param{oldfd} non è un file aperto.
1436   \item[\errcode{EMFILE}] si è raggiunto il numero massimo consentito di file
1437     descriptor aperti (vedi sez.~\ref{sec:sys_resource_limit}).
1438   \end{errlist}
1439 }  
1440 \end{funcproto}
1441
1442 La funzione ritorna, come \func{open}, il primo file descriptor libero. Il
1443 file descriptor è una copia esatta del precedente ed entrambi possono essere
1444 interscambiati nell'uso. Per capire meglio il funzionamento della funzione si
1445 può fare riferimento a fig.~\ref{fig:file_dup}. L'effetto della funzione è
1446 semplicemente quello di copiare il valore di un certo file descriptor in
1447 un altro all'interno della struttura \kstruct{file\_struct}, cosicché anche
1448 questo faccia riferimento alla stessa voce nella \textit{file table}. Per
1449 questo motivo si dice che il nuovo file descriptor è ``\textsl{duplicato}'',
1450 da cui il nome della funzione.
1451
1452 \begin{figure}[!htb]
1453   \centering \includegraphics[width=11cm]{img/filedup}
1454   \caption{Schema dell'accesso ai file duplicati}
1455   \label{fig:file_dup}
1456 \end{figure}
1457
1458 Si noti che per quanto illustrato in fig.~\ref{fig:file_dup} i file descriptor
1459 duplicati condivideranno eventuali lock (vedi sez.~\ref{sec:file_locking}), i
1460 flag di stato, e la posizione corrente sul file. Se ad esempio si esegue una
1461 \func{lseek} per modificare la posizione su uno dei due file descriptor, essa
1462 risulterà modificata anche sull'altro, dato che quello che viene modificato è
1463 lo stesso campo nella voce della \textit{file table} a cui entrambi fanno
1464 riferimento.
1465
1466 L'unica differenza fra due file descriptor duplicati è che ciascuno avrà un
1467 suo \textit{file descriptor flag} indipendente. A questo proposito deve essere
1468 tenuto presente che nel caso in cui si usi \func{dup} per duplicare un file
1469 descriptor, se questo ha il flag di \textit{close-on-exec} attivo (vedi
1470 sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl_ioctl}), questo verrà
1471 cancellato nel file descriptor restituito come copia.
1472
1473 L'uso principale di questa funzione è nella shell per la redirezione dei file
1474 standard di tab.~\ref{tab:file_std_files} fra l'esecuzione di una \func{fork}
1475 e la successiva \func{exec}. Diventa così possibile associare un file (o una
1476 \textit{pipe}) allo \textit{standard input} o allo \textit{standard output}
1477 (vedremo un esempio in sez.~\ref{sec:ipc_pipe_use}, quando tratteremo le
1478 \textit{pipe}).
1479
1480 Ci si può chiedere perché non sia in questo caso sufficiente chiudere il file
1481 standard che si vuole redirigere e poi aprire direttamente con \func{open} il
1482 file vi si vuole far corrispondere, invece di duplicare un file descriptor che
1483 si è già aperto. La risposta sta nel fatto che il file che si vuole redirigere
1484 non è detto sia un file regolare, ma potrebbe essere, come accennato, anche
1485 una \textit{fifo} o un socket, oppure potrebbe essere un file associato ad un
1486 file descriptor che si è ereditato già aperto (ad esempio attraverso una
1487 \func{exec}) da un processo antenato del padre, del quale non si conosce il
1488 nome. Operando direttamente con i file descriptor \func{dup} consente di
1489 ignorare le origini del file descriptor che si duplica e funziona in maniera
1490 generica indipendentemente dall'oggetto a cui questo fa riferimento.
1491
1492 Per ottenere la redirezione occorre pertanto disporre del file descriptor
1493 associato al file che si vuole usare e chiudere il file descriptor che si
1494 vuole sostituire, cosicché esso possa esser restituito alla successiva
1495 chiamata di \func{dup} come primo file descriptor disponibile.  Dato che
1496 questa è l'operazione più comune, è prevista un'altra funzione di sistema,
1497 \funcd{dup2}, che permette di specificare esplicitamente qual è il numero di
1498 file descriptor che si vuole ottenere come duplicato; il suo prototipo è:
1499
1500 \begin{funcproto}{
1501 \fhead{unistd.h}
1502 \fdecl{int dup2(int oldfd, int newfd)}
1503 \fdesc{Duplica un file descriptor su un altro.} 
1504 }
1505
1506 {La funzione ritorna il nuovo file descriptor in caso di successo e $-1$ per
1507   un errore, nel qual caso \var{errno} assumerà uno dei valori:
1508   \begin{errlist}
1509   \item[\errcode{EBADF}] \param{oldfd} non è un file aperto o \param{newfd} ha
1510     un valore fuori dall'intervallo consentito per i file descriptor.
1511   \item[\errcode{EBUSY}] si è rilevata la possibilità di una \textit{race
1512       condition}.
1513   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1514   \item[\errcode{EMFILE}] si è raggiunto il numero massimo consentito di file
1515     descriptor aperti.
1516   \end{errlist}
1517 }  
1518 \end{funcproto}
1519
1520 La funzione duplica il file descriptor \param{oldfd} su un altro file
1521 descriptor di valore \param{newfd}. Qualora il file descriptor \param{newfd}
1522 sia già aperto, come avviene ad esempio nel caso della duplicazione di uno dei
1523 file standard di tab.~\ref{tab:file_std_files}, esso sarà prima chiuso e poi
1524 duplicato. Se \param{newfd} è uguale a \param{oldfd} la funzione non fa nulla
1525 e si limita a restituire \param{newfd}.
1526
1527 L'uso di \func{dup2} ha vari vantaggi rispetto alla combinazione di
1528 \func{close} e \func{dup}; anzitutto se \param{oldfd} è uguale \param{newfd}
1529 questo verrebbe chiuso e \func{dup} fallirebbe, ma soprattutto l'operazione è
1530 atomica e consente di evitare una \textit{race condition} in cui dopo la
1531 chiusura del file si potrebbe avere la ricezione di un segnale il cui gestore
1532 (vedi sez.~\ref{sec:sig_signal_handler}) potrebbe a sua volta aprire un file,
1533 per cui alla fine \func{dup} restituirebbe un file descriptor diverso da
1534 quello voluto.
1535
1536 Con Linux inoltre la funzione prevede la possibilità di restituire l'errore
1537 \errcode{EBUSY}, che non è previsto dallo standard, quando viene rilevata la
1538 possibilità di una \textit{race condition} interna in cui si cerca di
1539 duplicare un file descriptor che è stato allocato ma per il quale non sono
1540 state completate le operazioni di apertura.\footnote{la condizione è
1541   abbastanza peculiare e non attinente al tipo di utilizzo indicato, quanto
1542   piuttosto ad un eventuale tentativo di duplicare file descriptor non ancora
1543   aperti, la condizione di errore non è prevista dallo standard, ma in
1544   condizioni simili FreeBSD risponde con un errore di \errval{EBADF}, mentre
1545   OpenBSD elimina la possibilità di una \textit{race condition} al costo di
1546   una perdita di prestazioni.} In tal caso occorre ritentare l'operazione.
1547
1548 La duplicazione dei file descriptor può essere effettuata anche usando la
1549 funzione di controllo dei file \func{fcntl} (che esamineremo in
1550 sez.~\ref{sec:file_fcntl_ioctl}) con il parametro \const{F\_DUPFD}.
1551 L'operazione ha la sintassi \code{fcntl(oldfd, F\_DUPFD, newfd)} e se si usa 0
1552 come valore per \param{newfd} diventa equivalente a \func{dup}.  La sola
1553 differenza fra le due funzioni (a parte la sintassi ed i diversi codici di
1554 errore) è che \func{dup2} chiude il file descriptor \param{newfd} se questo è
1555 già aperto, garantendo che la duplicazione sia effettuata esattamente su di
1556 esso, invece \func{fcntl} restituisce il primo file descriptor libero di
1557 valore uguale o maggiore di \param{newfd}, per cui se \param{newfd} è aperto
1558 la duplicazione avverrà su un altro file descriptor.
1559
1560 Su Linux inoltre è presente una terza funzione di sistema non
1561 standard,\footnote{la funzione è stata introdotta con il kernel 2.6.27 e resa
1562   disponibile con la \acr{glibc} 2.9.} \funcd{dup3}, che consente di duplicare
1563 un file descriptor reimpostandone i flag, per usarla occorre definire la macro
1564 \macro{\_GNU\_SOURCE} ed il suo prototipo è:
1565
1566 \begin{funcproto}{
1567 \fhead{unistd.h}
1568 \fdecl{int dup3(int oldfd, int newfd, int flags)}
1569 \fdesc{Duplica un file descriptor su un altro.} 
1570 }
1571
1572 {La funzione ritorna il nuovo file descriptor in caso di successo e $-1$ per
1573   un errore, nel qual caso \var{errno} assumerà gli stessi valori di
1574   \func{dup2} più \errcode{EINVAL} qualora \param{flags} contenga un valore
1575   non valido o \param{newfd} sia uguale a \param{oldfd}.
1576 }  
1577 \end{funcproto}
1578
1579 La funzione è identica a \func{dup2} ma prevede la possibilità di mantenere il
1580 flag di \textit{close-on-exec} sul nuovo file descriptor specificando
1581 \const{O\_CLOEXEC} in \param{flags} (che è l'unico flag usabile in questo
1582 caso). Inoltre rileva esplicitamente la possibile coincidenza
1583 fra \param{newfd} e \param{oldfd}, fallendo con un errore di \errval{EINVAL}.
1584
1585
1586 \subsection{Le funzioni di sincronizzazione dei dati}
1587 \label{sec:file_sync}
1588
1589 Come accennato in sez.~\ref{sec:file_open_close} tutte le operazioni di
1590 scrittura sono in genere bufferizzate dal kernel, che provvede ad effettuarle
1591 in maniera asincrona per ottimizzarle, ad esempio accorpando gli accessi alla
1592 stessa zona del disco in un secondo tempo rispetto al momento della esecuzione
1593 della \func{write}.
1594
1595 Per questo motivo quando è necessaria una sincronizzazione immediata dei dati
1596 il sistema mette a disposizione delle funzioni che provvedono a forzare lo
1597 scarico dei dati dai buffer del kernel.  La prima di queste funzioni di
1598 sistema è \funcd{sync}, il cui prototipo è:\footnote{questo è il prototipo
1599   usato a partire dalla \acr{glibc} 2.2.2 seguendo gli standard, in precedenza
1600   la funzione era definita come \code{int sync(void)} e ritornava sempre $0$.}
1601
1602 \begin{funcproto}{
1603 \fhead{unistd.h}
1604 \fdecl{void sync(void)}
1605 \fdesc{Sincronizza il buffer della cache dei file col disco.} 
1606 }
1607
1608 {La funzione non ritorna nulla e non prevede condizioni di errore.}  
1609 \end{funcproto}
1610
1611 I vari standard prevedono che la funzione si limiti a far partire le
1612 operazioni ritornando immediatamente, con Linux invece, fin dal kernel 1.3.20,
1613 la funzione aspetta la conclusione delle operazioni di sincronizzazione. Si
1614 tenga presente comunque che questo non dà la garanzia assoluta che i dati
1615 siano integri dopo la chiamata, l'hardware dei dischi è in genere dotato di un
1616 suo meccanismo interno di bufferizzazione che a sua volta può ritardare
1617 ulteriormente la scrittura effettiva.
1618
1619 La funzione viene usata dal comando \cmd{sync} quando si vuole forzare
1620 esplicitamente lo scarico dei dati su disco, un tempo era invocata da un
1621 apposito demone di sistema (in genere chiamato \cmd{update}) che eseguiva lo
1622 scarico dei dati ad intervalli di tempo fissi.  Con le nuove versioni del
1623 kernel queste operazioni vengono gestite direttamente dal sistema della
1624 memoria virtuale, attraverso opportuni \textit{task} interni al kernel. Nei
1625 kernel recenti questo comportamento può essere controllato con l'uso dei vari
1626 file \texttt{dirty\_*} in \sysctlfiled{vm/}.\footnote{si consulti la
1627   documentazione allegata ai sorgenti del kernel nel file
1628   \file{Documentation/sysctl/vm.txt}, trattandosi di argomenti di natura
1629   sistemistica non li prenderemo in esame.}
1630
1631 Si tenga presente che la funzione di sistema \funcm{bdflush}, che un tempo
1632 veniva usata per controllare lo scaricamento dei dati, è deprecata a partire
1633 dal kernel 2.6 e causa semplicemente la stampa di un messaggio nei log del
1634 kernel, e non è più presente dalle \acr{glibc} 2.23, pertanto non la
1635 prenderemo in esame.
1636
1637 Quando si vogliano scaricare i dati di un singolo file, ad esempio essere
1638 sicuri che i dati di un database siano stati registrati su disco, si possono
1639 usare le due funzioni di sistema \funcd{fsync} e \funcd{fdatasync}, i cui
1640 prototipi sono:
1641
1642 \begin{funcproto}{
1643 \fhead{unistd.h}
1644 \fdecl{int fsync(int fd)}
1645 \fdesc{Sincronizza dati e metadati di un file.} 
1646 \fdecl{int fdatasync(int fd)}
1647 \fdesc{Sincronizza i dati di un file.} 
1648 }
1649
1650 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1651   caso \var{errno} assumerà uno dei valori: 
1652   \begin{errlist}
1653   \item[\errcode{EDQUOT}] si è superata un quota disco durante la
1654     sincronizzazione.
1655   \item[\errcode{EINVAL}] \param{fd} è un file speciale che non supporta la
1656     sincronizzazione (talvolta anche \errval{EROFS}).
1657   \item[\errcode{EIO}] c'è stato un errore di I/O durante la sincronizzazione,
1658     che in questo caso può derivare anche da scritture sullo stesso file
1659     eseguite su altri file descriptor.
1660   \item[\errcode{ENOSPC}] si è esaurito lo spazio disco durante la
1661     sincronizzazione.
1662   \end{errlist}
1663   ed inoltre \errval{EBADF} nel suo significato generico.}
1664 \end{funcproto}
1665
1666 Entrambe le funzioni forzano la sincronizzazione col disco di tutti i dati del
1667 file specificato, ed attendono fino alla conclusione delle operazioni. La
1668 prima, \func{fsync} forza anche la sincronizzazione dei meta-dati del file,
1669 che riguardano sia le modifiche alle tabelle di allocazione dei settori, che
1670 gli altri dati contenuti nell'\textit{inode} che si leggono con \func{fstat},
1671 come i tempi del file. Se lo scopo dell'operazione, come avviene spesso per i
1672 database, è assicurarsi che i dati raggiungano il disco e siano rileggibili
1673 immediatamente in maniera corretta, è sufficiente l'uso di \func{fdatasync}
1674 che evita le scritture non necessarie per avere l'integrità dei dati, come
1675 l'aggiornamento dei tempi di ultima modifica ed ultimo accesso.
1676
1677 Si tenga presente che l'uso di queste funzioni non comporta la
1678 sincronizzazione della directory che contiene il file e la scrittura della
1679 relativa voce su disco, che se necessaria deve essere effettuata
1680 esplicitamente con \func{fsync} sul file descriptor della
1681 directory.\footnote{in realtà per il filesystem \acr{ext2}, quando lo si monta
1682   con l'opzione \cmd{sync}, il kernel provvede anche alla sincronizzazione
1683   automatica delle voci delle directory.}
1684
1685 La funzione può restituire anche \errval{ENOSPC} e \errval{EDQUOT} per quei
1686 casi in cui l'allocazione dello spazio disco non viene effettuata
1687 all'esecuzione di una \func{write} (come NFS o altri filesystem di rete) per
1688 cui l'errore viene rilevato quando la scrittura viene effettivamente
1689 eseguita.
1690
1691 L'uso di \func{sync} può causare, quando ci sono più filesystem montati,
1692 problemi di prestazioni dovuti al fatto che effettua la sincronizzazione dei
1693 dati su tutti i filesystem, anche quando sarebbe sufficiente eseguirla
1694 soltanto su quello dei file su cui si sta lavorando; quando i dati in attesa
1695 sono molti questo può causare una alta attività di I/O ed i relativi problemi
1696 di prestazioni.
1697
1698 Per questo motivo è stata introdotta una nuova funzione di sistema,
1699 \funcd{syncfs},\footnote{la funzione è stata introdotta a partire dal kernel
1700   2.6.39 ed è accessibile solo se è definita la macro \macro{\_GNU\_SOURCE}, è
1701   specifica di Linux e non prevista da nessuno standard.} che effettua lo
1702 scarico dei dati soltanto per il filesystem su cui si sta operando, il suo
1703 prototipo è:
1704
1705 \begin{funcproto}{
1706 \fhead{unistd.h}
1707 \fdecl{int syncfs(int fd)}
1708 \fdesc{Sincronizza il buffer della cache dei file del singolo filesystem col
1709   disco.}
1710 }
1711
1712 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1713   caso \var{errno} assumerà uno dei valori: 
1714   \begin{errlist}
1715     \item[\errcode{EBADF}] \param{fd} non è un descrittore valido.
1716   \end{errlist}
1717 }  
1718 \end{funcproto}
1719
1720 La funzione richiede che si specifichi nell'argomento \param{fd} un file
1721 descriptor su cui si sta operando, e la registrazione immediata dei dati sarà
1722 limitata al filesystem su cui il file ad esso corrispondente si trova.
1723
1724
1725
1726 \subsection{Le \textit{at-functions}: \func{openat} e le altre}
1727 \label{sec:file_openat}
1728
1729 \itindbeg{at-functions}
1730
1731 Un problema generico che si pone con l'uso della funzione \func{open}, così
1732 come con le altre funzioni che prendono come argomenti dei \textit{pathname},
1733 è la possibilità, quando si usa un \textit{pathname} che non fa riferimento
1734 diretto ad un file posto nella directory di lavoro corrente, che alcuni dei
1735 componenti dello stesso vengano modificati in parallelo alla chiamata a
1736 \func{open}, cosa che lascia aperta la possibilità di una \textit{race
1737   condition} in cui c'è spazio per un \textit{symlink attack} (si ricordi
1738 quanto visto per \func{access} in sez.~\ref{sec:file_perm_management})
1739 cambiando una delle directory sovrastanti il file fra un controllo e la
1740 successiva apertura. 
1741
1742 Inoltre, come già accennato, la directory di lavoro corrente è una proprietà
1743 associata al singolo processo; questo significa che quando si lavora con i
1744 \textit{thread} questa è la stessa per tutti, per cui se la si cambia
1745 all'interno di un \textit{thread} il cambiamento varrà anche per tutti gli
1746 altri. Non esiste quindi con le funzioni classiche un modo semplice per far sì
1747 che i singoli \textit{thread} possano aprire file usando una propria directory
1748 per risolvere i \textit{pathname} relativi.
1749
1750 Per risolvere questi problemi, riprendendo una interfaccia già presente in
1751 Solaris, a fianco delle normali funzioni che operano sui file (come
1752 \func{open}, \func{mkdir}, ecc.) sono state introdotte delle ulteriori
1753 funzioni di sistema, chiamate genericamente ``\textit{at-functions}'' in
1754 quanto usualmente contraddistinte dal suffisso \texttt{at}, che permettono
1755 l'apertura di un file (o le rispettive altre operazioni) usando un
1756 \textit{pathname} relativo ad una directory
1757 specificata.\footnote{l'introduzione è avvenuta su proposta dello sviluppatore
1758   principale della \acr{glibc} Urlich Drepper e le corrispondenti
1759   \textit{system call} sono state inserite nel kernel a partire dalla versione
1760   2.6.16, in precedenza era disponibile una emulazione che, sia pure con
1761   prestazioni inferiori, funzionava facendo ricorso all'uso del filesystem
1762   \textit{proc} con l'apertura del file attraverso il riferimento a
1763   \textit{pathname} del tipo di \texttt{/proc/self/fd/dirfd/relative\_path}.}
1764 Essendo accomunate dalla stessa interfaccia le tratteremo insieme in questa
1765 sezione pur non essendo strettamente attinenti l'I/O su file.
1766
1767 Benché queste funzioni non siano presenti negli standard tradizionali esse
1768 sono state adottate da altri sistemi unix-like come Solaris, i vari BSD, fino
1769 ad essere incluse in una recente revisione dello standard POSIX.1 (la
1770 POSIX.1-2008). Con la \acr{glibc} per l'accesso a queste funzioni è necessario
1771 definire la macro \macro{\_ATFILE\_SOURCE} (comunque attiva di default).
1772
1773 L'uso di queste funzioni richiede una apertura preliminare della directory che
1774 si intende usare come base per la risoluzione dei \textit{pathname} relativi
1775 (ad esempio usando \func{open} con il flag \const{O\_PATH} visto in
1776 sez.~\ref{sec:file_open_close}) per ottenere un file descriptor che dovrà
1777 essere passato alle stesse.  Tutte queste funzioni infatti prevedono la
1778 presenza un apposito argomento, in genere il primo che negli esempi seguenti
1779 chiameremo sempre \param{dirfd}, per indicare la directory di partenza.
1780
1781 In questo modo, una volta aperta la directory di partenza, si potranno
1782 effettuare controlli ed aperture solo con \textit{pathname} relativi alla
1783 stessa, e tutte le \textit{race condition} dovute al possibile cambiamento di
1784 uno dei componenti posti al di sopra della stessa cesseranno di esistere.
1785 Inoltre, pur restando la directory di lavoro una proprietà comune del
1786 processo, si potranno usare queste funzioni quando si lavora con i
1787 \textit{thread} per eseguire la risoluzione dei \textit{pathname} relativi ed
1788 avere una directory di partenza diversa in ciascuno di essi.
1789
1790 Questo metodo consente inoltre di ottenere aumenti di prestazioni
1791 significativi quando si devono eseguire molte operazioni su sezioni
1792 dell'albero dei file che prevedono delle gerarchie di sottodirectory molto
1793 profonde. Infatti in questo caso basta eseguire la risoluzione del
1794 \textit{pathname} di una qualunque directory di partenza una sola volta
1795 (nell'apertura iniziale) e non tutte le volte che si deve accedere a ciascun
1796 file che essa contiene. Infine poter identificare una directory di partenza
1797 tramite il suo file descriptor consente di avere un riferimento stabile alla
1798 stessa anche qualora venisse rinominata, e tiene occupato il filesystem dove
1799 si trova come per la directory di lavoro di un processo.
1800
1801 La sintassi generica di queste nuove funzioni prevede l'utilizzo come primo
1802 argomento del file descriptor della directory da usare come base per la
1803 risoluzione dei nomi, mentre gli argomenti successivi restano identici a
1804 quelli della corrispondente funzione ordinaria. Come esempio prendiamo in
1805 esame la nuova funzione di sistema \funcd{openat}, il cui prototipo è:
1806
1807 \begin{funcproto}{
1808 \fhead{fcntl.h}
1809 \fdecl{int openat(int dirfd, const char *pathname, int flags)}
1810 \fdecl{int openat(int dirfd, const char *pathname, int flags, mode\_t mode)}
1811 \fdesc{Apre un file a partire da una directory di lavoro.} 
1812 }
1813
1814 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
1815   \func{open}, ed in più:
1816   \begin{errlist}
1817   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
1818   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
1819     ma \param{dirfd} fa riferimento ad un file.
1820    \end{errlist}
1821 }  
1822 \end{funcproto}
1823
1824 Il comportamento di \func{openat} è del tutto analogo a quello di \func{open},
1825 con la sola eccezione del fatto che se per l'argomento \param{pathname} si
1826 utilizza un \textit{pathname} relativo questo sarà risolto rispetto alla
1827 directory indicata da \param{dirfd}; qualora invece si usi un
1828 \textit{pathname} assoluto \param{dirfd} verrà semplicemente ignorato. Infine
1829 se per \param{dirfd} si usa il valore speciale \constd{AT\_FDCWD} la
1830 risoluzione sarà effettuata rispetto alla directory di lavoro corrente del
1831 processo. Questa, come le altre costanti \texttt{AT\_*}, è definita in
1832 \headfile{fcntl.h}, per cui per usarla occorrerà includere comunque questo
1833 file, anche per le funzioni che non sono definite in esso.
1834
1835 Così come il comportamento, anche i valori di ritorno e le condizioni di
1836 errore delle nuove funzioni sono gli stessi delle funzioni classiche, agli
1837 errori si aggiungono però quelli dovuti a valori errati per \param{dirfd}; in
1838 particolare si avrà un errore di \errcode{EBADF} se esso non è un file
1839 descriptor valido, ed un errore di \errcode{ENOTDIR} se esso non fa
1840 riferimento ad una directory, tranne il caso in cui si sia specificato un
1841 \textit{pathname} assoluto, nel qual caso, come detto, il valore di
1842 \param{dirfd} sarà completamente ignorato.
1843
1844 \begin{table}[htb]
1845   \centering
1846   \footnotesize
1847   \begin{tabular}[c]{|l|c|l|}
1848     \hline
1849     \textbf{Funzione} &\textbf{Flags} &\textbf{Corrispondente} \\
1850     \hline
1851     \hline
1852      \func{execveat}  &$\bullet$&\func{execve}  \\
1853      \func{faccessat} &$\bullet$&\func{access}  \\
1854      \func{fchmodat}  &$\bullet$&\func{chmod}   \\
1855      \func{fchownat}  &$\bullet$&\func{chown},\func{lchown}\\
1856      \func{fstatat}   &$\bullet$&\func{stat},\func{lstat}  \\
1857      \funcm{futimesat}& --      & obsoleta  \\
1858      \func{linkat}    &$\bullet$&\func{link}    \\
1859      \funcm{mkdirat}  & --      &\func{mkdir}   \\
1860      \funcm{mkfifoat} & --      &\func{mkfifo}  \\
1861      \funcm{mknodat}  & --      &\func{mknod}   \\
1862      \func{openat}    & --      &\func{open}    \\
1863      \funcm{readlinkat}& --     &\func{readlink}\\
1864      \func{renameat}  & --      &\func{rename}  \\
1865      \func{renameat2}\footnotemark& -- &\func{rename}  \\
1866      \funcm{scandirat}& --      &\func{scandir}  \\
1867      \func{statx}     &$\bullet$&\func{stat}  \\
1868      \funcm{symlinkat}& --      &\func{symlink} \\
1869      \func{unlinkat}  &$\bullet$&\func{unlink},\func{rmdir}  \\
1870      \func{utimensat} &$\bullet$&\func{utimes},\func{lutimes}\\
1871     \hline
1872   \end{tabular}
1873   \caption{Corrispondenze fra le nuove funzioni ``\textit{at}'' e le
1874     corrispettive funzioni classiche.}
1875   \label{tab:file_atfunc_corr}
1876 \end{table}
1877
1878 \footnotetext{anche se la funzione ha un argomento \param{flags} questo
1879   attiene a funzionalità specifiche della stessa e non all'uso generico fatto
1880   nelle altre \textit{at-functions}, pertanto lo si è indicato come assente.}
1881
1882 In tab.~\ref{tab:file_atfunc_corr} si sono riportate le funzioni introdotte
1883 con questa nuova interfaccia, con a fianco la corrispondente funzione
1884 classica. Tutte seguono la convenzione appena vista per \func{openat}, in cui
1885 agli argomenti della funzione classica viene anteposto l'argomento
1886 \param{dirfd}. Per alcune, indicate dal contenuto della omonima colonna di
1887 tab.~\ref{tab:file_atfunc_corr}, oltre al nuovo argomento iniziale, è prevista
1888 anche l'aggiunta di un argomento finale, \param{flags}, che è stato introdotto
1889 per fornire un meccanismo con cui modificarne il comportamento.
1890
1891 Per tutte quelle che non hanno un argomento aggiuntivo il comportamento è
1892 identico alla corrispondente funzione ordinaria, pertanto non le tratteremo
1893 esplicitamente, vale per loro quanto detto con \func{openat} per l'uso del
1894 nuovo argomento \param{dirfd}. Tratteremo invece esplicitamente tutte quelle
1895 per cui l'argomento è presente, in quanto il loro comportamento viene
1896 modificato a seconda del valore assegnato a \param{flags}; questo deve essere
1897 passato come maschera binaria con una opportuna combinazione delle costanti
1898 elencate in tab.~\ref{tab:at-functions_constant_values}, in quanto sono
1899 possibili diversi valori a seconda della funzione usata.
1900
1901 \begin{table}[htb]
1902   \centering
1903   \footnotesize
1904   \begin{tabular}[c]{|l|p{8cm}|}
1905     \hline
1906     \textbf{Costante} & \textbf{Significato} \\
1907     \hline
1908     \hline
1909     \constd{AT\_EMPTY\_PATH}    & Usato per operare direttamente (specificando
1910                                   una stringa vuota  per il \texttt{pathname})
1911                                   sul file descriptor \param{dirfd} che in
1912                                   questo caso può essere un file qualunque.\\
1913     \constd{AT\_SYMLINK\_NOFOLLOW}& Se impostato la funzione non esegue la
1914                                     dereferenziazione dei collegamenti
1915                                     simbolici.\\
1916     \hline
1917     \constd{AT\_EACCES}         & Usato solo da \func{faccessat}, richiede che
1918                                   il controllo dei permessi sia fatto usando
1919                                   l'\ids{UID} effettivo invece di quello
1920                                   reale.\\
1921     \constd{AT\_NO\_AUTOMOUNT}  & Usato solo da \func{fstatat} e \func{statx},
1922                                   evita il montaggio automatico qualora 
1923                                   \param{pathname} faccia riferimento ad una
1924                                   directory marcata per
1925                                   l'\textit{automount}\footnotemark
1926                                   (dal kernel 2.6.38).\\
1927     \constd{AT\_REMOVEDIR}      & Usato solo da \func{unlinkat}, richiede che
1928                                   la funzione si comporti come \func{rmdir}
1929                                   invece che come \func{unlink}.\\
1930     \constd{AT\_SYMLINK\_FOLLOW}& Usato solo da \func{linkat}, se impostato la
1931                                   funzione esegue la dereferenziazione dei
1932                                   collegamenti simbolici.\\
1933     \hline
1934   \end{tabular}  
1935   \caption{Le costanti utilizzate per i bit dell'argomento aggiuntivo
1936     \param{flags} delle \textit{at-functions}, definite in
1937     \headfile{fcntl.h}.}
1938   \label{tab:at-functions_constant_values}
1939 \end{table}
1940
1941 \footnotetext{l'\textit{automount} \itindex{automount} è una funzionalità
1942   fornita dal kernel che consente di montare automaticamente una directory
1943   quando si accede ad un \textit{pathname} al di sotto di essa, per i
1944   dettagli, di natura prevalentemente sistemistica, si può consultare
1945   sez.~5.1.6 di \cite{AGL}.}
1946
1947 Si tenga presente che non tutte le funzioni che prevedono l'argomento
1948 aggiuntivo sono \textit{system call}, ad esempio \func{faccessat} e
1949 \func{fchmodat} sono realizzate con dei \textit{wrapper} nella \acr{glibc} per
1950 aderenza allo standard POSIX.1-2008, dato che la \textit{system call}
1951 sottostante non prevede l'argomento \param{flags}. 
1952
1953 In tab.~\ref{tab:at-functions_constant_values} si sono elencati i valori
1954 utilizzabili per i flag (tranne quelli specifici di \func{statx} su cui
1955 torneremo più avanti), mantenendo nella prima parte quelli comuni usati da più
1956 funzioni. Il primo di questi è \const{AT\_SYMLINK\_NOFOLLOW}, che viene usato
1957 da tutte le funzioni tranne \func{linkat} e \func{unlinkat}, e che consente di
1958 scegliere, quando si sta operando su un collegamento simbolico, se far agire
1959 la funzione direttamente sullo stesso o sul file da esso referenziato. Si
1960 tenga presente però che per \funcm{fchmodat} questo, che è l'unico flag
1961 consentito e previsto dallo standard, non è attualmente implementato (anche
1962 perché non avrebbe molto senso cambiare i permessi di un link simbolico) e
1963 pertanto l'uso della funzione è analogo a quello delle altre funzioni che non
1964 hanno l'argomento \param{flags} (e non la tratteremo esplicitamente).
1965
1966 L'altro flag comune è \const{AT\_EMPTY\_PATH}, utilizzabile a partire dal
1967 kernel 2.6.39, che consente di usare per \param{dirfd} un file descriptor
1968 associato ad un file qualunque e non necessariamente ad una directory; in
1969 particolare si può usare un file descriptor ottenuto aprendo un file con il
1970 flag \param{O\_PATH} (vedi quanto illustrato a
1971 pag.~\pageref{open_o_path_flag}). Quando si usa questo flag \param{pathname}
1972 deve essere vuoto, da cui il nome della costante, ed in tal caso la funzione
1973 agirà direttamente sul file associato al file descriptor \param{dirfd}.
1974
1975 Una prima funzione di sistema che utilizza l'argomento \param{flag} è
1976 \funcd{fchownat}, che può essere usata per sostituire sia \func{chown} che
1977 \func{lchown}; il suo prototipo è:
1978
1979 \begin{funcproto}{
1980 \fhead{fcntl.h} 
1981 \fhead{unistd.h}
1982 \fdecl{int fchownat(int dirfd, const char *pathname, uid\_t owner, gid\_t
1983     group, int flags)}
1984 \fdesc{Modifica il proprietario di un file.} 
1985 }
1986
1987 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
1988   \func{chown}, ed in più:
1989   \begin{errlist}
1990   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
1991   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
1992   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
1993     ma \param{dirfd} fa riferimento ad un file.
1994   \end{errlist}
1995 }  
1996 \end{funcproto}
1997
1998 In questo caso, oltre a quanto già detto per \func{openat} riguardo all'uso di
1999 \param{dirfd}, se si è impostato \const{AT\_SYMLINK\_NOFOLLOW} in
2000 \param{flags}, si indica alla funzione di non eseguire la dereferenziazione di
2001 un eventuale collegamento simbolico, facendo comportare \func{fchownat} come
2002 \func{lchown} invece che come \func{chown}. La funzione supporta anche l'uso
2003 di \const{AT\_EMPTY\_PATH}, con il significato illustrato in precedenza e non
2004 ha flag specifici.
2005
2006 Una seconda funzione di sistema che utilizza l'argomento \param{flags}, in
2007 questo caso anche per modificare il suo comportamento, è \funcd{faccessat}, ed
2008 il suo prototipo è:
2009
2010 \begin{funcproto}{
2011 \fhead{fcntl.h} 
2012 \fhead{unistd.h}
2013 \fdecl{int faccessat(int dirfd, const char *path, int mode, int flags)}
2014 \fdesc{Controlla i permessi di accesso.} 
2015 }
2016
2017 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
2018   \func{access}, ed in più:
2019   \begin{errlist}
2020   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
2021   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
2022   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
2023     ma \param{dirfd} fa riferimento ad un file.
2024   \end{errlist}
2025 }  
2026 \end{funcproto}
2027
2028 La funzione esegue il controllo di accesso ad un file, e \param{flags}
2029 consente di modificarne il comportamento rispetto a quello ordinario di
2030 \func{access} (cui è analoga e con cui condivide i problemi di sicurezza
2031 visti in sez.~\ref{sec:file_stat}) usando il valore \const{AT\_EACCES} per
2032 indicare alla funzione di eseguire il controllo dei permessi con l'\ids{UID}
2033 \textsl{effettivo} invece di quello \textsl{reale}. L'unico altro valore
2034 consentito è \const{AT\_SYMLINK\_NOFOLLOW}, con il significato già spiegato.
2035
2036 Un utilizzo specifico dell'argomento \param{flags} viene fatto anche dalla
2037 funzione di sistema \funcd{unlinkat}, in questo caso l'argomento viene
2038 utilizzato perché tramite esso si può indicare alla funzione di comportarsi
2039 sia come analogo di \func{unlink} che di \func{rmdir}; il suo prototipo è:
2040
2041 \begin{funcproto}{
2042 \fhead{fcntl.h}
2043 \fhead{unistd.h}
2044 \fdecl{int unlinkat(int dirfd, const char *pathname, int flags)}
2045 \fdesc{Rimuove una voce da una directory.} 
2046 }
2047
2048 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
2049   \func{unlink} o di \func{rmdir} a seconda del valore di \param{flags}, ed in
2050   più:
2051   \begin{errlist}
2052   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
2053   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
2054   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
2055     ma \param{dirfd} fa riferimento ad un file.
2056   \end{errlist}
2057 }  
2058 \end{funcproto}
2059
2060 Di default il comportamento di \func{unlinkat} è equivalente a quello che
2061 avrebbe \func{unlink} applicata a \param{pathname}, fallendo in tutti i casi
2062 in cui questo è una directory, se però si imposta \param{flags} al valore di
2063 \const{AT\_REMOVEDIR}, essa si comporterà come \func{rmdir}, in tal caso
2064 \param{pathname} deve essere una directory, che sarà rimossa qualora risulti
2065 vuota.  Non essendo in questo caso prevista la possibilità di usare altri
2066 valori (la funzione non segue comunque i collegamenti simbolici e
2067 \const{AT\_EMPTY\_PATH} non è supportato) anche se \param{flags} è una
2068 maschera binaria, essendo \const{AT\_REMOVEDIR} l'unico flag disponibile per
2069 questa funzione, lo si può assegnare direttamente.
2070
2071 Un'altra funzione di sistema che usa l'argomento \param{flags} è
2072 \func{utimensat}, che però non è una corrispondente esatta delle funzioni
2073 classiche \func{utimes} e \func{lutimes}, in quanto ha una maggiore precisione
2074 nella indicazione dei tempi dei file, per i quali, come per \func{futimens},
2075 si devono usare strutture \struct{timespec} che consentono una precisione fino
2076 al nanosecondo; la funzione è stata introdotta con il kernel
2077 2.6.22,\footnote{in precedenza, a partire dal kernel 2.6.16, era stata
2078   introdotta una \textit{system call} \funcm{futimesat} seguendo una bozza
2079   della revisione dello standard poi modificata; questa funzione, sostituita
2080   da \func{utimensat}, è stata dichiarata obsoleta, non è supportata da
2081   nessuno standard e non deve essere più utilizzata: pertanto non ne
2082   parleremo.} ed il suo prototipo è:
2083
2084 \begin{funcproto}{
2085 \fhead{fcntl.h}
2086 \fhead{sys/stat.h}
2087 \fdecl{int utimensat(int dirfd, const char *pathname, const struct
2088     timespec times[2],\\
2089 \phantom{int utimensat(}int flags)}
2090 \fdesc{Cambia i tempi di un file.} 
2091 }
2092
2093 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2094   caso \var{errno} assumerà i valori di \func{utimes}, \func{lutimes} e
2095   \func{futimens} con lo stesso significato ed inoltre:
2096   \begin{errlist}
2097   \item[\errcode{EBADF}] \param{dirfd} non è \const{AT\_FDCWD} o un file
2098     descriptor valido.
2099   \item[\errcode{EFAULT}] \param{dirfd} è \const{AT\_FDCWD} ma
2100     \param{pathname} è \var{NULL} o non è un puntatore valido.
2101   \item[\errcode{EINVAL}] si usato un valore non valido per \param{flags},
2102     oppure \param{pathname} è \var{NULL}, \param{dirfd} non è
2103     \const{AT\_FDCWD} e \param{flags} contiene \const{AT\_SYMLINK\_NOFOLLOW}.
2104   \item[\errcode{ESRCH}] non c'è il permesso di attraversamento per una delle
2105     componenti di \param{pathname}.
2106   \end{errlist}
2107 }
2108 \end{funcproto}
2109
2110 La funzione imposta i tempi dei file utilizzando i valori passati nel vettore
2111 di strutture \struct{timespec} ed ha in questo lo stesso comportamento di
2112 \func{futimens}, vista in sez.~\ref{sec:file_file_times}, ma al contrario di
2113 questa può essere applicata anche direttamente ad un file come \func{utimes};
2114 l'unico valore consentito per \param{flags} è \const{AT\_SYMLINK\_NOFOLLOW}
2115 che indica alla funzione di non dereferenziare i collegamenti simbolici, cosa
2116 che le permette di riprodurre anche le funzionalità di \func{lutimes} (con una
2117 precisione dei tempi maggiore).
2118
2119 Su Linux solo \func{utimensat} è una \textit{system call} mentre
2120 \func{futimens} è una funzione di libreria, infatti \func{utimensat} ha un
2121 comportamento speciale se \param{pathname} è \var{NULL}, in tal caso
2122 \param{dirfd} viene considerato un file descriptor ordinario e il cambiamento
2123 del tempo viene applicato al file sottostante, qualunque esso sia. Viene cioè
2124 sempre usato il comportamento che per altre funzioni deve essere attivato con
2125 \const{AT\_EMPTY\_PATH} (che non è previsto per questa funzione) per cui
2126 \code{futimens(fd, times}) è del tutto equivalente a \code{utimensat(fd, NULL,
2127   times, 0)}. Si tenga presente che nella \acr{glibc} questo comportamento è
2128 disabilitato, e la funzione, seguendo lo standard POSIX, ritorna un errore di
2129 \errval{EINVAL} se invocata in questo modo.
2130
2131 Come corrispondente di \func{stat}, \func{fstat} e \func{lstat} si può
2132 utilizzare invece la funzione di sistema \funcd{fstatat}, il cui prototipo è:
2133
2134 \begin{funcproto}{
2135 \fhead{fcntl.h}
2136 \fhead{sys/stat.h}
2137 \fdecl{int fstatat(int dirfd, const char *pathname, struct stat *statbuf, int
2138   flags)} 
2139 \fdesc{Legge le informazioni di un file.} 
2140 }
2141
2142 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
2143   \func{stat}, \func{fstat}, o \func{lstat} a seconda del valore di
2144   \param{flags}, ed in più:
2145   \begin{errlist}
2146   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
2147   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
2148   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
2149     ma \param{dirfd} fa riferimento ad un file.
2150   \end{errlist}
2151 }  
2152 \end{funcproto}
2153
2154 La funzione ha lo stesso comportamento delle sue equivalenti classiche, l'uso
2155 di \param{flags} consente di farla comportare come \func{lstat} se si usa
2156 \const{AT\_SYMLINK\_NOFOLLOW}, o come \func{fstat} se si usa con
2157 \const{AT\_EMPTY\_PATH} e si passa il file descriptor in \param{dirfd}. Viene
2158 però supportato l'ulteriore valore \const{AT\_NO\_AUTOMOUNT} che qualora
2159 \param{pathname} faccia riferimento ad una directory marcata per
2160 l'\textit{automount} ne evita il montaggio automatico.
2161             
2162 Ancora diverso è il caso di \funcd{linkat} anche se in questo caso l'utilizzo
2163 continua ad essere attinente al comportamento con i collegamenti simbolici, il
2164 suo prototipo è:
2165
2166 \begin{funcproto}{
2167 \fhead{fcntl.h}
2168 \fdecl{int linkat(int olddirfd, const char *oldpath, int newdirfd, \\
2169 \phantom{int linkat(}const char *newpath, int flags)}
2170 \fdesc{Crea un nuovo collegamento diretto (\textit{hard link}).} 
2171 }
2172
2173 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
2174   \func{link}, ed in più:
2175   \begin{errlist}
2176   \item[\errcode{EBADF}] \param{olddirfd} o \param{newdirfd} non sono un file
2177     descriptor valido.
2178   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
2179   \item[\errcode{ENOENT}] \param{oldpath} o \param{newpath} è un
2180     \textit{pathname} relativo, ma la corrispondente directory di partenza
2181     (\param{olddirfd} o \param{newdirfd}) è stata cancellata, oppure si è
2182     cercato di creare un \textit{link} da un file descriptor aperto con
2183     \const{O\_TMPFILE} e \const{O\_EXCL}, oppure si è usato
2184     \const{AT\_EMPTY\_PATH} senza privilegi amministrativi. 
2185   \item[\errcode{ENOTDIR}] \param{oldpath} e \param{newpath} sono
2186     \textit{pathname} relativi, ma \param{olddirfd} o \param{newdirfd} fa
2187     riferimento ad un file.
2188   \item[\errcode{EPERM}] si è usato \const{AT\_EMPTY\_PATH} con
2189     \param{oldpath} vuoto e \param{olddirfd} che fa riferimento ad una
2190     directory.
2191   \end{errlist}
2192 }  
2193 \end{funcproto}
2194
2195 Anche in questo caso la funzione svolge lo stesso compito della
2196 corrispondente classica \func{link}, ma dovendo specificare due
2197 \textit{pathname} (sorgente e destinazione) aggiunge a ciascuno di essi un
2198 argomento (rispettivamente \param{olddirfd} e \param{newdirfd}) per poter
2199 indicare entrambi come relativi a due directory aperte in precedenza.
2200
2201 In questo caso, dato che su Linux il comportamento di \func{link} è quello di
2202 non seguire mai i collegamenti simbolici, \const{AT\_SYMLINK\_NOFOLLOW} non
2203 viene utilizzato. A partire dal kernel 2.6.18 è stato aggiunto a questa
2204 funzione la possibilità di usare il valore \const{AT\_SYMLINK\_FOLLOW} per
2205 l'argomento \param{flags},\footnote{nei kernel precedenti, dall'introduzione
2206   nel 2.6.16, l'argomento \param{flags} era presente, ma senza alcun valore
2207   valido, e doveva essere passato sempre con valore nullo.}  che richiede di
2208 dereferenziare un eventuale collegamento simbolico creando un \textit{hard
2209   link} al file puntato da quest'ultimo.
2210
2211 Inoltre a partire dal kernel 3.11 si può usare \const{AT\_EMPTY\_PATH} con lo
2212 stesso significato già visto in precedenza applicato ad \param{olddirfd}, si
2213 può cioè creare un nuovo \textit{hard link} al file associato al file
2214 descriptor \param{olddirfd}, passando un valore nullo per
2215 \param{oldpath}. Questa operazione però è privilegiata e richiede i privilegi
2216 di amministratore (la \textit{capability} \const{CAP\_DAC\_READ\_SEARCH}),
2217 infatti in questo modo la funzione si comporta come una ipotetica
2218 \texttt{flink}, una \textit{system call} di cui è stato spesso chiesta la
2219 creazione, che permetterebbe di associare direttamente un nome ad un file
2220 descriptor, ma che non è mai stata realizzata per problemi di sicurezza.
2221
2222 Il problema infatti è che le verifiche di accesso sono fatte quando il file
2223 viene aperto e non attengono solo ai permessi del file stesso, ma anche a
2224 quelli delle directory del suo \textit{pathname}; se una volta aperto venisse
2225 collegato in un altra directory eventuali restrizioni imposte sulle directory
2226 del suo \textit{pathname} andrebbero perse. Inoltre sarebbe possibile accedere
2227 al file sottostante anche in scrittura per un file descriptor che è stato
2228 fornito come aperto in sola lettura, o con accesso libero per un file
2229 descriptor fornito aperto in \textit{append}. Infine e la funzione
2230 consentirebbe rendere accessibile all'interno di un \textit{choot} (vedi
2231 sez.~\ref{sec:file_chroot}) un qualunque file sia stato aperto fuori dallo
2232 stesso prima di entrarvi.
2233
2234 % NOTE per la discussione sui problemi di sicurezza relativi a questa
2235 % funzionalità vedi http://lwn.net/Articles/562488/
2236
2237 Per questo motivo l'uso di \const{AT\_EMPTY\_PATH} richiede comunque privilegi
2238 amministrativi, anche se, quando è disponibile il filesystem \texttt{/proc}, è
2239 possibile usare \func{linkat} per creare un file da un qualunque file
2240 descriptor un processo abbia aperto, usandola con un codice analogo al
2241 seguente:\footnote{non esiste al momento, se si sta usando il filesystem
2242   \textit{proc}, una modalità per evitare i rischi illustrati in precedenza.}
2243 \includecodesnip{listati/procfd_linkat.c}
2244 e questa modalità è anche quella con cui è possibile assegnare in un secondo
2245 tempo il nome ad un file anonimo creato usando \func{open} con
2246 \const{O\_TMPFILE}; ma si deve tenere presente che per questi file la funzione
2247 ha un comportamento particolare.
2248
2249 In generale infatti quando il file sorgente di \func{linkat} ha un numero di
2250 collegamenti nulli (cosa che avviene ad esempio quando si apre un file
2251 temporaneo e lo si cancella subito dopo oppure quando viene cancellato un file
2252 aperto in precedenza) la funzione non consente di ricollegarlo ad un altro
2253 file riassegnandogli un nuovo nome e fallisce sempre con un errore di
2254 \errval{ENOENT} qualunque siano i permessi del processo, e che si usi questo
2255 approccio o \const{AT\_EMPTY\_PATH}.  Ma questo non avviene se il file
2256 descriptor è stato ottenuto con \const{O\_TMPFILE}, in tal caso la funzione ha
2257 successo, a meno che non si sia usato nell'apertura anche \const{O\_EXCL} per
2258 impedire questo comportamento, e continuare ad ottenere \errval{ENOENT}.
2259
2260 In fig.~\ref{fig:initfile} si è riportato il codice della funzione
2261 \func{InitFile}, che consente di creare in maniera sicura il contenuto
2262 iniziale di un file utilizzando \const{O\_TMPFILE} e \func{linkat}, come
2263 accennato a pag.~\pageref{open_o_tmpfile_flag}. La funzione richiede di
2264 indicare il file da creare usando la sintassi delle \textit{at-functions},
2265 specificando la directory in cui crearlo con il corrispondente file descriptor
2266 passato nell'argomento \texttt{dirfd} ed il pathname relativo ed essa passato
2267 l'argomento \texttt{file}; il contenuto iniziale del file deve essere fornito
2268 nel buffer \texttt{buf} di lunghezza \texttt{size}.
2269  
2270 \begin{figure}[!htb]
2271   \footnotesize \centering
2272   \begin{minipage}[c]{\codesamplewidth}
2273     \includecodesample{listati/InitFile.c}
2274   \end{minipage}
2275   \caption{Esempio di codice per creare in maniera sicura il contenuto
2276     iniziale di un file.}
2277   \label{fig:initfile}
2278 \end{figure}
2279
2280 La funzione come primo passo (\texttt{\small 6--10}) ottiene un file
2281 descriptor accessibile in lettura/scrittura invocando \func{openat} con il
2282 flag \const{O\_TMPFILE} per ottenere un file anonimo, facendo riferimento a
2283 quella che sarà la directory di destinazione in cui poi verrà collegato lo
2284 stesso passata dal chiamante in \texttt{dirfd}, usando ``\texttt{.}'' come
2285 \textit{pathname} relativo. Si noti come nella chiamata si impostino anche
2286 (per semplicità si è usato un valore fisso) i valori iniziali dei permessi del
2287 file (lettura e scrittura solo per il proprietario), e come dopo la chiamata
2288 si controlli la presenza di un eventuale errore, ritornandolo con un messaggio
2289 qualora avvenga.
2290
2291 Il secondo passo (\texttt{\small 11--15}) è quello di chiamare la funzione
2292 \func{FullWrite} (che tratteremo in dettaglio in sez.~\ref{sec:sock_io_behav})
2293 per eseguire la scrittura del contenuto del buffer \texttt{buf} sul file
2294 anonimo ottenuto con \func{openat}; in sostanza la funzione scrive tutto il
2295 contenuto del buffer, iterando le scritture qualora non sia possibile eseguire
2296 tutto con una singola \func{write}, cosa che comunque per i file su disco in
2297 genere non avviene mai.
2298
2299 Una volta completata con successo la scrittura l'ultimo passo (\texttt{\small
2300   17--23}) è collegare il file anonimo con \func{linkat}, per questo però
2301 occorre utilizzare il \textit{pathname} ad esso associato sotto
2302 \texttt{/proc}, che viene ottenuto (\texttt{\small 16}) con una
2303 \func{snprintf} (vedi sez.~\ref{sec:file_formatted_io}) usando file descriptor
2304 restituito da \func{openat}. Con questo \textit{pathname} si può procedere
2305 (\texttt{\small 17}) a chiamare \func{linkat} per eseguire il collegamento, in
2306 cui occorre usare il flag \const{AT\_SYMLINK\_NOFOLLOW} come nell'esempio
2307 precedente.
2308
2309 Altre due funzioni che utilizzano due \textit{pathname} (e due file
2310 descriptor) sono \funcd{renameat} e \funcd{renameat2}, corrispondenti alla
2311 classica \func{rename}; i rispettivi prototipi sono:
2312
2313 \begin{funcproto}{
2314 \fhead{fcntl.h}
2315 \fdecl{int renameat(int olddirfd, const char *oldpath, int newdirfd, const
2316   char *newpath)} 
2317 \fdecl{int renameat2(int olddirfd, const char *oldpath, int newdirfd, \\
2318 \phantom{int renameat2(}const char *newpath, int flags)}
2319 \fdesc{Rinomina o sposta un file o una directory.} 
2320 }
2321
2322 {La funzioni ritornano gli stessi valori e gli stessi codici di errore di
2323   \func{rename}, ed in più per entrambe:
2324   \begin{errlist}
2325   \item[\errcode{EBADF}] \param{olddirfd} o \param{newdirfd} non sono un file
2326     descriptor valido.
2327   \item[\errcode{ENOTDIR}] \param{oldpath} e \param{newpath} sono
2328     \textit{pathname} relativi, ma i corrispondenti \param{oldirfd} o
2329     \param{newdirfd} fan riferimento ad un file e non a una directory.
2330   \end{errlist}
2331   e per \func{renameat2} anche:
2332   \begin{errlist}
2333   \item[\errcode{EEXIST}] si è richiesto \macro{RENAME\_NOREPLACE} ma
2334     \param{newpath} esiste già.
2335   \item[\errcode{EINVAL}] Si è usato un flag non valido in \param{flags}, o si
2336     sono usati insieme a \macro{RENAME\_EXCHANGE} o \macro{RENAME\_NOREPLACE}
2337     o \macro{RENAME\_WHITEOUT}, o non c'è il supporto nel filesystem per una
2338     delle operazioni richieste in \param{flags}.
2339   \item[\errcode{ENOENT}] si è richiesto \macro{RENAME\_EXCHANGE} e
2340     \param{newpath} non esiste.
2341   \item[\errcode{EPERM}] si è richiesto \macro{RENAME\_WHITEOUT} ma il
2342     chiamante non ha i privilegi di amministratore.
2343   \end{errlist}
2344 }  
2345 \end{funcproto}
2346
2347 In realtà la corrispondente di \func{rename}, prevista dallo standard
2348 POSIX.1-2008 e disponibile dal kernel 2.6.16 come le altre
2349 \textit{at-functions}, sarebbe soltanto \func{renameat}, su Linux però, a
2350 partire dal kernel dal 3.15, questa è stata realizzata in termini della nuova
2351 funzione di sistema \func{renameat2} che prevede l'uso dell'argomento
2352 aggiuntivo \param{flags}; in questo caso \func{renameat} è totalmente
2353 equivalente all'utilizzo di \func{renamat2} con un valore nullo per
2354 \param{flags}.
2355
2356 L'uso di \func{renameat} è identico a quello di \func{rename}, con la sintassi
2357 delle \textit{at-functions} applicabile ad entrambi i \textit{pathname} passati
2358 come argomenti alla funzione. Con \func{renameat2} l'introduzione
2359 dell'argomento \func{flags} (i cui valori possibili sono riportati in
2360 tab.~\ref{tab:renameat2_flag_values}) ha permesso di aggiungere alcune
2361 funzionalità specifiche di Linux non previste al momento da nessuno standard
2362 (la funzione è disponibile nelle \acr{glibc} a partire dalla versione 2.28).
2363
2364 \begin{table}[htb]
2365   \centering
2366   \footnotesize
2367   \begin{tabular}[c]{|l|p{8cm}|}
2368     \hline
2369     \textbf{Costante} & \textbf{Significato} \\
2370     \hline
2371     \hline
2372     \const{RENAME\_EXCHANGE} & richiede uno scambio di nomi fra
2373                                \param{oldpath} e \param{newpath}, non è
2374                                usabile con \const{RENAME\_NOREPLACE}.\\
2375     \const{RENAME\_NOREPLACE}& non sovrascrive  \param{newpath} se questo
2376                                esiste dando un errore.\\
2377     \const{RENAME\_WHITEOUT} & crea un oggetto di \textit{whiteout}
2378                                contestualmente al cambio di nome 
2379                                (disponibile a partire dal kernel 3.18).\\ 
2380     \hline
2381   \end{tabular}  
2382   \caption{I valori specifici dei bit dell'argomento \param{flags} per l'uso
2383     con \func{renameat2}.}
2384   \label{tab:renameat2_flag_values}
2385 \end{table}
2386
2387 L'uso dell'argomento \param{flags} in questo caso non attiene alle
2388 funzionalità relative alla \textit{at-functions}, ma consente di estendere le
2389 funzionalità di \func{rename}. In particolare \func{renameat2} consente di
2390 eseguire uno scambio di nomi in maniera atomica usando il flag
2391 \constd{RENAME\_EXCHANGE}; se specificato la funzione rinomina in un colpo
2392 solo \param{oldpath} in \param{newpath} e \param{newpath} in
2393 \param{oldpath}. Usando questo flag, entrambi i \textit{pathname} passati come
2394 argomenti devono esistere, e non è possibile usare \const{RENAME\_NOREPLACE},
2395 non ci sono infine restrizioni sul tipo di file (regolare, directory, link
2396 simbolici, dispositivo) di cui si scambia il nome.
2397
2398 Il flag \constd{RENAME\_NOREPLACE} consente di richiedere la generazione di un
2399 errore nei casi in cui \func{rename} avrebbe causato una sovrascrittura della
2400 destinazione, rendendo possibile evitare la stessa in maniera atomica; un
2401 controllo preventivo dell'esistenza del file infatti avrebbe aperto alla
2402 possibilità di una \textit{race condition} fra il momento del controllo e
2403 quella del cambio di nome.
2404
2405 \itindbeg{overlay~filesytem}
2406 \itindbeg{union~filesytem}
2407
2408 Infine il flag \constd{RENAME\_WHITEOUT}, introdotto con il kernel 3.18,
2409 richiede un approfondimento specifico, in quanto attiene all'uso della
2410 funzione con dei filesystem di tipo \textit{overlay}/\textit{union}, dato che
2411 il flag ha senso solo quando applicato a file che stanno su questo tipo di
2412 filesystem.  Un \textit{overlay} o \textit{union filesystem} è un filesystem
2413 speciale strutturato in livelli, in cui si rende scrivibile un filesystem
2414 accessibile in sola lettura, \textsl{sovrapponendogli} un filesystem
2415 scrivibile su cui vanno tutte le modifiche. Un tale tipo di filesystem serve
2416 ad esempio a rendere scrivibili i dati processati quando si fa partire una
2417 distribuzione \textit{Live} basata su CD o DVD, ad esempio usando una
2418 chiavetta o uno spazio disco aggiuntivo.
2419
2420 In questo caso quando si rinomina un file che sta nello strato in sola lettura
2421 questo viene copiato a destinazione sulla parte accessibile in scrittura, ma
2422 l'originale non può essere cancellato; per far si che esso non appaia più è
2423 possibile creare un oggetto speciale del filesystem, chiamato
2424 \textit{whiteout}, che serve a renderlo non più visibile. La funzione consente
2425 di creare questo oggetto, che in un filesystem ordinario verrebbe visto come
2426 un file di dispositivo con \textit{major minor} e \textit{minor number} nulli,
2427 in maniera atomica quando si rinomina un file.  Dato che l'uso di
2428 \const{RENAME\_WHITEOUT} comporta in sostanza la creazione di un file di
2429 dispositivo, l'operazione è privilegiata (occorre la \textit{capability}
2430 \texttt{CAP\_MKNOD}), inoltre occorre anche il supporto nel filesystem usato
2431 come supporto per la scrittura. Infine l'operazione non è compatibile con
2432 \const{RENAME\_EXCHANGE}.
2433
2434 \itindend{overlay~filesytem}
2435 \itindend{union~filesytem}
2436
2437 Benché non rientri nelle \textit{at-functions} previste nello standard
2438 POSIX.1-2008, tratteremo qui anche la funzione di sistema \funcd{statx},
2439 introdotta con il kernel 4.11 e disponibile dalle versione 2.28 della
2440 \acr{glibc}, il cui prototipo è:
2441
2442 \begin{funcproto}{
2443 \fhead{sys/types.h}
2444 \fhead{sys/stat.h}
2445 \fhead{unistd.h}
2446 \fhead{fcntl.h}
2447 \fdecl{int statx(int dirfd, const char *pathname, int flags, \\
2448 \phantom{int statx(}unsigned int mask, struct statx *statxbuf)} 
2449 \fdesc{Legge le informazioni di un file.} 
2450 }
2451
2452 {La funzione ritorna gli stessi valori e gli stessi codici di errore di
2453   \func{stat}, \func{fstat}, o \func{lstat} a seconda del valore di
2454   \param{flags}, ed in più:
2455   \begin{errlist}
2456   \item[\errcode{EBADF}] \param{dirfd} non è un file descriptor valido.
2457   \item[\errcode{EINVAL}] \param{flags} non ha un valore valido o \param{mask}
2458     ha un valore riservato.
2459   \item[\errcode{ENOTDIR}] \param{pathname} è un \textit{pathname} relativo,
2460     ma \param{dirfd} fa riferimento ad un file.
2461   \end{errlist}
2462 }  
2463 \end{funcproto}
2464
2465 La funzione è una estensione specifica di Linux consente di leggere le
2466 informazioni di un file; ha la stessa sintassi di \func{fstatat} utilizzando
2467 con lo stesso significato gli argomenti \param{dirfd} e \param{pathname} ed i
2468 valori \const{AT\_EMPTY\_PATH}, \const{AT\_NO\_AUTOMOUNT} e
2469 \const{AT\_SYMLINK\_NOFOLLOW} per \param{flags}. Si può pertanto indicare il
2470 file di cui si vogliono ottenere i dati con un \textit{pathname} assoluto, con
2471 un \textit{pathname} relativo (sia alla directory corrente che a quella
2472 indicata da \param{dirfd}) o con un file descriptor ad esso associato.
2473
2474 La funzione però consente di ottenere informazioni più dettagliate rispetto a
2475 quelle fornite dalle funzioni tradizionali come \func{stat} e \func{fstatat},
2476 ed è in grado di controllare le modalità con cui le ottiene nel caso un file
2477 sia posto su un filesystem remoto.  Per questo, oltre ai tre valori
2478 precedenti, l'argomento \param{flags} consente anche gli ulteriori valori
2479 elencati in tab.~\ref{tab:statx_flags_const}, con il significato ivi
2480 illustrato.
2481
2482 \begin{table}[htb]
2483   \centering
2484   \footnotesize
2485   \begin{tabular}[c]{|l|p{8cm}|}
2486     \hline
2487     \textbf{Costante} & \textbf{Significato} \\
2488     \hline
2489     \hline
2490     \constd{AT\_STATX\_SYNC\_AS\_STAT}& si comporta esattamente come
2491                                         \func{stat}, in questo caso (il default
2492                                         se non viene indicato niente) il
2493                                         risultato dipende dal tipo di
2494                                         filesystem.\\
2495     \constd{AT\_STATX\_FORCE\_SYNC}& richiede che i valori degli attributi
2496                                      richiesti siano, in caso di un filesystem
2497                                      di rete, siano sincronizzati con il server
2498                                      remoto, questo può forzare una scrittura
2499                                      dei dati (in particolare i tempi del file)
2500                                      verso lo stesso.\\
2501     \constd{AT\_STATX\_DONT\_SYNC} & chiede di non sincronizzare nessun dato,
2502                                      ritornando quanto presente nella cache,
2503                                      questo significa che i dati potrebbero
2504                                      essere non coerenti ed aggiornati, ma si
2505                                      evita, in caso di filesystem di rete, la
2506                                      necessità di contattare il server remoto.\\ 
2507     \hline
2508   \end{tabular}  
2509   \caption{Valori specifici di \func{statx} per l'argomento \param{flags}.}
2510   \label{tab:statx_flags_const}
2511 \end{table}
2512
2513 La funzione restituisce le informazioni relative al file richiesto nella
2514 struttura \struct{statx} puntata dall'argomento \param{statxbuf}.  Inoltre
2515 data la quantità di informazioni che possono essere richieste, la funzione
2516 consente, con l'argomento \param{mask} di selezionare quelle volute, questa
2517 deve essere assegnata ad una maschera binaria dei valori illustrati in
2518 tab.~\ref{tab:statx_mask_const}.
2519
2520 \begin{table}[htb]
2521   \centering
2522   \footnotesize
2523   \begin{tabular}[c]{|l|l|}
2524     \hline
2525     \textbf{Costante} & \textbf{Significato} \\
2526     \hline
2527     \hline
2528     \constd{STATX\_TYPE}  & Tipo del file (\texttt{stx\_mode \& S\_IFMT}).\\
2529     \constd{STATX\_MODE}  & Permessi del file (\texttt{stx\_mode \&
2530                             \tild{}S\_IFMT}).\\ 
2531     \constd{STATX\_NLINK} & Numero di collegamenti (\textit{hard link},
2532                             \texttt{stx\_nlink}).\\ 
2533     \constd{STATX\_UID}   & Proprietario del file (per \ids{UID},
2534                             \texttt{stx\_uid}).\\
2535     \constd{STATX\_GID}   & Gruppo proprietario del file (per \ids{GID},
2536                             \texttt{stx\_gid}).\\
2537     \constd{STATX\_ATIME} & Tempo di ultimo accesso (\texttt{stx\_atime}).\\
2538     \constd{STATX\_MTIME} & Tempo di ultima modifica (\texttt{stx\_mtime}).\\
2539     \constd{STATX\_CTIME} & Tempo di ultimo cambiamento (\texttt{stx\_ctime}).\\
2540     \constd{STATX\_INO}   & Numero di \textit{inode} (\texttt{stx\_ino}).\\
2541     \constd{STATX\_SIZE}  & Dimensione del file (\texttt{stx\_size}).\\
2542     \constd{STATX\_BLOCKS}& Numero di blocchi del file (\texttt{stx\_blocks}).\\
2543     \constd{STATX\_BASIC\_STATS}& Tutte le informazioni precedenti.\\
2544     \constd{STATX\_BTIME} & Tempo di creazione (\texttt{stx\_btime}).\\
2545 %    \constd{}& .\\
2546     \constd{STATX\_ALL}   & Tutte le informazioni.\\
2547     \hline
2548   \end{tabular}
2549   \caption{Le costanti per i valori dell'argomento \param{mask} di
2550     \func{statx}.}
2551   \label{tab:statx_mask_const}
2552 \end{table}
2553
2554 Si tenga presente che il kernel non richiede che \param{mask} contenga solo i
2555 flag di tab.~\ref{tab:statx_mask_const}, valori ulteriori in genere vengono
2556 ignorati ma non si può comunque indicare un valore qualunque in quanto alcuni
2557 bit sono riservati per future estensioni.\footnote{in particolare il bit
2558   \constd{STATX\_\_RESERVED} che se usato causa il fallimento della funzione
2559   con un errore di \errval{EINVAL}.}  Inoltre non è detto che tutte le
2560 informazioni richieste con \param{mask} siano disponibili, per questo il
2561 kernel restituisce in un opportuno campo della struttura \struct{statx},
2562 \var{stx\_mask}, quali sono i dati effettivamente restituiti, che possono in
2563 alcuni casi essere anche di più di quelli richiesti (se l'informazione
2564 aggiuntiva è ottenuta senza costi ulteriori) per cui è normale che questo
2565 valore possa essere diverso da quanto richiesto.
2566
2567 \begin{figure}[!htb]
2568   \footnotesize
2569   \centering
2570   \begin{minipage}[c]{0.8\textwidth}
2571     \includestruct{listati/statx.h}
2572   \end{minipage} 
2573   \normalsize 
2574   \caption{La struttura \structd{statx} per la lettura delle informazioni dei 
2575     file.}
2576   \label{fig:file_statx_struct}
2577 \end{figure}
2578
2579 Si è riportata in fig.~\ref{fig:file_statx_struct} la definizione della
2580 struttura \struct{statx} come presente in \headfile{sys/stat.h}; i campi
2581 \var{stx\_mode}, \var{stx\_nlink}, \var{stx\_uid}, \var{stx\_gid},
2582 \var{stx\_ino}, \var{stx\_size}, \var{stx\_blksize}, \var{stx\_blocks} sono
2583 identici agli analoghi (con prefisso \texttt{st\_}) dell'ordinaria struttura
2584 \struct{stat} illustrata in fig.~\ref{fig:file_stat_struct} e vale per essi
2585 quanto già detto in sez.~\ref{sec:file_stat} e seguenti.
2586
2587 \begin{figure}[!htb]
2588   \footnotesize
2589   \centering
2590   \begin{minipage}[c]{0.8\textwidth}
2591     \includestruct{listati/statx_timestamp.h}
2592   \end{minipage} 
2593   \normalsize 
2594   \caption{La struttura \structd{statx\_timestamp} per i tempi dei file con
2595     \func{statx}. }
2596   \label{fig:file_statx_timestamp_struct}
2597 \end{figure}
2598
2599 Anche i campi \var{stx\_atime}, \var{stx\_mtime}, \var{stx\_ctime} mantengono
2600 questa analogia, ma esprimono i tempi di ultimo accesso, modifica e
2601 cambiamento con una precisione ed estensione maggiore grazie all'uso di una
2602 struttura dedicata \struct{statx\_timestamp} (riportata in
2603 fig.~\ref{fig:file_statx_timestamp_struct}) che consente di estendere i tempi
2604 dei file ad una granularità del nanosecondo e con un valore dello \textit{unix
2605   time} (vedi sez.~\ref{sec:sys_unix_time}) a 64 bit, che non darà problemi di
2606 overflow per parecchio tempo (sicuramente ben oltre la durata di questa
2607 guida).
2608
2609 Oltre ai precedenti, e a \val{stx\_mask} che abbiamo già visto e che indica
2610 quali delle informazioni richieste alla funzione sono state fornite,
2611 \func{statx} prevede una serie di informazioni aggiuntive fornite in
2612 altrettanti nuovi campi, illustrati nell'elenco seguente. È comunque previsto
2613 che in futuro \struct{statx} venga estesa per supportare ulteriori
2614 informazioni.
2615
2616 \begin{basedescript}{\desclabelwidth{1.6cm}\desclabelstyle{\nextlinelabel}}
2617 \item[\var{stx\_btime}] In questo campo viene restituito il \textsl{tempo di
2618     creazione} del file. Come detto in sez.~\ref{sec:file_file_times} questo
2619   tempo normalmente non esiste in un sistema \textit{unix-like}, ma per
2620   migliorare l'interoperabilità è stato aggiunto nelle versioni più recenti di
2621   vari filesystem (come XFS, \acr{ext4}, ecc.) in modo che possa essere
2622   utilizzato da servizi di condivisione dei file (è usato da \textsl{Samba},
2623   ed è previsto nello standard di NFSv4).
2624 \item[\var{stx\_attributes\_mask}] in questo campo viene restituita una
2625   maschera che indica quali sono i bit restituiti in \var{stx\_attributes}
2626   effettivamente supportati per il file, e per poter utilizzare quest'ultimo
2627   occorre sempre eseguire un AND aritmetico con \var{stx\_attributes\_mask} per
2628   ottenere i valori validi.
2629 \item[\var{stx\_attributes}] in questo campo vengono restituiti gli eventuali
2630   attributi addizionali posseduti dal file. Gran parte di questi sono quelli
2631   impostati con i comandi \cmd{lsattr} e \cmd{chattr} ed abbiamo già incontrato
2632   alcuni di essi in sez.~\ref{sec:file_perm_overview}. Gli attributi vengono
2633   restituiti in forma di maschera binaria con i valori delle costanti elencate
2634   in tab.~\ref{tab:statx_stx_attributes}, dove si trova anche la relativa
2635   descrizione.
2636 \begin{table}[htb]
2637   \centering
2638   \footnotesize
2639   \begin{tabular}[c]{|l|p{8cm}|}
2640     \hline
2641     \textbf{Costante} & \textbf{Significato} \\
2642     \hline
2643     \hline
2644     \constd{STATX\_ATTR\_COMPRESSED}& Il file è compresso automaticamente dal
2645                                       filesystem (quindi può richiedere un
2646                                       maggior uso di risorse in caso di
2647                                       accesso).\\
2648     \constd{STATX\_ATTR\_IMMUTABLE} & Il file è marcato come
2649                                       \textit{immutable} e non può essere
2650                                       modificato in nessun modo (vedi
2651                                       sez.~\ref{sec:file_perm_overview}).\\
2652     \constd{STATX\_ATTR\_APPEND}    & Il file è marcato come
2653                                       \textit{append-only} e può essere
2654                                       soltanto esteso in \textit{append} (vedi
2655                                       sez.~\ref{sec:file_perm_overview}).\\
2656     \constd{STATX\_ATTR\_NODUMP}    & Il file è marcato per essere escluso da
2657                                       eventuali backup a livello di filesystem
2658                                       come quelli eseguiti con il comando
2659                                       \cmd{dump}.\\
2660     \constd{STATX\_ATTR\_ENCRYPTED} & Il file è cifrato sul filesystem ed è
2661                                       necessaria una chiave di accesso per
2662                                       decifrarne il contenuto.\\
2663     \constd{STATX\_ATTR\_AUTOMOUNT} & Il file, in questo caso in genere una
2664                                       directory, è marcata come punto di
2665                                       innesco per un \textit{automount}.\\
2666     \hline
2667   \end{tabular}
2668   \caption{Le costanti degli attributi addizionali restituiti in
2669     \var{stx\_attributes}.} 
2670   \label{tab:statx_stx_attributes}
2671 \end{table}
2672
2673 \item[\var{stx\_rdev\_major}, \var{stx\_rdev\_minor}] in questi campi vengono
2674   restituiti rispettivamente \textit{major number} e \textit{minor number} del
2675   file quando questo è un file di dispositivo (fanno le veci del campo
2676   \var{st\_rdev} di \struct{stat}).
2677
2678 \item[\var{stx\_dev\_major}, \var{stx\_dev\_minor}] in questi campi vengono
2679   restituiti \textit{major number} e \textit{minor number} del dispositivo su
2680   cui risiede il file (fanno le veci del campo \var{st\_dev} di \struct{stat}).
2681 \end{basedescript}
2682
2683 Di questi campi \var{stx\_mode}, \var{stx\_nlink}, \var{stx\_uid},
2684 \var{stx\_gid}, \var{stx\_ino}, \var{stx\_size} e \var{stx\_blocks} e quelli
2685 relativi ai tempi ordinari dei file vengono sempre restituiti, ed il relativo
2686 valore in \struct{statx} sovrascritto, indipendentemente dal fatto che siano
2687 stati richiesti o no, con \var{stx\_mask} che indicherà quali sono quelli che
2688 hanno valori effettivamente validi.
2689
2690 Se un filesystem ha dei campi che non esistono o hanno valori senza
2691 corrispondenza in un sistema unix-like, questi potranno essere restituiti con
2692 valori fittizi ricostruiti, ad esempio usando \ids{UID} e \ids{GID} impostati
2693 in fase di montaggio per un filesystem che non supporta gli utenti; in questi
2694 casi il relativo bit in \var{stx\_mask} sarà comunque cancellato. In caso di
2695 cambiamenti al file eseguiti in concorrenza a \func{statx} è possibile che
2696 campi diversi possano avere informazioni ottenute in momenti diversi, con
2697 valori precedenti o posteriori il cambiamento. Inoltre, se non richiesti
2698 esplicitamente, alcuni campi possono avere valori approssimati, ad esempio in
2699 caso di NFS, questi non vengono mai aggiornati dallo stato sul server remoto.
2700
2701 Il campo \var{stx\_btime} viene restituito solo se richiesto, e si otterrà un
2702 valore nullo (ed il relativo bit in \var{stx\_mask} cancellato) se questo non
2703 esiste. Lo stesso vale nel caso si siano richiesti \var{stx\_rdev\_major} o
2704 \var{stx\_rdev\_minor} ed il file non è un file di dispositivo. I campi
2705 \var{stx\_dev\_major}, \var{stx\_dev\_minor} e \var{stx\_blksize} attengono
2706 ad informazioni locali, e sono sempre disponibili in maniera diretta.
2707
2708 % NOTE: per statx https://lwn.net/Articles/707602/ e
2709 % https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a528d35e8bfcc521d7cb70aaf03e1bd296c8493f)
2710
2711 Infine trattiamo qui altre due funzioni, \func{fexecve} e \func{execveat}, che
2712 non attengono che in maniera indiretta all'uso dei file, ma sono comunque
2713 legate all'interfaccia delle \textit{at-functions}. In realtà la sola
2714 effettivamente collegata all'interfaccia delle \textit{at-functions} è la
2715 funzione di sistema \func{execveat}, introdotta con il kernel 3.19, e per la
2716 quale non è disponibile ancora un'interfaccia diretta nella \acr{glibc} che
2717 però la usa (quando disponibile) per realizzare \func{fexecve}.
2718
2719 L'introduzione di queste funzioni nasce dall'esigenza di verificare i
2720 contenuti di un file eseguibile prima di eseguirlo. Fare il controllo (aprendo
2721 il file e verificandone il contenuto) e poi eseguirlo con \func{execve} è
2722 suscettibile alla possibilità che fra il controllo e l'esecuzione il nome del
2723 file o di una directory sovrastante venga cambiato.
2724
2725 Per mitigare il problema nello standard POSIX.1-2008 è stata introdotta la
2726 funzione \funcd{fexecve} che consente di eseguire un programma usando un file
2727 descriptor al posto di un \textit{pathname}; il suo prototipo è:
2728
2729 \begin{funcproto}{
2730 \fhead{unistd.h}
2731 \fdecl{int fexecve(int fd, char *const argv[], char *const envp[])}
2732 \fdesc{Esegue un programma da un file descriptor.}
2733 }
2734
2735 {La funzione non ritorna in caso di successo e ritorna $-1$ per un errore,
2736   nel qual caso \var{errno} assumerà uno dei valori:
2737   \begin{errlist}
2738   \item[\errcode{EINVAL}] \param{fd} non è un file descriptor, o \param{argv}
2739     o  \param{envp} sono \val{NULL}.
2740   \item[\errcode{ENOSYS}] il filesystem \file{proc} non è disponibile (prima
2741     del kernel 3.19).   
2742   \end{errlist}
2743   oltre a tutti gli errori già visti per \func{execve}.}
2744 \end{funcproto}
2745
2746 La funzione esegue il programma contenuto nel file (su cui il chiamante deve
2747 avere il permesso di esecuzione) corrispondente a \param{fd}; questo deve
2748 essere stato ottenuto aprendo il relativo eseguibile in sola lettura o con
2749 \const{O\_PATH}. Questa funzione fino al kernel 3.19 veniva realizzata nella
2750 \acr{glibc} usando il filesystem \file{/proc} per ottenere da \param{fd} il
2751 file corrispondente in \file{/proc/self/fd/}, in maniera analoga a quanto
2752 visto per l'esempio di fig.~\ref{fig:initfile}.
2753
2754 La funzione di sistema \funcd{execveat} è stata introdotta proprio per rendere
2755 più sicura l'esecuzione ed evitare la necessità di avere disponibile
2756 \file{/proc} per poter usare \func{fexecve}, il suo prototipo è:
2757
2758 \begin{funcproto}{
2759 \fhead{unistd.h}
2760 \fdecl{int execveat(int dirfd, const char *pathname, char *const argv[], \\
2761 \phantom{int execveat(}char *const envp[], int flags)}
2762 \fdesc{Esegue un programma relativo ad una directory.} 
2763 }
2764
2765 {La funzione non ritorna in caso di successo e ritorna $-1$ per un errore, nel
2766   qual caso \var{errno} assumerà, inoltre tutti gli errori già visti per
2767   \func{execve}, uno dei valori:
2768   \begin{errlist}
2769     \item[\errcode{EBADF}] \param{fd} non è un file descriptor valido.
2770     \item[\errcode{EINVAL}] \param{flags} non ha un valore valido.
2771     \item[\errcode{ELOOP}] si è usato \const{AT\_SYMLINK\_NOFOLLOW} in 
2772       \param{flags} ma il file indicato è un link simbolico.
2773     \item[\errcode{ENOENT}] il programma di cui si è richiesta l'esecuzione è
2774       uno script, ma \func{dirfd} è aperto con il flag di
2775       \textit{close-on-exec} e pertanto il programma non sarebbe accessibile
2776       all'interprete.
2777   \end{errlist}
2778 }
2779 \end{funcproto}
2780
2781 La funzione segue la sintassi delle \textit{at-functions} per indicare il file
2782 da eseguire, e per il resto si comporta esattamente con come \func{execve} (le
2783 cui caratteristiche sono già state illustrate in
2784 sez.~\ref{sec:file_stat}). Diventa così possibile indicare il programma da
2785 eseguire sia con un \textit{pathname} assoluto che relativo (usando
2786 \const{AT\_FDCWD} come \param{dirfd}), oppure con un \textit{pathname}
2787 relativo alla directory indicata da \param{dirfd}. In quest'ultima forma l'uso
2788 della funzione consente estendere i vantaggi delle \textit{at-functions} anche
2789 al caso dell'esecuzione di un programma.
2790
2791 Inoltre usando, per \param{flags} il valore \const{AT\_EMPTY\_PATH}, si può
2792 indicare direttamente il file da eseguire aprendolo e passandone il file
2793 descriptor nell'argomento \param{dirfd}, ottenendo il comportamento di
2794 \func{fexecve}; quest'ultima infatti è sostanzialmente equivalente
2795 all'esecuzione di: \includecodesnip{listati/fexecve.c} l'unico altro valore
2796 utilizzabile per \param{flags} è \const{AT\_SYMLINK\_NOFOLLOW} che fa fallire
2797 la funzione con un errore di \errval{ELOOP}, se il file indicato è un link
2798 simbolico.
2799
2800 Quando si usano \func{execveat} o \func{fexecve} per eseguire un programma
2801 attraverso un file descriptor è naturale impostare sullo stesso il flag di
2802 \textit{close-on-exec} in modo che questo venga automaticamente chiuso
2803 all'esecuzione. Questo evita di lasciare aperto inutilmente un file descriptor
2804 (un programma in genere non ha bisogno di avere un file aperto su se stesso),
2805 ma soprattutto evita problemi in caso di un eventuale uso ricorsivo di queste
2806 funzioni, in tal caso infatti, restando aperto ad ogni iterazione un ulteriore
2807 file descriptor, si potrebbe arrivare all'esaurimento degli stessi.
2808
2809 Tutto questo però non è vero quando si vuole eseguire uno script; in tal caso
2810 infatti (si ricordi quanto detto a questo riguardo in
2811 sez.~\ref{sec:file_stat}) il programma che viene effettivamente messo in
2812 esecuzione è l'interprete indicato nella riga iniziale dello script, che poi
2813 legge ed interpreta il codice da eseguire dallo script stesso. Ma se lancia lo
2814 script usando un file descriptor su cui è attivo il flag di
2815 \textit{close-on-exec}, questo sarà già chiuso quando l'interprete viene posto
2816 in esecuzione, rendendo impossibile la lettura del programma da
2817 interpretare.
2818
2819 Per questo motivo, quando ci si trova in questa situazione, \func{execveat} (e
2820 quindi anche \func{fexecve}) eseguono un controllo preventivo e falliscono con
2821 un errore di \errval{ENOENT}. Pertanto se si vuole eseguire uno script
2822 passandone il file descriptor l'unica possibilità è non attivare il flag di
2823 \textit{close-on-exec}, esponendosi però al rischio di incorrere nei problemi
2824 accennati in precedenza.
2825
2826 % TODO: manca prototipo e motivazione di fexecve, da trattare qui in quanto
2827 % inserita nello stesso standard e da usare con openat, vedi 
2828 % http://pubs.opengroup.org/onlinepubs/9699939699/toc.pdf
2829
2830 % TODO manca prototipo di execveat, introdotta nel 3.19, vedi
2831 % https://lwn.net/Articles/626150/ cerca anche fexecve
2832
2833
2834 % TODO: trattare i nuovi AT_flags quando e se arriveranno, vedi
2835 % https://lwn.net/Articles/767547/ 
2836
2837 \itindend{at-functions}
2838
2839
2840 \subsection{Le operazioni di controllo}
2841 \label{sec:file_fcntl_ioctl}
2842
2843 Oltre alle operazioni base esaminate in sez.~\ref{sec:file_unix_interface}
2844 esistono tutta una serie di operazioni ausiliarie che è possibile eseguire su
2845 un file descriptor, che non riguardano la normale lettura e scrittura di dati,
2846 ma la gestione sia delle loro proprietà, che di tutta una serie di ulteriori
2847 funzionalità che il kernel può mettere a disposizione.
2848
2849 % TODO: trattare qui i file seal 
2850
2851 Per le operazioni di manipolazione e di controllo delle varie proprietà e
2852 caratteristiche di un file descriptor, viene usata la funzione di sistema
2853 \funcd{fcntl},\footnote{ad esempio si gestiscono con questa funzione varie
2854   modalità di I/O asincrono (vedi sez.~\ref{sec:file_asyncronous_operation}) e
2855   il \textit{file locking} (vedi sez.~\ref{sec:file_locking}).} il cui
2856 prototipo è:
2857
2858 \begin{funcproto}{
2859 \fhead{unistd.h}
2860 \fhead{fcntl.h}
2861 \fdecl{int fcntl(int fd, int cmd)}
2862 \fdecl{int fcntl(int fd, int cmd, long arg)}
2863 \fdecl{int fcntl(int fd, int cmd, struct flock * lock)}
2864 \fdecl{int fcntl(int fd, int cmd, struct f\_owner\_ex * owner)}
2865 \fdesc{Esegue una operazione di controllo sul file.} 
2866 }
2867
2868 {La funzione ha valori di ritorno diversi a seconda dell'operazione richiesta
2869   in caso di successo mentre ritorna sempre $-1$ per un errore, nel qual caso
2870   \var{errno} assumerà valori diversi che dipendono dal tipo di operazione,
2871   l'unico valido in generale è:
2872   \begin{errlist}
2873   \item[\errcode{EBADF}] \param{fd} non è un file aperto.
2874   \end{errlist}
2875 }  
2876 \end{funcproto}
2877
2878 Il primo argomento della funzione è sempre il numero di file descriptor
2879 \var{fd} su cui si vuole operare. Il comportamento di questa funzione, il
2880 numero e il tipo degli argomenti, il valore di ritorno e gli eventuali errori
2881 aggiuntivi, sono determinati dal valore dell'argomento \param{cmd} che in
2882 sostanza corrisponde all'esecuzione di un determinato \textsl{comando}. A
2883 seconda del comando specificato il terzo argomento può essere assente (ma se
2884 specificato verrà ignorato), può assumere un valore intero di tipo
2885 \ctyp{long}, o essere un puntatore ad una struttura \struct{flock}.
2886
2887 In sez.~\ref{sec:file_dup} abbiamo incontrato un esempio dell'uso di
2888 \func{fcntl} per la duplicazione dei file descriptor, una lista di tutti i
2889 possibili valori per \var{cmd}, e del relativo significato, dei codici di
2890 errore restituiti e del tipo del terzo argomento (cui faremo riferimento con
2891 il nome indicato nel precedente prototipo), è riportata di seguito:
2892 \begin{basedescript}{\desclabelwidth{1.8cm}}
2893 \item[\constd{F\_DUPFD}] trova il primo file descriptor disponibile di valore
2894   maggiore o uguale ad \param{arg}, e ne fa un duplicato
2895   di \param{fd}, ritorna il nuovo file descriptor in caso di successo e $-1$
2896   in caso di errore. Oltre a \errval{EBADF} gli errori possibili sono
2897   \errcode{EINVAL} se \param{arg} è negativo o maggiore del massimo consentito
2898   o \errcode{EMFILE} se il processo ha già raggiunto il massimo numero di
2899   descrittori consentito.
2900
2901 \itindbeg{close-on-exec}
2902
2903 \item[\constd{F\_DUPFD\_CLOEXEC}] ha lo stesso effetto di \const{F\_DUPFD}, ma
2904   in più attiva il flag di \textit{close-on-exec} sul file descriptor
2905   duplicato, in modo da evitare una successiva chiamata con
2906   \const{F\_SETFD}. La funzionalità è stata introdotta con il kernel 2.6.24 ed
2907   è prevista nello standard POSIX.1-2008 (si deve perciò definire
2908   \macro{\_POSIX\_C\_SOURCE} ad un valore adeguato secondo quanto visto in
2909   sez.~\ref{sec:intro_gcc_glibc_std}).
2910
2911 \item[\constd{F\_GETFD}] restituisce il valore dei \textit{file descriptor
2912     flags} di \param{fd} in caso di successo o $-1$ in caso di errore, il
2913   terzo argomento viene ignorato. Non sono previsti errori diversi da
2914   \errval{EBADF}. Al momento l'unico flag usato è quello di
2915   \textit{close-on-exec}, identificato dalla costante \const{FD\_CLOEXEC}, che
2916   serve a richiedere che il file venga chiuso nella esecuzione di una
2917   \func{exec} (vedi sez.~\ref{sec:proc_exec}). Un valore nullo significa
2918   pertanto che il flag non è impostato.
2919
2920 \item[\constd{F\_SETFD}] imposta il valore dei \textit{file descriptor flags}
2921   al valore specificato con \param{arg}, ritorna un valore nullo in caso di
2922   successo e $-1$ in caso di errore. Non sono previsti errori diversi da
2923   \errval{EBADF}. Dato che l'unico flag attualmente usato è quello di
2924   \textit{close-on-exec}, identificato dalla costante \const{FD\_CLOEXEC},
2925   tutti gli altri bit di \param{arg}, anche se impostati, vengono
2926   ignorati.\footnote{questo almeno è quanto avviene fino al kernel 3.2, come
2927     si può evincere dal codice della funzione \texttt{do\_fcntl} nel file
2928     \texttt{fs/fcntl.c} dei sorgenti del kernel.}
2929 \itindend{close-on-exec}
2930
2931 \item[\constd{F\_GETFL}] ritorna il valore dei \textit{file status flags} di
2932   \param{fd} in caso di successo o $-1$ in caso di errore, il terzo argomento
2933   viene ignorato. Non sono previsti errori diversi da \errval{EBADF}. Il
2934   comando permette di rileggere il valore di quei bit
2935   dell'argomento \param{flags} di \func{open} che vengono memorizzati nella
2936   relativa voce della \textit{file table} all'apertura del file, vale a dire
2937   quelli riportati in tab.~\ref{tab:open_access_mode_flag} e
2938   tab.~\ref{tab:open_operation_flag}). Si ricordi che quando si usa la
2939   funzione per determinare le modalità di accesso con cui è stato aperto il
2940   file è necessario estrarre i bit corrispondenti nel \textit{file status
2941     flag} con la maschera \const{O\_ACCMODE} come già accennato in
2942   sez.~\ref{sec:file_open_close}. 
2943
2944 \item[\constd{F\_SETFL}] imposta il valore dei \textit{file status flags} al
2945   valore specificato da \param{arg}, ritorna un valore nullo in caso di
2946   successo o $-1$ in caso di errore. In generale possono essere impostati solo
2947   i flag riportati in tab.~\ref{tab:open_operation_flag}, su Linux si possono
2948   modificare soltanto \const{O\_APPEND}, \const{O\_ASYNC}, \const{O\_DIRECT},
2949   \const{O\_NOATIME} e \const{O\_NONBLOCK}. Oltre a \errval{EBADF} si otterrà
2950   \errcode{EPERM} se si cerca di rimuovere \const{O\_APPEND} da un file
2951   marcato come \textit{append-only} o se di cerca di impostare
2952   \const{O\_NOATIME} su un file di cui non si è proprietari (e non si hanno i
2953   permessi di amministratore) ed \errcode{EINVAL} se si cerca di impostare
2954   \const{O\_DIRECT} su un file che non supporta questo tipo di operazioni.
2955
2956 \item[\constd{F\_GETLK}] richiede un controllo sul file lock specificato da
2957   \param{lock}, sovrascrivendo la struttura da esso puntata con il risultato,
2958   ritorna un valore nullo in caso di successo o $-1$ in caso di errore. Come
2959   per i due successivi comandi oltre a \errval{EBADF} se \param{lock} non è un
2960   puntatore valido restituisce l'errore generico \errcode{EFAULT}. Questa
2961   funzionalità è trattata in dettaglio in sez.~\ref{sec:file_posix_lock}.
2962
2963 \item[\constd{F\_SETLK}] richiede o rilascia un file lock a seconda di quanto
2964   specificato nella struttura puntata da \param{lock}, ritorna un valore nullo
2965   in caso di successo e $-1$ se il file lock è tenuto da qualcun altro, nel
2966   qual caso si ha un errore di \errcode{EACCES} o \errcode{EAGAIN}.  Questa
2967   funzionalità è trattata in dettaglio in sez.~\ref{sec:file_posix_lock}.
2968
2969 \item[\constd{F\_SETLKW}] identica a \const{F\_SETLK} eccetto per il fatto che
2970   la funzione non ritorna subito ma attende che il blocco sia rilasciato, se
2971   l'attesa viene interrotta da un segnale la funzione restituisce $-1$ e
2972   imposta \var{errno} a \errcode{EINTR}.  Questa funzionalità è trattata in
2973   dettaglio in sez.~\ref{sec:file_posix_lock}.
2974
2975 \item[\constd{F\_GETOWN}] restituisce in caso di successo l'identificatore del
2976   processo o del \textit{process group} (vedi sez.~\ref{sec:sess_proc_group})
2977   che è preposto alla ricezione del segnale \signal{SIGIO} (o l'eventuale
2978   segnale alternativo impostato con \const{F\_SETSIG}) per gli eventi
2979   asincroni associati al file descriptor \param{fd} e del segnale
2980   \signal{SIGURG} per la notifica dei dati urgenti di un socket (vedi
2981   sez.~\ref{sec:TCP_urgent_data}). Restituisce $-1$ in caso di errore ed il
2982   terzo argomento viene ignorato. Non sono previsti errori diversi da
2983   \errval{EBADF}.
2984
2985   Per distinguerlo dal caso in cui il segnale viene inviato a un singolo
2986   processo, nel caso di un \textit{process group} viene restituito un valore
2987   negativo il cui valore assoluto corrisponde all'identificatore del
2988   \textit{process group}. Con Linux questo comporta un problema perché se il
2989   valore restituito dalla \textit{system call} è compreso nell'intervallo fra
2990   $-1$ e $-4095$ in alcune architetture questo viene trattato dalla
2991   \acr{glibc} come un errore,\footnote{il problema deriva dalle limitazioni
2992     presenti in architetture come quella dei normali PC (i386) per via delle
2993     modalità in cui viene effettuata l'invocazione delle \textit{system call}
2994     che non consentono di restituire un adeguato codice di ritorno.} per cui
2995   in tal caso \func{fcntl} ritornerà comunque $-1$ mentre il valore restituito
2996   dalla \textit{system call} verrà assegnato ad \var{errno}, cambiato di
2997   segno.
2998
2999   Per questo motivo con il kernel 2.6.32 è stato introdotto il comando
3000   alternativo \const{F\_GETOWN\_EX}, che vedremo a breve, che consente di
3001   evitare il problema. A partire dalla versione 2.11 la \acr{glibc}, se
3002   disponibile, usa questa versione alternativa per mascherare il problema
3003   precedente e restituire un valore corretto in tutti i casi.\footnote{in cui
3004     cioè viene restituito un valore negativo corretto qualunque sia
3005     l'identificatore del \textit{process group}, che non potendo avere valore
3006     unitario (non esiste infatti un \textit{process group} per \cmd{init}) non
3007     può generare ambiguità con il codice di errore.} Questo però comporta che
3008   il comportamento del comando può risultare diverso a seconda delle versioni
3009   della \acr{glibc} e del kernel.
3010
3011 \item[\constd{F\_SETOWN}] imposta, con il valore dell'argomento \param{arg},
3012   l'identificatore del processo o del \textit{process group} che riceverà i
3013   segnali \signal{SIGIO} e \signal{SIGURG} per gli eventi associati al file
3014   descriptor \param{fd}. Ritorna un valore nullo in caso di successo o $-1$ in
3015   caso di errore. Oltre a \errval{EBADF} gli errori possibili sono
3016   \errcode{ESRCH} se \param{arg} indica un processo o un \textit{process
3017     group} inesistente.
3018
3019   L'impostazione è soggetta alle stesse restrizioni presenti sulla funzione
3020   \func{kill} (vedi sez.~\ref{sec:sig_kill_raise}), per cui un utente non
3021   privilegiato può inviare i segnali solo ad un processo che gli appartiene,
3022   in genere comunque si usa il processo corrente.  Come per \const{F\_GETOWN},
3023   per indicare un \textit{process group} si deve usare per \param{arg} un
3024   valore negativo, il cui valore assoluto corrisponda all'identificatore del
3025   \textit{process group}.
3026
3027   A partire dal kernel 2.6.12 se si sta operando con i \textit{thread} della
3028   implementazione nativa di Linux (quella della NTPL, vedi
3029   sez.~\ref{sec:linux_ntpl}) e se si è impostato un segnale specifico con
3030   \const{F\_SETSIG}, un valore positivo di \param{arg} viene interpretato come
3031   indicante un \textit{Thread ID} e non un \textit{Process ID}.  Questo
3032   consente di inviare il segnale impostato con \const{F\_SETSIG} ad uno
3033   specifico \textit{thread}. In genere questo non comporta differenze
3034   significative per il processi ordinari, in cui non esistono altri
3035   \textit{thread}, dato che su Linux il \textit{thread} principale, che in tal
3036   caso è anche l'unico, mantiene un valore del \textit{Thread ID} uguale al
3037   \ids{PID} del processo. Il problema è però che questo comportamento non si
3038   applica a \signal{SIGURG}, per il quale \param{arg} viene sempre
3039   interpretato come l'identificatore di un processo o di un \textit{process
3040     group}.
3041
3042 \item[\constd{F\_GETOWN\_EX}] legge nella struttura puntata
3043   dall'argomento \param{owner} l'identificatore del processo, \textit{thread}
3044   o \textit{process group} (vedi sez.~\ref{sec:sess_proc_group}) che è
3045   preposto alla ricezione dei segnali \signal{SIGIO} e \signal{SIGURG} per gli
3046   eventi associati al file descriptor \param{fd}.  Ritorna un valore nullo in
3047   caso di successo o $-1$ in caso di errore. Oltre a \errval{EBADF} e da
3048   \errval{EFAULT} se \param{owner} non è un puntatore valido.
3049
3050   Il comando, che è disponibile solo a partire dal kernel 2.6.32, effettua lo
3051   stesso compito di \const{F\_GETOWN} di cui costituisce una evoluzione che
3052   consente di superare i limiti e le ambiguità relative ai valori restituiti
3053   come identificativo. A partire dalla versione 2.11 della \acr{glibc} esso
3054   viene usato dalla libreria per realizzare una versione di \func{fcntl} che
3055   non presenti i problemi illustrati in precedenza per la versione precedente
3056   di \const{F\_GETOWN}.  Il comando è specifico di Linux ed utilizzabile solo
3057   se si è definita la macro \macro{\_GNU\_SOURCE}.
3058
3059 \item[\constd{F\_SETOWN\_EX}] imposta con il valore della struttura
3060   \struct{f\_owner\_ex} puntata \param{owner}, l'identificatore del processo o
3061   del \textit{process group} che riceverà i segnali \signal{SIGIO} e
3062   \signal{SIGURG} per gli eventi associati al file
3063   descriptor \param{fd}. Ritorna un valore nullo in caso di successo o $-1$ in
3064   caso di errore, con gli stessi errori di \const{F\_SETOWN} più
3065   \errcode{EINVAL} se il campo \var{type} di \struct{f\_owner\_ex} non indica
3066   un tipo di identificatore valido.
3067
3068   \begin{figure}[!htb]
3069     \footnotesize \centering
3070     \begin{varwidth}[c]{0.5\textwidth}
3071       \includestruct{listati/f_owner_ex.h}
3072     \end{varwidth}
3073     \normalsize 
3074     \caption{La struttura \structd{f\_owner\_ex}.} 
3075     \label{fig:f_owner_ex}
3076   \end{figure}
3077
3078   Come \const{F\_GETOWN\_EX} il comando richiede come terzo argomento il
3079   puntatore ad una struttura \struct{f\_owner\_ex} la cui definizione è
3080   riportata in fig.~\ref{fig:f_owner_ex}, in cui il primo campo indica il tipo
3081   di identificatore il cui valore è specificato nel secondo campo, che assume
3082   lo stesso significato di \param{arg} per \const{F\_SETOWN}. Per il campo
3083   \var{type} i soli valori validi sono \constd{F\_OWNER\_TID},
3084   \constd{F\_OWNER\_PID} e \constd{F\_OWNER\_PGRP}, che indicano
3085   rispettivamente che si intende specificare con \var{pid} un \textit{Tread
3086     ID}, un \textit{Process ID} o un \textit{Process Group ID}. A differenza
3087   di \const{F\_SETOWN} se si specifica un \textit{Tread ID} questo riceverà
3088   sia \signal{SIGIO} (o il segnale impostato con \const{F\_SETSIG}) che
3089   \signal{SIGURG}. Il comando è specifico di Linux, è disponibile solo a
3090   partire dal kernel 2.6.32, ed è utilizzabile solo se si è definita la macro
3091   \macro{\_GNU\_SOURCE}.
3092
3093 \item[\constd{F\_GETSIG}] restituisce il valore del segnale inviato dai vari
3094   meccanismi di I/O asincrono associati al file descriptor \param{fd} (quelli
3095   trattati in sez.~\ref{sec:file_asyncronous_operation}) in caso di successo o
3096   $-1$ in caso di errore, il terzo argomento viene ignorato. Non sono previsti
3097   errori diversi da \errval{EBADF}.  Un valore nullo indica che si sta usando
3098   il segnale predefinito, che è \signal{SIGIO}. Un valore diverso da zero
3099   indica il segnale che è stato impostato con \const{F\_SETSIG}, che può
3100   essere anche lo stesso \signal{SIGIO}. Il comando è specifico di Linux ed
3101   utilizzabile solo se si è definita la macro \macro{\_GNU\_SOURCE}.
3102
3103 \item[\constd{F\_SETSIG}] imposta il segnale inviato dai vari meccanismi di
3104   I/O asincrono associati al file descriptor \param{fd} (quelli trattati in
3105   sez.~\ref{sec:file_asyncronous_operation}) al valore indicato
3106   da \param{arg}, ritorna un valore nullo in caso di successo o $-1$ in caso
3107   di errore.  Oltre a \errval{EBADF} gli errori possibili sono
3108   \errcode{EINVAL} se \param{arg} indica un numero di segnale non valido.  Un
3109   valore nullo di \param{arg} indica di usare il segnale predefinito, cioè
3110   \signal{SIGIO}. Un valore diverso da zero, compreso lo stesso
3111   \signal{SIGIO}, specifica il segnale voluto.  Il comando è specifico di
3112   Linux ed utilizzabile solo se si è definita la macro \macro{\_GNU\_SOURCE}.
3113
3114   L'impostazione di un valore diverso da zero permette inoltre, se si è
3115   installato il gestore del segnale come \var{sa\_sigaction} usando
3116   \const{SA\_SIGINFO}, (vedi sez.~\ref{sec:sig_sigaction}), di rendere
3117   disponibili al gestore informazioni ulteriori riguardo il file che ha
3118   generato il segnale attraverso i valori restituiti in
3119   \struct{siginfo\_t}. Se inoltre si imposta un segnale \textit{real-time} si
3120   potranno sfruttare le caratteristiche di avanzate di questi ultimi (vedi
3121   sez.~\ref{sec:sig_real_time}), ed in particolare la capacità di essere
3122   accumulati in una coda prima della notifica.
3123
3124 \item[\constd{F\_GETLEASE}] restituisce il tipo di \textit{file lease} che il
3125   processo detiene nei confronti del file descriptor \var{fd} o $-1$ in caso
3126   di errore, il terzo argomento viene ignorato. Non sono previsti errori
3127   diversi da \errval{EBADF}.  Il comando è specifico di Linux ed utilizzabile
3128   solo se si è definita la macro \macro{\_GNU\_SOURCE}.  Questa funzionalità è
3129   trattata in dettaglio in sez.~\ref{sec:file_asyncronous_lease}.
3130
3131 \item[\constd{F\_SETLEASE}] imposta o rimuove a seconda del valore
3132   di \param{arg} un \textit{file lease} sul file descriptor \var{fd} a seconda
3133   del valore indicato da \param{arg}. Ritorna un valore nullo in caso di
3134   successo o $-1$ in caso di errore. Oltre a \errval{EBADF} si otterrà
3135   \errcode{EINVAL} se si è specificato un valore non valido per \param{arg}
3136   (deve essere usato uno dei valori di tab.~\ref{tab:file_lease_fctnl}),
3137   \errcode{ENOMEM} se non c'è memoria sufficiente per creare il \textit{file
3138     lease}, \errcode{EACCES} se non si è il proprietario del file e non si
3139   hanno i privilegi di amministratore.\footnote{per la precisione occorre la
3140     capacità \const{CAP\_LEASE}.}
3141
3142   Il supporto il supporto per i \textit{file lease}, che consente ad un
3143   processo che detiene un \textit{lease} su un file di riceve una notifica
3144   qualora un altro processo cerchi di eseguire una \func{open} o una
3145   \func{truncate} su di esso è stato introdotto a partire dai kernel della
3146   serie 2.4 Il comando è specifico di Linux ed utilizzabile solo se si è
3147   definita la macro \macro{\_GNU\_SOURCE}. Questa funzionalità è trattata in
3148   dettaglio in sez.~\ref{sec:file_asyncronous_lease}.
3149
3150 \item[\constd{F\_NOTIFY}] attiva il meccanismo di notifica asincrona per cui
3151   viene riportato al processo chiamante, tramite il segnale \signal{SIGIO} (o
3152   altro segnale specificato con \const{F\_SETSIG}) ogni modifica eseguita o
3153   direttamente sulla directory cui \var{fd} fa riferimento, o su uno dei file
3154   in essa contenuti; ritorna un valore nullo in caso di successo o $-1$ in
3155   caso di errore. Il comando è specifico di Linux ed utilizzabile solo se si è
3156   definita la macro \macro{\_GNU\_SOURCE}.  Questa funzionalità, disponibile
3157   dai kernel della serie 2.4.x, è trattata in dettaglio in
3158   sez.~\ref{sec:file_asyncronous_lease}.
3159
3160 \item[\constd{F\_GETPIPE\_SZ}] restituisce in caso di successo la dimensione
3161   del buffer associato alla \textit{pipe} \param{fd} (vedi
3162   sez.~\ref{sec:ipc_pipes}) o $-1$ in caso di errore, il terzo argomento viene
3163   ignorato. Non sono previsti errori diversi da \errval{EBADF}, che viene
3164   restituito anche se il file descriptor non è una \textit{pipe}. Il comando è
3165   specifico di Linux, è disponibile solo a partire dal kernel 2.6.35, ed è
3166   utilizzabile solo se si è definita la macro \macro{\_GNU\_SOURCE}.
3167
3168 \item[\constd{F\_SETPIPE\_SZ}] imposta la dimensione del buffer associato alla
3169   \textit{pipe} \param{fd} (vedi sez.~\ref{sec:ipc_unix}) ad un valore uguale
3170   o superiore a quello indicato dall'argomento \param{arg}. Ritorna un valore
3171   nullo in caso di successo o $-1$ in caso di errore. Oltre a \errval{EBADF}
3172   gli errori possibili sono \errcode{EBUSY} se si cerca di ridurre la
3173   dimensione del buffer al di sotto della quantità di dati effettivamente
3174   presenti su di esso ed \errcode{EPERM} se un processo non privilegiato cerca
3175   di impostare un valore troppo alto.  La dimensione minima del buffer è pari
3176   ad una pagina di memoria, a cui verrà comunque arrotondata ogni dimensione
3177   inferiore, il valore specificato viene in genere arrotondato per eccesso al
3178   valore ritenuto più opportuno dal sistema, pertanto una volta eseguita la
3179   modifica è opportuno rileggere la nuova dimensione con
3180   \const{F\_GETPIPE\_SZ}. I processi non privilegiati\footnote{per la
3181     precisione occorre la capacità \const{CAP\_SYS\_RESOURCE}.} non possono
3182   impostare un valore superiore a quello indicato da
3183   \sysctlfiled{fs/pipe-size-max}.  Il comando è specifico di Linux, è
3184   disponibile solo a partire dal kernel 2.6.35, ed è utilizzabile solo se si è
3185   definita la macro \macro{\_GNU\_SOURCE}.
3186
3187 \end{basedescript}
3188
3189 % TODO: trattare RWH_WRITE_LIFE_EXTREME e RWH_WRITE_LIFE_SHORT aggiunte con
3190 % il kernel 4.13 (vedi https://lwn.net/Articles/727385/)
3191
3192 La maggior parte delle funzionalità controllate dai comandi di \func{fcntl}
3193 sono avanzate e richiedono degli approfondimenti ulteriori, saranno pertanto
3194 riprese più avanti quando affronteremo le problematiche ad esse relative. In
3195 particolare le tematiche relative all'I/O asincrono e ai vari meccanismi di
3196 notifica saranno trattate in maniera esaustiva in
3197 sez.~\ref{sec:file_asyncronous_operation} mentre quelle relative al
3198 \textit{file locking} saranno esaminate in sez.~\ref{sec:file_locking}). L'uso
3199 di questa funzione con i socket verrà trattato in
3200 sez.~\ref{sec:sock_ctrl_func}.
3201
3202 La gran parte dei comandi di \func{fcntl} (come \const{F\_DUPFD},
3203 \const{F\_GETFD}, \const{F\_SETFD}, \const{F\_GETFL}, \const{F\_SETFL},
3204 \const{F\_GETLK}, \const{F\_SETLK} e \const{F\_SETLKW}) sono previsti da SVr4
3205 e 4.3BSD e standardizzati in POSIX.1-2001 che inoltre prevede gli ulteriori
3206 \const{F\_GETOWN} e \const{F\_SETOWN}. Pertanto nell'elenco si sono indicate
3207 esplicitamente soltanto le ulteriori richieste in termini delle macro di
3208 funzionalità di sez.~\ref{sec:intro_gcc_glibc_std} soltanto per le
3209 funzionalità inserite in standard successivi o specifiche di Linux.
3210
3211
3212 % \subsection{La funzione \func{ioctl}}
3213 % \label{sec:file_ioctl}
3214
3215 Benché l'interfaccia di gestione dell'I/O sui file di cui abbiamo parlato
3216 finora si sia dimostrata valida anche per l'interazione diretta con le
3217 periferiche attraverso i loro file di dispositivo, consentendo di usare le
3218 stesse funzioni utilizzate per i normali file di dati, esistono però
3219 caratteristiche peculiari, specifiche dell'hardware e delle funzionalità che
3220 ciascun dispositivo può provvedere, che non possono venire comprese in questa
3221 interfaccia astratta come ad esempio l'impostazione della velocità di una
3222 porta seriale, o le dimensioni di un framebuffer.
3223
3224 Per questo motivo nell'architettura del sistema è stata prevista l'esistenza
3225 di una apposita funzione di sistema, \funcd{ioctl}, come meccanismo generico
3226 per compiere operazioni specializzate; il suo prototipo è:
3227
3228 \begin{funcproto}{
3229 \fhead{sys/ioctl.h}
3230 \fdecl{int ioctl(int fd, int request, ...)}
3231 \fdesc{Esegue una operazione speciale.} 
3232 }
3233
3234 {La funzione ritorna $0$ in caso di successo nella maggior parte dei casi, ma
3235   alcune operazioni possono restituire un valore positivo, mentre ritorna
3236   sempre $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
3237   valori:
3238   \begin{errlist}
3239   \item[\errcode{EINVAL}] gli argomenti \param{request} o \param{argp} non sono
3240     validi.
3241   \item[\errcode{ENOTTY}] il file \param{fd} non è associato con un
3242     dispositivo, o la richiesta non è applicabile all'oggetto a cui fa
3243     riferimento \param{fd}.
3244   \end{errlist}
3245   ed inoltre \errval{EBADF} e \errval{EFAULT} nel loro significato generico.}
3246 \end{funcproto}
3247
3248
3249 La funzione richiede che si passi come primo argomento un file
3250 descriptor \param{fd} regolarmente aperto, mentre l'operazione da compiere
3251 deve essere indicata dal valore dell'argomento \param{request}. Il terzo
3252 argomento dipende dall'operazione prescelta; tradizionalmente è specificato
3253 come \code{char * argp}, da intendersi come puntatore ad un area di memoria
3254 generica (all'epoca della creazione di questa funzione infatti ancora non era
3255 stato introdotto il tipo \ctyp{void}) ma per certe operazioni può essere
3256 omesso, e per altre è un semplice intero.
3257
3258 Normalmente la funzione ritorna zero in caso di successo e $-1$ in caso di
3259 errore, ma per alcune operazioni il valore di ritorno, che nel caso viene
3260 impostato ad un valore positivo, può essere utilizzato come indicazione del
3261 risultato della stessa. È più comune comunque restituire i risultati
3262 all'indirizzo puntato dal terzo argomento.
3263
3264 Data la genericità dell'interfaccia non è possibile classificare in maniera
3265 sistematica le operazioni che si possono gestire con \func{ioctl}, un breve
3266 elenco di alcuni esempi di esse è il seguente:
3267 \begin{itemize*}
3268 \item il cambiamento dei font di un terminale.
3269 \item l'esecuzione di una traccia audio di un CDROM.
3270 \item i comandi di avanti veloce e di riavvolgimento di un nastro.
3271 \item il comando di espulsione di un dispositivo rimovibile.
3272 \item l'impostazione della velocità trasmissione di una linea seriale.
3273 \item l'impostazione della frequenza e della durata dei suoni emessi dallo
3274   speaker.
3275 \item l'impostazione degli attributi dei file su un filesystem
3276   ext2.\footnote{i comandi \texttt{lsattr} e \texttt{chattr} fanno questo con
3277     delle \func{ioctl} dedicate, usabili solo su questo filesystem e derivati
3278     successivi (come ext3).}
3279 \end{itemize*}
3280
3281 In generale ogni dispositivo ha un suo insieme di operazioni specifiche
3282 effettuabili attraverso \func{ioctl}, tutte queste sono definite nell'header
3283 file \headfiled{sys/ioctl.h}, e devono essere usate solo sui dispositivi cui
3284 fanno riferimento. Infatti anche se in genere i valori di \param{request} sono
3285 opportunamente differenziati a seconda del dispositivo\footnote{il kernel usa
3286   un apposito \textit{magic number} per distinguere ciascun dispositivo nella
3287   definizione delle macro da usare per \param{request}, in modo da essere
3288   sicuri che essi siano sempre diversi, ed il loro uso per dispositivi diversi
3289   causi al più un errore.  Si veda il capitolo quinto di \cite{LinDevDri} per
3290   una trattazione dettagliata dell'argomento.} così che la richiesta di
3291 operazioni relative ad altri dispositivi usualmente provoca il ritorno della
3292 funzione con una condizione di errore, in alcuni casi, relativi a valori
3293 assegnati prima che questa differenziazione diventasse pratica corrente, si
3294 potrebbero usare valori validi anche per il dispositivo corrente, con effetti
3295 imprevedibili o indesiderati.
3296
3297 Data la assoluta specificità della funzione, il cui comportamento varia da
3298 dispositivo a dispositivo, non è possibile fare altro che dare una descrizione
3299 sommaria delle sue caratteristiche; torneremo ad esaminare in seguito quelle
3300 relative ad alcuni casi specifici, ad esempio la gestione dei terminali è
3301 effettuata attraverso \func{ioctl} in quasi tutte le implementazioni di Unix,
3302 mentre per l'uso di \func{ioctl} con i socket si veda
3303 sez.~\ref{sec:sock_ctrl_func}. 
3304
3305 Riportiamo qui solo l'elenco delle operazioni che sono predefinite per
3306 qualunque file, caratterizzate dal prefisso \texttt{FIO}. Queste operazioni
3307 sono definite nel kernel a livello generale, e vengono sempre interpretate per
3308 prime, per cui, come illustrato in \cite{LinDevDri}, eventuali operazioni
3309 specifiche che usino lo stesso valore verrebbero ignorate:
3310 \begin{basedescript}{\desclabelwidth{2.0cm}}
3311 \item[\constd{FIOCLEX}] imposta il flag di \textit{close-on-exec} sul file, in
3312   questo caso, essendo usata come operazione logica, \func{ioctl} non richiede
3313   un terzo argomento, il cui eventuale valore viene ignorato.
3314 \item[\constd{FIONCLEX}] cancella il flag di \textit{close-on-exec} sul file,
3315   in questo caso, essendo usata come operazione logica, \func{ioctl} non
3316   richiede un terzo argomento, il cui eventuale valore viene ignorato.
3317 \item[\constd{FIOASYNC}] abilita o disabilita la modalità di I/O asincrono sul
3318   file (vedi sez.~\ref{sec:signal_driven_io}); il terzo argomento
3319   deve essere un puntatore ad un intero (cioè di tipo \texttt{const int *})
3320   che contiene un valore logico (un valore nullo disabilita, un valore non
3321   nullo abilita).
3322 \item[\constd{FIONBIO}] abilita o disabilita sul file l'I/O in modalità non
3323   bloccante; il terzo argomento deve essere un puntatore ad un intero (cioè di
3324   tipo \texttt{const int *}) che contiene un valore logico (un valore nullo
3325   disabilita, un valore non nullo abilita).
3326 \item[\constd{FIOSETOWN}] imposta il processo che riceverà i segnali
3327   \signal{SIGURG} e \signal{SIGIO} generati sul file; il terzo argomento deve
3328   essere un puntatore ad un intero (cioè di tipo \texttt{const int *}) il cui
3329   valore specifica il PID del processo.
3330 \item[\constd{FIOGETOWN}] legge il processo che riceverà i segnali
3331   \signal{SIGURG} e \signal{SIGIO} generati sul file; il terzo argomento deve
3332   essere un puntatore ad un intero (cioè di tipo \texttt{int *}) su cui sarà
3333   scritto il PID del processo.
3334 \item[\constd{FIONREAD}] legge il numero di byte disponibili in lettura sul
3335   file descriptor; questa operazione è disponibile solo su alcuni file
3336   descriptor, in particolare sui socket (vedi sez.~\ref{sec:sock_ioctl_IP}) o
3337   sui file descriptor di \textit{epoll} (vedi sez.~\ref{sec:file_epoll}), il
3338   terzo argomento deve essere un puntatore ad un intero (cioè di tipo
3339   \texttt{int *}) su cui sarà restituito il valore.
3340 \item[\constd{FIOQSIZE}] restituisce la dimensione corrente di un file o di una
3341   directory, mentre se applicata ad un dispositivo fallisce con un errore di
3342   \errcode{ENOTTY}; il terzo argomento deve essere un puntatore ad un intero
3343   (cioè di tipo \texttt{int *}) su cui sarà restituito il valore.
3344 \end{basedescript}
3345
3346 % TODO aggiungere FIBMAP e FIEMAP, vedi http://lwn.net/Articles/260795/,
3347 % http://lwn.net/Articles/429345/ 
3348
3349 Si noti però come la gran parte di queste operazioni specifiche dei file (per
3350 essere precisi le prime sei dell'elenco) siano effettuabili in maniera
3351 generica anche tramite l'uso di \func{fcntl}. Le due funzioni infatti sono
3352 molto simili e la presenza di questa sovrapposizione è principalmente dovuta
3353 al fatto che alle origini di Unix i progettisti considerarono che era
3354 necessario trattare diversamente rispetto alle operazione di controllo delle
3355 modalità di I/O file e dispositivi usando \func{fcntl} per i primi e
3356 \func{ioctl} per i secondi, all'epoca tra l'altro i dispositivi che usavano
3357 \func{ioctl} erano sostanzialmente solo i terminali, il che spiega l'uso
3358 comune di \errcode{ENOTTY} come codice di errore. Oggi non è più così ma le
3359 due funzioni sono rimaste.
3360
3361 % TODO trovare qualche posto per la eventuale documentazione delle seguenti
3362 % (bassa/bassissima priorità)
3363 % EXT4_IOC_MOVE_EXT (dal 2.6.31)
3364 %  EXT4_IOC_SHUTDOWN (dal 4.10), XFS_IOC_GOINGDOWN e futura FS_IOC_SHUTDOWN
3365 % ioctl di btrfs, vedi http://lwn.net/Articles/580732/
3366
3367 % \chapter{}
3368
3369 \section{L'interfaccia standard ANSI C}
3370 \label{sec:files_std_interface}
3371
3372
3373 Come visto in sez.~\ref{sec:file_unix_interface} le operazioni di I/O sui file
3374 sono gestibili a basso livello con l'interfaccia standard unix, che ricorre
3375 direttamente alle \textit{system call} messe a disposizione dal kernel.
3376
3377 Questa interfaccia però non provvede le funzionalità previste dallo standard
3378 ANSI C, che invece sono realizzate attraverso opportune funzioni di libreria.
3379 Queste funzioni di libreria, insieme alle altre funzioni definite dallo
3380 standard (che sono state implementate la prima volta da Ritchie nel 1976 e da
3381 allora sono rimaste sostanzialmente immutate), vengono a costituire il nucleo
3382 della \acr{glibc} per la gestione dei file.
3383
3384 Esamineremo in questa sezione le funzioni base dell'interfaccia degli
3385 \textit{stream}, analoghe a quelle di sez.~\ref{sec:file_unix_interface} per i
3386 file descriptor. In particolare vedremo come aprire, leggere, scrivere e
3387 cambiare la posizione corrente in uno \textit{stream}.
3388
3389
3390 \subsection{I \textit{file stream}}
3391 \label{sec:file_stream}
3392
3393 \itindbeg{file~stream}
3394
3395 Come più volte ribadito, l'interfaccia dei file descriptor è un'interfaccia di
3396 basso livello, che non provvede nessuna forma di formattazione dei dati e
3397 nessuna forma di bufferizzazione per ottimizzare le operazioni di I/O.
3398
3399 In \cite{APUE} Stevens descrive una serie di test sull'influenza delle
3400 dimensioni del blocco di dati (l'argomento \param{buf} di \func{read} e
3401 \func{write}) nell'efficienza nelle operazioni di I/O con i file descriptor,
3402 evidenziando come le prestazioni ottimali si ottengano a partire da dimensioni
3403 del buffer dei dati pari a quelle dei blocchi del filesystem (il valore dato
3404 dal campo \var{st\_blksize} di \struct{stat}), che di norma corrispondono alle
3405 dimensioni dei settori fisici in cui è suddiviso il disco.
3406
3407 Se il programmatore non si cura di effettuare le operazioni in blocchi di
3408 dimensioni adeguate, le prestazioni sono inferiori.  La caratteristica
3409 principale dell'interfaccia degli \textit{stream} è che essa provvede da sola
3410 alla gestione dei dettagli della bufferizzazione e all'esecuzione delle
3411 operazioni di lettura e scrittura in blocchi di dimensioni appropriate
3412 all'ottenimento della massima efficienza.
3413
3414 Per questo motivo l'interfaccia viene chiamata anche interfaccia dei
3415 \textit{file stream}, dato che non è più necessario doversi preoccupare dei
3416 dettagli con cui viene gestita la comunicazione con l'hardware sottostante
3417 (come nel caso della dimensione dei blocchi del filesystem), ed un file può
3418 essere sempre considerato come composto da un flusso continuo di dati, da cui
3419 deriva appunto il nome \textit{stream}.
3420
3421 A parte i dettagli legati alla gestione delle operazioni di lettura e
3422 scrittura, sia per quel che riguarda la bufferizzazione che le formattazioni,
3423 per tutto il resto i \textit{file stream} restano del tutto equivalenti ai
3424 file descriptor (sui quali sono basati), ed in particolare continua a valere
3425 quanto visto in sez.~\ref{sec:file_shared_access} a proposito dell'accesso
3426 concorrente ed in sez.~\ref{sec:file_access_control} per il controllo di
3427 accesso.
3428
3429 Per ragioni storiche la struttura di dati che rappresenta uno \textit{stream}
3430 è stata chiamata \typed{FILE}, questi oggetti sono creati dalle funzioni di
3431 libreria e contengono tutte le informazioni necessarie a gestire le operazioni
3432 sugli \textit{stream}, come la posizione corrente, lo stato del buffer e degli
3433 indicatori di stato e di fine del file.
3434
3435 Per questo motivo gli utenti non devono mai utilizzare direttamente o allocare
3436 queste strutture (che sono dei \textsl{tipi opachi}) ma usare sempre puntatori
3437 del tipo \texttt{FILE *} ottenuti dalla libreria stessa, tanto che in certi
3438 casi il termine di puntatore a file è diventato sinonimo di \textit{stream}.
3439 Tutte le funzioni della libreria che operano sui file accettano come argomenti
3440 solo variabili di questo tipo, che diventa accessibile includendo l'header
3441 file \headfile{stdio.h}.
3442
3443 \itindend{file~stream}
3444
3445 Ai tre file descriptor standard (vedi tab.~\ref{tab:file_std_files}) aperti
3446 per ogni processo, corrispondono altrettanti \textit{stream}, che
3447 rappresentano i canali standard di input/output prestabiliti; anche questi tre
3448 \textit{stream} sono identificabili attraverso dei nomi simbolici definiti
3449 nell'header \headfile{stdio.h} che sono:
3450
3451 \begin{basedescript}{\desclabelwidth{3.0cm}}
3452 \item[\var{FILE *stdin}] Lo \textit{standard input} cioè il \textit{file
3453     stream} da cui il processo riceve ordinariamente i dati in
3454   ingresso. Normalmente è associato dalla shell all'input del terminale e
3455   prende i caratteri dalla tastiera.
3456 \item[\var{FILE *stdout}] Lo \textit{standard output} cioè il \textit{file
3457     stream} su cui il processo invia ordinariamente i dati in
3458   uscita. Normalmente è associato dalla shell all'output del terminale e
3459   scrive sullo schermo.
3460 \item[\var{FILE *stderr}] Lo \textit{standard error} cioè il \textit{file
3461     stream} su cui il processo è supposto inviare i messaggi di
3462   errore. Normalmente anch'esso è associato dalla shell all'output del
3463   terminale e scrive sullo schermo.
3464 \end{basedescript}
3465
3466 Nella \acr{glibc} \var{stdin}, \var{stdout} e \var{stderr} sono effettivamente
3467 tre variabili di tipo \type{FILE}\texttt{ *} che possono essere usate come
3468 tutte le altre, ad esempio si può effettuare una redirezione dell'output di un
3469 programma con il semplice codice: \includecodesnip{listati/redir_stdout.c} ma
3470 in altri sistemi queste variabili possono essere definite da macro, e se si
3471 hanno problemi di portabilità e si vuole essere sicuri, diventa opportuno
3472 usare la funzione \func{freopen}.
3473
3474
3475 \subsection{Le modalità di bufferizzazione}
3476 \label{sec:file_buffering}
3477
3478 La bufferizzazione è una delle caratteristiche principali dell'interfaccia
3479 degli \textit{stream}; lo scopo è quello di ridurre al minimo il numero di
3480 \textit{system call} (\func{read} o \func{write}) eseguite nelle operazioni di
3481 input/output. Questa funzionalità è assicurata automaticamente dalla libreria,
3482 ma costituisce anche uno degli aspetti più comunemente fraintesi, in
3483 particolare per quello che riguarda l'aspetto della scrittura dei dati sul
3484 file.
3485
3486 I dati che vengono scritti su di uno \textit{stream} normalmente vengono
3487 accumulati in un buffer e poi trasmessi in blocco, con l'operazione che viene
3488 usualmente chiamata \textsl{scaricamento} del buffer (dal termine inglese
3489 \textit{flush}) tutte le volte che questo viene riempito. Questa operazione
3490 avviene perciò in maniera asincrona rispetto alla scrittura. Un comportamento
3491 analogo avviene anche in lettura (cioè dal file viene letto un blocco di dati,
3492 anche se ne sono richiesti una quantità inferiore), ma la cosa ovviamente ha
3493 rilevanza inferiore, dato che i dati letti sono sempre gli stessi. In caso di
3494 scrittura invece, quando si ha un accesso contemporaneo allo stesso file (ad
3495 esempio da parte di un altro processo) si potranno vedere solo le parti
3496 effettivamente scritte, e non quelle ancora presenti nel buffer.
3497
3498 Per lo stesso motivo, in tutte le situazioni in cui si sta facendo
3499 dell'input/output interattivo, bisognerà tenere presente le caratteristiche
3500 delle operazioni di scaricamento dei dati, poiché non è detto che ad una
3501 scrittura sullo \textit{stream} corrisponda una immediata scrittura sul
3502 dispositivo, e la cosa è particolarmente evidente con le operazioni di
3503 input/output sul terminale.
3504
3505 Per rispondere ad esigenze diverse lo standard definisce tre distinte modalità
3506 in cui può essere eseguita la bufferizzazione, delle quali occorre essere ben
3507 consapevoli, specie in caso di lettura e scrittura da dispositivi interattivi:
3508 \begin{itemize}
3509 \item \textit{unbuffered}: in questo caso non c'è bufferizzazione ed i
3510   caratteri vengono trasmessi direttamente al file non appena possibile
3511   (effettuando immediatamente una \func{write});
3512 \item \textit{line buffered}: in questo caso i caratteri vengono normalmente
3513   trasmessi al file in blocco ogni volta che viene incontrato un carattere di
3514   \textit{newline} (il carattere ASCII \verb|\n|) cioè un a capo (in sostanza
3515   quando si preme invio);
3516 \item \textit{fully buffered}: in questo caso i caratteri vengono
3517   trasmessi da e verso il file in blocchi di dimensione opportuna.
3518 \end{itemize}
3519
3520 Lo standard ANSI C specifica inoltre che lo \textit{standard output} e lo
3521 \textit{standard input} siano aperti in modalità \textit{fully buffered}
3522 quando non fanno riferimento ad un dispositivo interattivo, e che lo standard
3523 error non sia mai aperto in modalità \textit{fully buffered}.
3524
3525 Linux, come BSD e SVr4, specifica il comportamento predefinito in maniera
3526 ancora più precisa, e cioè impone che lo standard error sia sempre
3527 \textit{unbuffered}, in modo che i messaggi di errore siano mostrati il più
3528 rapidamente possibile, e che \textit{standard input} \textit{standard output}
3529 siano aperti in modalità \textit{line buffered} quando sono associati ad un
3530 terminale (od altro dispositivo interattivo) ed in modalità \textit{fully
3531   buffered} altrimenti.
3532
3533 Il comportamento specificato per \textit{standard input} e \textit{standard
3534   output} vale anche per tutti i nuovi \textit{stream} aperti da un processo;
3535 la selezione comunque avviene automaticamente, e la libreria apre lo
3536 \textit{stream} nella modalità più opportuna a seconda del file o del
3537 dispositivo scelto.
3538
3539 La modalità \textit{line buffered} è quella che necessita di maggiori
3540 chiarimenti e attenzioni per quel che concerne il suo funzionamento. Come già
3541 accennato nella descrizione, \emph{di norma} i dati vengono inviati al kernel
3542 alla ricezione di un carattere di \textsl{a capo} (il \textit{newline});
3543 questo non è vero in tutti i casi, infatti, dato che le dimensioni del buffer
3544 usato dalle librerie sono fisse, se le si eccedono si può avere uno scarico
3545 dei dati anche prima che sia stato inviato un carattere di \textit{newline}.
3546
3547 Un secondo punto da tenere presente, particolarmente quando si ha a che fare
3548 con I/O interattivo, è che quando si effettua una lettura da uno
3549 \textit{stream} che comporta l'accesso alle \textit{system call} del kernel,
3550 ad esempio se lo \textit{stream} da cui si legge è in modalità
3551 \textit{unbuffered}, viene anche eseguito lo scarico di tutti i buffer degli
3552 \textit{stream} in scrittura. In sez.~\ref{sec:file_buffering_ctrl} vedremo
3553 come la libreria definisca delle opportune funzioni per controllare le
3554 modalità di bufferizzazione e lo scarico dei dati.
3555
3556
3557
3558 \subsection{Apertura e chiusura di uno \textit{stream}}
3559 \label{sec:file_fopen}
3560
3561 Le funzioni che si possono usare per aprire uno \textit{stream} sono solo tre:
3562 \funcd{fopen}, \funcd{fdopen} e \funcd{freopen},\footnote{\func{fopen} e
3563   \func{freopen} fanno parte dello standard ANSI C, \func{fdopen} è parte
3564   dello standard POSIX.1.} ed i rispettivi prototipi sono:
3565
3566 \begin{funcproto}{
3567 \fhead{stdio.h}
3568 \fdecl{FILE *fopen(const char *path, const char *mode)}
3569 \fdesc{Apre uno \textit{stream} da un \texttt{pathname}.} 
3570 \fdecl{FILE *fdopen(int fildes, const char *mode)}
3571 \fdesc{Associa uno \textit{stream} a un file descriptor.} 
3572 \fdecl{FILE *freopen(const char *path, const char *mode, FILE *stream)}
3573 \fdesc{Chiude uno \textit{stream} e lo riapre su un file diverso.} 
3574 }
3575
3576 {Le funzioni ritornano un puntatore ad un oggetto \type{FILE} in caso di
3577   successo e \val{NULL} per un errore, nel qual caso \var{errno} assumerà il
3578   valore ricevuto dalla funzione sottostante di cui è fallita l'esecuzione,
3579   gli errori pertanto possono essere quelli di \func{malloc} per tutte e tre
3580   le funzioni, quelli \func{open} per \func{fopen}, quelli di \func{fcntl} per
3581   \func{fdopen} e quelli di \func{fopen}, \func{fclose} e \func{fflush} per
3582   \func{freopen}.}
3583 \end{funcproto}
3584
3585 Normalmente la funzione che si usa per aprire uno \textit{stream} è
3586 \func{fopen}, essa apre il file specificato dal \textit{pathname} \param{path}
3587 nella modalità specificata da \param{mode}, che è una stringa che deve
3588 iniziare con almeno uno dei valori indicati in tab.~\ref{tab:file_fopen_mode},
3589 anche se sono possibili varie estensioni che vedremo in seguito.
3590
3591 L'uso più comune di \func{freopen} è per redirigere uno dei tre file standard
3592 (vedi sez.~\ref{sec:file_stream}): il file \param{path} viene aperto nella
3593 modalità indicata da \param{mode} ed associato allo \textit{stream} indicato
3594 dall'argomento \param{stream}, e se questo era uno \textit{stream} già aperto
3595 esso viene preventivamente chiuso e tutti i dati pendenti vengono scaricati.
3596
3597 Infine \func{fdopen} viene usata per associare uno \textit{stream} ad un file
3598 descriptor esistente ottenuto tramite una altra funzione (ad esempio con una
3599 \func{open}, una \func{dup}, o una \func{pipe}) e serve quando si vogliono
3600 usare gli \textit{stream} con file come le \textit{fifo} o i socket, che non possono
3601 essere aperti con le funzioni delle librerie standard del C.
3602
3603 \begin{table}[htb]
3604   \centering
3605   \footnotesize
3606   \begin{tabular}[c]{|l|p{8cm}|}
3607     \hline
3608     \textbf{Valore} & \textbf{Significato}\\
3609     \hline
3610     \hline
3611     \texttt{r} & Il file viene aperto, l'accesso viene posto in sola
3612                  lettura, lo \textit{stream} è posizionato all'inizio del
3613                  file.\\ 
3614     \texttt{r+}& Il file viene aperto, l'accesso viene posto in lettura e
3615                  scrittura, lo \textit{stream} è posizionato all'inizio del
3616                  file.\\ 
3617 %    \hline
3618     \texttt{w} & Il file viene aperto e troncato a lunghezza nulla (o
3619                  creato se non esiste), l'accesso viene posto in sola
3620                  scrittura, lo \textit{stream} è posizionato all'inizio del
3621                  file.\\ 
3622     \texttt{w+}& Il file viene aperto e troncato a lunghezza nulla (o
3623                  creato se non esiste), l'accesso viene posto in scrittura e
3624                  lettura, lo \textit{stream} è posizionato all'inizio del
3625                  file.\\ 
3626 %    \hline
3627     \texttt{a} & Il file viene aperto (o creato se non esiste) in
3628                  \textit{append mode}, l'accesso viene posto in sola
3629                  scrittura.\\
3630     \texttt{a+}& Il file viene aperto (o creato se non esiste) in
3631                  \textit{append mode}, l'accesso viene posto in lettura e
3632                  scrittura.\\
3633     \hline
3634     \texttt{b} & Specifica che il file è binario, non ha alcun effetto. \\
3635     \texttt{x} & L'apertura fallisce se il file esiste già. \\
3636     \hline
3637   \end{tabular}
3638   \caption{Modalità di apertura di uno \textit{stream} dello standard ANSI C
3639     che sono sempre presenti in qualunque sistema POSIX.}
3640   \label{tab:file_fopen_mode}
3641 \end{table}
3642
3643 In realtà lo standard ANSI C prevede un totale di 15 possibili valori
3644 diversi per \param{mode}, ma in tab.~\ref{tab:file_fopen_mode} si sono
3645 riportati solo i sei valori effettivi, ad essi può essere aggiunto pure
3646 il carattere \texttt{b} (come ultimo carattere o nel mezzo agli altri per
3647 le stringhe di due caratteri) che in altri sistemi operativi serve a
3648 distinguere i file binari dai file di testo; in un sistema POSIX questa
3649 distinzione non esiste e il valore viene accettato solo per
3650 compatibilità, ma non ha alcun effetto.
3651
3652 La \acr{glibc} supporta alcune estensioni, queste devono essere sempre
3653 indicate dopo aver specificato il \param{mode} con uno dei valori di
3654 tab.~\ref{tab:file_fopen_mode}. L'uso del carattere \texttt{x} serve per
3655 evitare di sovrascrivere un file già esistente (è analoga all'uso dell'opzione
3656 \const{O\_EXCL} in \func{open}): se il file specificato già esiste e si
3657 aggiunge questo carattere a \param{mode} la \func{fopen} fallisce.
3658
3659 Un'altra estensione serve a supportare la localizzazione, quando si
3660 aggiunge a \param{mode} una stringa della forma \verb|",ccs=STRING"| il
3661 valore \verb|STRING| è considerato il nome di una codifica dei caratteri
3662 e \func{fopen} marca il file per l'uso dei caratteri estesi e abilita le
3663 opportune funzioni di conversione in lettura e scrittura.
3664
3665 Nel caso si usi \func{fdopen} i valori specificati da \param{mode} devono
3666 essere compatibili con quelli con cui il file descriptor è stato aperto.
3667 Inoltre i modi \cmd{w} e \cmd{w+} non troncano il file. La posizione nello
3668 \textit{stream} viene impostata a quella corrente nel file descriptor, e le
3669 variabili di errore e di fine del file (vedi sez.~\ref{sec:file_io}) sono
3670 cancellate. Il file non viene duplicato e verrà chiuso automaticamente alla
3671 chiusura dello \textit{stream}.
3672
3673 I nuovi file saranno creati secondo quanto visto in
3674 sez.~\ref{sec:file_ownership_management} ed avranno i permessi di accesso
3675 impostati al valore
3676 \code{S\_IRUSR|S\_IWUSR|S\_IRGRP|S\_IWGRP|S\_IROTH|S\_IWOTH} (pari a
3677 \val{0666}) modificato secondo il valore della \textit{umask} per il processo
3678 (si veda sez.~\ref{sec:file_perm_management}). Una volta aperto lo
3679 \textit{stream}, si può cambiare la modalità di bufferizzazione (si veda
3680 sez.~\ref{sec:file_buffering_ctrl}) fintanto che non si è effettuato alcuna
3681 operazione di I/O sul file.
3682
3683 In caso di file aperti in lettura e scrittura occorre ricordarsi che c'è
3684 di mezzo una bufferizzazione; per questo motivo lo standard ANSI C
3685 richiede che ci sia un'operazione di posizionamento fra un'operazione
3686 di output ed una di input o viceversa (eccetto il caso in cui l'input ha
3687 incontrato la fine del file), altrimenti una lettura può ritornare anche
3688 il risultato di scritture precedenti l'ultima effettuata. 
3689
3690 Per questo motivo è una buona pratica (e talvolta necessario) far seguire ad
3691 una scrittura una delle funzioni \func{fflush}, \func{fseek}, \func{fsetpos} o
3692 \func{rewind} prima di eseguire una rilettura; viceversa nel caso in cui si
3693 voglia fare una scrittura subito dopo aver eseguito una lettura occorre prima
3694 usare una delle funzioni \func{fseek}, \func{fsetpos} o \func{rewind}. Anche
3695 un'operazione nominalmente nulla come \code{fseek(file, 0, SEEK\_CUR)} è
3696 sufficiente a garantire la sincronizzazione.
3697
3698 Una volta completate le operazioni su di esso uno \textit{stream} può essere
3699 chiuso con la funzione \funcd{fclose}, il cui prototipo è:
3700
3701 \begin{funcproto}{
3702 \fhead{stdio.h}
3703 \fdecl{int fclose(FILE *stream)}
3704 \fdesc{Chiude uno \textit{stream}.} 
3705 }
3706
3707 {La funzione ritorna $0$ in caso di successo e \val{EOF} per un errore, nel
3708   qual caso \var{errno} assumerà il valore \errval{EBADF} se il file
3709   descriptor indicato da \param{stream} non è valido, o uno dei valori
3710   specificati dalla sottostante funzione che è fallita (\func{close},
3711   \func{write} o \func{fflush}).
3712 }
3713 \end{funcproto}
3714
3715 La funzione chiude lo \textit{stream} \param{stream} ed effettua lo scarico di
3716 tutti i dati presenti nei buffer di uscita e scarta tutti i dati in ingresso;
3717 se era stato allocato un buffer per lo \textit{stream} questo verrà
3718 rilasciato. La funzione effettua lo scarico solo per i dati presenti nei
3719 buffer in \textit{user space} usati dalla \acr{glibc}; se si vuole essere
3720 sicuri che il kernel forzi la scrittura su disco occorrerà effettuare una
3721 \func{sync} (vedi sez.~\ref{sec:file_sync}).
3722
3723 Linux supporta anche un'altra funzione, \funcd{fcloseall}, come estensione
3724 GNU implementata dalla \acr{glibc}, accessibile avendo definito
3725 \macro{\_GNU\_SOURCE}, il suo prototipo è:
3726
3727 \begin{funcproto}{
3728 \fhead{stdio.h}
3729 \fdecl{int fcloseall(void)}
3730 \fdesc{Chiude tutti gli \textit{stream}.} 
3731 }
3732
3733 {La funzione ritorna $0$ in caso di successo e \val{EOF} per un errore, nel
3734   qual caso \var{errno} assumerà gli stessi valori di \func{fclose}.}  
3735 \end{funcproto}
3736
3737 La funzione esegue lo scarico dei dati bufferizzati in uscita e scarta quelli
3738 in ingresso, chiudendo tutti i file. Questa funzione è provvista solo per i
3739 casi di emergenza, quando si è verificato un errore ed il programma deve
3740 essere abortito, ma si vuole compiere qualche altra operazione dopo aver
3741 chiuso i file e prima di uscire (si ricordi quanto visto in
3742 sez.~\ref{sec:proc_conclusion}).
3743
3744
3745 \subsection{Gestione dell'I/O e posizionamento su uno \textit{stream}}
3746 \label{sec:file_io}
3747
3748 Una delle caratteristiche più utili dell'interfaccia degli \textit{stream} è
3749 la ricchezza delle funzioni disponibili per le operazioni di lettura e
3750 scrittura sui file. Sono infatti previste ben tre diverse modalità di
3751 input/output non formattato:
3752 \begin{itemize}
3753 \item\textsl{binario} in cui si leggono e scrivono blocchi di dati di
3754    dimensione arbitraria, (analogo della modalità ordinaria dell'I/O sui file
3755    descriptor), trattato in sez.~\ref{sec:file_binary_io}.
3756 \item\textsl{a caratteri} in cui si legge e scrive un carattere alla volta,
3757    con la bufferizzazione che viene gestita automaticamente dalla libreria,
3758    trattato in sez.~\ref{sec:file_char_io}.
3759 \item\textsl{di linea} in cui si legge e scrive una linea alla volta,
3760    (terminata dal carattere di newline \verb|'\n'|), trattato in
3761    sez.~\ref{sec:file_line_io}.
3762 \end{itemize}
3763 a cui si aggiunge la modalità di input/output formattato, trattato in
3764 sez.~\ref{sec:file_formatted_io}.
3765
3766 Ognuna di queste modalità utilizza per l'I/O delle funzioni specifiche che
3767 vedremo nelle sezioni citate, affronteremo qui tutte gli argomenti e le
3768 funzioni che si applicano in generale a tutte le modalità di I/O.
3769
3770 A differenza di quanto avviene con l'interfaccia dei file descriptor, con gli
3771 \textit{stream} il raggiungimento della fine del file viene considerato un
3772 errore, e viene notificato come tale dai valori di uscita delle varie
3773 funzioni. Nella maggior parte dei casi questo avviene con la restituzione del
3774 valore intero (di tipo \ctyp{int}) \val{EOF} definito anch'esso nell'header
3775 \headfile{stdlib.h}. La costante deve essere negativa perché in molte funzioni
3776 un valore positivo indica la quantità di dati scritti, la \acr{glibc} usa il
3777 valore $-1$, ma altre implementazioni possono avere valori diversi.
3778
3779 Dato che le funzioni dell'interfaccia degli \textit{stream} sono funzioni di
3780 libreria che si appoggiano a delle \textit{system call}, esse non impostano
3781 direttamente la variabile \var{errno}, che mantiene sempre il valore impostato
3782 dalla \textit{system call} invocata internamente che ha riportato l'errore.
3783
3784 Siccome la condizione di \textit{end-of-file} è anch'essa segnalata come
3785 errore, nasce il problema di come distinguerla da un errore effettivo; basarsi
3786 solo sul valore di ritorno della funzione e controllare il valore di
3787 \var{errno} infatti non basta, dato che quest'ultimo potrebbe essere stato
3788 impostato in una altra occasione, (si veda sez.~\ref{sec:sys_errno} per i
3789 dettagli del funzionamento di \var{errno}).
3790
3791 Per questo motivo tutte le implementazioni delle librerie standard mantengono
3792 per ogni \textit{stream} almeno due flag all'interno dell'oggetto \type{FILE},
3793 il flag di \textit{end-of-file}, che segnala che si è raggiunta la fine del
3794 file in lettura, e quello di errore, che segnala la presenza di un qualche
3795 errore nelle operazioni di input/output; questi due flag possono essere
3796 riletti dalle funzioni \funcd{feof} e \funcd{ferror}, i cui prototipi sono:
3797
3798 \begin{funcproto}{
3799 \fhead{stdio.h}
3800 \fdecl{int feof(FILE *stream)}
3801 \fdesc{Controlla il flag di \textit{end-of-file} di uno \textit{stream}.} 
3802 \fdecl{int ferror(FILE *stream)}
3803 \fdesc{Controlla il flag di errore di uno \textit{stream}.} 
3804 }
3805
3806 {Le funzioni ritornano un valore diverso da zero se i relativi flag sono
3807   impostati, e non prevedono condizioni di errore.}
3808 \end{funcproto}
3809
3810 Si tenga presente comunque che la lettura di questi flag segnala soltanto che
3811 c'è stato un errore o che si è raggiunta la fine del file in una qualunque
3812 operazione sullo \textit{stream}, il controllo su quanto avvenuto deve quindi
3813 essere effettuato ogni volta che si chiama una funzione di libreria.
3814
3815 Entrambi i flag (di errore e di \textit{end-of-file}) possono essere
3816 cancellati usando la funzione \funcd{clearerr}, il cui prototipo è:
3817
3818 \begin{funcproto}{
3819 \fhead{stdio.h}
3820 \fdecl{void clearerr(FILE *stream)}
3821 \fdesc{Cancella i flag di errore ed \textit{end-of-file} di uno
3822   \textit{stream}.}
3823 }
3824
3825 {La funzione non ritorna nulla e prevede condizioni di errore.}  
3826 \end{funcproto}
3827
3828 In genere si usa questa funzione una volta che si sia identificata e corretta
3829 la causa di un errore per evitare di mantenere i flag attivi, così da poter
3830 rilevare una successiva ulteriore condizione di errore. Di questa funzione
3831 esiste una analoga \funcm{clearerr\_unlocked} (con lo stesso argomento e
3832 stessi valori di ritorno) che non esegue il blocco dello \textit{stream}
3833 (tratteremo il significato di blocco di uno \textit{stream} in
3834 sez.~\ref{sec:file_stream_thread}).
3835
3836 Come per i file descriptor anche per gli \textit{stream} è possibile spostarsi
3837 all'interno di un file per effettuare operazioni di lettura o scrittura in un
3838 punto prestabilito, sempre che l'operazione di riposizionamento sia supportata
3839 dal file sottostante lo \textit{stream}, nel caso cioè in cui si ha a che fare
3840 con quello che viene detto un file ad \textsl{accesso casuale}. Dato che in un
3841 sistema Unix esistono vari tipi di file, come le \textit{fifo} ed i file di
3842 dispositivo (ad esempio i terminali), non è scontato che questo sia vero in
3843 generale, pur essendolo sempre nel caso di file di dati.
3844
3845 Con Linux ed in generale in ogni sistema unix-like la posizione nel file, come
3846 abbiamo già visto in sez.~\ref{sec:file_lseek}, è espressa da un intero
3847 positivo, rappresentato dal tipo \type{off\_t}. Il problema è che alcune delle
3848 funzioni usate per il riposizionamento sugli \textit{stream} originano dalle
3849 prime versioni di Unix, in cui questo tipo non era ancora stato definito, e
3850 che in altri sistemi non è detto che la posizione su un file venga sempre
3851 rappresentata con il numero di caratteri dall'inizio: ad esempio nel VMS dove
3852 esistono i file a record (in cui cioè l'I/O avviene per blocchi, i record, di
3853 dimensione fissa), essa può essere rappresentata come un numero di record, più
3854 l'offset rispetto al record corrente.
3855
3856 Tutto questo comporta la presenza di diverse funzioni che eseguono
3857 sostanzialmente le stesse operazioni, ma usano argomenti di tipo diverso. Le
3858 funzioni tradizionali usate per eseguire una modifica della posizione corrente
3859 sul file con uno \textit{stream} sono \funcd{fseek} e \funcd{rewind}, i
3860 rispettivi prototipi sono:
3861
3862 \begin{funcproto}{
3863 \fhead{stdio.h}
3864 \fdecl{int fseek(FILE *stream, long offset, int whence)}
3865 \fdesc{Sposta la posizione nello \textit{stream}.} 
3866 \fdecl{void rewind(FILE *stream)}
3867 \fdesc{Riporta la posizione nello \textit{stream} all'inizio del file.} 
3868 }
3869
3870 {La funzione \func{fseek} ritorna $0$ in caso di successo e $-1$ per un
3871   errore, nel qual caso \var{errno} assumerà i valori di \func{lseek},
3872   \func{rewind} non ritorna nulla e non ha condizioni di errore.}
3873 \end{funcproto}
3874
3875 L'uso di \func{fseek} è del tutto analogo a quello di \func{lseek} per i file
3876 descriptor (vedi sez.~\ref{sec:file_lseek}). Anche gli argomenti, a parte il
3877 tipo, hanno esattamente lo stesso significato. In particolare \param{whence}
3878 deve assumere gli stessi valori già visti nella prima parte di
3879 tab.~\ref{tab:lseek_whence_values}.  La funzione restituisce 0 in caso di
3880 successo e -1 in caso di errore.
3881
3882 La funzione \func{rewind} riporta semplicemente la posizione corrente sul file
3883 all'inizio dello \textit{stream}, ma non è esattamente equivalente ad aver
3884 eseguito una \code{fseek(stream, 0L, SEEK\_SET)}, in quanto con l'uso della
3885 funzione vengono cancellati anche i flag di errore e di fine del file.
3886
3887 Per ottenere la posizione corrente sul file di uno \textit{stream} lo standard
3888 ANSI C prescrive l'uso della funzione \funcd{ftell}, il cui prototipo è:
3889
3890 \begin{funcproto}{
3891 \fhead{stdio.h}
3892 \fdecl{long ftell(FILE *stream)} 
3893 \fdesc{Legge la posizione attuale nello \textit{stream}.} 
3894 }
3895
3896 {La funzione ritorna la posizione corrente in caso di successo e $-1$ per un
3897   errore, nel qual caso \var{errno} assumerà  i valori di \func{lseek}.}  
3898 \end{funcproto}
3899
3900 \noindent che restituisce la posizione come numero di byte dall'inizio dello
3901 \textit{stream}.
3902
3903 Sia \func{fseek} che \func{ftell} esprimono la posizione nel file con un
3904 intero di tipo \ctyp{long}. Dato che in certi casi, ad esempio quando si usa
3905 un filesystem indicizzato a 64 bit su una macchina con architettura a 32 bit,
3906 questo può non essere possibile lo standard POSIX ha introdotto le nuove
3907 funzioni \funcd{fgetpos} e \funcd{fsetpos}, che invece usano il nuovo tipo
3908 \typed{fpos\_t}, ed i cui prototipi sono:
3909
3910 \begin{funcproto}{
3911 \fhead{stdio.h}
3912 \fdecl{int fsetpos(FILE *stream, fpos\_t *pos)}
3913 \fdesc{Imposta la posizione corrente sul file.} 
3914 \fdecl{int fgetpos(FILE *stream, fpos\_t *pos)}
3915 \fdesc{Legge la posizione corrente sul file.} 
3916 }
3917
3918 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3919   caso \var{errno} assumerà i valori di \func{lseek}.}
3920 \end{funcproto}
3921
3922 In Linux, a partire dalle glibc 2.1, sono presenti anche le due funzioni
3923 \func{fseeko} e \func{ftello}, che sono assolutamente identiche alle
3924 precedenti \func{fseek} e \func{ftell} ma hanno argomenti di tipo
3925 \type{off\_t} anziché di tipo \ctyp{long int}. Dato che \ctyp{long} è nella
3926 gran parte dei casi un intero a 32 bit, questo diventa un problema quando la
3927 posizione sul file viene espressa con un valore a 64 bit come accade nei
3928 sistemi più moderni.
3929
3930 % TODO: mettere prototipi espliciti fseeko e ftello o menzione?
3931
3932
3933 \subsection{Input/output binario}
3934 \label{sec:file_binary_io}
3935
3936 La prima modalità di input/output non formattato ricalca quella della
3937 interfaccia dei file descriptor, e provvede semplicemente la scrittura e la
3938 lettura dei dati da un buffer verso un file e viceversa. In generale questa è
3939 la modalità che si usa quando si ha a che fare con dati non formattati. Le due
3940 funzioni che si usano per l'I/O binario sono \funcd{fread} ed \funcd{fwrite};
3941 i rispettivi prototipi sono:
3942
3943 \begin{funcproto}{
3944 \fhead{stdio.h} 
3945 \fdecl{size\_t fread(void *ptr, size\_t size, size\_t nmemb, FILE *stream)}
3946 \fdesc{Legge i dati da uno \textit{stream}.} 
3947 \fdecl{size\_t fwrite(const void *ptr, size\_t size, size\_t nmemb, 
3948   FILE *stream)}
3949 \fdesc{Scrive i dati su uno \textit{stream}.} 
3950 }
3951
3952 {Le funzioni ritornano il numero di elementi letti o scritti, in caso di
3953   errore o fine del file viene restituito un numero di elementi inferiore al
3954   richiesto.}
3955 \end{funcproto}
3956
3957 Le funzioni rispettivamente leggono e scrivono \param{nmemb} elementi di
3958 dimensione \param{size} dal buffer \param{ptr} al file \param{stream}.  In
3959 genere si usano queste funzioni quando si devono trasferire su file blocchi di
3960 dati binari in maniera compatta e veloce; un primo caso di uso tipico è quello
3961 in cui si salva un vettore (o un certo numero dei suoi elementi) con una
3962 chiamata del tipo:
3963 \includecodesnip{listati/WriteVect.c}
3964 in questo caso devono essere specificate le dimensioni di ciascun
3965 elemento ed il numero di quelli che si vogliono scrivere. Un secondo
3966 caso è invece quello in cui si vuole trasferire su file una struttura;
3967 si avrà allora una chiamata tipo:
3968 \includecodesnip{listati/WriteStruct.c}
3969 in cui si specifica la dimensione dell'intera struttura ed un solo
3970 elemento. 
3971
3972 In realtà quello che conta nel trasferimento dei dati sono le dimensioni
3973 totali, che sono sempre pari al prodotto \code{size * nelem}, la differenza
3974 sta nel fatto che le funzioni non ritornano il numero di byte scritti, ma il
3975 numero di elementi (e con questo possono facilitare i conti).
3976
3977 La funzione \func{fread} legge sempre un numero intero di elementi, se
3978 incontra la fine del file l'oggetto letto parzialmente viene scartato (lo
3979 stesso avviene in caso di errore). In questo caso la posizione dello
3980 \textit{stream} viene impostata alla fine del file (e non a quella
3981 corrispondente alla quantità di dati letti).
3982
3983 In caso di errore (o fine del file per \func{fread}) entrambe le
3984 funzioni restituiscono il numero di oggetti effettivamente letti o
3985 scritti, che sarà inferiore a quello richiesto. Contrariamente a quanto
3986 avviene per i file descriptor, questo segnala una condizione di errore e
3987 occorrerà usare \func{feof} e \func{ferror} per stabilire la natura del
3988 problema.
3989
3990 Benché queste funzioni assicurino la massima efficienza per il
3991 salvataggio dei dati, i dati memorizzati attraverso di esse presentano
3992 lo svantaggio di dipendere strettamente dalla piattaforma di sviluppo
3993 usata ed in genere possono essere riletti senza problemi solo dallo
3994 stesso programma che li ha prodotti.
3995
3996 Infatti diversi compilatori possono eseguire ottimizzazioni diverse delle
3997 strutture dati e alcuni compilatori (come il \cmd{gcc}) possono anche
3998 scegliere se ottimizzare l'occupazione di spazio, impacchettando più
3999 strettamente i dati, o la velocità inserendo opportuni \textit{padding} per
4000 l'allineamento dei medesimi generando quindi output binari diversi. Inoltre
4001 altre incompatibilità si possono presentare quando entrano in gioco differenze
4002 di architettura hardware, come la dimensione del bus o la modalità di
4003 ordinamento dei bit o il formato delle variabili in floating point.
4004
4005 Per questo motivo quando si usa l'input/output binario occorre sempre prendere
4006 le opportune precauzioni come usare un formato di più alto livello che
4007 permetta di recuperare l'informazione completa, per assicurarsi che versioni
4008 diverse del programma siano in grado di rileggere i dati, tenendo conto delle
4009 eventuali differenze.
4010
4011 La \acr{glibc} definisce infine due ulteriori funzioni per l'I/O binario,
4012 \funcd{fread\_unlocked} e \funcd{fwrite\_unlocked}, che evitano il lock
4013 implicito dello \textit{stream} usato per dalla librerie per la gestione delle
4014 applicazioni \textit{multi-thread} (si veda sez.~\ref{sec:file_stream_thread}
4015 per i dettagli), i loro prototipi sono:
4016
4017 \begin{funcproto}{
4018 \fhead{stdio.h}
4019 \fdecl{size\_t fread\_unlocked(void *ptr, size\_t size, size\_t
4020     nmemb, FILE *stream)}
4021 \fdecl{size\_t fwrite\_unlocked(const void *ptr, size\_t size,
4022     size\_t nmemb, FILE *stream)}
4023 \fdesc{Leggono o scrivono dati su uno \textit{stream} senza acquisire il lock
4024   implicito sullo stesso.} 
4025 }
4026
4027 {Le funzioni ritornano gli stessi valori delle precedenti \func{fread} e
4028   \func{fwrite}.}
4029 \end{funcproto}
4030
4031 % TODO: trattare in generale le varie *_unlocked
4032
4033
4034 \subsection{Input/output a caratteri}
4035 \label{sec:file_char_io}
4036
4037 La seconda modalità di input/output è quella a caratteri, in cui si
4038 trasferisce un carattere alla volta.  Le funzioni per la lettura a
4039 caratteri sono tre, \funcd{fgetc}, \funcd{getc} e \funcd{getchar}, ed i
4040 rispettivi prototipi sono:
4041
4042 \begin{funcproto}{
4043 \fhead{stdio.h}
4044 \fdecl{int getc(FILE *stream)}
4045 \fdecl{int fgetc(FILE *stream)}
4046 \fdesc{Leggono un singolo byte da uno \textit{stream}.} 
4047 \fdecl{int getchar(void)}
4048 \fdesc{Legge un byte dallo \textit{standard input}.} 
4049 }
4050
4051 {Le funzioni ritornano il byte letto in caso di successo e \val{EOF} per un
4052   errore o se si arriva alla fine del file.}  
4053 \end{funcproto}
4054
4055 La funzione \func{getc} legge un byte da \param{stream} e lo restituisce come
4056 intero, ed in genere è implementata come una macro per cui può avere
4057 \textit{side effects}, mentre \func{fgetc} è assicurato essere sempre una
4058 funzione. Infine \func{getchar} è equivalente a \code{getc(stdin)}.
4059
4060 A parte \func{getchar}, che si usa in genere per leggere un carattere da
4061 tastiera, le altre due funzioni sono sostanzialmente equivalenti. La
4062 differenza è che \func{getc} è ottimizzata al massimo e normalmente
4063 viene implementata con una macro, per cui occorre stare attenti a cosa
4064 le si passa come argomento, infatti \param{stream} può essere valutato
4065 più volte nell'esecuzione, e non viene passato in copia con il
4066 meccanismo visto in sez.~\ref{sec:proc_var_passing}; per questo motivo se
4067 si passa un'espressione si possono avere effetti indesiderati.
4068
4069 Invece \func{fgetc} è assicurata essere sempre una funzione, per questo motivo
4070 la sua esecuzione normalmente è più lenta per via dell'overhead della
4071 chiamata, ma è altresì possibile ricavarne l'indirizzo, che può essere passato
4072 come argomento ad un altra funzione (e non si hanno i problemi accennati in
4073 precedenza nel tipo di argomento).
4074
4075 Le tre funzioni restituiscono tutte un \ctyp{unsigned char} convertito
4076 ad \ctyp{int} (si usa \ctyp{unsigned char} in modo da evitare
4077 l'espansione del segno). In questo modo il valore di ritorno è sempre
4078 positivo, tranne in caso di errore o fine del file.
4079
4080 Nelle estensioni GNU che provvedono la localizzazione sono definite tre
4081 funzioni equivalenti alle precedenti, \funcd{getwc}, \funcd{fgetwc} e
4082 \funcd{getwchar}, che invece di un carattere di un byte restituiscono un
4083 carattere in formato esteso (cioè di tipo \ctyp{wint\_t}), il loro prototipo
4084 è:
4085
4086 \begin{funcproto}{
4087 \fhead{stdio.h} 
4088 \fhead{wchar.h}
4089 \fdecl{wint\_t getwc(FILE *stream)}
4090 \fdecl{wint\_t fgetwc(FILE *stream)}
4091 \fdesc{Leggono un carattere da uno \textit{stream}.} 
4092 \fdecl{wint\_t getwchar(void)}
4093 \fdesc{Legge un carattere dallo \textit{standard input}.} 
4094 }
4095
4096 {Le funzioni ritornano il carattere letto in caso di successo e \val{WEOF} per
4097   un errore o se si arriva alla fine del file.}  
4098 \end{funcproto}
4099
4100 La funzione \func{getwc} legge un carattere esteso da \param{stream} e lo
4101 restituisce come intero, ed in genere è implementata come una macro, mentre
4102 \func{fgetwc} è assicurata essere sempre una funzione. Infine \func{getwchar}
4103 è equivalente a \code{getwc(stdin)}.
4104
4105 Per scrivere un carattere si possono usare tre funzioni, analoghe alle
4106 precedenti usate per leggere: \funcd{putc}, \funcd{fputc} e \funcd{putchar}; i
4107 loro prototipi sono:
4108
4109 \begin{funcproto}{
4110 \fhead{stdio.h} 
4111 \fdecl{int putc(int c, FILE *stream)}
4112 \fdecl{int fputc(int c, FILE *stream)}
4113 \fdesc{Scrive un byte su uno \textit{stream}.}
4114 \fdecl{int putchar(int c)}
4115 \fdesc{Scrive un byte sullo \textit{standard output}.}
4116 }
4117
4118 {Le funzioni ritornano il valore del byte scritto in caso di successo e
4119   \val{EOF} per un errore.}  
4120 \end{funcproto}
4121
4122 La funzione \func{putc} scrive un byte su \param{stream} e lo restituisce come
4123 intero, ed in genere è implementata come una macro, mentre \func{fputc} è
4124 assicurata essere sempre una funzione. Infine \func{putchar} è equivalente a
4125 \code{putc(stdout)}.  Tutte queste funzioni scrivono sempre un byte alla
4126 volta, anche se prendono come argomento un \ctyp{int} (che pertanto deve
4127 essere ottenuto con un cast da un \ctyp{unsigned char}). Anche il valore di
4128 ritorno è sempre un intero; in caso di errore o fine del file il valore di
4129 ritorno è \val{EOF}.
4130
4131 Come nel caso dell'I/O binario con \func{fread} e \func{fwrite} la \acr{glibc}
4132 provvede come estensione, per ciascuna delle funzioni precedenti,
4133 un'ulteriore funzione, il cui nome è ottenuto aggiungendo un
4134 \code{\_unlocked}, che esegue esattamente le stesse operazioni, evitando però
4135 il lock implicito dello \textit{stream}.
4136
4137 Per compatibilità con SVID sono inoltre provviste anche due funzioni,
4138 \funcd{getw} e \funcd{putw}, da usare per leggere e scrivere una \textit{word}
4139 (cioè due byte in una volta); i loro prototipi sono:
4140
4141 \begin{funcproto}{
4142 \fhead{stdio.h} 
4143 \fdecl{getw(FILE *stream)}
4144 \fdesc{Legge una parola da uno \textit{stream}.} 
4145 \fdecl{int putw(int w, FILE *stream)}
4146 \fdesc{Scrive una parola su uno \textit{stream}.} 
4147 }
4148
4149 {Le funzioni ritornano la parola letta o scritta in caso di successo e
4150   \val{EOF} per un errore.}
4151 \end{funcproto}
4152
4153 Le funzioni leggono e scrivono una \textit{word} di due byte, usando comunque
4154 una variabile di tipo \ctyp{int}; il loro uso è deprecato in favore dell'uso
4155 di \func{fread} e \func{fwrite}, in quanto non è possibile distinguere il
4156 valore -1 da una condizione di errore che restituisce \val{EOF}.
4157
4158 Uno degli usi più frequenti dell'input/output a caratteri è nei programmi di
4159 \textit{parsing} in cui si analizza il testo; in questo contesto diventa utile
4160 poter analizzare il carattere successivo da uno \textit{stream} senza estrarlo
4161 effettivamente (la tecnica è detta \textit{peeking ahead}) in modo che il
4162 programma possa regolarsi avendo dato una \textsl{sbirciatina} a quello che
4163 viene dopo.
4164
4165 Nel nostro caso questo tipo di comportamento può essere realizzato prima
4166 leggendo il carattere, e poi rimandandolo indietro, cosicché ridiventi
4167 disponibile per una lettura successiva; la funzione che inverte la
4168 lettura si chiama \funcd{ungetc} ed il suo prototipo è:
4169
4170 \begin{funcproto}{
4171 \fhead{stdio.h}
4172 \fdecl{int ungetc(int c, FILE *stream)}
4173 \fdesc{Manda indietro un byte su uno \textit{stream}.} 
4174 }
4175
4176 {La funzione ritorna il byte inviato in caso di successo e \val{EOF} per un
4177   errore.}  
4178 \end{funcproto}
4179  
4180 La funzione rimanda indietro il carattere \param{c}, con un cast a
4181 \ctyp{unsigned char}, sullo \textit{stream} \param{stream}. Benché lo standard
4182 ANSI C preveda che l'operazione possa essere ripetuta per un numero arbitrario
4183 di caratteri, alle implementazioni è richiesto di garantire solo un livello;
4184 questo è quello che fa la \acr{glibc}, che richiede che avvenga un'altra
4185 operazione fra due \func{ungetc} successive.
4186
4187 Non è necessario che il carattere che si manda indietro sia l'ultimo che si è
4188 letto, e non è necessario neanche avere letto nessun carattere prima di usare
4189 \func{ungetc}, ma di norma la funzione è intesa per essere usata per rimandare
4190 indietro l'ultimo carattere letto.  Nel caso \param{c} sia un \val{EOF} la
4191 funzione non fa nulla, e restituisce sempre \val{EOF}; così si può usare
4192 \func{ungetc} anche con il risultato di una lettura alla fine del file.
4193
4194 Se si è alla fine del file si può comunque rimandare indietro un carattere, il
4195 flag di \textit{end-of-file} verrà automaticamente cancellato perché c'è un
4196 nuovo carattere disponibile che potrà essere riletto successivamente.
4197
4198 Infine si tenga presente che \func{ungetc} non altera il contenuto del file,
4199 ma opera esclusivamente sul buffer interno. Se si esegue una qualunque delle
4200 operazioni di riposizionamento (vedi sez.~\ref{sec:file_io}) i caratteri
4201 rimandati indietro vengono scartati.
4202
4203
4204 \subsection{Input/output di linea}
4205 \label{sec:file_line_io}
4206
4207 La terza ed ultima modalità di input/output non formattato è quella di linea,
4208 in cui si legge o si scrive una riga alla volta. Questa è la modalità usata
4209 normalmente per l'I/O da terminale, ed è anche quella che presenta le
4210 caratteristiche più controverse.
4211
4212 Le funzioni previste dallo standard ANSI C per leggere una linea sono
4213 sostanzialmente due, \funcd{gets} e \funcd{fgets}, i cui rispettivi
4214 prototipi sono:
4215
4216 \begin{funcproto}{
4217 \fhead{stdio.h}
4218 \fdecl{char *gets(char *string)}
4219 \fdesc{Legge una linea di testo dallo \textit{standard input}.}
4220 \fdecl{char *fgets(char *string, int size, FILE *stream)}
4221 \fdesc{Legge una linea di testo da uno \textit{stream}.} 
4222 }
4223
4224 {Le funzioni ritornano l'indirizzo della stringa con la linea di testo letta o
4225   scritta in caso di successo e \val{NULL} per un errore.}
4226 \end{funcproto}
4227  
4228 Entrambe le funzioni effettuano la lettura, dal file specificato \func{fgets},
4229 dallo \textit{standard input} \func{gets}, di una linea di caratteri terminata
4230 dal carattere ASCII di \textit{newline}, che come detto corrisponde a quello
4231 generato dalla pressione del tasto di invio sulla tastiera. Si tratta del
4232 carattere che indica la terminazione di una riga (in sostanza del carattere di
4233 ``\textsl{a capo}'') che viene rappresentato nelle stringhe di formattazione
4234 che vedremo in sez.~\ref{sec:file_formatted_io} come
4235 ``\verb|\n|''. Nell'esecuzione delle funzioni \func{gets} sostituisce
4236 ``\verb|\n|'' con uno zero, mentre \func{fgets} aggiunge uno zero dopo il
4237 \textit{newline}, che resta dentro la stringa.
4238
4239 \itindbeg{buffer~overflow}
4240
4241 Se la lettura incontra la fine del file (o c'è un errore) viene restituito un
4242 puntatore \val{NULL}, ed il buffer \param{buf} non viene toccato.  L'uso di
4243 \func{gets} è deprecato e deve essere assolutamente evitato, la funzione
4244 infatti non controlla il numero di byte letti, per cui nel caso la stringa
4245 letta superi le dimensioni del buffer, si avrà un \textit{buffer overflow},
4246 con sovrascrittura della memoria del processo adiacente al
4247 buffer.\footnote{questa tecnica è spiegata in dettaglio e con molta efficacia
4248   nell'ormai famoso articolo di Aleph1 \cite{StS}.}
4249
4250 Questa è una delle vulnerabilità più sfruttate per guadagnare accessi non
4251 autorizzati al sistema (i cosiddetti \textit{exploit}), basta infatti inviare
4252 una stringa sufficientemente lunga ed opportunamente forgiata per
4253 sovrascrivere gli indirizzi di ritorno nello \textit{stack} (supposto che la
4254 \func{gets} sia stata chiamata da una subroutine), in modo da far ripartire
4255 l'esecuzione nel codice inviato nella stringa stessa, che in genere contiene
4256 uno \textit{shell code}, cioè una sezione di programma che lancia una shell da
4257 cui si potranno poi eseguire altri programmi.
4258
4259 \itindend{buffer~overflow}
4260
4261 La funzione \func{fgets} non ha i precedenti problemi di \func{gets} in quanto
4262 prende in ingresso la dimensione del buffer \param{size}, che non verrà mai
4263 ecceduta in lettura. La funzione legge fino ad un massimo di \param{size}
4264 caratteri (\textit{newline} compreso), ed aggiunge uno zero di terminazione;
4265 questo comporta che la stringa possa essere al massimo di \code{size-1}
4266 caratteri.  Se la linea eccede la dimensione del buffer verranno letti solo
4267 \code{size-1} caratteri, ma la stringa sarà sempre terminata correttamente con
4268 uno zero finale; sarà possibile leggere i rimanenti caratteri in una chiamata
4269 successiva.
4270
4271 Per la scrittura di una linea lo standard ANSI C prevede altre due
4272 funzioni, \funcd{fputs} e \funcd{puts}, analoghe a quelle di lettura, i
4273 rispettivi prototipi sono:
4274
4275 \begin{funcproto}{
4276 \fhead{stdio.h}
4277 \fdecl{int puts(char *string)}
4278 \fdesc{Scrive una linea di testo sullo \textit{standard output}.}
4279 \fdecl{int fputs(char *string, int size, FILE *stream)}
4280 \fdesc{Scrive una linea di testo su uno \textit{stream}.} 
4281 }
4282
4283 {Le funzioni ritornano un valore non negativo in caso di successo e \val{EOF}
4284   per un errore.}
4285 \end{funcproto}
4286
4287 La funzione \func{puts} scrive una linea di testo mantenuta
4288 all'indirizzo \param{string} sullo \textit{standard output} mentre \func{puts}
4289 la scrive sul file indicato da \param{stream}.  Dato che in questo caso si
4290 scrivono i dati in uscita \func{puts} non ha i problemi di \func{gets} ed è in
4291 genere la forma più immediata per scrivere messaggi sullo \textit{standard
4292   output}; la funzione prende una stringa terminata da uno zero ed aggiunge
4293 automaticamente il ritorno a capo. La differenza con \func{fputs} (a parte la
4294 possibilità di specificare un file diverso da \var{stdout}) è che quest'ultima
4295 non aggiunge il \textit{newline}, che deve essere previsto esplicitamente.
4296
4297 Come per le analoghe funzioni di input/output a caratteri, anche per l'I/O di
4298 linea esistono delle estensioni per leggere e scrivere linee di caratteri
4299 estesi, le funzioni in questione sono \funcd{fgetws} e \funcd{fputws} ed i
4300 loro prototipi sono:
4301
4302 \begin{funcproto}{
4303 \fhead{wchar.h}
4304 \fdecl{wchar\_t *fgetws(wchar\_t *ws, int n, FILE *stream)}
4305 \fdesc{Legge una stringa di carattere estesi da uno \textit{stream}.} 
4306 \fdecl{int fputws(const wchar\_t *ws, FILE *stream)}
4307 \fdesc{Scrive una stringa di carattere estesi da uno \textit{stream}.} 
4308 }
4309
4310 {Le funzioni ritornano rispettivamente l'indirizzo della stringa o un non
4311   negativo in caso di successo e \val{NULL} o \val{EOF} per un errore o per la
4312   fine del file.}
4313 \end{funcproto}
4314
4315
4316 La funzione \func{fgetws} legge un massimo di \param{n} caratteri estesi dal
4317 file \param{stream} al buffer \param{ws}, mentre la funzione \func{fputws}
4318 scrive la linea \param{ws} di caratteri estesi sul file indicato
4319 da \param{stream}.  Il comportamento di queste due funzioni è identico a
4320 quello di \func{fgets} e \func{fputs}, a parte il fatto che tutto (numero di
4321 caratteri massimo, terminatore della stringa, \textit{newline}) è espresso in
4322 termini di caratteri estesi anziché di normali caratteri ASCII.
4323
4324 Come per l'I/O binario e quello a caratteri, anche per l'I/O di linea la
4325 \acr{glibc} supporta una serie di altre funzioni, estensioni di tutte quelle
4326 illustrate finora (eccetto \func{gets} e \func{puts}), che eseguono
4327 esattamente le stesse operazioni delle loro equivalenti, evitando però il lock
4328 implicito dello \textit{stream} (vedi sez.~\ref{sec:file_stream_thread}). Come
4329 per le altre forma di I/O, dette funzioni hanno lo stesso nome della loro
4330 analoga normale, con l'aggiunta dell'estensione \code{\_unlocked}.
4331
4332 Come abbiamo visto, le funzioni di lettura per l'input/output di linea
4333 previste dallo standard ANSI C presentano svariati inconvenienti. Benché
4334 \func{fgets} non abbia i gravissimi problemi di \func{gets}, può comunque dare
4335 risultati ambigui se l'input contiene degli zeri; questi infatti saranno
4336 scritti sul buffer di uscita e la stringa in output apparirà come più corta
4337 dei byte effettivamente letti. Questa è una condizione che è sempre possibile
4338 controllare (deve essere presente un \textit{newline} prima della effettiva
4339 conclusione della stringa presente nel buffer), ma a costo di una
4340 complicazione ulteriore della logica del programma. Lo stesso dicasi quando si
4341 deve gestire il caso di stringa che eccede le dimensioni del buffer.
4342
4343 Per questo motivo la \acr{glibc} prevede, come estensione GNU, due nuove
4344 funzioni per la gestione dell'input/output di linea, il cui uso permette di
4345 risolvere questi problemi. L'uso di queste funzioni deve essere attivato
4346 definendo la macro \macro{\_GNU\_SOURCE} prima di includere
4347 \headfile{stdio.h}. La prima delle due, \funcd{getline}, serve per leggere una
4348 linea terminata da un \textit{newline}, esattamente allo stesso modo di
4349 \func{fgets}, il suo prototipo è:
4350
4351 \begin{funcproto}{
4352 \fhead{stdio.h}
4353 \fdecl{ssize\_t getline(char **buffer, size\_t *n, FILE *stream)}
4354 \fdesc{Legge una riga da uno \textit{stream}.} 
4355 }
4356
4357 {La funzione ritorna il numero di caratteri letti in caso di successo e $-1$
4358   per un errore o per il raggiungimento della fine del file.}
4359 \end{funcproto}
4360
4361 La funzione legge una linea dal file \param{stream} copiandola sul buffer
4362 indicato da \param{buffer} riallocandolo se necessario (l'indirizzo del buffer
4363 e la sua dimensione vengono sempre riscritte). Permette così di eseguire una
4364 lettura senza doversi preoccupare della eventuale lunghezza eccessiva della
4365 stringa da leggere. 
4366
4367 Essa prende come primo argomento l'indirizzo del puntatore al buffer su cui si
4368 vuole copiare la linea. Quest'ultimo \emph{deve} essere stato allocato in
4369 precedenza con una \func{malloc}, non si può cioè passare come argomento primo
4370 argomento l'indirizzo di un puntatore ad una variabile locale. Come secondo
4371 argomento la funzione vuole l'indirizzo della variabile contenente le
4372 dimensioni del buffer suddetto.
4373
4374 Se il buffer di destinazione è sufficientemente ampio la stringa viene scritta
4375 subito, altrimenti il buffer viene allargato usando \func{realloc} e la nuova
4376 dimensione ed il nuovo puntatore vengono restituiti indietro, si noti infatti
4377 come entrambi gli argomenti siano dei \textit{value result argument}, per i
4378 quali vengono passati dei puntatori anziché i valori delle variabili, secondo
4379 quanto abbiamo descritto in sez.~\ref{sec:proc_var_passing}).
4380
4381 Se si passa alla funzione l'indirizzo di un puntatore impostato a \val{NULL} e
4382 \var{*n} è zero, la funzione provvede da sola all'allocazione della memoria
4383 necessaria a contenere la linea. In tutti i casi si ottiene dalla funzione un
4384 puntatore all'inizio del testo della linea letta. Un esempio di codice può
4385 essere il seguente: 
4386 \includecodesnip{listati/getline.c} 
4387 e per evitare \textit{memory leak} occorre ricordarsi di liberare la memoria
4388 allocata dalla funzione eseguendo una \func{free} su \var{ptr}.
4389
4390 Il valore di ritorno di \func{getline} indica il numero di caratteri letti
4391 dallo \textit{stream}, quindi compreso il \textit{newline}, ma non lo zero di
4392 terminazione. Questo permette anche di distinguere anche gli eventuali zeri
4393 letti come dati dallo \textit{stream} da quello inserito dalla funzione dopo
4394 il \textit{newline} per terminare la stringa.  Se si è alla fine del file e
4395 non si è potuto leggere nulla o se c'è stato un errore la funzione restituisce
4396 $-1$.
4397
4398 La seconda estensione GNU per la lettura con l'I/O di linea è una
4399 generalizzazione di \func{getline} per poter usare come separatore delle linee
4400 un carattere qualsiasi al posto del \textit{newline}. La funzione si chiama
4401 \funcd{getdelim} ed il suo prototipo è:
4402
4403 \begin{funcproto}{
4404 \fhead{stdio.h}
4405 \fdecl{size\_t getdelim(char **buffer, size\_t *n, int delim, FILE *stream)} 
4406 \fdesc{Legge da uno \textit{stream} una riga delimitata da un carattere
4407   scelto.} 
4408 }
4409
4410 {La funzione ha gli stessi valori di ritorno e gli stessi errori di
4411   \func{getline}.}
4412 \end{funcproto}
4413
4414 La funzione è identica a \func{getline} solo che usa \param{delim} al posto
4415 del carattere di \textit{newline} come separatore di linea. Il comportamento
4416 di \func{getdelim} è identico a quello di \func{getline}, che può essere
4417 implementata da \func{getdelim} passando ``\verb|\n|'' come valore
4418 dell'argomento \param{delim}.
4419
4420
4421 \subsection{Input/output formattato}
4422 \label{sec:file_formatted_io}
4423
4424 L'ultima modalità di input/output è quella formattata, che è una delle
4425 caratteristiche più utilizzate delle librerie standard del C; in genere questa
4426 è la modalità in cui si esegue normalmente l'output su terminale poiché
4427 permette di stampare in maniera facile e veloce dati, tabelle e messaggi.
4428
4429 L'output formattato viene eseguito con una delle 13 funzioni della famiglia
4430 \func{printf}; le tre più usate sono \funcd{printf}, \funcd{fprintf} e
4431 \funcd{sprintf}, i cui prototipi sono:
4432
4433 \begin{funcproto}{
4434 \fhead{stdio.h} 
4435 \fdecl{int printf(const char *format, ...)}
4436 \fdesc{Scrive una stringa formattata sullo \textit{standard output}.}
4437 \fdecl{int fprintf(FILE *stream, const char *format, ...)}
4438 \fdesc{Scrive una stringa formattata su uno \textit{stream}.} 
4439 \fdecl{int sprintf(char *str, const char *format, ...)} 
4440 \fdesc{Scrive una stringa formattata su un buffer.} 
4441 }
4442
4443 {Le funzioni ritornano il numero di caratteri scritti in caso di successo e un
4444   valore negativo per un errore.}  
4445 \end{funcproto}
4446
4447
4448 Le funzioni usano la stringa \param{format} come indicatore del formato con
4449 cui dovrà essere scritto il contenuto degli argomenti, il cui numero è
4450 variabile e dipende dal formato stesso.
4451
4452 Le prime due servono per scrivere su file (lo \textit{standard output} o
4453 quello specificato) la terza permette di scrivere su una stringa, in genere
4454 l'uso di \func{sprintf} è sconsigliato in quanto è possibile, se non si ha la
4455 sicurezza assoluta sulle dimensioni del risultato della stampa, eccedere le
4456 dimensioni di \param{str}, con conseguente sovrascrittura di altre variabili e
4457 possibili \textit{buffer overflow}. Per questo motivo si consiglia l'uso
4458 dell'alternativa \funcd{snprintf}, il cui prototipo è:
4459
4460 \begin{funcproto}{
4461 \fhead{stdio.h}
4462 \fdecl{snprintf(char *str, size\_t size, const char *format, ...)} 
4463 \fdesc{Scrive una stringa formattata su un buffer.} 
4464 }
4465
4466 {La funzione ha lo stesso valore di ritorno e gli stessi errori di
4467   \func{sprintf}.}
4468 \end{funcproto}
4469
4470 \noindent la funzione è identica a \func{sprintf}, ma non scrive
4471 su \param{str} più di \param{size} caratteri, garantendo così che il buffer
4472 non possa essere sovrascritto.
4473
4474 \begin{table}[!htb]
4475   \centering
4476   \footnotesize
4477   \begin{tabular}[c]{|l|l|p{10cm}|}
4478     \hline
4479     \textbf{Valore} & \textbf{Tipo} & \textbf{Significato} \\
4480     \hline
4481     \hline
4482    \cmd{\%d} &\ctyp{int}         & Stampa un numero intero in formato decimale
4483                                    con segno.\\
4484    \cmd{\%i} &\ctyp{int}         & Identico a \cmd{\%d} in output.\\
4485    \cmd{\%o} &\ctyp{unsigned int}& Stampa un numero intero come ottale.\\
4486    \cmd{\%u} &\ctyp{unsigned int}& Stampa un numero intero in formato
4487                                    decimale senza segno.\\
4488    \cmd{\%x}, 
4489    \cmd{\%X} &\ctyp{unsigned int}& Stampano un intero in formato esadecimale,
4490                                    rispettivamente con lettere minuscole e
4491                                    maiuscole.\\
4492    \cmd{\%f} &\ctyp{double}      & Stampa un numero in virgola mobile con la
4493                                    notazione a virgola fissa.\\
4494    \cmd{\%e}, 
4495    \cmd{\%E} &\ctyp{double} & Stampano un numero in virgola mobile con la
4496                               notazione esponenziale, rispettivamente con
4497                               lettere minuscole e maiuscole.\\
4498    \cmd{\%g}, 
4499    \cmd{\%G} &\ctyp{double} & Stampano un numero in virgola mobile con la
4500                               notazione più appropriate delle due precedenti,
4501                               rispettivamente con lettere minuscole e
4502                               maiuscole.\\
4503    \cmd{\%a}, 
4504    \cmd{\%A} &\ctyp{double} & Stampano un numero in virgola mobile in
4505                               notazione esadecimale frazionaria.\\
4506    \cmd{\%c} &\ctyp{int}    & Stampa un carattere singolo.\\
4507    \cmd{\%s} &\ctyp{char *} & Stampa una stringa.\\
4508    \cmd{\%p} &\ctyp{void *} & Stampa il valore di un puntatore.\\
4509    \cmd{\%n} &\ctyp{\&int}  & Prende il numero di caratteri stampati finora.\\
4510    \cmd{\%\%}&              & Stampa un ``\texttt{\%}''.\\
4511     \hline
4512   \end{tabular}
4513   \caption{Valori possibili per gli specificatori di conversione in una
4514     stringa di formato di \func{printf}.} 
4515   \label{tab:file_format_spec}
4516 \end{table}
4517
4518 La parte più complessa delle funzioni di scrittura formattata è il formato
4519 della stringa \param{format} che indica le conversioni da fare, e da cui
4520 deriva anche il numero degli argomenti che dovranno essere passati a seguire:
4521 si noti come tutte queste funzioni siano ``\textit{variadic}'', prendendo un
4522 numero di argomenti variabile che dipende appunto da quello che si è
4523 specificato in \param{format}.
4524
4525 La stringa di formato è costituita da caratteri normali (tutti eccetto
4526 ``\texttt{\%}''), che vengono passati invariati in uscita, e da direttive di
4527 conversione, in cui devono essere sempre presenti il carattere
4528 ``\texttt{\%}'', che introduce la direttiva, ed uno degli specificatori di
4529 conversione (riportati in tab.~\ref{tab:file_format_spec}) che la conclude.
4530
4531 Il formato di una direttiva di conversione prevede una serie di possibili
4532 elementi opzionali oltre al carattere ``\cmd{\%}'' e allo specificatore di
4533 conversione. In generale essa è sempre del tipo:
4534 \begin{Example}
4535 % [n. parametro $] [flag] [[larghezza] [. precisione]] [tipo] conversione
4536 \end{Example}
4537 in cui tutti i valori tranne il ``\texttt{\%}'' e lo specificatore di
4538 conversione sono opzionali (e per questo sono indicati fra parentesi quadre);
4539 si possono usare più elementi opzionali, nel qual caso devono essere
4540 specificati in questo ordine:
4541 \begin{itemize*}
4542 \item uno specificatore del parametro da usare (terminato da un carattere
4543   ``\val{\$}''),
4544 \item uno o più flag (i cui valori possibili sono riassunti in
4545   tab.~\ref{tab:file_format_flag}) che controllano il formato di stampa della
4546   conversione,
4547 \item uno specificatore di larghezza (un numero decimale), eventualmente
4548   seguito (per i numeri in virgola mobile) da un specificatore di precisione
4549   (un altro numero decimale),
4550 \item uno specificatore del tipo di dato, che ne indica la dimensione (i cui
4551   valori possibili sono riassunti in tab.~\ref{tab:file_format_type}).
4552 \end{itemize*}
4553
4554 \begin{table}[htb]
4555   \centering
4556   \footnotesize
4557   \begin{tabular}[c]{|l|p{10cm}|}
4558     \hline
4559     \textbf{Valore} & \textbf{Significato}\\
4560     \hline
4561     \hline
4562     \val{\#} & Chiede la conversione in forma alternativa.\\
4563     \val{0}  & La conversione è riempita con zeri alla sinistra del valore.\\
4564     \val{-}  & La conversione viene allineata a sinistra sul bordo del campo.\\
4565     \val{' '}& Mette uno spazio prima di un numero con segno di valore 
4566                positivo.\\
4567     \val{+}  & Mette sempre il segno ($+$ o $-$) prima di un numero.\\
4568     \hline
4569   \end{tabular}
4570   \caption{I valori dei flag per il formato di \func{printf}}
4571   \label{tab:file_format_flag}
4572 \end{table}
4573
4574 Dettagli ulteriori sulle varie opzioni di stampa e su tutte le casistiche
4575 dettagliate dei vari formati possono essere trovati nella pagina di manuale di
4576 \func{printf} e nella documentazione della \acr{glibc}.
4577
4578 \begin{table}[htb]
4579   \centering
4580   \footnotesize
4581   \begin{tabular}[c]{|l|p{10cm}|}
4582     \hline
4583     \textbf{Valore} & \textbf{Significato} \\
4584     \hline
4585     \hline
4586     \cmd{hh} & Una conversione intera corrisponde a un \ctyp{char} con o senza
4587                segno, o il puntatore per il numero dei parametri \cmd{n} è di 
4588                tipo \ctyp{char}.\\
4589     \cmd{h}  & Una conversione intera corrisponde a uno \ctyp{short} con o 
4590                senza segno, o il puntatore per il numero dei parametri \cmd{n}
4591                è di tipo \ctyp{short}.\\
4592     \cmd{l}  & Una conversione intera corrisponde a un \ctyp{long} con o 
4593                senza segno, o il puntatore per il numero dei parametri \cmd{n}
4594                è di tipo \ctyp{long}, o il carattere o la stringa seguenti
4595                sono in formato esteso.\\ 
4596     \cmd{ll} & Una conversione intera corrisponde a un \ctyp{long long} con o 
4597                senza segno, o il puntatore per il numero dei parametri \cmd{n}
4598                è di tipo \ctyp{long long}.\\
4599     \cmd{L}  & Una conversione in virgola mobile corrisponde a un
4600                \ctyp{double}.\\
4601     \cmd{q}  & Sinonimo di \cmd{ll}.\\
4602     \cmd{j}  & Una conversione intera corrisponde a un \ctyp{intmax\_t} o 
4603                \ctyp{uintmax\_t}.\\
4604     \cmd{z}  & Una conversione intera corrisponde a un \ctyp{size\_t} o 
4605                \ctyp{ssize\_t}.\\
4606     \cmd{t}  & Una conversione intera corrisponde a un \ctyp{ptrdiff\_t}.\\
4607     \hline
4608   \end{tabular}
4609   \caption{Il modificatore di tipo di dato per il formato di \func{printf}}
4610   \label{tab:file_format_type}
4611 \end{table}
4612
4613 Una versione alternativa delle funzioni di output formattato, che permettono
4614 di usare il puntatore ad una lista variabile di argomenti (vedi
4615 sez.~\ref{sec:proc_variadic}), sono \funcd{vprintf}, \funcd{vfprintf} e
4616 \funcd{vsprintf}, i cui prototipi sono:
4617
4618 \begin{funcproto}{
4619 \fhead{stdio.h}
4620 \fdecl{int vprintf(const char *format, va\_list ap)}
4621 \fdesc{Scrive una stringa formattata sullo \textit{standard output}.} 
4622 \fdecl{int vfprintf(FILE *stream, const char *format, va\_list ap)}
4623 \fdesc{Scrive una stringa formattata su uno \textit{stream}.}
4624 \fdecl{int vsprintf(char *str, const char *format, va\_list ap)}
4625 \fdesc{Scrive una stringa formattata su un buffer.}
4626 }
4627
4628 {Le funzioni ritornano il numero di caratteri scritti in caso di successo e un
4629   valore negativo per un errore.}  
4630 \end{funcproto}
4631
4632 Con queste funzioni diventa possibile selezionare gli argomenti che si
4633 vogliono passare ad una funzione di stampa, passando direttamente la lista
4634 tramite l'argomento \param{ap}. Per poter far questo ovviamente la lista
4635 variabile degli argomenti dovrà essere opportunamente trattata (l'argomento è
4636 esaminato in sez.~\ref{sec:proc_variadic}), e dopo l'esecuzione della funzione
4637 l'argomento \param{ap} non sarà più utilizzabile (in generale dovrebbe essere
4638 eseguito un \code{va\_end(ap)} ma in Linux questo non è necessario).
4639
4640 Come per \func{sprintf} anche per \func{vsprintf} esiste una analoga
4641 \funcd{vsnprintf} che pone un limite sul numero di caratteri che vengono
4642 scritti sulla stringa di destinazione:
4643
4644 \begin{funcproto}{
4645 \fhead{stdio.h}
4646 \fdecl{vsnprintf(char *str, size\_t size, const char *format, va\_list ap)}
4647 \fdesc{Scrive una stringa formattata su un buffer.} 
4648 }
4649
4650 {La funzione ha lo stesso valore di ritorno e gli stessi errori di
4651   \func{vsprintf}.}
4652 \end{funcproto}
4653
4654 \noindent in modo da evitare possibili \textit{buffer overflow}.
4655
4656
4657 Per eliminare alla radice questi problemi, la \acr{glibc} supporta una
4658 specifica estensione GNU che alloca dinamicamente tutto lo spazio necessario;
4659 l'estensione si attiva al solito definendo \macro{\_GNU\_SOURCE}, le due
4660 funzioni sono \funcd{asprintf} e \funcd{vasprintf}, ed i rispettivi prototipi
4661 sono:
4662
4663 \begin{funcproto}{
4664 \fhead{stdio.h}
4665 \fdecl{int asprintf(char **strptr, const char *format, ...)}
4666 \fdecl{int vasprintf(char **strptr, const char *format, va\_list ap)}
4667 \fdesc{Scrive una stringa formattata su un buffer.} 
4668 }
4669
4670 {Le funzioni hanno lo stesso valore di ritorno e gli stessi errori di
4671   \func{vsprintf}.}
4672 \end{funcproto}
4673
4674
4675 Entrambe le funzioni prendono come argomento \param{strptr} che deve essere
4676 l'indirizzo di un puntatore ad una stringa di caratteri, in cui verrà
4677 restituito (si ricordi quanto detto in sez.~\ref{sec:proc_var_passing} a
4678 proposito dei \textit{value result argument}) l'indirizzo della stringa
4679 allocata automaticamente dalle funzioni. Occorre inoltre ricordarsi di
4680 invocare \func{free} per liberare detto puntatore quando la stringa non serve
4681 più, onde evitare \textit{memory leak}.
4682
4683 % TODO verificare se mettere prototipi di \func{dprintf} e \func{vdprintf}
4684
4685 Infine una ulteriore estensione GNU definisce le due funzioni \funcm{dprintf} e
4686 \funcm{vdprintf}, che prendono un file descriptor al posto dello
4687 \textit{stream}. Altre estensioni permettono di scrivere con caratteri
4688 estesi. Anche queste funzioni, il cui nome è generato dalle precedenti
4689 funzioni aggiungendo una \texttt{w} davanti a \texttt{print}, sono trattate in
4690 dettaglio nella documentazione della \acr{glibc}.
4691
4692 In corrispondenza alla famiglia di funzioni \func{printf} che si usano per
4693 l'output formattato, l'input formattato viene eseguito con le funzioni della
4694 famiglia \func{scanf}; fra queste le tre più importanti sono \funcd{scanf},
4695 \funcd{fscanf} e \funcd{sscanf}, i cui prototipi sono:
4696
4697 \begin{funcproto}{
4698 \fhead{stdio.h}
4699 \fdecl{int scanf(const char *format, ...)}
4700 \fdesc{Esegue la scansione di dati dallo \textit{standard input}.}
4701 \fdecl{int fscanf(FILE *stream, const char *format, ...)}
4702 \fdesc{Esegue la scansione di dati da uno \textit{stream}. } 
4703 \fdecl{int sscanf(char *str, const char *format, ...)}
4704 \fdesc{Esegue la scansione di dati da un buffer.} 
4705 }
4706
4707 {La funzione ritorna il numero di elementi assegnati in caso di successo e
4708   \val{EOF} per un errore o se si raggiunta la fine del file.}
4709 \end{funcproto}
4710
4711 Le funzioni eseguono una scansione della rispettiva fonte di input cercando
4712 una corrispondenza di quanto letto con il formato dei dati specificato
4713 da \param{format}, ed effettua le relative conversioni memorizzando il
4714 risultato negli argomenti seguenti, il cui numero è variabile e dipende dal
4715 valore di \param{format}. Come per le analoghe funzioni di scrittura esistono
4716 le relative \funcm{vscanf}, \funcm{vfscanf} e \funcm{vsscanf} che usano un
4717 puntatore ad una lista di argomenti. Le funzioni ritornano il numero di
4718 elementi assegnati. Questi possono essere in numero inferiore a quelli
4719 specificati, ed anche zero. Quest'ultimo valore significa che non si è trovata
4720 corrispondenza.
4721
4722 Tutte le funzioni della famiglia delle \func{scanf} vogliono come argomenti i
4723 puntatori alle variabili che dovranno contenere le conversioni; questo è un
4724 primo elemento di disagio in quanto è molto facile dimenticarsi di questa
4725 caratteristica.
4726
4727 Le funzioni leggono i caratteri dallo \textit{stream} (o dalla stringa) di
4728 input ed eseguono un confronto con quanto indicato in \param{format}, la
4729 sintassi di questo argomento è simile a quella usata per l'analogo di
4730 \func{printf}, ma ci sono varie differenze.  Le funzioni di input infatti sono
4731 più orientate verso la lettura di testo libero che verso un input formattato
4732 in campi fissi. Uno spazio in \param{format} corrisponde con un numero
4733 qualunque di caratteri di separazione (che possono essere spazi, tabulatori,
4734 virgole ecc.), mentre caratteri diversi richiedono una corrispondenza
4735 esatta. Le direttive di conversione sono analoghe a quelle di \func{printf} e
4736 si trovano descritte in dettaglio nelle pagine di manuale e nel manuale della
4737 \acr{glibc}.
4738
4739 Le funzioni eseguono la lettura dall'input, scartano i separatori (e gli
4740 eventuali caratteri diversi indicati dalla stringa di formato) effettuando le
4741 conversioni richieste; in caso la corrispondenza fallisca (o la funzione non
4742 sia in grado di effettuare una delle conversioni richieste) la scansione viene
4743 interrotta immediatamente e la funzione ritorna lasciando posizionato lo
4744 \textit{stream} al primo carattere che non corrisponde.
4745
4746 Data la notevole complessità di uso di queste funzioni, che richiedono molta
4747 cura nella definizione delle corrette stringhe di formato e sono facilmente
4748 soggette ad errori, e considerato anche il fatto che è estremamente macchinoso
4749 recuperare in caso di fallimento nelle corrispondenze, l'input formattato non
4750 è molto usato. In genere infatti quando si ha a che fare con un input
4751 relativamente semplice si preferisce usare l'input di linea ed effettuare
4752 scansione e conversione di quanto serve direttamente con una delle funzioni di
4753 conversione delle stringhe; se invece il formato è più complesso diventa più
4754 facile utilizzare uno strumento come \cmd{flex}\footnote{il programma
4755   \cmd{flex}, è una implementazione libera di \cmd{lex} un generatore di
4756   analizzatori lessicali. Per i dettagli si può fare riferimento al manuale
4757   \cite{flex}.} per generare un analizzatore lessicale o 
4758 \cmd{bison}\footnote{il programma \cmd{bison} è un clone del generatore di
4759   parser \cmd{yacc}, maggiori dettagli possono essere trovati nel relativo
4760   manuale \cite{bison}.} per generare un parser.
4761
4762
4763
4764 \section{Funzioni avanzate}
4765 \label{sec:file_stream_adv_func}
4766
4767 In questa sezione esamineremo alcune funzioni avanzate che permettono di
4768 eseguire operazioni di basso livello nella gestione degli \textit{stream},
4769 come leggerne gli attributi, controllarne le modalità di bufferizzazione,
4770 gestire in maniera esplicita i lock impliciti presenti ad uso della
4771 programmazione \textit{multi-thread}.
4772
4773
4774 \subsection{Le funzioni di controllo}
4775 \label{sec:file_stream_cntrl}
4776
4777 Al contrario di quanto avviene con i file descriptor, le librerie standard del
4778 C non prevedono nessuna funzione come la \func{fcntl} per il controllo degli
4779 attributi dei file. Però, dato che ogni \textit{stream} si appoggia ad un file
4780 descriptor, si può usare la funzione \funcd{fileno} per ottenere il valore di
4781 quest'ultimo; il suo prototipo è:
4782
4783 \begin{funcproto}{
4784 \fhead{stdio.h}
4785 \fdecl{int fileno(FILE *stream)}
4786 \fdesc{Legge il file descriptor sottostante lo \textit{stream}.} 
4787 }
4788
4789 {La funzione ritorna il numero del file descriptor in caso di successo e $-1$
4790   per un errore, nel qual caso \var{errno} assumerà il valore \errval{EBADF}
4791   se \param{stream} non è valido.}
4792 \end{funcproto}
4793
4794 In questo modo diventa possibile usare direttamente \func{fcntl} sul file
4795 descriptor sottostante, ma anche se questo permette di accedere agli attributi
4796 del file descriptor sottostante lo \textit{stream}, non ci dà nessuna
4797 informazione riguardo alle proprietà dello \textit{stream} medesimo.  La
4798 \acr{glibc} però supporta alcune estensioni derivate da Solaris, che
4799 permettono di ottenere informazioni utili relative allo \textit{stream}.
4800
4801 Ad esempio in certi casi può essere necessario sapere se un certo
4802 \textit{stream} è accessibile in lettura o scrittura. In genere questa
4803 informazione non è disponibile, e ci si deve ricordare come è stato aperto il
4804 file. La cosa può essere complessa se le operazioni vengono effettuate in una
4805 subroutine, che a questo punto necessiterà di informazioni aggiuntive rispetto
4806 al semplice puntatore allo \textit{stream}. Questo problema può essere risolto
4807 con le due funzioni \funcd{\_\_freadable} e \funcd{\_\_fwritable} i cui
4808 prototipi sono:
4809
4810 \begin{funcproto}{
4811 \fhead{stdio\_ext.h}
4812 \fdecl{int \_\_freadable(FILE *stream)}
4813 \fdesc{Controlla se uno \textit{stream} consente la lettura.} 
4814 \fdecl{int \_\_fwritable(FILE *stream)}
4815 \fdesc{Controlla se uno \textit{stream} consente la scrittura.} 
4816 }
4817
4818 {Le funzioni ritornano un valore diverso da $0$ se l'operazione richiesta è
4819   consentita, non sono previste condizioni di errore.}  
4820 \end{funcproto}
4821
4822 \noindent che permettono di ottenere questa informazione.
4823
4824 La conoscenza dell'ultima operazione effettuata su uno \textit{stream} aperto
4825 è utile in quanto permette di trarre conclusioni sullo stato del buffer e del
4826 suo contenuto. Altre due funzioni, \funcd{\_\_freading} e \funcd{\_\_fwriting}
4827 servono a tale scopo, il loro prototipo è:
4828
4829 \begin{funcproto}{
4830 \fhead{stdio\_ext.h}
4831 \fdecl{int \_\_freading(FILE *stream)}
4832 \fdesc{Controlla l'ultima operazione di lettura.}
4833 \fdecl{int \_\_fwriting(FILE *stream)}
4834 \fdesc{Controlla l'ultima operazione di scrittura.}
4835 }
4836
4837 {Le funzioni ritornano un valore diverso da $0$ se l'operazione richiesta è
4838   consentita, non sono previste condizioni di errore.}
4839 \end{funcproto}
4840
4841 La funzione \func{\_\_freading} restituisce un valore diverso da zero
4842 se \param{stream} è aperto in sola lettura o se l'ultima operazione è stata di
4843 lettura mentre \func{\_\_fwriting} restituisce un valore diverso da zero
4844 se \param{stream} è aperto in sola scrittura o se l'ultima operazione è stata
4845 di scrittura.
4846
4847 Le due funzioni permettono di determinare di che tipo è stata l'ultima
4848 operazione eseguita su uno \textit{stream} aperto in lettura/scrittura;
4849 ovviamente se uno \textit{stream} è aperto in sola lettura (o sola scrittura)
4850 la modalità dell'ultima operazione è sempre determinata; l'unica ambiguità è
4851 quando non sono state ancora eseguite operazioni, in questo caso le funzioni
4852 rispondono come se una operazione ci fosse comunque stata.
4853
4854
4855 \subsection{Il controllo della bufferizzazione}
4856 \label{sec:file_buffering_ctrl}
4857
4858 Come accennato in sez.~\ref{sec:file_buffering} le librerie definiscono una
4859 serie di funzioni che permettono di controllare il comportamento degli
4860 \textit{stream}; se non si è specificato nulla, la modalità di buffering viene
4861 decisa autonomamente sulla base del tipo di file sottostante, ed i buffer
4862 vengono allocati automaticamente.
4863
4864 Però una volta che si sia aperto lo \textit{stream} (ma prima di aver compiuto
4865 operazioni su di esso) è possibile intervenire sulle modalità di buffering; la
4866 funzione che permette di controllare la bufferizzazione è \funcd{setvbuf}, il
4867 cui prototipo è:
4868
4869 \begin{funcproto}{
4870 \fhead{stdio.h}
4871 \fdecl{int setvbuf(FILE *stream, char *buf, int mode, size\_t size)}
4872 \fdesc{Imposta la bufferizzazione dello \textit{stream}.} 
4873 }
4874
4875 {La funzione ritorna $0$ in caso di successo e un altro valore qualunque per
4876   un errore, nel qual caso \var{errno} assumerà un valore appropriato.}  
4877 \end{funcproto}
4878
4879 La funzione imposta la bufferizzazione dello \textit{stream} \param{stream}
4880 nella modalità indicata da \param{mode} con uno dei valori di
4881 tab.~\ref{tab:file_stream_buf_mode}, usando \param{buf} come buffer di
4882 lunghezza \param{size} e permette di controllare tutti gli aspetti della
4883 bufferizzazione. L'utente può specificare un buffer da usare al posto di
4884 quello allocato dal sistema passandone alla funzione l'indirizzo
4885 in \param{buf} e la dimensione in \param{size}.
4886
4887 \begin{table}[htb]
4888   \centering
4889   \footnotesize
4890     \begin{tabular}[c]{|l|l|}
4891       \hline
4892       \textbf{Valore} & \textbf{Modalità} \\
4893       \hline
4894       \hline
4895       \constd{\_IONBF} & \textit{unbuffered}\\
4896       \constd{\_IOLBF} & \textit{line buffered}\\
4897       \constd{\_IOFBF} & \textit{fully buffered}\\
4898       \hline
4899     \end{tabular}
4900     \caption{Valori dell'argomento \param{mode} di \func{setvbuf} 
4901       per l'impostazione delle modalità di bufferizzazione.}
4902   \label{tab:file_stream_buf_mode}
4903 \end{table}
4904
4905 Ovviamente se si usa un buffer specificato dall'utente questo deve essere
4906 stato allocato e rimanere disponibile per tutto il tempo in cui si opera sullo
4907 \textit{stream}. In genere conviene allocarlo con \func{malloc} e disallocarlo
4908 dopo la chiusura del file; ma fintanto che il file è usato all'interno di una
4909 funzione, può anche essere usata una variabile automatica. In
4910 \headfile{stdio.h} è definita la costante \constd{BUFSIZ}, che indica le
4911 dimensioni generiche del buffer di uno \textit{stream}, queste vengono usate
4912 dalla funzione \func{setbuf}.  Non è detto però che tale dimensione
4913 corrisponda sempre al valore ottimale (che può variare a seconda del
4914 dispositivo).
4915
4916 Dato che la procedura di allocazione manuale è macchinosa, comporta dei
4917 rischi, come delle scritture accidentali sul buffer, e non assicura la scelta
4918 delle dimensioni ottimali, è sempre meglio lasciare allocare il buffer alle
4919 funzioni di libreria, che sono in grado di farlo in maniera ottimale e
4920 trasparente all'utente (in quanto la deallocazione avviene
4921 automaticamente). Inoltre siccome alcune implementazioni usano parte del
4922 buffer per mantenere delle informazioni di controllo, non è detto che le
4923 dimensioni dello stesso coincidano con quelle su cui viene effettuato l'I/O.
4924
4925 Per evitare che \func{setvbuf} imposti il buffer basta passare un valore
4926 \val{NULL} per \param{buf} e la funzione ignorerà l'argomento \param{size}
4927 usando il buffer allocato automaticamente dal sistema.  Si potrà comunque
4928 modificare la modalità di bufferizzazione, passando in \param{mode} uno degli
4929 opportuni valori elencati in tab.~\ref{tab:file_stream_buf_mode}. Qualora si
4930 specifichi la modalità non bufferizzata i valori di \param{buf} e \param{size}
4931 vengono sempre ignorati.
4932
4933 Oltre a \func{setvbuf} la \acr{glibc} definisce altre tre funzioni per la
4934 gestione della bufferizzazione di uno \textit{stream}: \funcd{setbuf},
4935 \funcd{setbuffer} e \funcd{setlinebuf}, i rispettivi prototipi sono:
4936
4937 \begin{funcproto}{
4938 \fhead{stdio.h}
4939 \fdecl{void setbuf(FILE *stream, char *buf)}
4940 \fdecl{void setbuffer(FILE *stream, char *buf, size\_t size)}
4941 \fdesc{Impostano il buffer per uno \textit{stream}.} 
4942 \fdecl{void setlinebuf(FILE *stream)}
4943 \fdesc{Porta uno \textit{stream} in modalità \textit{line buffered}.}
4944 }
4945
4946 {Le funzioni non ritornano niente e non hanno condizioni di errore.}  
4947 \end{funcproto}
4948
4949
4950 La funzione \func{setbuf} disabilita la bufferizzazione se \param{buf} è
4951 \val{NULL}, altrimenti usa \param{buf} come buffer di dimensione
4952 \const{BUFSIZ} in modalità \textit{fully buffered}, mentre \func{setbuffer}
4953 disabilita la bufferizzazione se \param{buf} è \val{NULL}, altrimenti
4954 usa \param{buf} come buffer di dimensione \param{size} in modalità
4955 \textit{fully buffered}.  Tutte queste funzioni sono realizzate con opportune
4956 chiamate a \func{setvbuf} e sono definite solo per compatibilità con le
4957 vecchie librerie BSD, pertanto non è il caso di usarle se non per la
4958 portabilità su vecchi sistemi.
4959
4960 Infine la \acr{glibc} provvede le funzioni non standard, anche queste
4961 originarie di Solaris, \funcd{\_\_flbf} e \funcd{\_\_fbufsize} che permettono
4962 di leggere le proprietà di bufferizzazione di uno \textit{stream}; i cui
4963 prototipi sono:
4964
4965 \begin{funcproto}{
4966 \fhead{stdio\_ext.h}
4967 \fdecl{size\_t \_\_fbufsize(FILE *stream)}
4968 \fdesc{Restituisce le dimensioni del buffer di uno \textit{stream}.}
4969 \fdecl{int \_\_flbf(FILE *stream)}
4970 \fdesc{Controlla la modalità di bufferizzazione di uno \textit{stream}.}
4971 }
4972
4973 {Le funzioni ritornano rispettivamente la dimensione del buffer o un valore
4974   non nullo se lo \textit{stream} è in modalità \textit{line-buffered}, non
4975   sono previste condizioni di errore.}
4976 \end{funcproto}
4977
4978 Come già accennato, indipendentemente dalla modalità di bufferizzazione
4979 scelta, si può forzare lo scarico dei dati sul file con la funzione
4980 \funcd{fflush}, il cui prototipo è:
4981
4982 \begin{funcproto}{
4983 \fhead{stdio.h}
4984 \fdecl{int fflush(FILE *stream)}
4985 \fdesc{Forza la scrittura dei dati bufferizzati di uno \textit{stream}.} 
4986 }
4987
4988 {La funzione ritorna $0$ in caso di successo e \val{EOF} per un errore, nel
4989   qual caso \var{errno} assumerà il valore \errval{EBADF} se \param{stream}
4990   non è aperto o non è aperto in scrittura, o ad uno degli errori di
4991   \func{write}.}
4992 \end{funcproto}
4993
4994 \noindent anche di questa funzione esiste una analoga \func{fflush\_unlocked}
4995 (accessibile definendo una fra \macro{\_BSD\_SOURCE}, \macro{\_SVID\_SOURCE} o
4996 \macro{\_GNU\_SOURCE}) che non effettua il blocco dello \textit{stream}.
4997
4998 % TODO aggiungere prototipo \func{fflush\_unlocked}?
4999
5000 Se \param{stream} è \val{NULL} lo scarico dei dati è forzato per tutti gli
5001 \textit{stream} aperti. Esistono però circostanze, ad esempio quando si vuole
5002 essere sicuri che sia stato eseguito tutto l'output su terminale, in cui serve
5003 poter effettuare lo scarico dei dati solo per gli \textit{stream} in modalità
5004 \textit{line buffered}. Per fare questo la \acr{glibc} supporta una
5005 estensione di Solaris, la funzione \funcd{\_flushlbf}, il cui prototipo è:
5006
5007 \begin{funcproto}{
5008 \fhead{stdio-ext.h}
5009 \fdecl{void \_flushlbf(void)}
5010 \fdesc{Forza la scrittura dei dati bufferizzati degli \textit{stream} in
5011   modalità \textit{line buffered}.} 
5012 }
5013
5014 {La funzione non ritorna nulla e non presenta condizioni di errore.}  
5015 \end{funcproto}
5016
5017 Si ricordi comunque che lo scarico dei dati dai buffer effettuato da queste
5018 funzioni non comporta la scrittura di questi su disco; se si vuole che il
5019 kernel dia effettivamente avvio alle operazioni di scrittura su disco occorre
5020 usare \func{sync} o \func{fsync} (si veda~sez.~\ref{sec:file_sync}).
5021
5022 Infine esistono anche circostanze in cui si vuole scartare tutto l'output
5023 pendente; per questo si può usare \funcd{fpurge}, il cui prototipo è:
5024
5025 \begin{funcproto}{
5026 \fhead{stdio.h}
5027 \fdecl{int fpurge(FILE *stream)}
5028 \fdesc{Cancella i buffer di uno \textit{stream}.} 
5029 }
5030
5031 {La funzione ritorna $0$ in caso di successo e \val{EOF} per un errore.}  
5032 \end{funcproto}
5033
5034 La funzione scarta tutti i dati non ancora scritti (se il file è aperto in
5035 scrittura), e tutto l'input non ancora letto (se è aperto in lettura),
5036 compresi gli eventuali caratteri rimandati indietro con \func{ungetc}.
5037
5038
5039 \subsection{Gli \textit{stream} e i \textit{thread}}
5040 \label{sec:file_stream_thread}
5041
5042
5043 Gli \textit{stream} possono essere usati in applicazioni \textit{multi-thread}
5044 allo stesso modo in cui sono usati nelle applicazioni normali, ma si deve
5045 essere consapevoli delle possibili complicazioni anche quando non si usano i
5046 \textit{thread}, dato che l'implementazione delle librerie è influenzata
5047 pesantemente dalle richieste necessarie per garantirne l'uso con i
5048 \textit{thread}.
5049
5050 Lo standard POSIX richiede che le operazioni sui file siano atomiche rispetto
5051 ai \textit{thread}, per questo le operazioni sui buffer effettuate dalle
5052 funzioni di libreria durante la lettura e la scrittura di uno \textit{stream}
5053 devono essere opportunamente protette, in quanto il sistema assicura
5054 l'atomicità solo per le \textit{system call}. Questo viene fatto associando ad
5055 ogni \textit{stream} un opportuno blocco che deve essere implicitamente
5056 acquisito prima dell'esecuzione di qualunque operazione.
5057
5058 Ci sono comunque situazioni in cui questo non basta, come quando un
5059 \textit{thread} necessita di compiere più di una operazione sullo
5060 \textit{stream} atomicamente. Per questo motivo le librerie provvedono anche
5061 le funzioni \funcd{flockfile} e \funcd{funlockfile} che permettono la gestione
5062 esplicita dei blocchi sugli \textit{stream}. Esse sono disponibili definendo
5063 \macrod{\_POSIX\_THREAD\_SAFE\_FUNCTIONS} ed i loro prototipi sono:
5064
5065 \begin{funcproto}{
5066 \fhead{stdio.h}
5067 \fdecl{void flockfile(FILE *stream)}
5068 \fdesc{Acquisisce il lock su uno \textit{stream}.} 
5069 \fdecl{void funlockfile(FILE *stream)}
5070 \fdesc{Rilascia  il lock su uno \textit{stream}.} 
5071 }
5072 {Le funzioni non ritornano nulla e non sono previste condizioni di errore.}  
5073 \end{funcproto}
5074
5075 La funzione \func{flockfile} esegue l'acquisizione del lock dello
5076 \textit{stream} \param{stream}, bloccandosi se questo risulta non è
5077 disponibile, mentre \func{funlockfile} rilascia un lock che si è
5078 precedentemente acquisito.
5079
5080 Una terza funzione, che serve a provare ad acquisire un lock senza bloccarsi
5081 qualora non sia possibile, è \funcd{ftrylockfile}, il cui prototipo è:
5082
5083 \begin{funcproto}{
5084 \fhead{stdio.h}
5085 \fdecl{int ftrylockfile(FILE *stream)}
5086 \fdesc{Tenta l'acquisizione del lock di uno \textit{stream}.} 
5087 }
5088
5089 {La funzione ritorna $0$ in caso di acquisizione del lock ed un altro valore
5090   qualunque altrimenti, non sono previste condizioni di errore.}
5091 \end{funcproto}
5092
5093 Con queste funzioni diventa possibile acquisire un blocco ed eseguire tutte le
5094 operazioni volute, per poi rilasciarlo. Ma, vista la complessità delle
5095 strutture di dati coinvolte, le operazioni di blocco non sono del tutto
5096 indolori, e quando il locking dello \textit{stream} non è necessario (come in
5097 tutti i programmi che non usano i \textit{thread}), tutta la procedura può
5098 comportare dei costi pesanti in termini di prestazioni. 
5099
5100 Per questo motivo abbiamo visto come alle usuali funzioni di I/O non
5101 formattato siano associate delle versioni \code{\_unlocked} (alcune previste
5102 dallo stesso standard POSIX, altre aggiunte come estensioni dalla \acr{glibc})
5103 che possono essere usate quando il locking non serve\footnote{in certi casi
5104   dette funzioni possono essere usate, visto che sono molto più efficienti,
5105   anche in caso di necessità di locking, una volta che questo sia stato
5106   acquisito manualmente.}  con prestazioni molto più elevate, dato che spesso
5107 queste versioni (come accade per \func{getc} e \func{putc}) sono realizzate
5108 come macro.
5109
5110 La sostituzione di tutte le funzioni di I/O con le relative versioni
5111 \code{\_unlocked} in un programma che non usa i \textit{thread} è però un
5112 lavoro abbastanza noioso. Per questo motivo la \acr{glibc} fornisce al
5113 programmatore pigro un'altra via, anche questa mutuata da estensioni
5114 introdotte in Solaris, da poter utilizzare per disabilitare in blocco il
5115 locking degli \textit{stream}: l'uso della funzione \funcd{\_\_fsetlocking},
5116 il cui prototipo è:
5117
5118 \begin{funcproto}{
5119 \fhead{stdio\_ext.h}
5120 \fdecl{int \_\_fsetlocking(FILE *stream, int type)}
5121 \fdesc{Specifica se abilitare il locking su uno \textit{stream}.}
5122 }
5123
5124 {La funzione ritorna stato di locking interno dello \textit{stream}, non sono
5125   previste condizioni di errore.}  
5126 \end{funcproto}
5127
5128 La funzione imposta o legge lo stato della modalità in cui le operazioni di
5129 I/O su \param{stream} vengono effettuate rispetto all'acquisizione implicita
5130 del locking a seconda del valore specificato con \param{type}, che può
5131 assumere uno dei valori indicati in tab.~\ref{tab:file_fsetlocking_type}.
5132
5133 \begin{table}[htb]
5134   \centering
5135   \footnotesize
5136     \begin{tabular}[c]{|l|p{8cm}|}
5137       \hline
5138       \textbf{Valore} & \textbf{Significato} \\
5139       \hline
5140       \hline
5141       \constd{FSETLOCKING\_INTERNAL}& Lo \textit{stream} userà da ora in poi il
5142                                       blocco implicito predefinito.\\
5143       \constd{FSETLOCKING\_BYCALLER}& Al ritorno della funzione sarà l'utente a
5144                                       dover gestire da solo il locking dello
5145                                       \textit{stream}.\\
5146       \constd{FSETLOCKING\_QUERY}   & Restituisce lo stato corrente della
5147                                       modalità di blocco dello
5148                                       \textit{stream}.\\
5149       \hline
5150     \end{tabular}
5151     \caption{Valori dell'argomento \param{type} di \func{\_\_fsetlocking} 
5152       per l'impostazione delle modalità di bufferizzazione.}
5153   \label{tab:file_fsetlocking_type}
5154 \end{table}
5155
5156 La funzione, se usata con \const{FSETLOCKING\_QUERY}, non modifica la modalità
5157 di operazione ma restituisce lo stato di locking interno dello \textit{stream}
5158 con uno dei valori \const{FSETLOCKING\_INTERNAL} o
5159 \const{FSETLOCKING\_BYCALLER}.
5160
5161 % TODO trattare \func{clearerr\_unlocked} 
5162
5163
5164
5165 %%% Local Variables: 
5166 %%% mode: latex
5167 %%% TeX-master: "gapil"
5168 %%% End: 
5169
5170 % LocalWords:  stream cap system call kernel Ritchie glibc descriptor Stevens
5171 % LocalWords:  buf read write filesystem st blksize stat sez l'header stdio BSD
5172 % LocalWords:  nell'header stdin shell stdout stderr error freopen flush line
5173 % LocalWords:  unbuffered buffered newline fully SVr fopen fdopen POSIX const
5174 % LocalWords:  char path int fildes NULL errno malloc fcntl fclose fflush tab
5175 % LocalWords:  dup fifo socket append EXCL ccs IRUSR IWUSR IRGRP IWGRP inode fd
5176 % LocalWords:  IROTH IWOTH umask fseek fsetpos rewind SEEK CUR EOF EBADF close
5177 % LocalWords:  sync fcloseall void stdlib of feof ferror clearerr ws VFS table
5178 % LocalWords:  unlocked fread fwrite size ptr nmemb nelem gcc padding point str
5179 % LocalWords:  lock thread fgetc getc getchar dell'overhead unsigned ap process
5180 % LocalWords:  getwc fgetwc getwchar wint wchar WEOF putc fputc putchar  struct
5181 % LocalWords:  SVID getw putw parsing peeking ahead ungetc gets fgets string Di
5182 % LocalWords:  overflow Aleph stack fputs puts fgetws fputws getline ssize leak
5183 % LocalWords:  realloc value result argument memory getdelim delim printf short
5184 % LocalWords:  fprintf sprintf format snprintf variadic long double intmax list
5185 % LocalWords:  uintmax ptrdiff vprintf vfprintf vsprintf vsnprintf asprintf lex
5186 % LocalWords:  vasprintf strptr dprintf vdprintf print scanf fscanf sscanf flex
5187 % LocalWords:  vscanf vfscanf vsscanf bison parser yacc like off VMS whence pos
5188 % LocalWords:  lseek ftell fgetpos fpos fseeko ftello fileno Solaris freadable
5189 % LocalWords:  fwritable ext freading fwriting buffering setvbuf BUFSIZ setbuf
5190 % LocalWords:  IONBF IOLBF IOFBF setbuffer setlinebuf flbf fbufsize flushlbf hh
5191 % LocalWords:  fsync fpurge flockfile ftrylockfile funlockfile  files fig flags
5192 % LocalWords:  locking fsetlocking type virtual operation dentry unistd sys AT
5193 % LocalWords:  modification hole functions pathname EEXIST CREAT EINTR attack
5194 % LocalWords:  EISDIR EFBIG EOVERFLOW ELOOP NOFOLLOW ENODEV ENOENT ENOTDIR fork
5195 % LocalWords:  EMFILE ENAMETOOLONG ENFILE ENOMEM ENOSPC EROFS exec access RDWR
5196 % LocalWords:  RDONLY ioctl AND ACCMODE creation Denial Service DoS opendir NFS
5197 % LocalWords:  SOURCE LARGEFILE BITS NOCTTY TRUNC SHLOCK shared EXLOCK race SGI
5198 % LocalWords:  exclusive condition change ASYNC SIGIO CLOEXEC DIRECT NDELAY EIO
5199 % LocalWords:  DSYNC FASYNC IRIX FreeBSD EINVAL client RSYNC creat filedes INCR
5200 % LocalWords:  behind shutdown ESPIPE XTND truncate fallocate count EAGAIN log
5201 % LocalWords:  timerfd Specification pwrite pread define XOPEN EPIPE SIGPIPE at
5202 % LocalWords:  caching cache update bdflush fdatasync fstat oldfd newfd DUPFD
5203 % LocalWords:  openat mkdirat mkdir proc ATFILE dirfd FDCWD utimes lutimes uid
5204 % LocalWords:  utimensat faccessat fchmodat chmod fchownat chown lchown fstatat
5205 % LocalWords:  lstat linkat mknodat mknod readlinkat readlink renameat rename
5206 % LocalWords:  symlinkat symlink unlinkat unlink rmdir mkfifoat mkfifo owner is
5207 % LocalWords:  gid group FOLLOW REMOVEDIR cmd arg flock SETFD GETFD GETFL SETFL
5208 % LocalWords:  GETLK SETLK SETLKW GETOWN PID Signal SIGURG SETOWN GETSIG SETSIG
5209 % LocalWords:  sigaction SIGINFO siginfo SETLEASE lease GETLEASE NOTIFY request
5210 % LocalWords:  everything framebuffer ENOTTY argp CDROM lsattr chattr magic TID
5211 % LocalWords:  number FIOCLEX FIONCLEX FIOASYNC FIONBIO FIOSETOWN FIOGETOWN pid
5212 % LocalWords:  FIONREAD epoll FIOQSIZE side effects SAFE BYCALLER QUERY EACCES
5213 % LocalWords:  EBUSY OpenBSD syncfs futimes timespec only init ESRCH kill NTPL
5214 % LocalWords:  ENXIO  NONBLOCK WRONLY EPERM NOATIME ETXTBSY EWOULDBLOCK PGRP SZ
5215 % LocalWords:  EFAULT capabilities GETPIPE SETPIPE RESOURCE NFSv InitFile stx
5216 % LocalWords:  Documentation Urlich Drepper futimesat times FullWrite major
5217 % LocalWords:  futimens fs Tread TMPFILE EDQUOT extN Minix UDF XFS mask all'
5218 % LocalWords:  shmem Btrfs ubifs tmpfile fchmod fchown fsetxattr fchdir PF
5219 % LocalWords:  fstatfs SIGTTIN EDESTADDRREQ datagram connect seal pag l'I INO
5220 % LocalWords:  dirty execveat execve scandirat statx AUTOMOUNT automount DAC
5221 % LocalWords:  wrapper EMPTY olddirfd oldpath newdirfd newpath capability ino
5222 % LocalWords:  SEARCH flink choot oldirfd NOREPLACE EXCHANGE WHITEOUT union
5223 % LocalWords:  renamat syscall whiteout overlay filesytem Live nell' sull'
5224 % LocalWords:  statbuf statxbuf IFMT nlink atime mtime fexecve argv envp
5225 % LocalWords:  blocks STATS btime RESERVED ctime ATTR dev ENOSYS
5226 % LocalWords:  timestamp attributes COMPRESSED immutable NODUMP
5227 % LocalWords:  dump ENCRYPTED rdev all'I dell'I
5228
5229 %%% Local Variables: 
5230 %%% mode: latex
5231 %%% TeX-master: "gapil"
5232 %%% End: 
5233