d2cd284994c8f6d4c90ddbed964876d28932268b
[gapil.git] / filedir.tex
1 %% filedir.tex
2 %%
3 %% Copyright (C) 2000-2012 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione di file e directory}
13 \label{cha:files_and_dirs}
14
15 In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono
16 file e directory, iniziando da un approfondimento dell'architettura del
17 sistema illustrata a grandi linee in sez.~\ref{sec:file_arch_overview} ed
18 illustrando le principali caratteristiche di un filesystem e le interfacce
19 che consentono di controllarne il montaggio e lo smontaggio. 
20
21 Esamineremo poi le funzioni di libreria che si usano per copiare, spostare e
22 cambiare i nomi di file e directory e l'interfaccia che permette la
23 manipolazione dei loro attributi. Tratteremo inoltre la struttura di base del
24 sistema delle protezioni e del controllo dell'accesso ai file e le successive
25 estensioni (\textit{Extended Attributes}, ACL, quote disco,
26 \textit{capabilities}). Tutto quello che riguarda invece la gestione dell'I/O
27 sui file è lasciato al capitolo successivo.
28
29
30
31 \section{L'architettura della gestione dei file}
32 \label{sec:file_arch_func}
33
34 In questa sezione tratteremo con maggiori dettagli rispetto a quanto visto in
35 sez.~\ref{sec:file_arch_overview} il \textit{Virtual File System} di Linux e
36 come il kernel può gestire diversi tipi di filesystem, descrivendo prima le
37 caratteristiche generali di un filesystem di un sistema unix-like, per poi
38 fare una panoramica sul filesystem più usato con Linux, l'\acr{ext2} ed i suoi
39 successori.
40
41
42 \subsection{Il funzionamento del \textit{Virtual File System} di Linux}
43 \label{sec:file_vfs_work}
44
45 % NOTE articolo interessante:
46 % http://www.ibm.com/developerworks/linux/library/l-virtual-filesystem-switch/index.html?ca=dgr-lnxw97Linux-VFSdth-LXdW&S_TACT=105AGX59&S_CMP=GRlnxw97
47
48 \itindbeg{Virtual~File~System}
49
50 Come illustrato brevemente in sez.~\ref{sec:file_arch_overview} in Linux il
51 concetto di \textit{everything is a file} è stato implementato attraverso il
52 \textit{Virtual File System}, la cui struttura generale è illustrata in
53 fig.~\ref{fig:file_VFS_scheme}.  Il VFS definisce un insieme di funzioni che
54 tutti i filesystem devono implementare per l'accesso ai file che contengono e
55 l'interfaccia che consente di eseguire l'I/O sui file, che questi siano di
56 dati o dispositivi. 
57
58 \itindbeg{inode}
59
60 L'interfaccia fornita dal VFS comprende in sostanza tutte le funzioni che
61 riguardano i file, le operazioni implementate dal VFS sono realizzate con una
62 astrazione che prevede quattro tipi di oggetti strettamente correlati: i
63 filesystem, le \textit{dentry}, gli \textit{inode} ed i file. A questi oggetti
64 corrispondono una serie di apposite strutture definite dal kernel che
65 contengono come campi le funzioni di gestione e realizzano l'infrastruttura
66 del VFS. L'interfaccia è molto complessa, ne faremo pertanto una trattazione
67 estremamente semplificata che consenta di comprenderne i principi
68 di funzionamento.
69
70 Il VFS usa una tabella mantenuta dal kernel che contiene il nome di ciascun
71 filesystem supportato, quando si vuole inserire il supporto di un nuovo
72 filesystem tutto quello che occorre è chiamare la funzione
73 \code{register\_filesystem} passando come argomento la struttura
74 \kstruct{file\_system\_type} (la cui definizione è riportata in
75 fig.~\ref{fig:kstruct_file_system_type}) relativa a quel filesystem. Questa
76 verrà inserita nella tabella, ed il nuovo filesystem comparirà in
77 \procfile{/proc/filesystems}.
78
79 \begin{figure}[!htb]
80   \footnotesize \centering
81   \begin{minipage}[c]{\textwidth}
82     \includestruct{listati/file_system_type.h}
83   \end{minipage}
84   \normalsize 
85   \caption{Estratto della struttura \kstructd{file\_system\_type} usata dal
86     VFS (da \texttt{include/linux/fs.h}).}
87   \label{fig:kstruct_file_system_type}
88 \end{figure}
89
90 La struttura \kstruct{file\_system\_type}, oltre ad una serie di dati interni,
91 come il nome del tipo di filesystem nel campo \var{name},\footnote{quello che
92   viene riportato in \procfile{/proc/filesystems} e che viene usato come
93   valore del parametro dell'opzione \texttt{-t} del comando \texttt{mount} che
94   indica il tipo di filesystem.}  contiene i riferimenti alle funzioni di base
95 che consentono l'utilizzo di quel filesystem. In particolare la funzione
96 \code{mount} del quarto campo è quella che verrà invocata tutte le volte che
97 si dovrà effettuare il montaggio di un filesystem di quel tipo. Per ogni nuovo
98 filesystem si dovrà allocare una di queste strutture ed inizializzare i
99 relativi campi con i dati specifici di quel filesystem, ed in particolare si
100 dovrà creare anche la relativa versione della funzione \code{mount}.
101
102 \itindbeg{pathname}
103 \itindbeg{pathname~resolution}
104
105 Come illustrato in fig.~\ref{fig:kstruct_file_system_type} questa funzione
106 restituisce una \textit{dentry}, abbreviazione che sta per \textit{directory
107   entry}. Le \textit{dentry} sono gli oggetti che il kernel usa per eseguire
108 la \textit{pathname resolution}, ciascuna di esse corrisponde ad un
109 \textit{pathname} e contiene il riferimento ad un \textit{inode}, che come
110 vedremo a breve è l'oggetto usato dal kernel per identificare un un
111 file.\footnote{in questo caso si parla di file come di un qualunque oggetto
112   generico che sta sul filesystem e non dell'oggetto file del VFS cui
113   accennavamo prima.} La \textit{dentry} ottenuta dalla chiamata alla funzione
114 \code{mount} sarà inserita in corrispondenza al \textit{pathname} della
115 directory in cui il filesystem è stato montato.
116
117 % NOTA: struct dentry è dichiarata in include/linux/dcache.h
118
119 Le \textit{dentry} sono oggetti del VFS che vivono esclusivamente in memoria,
120 nella cosiddetta \textit{directory entry cache} (spesso chiamata in breve
121 \textit{dcache}). Ogni volta che una \textit{system call} specifica un
122 \textit{pathname} viene effettuata una ricerca nella \textit{dcache} per
123 ottenere immediatamente la \textit{dentry} corrispondente,\footnote{il buon
124   funzionamento della \textit{dcache} è in effetti di una delle parti più
125   critiche per le prestazioni del sistema.} che a sua volta ci darà, tramite
126 l'\textit{inode}, il riferimento al file.
127
128 Dato che normalmente non è possibile mantenere nella \textit{dcache} le
129 informazioni relative a tutto l'albero dei file la procedura della
130 \textit{pathname resolution} richiede un meccanismo con cui riempire gli
131 eventuali vuoti. Il meccanismo prevede che tutte le volte che si arriva ad una
132 \textit{dentry} mancante venga invocata la funzione \texttt{lookup}
133 dell'\textit{inode} associato alla \textit{dentry} precedente nella
134 risoluzione del \textit{pathname},\footnote{che a questo punto è una
135   directory, per cui si può cercare al suo interno il nome di un file.} il cui
136 scopo è risolvere il nome mancante e fornire la sua \textit{dentry} che a
137 questo punto verrà inserita nella cache.
138
139 Dato che tutte le volte che si monta un filesystem la funzione \texttt{mount}
140 della corrispondente \kstruct{file\_system\_type} inserisce la \textit{dentry}
141 iniziale nel \itindex{mount~point} \textit{mount point} dello stesso, si avrà
142 comunque un punto di partenza. Inoltre essendo questa \textit{dentry} relativa
143 a quel tipo di filesystem essa farà riferimento ad un \textit{inode} di quel
144 filesystem, e come vedremo questo farà sì che venga eseguita una
145 \texttt{lookup} adatta per effettuare la risoluzione dei nomi per quel
146 filesystem.
147
148 \itindend{pathname}
149 \itindend{pathname~resolution}
150
151 % Un secondo effetto della chiamata funzione \texttt{mount} di
152 % \kstruct{file\_system\_type} è quello di allocare una struttura
153 % \kstruct{super\_block} per ciascuna istanza montata, che contiene le
154 % informazioni generali di un qualunque filesystem montato, come le opzioni di
155 % montaggio, le dimensioni dei blocchi, quando il filesystem è stato montato
156 % ecc. Fra queste però viene pure inserta, nel campo \var{s\_op}, una ulteriore
157 % struttura \kstruct{super\_operations}, il cui contenuto sono i puntatori
158 % alle funzioni di gestione di un filesystem, anche inizializzata in modo da
159 % utilizzare le versioni specifiche di quel filesystem.
160
161 L'oggetto più importante per il funzionamento del VFS è probabilmente
162 l'\textit{inode}, ma con questo nome si può fare riferimento a due cose
163 diverse.  La prima è la struttura su disco (su cui torneremo anche in
164 sez.~\ref{sec:file_filesystem}) che fa parte della organizzazione dei dati
165 realizzata dal filesystem e che contiene le informazioni relative alle
166 proprietà (i cosiddetti \textsl{metadati}) di ogni oggetto presente su di esso
167 (si intende al solito uno qualunque dei tipi di file di
168 tab.~\ref{tab:file_file_types}).
169
170 La seconda è la corrispondente struttura \kstruct{inode}, della cui
171 definizione si è riportato un estratto in
172 fig.~\ref{fig:kstruct_inode}.\footnote{l'estratto fa riferimento alla versione
173   del kernel 2.6.37.} Questa struttura viene mantenuta in memoria ed è a
174 questa che facevamo riferimento quando parlavamo dell'\textit{inode} associato
175 a ciascuna \textit{dentry}. Nella struttura in memoria sono presenti gli
176 stessi \textsl{metadati} memorizzati su disco, che vengono letti quando questa
177 struttura viene allocata e trascritti all'indietro se modificati.
178
179 \begin{figure}[!htb]
180   \footnotesize \centering
181   \begin{minipage}[c]{\textwidth}
182     \includestruct{listati/inode.h}
183   \end{minipage}
184   \normalsize 
185   \caption{Estratto della struttura \kstructd{inode} del kernel (da
186     \texttt{include/linux/fs.h}).}
187   \label{fig:kstruct_inode}
188 \end{figure}
189
190 Il fatto che la struttura \kstruct{inode} sia mantenuta in memoria,
191 direttamente associata ad una \textit{dentry}, rende sostanzialmente immediate
192 le operazioni che devono semplicemente effettuare un accesso ai dati in essa
193 contenuti: è così ad esempio che viene realizzata la \textit{system call}
194 \func{stat} che vedremo in sez.~\ref{sec:file_stat}. Rispetto ai dati salvati
195 sul disco questa struttura contiene però anche quanto necessario alla
196 implementazione del VFS, ed in particolare è importante il campo \var{i\_op}
197 che, come illustrato in fig.~\ref{fig:kstruct_inode}, contiene il puntatore ad
198 una struttura di tipo \kstruct{inode\_operation}, la cui definizione si può
199 trovare nel file \texttt{include/kernel/fs.h} dei sorgenti del kernel.
200
201 Questa struttura non è altro che una tabella di funzioni, ogni suo membro cioè
202 è un puntatore ad una funzione e, come suggerisce il nome della struttura
203 stessa, queste funzioni sono quelle che definiscono le operazioni che il VFS
204 può compiere su un \textit{inode}. Si sono riportate in
205 tab.~\ref{tab:file_inode_operations} le più rilevanti.
206
207 \begin{table}[htb]
208   \centering
209   \footnotesize
210   \begin{tabular}[c]{|l|l|}
211     \hline
212     \textbf{Funzione} & \textbf{Operazione} \\
213     \hline
214     \hline
215     \textsl{\code{create}} & Chiamata per creare un nuovo file (vedi
216                              sez.~\ref{sec:file_open}).\\ 
217     \textsl{\code{link}}   & Crea un \textit{hard link} (vedi
218                              sez.~\ref{sec:link_symlink_rename}).\\
219     \textsl{\code{unlink}} & Cancella un \textit{hard link} (vedi
220                              sez.~\ref{sec:link_symlink_rename}).\\
221     \textsl{\code{symlink}}& Crea un collegamento simbolico (vedi
222                              sez.~\ref{sec:link_symlink_rename}).\\
223     \textsl{\code{mkdir}}  & Crea una directory (vedi
224                              sez.~\ref{sec:file_dir_creat_rem}).\\
225     \textsl{\code{rmdir}}  & Rimuove una directory (vedi
226                              sez.~\ref{sec:file_dir_creat_rem}).\\
227     \textsl{\code{mknod}}  & Crea un \index{file!speciali} file speciale (vedi
228                              sez.~\ref{sec:file_mknod}).\\
229     \textsl{\code{rename}} & Cambia il nome di un file (vedi
230                              sez.~\ref{sec:link_symlink_rename}).\\
231     \textsl{\code{lookup}}&  Risolve il nome di un file.\\
232     \hline
233   \end{tabular}
234   \caption{Le principali operazioni sugli \textit{inode} definite tramite
235     \kstruct{inode\_operation}.} 
236   \label{tab:file_inode_operations}
237 \end{table}
238
239 Possiamo notare come molte di queste funzioni abbiano nomi sostanzialmente
240 identici alle varie \textit{system call} con le quali si gestiscono file e
241 directory, che tratteremo nel resto del capitolo. Quello che succede è che
242 tutte le volte che deve essere eseguita una \textit{system call}, o una
243 qualunque altra operazione su un \textit{inode} (come \texttt{lookup}) il VFS
244 andrà ad utilizzare la funzione corrispondente attraverso il puntatore
245 \var{i\_op}.
246
247 Sarà allora sufficiente che nella realizzazione di un filesystem si crei una
248 implementazione di queste funzioni per quel filesystem e si allochi una
249 opportuna istanza di \kstruct{inode\_operation} contenente i puntatori a dette
250 funzioni. A quel punto le strutture \kstruct{inode} usate per gli oggetti di
251 quel filesystem otterranno il puntatore alla relativa istanza di
252 \kstruct{inode\_operation} e verranno automaticamente usate le funzioni
253 corrette.
254
255 Si noti però come in tab.~\ref{tab:file_inode_operations} non sia presente la
256 funzione \texttt{open} che invece è citata in
257 tab.~\ref{tab:file_file_operations}.\footnote{essa può essere comunque
258   invocata dato che nella struttura \kstruct{inode} è presente anche il
259   puntatore \var{i\_fop} alla struttura \kstruct{file\_operation} che fornisce
260   detta funzione.} Questo avviene perché su Linux l'apertura di un file
261 richiede comunque un'altra operazione che mette in gioco l'omonimo oggetto del
262 VFS: l'allocazione di una struttura di tipo \kstruct{file} che viene associata
263 ad ogni file aperto nel sistema.
264
265 I motivi per cui viene usata una struttura a parte sono diversi, anzitutto,
266 come illustrato in sez.~\ref{sec:file_fd}, questa è necessaria per le
267 operazioni eseguite dai processi con l'interfaccia dei file descriptor; ogni
268 processo infatti mantiene il riferimento ad una struttura \kstruct{file} per
269 ogni file che ha aperto, ed è tramite essa che esegue le operazioni di I/O.
270
271 Inoltre se le operazioni relative agli \textit{inode} fanno riferimento ad
272 oggetti posti all'interno di un filesystem e vi si applicano quindi le
273 funzioni fornite nell'implementazione di quest'ultimo, quando si apre un file
274 questo può essere anche un file di dispositivo, ed in questo caso il VFS
275 invece di usare le operazioni fornite dal filesystem (come farebbe per un file
276 di dati) dovrà invece ricorrere a quelle fornite dal driver del dispositivo.
277
278 \itindend{inode}
279
280 \begin{figure}[!htb]
281   \footnotesize \centering
282   \begin{minipage}[c]{\textwidth}
283     \includestruct{listati/file.h}
284   \end{minipage}
285   \normalsize 
286   \caption{Estratto della struttura \kstructd{file} del kernel (da
287     \texttt{include/linux/fs.h}).}
288   \label{fig:kstruct_file}
289 \end{figure}
290
291 Come si può notare dall'estratto di fig.~\ref{fig:kstruct_file}, la struttura
292 \kstruct{file} contiene, oltre ad alcune informazioni usate dall'interfaccia
293 dei file descriptor il cui significato emergerà più avanti, il puntatore
294 \var{f\_op} ad una struttura \kstruct{file\_operation}. Questa è l'analoga per
295 i file di \kstruct{inode\_operation}, e definisce le operazioni generiche
296 fornite dal VFS per i file. Si sono riportate in
297 tab.~\ref{tab:file_file_operations} le più significative.
298
299 \begin{table}[htb]
300   \centering
301   \footnotesize
302   \begin{tabular}[c]{|l|p{8cm}|}
303     \hline
304     \textbf{Funzione} & \textbf{Operazione} \\
305     \hline
306     \hline
307     \textsl{\code{open}}   & Apre il file (vedi sez.~\ref{sec:file_open}).\\
308     \textsl{\code{read}}   & Legge dal file (vedi sez.~\ref{sec:file_read}).\\
309     \textsl{\code{write}}  & Scrive sul file (vedi 
310                              sez.~\ref{sec:file_write}).\\
311     \textsl{\code{llseek}} & Sposta la posizione corrente sul file (vedi
312                              sez.~\ref{sec:file_lseek}).\\
313     \textsl{\code{ioctl}}  & Accede alle operazioni di controllo 
314                              (vedi sez.~\ref{sec:file_ioctl}).\\
315     \textsl{\code{readdir}}& Legge il contenuto di una directory (vedi 
316                              sez.~\ref{sec:file_dir_read}).\\
317     \textsl{\code{poll}}   & Usata nell'I/O multiplexing (vedi
318                              sez.~\ref{sec:file_multiplexing}).\\
319     \textsl{\code{mmap}}   & Mappa il file in memoria (vedi 
320                              sez.~\ref{sec:file_memory_map}).\\
321     \textsl{\code{release}}& Chiamata quando l'ultimo riferimento a un file 
322                              aperto è chiuso.\\
323     \textsl{\code{fsync}}  & Sincronizza il contenuto del file (vedi
324                              sez.~\ref{sec:file_sync}).\\
325     \textsl{\code{fasync}} & Abilita l'I/O asincrono (vedi
326                              sez.~\ref{sec:file_asyncronous_io}) sul file.\\
327     \hline
328   \end{tabular}
329   \caption{Operazioni sui file definite tramite \kstruct{file\_operation}.}
330   \label{tab:file_file_operations}
331 \end{table}
332
333 Anche in questo caso tutte le volte che deve essere eseguita una
334 \textit{system call} o una qualunque altra operazione sul file il VFS andrà ad
335 utilizzare la funzione corrispondente attraverso il puntatore
336 \var{f\_op}. Dato che è cura del VFS quando crea la struttura all'apertura del
337 file assegnare a \var{f\_op} il puntatore alla versione di
338 \kstruct{file\_operation} corretta per quel file, sarà possibile scrivere allo
339 stesso modo sulla porta seriale come su un normale file di dati, e lavorare
340 sui file allo stesso modo indipendentemente dal filesystem.
341
342 Il VFS realizza la quasi totalità delle operazioni relative ai file grazie
343 alle funzioni presenti nelle due strutture \kstruct{inode\_operation} e
344 \kstruct{file\_operation}.  Ovviamente non è detto che tutte le operazioni
345 possibili siano poi disponibili in tutti i casi, ad esempio \code{llseek} non
346 sarà presente per un dispositivo come la porta seriale o per una fifo, mentre
347 sui file del filesystem \texttt{vfat} non saranno disponibili i permessi, ma
348 resta il fatto che grazie al VFS le \textit{system call} per le operazioni sui
349 file possono restare sempre le stesse nonostante le enormi differenze che
350 possono esserci negli oggetti a cui si applicano.
351  
352
353 \itindend{Virtual~File~System}
354
355 % NOTE: documentazione interessante:
356 %       * sorgenti del kernel: Documentation/filesystems/vfs.txt
357 %       * http://thecoffeedesk.com/geocities/rkfs.html
358 %       * http://www.linux.it/~rubini/docs/vfs/vfs.html
359
360
361
362 \subsection{Il funzionamento di un filesystem Unix}
363 \label{sec:file_filesystem}
364
365 Come già accennato in sez.~\ref{sec:file_arch_overview} Linux (ed ogni sistema
366 unix-like) organizza i dati che tiene su disco attraverso l'uso di un
367 filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
368 quella di poter supportare, grazie al VFS, una enorme quantità di filesystem
369 diversi, ognuno dei quali avrà una sua particolare struttura e funzionalità
370 proprie.  Per questo non entreremo nei dettagli di un filesystem specifico, ma
371 daremo una descrizione a grandi linee che si adatta alle caratteristiche
372 comuni di qualunque filesystem di un sistema unix-like.
373
374 Una possibile strutturazione dell'informazione su un disco è riportata in
375 fig.~\ref{fig:file_disk_filesys}, dove si hanno tre filesystem su tre
376 partizioni. In essa per semplicità si è fatto riferimento alla struttura del
377 filesystem \acr{ext2}, che prevede una suddivisione dei dati in \textit{block
378   group}.  All'interno di ciascun \textit{block group} viene anzitutto
379 replicato il cosiddetto \itindex{superblock} \textit{superblock}, (la
380 struttura che contiene l'indice iniziale del filesystem e che consente di
381 accedere a tutti i dati sottostanti) e creata una opportuna suddivisione dei
382 dati e delle informazioni per accedere agli stessi.  Sulle caratteristiche di
383 \acr{ext2} e derivati torneremo in sez.~\ref{sec:file_ext2}.
384
385 \itindbeg{inode}
386
387 È comunque caratteristica comune di tutti i filesystem per Unix,
388 indipendentemente da come poi viene strutturata nei dettagli questa
389 informazione, prevedere la presenza di due tipi di risorse: gli
390 \textit{inode}, cui abbiamo già accennato in sez.~\ref{sec:file_vfs_work}, che
391 sono le strutture che identificano i singoli oggetti sul filesystem, e i
392 blocchi, che invece attengono allo spazio disco che viene messo a disposizione
393 per i dati in essi contenuti.
394
395 \begin{figure}[!htb]
396   \centering
397   \includegraphics[width=12cm]{img/disk_struct}
398   \caption{Organizzazione dello spazio su un disco in partizioni e
399   filesystem.}
400   \label{fig:file_disk_filesys}
401 \end{figure}
402
403 Se si va ad esaminare con maggiore dettaglio la strutturazione
404 dell'informazione all'interno del filesystem \textsl{ext2}, tralasciando i
405 dettagli relativi al funzionamento del filesystem stesso come la
406 strutturazione in gruppi dei blocchi, il \itindex{superblock}
407 \textit{superblock} e tutti i dati di gestione possiamo esemplificare la
408 situazione con uno schema come quello esposto in
409 fig.~\ref{fig:file_filesys_detail}.
410
411 \begin{figure}[!htb]
412   \centering
413   \includegraphics[width=12cm]{img/filesys_struct}
414   \caption{Strutturazione dei dati all'interno di un filesystem.}
415   \label{fig:file_filesys_detail}
416 \end{figure}
417
418 Da fig.~\ref{fig:file_filesys_detail} si evidenziano alcune delle
419 caratteristiche di base di un filesystem, che restano le stesse anche su
420 filesystem la cui organizzazione dei dati è totalmente diversa da quella
421 illustrata, e sulle quali è bene porre attenzione visto che sono fondamentali
422 per capire il funzionamento delle funzioni che manipolano i file e le
423 directory che tratteremo nel prosieguo del capitolo. In particolare è
424 opportuno tenere sempre presente che:
425
426
427 \begin{enumerate}
428   
429 \item L'\textit{inode} contiene i cosiddetti \textsl{metadati}, vale dire le
430   informazioni riguardanti le proprietà del file come oggetto del filesystem:
431   il tipo di file, i permessi di accesso, le dimensioni, i puntatori ai
432   blocchi fisici che contengono i dati e così via. Le informazioni che la
433   funzione \func{stat} (vedi sez.~\ref{sec:file_stat}) fornisce provengono
434   dall'\textit{inode}.  Dentro una directory si troverà solo il nome del file
435   e il numero dell'\textit{inode} ad esso associato; il nome non è una
436   proprietà del file e non viene mantenuto nell'\textit{inode}. Da da qui in
437   poi chiameremo il nome del file contenuto in una directory
438   ``\textsl{voce}'', come traduzione della nomenclatura inglese
439   \textit{directory entry} che non useremo per evitare confusione con le
440   \textit{dentry} del kernel viste in sez.~\ref{sec:file_vfs_work}.
441   
442 \item Come mostrato in fig.~\ref{fig:file_filesys_detail} per i file
443   \texttt{macro.tex} e \texttt{gapil\_macro.tex}, ci possono avere più voci
444   che fanno riferimento allo stesso \textit{inode}. Fra le proprietà di un
445   file mantenute nell'\textit{inode} c'è anche il contatore con il numero di
446   riferimenti che sono stati fatti ad esso, il cosiddetto \textit{link
447     count}.\footnote{mantenuto anche nel campo \var{i\_nlink} della struttura
448     \kstruct{inode} di fig.~\ref{fig:kstruct_inode}.}  Solo quando questo
449   contatore si annulla i dati del file possono essere effettivamente rimossi
450   dal disco. Per questo la funzione per cancellare un file si chiama
451   \func{unlink} (vedi sez.~\ref{sec:link_symlink_rename}), ed in realtà non
452   cancella affatto i dati del file, ma si limita ad eliminare la relativa voce
453   da una directory e decrementare il numero di riferimenti
454   nell'\textit{inode}.
455   
456 \item All'interno di ogni filesystem ogni \textit{inode} è identificato da un
457   numero univoco. Il numero di \textit{inode} associato ad una voce in una
458   directory si riferisce ad questo numero e non ci può essere una directory
459   che contiene riferimenti ad \textit{inode} relativi ad altri filesystem.
460   Questa è la ragione che limita l'uso del comando \cmd{ln}, che crea una
461   nuova voce per un file esistente con la funzione \func{link} (vedi
462   sez.~\ref{sec:link_symlink_rename}), a operare su file nel filesystem
463   corrente.
464   
465 \item Quando si cambia nome ad un file senza cambiare filesystem il contenuto
466   del file non viene spostato fisicamente, viene semplicemente creata una
467   nuova voce per l'\textit{inode} in questione e rimossa la precedente, questa
468   è la modalità in cui opera normalmente il comando \cmd{mv} attraverso la
469   funzione \func{rename} (vedi sez.~\ref{sec:link_symlink_rename}). Questa
470   operazione non modifica minimamente neanche l'\textit{inode} del file, dato
471   che non si opera sul file ma sulla directory che lo contiene.
472
473 \item Gli \textit{inode} dei file, che contengono i \textsl{metadati}, ed i
474   blocchi di spazio disco, che contengono i dati, sono risorse indipendenti ed
475   in genere vengono gestite come tali anche dai diversi filesystem; è pertanto
476   possibile esaurire sia lo spazio disco (il caso più comune) che lo spazio
477   per gli \textit{inode}. Nel primo caso non sarà possibile allocare ulteriore
478   spazio, ma si potranno creare file (vuoti), nel secondo non si potranno
479   creare nuovi file, ma si potranno estendere quelli che ci
480   sono.\footnote{questo comportamento non è generale, alcuni filesystem
481     evoluti possono evitare il problema dell'esaurimento degli \textit{inode}
482     riallocando lo spazio disco libero per i blocchi.}
483
484 \end{enumerate}
485
486 \begin{figure}[!htb]
487   \centering 
488   \includegraphics[width=12cm]{img/dir_links}
489   \caption{Organizzazione dei \textit{link} per le directory.}
490   \label{fig:file_dirs_link}
491 \end{figure}
492
493 Infine tenga presente che, essendo file pure loro, il numero di riferimenti
494 esiste anche per le directory. Per questo se a partire dalla situazione
495 mostrata in fig.~\ref{fig:file_filesys_detail} creiamo una nuova directory
496 \file{img} nella directory \file{gapil}, avremo una situazione come quella
497 illustrata in fig.~\ref{fig:file_dirs_link}.
498
499 La nuova directory avrà un numero di riferimenti pari a due, in quanto è
500 referenziata dalla directory da cui si era partiti (in cui è inserita la nuova
501 voce che fa riferimento a \texttt{img}) e dalla voce interna ``\texttt{.}''
502 che è presente in ogni directory.  Questo è il valore che si troverà sempre
503 per ogni directory che non contenga a sua volta altre directory. Al contempo,
504 la directory da cui si era partiti avrà un numero di riferimenti di almeno
505 tre, in quanto adesso sarà referenziata anche dalla voce ``\texttt{..}'' di
506 \texttt{img}. L'aggiunta di una sottodirectory fa cioè crescere di uno il
507 \textit{link count} della directory genitrice.
508
509 \itindend{inode}
510
511
512 \subsection{Alcuni dettagli sul filesystem \textsl{ext2} e successori}
513 \label{sec:file_ext2}
514
515
516 Benché non esista ``il'' filesystem di Linux, dato che esiste un supporto
517 nativo di diversi filesystem che sono in uso da anni, quello che gli avvicina
518 di più è la famiglia di filesystem evolutasi a partire dal \textit{second
519   extended filesystem}, o \acr{ext2}. Il filesystem \acr{ext2} ha subito un
520 grande sviluppo e diverse evoluzioni, fra cui l'aggiunta del
521 \textit{journaling} con il passaggio ad \acr{ext3}, che probabilmente è ancora
522 il filesystem più diffuso, ed una serie di ulteriori miglioramenti con il
523 successivo \acr{ext4}, che sta iniziando a sostituirlo gradualmente. In futuro
524 è previsto che questo debba essere sostituito da un filesystem completamente
525 diverso, \acr{btrfs}, che dovrebbe diventare il filesystem standard di Linux,
526 ma questo al momento è ancora in fase di sviluppo.\footnote{si fa riferimento
527   al momento dell'ultima revisione di di questo paragrafo, l'inizio del 2012.}
528
529 Il filesystem \acr{ext2} nasce come filesystem nativo per Linux a partire
530 dalle prime versioni del kernel e supporta tutte le caratteristiche di un
531 filesystem standard Unix: è in grado di gestire nomi di file lunghi (256
532 caratteri, estensibili a 1012) e supporta una dimensione massima dei file fino
533 a 4~Tb. I successivi filesystem \acr{ext3} ed \acr{ext4} sono evoluzioni di
534 questo filesystem, e sia pure con molti miglioramenti ed estensioni
535 significative ne mantengono le caratteristiche fondamentali.
536
537 Oltre alle caratteristiche standard, \acr{ext2} fornisce alcune estensioni che
538 non sono presenti su un classico filesystem di tipo Unix; le principali sono
539 le seguenti:
540 \begin{itemize}
541 \item i \textit{file attributes} consentono di modificare il comportamento del
542   kernel quando agisce su gruppi di file. Possono essere impostati su file e
543   directory e in quest'ultimo caso i nuovi file creati nella directory
544   ereditano i suoi attributi.
545 \item sono supportate entrambe le semantiche di BSD e SVr4 come opzioni di
546   montaggio. La semantica BSD comporta che i file in una directory sono creati
547   con lo stesso identificatore di gruppo della directory che li contiene. La
548   semantica SVr4 comporta che i file vengono creati con l'identificatore del
549   gruppo primario del processo, eccetto il caso in cui la directory ha il bit
550   di \acr{sgid} impostato (per una descrizione dettagliata del significato di
551   questi termini si veda sez.~\ref{sec:file_access_control}), nel qual caso
552   file e subdirectory ereditano sia il \ids{GID} che lo \acr{sgid}.
553 \item l'amministratore può scegliere la dimensione dei blocchi del filesystem
554   in fase di creazione, a seconda delle sue esigenze: blocchi più grandi
555   permettono un accesso più veloce, ma sprecano più spazio disco.
556 \item il filesystem implementa collegamenti simbolici veloci, in cui il nome
557   del file non è salvato su un blocco, ma tenuto all'interno \itindex{inode}
558   dell'\textit{inode} (evitando letture multiple e spreco di spazio), non
559   tutti i nomi però possono essere gestiti così per limiti di spazio (il
560   limite è 60 caratteri).
561 \item vengono supportati i file immutabili (che possono solo essere letti) per
562   la protezione di file di configurazione sensibili, o file
563   \textit{append-only} che possono essere aperti in scrittura solo per
564   aggiungere dati (caratteristica utilizzabile per la protezione dei file di
565   log).
566 \end{itemize}
567
568 La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD: un
569 filesystem è composto da un insieme di blocchi, la struttura generale è quella
570 riportata in fig.~\ref{fig:file_filesys_detail}, in cui la partizione è divisa
571 in gruppi di blocchi.
572
573 Ciascun gruppo di blocchi contiene una copia delle informazioni essenziali del
574 filesystem (i \itindex{superblock} \textit{superblock} sono quindi ridondati)
575 per una maggiore affidabilità e possibilità di recupero in caso di corruzione
576 del \itindex{superblock} \textit{superblock} principale. L'utilizzo di
577 raggruppamenti di blocchi ha inoltre degli effetti positivi nelle prestazioni
578 dato che viene ridotta la distanza fra i dati e la tabella degli
579 \itindex{inode} \textit{inode}.
580
581 \begin{figure}[!htb]
582   \centering
583   \includegraphics[width=9cm]{img/dir_struct}  
584   \caption{Struttura delle directory nel \textit{second extended filesystem}.}
585   \label{fig:file_ext2_dirs}
586 \end{figure}
587
588 Le directory sono implementate come una \itindex{linked~list} \textit{linked
589   list} con voci di dimensione variabile. Ciascuna voce della lista contiene
590 il numero di \itindex{inode} \textit{inode}, la sua lunghezza, il nome del
591 file e la sua lunghezza, secondo lo schema in fig.~\ref{fig:file_ext2_dirs};
592 in questo modo è possibile implementare nomi per i file anche molto lunghi
593 (fino a 1024 caratteri) senza sprecare spazio disco.
594
595 Con l'introduzione del filesystem \textit{ext3} sono state introdotte diverse
596 modifiche strutturali, la principale di queste è quella che \textit{ext3} è un
597 filesystem \textit{journaled}, è cioè in grado di eseguire una registrazione
598 delle operazioni di scrittura su un giornale (uno speciale file interno) in
599 modo da poter garantire il ripristino della coerenza dei dati del
600 filesystem\footnote{si noti bene che si è parlato di dati \textsl{del}
601   filesystem, non di dati \textsl{nel} filesystem, quello di cui viene
602   garantito un veloce ripristino è relativo ai dati della struttura interna
603   del filesystem, non di eventuali dati contenuti nei file che potrebbero
604   essere stati persi.} in brevissimo tempo in caso di interruzione improvvisa
605 della corrente o di crollo del sistema che abbia causato una interruzione
606 della scrittura dei dati sul disco.
607
608 Oltre a questo \textit{ext3} introduce ulteriori modifiche volte a migliorare
609 sia le prestazioni che la semplicità di gestione del filesystem, in
610 particolare per le directory si è passato all'uso di alberi binari con
611 indicizzazione tramite hash al posto delle \textit{linked list} che abbiamo
612 illustrato, ottenendo un forte guadagno di prestazioni in caso di directory
613 contenenti un gran numero di file.
614
615 % TODO (bassa priorità) portare a ext3, ext4 e btrfs ed illustrare le
616 % problematiche che si possono incontrare (in particolare quelle relative alla
617 % perdita di contenuti in caso di crash del sistema)
618 % TODO (media priorità) trattare btrfs quando sarà usato come stabile
619
620
621 \subsection{La gestione dell'uso dei filesystem}
622 \label{sec:filesystem_mounting}
623
624 Come accennato in sez.~\ref{sec:file_arch_overview} per poter accedere ai file
625 occorre rendere disponibile al sistema il filesystem su cui essi sono
626 memorizzati. L'operazione di attivazione del filesystem è chiamata
627 \textsl{montaggio} e per far questo in Linux si usa la funzione di sistema
628 \funcd{mount}, il cui prototipo è:\footnote{la funzione è una versione
629   specifica di Linux che usa la omonima \textit{system call} e non è
630   portabile.}
631
632 \begin{funcproto}{ 
633 \fhead{sys/mount.h} 
634 \fdecl{mount(const char *source, const char *target, const char
635   *filesystemtype, \\ 
636 \phantom{mount(}unsigned long mountflags, const void *data)}
637 \fdesc{Monta un filesystem.} 
638 }
639 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
640   caso \var{errno} assumerà uno dei valori:
641   \begin{errlist}
642   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
643     componenti del \textit{pathname}, o si è cercato di montare un filesystem
644     disponibile in sola lettura senza aver specificato \const{MS\_RDONLY} o il
645     device \param{source} è su un filesystem montato con l'opzione
646     \const{MS\_NODEV}.
647   \item[\errcode{EBUSY}] \param{source} è già montato, o non può essere
648     rimontato in sola lettura perché ci sono ancora file aperti in scrittura,
649     o non può essere montato su \param{target} perché la directory è ancora in
650     uso.
651   \item[\errcode{EINVAL}] il dispositivo \param{source} presenta un
652     \itindex{superblock} \textit{superblock} non valido, o si è cercato di
653     rimontare un filesystem non ancora montato, o di montarlo senza
654     che \param{target} sia un \itindex{mount~point} \textit{mount point} o di
655     spostarlo quando \param{target} non è un \itindex{mount~point}
656     \textit{mount point} o è la radice.
657   \item[\errcode{ELOOP}] si è cercato di spostare un \itindex{mount~point}
658     \textit{mount point} su una sottodirectory di \param{source} o si sono
659     incontrati troppi collegamenti simbolici nella risoluzione di un nome.
660   \item[\errcode{EMFILE}] in caso di filesystem virtuale, la tabella dei
661     dispositivi fittizi (chiamati \textit{dummy} nella documentazione inglese)
662     è piena.
663   \item[\errcode{ENODEV}] il tipo \param{filesystemtype} non esiste o non è
664     configurato nel kernel.
665   \item[\errcode{ENOTBLK}] non si è usato un \textit{block device} per
666     \param{source} quando era richiesto.
667   \item[\errcode{ENXIO}] il \itindex{major~number} \textit{major number} del
668     dispositivo \param{source} è sbagliato.
669   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
670   \end{errlist} 
671   ed inoltre \errval{EFAULT}, \errval{ENOMEM}, \errval{ENAMETOOLONG},
672   \errval{ENOENT}, \errval{ENOTDIR} nel loro significato generico.}
673 \end{funcproto}
674
675 La funzione monta sulla directory indicata da \param{target}, detta
676 \itindex{mount~point} \textit{mount point}, il filesystem contenuto nel file
677 di dispositivo indicato da \param{source}. In entrambi i casi, come daremo per
678 assunto da qui in avanti tutte le volte che si parla di directory o file nel
679 passaggio di un argomento di una funzione, si intende che questi devono essere
680 indicati con la stringa contenente il loro \textit{pathname}.
681
682 Normalmente un filesystem è contenuto su un disco o una partizione, ma come
683 illustrato in sez.~\ref{sec:file_vfs_work} la struttura del
684 \itindex{Virtual~File~System} \textit{Virtual File System} è estremamente
685 flessibile e può essere usata anche per oggetti diversi da un disco. Ad
686 esempio usando il \textit{loop device} si può montare un file qualunque (come
687 l'immagine di un CD-ROM o di un floppy) che contiene l'immagine di un
688 filesystem, inoltre alcuni tipi di filesystem, come \texttt{proc} o
689 \texttt{sysfs} sono virtuali e non hanno un supporto che ne contenga i dati,
690 che invece sono generati al volo ad ogni lettura, e passati indietro al kernel
691 ad ogni scrittura.\footnote{costituiscono quindi un meccanismo di
692   comunicazione, attraverso l'ordinaria interfaccia dei file, con il kernel.}
693
694 Il tipo di filesystem che si vuole montare è specificato
695 dall'argomento \param{filesystemtype}, che deve essere una delle stringhe
696 riportate nel file \procfile{/proc/filesystems} che, come accennato in
697 sez.~\ref{sec:file_vfs_work}, contiene l'elenco dei filesystem supportati dal
698 kernel. Nel caso si sia indicato un filesystem virtuale, che non è associato a
699 nessun file di dispositivo, il contenuto di \param{source} viene ignorato.
700
701 L'argomento \param{data} viene usato per passare le impostazioni relative alle
702 caratteristiche specifiche di ciascun filesystem. Si tratta di una stringa di
703 parole chiave (separate da virgole e senza spazi) che indicano le cosiddette
704 ``\textsl{opzioni}'' del filesystem che devono essere impostate; in genere
705 viene usato direttamente il contenuto del parametro dell'opzione \texttt{-o}
706 del comando \texttt{mount}. I valori utilizzabili dipendono dal tipo di
707 filesystem e ciascuno ha i suoi, pertanto si rimanda alla documentazione della
708 pagina di manuale di questo comando e dei singoli filesystem.
709
710 Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
711 disponibile nella directory specificata come \itindex{mount~point}
712 \textit{mount point}, il precedente contenuto di detta directory viene
713 mascherato dal contenuto della directory radice del filesystem montato. Fino
714 ai kernel della serie 2.2.x non era possibile montare un filesystem se un
715 \textit{mount point} era già in uso. 
716
717 A partire dal kernel 2.4.x inoltre è divenuto possibile sia spostare
718 atomicamente un \itindex{mount~point} \textit{mount point} da una directory ad
719 un'altra, sia montare lo stesso filesystem in diversi \itindex{mount~point}
720 \textit{mount point}, sia montare più filesystem sullo stesso
721 \itindex{mount~point} \textit{mount point} impilandoli l'uno sull'altro, nel
722 qual caso vale comunque quanto detto in precedenza, e cioè che solo il
723 contenuto dell'ultimo filesystem montato sarà visibile.
724
725 Oltre alle opzioni specifiche di ciascun filesystem, che si passano nella
726 forma della lista di parole chiave indicata con l'argomento \param{data},
727 esistono pure alcune opzioni che si possono applicare in generale, anche se
728 non è detto che tutti i filesystem le supportino, che si specificano tramite
729 l'argomento \param{mountflags}.  L'argomento inoltre può essere utilizzato per
730 modificare il comportamento della funzione \func{mount}, facendole compiere
731 una operazione diversa (ad esempio un rimontaggio, invece che un montaggio).
732
733 In Linux \param{mountflags} deve essere un intero a 32 bit; fino ai kernel
734 della serie 2.2.x i 16 più significativi avevano un valore riservato che
735 doveva essere specificato obbligatoriamente,\footnote{il valore era il
736   \itindex{magic~number} \textit{magic number} \code{0xC0ED}, si può usare la
737   costante \const{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags}
738   riservata al \textit{magic number}, mentre per specificarlo si può dare un
739   OR aritmetico con la costante \const{MS\_MGC\_VAL}.} e si potevano usare
740 solo i 16 meno significativi. Oggi invece, con un numero di opzioni superiore,
741 sono utilizzati tutti e 32 i bit, ma qualora nei 16 più significativi sia
742 presente detto valore, che non esprime una combinazione valida, esso viene
743 ignorato. Il valore dell'argomento deve essere espresso come maschera binaria
744 e i vari bit che lo compongono, detti anche \textit{mount flags}, devono
745 essere impostati con un OR aritmetico dei valori dalle costanti riportate
746 nell'elenco seguente:
747
748 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
749 \itindbeg{bind~mount}
750 \item[\const{MS\_BIND}] Effettua un cosiddetto \textit{bind mount}, in cui è
751   possibile montare una directory di un filesystem in un'altra directory,
752   l'opzione è disponibile a partire dai kernel della serie 2.4. In questo caso
753   verranno presi in considerazione solo gli argomenti \param{source}, che
754   stavolta indicherà la directory che si vuole montare e non un file di
755   dispositivo, e \param{target} che indicherà la directory su cui verrà
756   effettuato il \textit{bind mount}. Gli argomenti \param{filesystemtype}
757   e \param{data} vengono ignorati.
758
759   In sostanza quello che avviene è che in corrispondenza del \textit{pathname}
760   indicato da \param{target} viene montato \itindex{inode} l'\textit{inode}
761   di \param{source}, così che la porzione di albero dei file presente sotto
762   \param{source} diventi visibile allo stesso modo sotto
763   \param{target}. Trattandosi esattamente dei dati dello stesso filesystem,
764   ogni modifica fatta in uno qualunque dei due rami di albero sarà visibile
765   nell'altro, visto che entrambi faranno riferimento agli stessi
766   \textit{inode}.
767
768   Dal punto di vista del \itindex{Virtual~File~System} VFS l'operazione è
769   analoga al montaggio di un filesystem proprio nel fatto che anche in questo
770   caso si inserisce in corrispondenza della \textit{dentry} di \texttt{target}
771   un diverso \itindex{inode} \textit{inode}, che stavolta, invece di essere
772   quello della radice del filesystem indicato da un file di dispositivo, è
773   quello di una directory già montata.
774
775   Si tenga presente che proprio per questo sotto \param{target} comparirà il
776   contenuto che è presente sotto \param{source} all'interno del filesystem in
777   cui quest'ultima è contenuta. Questo potrebbe non corrispondere alla
778   porzione di albero che sta sotto \param{source} qualora in una
779   sottodirectory di quest'ultima si fosse effettuato un altro montaggio. In
780   tal caso infatti nella porzione di albero sotto \param{source} si troverebbe
781   il contenuto del nuovo filesystem (o di un altro \textit{bind mount}) mentre
782   sotto \param{target} ci sarebbe il contenuto presente nel filesystem
783   originale.\footnote{questo evita anche il problema dei \textit{loop} di
784     fig.~\ref{fig:file_link_loop}, dato che se anche si montasse su
785     \param{target} una directory in cui essa è contenuta, il cerchio non
786     potrebbe chiudersi perché ritornati a \param{target} dentro il
787     \textit{bind mount} vi si troverebbe solo il contenuto originale e non si
788     potrebbe tornare indietro.}
789
790   Fino al kernel 2.6.26 questo flag doveva essere usato da solo, in quanto il
791   \textit{bind mount} continuava ad utilizzare le stesse opzioni del montaggio
792   originale, dal 2.6.26 è stato introdotto il supporto per il cosiddetto
793   \textit{read-only bind mount} e viene onorata la presenza aggiuntiva del
794   flag \const{MS\_RDONLY}. In questo modo si ottiene che l'accesso ai file
795   sotto \param{target} sia effettuabile esclusivamente in sola lettura.
796
797   Il supporto per il \textit{bind mount} consente di superare i limiti
798   presenti per gli \textit{hard link} (di cui parleremo in
799   sez.~\ref{sec:link_symlink_rename}) con la possibilità di fare riferimento
800   alla porzione dell'albero dei file di un filesystem presente a partire da
801   una certa directory, utilizzando una qualunque altra directory, anche se
802   questa sta su un filesystem diverso. Si può così fornire una alternativa
803   all'uso dei collegamenti simbolici (di cui parleremo in
804   sez.~\ref{sec:link_symlink_rename}) che funziona correttamente anche
805   all'intero di un \textit{chroot} (argomento su cui torneremo in
806   sez.~\ref{sec:file_chroot}).  \itindend{bind~mount}
807
808 \item[\const{MS\_DIRSYNC}] Richiede che ogni modifica al contenuto di una
809   directory venga immediatamente registrata su disco in maniera sincrona
810   (introdotta a partire dai kernel della serie 2.6). L'opzione si applica a
811   tutte le directory del filesystem, ma su alcuni filesystem è possibile
812   impostarla a livello di singole directory o per i sottorami di una directory
813   con il comando \cmd{chattr}.\footnote{questo avviene tramite delle opportune
814     \texttt{ioctl} (vedi sez.~\ref{sec:file_ioctl}).}
815
816   Questo consente di ridurre al minimo il rischio di perdita dei dati delle
817   directory in caso di crollo improvviso del sistema, al costo di una certa
818   perdita di prestazioni dato che le funzioni di scrittura relative ad
819   operazioni sulle directory non saranno più bufferizzate e si bloccheranno
820   fino all'arrivo dei dati sul disco prima che un programma possa proseguire.
821
822 \item[\const{MS\_MANDLOCK}] Consente l'uso del \textit{mandatory locking}
823   \itindex{mandatory~locking} (vedi sez.~\ref{sec:file_mand_locking}) sui file
824   del filesystem. Per poterlo utilizzare effettivamente però esso dovrà essere
825   comunque attivato esplicitamente per i singoli file impostando i permessi
826   come illustrato in sez.~\ref{sec:file_mand_locking}.
827
828 \item[\const{MS\_MOVE}] Effettua uno del spostamento del \itindex{mount~point}
829   \textit{mount point} di un filesystem. La directory del
830   \itindex{mount~point} \textit{mount point} originale deve essere indicata
831   nell'argomento \param{source}, e la sua nuova posizione
832   nell'argomento \param{target}. Tutti gli altri argomenti della funzione
833   vengono ignorati.
834
835   Lo spostamento avviene atomicamente, ed il ramo di albero presente
836   sotto \param{source} sarà immediatamente visibile sotto \param{target}. Non
837   esiste cioè nessun momento in cui il filesystem non risulti montato in una o
838   nell'altra directory e pertanto è garantito che la risoluzione di
839   \itindsub{pathname}{relativo} \textit{pathname} relativi all'interno del
840   filesystem non possa fallire.
841
842 \item[\const{MS\_NOATIME}] Viene disabilitato sul filesystem l'aggiornamento
843   degli \textit{access time} (vedi sez.~\ref{sec:file_file_times}) per
844   qualunque tipo di file. Dato che l'aggiornamento degli \textit{access time}
845   è una funzionalità la cui utilità è spesso irrilevante ma comporta un costo
846   elevato visto che una qualunque lettura comporta comunque una scrittura su
847   disco,\footnote{e questo ad esempio ha conseguenze molto pesanti nell'uso
848     della batteria sui portatili.} questa opzione consente di disabilitarla
849   completamente. La soluzione può risultare troppo drastica dato che
850   l'informazione viene comunque utilizzata da alcuni programmi, per cui nello
851   sviluppo del kernel sono state introdotte altre opzioni che forniscono
852   soluzioni più appropriate e meno radicali.
853
854 \item[\const{MS\_NODEV}] Viene disabilitato sul filesystem l'accesso ai file
855   di dispositivo eventualmente presenti su di esso. L'opzione viene usata come
856   misura di precauzione per rendere inutile la presenza di eventuali file di
857   dispositivo su filesystem che non dovrebbero contenerne.\footnote{si ricordi
858     che le convenzioni del \itindex{Filesystem~Hierarchy~Standard~(FHS)}
859     \textit{Linux Filesystem Hierarchy Standard} richiedono che questi siano
860     mantenuti esclusivamente sotto \texttt{/dev}.}
861
862   Viene utilizzata, assieme a \const{MS\_NOEXEC} e \const{MS\_NOSUID}, per
863   fornire un accesso più controllato a quei filesystem di cui gli utenti hanno
864   il controllo dei contenuti, in particolar modo quelli posti su dispositivi
865   rimuovibili. In questo modo si evitano alla radice possibili situazioni in
866   cui un utente malizioso inserisce su uno di questi filesystem dei file di
867   dispositivo con permessi ``opportunamente'' ampliati che gli consentano di
868   accedere anche a risorse cui non dovrebbe.
869
870 \item[\const{MS\_NODIRATIME}] Viene disabilitato sul filesystem
871   l'aggiornamento degli \textit{access time} (vedi
872   sez.~\ref{sec:file_file_times}), ma soltanto per le directory. Costituisce
873   una alternativa per \const{MS\_NOATIME}, che elimina l'informazione per le
874   directory, che in pratica che non viene mai utilizzata, mantenendola per i
875   file in cui invece ha un impiego, sia pur limitato.
876
877 \item[\const{MS\_NOEXEC}] Viene disabilitata sul filesystem l'esecuzione di un
878   qualunque file eseguibile eventualmente presente su di esso. L'opzione viene
879   usata come misura di precauzione per rendere impossibile l'uso di programmi
880   posti su filesystem che non dovrebbero contenerne.
881
882   Anche in questo caso viene utilizzata per fornire un accesso più controllato
883   a quei filesystem di cui gli utenti hanno il controllo dei contenuti. Da
884   questo punto di vista l'opzione è meno importante delle analoghe
885   \const{MS\_NODEV} e \const{MS\_NOSUID} in quanto l'esecuzione di un
886   programma creato dall'utente pone un livello di rischio nettamente
887   inferiore, ed è in genere consentita per i file contenuti nella sua home
888   directory.\footnote{cosa che renderebbe superfluo l'attivazione di questa
889     opzione, il cui uso ha senso solo per ambienti molto controllati in cui si
890     vuole che gli utenti eseguano solo i programmi forniti
891     dall'amministratore.}
892
893 \item[\const{MS\_NOSUID}] Viene disabilitato sul filesystem l'effetto dei bit
894   dei permessi \itindex{suid~bit} \acr{suid} e \itindex{sgid~bit} \acr{sgid}
895   (vedi sez.~\ref{sec:file_special_perm}) eventualmente presenti sui file in
896   esso contenuti. L'opzione viene usata come misura di precauzione per rendere
897   inefficace l'effetto di questi bit per filesystem in cui non ci dovrebbero
898   essere file dotati di questi permessi.
899
900   Di nuovo viene utilizzata, analogamente a \const{MS\_NOEXEC} e
901   \const{MS\_NODEV}, per fornire un accesso più controllato a quei filesystem
902   di cui gli utenti hanno il controllo dei contenuti. In questo caso si evita
903   che un utente malizioso possa inserire su uno di questi filesystem un
904   eseguibile con il bit \itindex{suid~bit} \acr{suid} attivo e di proprietà
905   dell'amministratore o di un altro utente, che gli consentirebbe di eseguirlo
906   per conto di quest'ultimo.
907
908 \item[\const{MS\_PRIVATE}] Marca un \itindex{mount~point} \textit{mount point}
909   come privato. Si tratta di una delle nuove opzioni (insieme a
910   \const{MS\_SHARED}, \const{MS\_SLAVE} e \const{MS\_UNBINDABLE}) facenti
911   parte dell'infrastruttura degli \itindex{shared~subtree} \textit{shared
912     subtree} introdotta a partire dal kernel 2.6.15, che estendono le
913   funzionalità dei \itindex{bind~mount} \textit{bind mount}. In questo caso
914   \param{target} dovrà fare riferimento al \textit{mount point} che si intende
915   marcare, e tutti gli altri argomenti verranno ignorati.
916
917   Di default, finché non lo si marca altrimenti con una delle altre opzioni
918   dell'interfaccia \itindex{shared~subtree} \textit{shared subtree}, ogni
919   \textit{mount point} è privato. Ogni \textit{bind mount} ottenuto da un
920   \itindex{mount~point} \textit{mount point} di tipo \textit{private} si
921   comporta come descritto nella trattazione di \const{MS\_BIND}. Si usa questo
922   flag principalmente per revocare gli effetti delle altre opzioni e riportare
923   il comportamento a quello ordinario.
924
925 \item[\const{MS\_RDONLY}] Esegue il montaggio del filesystem in sola lettura,
926   non sarà possibile nessuna modifica ai suoi contenuti. Viene usato tutte le
927   volte che si deve accedere ai contenuti di un filesystem con la certezza che
928   questo non venga modificato (ad esempio per ispezionare un filesystem
929   corrotto). All'avvio di default il kernel monta la radice in questa
930   modalità.
931
932 \item[\const{MS\_REC}] Applica ricorsivamente a tutti i \itindex{mount~point}
933   \textit{mount point} presenti al di sotto del \textit{mount point} indicato
934   gli effetti della opzione degli \itindex{shared~subtree} \textit{shared
935     subtree} associata. Anche questo caso l'argomento \param{target} deve fare
936   riferimento ad un \itindex{mount~point} \textit{mount point} e tutti gli
937   altri argomenti sono ignorati, ed il flag deve essere indicato assieme ad
938   una fra \const{MS\_PRIVATE}, \const{MS\_SHARED}, \const{MS\_SLAVE} e
939   \const{MS\_UNBINDABLE}.
940
941 \item[\const{MS\_RELATIME}] Indica di effettuare l'aggiornamento degli
942   \textit{access time} sul filesystem soltanto quando questo risulti
943   antecedente il valore corrente del \textit{modification time} o del
944   \textit{change time} (per i tempi dei file si veda
945   sez.~\ref{sec:file_file_times}). L'opzione è disponibile a partire dal
946   kernel 2.6.20, mentre dal 2.6.30 questo è diventato il comportamento di
947   default del sistema, che può essere riportato a quello tradizionale con
948   l'uso di \const{MS\_STRICTATIME}. Sempre dal 2.6.30 il comportamento è stato
949   anche modificato e l'\textit{access time} viene comunque aggiornato se è più
950   vecchio di un giorno.
951
952   L'opzione consente di evitare i problemi di prestazioni relativi
953   all'aggiornamento dell'\textit{access time} senza avere impatti negativi
954   riguardo le funzionalità, il comportamento adottato infatti consente di
955   rendere evidente che vi è stato un accesso dopo la scrittura, ed evitando al
956   contempo ulteriori operazioni su disco negli accessi successivi. In questo
957   modo l'informazione relativa al fatto che un file sia stato letto resta
958   disponibile, ed i programmi che ne fanno uso continuano a funzionare. Con
959   l'introduzione di questo comportamento l'uso delle alternative
960   \const{MS\_NOATIME} e \const{MS\_NODIRATIME} è sostanzialmente inutile.
961
962 \item[\const{MS\_REMOUNT}] Consente di rimontare un filesystem già montato
963   cambiandone le opzioni di montaggio in maniera atomica. In questo modo si
964   possono modificare le opzioni del filesystem anche se questo è in uso. Gli
965   argomenti \param{source} e \param{target} devono essere gli stessi usati per
966   il montaggio originale, mentre sia \param{data} che \param{mountflags}
967   conterranno le nuove opzioni, \param{filesystemtype} viene ignorato.
968
969   Qualunque opzione specifica del filesystem indicata con \param{data} può
970   essere modificata, mentre con \param{mountflags} possono essere modificate
971   solo alcune opzioni generiche. Con i kernel più recenti queste sono soltanto
972   \const{MS\_MANDLOCK}, \const{MS\_RDONLY} e \const{MS\_SYNCHRONOUS}, prima
973   del kernel 2.6.16 potevano essere modificate anche le ulteriori
974   \const{MS\_NOATIME} e \const{MS\_NODIRATIME}, ed infine prima del kernel
975   2.4.10 anche \const{MS\_NODEV}, \const{MS\_NOEXEC} e \const{MS\_NOSUID}.
976
977 \item[\const{MS\_SHARED}] Marca un \itindex{mount~point} \textit{mount point}
978   come \textit{shared mount}.  Si tratta di una delle nuove opzioni (insieme a
979   \const{MS\_PRIVATE}, \const{MS\_SLAVE} e \const{MS\_UNBINDABLE}) facenti
980   parte dell'infrastruttura degli \itindex{shared~subtree} \textit{shared
981     subtree} introdotta a partire dal kernel 2.6.15, che estendono le
982   funzionalità dei \itindex{bind~mount} \textit{bind mount}.  In questo caso
983   \param{target} dovrà fare riferimento al \itindex{mount~point} \textit{mount
984     point} che si intende marcare, e tutti gli altri argomenti verranno
985   ignorati.
986
987   Lo scopo dell'opzione è ottenere che tutti i successivi \itindex{bind~mount}
988   \textit{bind mount} effettuati da un \textit{mount point} marcato da essa
989   siano di tipo \textit{shared}, cioè ``\textsl{condividano}'' con l'originale
990   e fra di loro ogni ulteriore operazione di montaggio o smontaggio che
991   avviene su una directory al di sotto di uno qualunque di essi. Le operazioni
992   di montaggio e smontaggio effettuate al di sotto di un qualunque
993   \textit{mount point} così marcato verranno ``\textsl{propagate}'' a tutti i
994   \itindex{mount~point} \textit{mount point} della stessa condivisione, e la
995   sezione di albero di file vista al di sotto di ciascuno di essi sarà sempre
996   identica.
997
998 \item[\const{MS\_SILENT}] Richiede la soppressione di alcuni messaggi di
999   avvertimento nei log del kernel (vedi sez.~\ref{sec:sess_daemon}). L'opzione
1000   è presente a partire dal kernel 2.6.17 e sostituisce, utilizzando un nome
1001   non fuorviante, la precedente \const{MS\_VERBOSE}, introdotta nel kernel
1002   2.6.12, che aveva lo stesso effetto.
1003
1004 \item[\const{MS\_SLAVE}] Marca un \itindex{mount~point} \textit{mount point}
1005   come \textit{slave mount}. Si tratta di una delle nuove opzioni (insieme a
1006   \const{MS\_PRIVATE}, \const{MS\_SHARED} e \const{MS\_UNBINDABLE}) facenti
1007   parte dell'infrastruttura degli \itindex{shared~subtree} \textit{shared
1008     subtree} introdotta a partire dal kernel 2.6.15, che estendono le
1009   funzionalità dei \itindex{bind~mount} \textit{bind mount}.  In questo caso
1010   \param{target} dovrà fare riferimento al \textit{mount point} che si intende
1011   marcare, e tutti gli altri argomenti verranno ignorati.
1012
1013   Lo scopo dell'opzione è ottenere che tutti i successivi \textit{bind mount}
1014   effettuati da un \textit{mount point} marcato da essa siano di tipo
1015   \textit{slave}, cioè ``\textsl{condividano}'' ogni ulteriore operazione di
1016   montaggio o smontaggio che avviene su una directory al di sotto del
1017   \textit{mount point} originale. Le operazioni di montaggio e smontaggio in
1018   questo caso vengono ``\textsl{propagate}'' soltanto dal \textit{mount point}
1019   originale (detto anche \textit{master}) verso gli \textit{slave}, mentre
1020   essi potranno eseguire al loro interno ulteriori montaggi che non saranno
1021   propagati né negli altri né nel \itindex{mount~point} \textit{mount point}
1022   originale.
1023
1024 \item[\const{MS\_STRICTATIME}] Ripristina il comportamento tradizionale per
1025   cui l'\textit{access time} viene aggiornato ad ogni accesso al
1026   file. L'opzione è disponibile solo a partire dal kernel 2.6.30 quando il
1027   comportamento di default del kernel è diventato quello fornito da
1028   \const{MS\_RELATIME}.
1029
1030 \item[\const{MS\_SYNCHRONOUS}] Abilita la scrittura sincrona richiedendo che
1031   ogni modifica al contenuto del filesystem venga immediatamente registrata su
1032   disco. Lo stesso comportamento può essere ottenuto con il flag
1033   \const{O\_SYNC} di \func{open} (vedi sez.~\ref{sec:file_open}).
1034
1035   Questa opzione consente di ridurre al minimo il rischio di perdita dei dati
1036   in caso di crollo improvviso del sistema, al costo di una pesante perdita di
1037   prestazioni dato che tutte le funzioni di scrittura non saranno più
1038   bufferizzate e si bloccheranno fino all'arrivo dei dati sul disco. Per un
1039   compromesso in cui questo comportamento avviene solo per le directory, ed ha
1040   quindi una incidenza nettamente minore, si può usare \const{MS\_DIRSYNC}.
1041
1042 \item[\const{MS\_UNBINDABLE}] Marca un \itindex{mount~point} \textit{mount
1043     point} come \textit{unbindable mount}. Si tratta di una delle nuove
1044   opzioni (insieme a \const{MS\_PRIVATE}, \const{MS\_SHARED} e
1045   \const{MS\_SLAVE}) facenti parte dell'infrastruttura degli
1046   \itindex{shared~subtree} \textit{shared subtree} introdotta a partire dal
1047   kernel 2.6.15, che estendono le funzionalità dei \itindex{bind~mount}
1048   \textit{bind mount}.  In questo caso
1049   \param{target} dovrà fare riferimento al \textit{mount point} che si intende
1050   marcare, e tutti gli altri argomenti verranno ignorati.
1051
1052   Un \textit{mount point} marcato in questo modo disabilita la capacità di
1053   eseguire dei \itindex{bind~mount} \textit{bind mount} del suo contenuto. Si
1054   comporta cioè come allo stesso modo di un \itindex{mount~point}
1055   \textit{mount point} ordinario di tipo \textit{private} con in più la
1056   restrizione che nessuna sua sottodirectory (anche se relativa ad un
1057   ulteriore montaggio) possa essere utilizzata per un come sorgente di un
1058   \itindex{bind~mount} \textit{bind mount}.
1059
1060 \end{basedescript}
1061
1062 % NOTE per \const{MS\_SLAVE},\const{MS\_SHARE}, \const{MS\_PRIVATE} e
1063 % \const{MS\_UNBINDABLE} dal 2.6.15 vedi shared subtrees, in particolare
1064 %  * http://lwn.net/Articles/159077/ e
1065 %  * Documentation/filesystems/sharedsubtree.txt
1066
1067 % TODO: (bassa priorità) non documentati ma presenti in sys/mount.h:
1068 %       * MS_POSIXACL
1069 %       * MS_KERNMOUNT
1070 %       * MS_I_VERSION
1071 %       * MS_ACTIVE
1072 %       * MS_NOUSER
1073
1074
1075 Una volta che non si voglia più utilizzare un certo filesystem è possibile
1076 ``\textsl{smontarlo}'' usando la funzione di sistema \funcd{umount}, il cui
1077 prototipo è:
1078
1079 \begin{funcproto}{ 
1080 \fhead{sys/mount.h}
1081 \fdecl{umount(const char *target)}
1082 \fdesc{Smonta un filesystem.} 
1083 }
1084 {La funzione ritorna  $0$ in caso di successo e $-1$ per un errore,
1085   nel qual caso \var{errno} assumerà uno dei valori: 
1086   \begin{errlist}
1087   \item[\errcode{EBUSY}] il filesystem è occupato.
1088   \item[\errcode{EINVAL}] \param{target} non è un \textit{mount point}.
1089   \item[\errcode{EPERM}] il processo non ha i privilegi di
1090     amministratore.\footnotemark 
1091   \end{errlist}
1092   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1093   \errval{ENOENT}, \errval{ENOMEM} nel loro significato generico.  }
1094 \end{funcproto}
1095
1096 \footnotetext{più precisamente la \itindex{capabilities} capacità
1097   \texttt{CAP\_SYS\_ADMIN}.}
1098
1099 La funzione prende il nome della directory su cui il filesystem è montato e
1100 non il file o il dispositivo che è stato montato,\footnote{questo è vero a
1101   partire dal kernel 2.3.99-pre7, prima esistevano due chiamate separate e la
1102   funzione poteva essere usata anche specificando il file di dispositivo.} in
1103 quanto a partire dai kernel della serie 2.4.x è possibile montare lo stesso
1104 dispositivo in più punti. Nel caso più di un filesystem sia stato montato
1105 sullo stesso \itindex{mount~point} \textit{mount point} viene smontato quello
1106 che è stato montato per ultimo. Si tenga presente che la funzione fallisce se
1107 il filesystem è ``\textsl{occupato}'', cioè quando ci sono ancora dei file
1108 aperti sul filesystem, se questo contiene la \index{directory~di~lavoro}
1109 directory di lavoro di un qualunque processo o il \itindex{mount~point}
1110 \textit{mount point} di un altro filesystem.
1111
1112 Linux provvede inoltre una seconda funzione di sistema, \funcd{umount2}, che
1113 consente un maggior controllo delle operazioni, come forzare lo smontaggio di
1114 un filesystem anche quando questo risulti occupato; il suo prototipo è:
1115
1116 \begin{funcproto}{ 
1117 \fhead{sys/mount.h}
1118 \fdecl{umount2(const char *target, int flags)}
1119 \fdesc{Smonta un filesystem.} 
1120 }
1121 {La funzione ritorna  $0$ in caso di successo e $-1$ per un errore,
1122   nel qual caso \var{errno} assumerà uno dei valori: 
1123   \begin{errlist}
1124      \item[\errcode{EBUSY}] \param{target} è la \index{directory~di~lavoro}
1125        directory di lavoro di qualche processo, o contiene dei file aperti, o un
1126        altro mount point.
1127      \item[\errcode{EAGAIN}] si è chiamata la funzione con \const{MNT\_EXPIRE}
1128        ed il filesystem non era occupato.
1129      \item[\errcode{EINVAL}] \param{target} non è un \itindex{mount~point}
1130        \textit{mount point} o si è usato \const{MNT\_EXPIRE} con
1131        \const{MNT\_FORCE} o \const{MNT\_DETACH} o si è specificato un flag non
1132        esistente.
1133   \end{errlist}
1134   e tutti gli altri valori visti per \func{umount} con lo stesso significato.}
1135 \end{funcproto}
1136
1137 Il valore di \param{flags} è una maschera binaria dei flag che controllano le
1138 modalità di smontaggio, che deve essere specificato con un OR aritmetico delle
1139 costanti illustrate in tab.~\ref{tab:umount2_flags}.  Specificando
1140 \const{MNT\_FORCE} la funzione cercherà di liberare il filesystem anche se è
1141 occupato per via di una delle condizioni descritte in precedenza. A seconda
1142 del tipo di filesystem alcune (o tutte) possono essere superate, evitando
1143 l'errore di \errcode{EBUSY}. In tutti i casi prima dello smontaggio viene
1144 eseguita una sincronizzazione dei dati.
1145
1146 \begin{table}[!htb]
1147   \centering
1148   \footnotesize
1149   \begin{tabular}[c]{|l|p{8cm}|}
1150     \hline
1151     \textbf{Costante} & \textbf{Descrizione}\\
1152     \hline
1153     \hline
1154     \const{MNT\_FORCE}  & forza lo smontaggio del filesystem anche se questo è
1155                           occupato (presente dai kernel della serie 2.2).\\
1156     \const{MNT\_DETACH} & esegue uno smontaggio ``\textsl{pigro}'', in cui si
1157                           blocca l'accesso ma si aspetta che il filesystem si
1158                           liberi (presente dal kernel 2.4.11 e dalla
1159                           \acr{glibc} 2.11).\\ 
1160     \const{MNT\_EXPIRE} & se non occupato marca un \itindex{mount~point} 
1161                           \textit{mount point} come ``\textsl{in scadenza}'' in
1162                           modo che ad una successiva chiamata senza utilizzo
1163                           del filesystem questo venga smontato (presente dal
1164                           kernel 2.6.8 e dalla \acr{glibc} 2.11).\\ 
1165     \const{UMOUNT\_NOFOLLOW}& non dereferenzia \param{target} se questo è un
1166                           collegamento simbolico (vedi
1167                           sez.~\ref{sec:link_symlink_rename}) evitando
1168                           problemi di sicurezza (presente dal kernel 2.6.34).\\ 
1169     \hline
1170   \end{tabular}
1171   \caption{Costanti che identificano i bit dell'argomento \param{flags}
1172     della funzione \func{umount2}.} 
1173   \label{tab:umount2_flags}
1174 \end{table}
1175
1176 Con l'opzione \const{MNT\_DETACH} si richiede invece uno smontaggio
1177 ``\textsl{pigro}'' (o \textit{lazy umount}) in cui il filesystem diventa
1178 inaccessibile per i nuovi processi subito dopo la chiamata della funzione, ma
1179 resta accessibile per quelli che lo hanno ancora in uso e non viene smontato
1180 fintanto che resta occupato.
1181
1182 Con \const{MNT\_EXPIRE}, che non può essere specificato insieme agli altri
1183 due, si marca il \itindex{mount~point} \textit{mount point} di un filesystem
1184 non occupato come ``\textsl{in scadenza}'', in tal caso \func{umount2} ritorna
1185 con un errore di \errcode{EAGAIN}, mentre in caso di filesystem occupato si
1186 sarebbe ricevuto \errcode{EBUSY}.  Una volta marcato, se nel frattempo non
1187 viene fatto nessun uso del filesystem, ad una successiva chiamata con
1188 \const{MNT\_EXPIRE} questo verrà smontato. Questo flag consente di realizzare
1189 un meccanismo che smonti automaticamente i filesystem che restano inutilizzati
1190 per un certo periodo di tempo.
1191
1192 Infine il flag \const{UMOUNT\_NOFOLLOW} non dereferenzia \param{target} se
1193 questo è un collegamento simbolico (vedi
1194 sez.~\ref{sec:link_symlink_rename}). Questa è una misura di sicurezza
1195 introdotta per evitare, per quei filesystem per il quale è prevista una
1196 gestione diretta da parte degli utenti, come quelli basati su
1197 FUSE,\footnote{il \textit{Filesystem in USEr space} (FUSE) è una delle più
1198   interessanti applicazioni del \itindex{Virtual~File~System} VFS che
1199   consente, tramite un opportuno modulo, di implementarne le funzioni in
1200   \textit{user space}, così da rendere possibile l'implementazione di un
1201   qualunque filesystem (con applicazioni di grande interesse come il
1202   filesystem cifrato \textit{encfs} o il filesystem di rete \textit{sshfs})
1203   che possa essere usato direttamente per conto degli utenti.}  che si possano
1204 passare ai programmi che effettuano lo smontaggio dei filesystem, che in
1205 genere sono privilegiati ma consentono di agire solo sui propri \textit{mount
1206   point}, dei collegamenti simbolici che puntano ad altri \textit{mount
1207   point}, ottenendo così la possibilità di smontare qualunque filesystem.
1208
1209
1210 Altre due funzioni di sistema specifiche di Linux,\footnote{esse si trovano
1211   anche su BSD, ma con una struttura diversa.} utili per ottenere in maniera
1212 diretta informazioni riguardo al filesystem su cui si trova un certo file,
1213 sono \funcd{statfs} e \funcd{fstatfs}, i cui prototipi sono:
1214
1215 \begin{funcproto}{ 
1216 \fhead{sys/vfs.h}
1217 \fdecl{int statfs(const char *path, struct statfs *buf)}
1218 \fdecl{int fstatfs(int fd, struct statfs *buf)}
1219 \fdesc{Restituiscono informazioni relative ad un filesystem.} 
1220 }
1221 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore,
1222   nel qual caso \var{errno} assumerà uno dei valori: 
1223   \begin{errlist}
1224   \item[\errcode{ENOSYS}] il filesystem su cui si trova il file specificato
1225     non supporta la funzione.
1226   \end{errlist} ed inoltre \errval{EFAULT} ed \errval{EIO} per entrambe,
1227   \errval{EBADF} per \func{fstatfs}, \errval{ENOTDIR}, \errval{ENAMETOOLONG},
1228   \errval{ENOENT}, \errval{EACCES}, \errval{ELOOP} per \func{statfs} nel loro
1229   significato generico.}
1230 \end{funcproto}
1231
1232 Queste funzioni permettono di ottenere una serie di informazioni generali
1233 riguardo al filesystem su cui si trova il file specificato con un
1234 \textit{pathname} per \func{statfs} e con un file descriptor (vedi
1235 sez.~\ref{sec:file_fd}) per \func{statfs}.  Le informazioni vengono restituite
1236 all'indirizzo \param{buf} di una struttura \struct{statfs} definita come in
1237 fig.~\ref{fig:sys_statfs}, ed i campi che sono indefiniti per il filesystem in
1238 esame sono impostati a zero.  I valori del campo \var{f\_type} sono definiti
1239 per i vari filesystem nei relativi file di header dei sorgenti del kernel da
1240 costanti del tipo \var{XXX\_SUPER\_MAGIC}, dove \var{XXX} in genere è il nome
1241 del filesystem stesso.
1242
1243 \begin{figure}[!htb]
1244   \footnotesize \centering
1245   \begin{minipage}[c]{\textwidth}
1246     \includestruct{listati/statfs.h}
1247   \end{minipage}
1248   \normalsize 
1249   \caption{La struttura \structd{statfs}.} 
1250   \label{fig:sys_statfs}
1251 \end{figure}
1252
1253 La \acr{glibc} provvede infine una serie di funzioni per la gestione dei due
1254 file \conffile{/etc/fstab}\footnote{più precisamente \funcm{setfsent},
1255   \funcm{getfsent}, \funcm{getfsfile}, \funcm{getfsspec}, \funcm{endfsent}.}
1256 ed \conffile{/etc/mtab}\footnote{più precisamente \funcm{setmntent},
1257   \funcm{getmntent},\funcm{getmntent\_r}, \funcm{addmntent},\funcm{endmntent},
1258   \funcm{hasmntopt}.} che convenzionalmente sono usati in quasi tutti i
1259 sistemi unix-like per mantenere rispettivamente le informazioni riguardo ai
1260 filesystem da montare e a quelli correntemente montati. Le funzioni servono a
1261 leggere il contenuto di questi file in opportune strutture \struct{fstab} e
1262 \struct{mntent}, e, nel caso di \conffile{/etc/mtab}, per inserire e rimuovere
1263 le voci presenti nel file.
1264
1265 In generale si dovrebbero usare queste funzioni, in particolare quelle
1266 relative a \conffile{/etc/mtab}, quando si debba scrivere un programma che
1267 effettua il montaggio di un filesystem. In realtà in questi casi è molto più
1268 semplice invocare direttamente il programma \cmd{mount}. Inoltre l'uso stesso
1269 di \conffile{/etc/mtab} è considerato una pratica obsoleta, in quanto se non
1270 aggiornato correttamente (cosa che è impossibile se la radice è montata in
1271 sola lettura) il suo contenuto diventa fuorviante.
1272
1273 Per questo motivo il suo utilizzo viene deprecato ed in molti casi viene già
1274 oggi sostituito da un collegamento simbolico a \procfile{/proc/mounts}, che
1275 contiene una versione degli stessi contenuti (vale a dire l'elenco dei
1276 filesystem montati) generata direttamente dal kernel, e quindi sempre
1277 disponibile e sempre aggiornata. Per questo motivo tralasceremo la
1278 trattazione, di queste funzioni, rimandando al manuale della \acr{glibc}
1279 \cite{GlibcMan} per la documentazione completa.
1280
1281 % TODO (bassa priorità) scrivere delle funzioni (getfsent e getmntent &C)
1282 % TODO (bassa priorità) documentare ? swapon e swapoff (man 2 ...) 
1283
1284
1285 \section{La gestione di file e directory}
1286 \label{sec:file_dir}
1287
1288 In questa sezione esamineremo le funzioni usate per la manipolazione dei nomi
1289 file e directory, per la creazione di collegamenti simbolici e diretti, per la
1290 gestione e la lettura delle directory.  In particolare ci soffermeremo sulle
1291 conseguenze che derivano dalla architettura di un filesystem unix-like
1292 illustrata in sez.~\ref{sec:file_filesystem} per quanto attiene il
1293 comportamento e gli effetti delle varie funzioni. Tratteremo infine la
1294 directory di lavoro e le funzioni per la gestione di file speciali e
1295 temporanei.
1296
1297
1298
1299 \subsection{La gestione dei nomi dei file}
1300 \label{sec:link_symlink_rename}
1301
1302 % \subsection{Le funzioni \func{link} e \func{unlink}}
1303 % \label{sec:file_link}
1304
1305 Una caratteristica comune a diversi sistemi operativi è quella di poter creare
1306 dei nomi alternativi, come gli alias del vecchio MacOS o i collegamenti di
1307 Windows o i nomi logici del VMS, che permettono di fare riferimento allo
1308 stesso file chiamandolo con nomi diversi o accedendovi da directory diverse.
1309 Questo è possibile anche in ambiente Unix, dove un nome alternativo viene
1310 usualmente chiamato `` \textsl{collegamento}'' (o \textit{link}).  Data
1311 l'architettura del sistema riguardo la gestione dei file vedremo però che ci
1312 sono due metodi sostanzialmente diversi per fare questa operazione.
1313
1314 \itindbeg{hard~link}
1315 \index{collegamento!diretto|(}
1316
1317 In sez.~\ref{sec:file_filesystem} abbiamo spiegato come la capacità di
1318 chiamare un file con nomi diversi sia connaturata con l'architettura di un
1319 filesystem per un sistema Unix, in quanto il nome del file che si trova in una
1320 directory è solo un'etichetta associata ad un puntatore che permette di
1321 ottenere il riferimento ad un \itindex{inode} \textit{inode}, e che è
1322 quest'ultimo che viene usato dal kernel per identificare univocamente gli
1323 oggetti sul filesystem.
1324
1325 Questo significa che fintanto che si resta sullo stesso filesystem la
1326 realizzazione di un \textit{link} è immediata: uno stesso file può avere tanti
1327 nomi diversi, dati da altrettante associazioni diverse allo stesso
1328 \itindex{inode} \textit{inode} effettuate tramite ``etichette'' diverse in
1329 directory diverse. Si noti anche come nessuno di questi nomi possa assumere
1330 una particolare preferenza o originalità rispetto agli altri, in quanto tutti
1331 fanno comunque riferimento allo stesso \itindex{inode} \textit{inode} e quindi
1332 tutti otterranno lo stesso file.
1333
1334 Quando si vuole aggiungere ad una directory una voce che faccia riferimento ad
1335 un file già esistente nella modalità appena descritta, per ottenere quello che
1336 viene denominato ``\textsl{collegamento diretto}'' (o \textit{hard link}), si
1337 deve usare la funzione di sistema \funcd{link}, il cui prototipo è:
1338
1339 \begin{funcproto}{ 
1340 \fhead{unistd.h}
1341 \fdecl{int link(const char *oldpath, const char *newpath)}
1342 \fdesc{Crea un nuovo collegamento diretto (\textit{hard link}).} 
1343 }
1344 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1345   nel qual caso \var{errno} assumerà uno dei valori: 
1346   \begin{errlist}
1347   \item[\errcode{EEXIST}] un file (o una directory) di nome \param{newpath}
1348     esiste già.
1349   \item[\errcode{EMLINK}] ci sono troppi collegamenti al file \param{oldpath}
1350     (il numero massimo è specificato dalla variabile \const{LINK\_MAX}, vedi
1351     sez.~\ref{sec:sys_limits}).
1352   \item[\errcode{EPERM}] il filesystem che contiene \param{oldpath} e
1353     \param{newpath} non supporta i collegamenti diretti o è una directory.
1354   \item[\errcode{EXDEV}] i file \param{oldpath} e \param{newpath} non fanno
1355     riferimento ad un filesystem montato sullo stesso \itindex{mount~point}
1356     \textit{mount point}.
1357   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1358   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM},
1359   \errval{ENOSPC}, \errval{ENOTDIR}, \errval{EROFS} nel loro significato
1360   generico.}
1361 \end{funcproto}
1362
1363 La funzione crea in \param{newpath} un collegamento diretto al file indicato
1364 da \param{oldpath}. Per quanto detto la creazione di un nuovo collegamento
1365 diretto non copia il contenuto del file, ma si limita a creare la voce
1366 specificata da \param{newpath} nella directory corrispondente e l'unica
1367 proprietà del file che verrà modificata sarà il numero di riferimenti al file
1368 (il campo \var{i\_nlink} della struttura \kstruct{inode}, vedi
1369 fig.~\ref{fig:kstruct_inode}) che verrà aumentato di di uno. In questo modo lo
1370 stesso file potrà essere acceduto sia con \param{newpath} che
1371 con \param{oldpath}.
1372
1373 Per quanto dicevamo in sez.~\ref{sec:file_filesystem} la creazione di un
1374 collegamento diretto è possibile solo se entrambi i \textit{pathname} sono
1375 nello stesso filesystem ed inoltre esso deve supportare gli \textit{hard link}
1376 (il meccanismo non è disponibile ad esempio con il filesystem \acr{vfat} di
1377 Windows). In realtà la funzione ha un ulteriore requisito, e cioè che non solo
1378 che i due file siano sullo stesso filesystem, ma anche che si faccia
1379 riferimento ad essi all'interno dello stesso \itindex{mount~point}
1380 \textit{mount point}.\footnote{si tenga presente infatti, come detto in
1381   sez.~\ref{sec:filesystem_mounting}, che a partire dal kernel 2.4 uno stesso
1382   filesystem può essere montato più volte su directory diverse.}
1383
1384 La funzione inoltre opera sia sui file ordinari che sugli altri oggetti del
1385 filesystem, con l'eccezione delle directory. In alcune versioni di Unix solo
1386 l'amministratore è in grado di creare un collegamento diretto ad un'altra
1387 directory: questo viene fatto perché con una tale operazione è possibile
1388 creare dei \textit{loop} nel filesystem (vedi fig.~\ref{fig:file_link_loop})
1389 che molti programmi non sono in grado di gestire e la cui rimozione
1390 diventerebbe piuttosto complicata.\footnote{in genere per questo tipo di
1391   errori occorre eseguire il programma \cmd{fsck} per riparare il filesystem,
1392   in quanto in caso di \textit{loop} la directory creata non sarebbe vuota e
1393   non si potrebbe più rimuoverla.}
1394
1395 Data la pericolosità di questa operazione e la disponibilità dei collegamenti
1396 simbolici (che vedremo a breve) e dei \itindex{bind~mount} \textit{bind mount}
1397 (già visti in sez.~\ref{sec:filesystem_mounting}) che possono fornire la
1398 stessa funzionalità senza questi problemi, nel caso di Linux questa capacità è
1399 stata completamente disabilitata, e al tentativo di creare un collegamento
1400 diretto ad una directory la funzione \func{link} restituisce sempre l'errore
1401 \errcode{EPERM}.
1402
1403 Un ulteriore comportamento peculiare di Linux è quello in cui si crea un
1404 \textit{hard link} ad un collegamento simbolico. In questo caso lo standard
1405 POSIX.1-2001 prevederebbe che quest'ultimo venga risolto e che il collegamento
1406 sia effettuato rispetto al file cui esso punta, e che venga riportato un
1407 errore qualora questo non esista o non sia un file. Questo era anche il
1408 comportamento iniziale di Linux ma a partire dai kernel della serie
1409 2.0.x\footnote{per la precisione il comportamento era quello previsto dallo
1410   standard POSIX fino al kernel di sviluppo 1.3.56, ed è stato temporaneamente
1411   ripristinato anche durante lo sviluppo della serie 2.1.x, per poi tornare al
1412   comportamento attuale fino ad oggi (per riferimento si veda
1413   \url{http://lwn.net/Articles/293902}).} è stato adottato un comportamento
1414 che non segue più lo standard per cui l'\textit{hard link} viene creato nei
1415 confronti del collegamento simbolico, e non del file cui questo punta. La
1416 revisione POSIX.1-2008 lascia invece il comportamento dipendente
1417 dall'implementazione, cosa che rende Linux conforme a questa versione
1418 successiva dello standard.
1419
1420 \itindbeg{symbolic~link}
1421
1422 \index{collegamento!simbolico|(}
1423
1424 La ragione di questa differenza rispetto al vecchio standard, presente anche
1425 in altri sistemi unix-like, è dovuta al fatto che un collegamento simbolico
1426 può fare riferimento anche ad un file non esistente o a una directory, per i
1427 quali l'\textit{hard link} non può essere creato, per cui la scelta di seguire
1428 il collegamento simbolico è stata ritenuta una scelta scorretta nella
1429 progettazione dell'interfaccia.  Infatti se non ci fosse il comportamento
1430 adottato da Linux sarebbe impossibile creare un \textit{hard link} ad un
1431 collegamento simbolico, perché la funzione lo risolverebbe e l'\textit{hard
1432   link} verrebbe creato verso la destinazione. Invece evitando di seguire lo
1433 standard l'operazione diventa possibile, ed anche il comportamento della
1434 funzione risulta molto più comprensibile. Tanto più che se proprio se si vuole
1435 creare un \textit{hard link} rispetto alla destinazione di un collegamento
1436 simbolico è sempre possibile farlo direttamente.\footnote{ciò non toglie che
1437   questo comportamento possa causare problemi, come nell'esempio descritto
1438   nell'articolo citato nella nota precedente, a programmi che non si aspettano
1439   questa differenza rispetto allo standard POSIX.}
1440
1441 Dato che \func{link} crea semplicemente dei nomi che fanno riferimenti agli
1442 \itindex{inode} \textit{inode}, essa può funzionare soltanto per file che
1443 risiedono sullo stesso filesystem e solo per un filesystem di tipo Unix.
1444 Inoltre abbiamo visto che in Linux non è consentito eseguire un collegamento
1445 diretto ad una directory.
1446
1447 Per ovviare a queste limitazioni, come accennato all'inizio, i sistemi
1448 unix-like supportano un'altra forma di collegamento, detta
1449 ``\textsl{collegamento simbolico}'' (o anche \textit{soft link} o
1450 \textit{symbolic link}). In questo caso si tratta, come avviene in altri
1451 sistemi operativi, di file speciali che contengono semplicemente il
1452 riferimento ad un altro file (o directory). In questo modo è possibile
1453 effettuare \textit{link} anche attraverso filesystem diversi, a file posti in
1454 filesystem che non supportano i collegamenti diretti, a delle directory, ed
1455 anche a file che non esistono ancora.
1456
1457 \itindend{hard~link}
1458 \index{collegamento!diretto|)}
1459
1460 Il meccanismo funziona in quanto i \textit{symbolic link} sono riconosciuti
1461 come tali dal kernel\footnote{è uno dei diversi tipi di file visti in
1462   tab.~\ref{tab:file_file_types}, contrassegnato come tale \itindex{inode}
1463   nell'\textit{inode} e riconoscibile dal valore del campo \var{st\_mode}
1464   della struttura \struct{stat} (vedi sez.~\ref{sec:file_stat}).} e tutta una
1465 serie di funzioni di sistema (come \func{open} o \func{stat}) quando ricevono
1466 come argomento il \textit{pathname} di un collegamento simbolico vanno
1467 automaticamente ad operare sul file da esso specificato. La funzione di
1468 sistema che permette di creare un nuovo collegamento simbolico è
1469 \funcd{symlink}, ed il suo prototipo è:
1470
1471 \begin{funcproto}{ 
1472 \fhead{unistd.h}
1473 \fdecl{int symlink(const char *oldpath, const char *newpath)}
1474 \fdesc{Crea un nuovo collegamento simbolico (\textit{symbolic link}).} 
1475 }
1476 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1477   nel qual caso \var{errno} assumerà uno dei valori: 
1478   \begin{errlist}
1479   \item[\errcode{EEXIST}] esiste già un file \param{newpath}.
1480   \item[\errcode{ENOENT}] una componente di \param{newpath} non esiste o
1481     \param{oldpath} è una stringa vuota.
1482   \item[\errcode{EPERM}] il filesystem che contiene \param{newpath} non
1483     supporta i collegamenti simbolici.
1484   \item[\errcode{EROFS}] \param{newpath} è su un filesystem montato in sola
1485     lettura.
1486   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1487   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOMEM}, \errval{ENOSPC} e
1488   \errval{ENOTDIR} nel loro significato generico.}
1489 \end{funcproto}
1490
1491 La funzione crea un nuovo collegamento simbolico \param{newpath} che fa
1492 riferimento ad \param{oldpath}.  Si tenga presente che la funzione non
1493 effettua nessun controllo sull'esistenza di un file di nome \param{oldpath},
1494 ma si limita ad inserire il \textit{pathname} nel collegamento
1495 simbolico. Pertanto un collegamento simbolico può anche riferirsi ad un file
1496 che non esiste ed in questo caso si ha quello che viene chiamato un
1497 \itindex{dangling~link} \textit{dangling link}, letteralmente un
1498 \index{collegamento!ciondolante} ``\textsl{collegamento ciondolante}''.
1499
1500 Come accennato i collegamenti simbolici sono risolti automaticamente dal
1501 kernel all'invocazione delle varie \textit{system call}. In
1502 tab.~\ref{tab:file_symb_effect} si è riportato un elenco dei comportamenti
1503 delle varie funzioni di sistema che operano sui file nei confronti della
1504 risoluzione dei collegamenti simbolici, specificando quali li seguono e quali
1505 invece possono operare direttamente sui loro contenuti.
1506 \begin{table}[htb]
1507   \centering
1508   \footnotesize
1509   \begin{tabular}[c]{|l|c|c|}
1510     \hline
1511     \textbf{Funzione} & \textbf{Segue il link} & \textbf{Non segue il link} \\
1512     \hline 
1513     \hline 
1514     \func{access}   & $\bullet$ & --        \\
1515     \func{chdir}    & $\bullet$ & --        \\
1516     \func{chmod}    & $\bullet$ & --        \\
1517     \func{chown}    & --        & $\bullet$ \\
1518     \func{creat}    & $\bullet$ & --        \\
1519     \func{exec}     & $\bullet$ & --        \\
1520     \func{lchown}   & $\bullet$ & --        \\
1521     \func{link}\footnotemark & --        & $\bullet$ \\
1522     \func{lstat}    & --        & $\bullet$ \\
1523     \func{mkdir}    & $\bullet$ & --        \\
1524     \func{mkfifo}   & $\bullet$ & --        \\
1525     \func{mknod}    & $\bullet$ & --        \\
1526     \func{open}     & $\bullet$ & --        \\
1527     \func{opendir}  & $\bullet$ & --        \\
1528     \func{pathconf} & $\bullet$ & --        \\
1529     \func{readlink} & --        & $\bullet$ \\
1530     \func{remove}   & --        & $\bullet$ \\
1531     \func{rename}   & --        & $\bullet$ \\
1532     \func{stat}     & $\bullet$ & --        \\
1533     \func{truncate} & $\bullet$ & --        \\
1534     \func{unlink}   & --        & $\bullet$ \\
1535     \hline 
1536   \end{tabular}
1537   \caption{Uso dei collegamenti simbolici da parte di alcune funzioni.}
1538   \label{tab:file_symb_effect}
1539 \end{table}
1540
1541 \footnotetext{a partire dalla serie 2.0, e contrariamente a quanto indicato
1542   dallo standard POSIX.1-2001.}
1543
1544 Si noti che non si è specificato il comportamento delle funzioni che operano
1545 con i file descriptor (che tratteremo nel prossimo capitolo), in quanto la
1546 risoluzione del collegamento simbolico viene in genere effettuata dalla
1547 funzione che restituisce il file descriptor (normalmente la \func{open}, vedi
1548 sez.~\ref{sec:file_open}) e tutte le operazioni seguenti fanno riferimento
1549 solo a quest'ultimo.
1550
1551 Dato che, come indicato in tab.~\ref{tab:file_symb_effect}, funzioni come la
1552 \func{open} seguono i collegamenti simbolici, occorrono funzioni apposite per
1553 accedere alle informazioni del collegamento invece che a quelle del file a cui
1554 esso fa riferimento. Quando si vuole leggere il contenuto di un collegamento
1555 simbolico si usa la funzione di sistema \funcd{readlink}, il cui prototipo è:
1556
1557 \begin{funcproto}{ 
1558 \fhead{unistd.h}
1559 \fdecl{int readlink(const char *path, char *buff, size\_t size)}
1560 \fdesc{Legge il contenuto di un collegamento simbolico.} 
1561 }
1562 {La funzione ritorna il numero di caratteri letti dentro \param{buff} in caso
1563   di successo e $-1$ per un errore,  nel qual caso \var{errno} assumerà uno
1564   dei valori:
1565   \begin{errlist}
1566   \item[\errcode{EINVAL}] \param{path} non è un collegamento simbolico
1567     o \param{size} non è positiva.
1568   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1569   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM} e
1570   \errval{ENOTDIR} nel loro significato generico.}
1571 \end{funcproto}
1572
1573 La funzione legge il \textit{pathname} a cui fa riferimento il collegamento
1574 simbolico indicato dall'argomento \param{path} scrivendolo sul
1575 buffer \param{buff} di dimensione \param{size}. Si tenga presente che la
1576 funzione non termina la stringa con un carattere nullo e che se questa è
1577 troppo lunga la tronca alla dimensione specificata da \param{size} per evitare
1578 di sovrascrivere oltre le dimensioni del buffer.
1579
1580 \begin{figure}[htb]
1581   \centering
1582   \includegraphics[width=8.5cm]{img/link_loop}
1583   \caption{Esempio di loop nel filesystem creato con un collegamento
1584     simbolico.}
1585   \label{fig:file_link_loop}
1586 \end{figure}
1587
1588 Come accennato uno dei motivi per cui non sono consentiti \textit{hard link}
1589 alle directory è che questi possono creare dei \textit{loop} nella risoluzione
1590 dei nomi che non possono essere eliminati facilmente. Invece è sempre
1591 possibile, ed in genere anche molto utile, creare un collegamento simbolico ad
1592 una directory, anche se in questo caso si potranno ottenere anche dei
1593 \textit{loop}. La situazione è illustrata in fig.~\ref{fig:file_link_loop},
1594 che riporta la struttura della directory \file{/boot}. Come si vede si è
1595 creato al suo interno un collegamento simbolico che punta di nuovo a
1596 \file{/boot}.\footnote{il \textit{loop} mostrato in
1597   fig.~\ref{fig:file_link_loop} è stato usato per poter permettere a
1598   \cmd{grub} (un bootloader in grado di leggere direttamente da vari
1599   filesystem il file da lanciare come sistema operativo) di vedere i file
1600   contenuti nella directory \file{/boot} con lo stesso \textit{pathname} con
1601   cui verrebbero visti dal sistema operativo, anche se essi si trovano, come
1602   accade spesso, su una partizione separata (che \cmd{grub} all'avvio vedrebbe 
1603   come \file{/}).}
1604
1605 Questo però può causare problemi per tutti quei programmi che effettuano la
1606 scansione di una directory senza tener conto dei collegamenti simbolici, ad
1607 esempio se lanciassimo un comando del tipo \code{grep -r linux *}, il loop
1608 nella directory porterebbe il comando ad esaminare \file{/boot},
1609 \file{/boot/boot}, \file{/boot/boot/boot} e così via.
1610
1611 Per questo motivo il kernel e le librerie prevedono che nella risoluzione di
1612 un \textit{pathname} possano essere seguiti fino ad un certo numero massimo di
1613 collegamenti simbolici, il cui valore limite è specificato dalla costante
1614 \const{MAXSYMLINKS}. Qualora questo limite venga superato viene generato un
1615 errore ed \var{errno} viene impostata al valore \errcode{ELOOP}, che nella
1616 quasi totalità dei casi indica appunto che si è creato un collegamento
1617 simbolico che fa riferimento ad una directory del suo stesso
1618 \textit{pathname}.
1619
1620 Un altro punto da tenere sempre presente è che, come abbiamo accennato, un
1621 collegamento simbolico può fare riferimento anche ad un file che non esiste;
1622 ad esempio possiamo usare il comando \cmd{ln} per creare un collegamento
1623 simbolico nella nostra directory con:
1624 \begin{Command}
1625 $ ln -s /tmp/tmp_file symlink
1626 \end{Command}
1627 %$
1628 e questo avrà successo anche se \file{/tmp/tmp\_file} non esiste:
1629 \begin{Command}
1630 $ ls symlink
1631 \end{Command}
1632 \begin{Terminal}
1633 symlink
1634 \end{Terminal}
1635 %$
1636 ma questo può generare confusione, perché accedendo in sola lettura a
1637 \file{symlink}, ad esempio con \cmd{cat}, otterremmo un errore:
1638 \begin{Command}
1639 $ cat symlink
1640 \end{Command}
1641 \begin{Terminal}
1642 cat: symlink: No such file or directory
1643 \end{Terminal}
1644 %$
1645 con un errore che può sembrare sbagliato, dato che \cmd{ls} ci ha mostrato
1646 l'esistenza di \file{symlink}, se invece scrivessimo su \file{symlink}
1647 otterremmo la creazione di \file{/tmp/tmp\_file} senza errori.
1648
1649
1650 \itindend{symbolic~link}
1651 \index{collegamento!simbolico|)}
1652
1653
1654 Un'altra funzione relativa alla gestione dei nomi dei file, anche se a prima
1655 vista parrebbe riguardare un argomento completamente diverso, è quella che per
1656 la cancellazione di un file. In realtà una \textit{system call} che serva
1657 proprio a cancellare un file non esiste neanche perché, come accennato in
1658 sez.~\ref{sec:file_filesystem}, quando in un sistema unix-like si richiede la
1659 rimozione di un file quella che si va a cancellare è soltanto la voce che
1660 referenzia il suo \itindex{inode} \textit{inode} all'interno di una directory.
1661
1662 La funzione di sistema che consente di effettuare questa operazione, il cui
1663 nome come si può notare ha poco a che fare con il concetto di rimozione, è
1664 \funcd{unlink}, ed il suo prototipo è:
1665
1666 \begin{funcproto}{ 
1667 \fhead{unistd.h}
1668 \fdecl{int unlink(const char *pathname)}
1669 \fdesc{Cancella un file.} 
1670 }
1671 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1672   nel qual caso \var{errno} assumerà uno dei valori:\footnotemark  
1673   \begin{errlist}
1674   \item[\errcode{EACCES}] non si ha il permesso di scrivere sulla directory
1675     contenente \param{pathname} o di attraversamento di una delle directory
1676     superiori. 
1677   \item[\errcode{EISDIR}] \param{pathname} si riferisce ad una
1678     directory.
1679   \item[\errcode{EPERM}] il filesystem non consente l'operazione, o la
1680     directory che contiene \param{pathname} ha lo \itindex{sticky~bit}
1681     \textit{sticky bit} e non si è il proprietario o non si hanno privilegi
1682     amministrativi. 
1683   \end{errlist} ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
1684   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EROFS} nel loro
1685   significato generico.}
1686 \end{funcproto}
1687
1688 \footnotetext{questa funzione su Linux ha alcune peculiarità nei codici di
1689   errore, in particolare riguardo la rimozione delle directory che non è mai
1690   permessa e che causa l'errore \errcode{EISDIR}; questo è un valore specifico
1691   di Linux non conforme allo standard POSIX che prescrive invece l'uso di
1692   \errcode{EPERM} in caso l'operazione non sia consentita o il processo non
1693   abbia privilegi sufficienti, valore che invece Linux usa anche se il
1694   filesystem non supporta la funzione, inoltre il codice \errcode{EBUSY} nel
1695   caso la directory sia occupata su Linux non esiste.}
1696
1697 La funzione elimina il nome specificato dall'argomento \param{pathname} nella
1698 directory che lo contiene e decrementa il numero di riferimenti nel relativo
1699 \itindex{inode} \textit{inode}.\footnote{come per \func{link} queste due
1700   operazioni sono effettuate all'interno della \textit{system call} in maniera
1701   atomica.} Nel caso di socket, fifo o file di dispositivo
1702 \index{file!di~dispositivo} rimuove il nome, ma come per i file normali i
1703 processi che hanno aperto uno di questi oggetti possono continuare ad
1704 utilizzarli.  Nel caso di cancellazione di un collegamento simbolico, che
1705 consiste solo nel rimando ad un altro file, questo viene immediatamente
1706 eliminato.
1707
1708 Per cancellare una voce in una directory è necessario avere il permesso di
1709 scrittura su di essa, dato che si va a rimuovere una voce dal suo contenuto, e
1710 il diritto di esecuzione/attraversamento sulla directory che la contiene
1711 (affronteremo in dettaglio l'argomento dei permessi di file e directory in
1712 sez.~\ref{sec:file_access_control}). Se inoltre lo \itindex{sticky~bit}
1713 \textit{sticky bit} (vedi sez.~\ref{sec:file_special_perm}) è impostato
1714 occorrerà anche essere proprietari del file o proprietari della directory o
1715 avere i privilegi di amministratore.
1716
1717 Si ricordi inoltre che anche se se ne è rimosso il nome da una directory, un
1718 file non viene eliminato dal disco fintanto che tutti i riferimenti ad esso
1719 sono stati cancellati: solo quando il numero di collegamenti mantenuto
1720 \itindex{inode} nell'\textit{inode} diventa nullo, questo viene disallocato e
1721 lo spazio occupato su disco viene liberato. Si tenga presente comunque che a
1722 questo si aggiunge sempre un'ulteriore condizione e cioè che non ci siano
1723 processi che abbiano il suddetto file aperto.\footnote{come vedremo in
1724   cap.~\ref{cha:file_unix_interface} il kernel mantiene anche una tabella dei
1725   file aperti nei vari processi, che a sua volta contiene i riferimenti agli
1726   \itindex{inode} \textit{inode} ad essi relativi; prima di procedere alla
1727   cancellazione dello spazio occupato su disco dal contenuto di un file il
1728   kernel controlla anche questa tabella, per verificare che anche in essa non
1729   ci sia più nessun riferimento all'\textit{inode} in questione.}
1730
1731 Questa caratteristica del sistema può essere usata per essere sicuri di non
1732 lasciare file temporanei su disco in caso di crash di un programma. La tecnica
1733 è quella di aprire un nuovo file e chiamare \func{unlink} su di esso subito
1734 dopo, in questo modo il contenuto del file sarà sempre disponibile all'interno
1735 del processo attraverso il suo file descriptor (vedi sez.~\ref{sec:file_fd}),
1736 ma non ne resta traccia in nessuna directory, e lo spazio occupato su disco
1737 viene immediatamente rilasciato alla conclusione del processo, quando tutti i
1738 file vengono chiusi.
1739
1740 Al contrario di quanto avviene con altri Unix, in Linux non è possibile usare
1741 la funzione \func{unlink} sulle directory, nel qual caso si otterrebbe un
1742 errore di \errcode{EISDIR}. Per cancellare una directory si deve usare la
1743 apposita funzione di sistema \func{rmdir} (che vedremo in
1744 sez.~\ref{sec:file_dir_creat_rem}), oppure la funzione \func{remove}.
1745 Quest'ultima è la funzione prevista dallo standard ANSI C per effettuare una
1746 cancellazione generica di un file o di una directory e funziona anche per i
1747 sistemi operativo che non supportano gli \textit{hard link}. Nei sistemi
1748 unix-like \funcd{remove} è equivalente ad usare in maniera trasparente
1749 \func{unlink} per i file ed \func{rmdir} per le directory; il suo prototipo è:
1750
1751 \begin{funcproto}{ 
1752 \fhead{stdio.h}
1753 \fdecl{int remove(const char *pathname)}
1754 \fdesc{Cancella un file o una directory.} 
1755 }
1756 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1757   caso \var{errno} assumerà uno dei valori relativi alla chiamata utilizzata,
1758   pertanto si può fare riferimento a quanto illustrato nelle descrizioni di
1759   \func{unlink} e \func{rmdir}.}
1760 \end{funcproto}
1761
1762 La funzione utilizza la funzione \func{unlink} per cancellare i file e la
1763 funzione \func{rmdir} (vedi sez.~\ref{sec:file_dir_creat_rem}) per cancellare
1764 le directory.\footnote{questo vale usando la \acr{glibc}; nella libc4 e nella
1765   libc5 la funzione \func{remove} era un semplice alias alla funzione
1766   \func{unlink} e quindi non poteva essere usata per le directory.} Si tenga
1767 presente che per alcune implementazioni del protocollo NFS utilizzare questa
1768 funzione può comportare la scomparsa di file ancora in uso.
1769
1770 Infine per cambiare nome ad un file o a una directory si usa la funzione di
1771 sistema \funcd{rename},\footnote{la funzione è definita dallo standard ANSI C,
1772   ma si applica solo per i file, lo standard POSIX estende la funzione anche
1773   alle directory.} il cui prototipo è:
1774
1775 \begin{funcproto}{ 
1776 \fhead{stdio.h}
1777 \fdecl{int rename(const char *oldpath, const char *newpath)}
1778 \fdesc{Rinomina un file o una directory.} 
1779 }
1780 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1781   nel qual caso \var{errno} assumerà uno dei valori: 
1782   \begin{errlist}
1783   \item[\errcode{EACCESS}] non c'è permesso di scrivere nelle directory
1784     contenenti \param{oldpath} e \param{newpath} o di attraversare 
1785     quelle dei loro \textit{pathname} o di scrivere su \param{newpath}
1786     se questa è una directory.
1787   \item[\errcode{EBUSY}] o \param{oldpath} o \param{newpath} sono in uso da
1788     parte di qualche processo (come \index{directory~di~lavoro} directory di
1789     lavoro o come radice) o del sistema (come \itindex{mount~point}
1790     \textit{mount point}) ed il sistema non riesce a risolvere la situazione.
1791   \item[\errcode{EINVAL}] \param{newpath} contiene un prefisso di
1792     \param{oldpath} o più in generale si è cercato di creare una directory come
1793     sotto-directory di sé stessa.
1794   \item[\errcode{EISDIR}] \param{newpath} è una directory mentre
1795     \param{oldpath} non è una directory.
1796   \item[\errcode{EEXIST}] \param{newpath} è una directory già esistente e
1797     non è vuota (anche \errcode{ENOTEMPTY}).
1798   \item[\errcode{ENOTDIR}] uno dei componenti dei \textit{pathname} non è una
1799     directory o \param{oldpath} è una directory e 
1800     \param{newpath} esiste e non è una directory.
1801   \item[\errval{EPERM}] la directory contenente \param{oldpath} o quella
1802     contenente un \param{newpath} esistente hanno lo
1803     \itindex{sticky~bit} \textit{sticky bit} e non si è i proprietari dei
1804     rispettivi file (o non si hanno privilegi amministrativi) oppure il
1805     filesystem non supporta l'operazione. 
1806   \item[\errcode{EXDEV}] \param{oldpath} e \param{newpath} non sono sullo
1807     stesso filesystem e sotto lo stesso \itindex{mount~point} \textit{mount
1808       point}. 
1809   \end{errlist} ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{EMLINK},
1810   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOSPC} e
1811   \errval{EROFS} nel loro significato generico.}
1812 \end{funcproto}
1813
1814 La funzione rinomina in \param{newpath} il file o la directory indicati
1815 dall'argomento \param{oldpath}. Il nome viene eliminato nella directory
1816 originale e ricreato nella directory di destinazione mantenendo il riferimento
1817 allo stesso \itindex{inode} \textit{inode}. Non viene spostato nessun dato e
1818 \itindex{inode} l'\textit{inode} del file non subisce nessuna modifica in
1819 quanto le modifiche sono eseguite sulle directory che
1820 contengono \param{newpath} ed \param{oldpath}.
1821
1822 Il vantaggio nell'uso di questa funzione al posto della chiamata successiva di
1823 \func{link} e \func{unlink} è che l'operazione è eseguita atomicamente, non
1824 c'è modifica, per quanto temporanea, al \textit{link count} del file e non può
1825 esistere un istante in cui un altro processo possa trovare attivi entrambi i
1826 nomi per lo stesso file se la destinazione non esiste o in cui questa sparisca
1827 temporaneamente se già esiste.
1828
1829 Dato che opera in maniera analoga la funzione è soggetta alle stesse
1830 restrizioni di \func{link}, quindi è necessario che \param{oldpath}
1831 e \param{newpath} siano nello stesso filesystem e facciano riferimento allo
1832 stesso \itindex{mount~point} \textit{mount point}, e che il filesystem
1833 supporti questo tipo di operazione. Qualora questo non avvenga si dovrà
1834 effettuare l'operazione in maniera non atomica copiando il file a destinazione
1835 e poi cancellando l'originale.
1836
1837 Il comportamento della funzione è diverso a seconda che si voglia rinominare
1838 un file o una directory. Se ci riferisce ad un file allora \param{newpath}, se
1839 esiste, non deve essere una directory, altrimenti si avrà un errore di
1840 \errcode{EISDIR}. Se \param{newpath} indica un file già esistente questo verrà
1841 rimpiazzato atomicamente, ma nel caso in cui \func{rename} fallisca il kernel
1842 assicura che esso non sarà toccato. I caso di sovrascrittura però potrà
1843 esistere una breve finestra di tempo in cui sia \param{oldpath}
1844 che \param{newpath} potranno fare entrambi riferimento al file che viene
1845 rinominato.
1846
1847 Se \param{oldpath} è una directory allora \param{newpath}, se esistente, deve
1848 essere una directory vuota, altrimenti si avranno gli errori \errcode{ENOTDIR}
1849 (se non è una directory) o \errcode{ENOTEMPTY} o \errcode{EEXIST} (se non è
1850 vuota). Chiaramente \param{newpath} non potrà contenere \param{oldpath} nel
1851 suo \textit{pathname}, non essendo possibile rendere una directory una
1852 sottodirectory di sé stessa, se questo fosse il caso si otterrebbe un errore
1853 di \errcode{EINVAL}.
1854
1855 Se \param{oldpath} si riferisce ad un collegamento simbolico questo sarà
1856 rinominato restando tale senza nessun effetto sul file a cui fa riferimento.
1857 Se invece \param{newpath} esiste ed è un collegamento simbolico verrà
1858 cancellato come qualunque altro file.  Infine qualora \param{oldpath}
1859 e \param{newpath} siano due nomi che già fanno riferimento allo stesso file lo
1860 standard POSIX prevede che la funzione non ritorni un errore, e semplicemente
1861 non faccia nulla, lasciando entrambi i nomi.  Linux segue questo standard,
1862 anche se, come fatto notare dal manuale della \acr{glibc}, il comportamento
1863 più ragionevole sarebbe quello di cancellare \param{oldpath}.
1864
1865 In tutti i casi si dovranno avere i permessi di scrittura nelle directory
1866 contenenti \param{oldpath} e \param{newpath}, e nel caso \param{newpath} sia
1867 una directory vuota già esistente anche su di essa (perché dovrà essere
1868 aggiornata la voce ``\texttt{..}''). Se poi le directory
1869 contenenti \param{oldpath} o \param{newpath} hanno lo \itindex{sticky~bit}
1870 \textit{sticky bit} attivo (vedi sez.~\ref{sec:file_special_perm}) si dovrà
1871 essere i proprietari dei file (o delle directory) che si vogliono rinominare,
1872 o avere i permessi di amministratore.
1873
1874
1875 \subsection{La creazione e la cancellazione delle directory} 
1876 \label{sec:file_dir_creat_rem}
1877
1878 Benché in sostanza le directory non siano altro che dei file contenenti
1879 elenchi di nomi con riferimenti ai rispettivi \itindex{inode} \textit{inode},
1880 non è possibile trattarle come file ordinari e devono essere create
1881 direttamente dal kernel attraverso una opportuna \textit{system
1882   call}.\footnote{questo è quello che permette anche, attraverso l'uso del
1883   \itindex{Virtual~File~System} VFS, l'utilizzo di diversi formati per la
1884   gestione dei suddetti elenchi, dalle semplici liste a strutture complesse
1885   come alberi binari, hash, ecc. che consentono una ricerca veloce quando il
1886   numero di file è molto grande.}  La funzione di sistema usata per creare una
1887 directory è \funcd{mkdir}, ed il suo prototipo è:
1888
1889 \begin{funcproto}{ 
1890 \fhead{sys/stat.h}
1891 \fhead{sys/types.h}
1892 \fdecl{int mkdir(const char *dirname, mode\_t mode)}
1893 \fdesc{Crea una nuova directory.} 
1894 }
1895 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1896   caso \var{errno} assumerà uno dei valori: 
1897   \begin{errlist}
1898   \item[\errcode{EACCES}] non c'è il permesso di scrittura per la directory in
1899     cui si vuole inserire la nuova directory o di attraversamento per le
1900     directory al di sopra di essa.
1901   \item[\errcode{EEXIST}] un file o una directory o un collegamento simbolico
1902     con quel nome esiste già.
1903   \item[\errcode{EMLINK}] la directory in cui si vuole creare la nuova
1904     directory contiene troppi file; sotto Linux questo normalmente non avviene
1905     perché il filesystem standard consente la creazione di un numero di file
1906     maggiore di quelli che possono essere contenuti nel disco, ma potendo
1907     avere a che fare anche con filesystem di altri sistemi questo errore può
1908     presentarsi.
1909   \item[\errcode{ENOSPC}] non c'è abbastanza spazio sul file system per creare
1910     la nuova directory o si è esaurita la quota disco dell'utente.
1911   \end{errlist}
1912   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1913   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EPERM},
1914   \errval{EROFS} nel loro significato generico.}
1915 \end{funcproto}
1916
1917 La funzione crea una nuova directory vuota, che contiene cioè solo le due voci
1918 standard presenti in ogni directory (``\file{.}'' e ``\file{..}''), con il
1919 nome indicato dall'argomento \param{dirname}. 
1920
1921 I permessi di accesso (vedi sez.~\ref{sec:file_access_control}) con cui la
1922 directory viene creata sono specificati dall'argomento \param{mode}, i cui
1923 possibili valori sono riportati in tab.~\ref{tab:file_permission_const}; si
1924 tenga presente che questi sono modificati dalla maschera di creazione dei file
1925 (si veda sez.~\ref{sec:file_perm_management}).  La titolarità della nuova
1926 directory è impostata secondo quanto illustrato in
1927 sez.~\ref{sec:file_ownership_management}.
1928
1929 Come accennato in precedenza per eseguire la cancellazione di una directory è
1930 necessaria una specifica funzione di sistema, \funcd{rmdir}, il suo prototipo
1931 è:
1932
1933 \begin{funcproto}{ 
1934 \fhead{sys/stat.h}
1935 \fdecl{int rmdir(const char *dirname)}
1936 \fdesc{Cancella una directory.} 
1937 }
1938 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1939   caso \var{errno} assumerà uno dei valori: 
1940   \begin{errlist}
1941   \item[\errcode{EACCES}] non c'è il permesso di scrittura per la directory
1942     che contiene la directory che si vuole cancellare, o non c'è il permesso
1943     di attraversare (esecuzione) una delle directory specificate in
1944     \param{dirname}.
1945   \item[\errcode{EINVAL}] si è usato ``\texttt{.}'' come ultimo componente
1946     di \param{dirname}.
1947   \item[\errcode{EBUSY}] la directory specificata è la
1948     \index{directory~di~lavoro} directory di lavoro o la radice di qualche
1949     processo o un \itindex{mount~point} \textit{mount point}.
1950   \item[\errcode{EPERM}] il filesystem non supporta la cancellazione di
1951     directory, oppure la directory che contiene \param{dirname} ha lo
1952     \itindex{sticky~bit} \textit{sticky bit} impostato e non si è i
1953     proprietari della directory o non si hanno privilegi amministrativi. 
1954   \end{errlist}
1955   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1956   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errcode{ENOTEMPTY} e
1957   \errval{EROFS} nel loro significato generico.}
1958 \end{funcproto}
1959
1960
1961 La funzione cancella la directory \param{dirname}, che deve essere vuota, la
1962 directory deve cioè contenere le due voci standard ``\file{.}'' e
1963 ``\file{..}'' e niente altro.  Il nome può essere indicato con un
1964 \textit{pathname} assoluto o relativo, ma si deve fare riferimento al nome
1965 nella directory genitrice, questo significa che \textit{pathname} terminanti
1966 in ``\file{.}'' e ``\file{..}'' anche se validi in altri contesti, causeranno
1967 il fallimento della funzione.
1968
1969 Se la directory cancellata risultasse aperta in qualche processo per una
1970 lettura dei suoi contenuti (vedi sez.~\ref{sec:file_dir_read}), pur
1971 scomparendo dal filesystem e non essendo più possibile accedervi o crearvi
1972 altri file, le risorse ad essa associate verrebbero disallocate solo alla
1973 chiusura di tutti questi ulteriori riferimenti.
1974
1975
1976 \subsection{Lettura e scansione delle directory}
1977 \label{sec:file_dir_read}
1978
1979 Benché le directory alla fine non siano altro che dei file che contengono
1980 delle liste di nomi associati ai relativi \itindex{inode} \textit{inode}, per
1981 il ruolo che rivestono nella struttura del sistema non possono essere trattate
1982 come dei normali file di dati. Ad esempio, onde evitare inconsistenze
1983 all'interno del filesystem, solo il kernel può scrivere il contenuto di una
1984 directory, e non può essere un processo a inserirvi direttamente delle voci
1985 con le usuali funzioni di scrittura.
1986
1987 Ma se la scrittura e l'aggiornamento dei dati delle directory è compito del
1988 kernel, sono molte le situazioni in cui i processi necessitano di poterne
1989 leggere il contenuto. Benché questo possa essere fatto direttamente (vedremo
1990 in sez.~\ref{sec:file_open} che è possibile aprire una directory come se fosse
1991 un file, anche se solo in sola lettura) in generale il formato con cui esse
1992 sono scritte può dipendere dal tipo di filesystem, tanto che, come riportato
1993 in tab.~\ref{tab:file_file_operations}, il \itindex{Virtual~File~System} VFS
1994 prevede una apposita funzione per la lettura delle directory.
1995
1996 \itindbeg{directory~stream}
1997
1998 Tutto questo si riflette nello standard POSIX\footnote{le funzioni erano
1999   presenti in SVr4 e 4.3BSD, la loro specifica è riportata in POSIX.1-2001.}
2000 che ha introdotto una apposita interfaccia per la lettura delle directory,
2001 basata sui cosiddetti \textit{directory stream}, chiamati così per l'analogia
2002 con i \textit{file stream} dell'interfaccia standard ANSI C che vedremo in
2003 cap.~\ref{cha:files_std_interface}. La prima funzione di questa interfaccia è
2004 \funcd{opendir}, il cui prototipo è:
2005
2006 \begin{funcproto}{ 
2007 \fhead{sys/types.h}
2008 \fhead{dirent.h}
2009 \fdecl{DIR *opendir(const char *dirname)}
2010 \fdesc{Apre un \textit{directory stream}.} 
2011 }
2012 {La funzione ritorna un puntatore al \textit{directory stream} in caso di
2013   successo e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno
2014   dei valori \errval{EACCES}, \errval{EMFILE}, \errval{ENFILE},
2015   \errval{ENOENT}, \errval{ENOMEM} e \errval{ENOTDIR} nel loro significato
2016   generico.}
2017 \end{funcproto}
2018
2019 La funzione apre un \textit{directory stream} per la directory
2020 \param{dirname}, ritornando il puntatore ad un oggetto di tipo \type{DIR} (che
2021 è il \index{tipo!opaco} tipo opaco usato dalle librerie per gestire i
2022 \textit{directory stream}) da usare per tutte le operazioni successive, la
2023 funzione inoltre posiziona lo \textit{stream} sulla prima voce contenuta nella
2024 directory.
2025
2026 Si tenga presente che comunque la funzione opera associando il
2027 \textit{directory stream} ad un opportuno file descriptor sottostante, sul
2028 quale vengono compiute le operazioni. Questo viene sempre aperto impostando il
2029 flag di \itindex{close-on-exec} \textit{close-on-exec} (si ricordi quanto
2030 detto in sez.~\ref{sec:proc_exec}), così da evitare che resti aperto in caso
2031 di esecuzione di un altro programma.
2032
2033 Nel caso in cui sia necessario conoscere il \textit{file descriptor} associato
2034 ad un \textit{directory stream} si può usare la funzione
2035 \funcd{dirfd},\footnote{questa funzione è una estensione introdotta con BSD
2036   4.3-Reno ed è presente in Linux con le libc5 (a partire dalla versione
2037   5.1.2) e con la \acr{glibc} ma non presente in POSIX fino alla revisione
2038   POSIX.1-2008, per questo per poterla utilizzare fino alla versione 2.10
2039   della \acr{glibc} era necessario definire le macro \macro{\_BSD\_SOURCE} o
2040   \macro{\_SVID\_SOURCE}, dalla versione 2.10 si possono usare anche
2041   \texttt{\macro{\_POSIX\_C\_SOURCE} >= 200809L} o
2042   \texttt{\macro{\_XOPEN\_SOURCE} >= 700}.}  il cui prototipo è:
2043
2044 \begin{funcproto}{ 
2045 \fhead{sys/types.h}
2046 \fhead{dirent.h}
2047 \fdecl{int dirfd(DIR *dir)}
2048 \fdesc{Legge il file descriptor associato ad un \textit{directory stream}.} 
2049 }
2050 {La funzione ritorna un valore positivo corrispondente al file descriptor in
2051   caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
2052   uno dei valori:
2053   \begin{errlist}
2054   \item[\errcode{EINVAL}] \param{dir} non è un puntatore ad un
2055     \textit{directory stream}. 
2056   \item[\errcode{ENOTSUP}] l'implementazione non supporta l'uso di un file
2057     descriptor per la directory.
2058   \end{errlist}
2059 }
2060 \end{funcproto}
2061
2062 La funzione restituisce il file descriptor associato al \textit{directory
2063   stream} \param{dir}. Di solito si utilizza questa funzione in abbinamento a
2064 funzioni che operano sui file descriptor, ad esempio si potrà usare
2065 \func{fstat} per ottenere le proprietà della directory, o \func{fchdir} per
2066 spostare su di essa la \index{directory~di~lavoro} directory di lavoro (vedi
2067 sez.~\ref{sec:file_work_dir}).
2068
2069 Viceversa se si è aperto un file descriptor corrispondente ad una directory è
2070 possibile associarvi un \textit{directory stream} con la funzione
2071 \funcd{fdopendir},\footnote{questa funzione è però disponibile solo a partire
2072   dalla versione 2.4 della \acr{glibc}, ed è stata introdotta nello standard
2073   POSIX solo a partire dalla revisione POSIX.1-2008, prima della versione 2.10
2074   della \acr{glibc} per poterla utilizzare era necessario definire la macro
2075   \macro{\_GNU\_SOURCE}, dalla versione 2.10 si possono usare anche
2076   \texttt{\macro{\_POSIX\_C\_SOURCE} >= 200809L} o \texttt{\_XOPEN\_SOURCE >=
2077     700} .}  il cui prototipo è:
2078
2079 \begin{funcproto}{ 
2080 \fhead{sys/types.h}
2081 \fhead{dirent.h}
2082 \fdecl{DIR *fdopendir(int fd)}
2083 \fdesc{Associa un \textit{directory stream} ad un file descriptor.} 
2084 }
2085 {La funzione ritorna un puntatore al \textit{directory stream} in caso di
2086   successo e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno
2087   dei valori \errval{EBADF} o \errval{ENOMEM} nel loro significato generico.}
2088 \end{funcproto}
2089
2090 La funzione è identica a \func{opendir}, ma ritorna un \textit{directory
2091   stream} facendo riferimento ad un file descriptor \param{fd} che deve essere
2092 stato aperto in precedenza; la funzione darà un errore qualora questo non
2093 corrisponda ad una directory. L'uso di questa funzione permette di rispondere
2094 agli stessi requisiti delle funzioni ``\textit{at}'' che vedremo in
2095 sez.~\ref{sec:file_openat}.
2096
2097 Una volta utilizzata il file descriptor verrà usato internamente dalle
2098 funzioni che operano sul \textit{directory stream} e non dovrà essere più
2099 utilizzato all'interno del proprio programma. In particolare dovrà essere
2100 chiuso attraverso il \textit{directory stream} con \func{closedir} e non
2101 direttamente. Si tenga presente inoltre che \func{fdopendir} non modifica lo
2102 stato di un eventuale flag di \itindex{close-on-exec} \textit{close-on-exec},
2103 che pertanto dovrà essere impostato esplicitamente in fase di apertura del
2104 file descriptor.
2105
2106 Una volta che si sia aperto un \textit{directory stream} la lettura del
2107 contenuto della directory viene effettuata attraverso la funzione
2108 \funcd{readdir}, il cui prototipo è:
2109
2110 \begin{funcproto}{ 
2111 \fhead{sys/types.h}
2112 \fhead{dirent.h}
2113 \fdecl{struct dirent *readdir(DIR *dir)}
2114 \fdesc{Legge una voce dal \textit{directory stream}.} 
2115 }
2116 {La funzione ritorna il puntatore alla struttura contenente i dati in caso di
2117   successo e \val{NULL} per un errore o se si è raggiunta la fine dello
2118   \textit{stream}. Il solo codice di errore restituito in \var{errno} è
2119   \errval{EBADF} qualora \param{dir} non indichi un \textit{directory stream}
2120   valido.}
2121 \end{funcproto}
2122
2123 La funzione legge la voce corrente nella directory, posizionandosi sulla voce
2124 successiva. Pertanto se si vuole leggere l'intero contenuto di una directory
2125 occorrerà ripetere l'esecuzione della funzione fintanto che non si siano
2126 esaurite tutte le voci in essa presenti, che viene segnalata dalla
2127 restituzione di \val{NULL} come valore di ritorno. Si può distinguere questa
2128 condizione da un errore in quanto in questo caso \var{errno} non verrebbe
2129 modificata.
2130
2131 I dati letti da \func{readdir} vengono memorizzati in una struttura
2132 \struct{dirent}, la cui definizione è riportata in
2133 fig.~\ref{fig:file_dirent_struct}.\footnote{la definizione è quella usata da
2134   Linux, che si trova nel file \file{/usr/include/bits/dirent.h}, essa non
2135   contempla la presenza del campo \var{d\_namlen} che indica la lunghezza del
2136   nome del file.} La funzione non è rientrante e restituisce il puntatore ad
2137 una struttura allocata staticamente, che viene sovrascritta tutte le volte che
2138 si ripete la lettura di una voce sullo stesso \textit{directory stream}.
2139
2140 Di questa funzione esiste anche una versione \index{funzioni!rientranti}
2141 rientrante, \funcd{readdir\_r},\footnote{per usarla è necessario definire una
2142   qualunque delle macro \texttt{\macro{\_POSIX\_C\_SOURCE} >= 1},
2143   \macro{\_XOPEN\_SOURCE}, \macro{\_BSD\_SOURCE}, \macro{\_SVID\_SOURCE},
2144   \macro{\_POSIX\_SOURCE}.} che non usa una struttura allocata staticamente, e
2145 può essere utilizzata anche con i \itindex{thread} \textit{thread}, il suo
2146 prototipo è:
2147
2148 \begin{funcproto}{ 
2149 \fhead{sys/types.h}
2150 \fhead{dirent.h}
2151 \fdecl{int readdir\_r(DIR *dir, struct dirent *entry, struct dirent **result)}
2152 \fdesc{Legge una voce dal \textit{directory stream}.} 
2153 }
2154 {La funzione ritorna $0$ in caso di successo ed un numero positivo per un
2155   errore, nel qual caso \var{errno} assumerà gli stessi valori di
2156   \func{readdir}.} 
2157 \end{funcproto}
2158
2159 La funzione restituisce in \param{result} come \itindex{value~result~argument}
2160 \textit{value result argument} l'indirizzo della struttura \struct{dirent}
2161 dove sono stati salvati i dati, che deve essere allocata dal chiamante, ed il
2162 cui indirizzo deve essere indicato con l'argomento \param{entry}.  Se si è
2163 raggiunta la fine del \textit{directory stream} invece in \param{result} viene
2164 restituito il valore \val{NULL}.
2165
2166 \begin{figure}[!htb]
2167   \footnotesize \centering
2168   \begin{minipage}[c]{\textwidth}
2169     \includestruct{listati/dirent.c}
2170   \end{minipage} 
2171   \normalsize 
2172   \caption{La struttura \structd{dirent} per la lettura delle informazioni dei 
2173     file.}
2174   \label{fig:file_dirent_struct}
2175 \end{figure}
2176
2177 % Lo spazio per la \struct{dirent} dove vengono restituiti i dati della
2178 % directory deve essere allocato a cura del chiamante, dato che la dimensione
2179
2180
2181 I vari campi di \struct{dirent} contengono le informazioni relative alle voci
2182 presenti nella directory. Sia BSD che SVr4 che POSIX.1-2001\footnote{il
2183   vecchio standard POSIX prevedeva invece solo la presenza del campo
2184   \var{d\_fileno}, identico \var{d\_ino}, che in Linux era definito come alias
2185   di quest'ultimo, mentre il campo \var{d\_name} era considerato dipendente
2186   dall'implementazione.}  prevedono che siano sempre presenti il campo
2187 \var{d\_name}, che contiene il nome del file nella forma di una stringa
2188 terminata da uno zero, ed il campo \var{d\_ino}, che contiene il numero di
2189 \itindex{inode} \textit{inode} cui il file è associato e corrisponde al campo
2190 \var{st\_ino} di \struct{stat}.  La presenza di ulteriori campi opzionali
2191 oltre i due citati è segnalata dalla definizione di altrettante macro nella
2192 forma \code{\_DIRENT\_HAVE\_D\_XXX} dove \code{XXX} è il nome del relativo
2193 campo. Come si può evincere da fig.~\ref{fig:file_dirent_struct} nel caso di
2194 Linux sono pertanto definite le macro \macro{\_DIRENT\_HAVE\_D\_TYPE},
2195 \macro{\_DIRENT\_HAVE\_D\_OFF} e \macro{\_DIRENT\_HAVE\_D\_RECLEN}, mentre non
2196 è definita la macro \macro{\_DIRENT\_HAVE\_D\_NAMLEN}.
2197
2198 Dato che possono essere presenti campi opzionali e che lo standard
2199 POSIX.1-2001 non specifica una dimensione definita per il nome dei file (che
2200 può variare a seconda del filesystem), ma solo un limite superiore pari a
2201 \const{NAME\_MAX} (vedi tab.~\ref{tab:sys_file_macro}), in generale per
2202 allocare una struttura \struct{dirent} in maniera portabile occorre eseguire
2203 un calcolo per ottenere le dimensioni appropriate per il proprio
2204 sistema.\footnote{in SVr4 la lunghezza del campo è definita come
2205   \code{NAME\_MAX+1} che di norma porta al valore di 256 byte usato anche in
2206   fig.~\ref{fig:file_dirent_struct}.} Lo standard però richiede che il campo
2207 \var{d\_name} sia sempre l'ultimo della struttura, questo ci consente di
2208 ottenere la dimensione della prima parte con la macro di utilità generica
2209 \macro{offsetof}, che si può usare con il seguente prototipo:
2210
2211 {\centering
2212 \vspace{3pt}
2213 \begin{funcbox}{
2214 \fhead{stddef.h}
2215 \fdecl{size\_t \macro{offsetof}(type, member)}
2216 \fdesc{Restituisce la posizione del campo \param{member} nella
2217   struttura \param{type}.}
2218
2219 \end{funcbox}
2220 }
2221
2222 Ottenuta allora con \code{offsetof(struct dirent, d\_name)} la dimensione
2223 della parte iniziale della struttura, basterà sommarci la dimensione massima
2224 dei nomi dei file nel filesystem che si sta usando, che si può ottenere
2225 attraverso la funzione \func{pathconf} (per la quale si rimanda a
2226 sez.~\ref{sec:sys_pathconf}) più un ulteriore carattere per la terminazione
2227 della stringa. 
2228
2229 Per quanto riguarda il significato dei campi opzionali, il campo \var{d\_type}
2230 indica il tipo di file (se fifo, directory, collegamento simbolico, ecc.), e
2231 consente di evitare una successiva chiamata a \func{lstat} (vedi
2232 sez.~\ref{sec:file_stat}) per determinarlo. I suoi possibili valori sono
2233 riportati in tab.~\ref{tab:file_dtype_macro}. Si tenga presente che questo
2234 valore è disponibile solo per i filesystem che ne supportano la restituzione
2235 (fra questi i più noti sono \textsl{btrfs}, \textsl{ext2}, \textsl{ext3}, e
2236 \textsl{ext4}), per gli altri si otterrà sempre il valore
2237 \const{DT\_UNKNOWN}.\footnote{inoltre fino alla versione 2.1 della
2238   \acr{glibc}, pur essendo il campo \var{d\_type} presente, il suo uso non era
2239   implementato, e veniva restituito comunque il valore \const{DT\_UNKNOWN}.}
2240
2241 \begin{table}[htb]
2242   \centering
2243   \footnotesize
2244   \begin{tabular}[c]{|l|l|}
2245     \hline
2246     \textbf{Valore} & \textbf{Tipo di file} \\
2247     \hline
2248     \hline
2249     \const{DT\_UNKNOWN} & Tipo sconosciuto.\\
2250     \const{DT\_REG}     & File normale.\\
2251     \const{DT\_DIR}     & Directory.\\
2252     \const{DT\_LNK}     & Collegamento simbolico.\\
2253     \const{DT\_FIFO}    & Fifo.\\
2254     \const{DT\_SOCK}    & Socket.\\
2255     \const{DT\_CHR}     & Dispositivo a caratteri.\\
2256     \const{DT\_BLK}     & Dispositivo a blocchi.\\
2257     \hline    
2258   \end{tabular}
2259   \caption{Costanti che indicano i vari tipi di file nel campo \var{d\_type}
2260     della struttura \struct{dirent}.}
2261   \label{tab:file_dtype_macro}
2262 \end{table}
2263
2264 Per la conversione da e verso l'analogo valore mantenuto dentro il campo
2265 \var{st\_mode} di \struct{stat} (vedi fig.~\ref{fig:file_stat_struct}) sono
2266 definite anche due macro di conversione, \macro{IFTODT} e \macro{DTTOIF}:
2267
2268 {\centering
2269 \vspace{3pt}
2270 \begin{funcbox}{
2271 \fhead{dirent.h}
2272 \fdecl{int \macro{IFTODT}(mode\_t MODE)}
2273 \fdesc{Converte il tipo di file dal formato di \var{st\_mode} a quello di
2274   \var{d\_type}.}
2275 \fdecl{mode\_t \macro{DTTOIF}(int DTYPE)}
2276 \fdesc{Converte il tipo di file dal formato di \var{d\_type} a quello di
2277   \var{st\_mode}.}  
2278
2279 \end{funcbox}
2280 }
2281
2282 Il campo \var{d\_off} contiene invece la posizione della voce successiva della
2283 directory, mentre il campo \var{d\_reclen} la lunghezza totale della voce
2284 letta. Con questi due campi diventa possibile, determinando la posizione delle
2285 varie voci, spostarsi all'interno dello \textit{stream} usando la funzione
2286 \funcd{seekdir},\footnote{sia questa funzione che \func{telldir}, sono
2287   estensioni prese da BSD, ed introdotte nello standard POSIX solo a partire
2288   dalla revisione POSIX.1-2001, per poterle utilizzare deve essere definita
2289   una delle macro \macro{\_XOPEN\_SOURCE}, \macro{\_BSD\_SOURCE} o
2290   \macro{\_SVID\_SOURCE}.} il cui prototipo è:
2291
2292 \begin{funcproto}{ 
2293 \fhead{dirent.h}
2294 \fdecl{void seekdir(DIR *dir, off\_t offset)}
2295 \fdesc{Cambia la posizione all'interno di un \textit{directory stream}.} 
2296 }
2297 {La funzione non ritorna niente e non imposta errori.}
2298 \end{funcproto}
2299
2300 La funzione non ritorna nulla e non segnala errori, è però necessario che il
2301 valore dell'argomento \param{offset} sia valido per lo
2302 \textit{stream} \param{dir}; esso pertanto deve essere stato ottenuto o dal
2303 valore di \var{d\_off} di \struct{dirent} o dal valore restituito dalla
2304 funzione \funcd{telldir}, che legge la posizione corrente; il cui prototipo
2305 è:\footnote{prima della \acr{glibc} 2.1.1 la funzione restituiva un valore di
2306   tipo \type{off\_t}, sostituito a partire dalla versione 2.1.2 da \ctyp{long}
2307   per conformità a POSIX.1-2001.}
2308
2309 \begin{funcproto}{ 
2310 \fhead{dirent.h}
2311 \fdecl{long telldir(DIR *dir)}
2312 \fdesc{Ritorna la posizione corrente in un \textit{directory stream}.} 
2313 }
2314 {La funzione ritorna la posizione corrente nello \textit{stream} (un numero
2315   positivo) in caso di successo e $-1$ per un errore, nel qual caso
2316   \var{errno} assume solo il valore di \errval{EBADF}, corrispondente ad un
2317   valore errato per \param{dir}.  }
2318 \end{funcproto}
2319
2320 La sola funzione di posizionamento per un \textit{directory stream} prevista
2321 originariamente dallo standard POSIX è \funcd{rewinddir}, che riporta la
2322 posizione a quella iniziale; il suo prototipo è:
2323
2324 \begin{funcproto}{
2325 \fhead{sys/types.h}
2326 \fhead{dirent.h}
2327 \fdecl{void rewinddir(DIR *dir)}
2328 \fdesc{Si posiziona all'inizio di un \textit{directory stream}.} 
2329 }
2330 {La funzione non ritorna niente e non imposta errori.}
2331 \end{funcproto}
2332
2333 Una volta completate le operazioni si può chiudere il \textit{directory
2334   stream}, ed il file descriptor ad esso associato, con la funzione
2335 \funcd{closedir}, il cui prototipo è:
2336
2337 \begin{funcproto}{ 
2338 \fhead{sys/types.h}
2339 \fhead{dirent.h}
2340 \fdecl{int closedir(DIR *dir)}
2341 \fdesc{Chiude un \textit{directory stream}.} 
2342 }
2343 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2344   caso \var{errno} assume solo il valore \errval{EBADF}.}
2345 \end{funcproto}
2346
2347 A parte queste funzioni di base in BSD 4.3 venne introdotta un'altra funzione
2348 che permette di eseguire una scansione completa, con tanto di ricerca ed
2349 ordinamento, del contenuto di una directory; la funzione è
2350 \funcd{scandir}\footnote{in Linux questa funzione è stata introdotta fin dalle
2351   \acr{libc4} e richiede siano definite le macro \macro{\_BSD\_SOURCE} o
2352   \macro{\_SVID\_SOURCE}.} ed il suo prototipo è:
2353
2354 \begin{funcproto}{ 
2355 \fhead{dirent.h}
2356 \fdecl{int scandir(const char *dir, struct dirent ***namelist, \\
2357 \phantom{int scandir(}int(*filter)(const struct dirent *), \\
2358 \phantom{int scandir(}int(*compar)(const struct dirent **, const struct dirent **))}
2359 \fdesc{Esegue una scansione di un \textit{directory stream}.} 
2360 }
2361 {La funzione ritorna il numero di voci trovate in caso di successo e $-1$ per
2362   un errore, nel qual caso \var{errno} può assumere solo il valore
2363   \errval{ENOMEM}.}
2364 \end{funcproto}
2365
2366 Al solito, per la presenza fra gli argomenti di due puntatori a funzione, il
2367 prototipo non è molto comprensibile; queste funzioni però sono quelle che
2368 controllano rispettivamente la selezione di una voce, passata con
2369 l'argomento \param{filter}, e l'ordinamento di tutte le voci selezionate,
2370 specificata dell'argomento \param{compar}.
2371
2372 La funzione legge tutte le voci della directory indicata dall'argomento
2373 \param{dir}, passando un puntatore a ciascuna di esse (una struttura
2374 \struct{dirent}) come argomento della funzione di selezione specificata da
2375 \param{filter}; se questa ritorna un valore diverso da zero il puntatore viene
2376 inserito in un vettore che viene allocato dinamicamente con \func{malloc}.
2377 Qualora si specifichi un valore \val{NULL} per l'argomento \param{filter} non
2378 viene fatta nessuna selezione e si ottengono tutte le voci presenti.
2379
2380 Le voci selezionate possono essere riordinate tramite \funcm{qsort}, le
2381 modalità del riordinamento possono essere personalizzate usando la funzione
2382 \param{compar} come criterio di ordinamento di \funcm{qsort}, la funzione
2383 prende come argomenti le due strutture \struct{dirent} da confrontare
2384 restituendo un valore positivo, nullo o negativo per indicarne l'ordinamento;
2385 alla fine l'indirizzo della lista ordinata dei puntatori alle strutture
2386 \struct{dirent} viene restituito nell'argomento
2387 \param{namelist}.\footnote{la funzione alloca automaticamente la lista, e
2388   restituisce, come \itindex{value~result~argument} \textit{value result
2389     argument}, l'indirizzo della stessa; questo significa che \param{namelist}
2390   deve essere dichiarato come \code{struct dirent **namelist} ed alla funzione
2391   si deve passare il suo indirizzo.}
2392
2393 \itindend{directory~stream}
2394
2395 Per l'ordinamento, vale a dire come valori possibili per l'argomento
2396 \param{compar}, sono disponibili due funzioni predefinite, \funcd{alphasort} e
2397 \funcd{versionsort}, i cui prototipi sono:
2398
2399 \begin{funcproto}{ 
2400 \fhead{dirent.h}
2401 \fdecl{int alphasort(const void *a, const void *b)}
2402 \fdecl{int versionsort(const void *a, const void *b)}
2403 \fdesc{Riordinano le voci di \textit{directory stream}.} 
2404 }
2405 {Le funzioni restituiscono un valore minore, uguale o maggiore di zero qualora
2406   il primo argomento sia rispettivamente minore, uguale o maggiore del secondo
2407   e non forniscono errori.}
2408 \end{funcproto}
2409
2410 La funzione \func{alphasort} deriva da BSD ed è presente in Linux fin dalle
2411 \acr{libc4}\footnote{la versione delle \acr{libc4} e \acr{libc5} usa però come
2412   argomenti dei puntatori a delle strutture \struct{dirent}; la glibc usa il
2413   prototipo originario di BSD, mostrato anche nella definizione, che prevede
2414   puntatori a \ctyp{void}.} e deve essere specificata come argomento
2415 \param{compar} per ottenere un ordinamento alfabetico secondo il valore del
2416 campo \var{d\_name} delle varie voci. La \acr{glibc} prevede come
2417 estensione\footnote{la \acr{glibc}, a partire dalla versione 2.1, effettua
2418   anche l'ordinamento alfabetico tenendo conto delle varie localizzazioni,
2419   usando \funcm{strcoll} al posto di \funcm{strcmp}.} anche
2420 \func{versionsort}, che ordina i nomi tenendo conto del numero di versione,
2421 cioè qualcosa per cui \texttt{file10} viene comunque dopo \texttt{file4}.
2422
2423 \begin{figure}[!htbp]
2424   \footnotesize \centering
2425   \begin{minipage}[c]{\codesamplewidth}
2426     \includecodesample{listati/my_ls.c}
2427   \end{minipage}
2428   \caption{Esempio di codice per eseguire la lista dei file contenuti in una
2429     directory.} 
2430   \label{fig:file_my_ls}
2431 \end{figure}
2432
2433 Un semplice esempio dell'uso di queste funzioni è riportato in
2434 fig.~\ref{fig:file_my_ls}, dove si è riportata la sezione principale di un
2435 programma che, usando la funzione di scansione illustrata in
2436 fig.~\ref{fig:file_dirscan}, stampa i nomi dei file contenuti in una directory
2437 e la relativa dimensione, in sostanza una versione semplificata del comando
2438 \cmd{ls}.
2439
2440 Il programma è estremamente semplice; in fig.~\ref{fig:file_my_ls} si è omessa
2441 la parte di gestione delle opzioni, che prevede solo l'uso di una funzione per
2442 la stampa della sintassi, anch'essa omessa, ma il codice completo può essere
2443 trovato coi sorgenti allegati alla guida nel file \file{myls.c}.
2444
2445 In sostanza tutto quello che fa il programma, dopo aver controllato
2446 (\texttt{\small 12--15}) di avere almeno un argomento, che indicherà la
2447 directory da esaminare, è chiamare (\texttt{\small 16}) la funzione
2448 \myfunc{dir\_scan} per eseguire la scansione, usando la funzione \code{do\_ls}
2449 (\texttt{\small 22--29}) per fare tutto il lavoro.
2450
2451 Quest'ultima si limita (\texttt{\small 26}) a chiamare \func{stat} sul file
2452 indicato dalla directory entry passata come argomento (il cui nome è appunto
2453 \var{direntry->d\_name}), memorizzando in una opportuna struttura \var{data} i
2454 dati ad esso relativi, per poi provvedere (\texttt{\small 27}) a stampare il
2455 nome del file e la dimensione riportata in \var{data}.
2456
2457 Dato che la funzione verrà chiamata all'interno di \myfunc{dir\_scan} per ogni
2458 voce presente questo è sufficiente a stampare la lista completa dei file e
2459 delle relative dimensioni. Si noti infine come si restituisca sempre 0 come
2460 valore di ritorno per indicare una esecuzione senza errori.
2461
2462 \begin{figure}[!htbp]
2463   \footnotesize \centering
2464   \begin{minipage}[c]{\codesamplewidth}
2465     \includecodesample{listati/dir_scan.c}
2466   \end{minipage}
2467   \caption{Codice della funzione di scansione di una directory contenuta nel
2468     file \file{dir\_scan.c}.} 
2469   \label{fig:file_dirscan}
2470 \end{figure}
2471
2472 Tutto il grosso del lavoro è svolto dalla funzione \myfunc{dir\_scan},
2473 riportata in fig.~\ref{fig:file_dirscan}. La funzione è volutamente generica e
2474 permette di eseguire una funzione, passata come secondo argomento, su tutte le
2475 voci di una directory.  La funzione inizia con l'aprire (\texttt{\small
2476   18--22}) uno \textit{stream} sulla directory passata come primo argomento,
2477 stampando un messaggio in caso di errore.
2478
2479 Il passo successivo (\texttt{\small 23--24}) è cambiare
2480 \index{directory~di~lavoro} directory di lavoro (vedi
2481 sez.~\ref{sec:file_work_dir}), usando in sequenza le funzioni \func{dirfd} e
2482 \func{fchdir} (in realtà si sarebbe potuto usare direttamente \func{chdir} su
2483 \var{dirname}), in modo che durante il successivo ciclo (\texttt{\small
2484   26--30}) sulle singole voci dello \textit{stream} ci si trovi all'interno
2485 della directory.\footnote{questo è essenziale al funzionamento della funzione
2486   \code{do\_ls}, e ad ogni funzione che debba usare il campo \var{d\_name}, in
2487   quanto i nomi dei file memorizzati all'interno di una struttura
2488   \struct{dirent} sono sempre relativi alla directory in questione, e senza
2489   questo posizionamento non si sarebbe potuto usare \func{stat} per ottenere
2490   le dimensioni.}
2491
2492 Avendo usato lo stratagemma di fare eseguire tutte le manipolazioni necessarie
2493 alla funzione passata come secondo argomento, il ciclo di scansione della
2494 directory è molto semplice; si legge una voce alla volta (\texttt{\small 26})
2495 all'interno di una istruzione di \code{while} e fintanto che si riceve una
2496 voce valida, cioè un puntatore diverso da \val{NULL}, si esegue
2497 (\texttt{\small 27}) la funzione di elaborazione \var{compare} (che nel nostro
2498 caso sarà \code{do\_ls}), ritornando con un codice di errore (\texttt{\small
2499   28}) qualora questa presenti una anomalia, identificata da un codice di
2500 ritorno negativo. Una volta terminato il ciclo la funzione si conclude con la
2501 chiusura (\texttt{\small 32}) dello \textit{stream}\footnote{nel nostro caso,
2502   uscendo subito dopo la chiamata, questo non servirebbe, in generale però
2503   l'operazione è necessaria, dato che la funzione può essere invocata molte
2504   volte all'interno dello stesso processo, per cui non chiudere i
2505   \textit{directory stream} comporterebbe un consumo progressivo di risorse,
2506   con conseguente rischio di esaurimento delle stesse.} e la restituzione
2507 (\texttt{\small 32}) del codice di operazioni concluse con successo.
2508
2509
2510
2511 \subsection{La directory di lavoro}
2512 \label{sec:file_work_dir}
2513
2514 \index{directory~di~lavoro|(} 
2515
2516 Come accennato in sez.~\ref{sec:proc_fork} a ciascun processo è associata una
2517 directory nel filesystem,\footnote{questa viene mantenuta all'interno dei dati
2518   della sua \kstruct{task\_struct} (vedi fig.~\ref{fig:proc_task_struct}), più
2519   precisamente nel campo \texttt{pwd} della sotto-struttura
2520   \kstruct{fs\_struct}.} che è chiamata \textsl{directory corrente} o
2521 \textsl{directory di lavoro} (in inglese \textit{current working directory}).
2522 La directory di lavoro è quella da cui si parte quando un
2523 \itindsub{pathname}{relativo} \textit{pathname} è espresso in forma relativa,
2524 dove il ``\textsl{relativa}'' fa riferimento appunto a questa directory.
2525
2526 Quando un utente effettua il login, questa directory viene impostata alla
2527 \textit{home directory} del suo account. Il comando \cmd{cd} della shell
2528 consente di cambiarla a piacere, spostandosi da una directory ad un'altra, il
2529 comando \cmd{pwd} la stampa sul terminale.  Siccome la directory di lavoro
2530 resta la stessa quando viene creato un processo figlio (vedi
2531 sez.~\ref{sec:proc_fork}), la directory di lavoro della shell diventa anche la
2532 directory di lavoro di qualunque comando da essa lanciato.
2533
2534 Dato che è il kernel che tiene traccia per ciascun processo \itindex{inode}
2535 dell'\textit{inode} della directory di lavoro, per ottenerne il
2536 \textit{pathname} occorre usare una apposita funzione,
2537 \funcd{getcwd},\footnote{con Linux \func{getcwd} è una \textit{system call}
2538   dalla versione 2.1.9, in precedenza il valore doveva essere ottenuto tramite
2539   il filesystem \texttt{/proc} da \procfile{/proc/self/cwd}.} il cui prototipo
2540 è:
2541
2542 \begin{funcproto}{ 
2543 \fhead{unistd.h}
2544 \fdecl{char *getcwd(char *buffer, size\_t size)}
2545 \fdesc{Legge il \textit{pathname} della directory di lavoro corrente.} 
2546 }
2547 {La funzione ritorna il puntatore a \param{buffer} in caso di successo e
2548   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori: 
2549   \begin{errlist}
2550   \item[\errcode{EACCES}] manca il permesso di lettura o di attraversamento  su
2551     uno dei componenti del \textit{pathname} (cioè su una delle directory
2552     superiori alla corrente).
2553   \item[\errcode{EINVAL}] l'argomento \param{size} è zero e \param{buffer} non
2554     è nullo.
2555   \item[\errcode{ENOENT}] la directory di lavoro è stata eliminata. 
2556   \item[\errcode{ERANGE}] l'argomento \param{size} è più piccolo della
2557     lunghezza del \textit{pathname}. 
2558   \end{errlist}
2559   ed inoltre \errcode{EFAULT} nel suo significato generico.}
2560 \end{funcproto}
2561
2562 La funzione restituisce il \textit{pathname} completo della directory di
2563 lavoro corrente nella stringa puntata da \param{buffer}, che deve essere
2564 precedentemente allocata, per una dimensione massima di \param{size}.  Il
2565 buffer deve essere sufficientemente largo da poter contenere il
2566 \textit{pathname} completo più lo zero di terminazione della stringa. Qualora
2567 esso ecceda le dimensioni specificate con \param{size} la funzione restituisce
2568 un errore.
2569
2570 Si può anche specificare un puntatore nullo come
2571 \param{buffer},\footnote{questa è un'estensione allo standard POSIX.1,
2572   supportata da Linux e dalla \acr{glibc}.} nel qual caso la stringa sarà
2573 allocata automaticamente per una dimensione pari a \param{size} qualora questa
2574 sia diversa da zero, o della lunghezza esatta del \textit{pathname}
2575 altrimenti. In questo caso ci si deve ricordare di disallocare la stringa con
2576 \func{free} una volta cessato il suo utilizzo.
2577
2578 Un uso comune di \func{getcwd} è quello di salvarsi la directory di lavoro
2579 all'avvio del programma per poi potervi tornare in un tempo successivo, un
2580 metodo alternativo più veloce, se non si è a corto di file descriptor, è
2581 invece quello di aprire all'inizio la directory corrente (vale a dire
2582 ``\texttt{.}'') e tornarvi in seguito con \func{fchdir}.
2583
2584 Di questa funzione esiste una versione alternativa per compatibilità
2585 all'indietro con BSD, \funcm{getwd}, che non prevede l'argomento \param{size}
2586 e quindi non consente di specificare la dimensione di \param{buffer} che
2587 dovrebbe essere allocato in precedenza ed avere una dimensione sufficiente
2588 (per BSD maggiore \const{PATH\_MAX}, che di solito 256 byte, vedi
2589 sez.~\ref{sec:sys_limits}). Il problema è che su Linux non esiste una
2590 dimensione superiore per la lunghezza di un \textit{pathname}, per cui non è
2591 detto che il buffer sia sufficiente a contenere il nome del file, e questa è
2592 la ragione principale per cui questa funzione è deprecata, e non la tratteremo.
2593
2594 Una seconda funzione usata per ottenere la directory di lavoro è
2595 \funcm{get\_current\_dir\_name},\footnote{la funzione è una estensione GNU e
2596   presente solo nella \acr{glibc}.} che non prende nessun argomento ed è
2597 sostanzialmente equivalente ad una \code{getcwd(NULL, 0)}, con la differenza
2598 che se disponibile essa ritorna il valore della variabile di ambiente
2599 \envvar{PWD}, che essendo costruita dalla shell può contenere un
2600 \textit{pathname} comprendente anche dei collegamenti simbolici. Usando
2601 \func{getcwd} infatti, essendo il \textit{pathname} ricavato risalendo
2602 all'indietro l'albero della directory, si perderebbe traccia di ogni passaggio
2603 attraverso eventuali collegamenti simbolici.
2604
2605 Per cambiare la directory di lavoro si può usare la funzione di sistema
2606 \funcd{chdir}, equivalente del comando di shell \cmd{cd}, il cui nome sta
2607 appunto per \textit{change directory}, il suo prototipo è:
2608
2609 \begin{funcproto}{ 
2610 \fhead{unistd.h}
2611 \fdecl{int chdir(const char *pathname)}
2612 \fdesc{Cambia la directory di lavoro per \textit{pathname}.} 
2613 }
2614 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2615   caso \var{errno} assumerà uno dei valori: 
2616   \begin{errlist}
2617   \item[\errcode{EACCES}] manca il permesso di ricerca su uno dei componenti
2618     di \param{pathname}.
2619   \item[\errcode{ENOTDIR}] non si è specificata una directory.
2620   \end{errlist}
2621   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{EIO},
2622   \errval{ENAMETOOLONG}, \errval{ENOENT} e \errval{ENOMEM} nel loro
2623   significato generico.}
2624 \end{funcproto}
2625
2626 La funzione cambia la directory di lavoro in \param{pathname} ed
2627 ovviamente \param{pathname} deve indicare una directory per la quale si hanno
2628 i permessi di accesso.
2629
2630 Dato che ci si può riferire ad una directory anche tramite un file descriptor,
2631 per cambiare directory di lavoro è disponibile anche la funzione di sistema
2632 \funcd{fchdir}, il cui prototipo è:
2633
2634 \begin{funcproto}{
2635 \fhead{unistd.h}
2636 \fdecl{int fchdir(int fd)}
2637 \fdesc{Cambia la directory di lavoro per file descriptor.} 
2638 }
2639 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2640   caso \var{errno} assumerà i valori \errval{EBADF} o \errval{EACCES} nel loro
2641   significato generico.}
2642 \end{funcproto}
2643
2644 La funzione è identica a \func{chdir}, ma prende come argomento un file
2645 descriptor \param{fd} invece di un \textit{pathname}. Anche in questo
2646 caso \param{fd} deve essere un file descriptor valido che fa riferimento ad
2647 una directory. Inoltre l'unico errore di accesso possibile (tutti gli altri
2648 sarebbero occorsi all'apertura di \param{fd}), è quello in cui il processo non
2649 ha il permesso di attraversamento alla directory specificata da \param{fd}.
2650
2651 \index{directory~di~lavoro|)} 
2652
2653
2654 \subsection{La creazione dei \textsl{file speciali}}
2655 \label{sec:file_mknod}
2656
2657 \index{file!di~dispositivo|(} 
2658 \index{file!speciali|(} 
2659
2660 Finora abbiamo parlato esclusivamente di file, directory e collegamenti
2661 simbolici, ma in sez.~\ref{sec:file_file_types} abbiamo visto che il sistema
2662 prevede anche degli altri tipi di file, che in genere vanno sotto il nome
2663 generico di \textsl{file speciali}, come i file di dispositivo, le fifo ed i
2664 socket.
2665
2666 La manipolazione delle caratteristiche di questi file speciali, il cambiamento
2667 di nome o la loro cancellazione può essere effettuata con le stesse funzioni
2668 che operano sugli altri file, ma quando li si devono creare sono necessarie,
2669 come per le directory, delle funzioni apposite. La prima di queste è la
2670 funzione di sistema \funcd{mknod}, il cui prototipo è:
2671
2672 \begin{funcproto}{ 
2673 \fhead{sys/types.h}
2674 \fhead{sys/stat.h}
2675 \fhead{fcntl.h}
2676 \fhead{unistd.h}
2677 \fdecl{int mknod(const char *pathname, mode\_t mode, dev\_t dev)}
2678 \fdesc{Crea un file speciale sul filesystem.} 
2679 }
2680 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2681   caso \var{errno} assumerà uno dei valori: 
2682   \begin{errlist}
2683   \item[\errcode{EEXIST}] \param{pathname} esiste già o è un collegamento
2684     simbolico. 
2685   \item[\errcode{EINVAL}] il valore di \param{mode} non indica un file, una
2686     fifo, un socket o un dispositivo.
2687   \item[\errcode{EPERM}] non si hanno privilegi sufficienti a creare
2688     \itindex{inode} l'\texttt{inode}, o il filesystem su cui si è cercato di
2689     creare \param{pathname} non supporta l'operazione.
2690   \end{errlist}
2691   ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{ELOOP},
2692   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOSPC},
2693   \errval{ENOTDIR} e \errval{EROFS} nel loro significato generico.}
2694 \end{funcproto}
2695
2696 La funzione permette di creare un \itindex{inode} \textit{inode} di tipo
2697 generico sul filesystem, e viene in genere utilizzata per creare i file di
2698 dispositivo, ma si può usare anche per creare qualunque tipo di file speciale
2699 ed anche file regolari. L'argomento \param{mode} specifica sia il tipo di file
2700 che si vuole creare che i relativi permessi, secondo i valori riportati in
2701 tab.~\ref{tab:file_mode_flags}, che vanno combinati con un OR aritmetico. I
2702 permessi sono comunque modificati nella maniera usuale dal valore di
2703 \itindex{umask} \textit{umask} (si veda sez.~\ref{sec:file_perm_management}).
2704
2705 Per il tipo di file può essere specificato solo uno fra i seguenti valori:
2706 \const{S\_IFREG} per un file regolare (che sarà creato vuoto),
2707 \const{S\_IFBLK} per un dispositivo a blocchi, \const{S\_IFCHR} per un
2708 dispositivo a caratteri, \const{S\_IFSOCK} per un socket e \const{S\_IFIFO}
2709 per una fifo;\footnote{con Linux la funzione non può essere usata per creare
2710   directory o collegamenti simbolici, si dovranno usare le funzioni
2711   \func{mkdir} e \func{symlink} a questo dedicate.} un valore diverso
2712 comporterà l'errore \errcode{EINVAL}. Inoltre \param{pathname} non deve
2713 esistere, neanche come collegamento simbolico.
2714
2715 Qualora si sia specificato in \param{mode} un file di dispositivo (vale a dire
2716 o \const{S\_IFBLK} o \const{S\_IFCHR}), il valore di \param{dev} dovrà essere
2717 usato per indicare a quale dispositivo si fa riferimento, altrimenti il suo
2718 valore verrà ignorato.  Solo l'amministratore può creare un file di
2719 dispositivo usando questa funzione (il processo deve avere la
2720 \itindex{capabilities} \textit{capability} \const{CAP\_MKNOD}), ma in
2721 Linux\footnote{questo è un comportamento specifico di Linux, la funzione non è
2722   prevista dallo standard POSIX.1 originale, mentre è presente in SVr4 e
2723   4.4BSD, ma esistono differenze nei comportamenti e nei codici di errore,
2724   tanto che questa è stata introdotta in POSIX.1-2001 con una nota che la
2725   definisce portabile solo quando viene usata per creare delle fifo, ma
2726   comunque deprecata essendo utilizzabile a tale scopo la specifica
2727   \func{mkfifo}.} l'uso per la creazione di un file ordinario, di una fifo o
2728 di un socket è consentito anche agli utenti normali.
2729
2730 I nuovi \itindex{inode} \textit{inode} creati con \func{mknod} apparterranno
2731 al proprietario e al gruppo del processo (usando \ids{UID} e \ids{GID} del
2732 gruppo effettivo) che li ha creati a meno non sia presente il bit \acr{sgid}
2733 per la directory o sia stata attivata la semantica BSD per il filesystem (si
2734 veda sez.~\ref{sec:file_ownership_management}) in cui si va a creare
2735 \itindex{inode} l'\textit{inode}, nel qual caso per il gruppo verrà usato il
2736 \ids{GID} del proprietario della directory.
2737
2738 Nella creazione di un file di dispositivo occorre poi specificare
2739 correttamente il valore di \param{dev}; questo infatti è di tipo
2740 \type{dev\_t}, che è un tipo primitivo (vedi
2741 tab.~\ref{tab:intro_primitive_types}) riservato per indicare un
2742 \textsl{numero} di dispositivo. Il kernel infatti identifica ciascun
2743 dispositivo con un valore numerico, originariamente questo era un intero a 16
2744 bit diviso in due parti di 8 bit chiamate rispettivamente
2745 \itindex{major~number} \textit{major number} e \itindex{minor~number}
2746 \textit{minor number}, che sono poi i due numeri mostrati dal comando
2747 \texttt{ls -l} al posto della dimensione quando lo si esegue su un file di
2748 dispositivo.
2749
2750 Il \itindex{major~number} \textit{major number} identifica una classe di
2751 dispositivi (ad esempio la seriale, o i dischi IDE) e serve in sostanza per
2752 indicare al kernel quale è il modulo che gestisce quella classe di
2753 dispositivi. Per identificare uno specifico dispositivo di quella classe (ad
2754 esempio una singola porta seriale, o uno dei dischi presenti) si usa invece il
2755 \itindex{minor~number} \textit{minor number}. L'elenco aggiornato di questi
2756 numeri con le relative corrispondenze ai vari dispositivi può essere trovato
2757 nel file \texttt{Documentation/devices.txt} allegato alla documentazione dei
2758 sorgenti del kernel.
2759
2760 Data la crescita nel numero di dispositivi supportati, ben presto il limite
2761 massimo di 256 si è rivelato troppo basso, e nel passaggio dai kernel della
2762 serie 2.4 alla serie 2.6 è stata aumentata a 32 bit la dimensione del tipo
2763 \type{dev\_t}, con delle dimensioni passate a 12 bit per il
2764 \itindex{major~number} \textit{major number} e 20 bit per il
2765 \itindex{minor~number} \textit{minor number}. La transizione però ha
2766 comportato il fatto che \type{dev\_t} è diventato un \index{tipo!opaco} tipo
2767 opaco, e la necessità di specificare il numero tramite delle opportune macro,
2768 così da non avere problemi di compatibilità con eventuali ulteriori
2769 estensioni.
2770
2771 Le macro sono definite nel file \headfile{sys/sysmacros.h},\footnote{se si usa
2772   la \acr{glibc} dalla versione 2.3.3 queste macro sono degli alias alle
2773   versioni specifiche di questa libreria, \macro{gnu\_dev\_major},
2774   \macro{gnu\_dev\_minor} e \macro{gnu\_dev\_makedev} che si possono usare
2775   direttamente, al costo di una minore portabilità.} che viene
2776 automaticamente incluso quando si include \headfile{sys/types.h}. Si possono
2777 pertanto ottenere i valori del \itindex{major~number} \textit{major number} e
2778 \itindex{minor~number} \textit{minor number} di un dispositivo rispettivamente
2779 con le macro \macro{major} e \macro{minor}:
2780
2781 {\centering
2782 \vspace{3pt}
2783 \begin{funcbox}{
2784 \fhead{sys/types.h}
2785 \fdecl{int \macro{major}(dev\_t dev)}
2786 \fdesc{Restituisce il \itindex{major~number} \textit{major number} del
2787   dispositivo \param{dev}.}
2788 \fdecl{int \macro{minor}(dev\_t dev)}
2789 \fdesc{Restituisce il \itindex{minor~number} \textit{minor number} del
2790   dispositivo \param{dev}.}  
2791
2792 \end{funcbox}
2793 }
2794
2795 \noindent mentre una volta che siano noti \itindex{major~number} \textit{major
2796   number} e \itindex{minor~number} \textit{minor number} si potrà costruire il
2797 relativo identificativo con la macro \macro{makedev}:
2798
2799 {\centering
2800 \vspace{3pt}
2801 \begin{funcbox}{
2802 \fhead{sys/types.h}
2803 \fdecl{dev\_t \macro{makedev}(int major, int minor)}
2804 \fdesc{Dati \itindex{major~number} \textit{major number} e
2805   \itindex{minor~number} \textit{minor number} restituisce l'identificativo di
2806   un dispositivo.} 
2807
2808 \end{funcbox}
2809 }
2810
2811 \index{file!di~dispositivo|)}
2812
2813 Dato che la funzione di sistema \func{mknod} presenta diverse varianti nei
2814 vari sistemi unix-like, lo standard POSIX.1-2001 la dichiara portabile solo in
2815 caso di creazione delle fifo, ma anche in questo caso alcune combinazioni
2816 degli argomenti restano non specificate, per cui nello stesso standard è stata
2817 introdotta una funzione specifica per creare una fifo deprecando l'uso di
2818 \func{mknod} a tale riguardo.  La funzione è \funcd{mkfifo} ed il suo
2819 prototipo è:
2820
2821 \begin{funcproto}{
2822 \fhead{sys/types.h}
2823 \fhead{sys/stat.h}
2824 \fdecl{int mkfifo(const char *pathname, mode\_t mode)}
2825 \fdesc{Crea una fifo.} 
2826 }
2827 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2828   caso \var{errno} assumerà \errval{EACCES}, \errval{EEXIST},
2829   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOSPC}, \errval{ENOTDIR} e
2830   \errval{EROFS} nel loro significato generico.}
2831 \end{funcproto}
2832
2833 La funzione crea la fifo \param{pathname} con i permessi \param{mode}. Come
2834 per \func{mknod} il file \param{pathname} non deve esistere (neanche come
2835 collegamento simbolico); al solito i permessi specificati da \param{mode}
2836 vengono modificati dal valore di \itindex{umask} \textit{umask}.
2837
2838 \index{file!speciali|)} 
2839
2840
2841 \subsection{I file temporanei}
2842 \label{sec:file_temp_file}
2843
2844 In molte occasioni è utile poter creare dei file temporanei; benché la cosa
2845 sembri semplice, in realtà il problema è più sottile di quanto non appaia a
2846 prima vista. Infatti anche se sembrerebbe banale generare un nome a caso e
2847 creare il file dopo aver controllato che questo non esista, nel momento fra il
2848 controllo e la creazione si ha giusto lo spazio per una possibile
2849 \itindex{race~condition} \textit{race condition} (si ricordi quanto visto in
2850 sez.~\ref{sec:proc_race_cond}).
2851
2852 Molti problemi di sicurezza derivano proprio da una creazione non accorta di
2853 file temporanei che lascia aperta questa \itindex{race~condition} \textit{race
2854   condition}. Un attaccante allora potrà sfruttarla con quello che viene
2855 chiamato ``\textit{symlink attack}'' dove nell'intervallo fra la generazione
2856 di un nome e l'accesso allo stesso, viene creato un collegamento simbolico con
2857 quel nome verso un file diverso, ottenendo, se il programma sotto attacco ne
2858 ha la capacità, un accesso privilegiato.
2859
2860 La \acr{glibc} provvede varie funzioni per generare nomi di file temporanei,
2861 di cui si abbia certezza di unicità al momento della generazione; storicamente
2862 la prima di queste funzioni create a questo scopo era
2863 \funcd{tmpnam},\footnote{la funzione è stata deprecata nella revisione
2864   POSIX.1-2008 dello standard POSIX.} il cui prototipo è:
2865
2866 \begin{funcproto}{ 
2867 \fhead{stdio.h}
2868 \fdecl{char *tmpnam(char *string)}
2869 \fdesc{Genera un nome univoco per un file temporaneo.} 
2870 }
2871 {La funzione ritorna il puntatore alla stringa con il nome in caso di successo
2872   e \val{NULL} in caso di fallimento, non sono definiti errori.}
2873 \end{funcproto}
2874
2875 La funzione restituisce il puntatore ad una stringa contente un nome di file
2876 valido e non esistente al momento dell'invocazione; se si è passato come
2877 argomento \param{string} un puntatore non nullo ad un buffer di caratteri
2878 questo deve essere di dimensione \const{L\_tmpnam} ed il nome generato vi
2879 verrà copiato automaticamente; altrimenti il nome sarà generato in un buffer
2880 statico interno che verrà sovrascritto ad una chiamata successiva.  Successive
2881 invocazioni della funzione continueranno a restituire nomi unici fino ad un
2882 massimo di \const{TMP\_MAX} volte, limite oltre il quale il comportamento è
2883 indefinito. Al nome viene automaticamente aggiunto come prefisso la directory
2884 specificata dalla costante \const{P\_tmpdir}.\footnote{le costanti
2885   \const{L\_tmpnam}, \const{P\_tmpdir} e \const{TMP\_MAX} sono definite in
2886   \headfile{stdio.h}.}
2887
2888 Di questa funzione esiste una versione \index{funzioni!rientranti} rientrante,
2889 \funcm{tmpnam\_r}, che non fa nulla quando si passa \val{NULL} come argomento.
2890 Una funzione simile, \funcd{tempnam}, permette di specificare un prefisso per
2891 il file esplicitamente, il suo prototipo è:
2892
2893 \begin{funcproto}{ 
2894 \fhead{stdio.h}
2895 \fdecl{char *tempnam(const char *dir, const char *pfx)}
2896 \fdesc{Genera un nome univoco per un file temporaneo.} 
2897 }
2898 {La funzione ritorna il puntatore alla stringa con il nome in caso di successo
2899   e \val{NULL} per un errore, nel qual caso \var{errno} potrà assumere solo il
2900   valore \errval{ENOMEM} qualora fallisca l'allocazione della stringa.}
2901 \end{funcproto}
2902
2903 La funzione alloca con \code{malloc} la stringa in cui restituisce il nome,
2904 per cui è sempre \index{funzioni!rientranti} rientrante, occorre però
2905 ricordarsi di disallocare con \code{free} il puntatore che restituisce.
2906 L'argomento \param{pfx} specifica un prefisso di massimo 5 caratteri per il
2907 nome provvisorio. La funzione assegna come directory per il file temporaneo,
2908 verificando che esista e sia accessibile, la prima valida fra le seguenti:
2909 \begin{itemize*}
2910 \item La variabile di ambiente \envvar{TMPDIR} (non ha effetto se non è
2911   definita o se il programma chiamante è \itindex{suid~bit} \acr{suid} o
2912   \itindex{sgid~bit} \acr{sgid}, vedi sez.~\ref{sec:file_special_perm}).
2913 \item il valore dell'argomento \param{dir} (se diverso da \val{NULL}).
2914 \item Il valore della costante \const{P\_tmpdir}.
2915 \item la directory \file{/tmp}.
2916 \end{itemize*}
2917
2918 In ogni caso, anche se con queste funzioni la generazione del nome è casuale,
2919 ed è molto difficile ottenere un nome duplicato, nulla assicura che un altro
2920 processo non possa avere creato, fra l'ottenimento del nome e l'apertura del
2921 file, un altro file o un collegamento simbolico con lo stesso nome. Per questo
2922 motivo quando si usa il nome ottenuto da una di queste funzioni occorre sempre
2923 assicurarsi che non si stia usando un collegamento simbolico e aprire il nuovo
2924 file in modalità di esclusione (cioè con l'opzione \const{O\_EXCL} per i file
2925 descriptor o con il flag \code{x} per gli \textit{stream}) che fa fallire
2926 l'apertura in caso il file sia già esistente. Essendo disponibili alternative
2927 migliori l'uso di queste funzioni è deprecato.
2928
2929 Per evitare di dovere effettuare a mano tutti questi controlli, lo standard
2930 POSIX definisce la funzione \funcd{tmpfile}, che permette di ottenere in
2931 maniera sicura l'accesso ad un file temporaneo, il suo prototipo è:
2932
2933 \begin{funcproto}{ 
2934 \fhead{stdio.h}
2935 \fdecl{FILE *tmpfile(void)}
2936 \fdesc{Apre un file temporaneo in lettura/scrittura.} 
2937 }
2938 {La funzione ritorna il puntatore allo \textit{stream} associato al file
2939   temporaneo in caso di successo e \val{NULL} per un errore, nel qual caso
2940   \var{errno} assumerà uno dei valori:
2941   \begin{errlist}
2942     \item[\errcode{EEXIST}] non è stato possibile generare un nome univoco.
2943     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
2944   \end{errlist}
2945   ed inoltre \errval{EFAULT}, \errval{EMFILE}, \errval{ENFILE},
2946   \errval{ENOSPC}, \errval{EROFS} e \errval{EACCES} nel loro significato
2947   generico.}
2948 \end{funcproto}
2949
2950
2951 La funzione restituisce direttamente uno \textit{stream} già aperto (in
2952 modalità \code{w+b}, si veda sez.~\ref{sec:file_fopen}) e pronto per l'uso,
2953 che viene automaticamente cancellato alla sua chiusura o all'uscita dal
2954 programma. Lo standard non specifica in quale directory verrà aperto il file,
2955 ma la \acr{glibc} prima tenta con \const{P\_tmpdir} e poi con
2956 \file{/tmp}. Questa funzione è \index{funzioni!rientranti} rientrante e non
2957 soffre di problemi di \itindex{race~condition} \textit{race condition}.
2958
2959 Alcune versioni meno recenti di Unix non supportano queste funzioni; in questo
2960 caso si possono usare le vecchie funzioni \funcd{mktemp} e \func{mkstemp} che
2961 modificano una stringa di input che serve da modello e che deve essere
2962 conclusa da 6 caratteri ``\texttt{X}'' che verranno sostituiti da un codice
2963 unico. La prima delle due è analoga a \func{tmpnam} e genera un nome casuale,
2964 il suo prototipo è:
2965
2966 \begin{funcproto}{ 
2967 \fhead{stlib.h}
2968 \fdecl{char *mktemp(char *template)}
2969 \fdesc{Genera un nome univoco per un file temporaneo.} 
2970 }
2971 {La funzione ritorna  il puntatore a \param{template} in caso di successo e
2972   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori: 
2973   \begin{errlist}
2974     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
2975   \end{errlist}}
2976 \end{funcproto}
2977
2978 La funzione genera un nome univoco sostituendo le \code{XXXXXX} finali di
2979 \param{template}; dato che \param{template} deve poter essere modificata dalla
2980 funzione non si può usare una stringa costante.  Tutte le avvertenze riguardo
2981 alle possibili \itindex{race~condition} \textit{race condition} date per
2982 \func{tmpnam} continuano a valere; inoltre in alcune vecchie implementazioni
2983 il valore usato per sostituire le \code{XXXXXX} viene formato con il \ids{PID}
2984 del processo più una lettera, il che mette a disposizione solo 26 possibilità
2985 diverse per il nome del file, e rende il nome temporaneo facile da indovinare.
2986 Per tutti questi motivi la funzione è deprecata e non dovrebbe mai essere
2987 usata.
2988
2989 La seconda funzione, \funcd{mkstemp} è sostanzialmente equivalente a
2990 \func{tmpfile}, ma restituisce un file descriptor invece di un nome; il suo
2991 prototipo è:
2992
2993 \begin{funcproto}{ 
2994 \fhead{stlib.h}
2995 \fdecl{int mkstemp(char *template)}
2996 \fdesc{Apre un file temporaneo.} 
2997 }
2998
2999 {La funzione ritorna il file descriptor in caso di successo e $-1$ per un
3000   errore, nel qual 
3001   caso \var{errno} assumerà uno dei valori: 
3002   \begin{errlist}
3003     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
3004     \item[\errcode{EEXIST}] non è riuscita a creare un file temporaneo, il
3005       contenuto di \param{template} è indefinito.
3006   \end{errlist}}
3007 \end{funcproto}
3008
3009
3010 Come per \func{mktemp} anche in questo caso \param{template} non può essere
3011 una stringa costante. La funzione apre un file in lettura/scrittura con la
3012 funzione \func{open}, usando l'opzione \const{O\_EXCL} (si veda
3013 sez.~\ref{sec:file_open}), in questo modo al ritorno della funzione si ha la
3014 certezza di essere stati i creatori del file, i cui permessi (si veda
3015 sez.~\ref{sec:file_perm_overview}) sono impostati al valore \code{0600}
3016 (lettura e scrittura solo per il proprietario).\footnote{questo è vero a
3017   partire dalla \acr{glibc} 2.0.7, le versioni precedenti della \acr{glibc} e
3018   le vecchie \acr{libc5} e \acr{libc4} usavano il valore \code{0666} che
3019   permetteva a chiunque di leggere e scrivere i contenuti del file.}  Di
3020 questa funzione esiste una variante \funcd{mkostemp}, introdotta
3021 specificamente dalla \acr{glibc},\footnote{la funzione è stata introdotta
3022   nella versione 2.7 delle librerie e richiede che sia definita la macro
3023   \macro{\_GNU\_SOURCE}.} il cui prototipo è:
3024
3025 \begin{funcproto}{ 
3026 \fhead{stlib.h}
3027 \fdecl{int mkostemp(char *template, int flags)}
3028 \fdesc{Apre un file temporaneo.} 
3029 }
3030 {La funzione ritorna un file descriptor in caso di successo e $-1$ per un
3031   errore, nel qual caso \var{errno} assumerà  gli stessi valori di
3032   \func{mkstemp}.} 
3033 \end{funcproto}
3034 \noindent la cui sola differenza è la presenza dell'ulteriore argomento
3035 \var{flags} che consente di specificare i flag da passare ad \func{open}
3036 nell'apertura del file.
3037
3038
3039 In OpenBSD è stata introdotta un'altra funzione simile alle precedenti,
3040 \funcd{mkdtemp}, che crea invece una directory temporanea;\footnote{la
3041   funzione è stata introdotta nella \acr{glibc} a partire dalla versione
3042   2.1.91 ed inserita nello standard POSIX.1-2008.}  il suo prototipo è:
3043
3044 \begin{funcproto}{ 
3045 \fhead{stlib.h}
3046 \fdecl{char *mkdtemp(char *template)}
3047 \fdesc{Crea una directory temporanea.} 
3048 }
3049 {La funzione ritorna il puntatore al nome della directory in caso di successo
3050   e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei
3051   valori:
3052   \begin{errlist}
3053     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
3054   \end{errlist}
3055   più gli altri eventuali codici di errore di \func{mkdir}.}
3056 \end{funcproto}
3057
3058 La funzione genera una directory il cui nome è ottenuto sostituendo le
3059 \code{XXXXXX} finali di \param{template} con permessi \code{0700} (al solito
3060 si veda cap.~\ref{cha:file_unix_interface} per i dettagli); dato che la
3061 creazione della directory è sempre esclusiva i precedenti problemi di
3062 \itindex{race~condition} \textit{race condition} non si pongono.
3063
3064
3065
3066
3067
3068 \section{La manipolazione delle caratteristiche dei file}
3069 \label{sec:file_infos}
3070
3071 Come spiegato in sez.~\ref{sec:file_filesystem} tutte le informazioni generali
3072 relative alle caratteristiche di ciascun file, a partire dalle informazioni
3073 relative al controllo di accesso, sono mantenute \itindex{inode}
3074 nell'\textit{inode}. Vedremo in questa sezione come sia possibile leggere
3075 tutte queste informazioni usando la funzione \func{stat}, che permette
3076 l'accesso a tutti i dati memorizzati \itindex{inode} nell'\textit{inode};
3077 esamineremo poi le varie funzioni usate per manipolare tutte queste
3078 informazioni, eccetto quelle che riguardano la gestione del controllo di
3079 accesso, trattate in in sez.~\ref{sec:file_access_control}.
3080
3081
3082 \subsection{La lettura delle caratteristiche dei file}
3083 \label{sec:file_stat}
3084
3085 La lettura delle informazioni relative ai file è fatta attraverso la famiglia
3086 delle funzioni \func{stat} che sono quelle che usa il comando \cmd{ls} per
3087 poter ottenere e mostrare tutti i dati relativi ad un file; ne fanno parte le
3088 funzioni di sistema \funcd{stat}, \funcd{fstat} e \funcd{lstat}, i cui
3089 prototipi sono:
3090
3091 \begin{funcproto}{
3092 \fhead{sys/types.h}
3093 \fhead{sys/stat.h}
3094 \fhead{unistd.h}
3095 \fdecl{int stat(const char *file\_name, struct stat *buf)}
3096 \fdecl{int lstat(const char *file\_name, struct stat *buf)}
3097 \fdecl{int fstat(int filedes, struct stat *buf)}
3098 \fdesc{Leggono le informazioni di un file.} 
3099 }
3100 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3101   caso \var{errno} assumerà uno dei valori:
3102   \begin{errlist}
3103     \item[\errcode{EOVERFLOW}] il file ha una dimensione che non può essere
3104       rappresentata nel tipo \type{off\_t} (può avvenire solo in caso di
3105       programmi compilati su piattaforme a 32 bit senza le estensioni
3106       (\texttt{-D \_FILE\_OFFSET\_BITS=64}) per file a 64 bit).
3107   \end{errlist}
3108   ed inoltre \errval{EFAULT} ed \errval{ENOMEM}, per \func{stat} e
3109   \func{lstat} anche \errval{EACCES}, \errval{ELOOP}, \errval{ENAMETOOLONG},
3110   \errval{ENOENT}, \errval{ENOTDIR}, per \func{fstat} anche \errval{EBADF}, 
3111   nel loro significato generico.}
3112 \end{funcproto}
3113
3114 La funzione \func{stat} legge le informazioni del file indicato
3115 da \param{file\_name} e le inserisce nel buffer puntato
3116 dall'argomento \param{buf}; la funzione \func{lstat} è identica a \func{stat}
3117 eccetto che se \param{file\_name} è un collegamento simbolico vengono lette le
3118 informazioni relative ad esso e non al file a cui fa riferimento. Infine
3119 \func{fstat} esegue la stessa operazione su un file già aperto, specificato
3120 tramite il suo file descriptor \param{filedes}.
3121
3122 La struttura \struct{stat} usata da queste funzioni è definita nell'header
3123 \headfile{sys/stat.h} e in generale dipende dall'implementazione; la versione
3124 usata da Linux è mostrata in fig.~\ref{fig:file_stat_struct}, così come
3125 riportata dalla pagina di manuale di \func{stat}. In realtà la definizione
3126 effettivamente usata nel kernel dipende dall'architettura e ha altri campi
3127 riservati per estensioni come tempi dei file più precisi (vedi
3128 sez.~\ref{sec:file_file_times}).
3129
3130 \begin{figure}[!htb]
3131   \footnotesize
3132   \centering
3133   \begin{minipage}[c]{\textwidth}
3134     \includestruct{listati/stat.h}
3135   \end{minipage} 
3136   \normalsize 
3137   \caption{La struttura \structd{stat} per la lettura delle informazioni dei 
3138     file.}
3139   \label{fig:file_stat_struct}
3140 \end{figure}
3141
3142 Si noti come i vari membri della struttura siano specificati come tipi
3143 primitivi del sistema, di quelli definiti in
3144 tab.~\ref{tab:intro_primitive_types}, e dichiarati in \headfile{sys/types.h},
3145 con l'eccezione di \type{blksize\_t} e \type{blkcnt\_t} che sono nuovi tipi
3146 introdotti per rendersi indipendenti dalla piattaforma. 
3147
3148 Benché la descrizione dei commenti di fig.~\ref{fig:file_stat_struct} sia
3149 abbastanza chiara, vale la pena illustrare maggiormente il significato dei
3150 campi di \structd{stat} su cui non torneremo in maggior dettaglio nel resto di
3151 questa sezione:
3152 \begin{itemize*}
3153
3154 \item Il campo \var{st\_nlink} contiene il numero di \textit{hard link} che
3155   fanno riferimento al file (il cosiddetto \textit{link count}) di cui abbiamo
3156   già parlato in numerose occasioni.
3157
3158 \item Il campo \var{st\_ino} contiene il numero di \itindex{inode}
3159   \textit{inode} del file, quello viene usato all'interno del filesystem per
3160   identificarlo e che può essere usato da un programma per determinare se due
3161   \textit{pathname} fanno riferimento allo stesso file.
3162
3163 \item Il campo \var{st\_dev} contiene il numero del dispositivo su cui risiede
3164   il file (o meglio il suo filesystem). Si tratta dello stesso numero che si
3165   usa con \func{mknod} e che può essere decomposto in \itindex{major~number}
3166   \textit{major number} e \itindex{minor~number} \textit{minor number} con le
3167   macro \macro{major} e \macro{minor} viste in sez.~\ref{sec:file_mknod}.
3168
3169 \item Il campo \var{st\_rdev} contiene il numero di dispositivo associato al
3170   file stesso ed ovviamente ha un valore significativo soltanto quando il file
3171   è un dispositivo a caratteri o a blocchi.
3172
3173 \item Il campo \var{st\_blksize} contiene la dimensione dei blocchi di dati
3174   usati nell'I/O su disco, che è anche la dimensione usata per la
3175   bufferizzazione dei dati dalle librerie del C per l'interfaccia degli
3176   \textit{stream}.  Leggere o scrivere blocchi di dati in dimensioni inferiori
3177   a questo valore è inefficiente in quanto le operazioni su disco usano
3178   comunque trasferimenti di questa dimensione.
3179
3180 \end{itemize*}
3181
3182
3183
3184 \subsection{I tipi di file}
3185 \label{sec:file_types}
3186
3187 Abbiamo sottolineato fin dall'introduzione che Linux, come ogni sistema
3188 unix-like, supporta oltre ai file ordinari e alle directory una serie di altri
3189 ``\textsl{tipi}'' di file che possono stare su un filesystem (elencati in
3190 tab.~\ref{tab:file_file_types}).  Il tipo di file viene ritornato dalle
3191 funzioni della famiglia \func{stat} all'interno del campo \var{st\_mode} di
3192 una struttura \struct{stat}. 
3193
3194 Il campo \var{st\_mode} è una maschera binaria in cui l'informazione viene
3195 suddivisa nei vari bit che compongono, ed oltre a quelle sul tipo di file,
3196 contiene anche le informazioni relative ai permessi su cui torneremo in
3197 sez.~\ref{sec:file_perm_overview}. Dato che i valori numerici usati per
3198 definire il tipo di file possono variare a seconda delle implementazioni, lo
3199 standard POSIX definisce un insieme di macro che consentono di verificare il
3200 tipo di file in maniera standardizzata.
3201
3202 \begin{table}[htb]
3203   \centering
3204   \footnotesize
3205   \begin{tabular}[c]{|l|l|}
3206     \hline
3207     \textbf{Macro} & \textbf{Tipo del file} \\
3208     \hline
3209     \hline
3210     \macro{S\_ISREG}\texttt{(m)}  & file normale.\\
3211     \macro{S\_ISDIR}\texttt{(m)}  & directory.\\
3212     \macro{S\_ISCHR}\texttt{(m)}  & dispositivo a caratteri.\\
3213     \macro{S\_ISBLK}\texttt{(m)}  & dispositivo a blocchi.\\
3214     \macro{S\_ISFIFO}\texttt{(m)} & fifo.\\
3215     \macro{S\_ISLNK}\texttt{(m)}  & collegamento simbolico.\\
3216     \macro{S\_ISSOCK}\texttt{(m)} & socket.\\
3217     \hline    
3218   \end{tabular}
3219   \caption{Macro per i tipi di file (definite in \headfile{sys/stat.h}).}
3220   \label{tab:file_type_macro}
3221 \end{table}
3222
3223 Queste macro vengono usate anche da Linux che supporta pure le estensioni allo
3224 standard per i collegamenti simbolici e i socket definite da BSD.\footnote{le
3225   ultime due macro di tab.~\ref{tab:file_type_macro}, che non sono presenti
3226   nello standard POSIX fino alla revisione POSIX.1-1996.}  L'elenco completo
3227 delle macro con cui è possibile estrarre da \var{st\_mode} l'informazione
3228 relativa al tipo di file è riportato in tab.~\ref{tab:file_type_macro}, tutte
3229 le macro restituiscono un valore intero da usare come valore logico e prendono
3230 come argomento il valore di \var{st\_mode}.
3231
3232 \begin{table}[htb]
3233   \centering
3234   \footnotesize
3235   \begin{tabular}[c]{|l|c|l|}
3236     \hline
3237     \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
3238     \hline
3239     \hline
3240     \const{S\_IFMT}   &  0170000 & Maschera per i bit del tipo di file.\\
3241     \const{S\_IFSOCK} &  0140000 & Socket.\\
3242     \const{S\_IFLNK}  &  0120000 & Collegamento simbolico.\\
3243     \const{S\_IFREG}  &  0100000 & File regolare.\\ 
3244     \const{S\_IFBLK}  &  0060000 & Dispositivo a blocchi.\\
3245     \const{S\_IFDIR}  &  0040000 & Directory.\\
3246     \const{S\_IFCHR}  &  0020000 & Dispositivo a caratteri.\\
3247     \const{S\_IFIFO}  &  0010000 & Fifo.\\
3248     \hline
3249     \const{S\_ISUID}  &  0004000 & \itindex{suid~bit} \acr{suid} bit.\\
3250     \const{S\_ISGID}  &  0002000 & \itindex{sgid~bit} \acr{sgid} bit.\\
3251     \const{S\_ISVTX}  &  0001000 & \itindex{sticky~bit} \acr{sticky} bit.\\
3252     \hline
3253     \const{S\_IRWXU}  &  00700   & Maschera per i permessi del proprietario.\\
3254     \const{S\_IRUSR}  &  00400   & Il proprietario ha permesso di lettura.\\
3255     \const{S\_IWUSR}  &  00200   & Il proprietario ha permesso di scrittura.\\
3256     \const{S\_IXUSR}  &  00100   & Il proprietario ha permesso di esecuzione.\\
3257     \hline
3258     \const{S\_IRWXG}  &  00070   & Maschera per i permessi del gruppo.\\
3259     \const{S\_IRGRP}  &  00040   & Il gruppo ha permesso di lettura.\\
3260     \const{S\_IWGRP}  &  00020   & Il gruppo ha permesso di scrittura.\\
3261     \const{S\_IXGRP}  &  00010   & Il gruppo ha permesso di esecuzione.\\
3262     \hline
3263     \const{S\_IRWXO}  &  00007   & Maschera per i permessi di tutti gli altri\\
3264     \const{S\_IROTH}  &  00004   & Gli altri hanno permesso di lettura.\\
3265     \const{S\_IWOTH}  &  00002   & Gli altri hanno permesso di esecuzione.\\
3266     \const{S\_IXOTH}  &  00001   & Gli altri hanno permesso di esecuzione.\\
3267     \hline    
3268   \end{tabular}
3269   \caption{Costanti per l'identificazione dei vari bit che compongono il campo
3270     \var{st\_mode} (definite in \headfile{sys/stat.h}).}
3271   \label{tab:file_mode_flags}
3272 \end{table}
3273
3274 Oltre alle macro di tab.~\ref{tab:file_type_macro}, che semplificano
3275 l'operazione, è possibile usare direttamente il valore di \var{st\_mode} per
3276 ricavare il tipo di file controllando direttamente i vari bit in esso
3277 memorizzati. Per questo sempre in \headfile{sys/stat.h} sono definite le varie
3278 costanti numeriche riportate in tab.~\ref{tab:file_mode_flags}, che
3279 definiscono le maschere che consentono di selezionare non solo i dati relativi
3280 al tipo di file, ma anche le informazioni relative ai permessi su cui
3281 torneremo in sez.~\ref{sec:file_access_control} ed identificare i rispettivi
3282 valori.
3283
3284 Le costanti che servono per la identificazione del tipo di file sono riportate
3285 nella prima sezione di tab.~\ref{tab:file_mode_flags}, mentre le sezioni
3286 successive attengono alle costanti usate per i permessi.  Il primo valore
3287 dell'elenco è la maschera binaria \const{S\_IFMT} che permette di estrarre da
3288 \var{st\_mode} (con un AND aritmetico) il blocco di bit nei quali viene
3289 memorizzato il tipo di file. I valori successivi sono le costanti
3290 corrispondenti ai vari tipi di file, e possono essere usate per verificare la
3291 presenza del tipo di file voluto ed anche, con opportune combinazioni,
3292 alternative fra più tipi di file. 
3293
3294 Si tenga presente però che a differenza dei permessi, l'informazione relativa
3295 al tipo di file non è una maschera binaria, per questo motivo se si volesse
3296 impostare una condizione che permetta di controllare se un file è una
3297 directory o un file ordinario non si possono controllare dei singoli bit, ma
3298 si dovrebbe usare una macro di preprocessore come:
3299 \includecodesnip{listati/is_regdir.h}
3300 in cui si estraggono ogni volta da \var{st\_mode} i bit relativi al tipo di
3301 file e poi si effettua il confronto con i due possibili tipi di file.
3302
3303
3304 \subsection{Le dimensioni dei file}
3305 \label{sec:file_file_size}
3306
3307 Abbiamo visto in fig.~\ref{fig:file_stat_struct} che campo \var{st\_size} di
3308 una struttura \struct{stat} contiene la dimensione del file in byte. Questo
3309 però è vero solo se si tratta di un file regolare, mentre nel caso di un
3310 collegamento simbolico la dimensione è quella del \textit{pathname} che il
3311 collegamento stesso contiene mentre per le fifo ed i file di dispositivo
3312 questo campo è sempre nullo.
3313
3314 Il campo \var{st\_blocks} invece definisce la lunghezza del file in blocchi di
3315 512 byte. La differenze con \var{st\_size} è che in questo caso si fa
3316 riferimento alla quantità di spazio disco allocata per il file, e non alla
3317 dimensione dello stesso che si otterrebbe leggendolo sequenzialmente.
3318
3319 Si deve tener presente infatti che la lunghezza del file riportata in
3320 \var{st\_size} non è detto che corrisponda all'occupazione dello spazio su
3321 disco, e non solo perché la parte finale del file potrebbe riempire
3322 parzialmente un blocco. In un sistema unix-like infatti è possibile
3323 l'esistenza dei cosiddetti \itindex{sparse~file} \textit{sparse file}, cioè
3324 file in cui sono presenti dei ``\textsl{buchi}'' \index{file!\textit{hole}}
3325 (\textit{holes} nella nomenclatura inglese) che si formano tutte le volte che
3326 si va a scrivere su un file dopo aver eseguito uno spostamento oltre la sua
3327 fine (tratteremo in dettaglio l'argomento in sez.~\ref{sec:file_lseek}).
3328
3329 In questo caso si avranno risultati differenti a seconda del modo in cui si
3330 calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il
3331 numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si
3332 legge dal file (ad esempio usando il comando \cmd{wc -c}), dato che in tal
3333 caso per i ``\textsl{buchi}'' \index{file!\textit{hole}} vengono restituiti
3334 degli zeri, si avrà lo stesso risultato di \cmd{ls}.
3335
3336 Se è sempre possibile allargare un file, scrivendoci sopra o usando la
3337 funzione \func{lseek} (vedi sez.~\ref{sec:file_lseek}) per spostarsi oltre la
3338 sua fine, esistono anche casi in cui si può avere bisogno di effettuare un
3339 troncamento, scartando i dati presenti al di là della dimensione scelta come
3340 nuova fine del file.
3341
3342 Un file può sempre essere troncato a zero aprendolo con il flag
3343 \const{O\_TRUNC}, ma questo è un caso particolare; per qualunque altra
3344 dimensione si possono usare le due funzioni di sistema \funcd{truncate} e
3345 \funcd{ftruncate}, i cui prototipi sono:
3346
3347 \begin{funcproto}{ 
3348 \fhead{unistd.h}
3349 \fdecl{int ftruncate(int fd, off\_t length))}
3350 \fdecl{int truncate(const char *file\_name, off\_t length)}
3351 \fdesc{Troncano un file.} 
3352 }
3353 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3354   caso \var{errno} assumerà uno dei valori: 
3355   \begin{errlist}
3356   \item[\errcode{EINTR}] si è stati interrotti da un segnale.
3357   \item[\errcode{EINVAL}] \param{length} è negativa o maggiore delle
3358     dimensioni massime di un file.
3359   \item[\errcode{EPERM}] il filesystem non supporta il troncamento di un file.
3360   \item[\errcode{ETXTBSY}] il file è un programma in esecuzione.
3361   \end{errlist} 
3362   per entrambe, mentre per \func{ftruncate} si avranno anche: 
3363   \begin{errlist}
3364   \item[\errcode{EBADF}] \param{fd} non è un file descriptor.
3365   \item[\errcode{EINVAL}] \param{fd} non è un riferimento a un file o non è
3366     aperto in scrittura. 
3367   \end{errlist}
3368   e per \func{truncate} si avranno anche: 
3369   \begin{errlist}
3370   \item[\errcode{EACCES}] non si ha il permesso di scrittura sul file o il
3371     permesso di attraversamento di una delle componenti del \textit{pathname}.
3372   \item[\errcode{EISDIR}] \param{file\_name} fa riferimento ad una directory.
3373   \end{errlist}
3374   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
3375   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOTDIR} e \errval{EROFS}
3376   nel loro significato generico.}
3377 \end{funcproto}
3378
3379 Entrambe le funzioni fan sì che la dimensione del file sia troncata ad un
3380 valore massimo specificato da \param{length}, e si distinguono solo per il
3381 fatto che il file viene indicato con un \textit{pathname} per \func{truncate}
3382 e con un file descriptor per \funcd{ftruncate}. Si tenga presente che se il
3383 file è più lungo della lunghezza specificata i dati in eccesso saranno
3384 perduti.
3385
3386 Il comportamento in caso di lunghezza del file inferiore a \param{length} non
3387 è specificato e dipende dall'implementazione: il file può essere lasciato
3388 invariato o esteso fino alla lunghezza scelta. Nel caso di Linux viene esteso
3389 con la creazione di un \index{file!\textit{hole}} \textsl{buco} nel
3390 \itindex{sparse~file} file e ad una lettura si otterranno degli zeri, si tenga
3391 presente però che questo comportamento è supportato solo per filesystem
3392 nativi, ad esempio su un filesystem non nativo come il VFAT di Windows questo
3393 non è possibile.
3394
3395
3396 \subsection{I tempi dei file}
3397 \label{sec:file_file_times}
3398
3399 Il sistema mantiene per ciascun file tre tempi, che sono registrati
3400 \itindex{inode} nell'\textit{inode} insieme agli altri attributi del
3401 file. Questi possono essere letti tramite la funzione \func{stat}, che li
3402 restituisce attraverso tre campi della struttura \struct{stat} di
3403 fig.~\ref{fig:file_stat_struct}. Il significato di questi tempi e dei relativi
3404 campi della struttura \struct{stat} è illustrato nello schema di
3405 tab.~\ref{tab:file_file_times}, dove è anche riportato un esempio delle
3406 funzioni che effettuano cambiamenti su di essi. Il valore del tempo è espresso
3407 nel cosiddetto \itindex{calendar~time} \textit{calendar time}, su cui
3408 torneremo in dettaglio in sez.~\ref{sec:sys_time}.
3409
3410 \begin{table}[htb]
3411   \centering
3412   \footnotesize
3413   \begin{tabular}[c]{|c|l|l|c|}
3414     \hline
3415     \textbf{Membro} & \textbf{Significato} & \textbf{Funzione} 
3416     & \textbf{Opzione di \cmd{ls}} \\
3417     \hline
3418     \hline
3419     \var{st\_atime}& ultimo accesso ai dati del file    &
3420                      \func{read}, \func{utime}          & \cmd{-u}\\
3421     \var{st\_mtime}& ultima modifica ai dati del file   &
3422                      \func{write}, \func{utime}         & default\\
3423     \var{st\_ctime}& ultima modifica ai dati dell'\textit{inode} &
3424                      \func{chmod}, \func{utime}         & \cmd{-c}\\
3425     \hline
3426   \end{tabular}
3427   \caption{I tre tempi associati a ciascun file.}
3428   \label{tab:file_file_times}
3429 \end{table}
3430
3431 Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di
3432 ultima modifica (il \textit{modification time}) riportato in \var{st\_mtime},
3433 ed il tempo di ultimo cambiamento di stato (il \textit{change status time})
3434 riportato in \var{st\_ctime}. Il primo infatti fa riferimento ad una modifica
3435 del contenuto di un file, mentre il secondo ad una modifica dei metadati
3436 \itindex{inode} dell'\textit{inode}. Dato che esistono molte operazioni, come
3437 la funzione \func{link} e altre che vedremo in seguito, che modificano solo le
3438 informazioni contenute \itindex{inode} nell'\textit{inode} senza toccare il
3439 contenuto del file, diventa necessario l'utilizzo di questo secondo tempo.
3440
3441 Il tempo di ultima modifica viene usato ad esempio da programmi come
3442 \cmd{make} per decidere quali file necessitano di essere ricompilati perché
3443 più recenti dei loro sorgenti oppure dai programmi di backup, talvolta insieme
3444 anche al tempo di cambiamento di stato, per decidere quali file devono essere
3445 aggiornati nell'archiviazione.  Il tempo di ultimo accesso viene di solito
3446 usato per identificare i file che non vengono più utilizzati per un certo
3447 lasso di tempo. Ad esempio un programma come \texttt{leafnode} lo usa per
3448 cancellare gli articoli letti più vecchi, mentre \texttt{mutt} lo usa per
3449 marcare i messaggi di posta che risultano letti.  
3450
3451 Il sistema non tiene mai conto dell'ultimo accesso \itindex{inode}
3452 all'\textit{inode}, pertanto funzioni come \func{access} o \func{stat} non
3453 hanno alcuna influenza sui tre tempi. Il comando \cmd{ls} (quando usato con le
3454 opzioni \cmd{-l} o \cmd{-t}) mostra i tempi dei file secondo lo schema
3455 riportato nell'ultima colonna di tab.~\ref{tab:file_file_times}. Si noti anche
3456 come non esista, a differenza di altri sistemi operativi, un \textsl{tempo di
3457   creazione} di un file.
3458
3459 L'aggiornamento del tempo di ultimo accesso è stato a lungo considerato un
3460 difetto progettuale di Unix, questo infatti comporta la necessità di
3461 effettuare un accesso in scrittura sul disco anche in tutti i casi in cui
3462 questa informazione non interessa e sarebbe possibile avere un semplice
3463 accesso in lettura sui dati bufferizzati. Questo comporta un ovvio costo sia
3464 in termini di prestazioni, che di consumo di risorse come la batteria per i
3465 portatili, o i cicli di riscrittura per i dischi su memorie riscrivibili.
3466
3467
3468 Per questo motivo abbiamo visto in sez.~\ref{sec:filesystem_mounting} come
3469 nello sviluppo del kernel siano stati introdotti degli opportuni \textit{mount
3470   flag} che consentissero di evitare di aggiornare continuamente una
3471 informazione che nella maggior parte dei casi non interessa. Per questo i
3472 valori che si possono trovare per l'\textit{access time} dipendono dalle
3473 opzioni di montaggio, ed anche, essendo stato cambiato il comportamento di
3474 default a partire dalla versione 2.6.30, dal kernel che si sta usando. 
3475
3476 In generale quello che si ha con i kernel più recenti è che il tempo di ultimo
3477 accesso viene aggiornato solo se è precedente al tempo di ultima modifica o
3478 cambiamento, o se è passato più di un giorno dall'ultimo accesso. Così si può
3479 rendere evidente che vi è stato un accesso dopo una modifica e che il file
3480 viene comunque osservato regolarmente, conservando tutte le informazioni
3481 veramente utili senza dover consumare risorse in scritture continue per
3482 mantenere costantemente aggiornata una informazione che questo punto non ha
3483 più nessuna rilevanza pratica.\footnote{qualora ce ne fosse la necessità è
3484   comunque possibile, tramite l'opzione di montaggio \texttt{strictatime},
3485   richiedere in ogni caso il comportamento tradizionale.}
3486
3487 \begin{table}[htb]
3488   \centering
3489   \footnotesize
3490   \begin{tabular}[c]{|l|c|c|c|c|c|c|l|}
3491     \hline
3492     \multicolumn{1}{|p{2.8cm}|}{\centering{\vspace{6pt}\textbf{Funzione}}} &
3493     \multicolumn{3}{|p{3.2cm}|}{\centering{
3494         \textbf{File o directory del riferimento}}}&
3495     \multicolumn{3}{|p{3.2cm}|}{\centering{
3496         \textbf{Directory contenente il riferimento}}} 
3497     &\multicolumn{1}{|p{3.4cm}|}{\centering{\vspace{6pt}\textbf{Note}}} \\
3498     \cline{2-7}
3499     \cline{2-7}
3500     \multicolumn{1}{|p{2.8cm}|}{} 
3501     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
3502     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
3503     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
3504     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
3505     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
3506     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
3507     &\multicolumn{1}{|p{3cm}|}{} \\
3508     \hline
3509     \hline
3510     \func{chmod}, \func{fchmod} 
3511              & --      & --      &$\bullet$& --      & --      & --      &\\
3512     \func{chown}, \func{fchown} 
3513              & --      & --      &$\bullet$& --      & --      & --      &\\
3514     \func{creat}  
3515              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&  
3516              con \const{O\_CREATE} \\
3517     \func{creat}  
3518              & --      &$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&   
3519              con \const{O\_TRUNC} \\
3520     \func{exec}  
3521              &$\bullet$& --      & --      & --      & --      & --      &\\
3522     \func{lchown}  
3523              & --      & --      &$\bullet$& --      & --      & --      &\\
3524     \func{link}
3525              & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$&\\
3526     \func{mkdir}
3527              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3528     \func{mknod}
3529              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3530     \func{mkfifo}
3531              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3532     \func{open}
3533              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$& 
3534              con \const{O\_CREATE} \\
3535     \func{open}
3536              & --      &$\bullet$&$\bullet$& --      & --      & --      & 
3537              con \const{O\_TRUNC}  \\
3538     \func{pipe}
3539              &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\
3540     \func{read}
3541              &$\bullet$& --      & --      & --      & --      & --      &\\
3542     \func{remove}
3543              & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$& 
3544              se esegue \func{unlink}\\
3545     \func{remove}
3546               & --      & --      & --      & --      &$\bullet$&$\bullet$& 
3547               se esegue \func{rmdir}\\
3548     \func{rename}
3549               & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$& 
3550               per entrambi gli argomenti\\
3551     \func{rmdir}
3552               & --      & --      & --      & --      &$\bullet$&$\bullet$&\\ 
3553     \func{truncate}, \func{ftruncate}
3554               & --      &$\bullet$&$\bullet$& --      & --      & --      &\\ 
3555     \func{unlink}
3556               & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$&\\ 
3557     \func{utime}
3558               &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\ 
3559     \func{utimes}
3560               &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\ 
3561     \func{write}
3562               & --      &$\bullet$&$\bullet$& --      & --      & --      &\\ 
3563     \hline
3564   \end{tabular}
3565   \caption{Prospetto dei cambiamenti effettuati sui tempi di ultimo 
3566     accesso \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento di
3567     stato \textsl{(c)} dalle varie funzioni operanti su file e directory.}
3568   \label{tab:file_times_effects}  
3569 \end{table}
3570
3571
3572 L'effetto delle varie funzioni di manipolazione dei file sui relativi tempi è
3573 illustrato in tab.~\ref{tab:file_times_effects}, facendo riferimento al
3574 comportamento classico per quanto riguarda \var{st\_atime}. Si sono riportati
3575 gli effetti sia per il file a cui si fa riferimento, sia per la directory che
3576 lo contiene. Questi ultimi possono essere capiti immediatamente se si tiene
3577 conto di quanto già detto e ripetuto a partire da
3578 sez.~\ref{sec:file_filesystem}, e cioè che anche le directory sono anch'esse
3579 file che contengono una lista di nomi, che il sistema tratta in maniera del
3580 tutto analoga a tutti gli altri.
3581
3582 Per questo motivo tutte le volte che compiremo un'operazione su un file che
3583 comporta una modifica del nome contenuto nella directory, andremo anche a
3584 scrivere sulla directory che lo contiene cambiandone il tempo di ultima
3585 modifica. Un esempio di questo tipo di operazione può essere la cancellazione
3586 di un file, invece leggere o scrivere o cambiare i permessi di un file ha
3587 effetti solo sui tempi di quest'ultimo.
3588
3589 Si ricordi infine come \var{st\_ctime} non è il tempo di creazione del file,
3590 che in Unix non esiste, anche se può corrispondervi per file che non sono mai
3591 stati modificati. Per questo motivo, a differenza di quanto avviene con altri
3592 sistemi operativi, quando si copia un file, a meno di preservare
3593 esplicitamente i tempi (ad esempio con l'opzione \cmd{-p} di \cmd{cp}) esso
3594 avrà sempre il tempo corrente in cui si è effettuata la copia come data di
3595 ultima modifica.
3596
3597 I tempi di ultimo accesso ed ultima modifica possono essere modificati
3598 esplicitamente usando la funzione di sistema \funcd{utime}, il cui prototipo
3599 è:
3600
3601 \begin{funcproto}{ 
3602 \fhead{utime.h}
3603 \fdecl{int utime(const char *filename, struct utimbuf *times)}
3604 \fdesc{Modifica i tempi di ultimo accesso ed ultima modifica di un file.} 
3605 }
3606
3607 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3608   caso \var{errno} assumerà uno dei valori: 
3609   \begin{errlist}
3610   \item[\errcode{EACCES}] non c'è il permesso di attraversamento per uno dei
3611     componenti di \param{filename} o \param{times} è \val{NULL} e non si ha il
3612     permesso di scrittura sul file, o non si è proprietari del file o non si
3613     hanno i privilegi di amministratore.
3614   \item[\errcode{EPERM}] \param{times} non è \val{NULL}, e non si è
3615     proprietari del file o non si hanno i privilegi di amministratore.
3616   \end{errlist}
3617   ed inoltre \errval{ENOENT} e \errval{EROFS} nel loro significato generico.}
3618 \end{funcproto}
3619
3620 La funzione cambia i tempi di ultimo accesso e di ultima modifica del file
3621 specificato dall'argomento \param{filename}, e richiede come secondo argomento
3622 il puntatore ad una struttura \struct{utimbuf}, la cui definizione è riportata
3623 in fig.~\ref{fig:struct_utimebuf}, con i nuovi valori di detti tempi
3624 (rispettivamente nei campi \var{actime} e \var{modtime}). Se si passa un
3625 puntatore nullo verrà impostato il tempo corrente.
3626
3627 \begin{figure}[!htb]
3628   \footnotesize \centering
3629   \begin{minipage}[c]{\textwidth}
3630     \includestruct{listati/utimbuf.h}
3631   \end{minipage} 
3632   \normalsize 
3633   \caption{La struttura \structd{utimbuf}, usata da \func{utime} per modificare
3634     i tempi dei file.}
3635   \label{fig:struct_utimebuf}
3636 \end{figure}
3637
3638 L'effetto della funzione ed i privilegi necessari per eseguirla dipendono dal
3639 valore dell'argomento \param{times}. Se è \val{NULL} la funzione imposta il
3640 tempo corrente ed è sufficiente avere accesso in scrittura al file o essere
3641 proprietari del file o avere i privilegi di amministratore. Se invece si è
3642 specificato un valore diverso la funzione avrà successo solo se si è
3643 proprietari del file o se si hanno i privilegi di amministratore.\footnote{per
3644   essere precisi la \itindex{capabilities} capacità \const{CAP\_FOWNER}.} In
3645 entrambi i casi per verificare la proprietà del file viene utilizzato
3646 l'\ids{UID} effettivo del processo.
3647
3648 Si tenga presente che non è possibile modificare manualmente il tempo di
3649 cambiamento di stato del file, che viene aggiornato direttamente dal kernel
3650 tutte le volte che si modifica \itindex{inode} l'\textit{inode}, e quindi
3651 anche alla chiamata di \func{utime}.  Questo serve anche come misura di
3652 sicurezza per evitare che si possa modificare un file nascondendo
3653 completamente le proprie tracce. In realtà la cosa resta possibile se si è in
3654 grado di accedere al \index{file!di~dispositivo} file di dispositivo,
3655 scrivendo direttamente sul disco senza passare attraverso il filesystem, ma
3656 ovviamente in questo modo la cosa è più complicata da
3657 realizzare.\footnote{esistono comunque molti programmi che consentono di farlo
3658   con relativa semplicità per cui non si dia per scontato che il valore sia
3659   credibile in caso di macchina compromessa.}
3660
3661 A partire dal kernel 2.6 la risoluzione dei tempi dei file, che nei campi di
3662 tab.~\ref{tab:file_file_times} è espressa in secondi, è stata portata ai
3663 nanosecondi per la gran parte dei filesystem. La ulteriore informazione può
3664 essere acceduta attraverso altri campi appositamente aggiunti alla struttura
3665 \struct{stat}. Se si sono definite le macro \macro{\_BSD\_SOURCE} o
3666 \macro{\_SVID\_SOURCE} questi sono \var{st\_atim.tv\_nsec},
3667 \var{st\_mtim.tv\_nsec} e \var{st\_ctim.tv\_nsec} se queste non sono definite,
3668 \var{st\_atimensec}, \var{st\_mtimensec} e \var{st\_mtimensec}. Qualora il
3669 supporto per questa maggior precisione sia assente questi campi aggiuntivi
3670 saranno nulli.
3671
3672 Per la gestione di questi nuovi valori è stata definita una seconda funzione
3673 di sistema, \funcd{utimes}, che consente di specificare tempi con maggior
3674 precisione; il suo prototipo è:
3675
3676 \begin{funcproto}{ 
3677 \fhead{sys/time.h}
3678 \fdecl{int utimes(const char *filename, struct timeval times[2])}
3679 \fdesc{Modifica i tempi di ultimo accesso e ultima modifica di un file.} 
3680 }
3681 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3682   caso \var{errno} assumerà gli stessi valori di \func{utime}.}  
3683 \end{funcproto}
3684  
3685 La funzione è del tutto analoga alla precedente \func{utime} ma usa come
3686 secondo argomento un vettore di due strutture \struct{timeval}, la cui
3687 definizione è riportata in fig.~\ref{fig:sys_timeval_struct}, che consentono
3688 di indicare i tempi con una precisione del microsecondo. Il primo elemento
3689 di \param{times} indica il valore per il tempo di ultimo accesso, il secondo
3690 quello per il tempo di ultima modifica. Se si indica come secondo argomento un
3691 puntatore nullo di nuovo verrà utilizzato il tempo corrente.
3692
3693 \begin{figure}[!htb]
3694   \footnotesize \centering
3695   \begin{minipage}[c]{\textwidth}
3696     \includestruct{listati/timeval.h}
3697   \end{minipage} 
3698   \normalsize 
3699   \caption{La struttura \structd{timeval} usata per indicare valori di tempo
3700     con la precisione del microsecondo.}
3701   \label{fig:sys_timeval_struct}
3702 \end{figure}
3703
3704 Oltre ad \func{utimes} su Linux sono presenti altre due funzioni,\footnote{le
3705   due funzioni non sono definite in nessuno standard, ma sono presenti, oltre
3706   che su Linux, anche su BSD.} \funcd{futimes} e \funcd{lutimes}, che
3707 consentono rispettivamente di effettuare la modifica utilizzando un file già
3708 aperto o di eseguirla direttamente su un collegamento simbolico. I relativi
3709 prototipi sono:
3710
3711 \begin{funcproto}{ 
3712 \fhead{sys/time.h}
3713 \fdecl{int futimes(int fd, const struct timeval tv[2])}
3714 \fdesc{Cambia i tempi di un file già aperto.} 
3715 \fdecl{int lutimes(const char *filename, const struct timeval tv[2])}
3716 \fdesc{Cambia i tempi di un collegamento simbolico.} 
3717 }
3718
3719 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3720   caso \var{errno} assumerà uno gli stessi valori di \func{utimes}, con in più
3721   per \func{futimes}:
3722   \begin{errlist}
3723   \item[\errcode{EBADF}] \param{fd} non è un file descriptor.
3724   \item[\errcode{ENOSYS}] il filesystem \texttt{/proc} non è accessibile.
3725   \end{errlist}}  
3726 \end{funcproto}
3727
3728 Le due funzioni anno lo stesso comportamento di \texttt{utimes} e richiedono
3729 gli stessi privilegi per poter operare, la differenza è che con \func{futimes}
3730 si può indicare il file su cui operare se questo è già aperto facendo
3731 riferimento al suo file descriptor mentre con \func{lutimes} nel caso in
3732 cui \param{filename} sia un collegamento simbolico saranno modificati i suoi
3733 tempi invece di quelli del file a cui esso punta.
3734
3735 Nonostante il kernel, come accennato, supporti risoluzioni dei tempi dei file
3736 fino al nanosecondo, le funzioni fin qui esaminate non consentono di impostare
3737 valori con questa precisione. Per questo sono state introdotte due nuove
3738 funzioni, \funcd{futimens} e \func{utimensat}, in grado di eseguire questo
3739 compito; i rispettivi prototipi sono:
3740
3741 \begin{funcproto}{ 
3742 \fhead{sys/time.h}
3743 \fdecl{futimens(int fd, const struct timespec times[2])}
3744 \fdesc{Cambia i tempi di un file già aperto.} 
3745 \fdecl{int utimensat(int dirfd, const char *pathname, const struct
3746     timespec times[2], int flags)}
3747 \fdesc{Cambia i tempi di un file.} 
3748 }
3749 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3750   caso \var{errno} assumerà uno dei valori: 
3751   \begin{errlist}
3752   \item[\errcode{EBADF}] da fare
3753   \end{errlist}
3754   ed inoltre nel loro significato generico.}
3755 \end{funcproto}
3756
3757 Entrambe le funzioni utilizzano per indicare i valori dei tempi un
3758 vettore \param{times} di due strutture \struct{timespec} che permette di
3759 specificare un valore di tempo con una precisione fino al nanosecondo, la cui
3760 definizione è riportata in fig.~\ref{fig:sys_timespec_struct}.
3761
3762 \begin{figure}[!htb]
3763   \footnotesize \centering
3764   \begin{minipage}[c]{\textwidth}
3765     \includestruct{listati/timespec.h}
3766   \end{minipage} 
3767   \normalsize 
3768   \caption{La struttura \structd{timespec} usata per indicare valori di tempo
3769     con la precisione del nanosecondo.}
3770   \label{fig:sys_timespec_struct}
3771 \end{figure}
3772
3773 Come per le precedenti funzioni il primo elemento di \param{times} indica il
3774 tempo di ultimo accesso ed il secondo quello di ultima modifica, e se si usa
3775 il valore \val{NULL} verrà impostato il tempo corrente sia per l'ultimo
3776 accesso che per l'ultima modifica. Nei singoli elementi di \param{times} si
3777 possono inoltre utilizzare due valori speciali per il campo \var{tv\_nsec}:
3778 con \const{UTIME\_NOW} si richiede l'uso del tempo corrente, mentre con
3779 \const{UTIME\_OMIT} si richiede di non impostare il tempo. Si può così
3780 aggiornare in maniera specifica soltanto uno fra il tempo di ultimo accesso e
3781 quello di ultima modifica. Quando si usa uno di questi valori speciali per
3782 \var{tv\_nsec} il corrispondente valore di \var{tv\_sec} viene ignorato.
3783
3784 Queste due funzioni sono una estensione definita nella revisione POSIX.1-2008
3785 dello standard POSIX; sono state introdotte a partire dal kernel 2.6.22, e
3786 supportate dalla \acr{glibc} a partire dalla versione 2.6.\footnote{in
3787   precedenza, a partire dal kernel 2.6.16, era stata introdotta la funzione
3788   \funcm{futimesat} seguendo una bozza della revisione dello standard poi
3789   modificata, questa funzione, sostituita da \func{utimensat}, è stata
3790   dichiarata obsoleta, non è supportata da nessuno standard e non deve essere
3791   più utilizzata: pertanto non la tratteremo.} La prima è sostanzialmente una
3792 estensione di \func{futimes} che consente di specificare i tempi con
3793 precisione maggiore, la seconda supporta invece, rispetto ad \func{utimes},
3794 una sintassi più complessa che, come vedremo in sez.~\ref{sec:file_openat}
3795 consente una indicazione sicura dei \itindsub{pathname}{relativo}
3796 \textit{pathname relativi} specificando la directory da usare come riferimento
3797 in \param{dirfd} e la possibilità di usare per \param{flags} il valore
3798 \const{AT\_SYMLINK\_NOFOLLOW} per indicare alla funzione di non dereferenziare
3799 i collegamenti simbolici; si rimanda pertanto la spiegazione del significato
3800 degli argomenti aggiuntivi alla trattazione generica delle varie funzioni che
3801 usano la stessa sintassi, effettuata in sez.~\ref{sec:file_openat}.
3802
3803
3804 \section{Il controllo di accesso ai file}
3805 \label{sec:file_access_control}
3806
3807 Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella
3808 del controllo di accesso ai file, che viene implementato per qualunque
3809 filesystem standard.\footnote{per standard si intende che implementa le
3810   caratteristiche previste dallo standard POSIX; in Linux sono disponibili
3811   anche una serie di altri filesystem, come quelli di Windows e del Mac, che
3812   non supportano queste caratteristiche.} In questa sezione ne esamineremo i
3813 concetti essenziali e le funzioni usate per gestirne i vari aspetti.
3814
3815
3816 \subsection{I permessi per l'accesso ai file}
3817 \label{sec:file_perm_overview}
3818
3819 Ad ogni file Linux associa sempre l'utente che ne è proprietario (il
3820 cosiddetto \textit{owner}) ed un gruppo di appartenenza, secondo il meccanismo
3821 degli identificatori di utente e gruppo (\ids{UID} e \ids{GID}). Questi valori
3822 sono accessibili da programma tramite la funzione \func{stat}, e sono
3823 mantenuti nei campi \var{st\_uid} e \var{st\_gid} della struttura
3824 \struct{stat} (si veda sez.~\ref{sec:file_stat}).\footnote{questo è vero solo
3825   per filesystem di tipo Unix, ad esempio non è vero per il filesystem vfat di
3826   Windows, che non fornisce nessun supporto per l'accesso multiutente, e per
3827   il quale i permessi vengono assegnati in maniera fissa con un opzione in
3828   fase di montaggio.}
3829
3830 Il controllo di accesso ai file segue un modello abbastanza semplice che
3831 prevede tre permessi fondamentali strutturati su tre livelli di accesso.
3832 Esistono varie estensioni a questo modello,\footnote{come le \textit{Access
3833     Control List} che sono state aggiunte ai filesystem standard con opportune
3834   estensioni (vedi sez.~\ref{sec:file_ACL}) per arrivare a meccanismi di
3835   controllo ancora più sofisticati come il \textit{mandatory access control}
3836   di SE-Linux.} ma nella maggior parte dei casi il meccanismo standard è più
3837 che sufficiente a soddisfare tutte le necessità più comuni.  I tre permessi di
3838 base associati ad ogni file sono:
3839 \begin{itemize*}
3840 \item il permesso di lettura (indicato con la lettera \texttt{r}, dall'inglese
3841   \textit{read}).
3842 \item il permesso di scrittura (indicato con la lettera \texttt{w},
3843   dall'inglese \textit{write}).
3844 \item il permesso di esecuzione (indicato con la lettera \texttt{x},
3845   dall'inglese \textit{execute}).
3846 \end{itemize*}
3847 mentre i tre livelli su cui sono divisi i privilegi sono:
3848 \begin{itemize*}
3849 \item i privilegi per l'utente proprietario del file.
3850 \item i privilegi per un qualunque utente faccia parte del gruppo cui
3851   appartiene il file.
3852 \item i privilegi per tutti gli altri utenti.
3853 \end{itemize*}
3854
3855 L'insieme dei permessi viene espresso con un numero a 12 bit; di questi i nove
3856 meno significativi sono usati a gruppi di tre per indicare i permessi base di
3857 lettura, scrittura ed esecuzione e sono applicati rispettivamente
3858 rispettivamente al proprietario, al gruppo, a tutti gli altri.
3859
3860 \begin{figure}[htb]
3861   \centering
3862   \includegraphics[width=6cm]{img/fileperm}
3863   \caption{Lo schema dei bit utilizzati per specificare i permessi di un file
3864     contenuti nel campo \var{st\_mode} di \struct{stat}.}
3865   \label{fig:file_perm_bit}
3866 \end{figure}
3867
3868 I restanti tre bit (noti come \itindex{suid~bit} \textit{suid bit},
3869 \itindex{sgid~bit} \textit{sgid bit}, e \itindex{sticky~bit} \textit{sticky
3870   bit}) sono usati per indicare alcune caratteristiche più complesse del
3871 meccanismo del controllo di accesso su cui torneremo in seguito (in
3872 sez.~\ref{sec:file_special_perm}); lo schema di allocazione dei bit è
3873 riportato in fig.~\ref{fig:file_perm_bit}.
3874
3875 Anche i permessi, come tutte le altre informazioni pertinenti al file, sono
3876 memorizzati \itindex{inode} nell'\textit{inode}; in particolare essi sono
3877 contenuti in alcuni bit del campo \var{st\_mode} della struttura \struct{stat}
3878 (si veda di nuovo fig.~\ref{fig:file_stat_struct}).
3879
3880 In genere ci si riferisce ai tre livelli dei privilegi usando le lettere
3881 \cmd{u} (per \textit{user}), \cmd{g} (per \textit{group}) e \cmd{o} (per
3882 \textit{other}), inoltre se si vuole indicare tutti i raggruppamenti insieme
3883 si usa la lettera \cmd{a} (per \textit{all}). Si tenga ben presente questa
3884 distinzione dato che in certi casi, mutuando la terminologia in uso nel VMS,
3885 si parla dei permessi base come di permessi per \textit{owner}, \textit{group}
3886 ed \textit{all}, le cui iniziali possono dar luogo a confusione.  Le costanti
3887 che permettono di accedere al valore numerico di questi bit nel campo
3888 \var{st\_mode} sono riportate in tab.~\ref{tab:file_bit_perm}.
3889
3890 \begin{table}[htb]
3891   \centering
3892     \footnotesize
3893   \begin{tabular}[c]{|c|l|}
3894     \hline
3895     \textbf{\var{st\_mode}} bit & \textbf{Significato} \\
3896     \hline 
3897     \hline 
3898     \const{S\_IRUSR} & \textit{user-read}, l'utente può leggere.\\
3899     \const{S\_IWUSR} & \textit{user-write}, l'utente può scrivere.\\
3900     \const{S\_IXUSR} & \textit{user-execute}, l'utente può eseguire.\\ 
3901     \hline            
3902     \const{S\_IRGRP} & \textit{group-read}, il gruppo può leggere.\\
3903     \const{S\_IWGRP} & \textit{group-write}, il gruppo può scrivere.\\
3904     \const{S\_IXGRP} & \textit{group-execute}, il gruppo può eseguire.\\
3905     \hline            
3906     \const{S\_IROTH} & \textit{other-read}, tutti possono leggere.\\
3907     \const{S\_IWOTH} & \textit{other-write}, tutti possono scrivere.\\
3908     \const{S\_IXOTH} & \textit{other-execute}, tutti possono eseguire.\\
3909     \hline              
3910   \end{tabular}
3911   \caption{I bit dei permessi di accesso ai file, come definiti in 
3912     \texttt{<sys/stat.h>}}
3913   \label{tab:file_bit_perm}
3914 \end{table}
3915
3916 I permessi vengono usati in maniera diversa dalle varie funzioni, e a seconda
3917 che si riferiscano a dei file, dei collegamenti simbolici o delle directory;
3918 qui ci limiteremo ad un riassunto delle regole generali, entrando nei dettagli
3919 più avanti.
3920
3921 La prima regola è che per poter accedere ad un file attraverso il suo
3922 \textit{pathname} occorre il permesso di esecuzione in ciascuna delle
3923 directory che compongono il \textit{pathname}; lo stesso vale per aprire un
3924 file nella directory corrente (per la quale appunto serve il diritto di
3925 esecuzione).
3926
3927 Per una directory infatti il permesso di esecuzione significa che essa può
3928 essere attraversata nella risoluzione del \textit{pathname}, ed è distinto dal
3929 permesso di lettura che invece implica che si può leggere il contenuto della
3930 directory.
3931
3932 Questo significa che se si ha il permesso di esecuzione senza permesso di
3933 lettura si potrà lo stesso aprire un file in una directory (se si hanno i
3934 permessi opportuni per il medesimo) ma non si potrà vederlo con \cmd{ls}
3935 (mentre per crearlo occorrerà anche il permesso di scrittura per la
3936 directory).
3937
3938 Avere il permesso di lettura per un file consente di aprirlo con le opzioni
3939 (si veda quanto riportato in tab.~\ref{tab:file_open_flags}) di sola lettura o
3940 di lettura/scrittura e leggerne il contenuto. Avere il permesso di scrittura
3941 consente di aprire un file in sola scrittura o lettura/scrittura e modificarne
3942 il contenuto, lo stesso permesso è necessario per poter troncare il file.
3943
3944 Non si può creare un file fintanto che non si disponga del permesso di
3945 esecuzione e di quello di scrittura per la directory di destinazione; gli
3946 stessi permessi occorrono per cancellare un file da una directory (si ricordi
3947 che questo non implica necessariamente la rimozione del contenuto del file dal
3948 disco), non è necessario nessun tipo di permesso per il file stesso (infatti
3949 esso non viene toccato, viene solo modificato il contenuto della directory,
3950 rimuovendo la voce che ad esso fa riferimento).
3951
3952 Per poter eseguire un file (che sia un programma compilato od uno script di
3953 shell, od un altro tipo di file eseguibile riconosciuto dal kernel), occorre
3954 avere il permesso di esecuzione, inoltre solo i file regolari possono essere
3955 eseguiti.
3956
3957 I permessi per un collegamento simbolico sono ignorati, contano quelli del
3958 file a cui fa riferimento; per questo in genere il comando \cmd{ls} riporta
3959 per un collegamento simbolico tutti i permessi come concessi; utente e gruppo
3960 a cui esso appartiene vengono pure ignorati quando il collegamento viene
3961 risolto, vengono controllati solo quando viene richiesta la rimozione del
3962 collegamento e quest'ultimo è in una directory con lo \itindex{sticky~bit}
3963 \textit{sticky bit} impostato (si veda sez.~\ref{sec:file_special_perm}).
3964
3965 La procedura con cui il kernel stabilisce se un processo possiede un certo
3966 permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra
3967 l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e
3968 \var{st\_gid} accennati in precedenza) e l'\ids{UID} effettivo, il \ids{GID}
3969 effettivo e gli eventuali \ids{GID} supplementari del processo.\footnote{in
3970   realtà Linux, per quanto riguarda l'accesso ai file, utilizza gli
3971   identificatori del gruppo \textit{filesystem} (si ricordi quanto esposto in
3972   sez.~\ref{sec:proc_perms}), ma essendo questi del tutto equivalenti ai primi,
3973   eccetto il caso in cui si voglia scrivere un server NFS, ignoreremo questa
3974   differenza.}
3975
3976 Per una spiegazione dettagliata degli identificatori associati ai processi si
3977 veda sez.~\ref{sec:proc_perms}; normalmente, a parte quanto vedremo in
3978 sez.~\ref{sec:file_special_perm}, l'\ids{UID} effettivo e il \ids{GID} effettivo
3979 corrispondono ai valori dell'\ids{UID} e del \ids{GID} dell'utente che ha
3980 lanciato il processo, mentre i \ids{GID} supplementari sono quelli dei gruppi
3981 cui l'utente appartiene.
3982
3983 I passi attraverso i quali viene stabilito se il processo possiede il diritto
3984 di accesso sono i seguenti:
3985 \begin{enumerate}
3986 \item Se l'\ids{UID} effettivo del processo è zero (corrispondente
3987   all'amministratore) l'accesso è sempre garantito senza nessun ulteriore
3988   controllo. Per questo motivo \textsl{root} ha piena libertà di accesso a
3989   tutti i file.
3990 \item Se l'\ids{UID} effettivo del processo è uguale all'\ids{UID} del
3991   proprietario del file (nel qual caso si dice che il processo è proprietario
3992   del file) allora:
3993   \begin{itemize*}
3994   \item se il relativo\footnote{per relativo si intende il bit di user-read se
3995       il processo vuole accedere in lettura, quello di user-write per
3996       l'accesso in scrittura, ecc.} bit dei permessi d'accesso dell'utente è
3997     impostato, l'accesso è consentito
3998   \item altrimenti l'accesso è negato
3999   \end{itemize*}
4000 \item Se il \ids{GID} effettivo del processo o uno dei \ids{GID} supplementari
4001   dei processi corrispondono al \ids{GID} del file allora:
4002   \begin{itemize*}
4003   \item se il bit dei permessi d'accesso del gruppo è impostato, l'accesso è
4004     consentito, 
4005   \item altrimenti l'accesso è negato
4006   \end{itemize*}
4007 \item Se il bit dei permessi d'accesso per tutti gli altri è impostato,
4008   l'accesso è consentito, altrimenti l'accesso è negato.
4009 \end{enumerate}
4010
4011 Si tenga presente che questi passi vengono eseguiti esattamente in
4012 quest'ordine. Questo vuol dire che se un processo è il proprietario di un file,
4013 l'accesso è consentito o negato solo sulla base dei permessi per l'utente; i
4014 permessi per il gruppo non vengono neanche controllati. Lo stesso vale se il
4015 processo appartiene ad un gruppo appropriato, in questo caso i permessi per
4016 tutti gli altri non vengono controllati.
4017
4018
4019 \subsection{I bit dei permessi speciali}
4020 \label{sec:file_special_perm}
4021
4022 \itindbeg{suid~bit}
4023 \itindbeg{sgid~bit}
4024
4025 Come si è accennato (in sez.~\ref{sec:file_perm_overview}) nei dodici bit del
4026 campo \var{st\_mode} di \struct{stat} che vengono usati per il controllo di
4027 accesso oltre ai bit dei permessi veri e propri, ci sono altri tre bit che
4028 vengono usati per indicare alcune proprietà speciali dei file.  Due di questi
4029 sono i bit detti \acr{suid} (da \textit{set-user-ID bit}) e \acr{sgid} (da
4030 \textit{set-group-ID bit}) che sono identificati dalle costanti
4031 \const{S\_ISUID} e \const{S\_ISGID}.
4032
4033 Come spiegato in dettaglio in sez.~\ref{sec:proc_exec}, quando si lancia un
4034 programma il comportamento normale del kernel è quello di impostare gli
4035 identificatori del gruppo \textit{effective} del nuovo processo al valore dei
4036 corrispondenti del gruppo \textit{real} del processo corrente, che normalmente
4037 corrispondono a quelli dell'utente con cui si è entrati nel sistema.
4038
4039 Se però il file del programma (che ovviamente deve essere
4040 eseguibile\footnote{per motivi di sicurezza il kernel ignora i bit \acr{suid}
4041   e \acr{sgid} per gli script eseguibili.}) ha il bit \acr{suid} impostato, il
4042 kernel assegnerà come \ids{UID} effettivo al nuovo processo l'\ids{UID} del
4043 proprietario del file al posto dell'\ids{UID} del processo originario.  Avere
4044 il bit \acr{sgid} impostato ha lo stesso effetto sul \ids{GID} effettivo del
4045 processo.
4046
4047 I bit \acr{suid} e \acr{sgid} vengono usati per permettere agli utenti normali
4048 di usare programmi che richiedono privilegi speciali; l'esempio classico è il
4049 comando \cmd{passwd} che ha la necessità di modificare il file delle password,
4050 quest'ultimo ovviamente può essere scritto solo dall'amministratore, ma non è
4051 necessario chiamare l'amministratore per cambiare la propria password. Infatti
4052 il comando \cmd{passwd} appartiene a root ma ha il bit \acr{suid} impostato
4053 per cui quando viene lanciato da un utente normale parte con i privilegi di
4054 root.
4055
4056 Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe
4057 normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di
4058 programmi devono essere scritti accuratamente per evitare che possano essere
4059 usati per guadagnare privilegi non consentiti (l'argomento è affrontato in
4060 dettaglio in sez.~\ref{sec:proc_perms}).
4061
4062 La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere rilevata con
4063 il comando \cmd{ls -l}, che visualizza una lettera \cmd{s} al posto della
4064 \cmd{x} in corrispondenza dei permessi di utente o gruppo. La stessa lettera
4065 \cmd{s} può essere usata nel comando \cmd{chmod} per impostare questi bit.
4066 Infine questi bit possono essere controllati all'interno di \var{st\_mode} con
4067 l'uso delle due costanti \const{S\_ISUID} e \const{S\_IGID}, i cui valori sono
4068 riportati in tab.~\ref{tab:file_mode_flags}.
4069
4070 Gli stessi bit vengono ad assumere in significato completamente diverso per le
4071 directory, normalmente infatti Linux usa la convenzione di SVr4 per indicare
4072 con questi bit l'uso della semantica BSD nella creazione di nuovi file (si
4073 veda sez.~\ref{sec:file_ownership_management} per una spiegazione dettagliata
4074 al proposito).
4075
4076 Infine Linux utilizza il bit \acr{sgid} per un'ulteriore estensione mutuata
4077 da SVr4. Il caso in cui un file ha il bit \acr{sgid} impostato senza che lo
4078 sia anche il corrispondente bit di esecuzione viene utilizzato per attivare
4079 per quel file il \itindex{mandatory~locking} \textit{mandatory locking}
4080 (affronteremo questo argomento in dettaglio più avanti, in
4081 sez.~\ref{sec:file_mand_locking}).
4082
4083 \itindend{suid~bit}
4084 \itindend{sgid~bit}
4085
4086
4087 \itindbeg{sticky~bit}
4088
4089 L'ultimo dei bit rimanenti, identificato dalla costante \const{S\_ISVTX}, è in
4090 parte un rimasuglio delle origini dei sistemi Unix. A quell'epoca infatti la
4091 memoria virtuale e l'accesso ai file erano molto meno sofisticati e per
4092 ottenere la massima velocità possibile per i programmi usati più comunemente
4093 si poteva impostare questo bit.
4094
4095 L'effetto di questo bit era che il \index{segmento!testo} segmento di testo
4096 del programma (si veda sez.~\ref{sec:proc_mem_layout} per i dettagli) veniva
4097 scritto nella swap la prima volta che questo veniva lanciato, e vi permaneva
4098 fino al riavvio della macchina (da questo il nome di \textsl{sticky bit});
4099 essendo la swap un file continuo o una partizione indicizzata direttamente si
4100 poteva risparmiare in tempo di caricamento rispetto alla ricerca attraverso la
4101 struttura del filesystem. Lo \textsl{sticky bit} è indicato usando la lettera
4102 \texttt{t} al posto della \texttt{x} nei permessi per gli altri.
4103
4104 Ovviamente per evitare che gli utenti potessero intasare la swap solo
4105 l'amministratore era in grado di impostare questo bit, che venne chiamato
4106 anche con il nome di \textit{saved text bit}, da cui deriva quello della
4107 costante.  Le attuali implementazioni di memoria virtuale e filesystem rendono
4108 sostanzialmente inutile questo procedimento.
4109
4110 Benché ormai non venga più utilizzato per i file, lo \textit{sticky bit} ha
4111 invece assunto un uso importante per le directory;\footnote{lo \textit{sticky
4112     bit} per le directory è un'estensione non definita nello standard POSIX,
4113   Linux però la supporta, così come BSD e SVr4.} in questo caso se tale bit è
4114 impostato un file potrà essere rimosso dalla directory soltanto se l'utente ha
4115 il permesso di scrittura su di essa ed inoltre è vera una delle seguenti
4116 condizioni:
4117 \begin{itemize*}
4118 \item l'utente è proprietario del file
4119 \item l'utente è proprietario della directory
4120 \item l'utente è l'amministratore 
4121 \end{itemize*}
4122 un classico esempio di directory che ha questo bit impostato è \file{/tmp}, i
4123 permessi infatti di solito sono i seguenti:
4124 \begin{verbatim}
4125 $ ls -ld /tmp
4126 drwxrwxrwt    6 root     root         1024 Aug 10 01:03 /tmp
4127 \end{verbatim}%$
4128 quindi con lo \textit{sticky bit} bit impostato. In questo modo qualunque
4129 utente nel sistema può creare dei file in questa directory (che, come
4130 suggerisce il nome, è normalmente utilizzata per la creazione di file
4131 temporanei), ma solo l'utente che ha creato un certo file potrà cancellarlo o
4132 rinominarlo. In questo modo si evita che un utente possa, più o meno
4133 consapevolmente, cancellare i file temporanei creati degli altri utenti.
4134
4135 \itindend{sticky~bit}
4136
4137 \subsection{Le funzioni per la gestione dei permessi dei file}
4138 \label{sec:file_perm_management}
4139
4140 Come visto in sez.~\ref{sec:file_access_control} il controllo di accesso ad un
4141 file viene fatto utilizzando l'\ids{UID} ed il \ids{GID} effettivo del processo;
4142 ci sono casi però in cui si può voler effettuare il controllo con l'\ids{UID}
4143 reale ed il \ids{GID} reale, vale a dire usando i valori di \ids{UID} e
4144 \ids{GID} relativi all'utente che ha lanciato il programma, e che, come
4145 accennato in sez.~\ref{sec:file_special_perm} e spiegato in dettaglio in
4146 sez.~\ref{sec:proc_perms}, non è detto siano uguali a quelli effettivi.
4147
4148 Per far questo si può usare la funzione \funcd{access}, il cui prototipo è:
4149 \begin{prototype}{unistd.h}
4150 {int access(const char *pathname, int mode)}
4151
4152 Verifica i permessi di accesso.
4153   
4154 \bodydesc{La funzione ritorna 0 se l'accesso è consentito, -1 se l'accesso non
4155   è consentito ed in caso di errore; nel qual caso la variabile \var{errno}
4156   assumerà i valori:
4157   \begin{errlist}
4158   \item[\errcode{EINVAL}] il valore di \param{mode} non è valido.
4159   \item[\errcode{EACCES}] l'accesso al file non è consentito, o non si ha il
4160     permesso di attraversare una delle directory di \param{pathname}.
4161   \item[\errcode{EROFS}] si è richiesto l'accesso in scrittura per un file su
4162     un filesystem montato in sola lettura.
4163   \end{errlist}
4164   ed inoltre \errval{EFAULT}, \errval{ENAMETOOLONG}, \errval{ENOENT},
4165   \errval{ENOTDIR}, \errval{ELOOP}, \errval{EIO}.}
4166 \end{prototype}
4167
4168 La funzione verifica i permessi di accesso, indicati da \param{mode}, per il
4169 file indicato da \param{pathname}. I valori possibili per l'argomento
4170 \param{mode} sono esprimibili come combinazione delle costanti numeriche
4171 riportate in tab.~\ref{tab:file_access_mode_val} (attraverso un OR binario
4172 delle stesse). I primi tre valori implicano anche la verifica dell'esistenza
4173 del file, se si vuole verificare solo quest'ultima si può usare \const{F\_OK},
4174 o anche direttamente \func{stat}. Nel caso in cui \param{pathname} si
4175 riferisca ad un collegamento simbolico, questo viene seguito ed il controllo è
4176 fatto sul file a cui esso fa riferimento.
4177
4178 La funzione controlla solo i bit dei permessi di accesso, si ricordi che il
4179 fatto che una directory abbia permesso di scrittura non significa che ci si
4180 possa scrivere come in un file, e il fatto che un file abbia permesso di
4181 esecuzione non comporta che contenga un programma eseguibile. La funzione
4182 ritorna zero solo se tutte i permessi controllati sono disponibili, in caso
4183 contrario (o di errore) ritorna -1.
4184 \begin{table}[htb]
4185   \centering
4186   \footnotesize
4187   \begin{tabular}{|c|l|}
4188     \hline
4189     \textbf{\param{mode}} & \textbf{Significato} \\
4190     \hline
4191     \hline
4192     \const{R\_OK} & Verifica il permesso di lettura. \\
4193     \const{W\_OK} & Verifica il permesso di scrittura. \\
4194     \const{X\_OK} & Verifica il permesso di esecuzione. \\
4195     \const{F\_OK} & Verifica l'esistenza del file. \\
4196     \hline
4197   \end{tabular}
4198   \caption{Valori possibile per l'argomento \param{mode} della funzione 
4199     \func{access}.}
4200   \label{tab:file_access_mode_val}
4201 \end{table}
4202
4203 Un esempio tipico per l'uso di questa funzione è quello di un processo che sta
4204 eseguendo un programma coi privilegi di un altro utente (ad esempio attraverso
4205 l'uso del \itindex{suid~bit} \textit{suid bit}) che vuole controllare se
4206 l'utente originale ha i permessi per accedere ad un certo file.
4207
4208 Del tutto analoghe a \func{access} sono le due funzioni \funcd{euidaccess} e
4209 \funcd{eaccess} che ripetono lo stesso controllo usando però gli
4210 identificatori del gruppo effettivo, verificando quindi le effettive capacità
4211 di accesso ad un file. Le funzioni hanno entrambe lo stesso
4212 prototipo\footnote{in realtà \func{eaccess} è solo un sinonimo di
4213   \func{euidaccess} fornita per compatibilità con l'uso di questo nome in
4214   altri sistemi.} che è del tutto identico a quello di \func{access}. Prendono
4215 anche gli stessi valori e restituiscono gli stessi risultati e gli stessi
4216 codici di errore.
4217
4218 Per cambiare i permessi di un file il sistema mette ad disposizione due
4219 funzioni \funcd{chmod} e \funcd{fchmod}, che operano rispettivamente su un
4220 filename e su un file descriptor, i loro prototipi sono:
4221 \begin{functions}
4222   \headdecl{sys/types.h} 
4223   \headdecl{sys/stat.h} 
4224   
4225   \funcdecl{int chmod(const char *path, mode\_t mode)} Cambia i permessi del
4226   file indicato da \param{path} al valore indicato da \param{mode}.
4227   
4228   \funcdecl{int fchmod(int fd, mode\_t mode)} Analoga alla precedente, ma usa
4229   il file descriptor \param{fd} per indicare il file.
4230   
4231   \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
4232     un errore, in caso di errore \var{errno} può assumere i valori:
4233   \begin{errlist}
4234   \item[\errcode{EPERM}] l'\ids{UID} effettivo non corrisponde a quello del
4235     proprietario del file o non è zero.
4236     \item[\errcode{EROFS}] il file è su un filesystem in sola lettura.
4237   \end{errlist}
4238   ed inoltre \errval{EIO}; \func{chmod} restituisce anche \errval{EFAULT},
4239   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR},
4240   \errval{EACCES}, \errval{ELOOP}; \func{fchmod} anche \errval{EBADF}.}
4241 \end{functions}
4242
4243 Entrambe le funzioni utilizzano come secondo argomento \param{mode}, una
4244 variabile dell'apposito tipo primitivo \type{mode\_t} (vedi
4245 tab.~\ref{tab:intro_primitive_types}) utilizzato per specificare i permessi sui
4246 file.
4247
4248 \begin{table}[!htb]
4249   \centering
4250   \footnotesize
4251   \begin{tabular}[c]{|c|c|l|}
4252     \hline
4253     \textbf{\param{mode}} & \textbf{Valore} & \textbf{Significato} \\
4254     \hline
4255     \hline
4256     \const{S\_ISUID} & 04000 & Set user ID \itindex{suid~bit}.\\
4257     \const{S\_ISGID} & 02000 & Set group ID \itindex{sgid~bit}.\\
4258     \const{S\_ISVTX} & 01000 & Sticky bit \itindex{sticky~bit}.\\
4259     \hline
4260     \const{S\_IRWXU} & 00700 & L'utente ha tutti i permessi.\\
4261     \const{S\_IRUSR} & 00400 & L'utente ha il permesso di lettura.\\
4262     \const{S\_IWUSR} & 00200 & L'utente ha il permesso di scrittura.\\
4263     \const{S\_IXUSR} & 00100 & L'utente ha il permesso di esecuzione.\\
4264     \hline
4265     \const{S\_IRWXG} & 00070 & Il gruppo ha tutti i permessi.\\
4266     \const{S\_IRGRP} & 00040 & Il gruppo ha il permesso di lettura.\\
4267     \const{S\_IWGRP} & 00020 & Il gruppo ha il permesso di scrittura.\\
4268     \const{S\_IXGRP} & 00010 & Il gruppo ha il permesso di esecuzione.\\
4269     \hline
4270     \const{S\_IRWXO} & 00007 & Gli altri hanno tutti i permessi.\\
4271     \const{S\_IROTH} & 00004 & Gli altri hanno il permesso di lettura.\\
4272     \const{S\_IWOTH} & 00002 & Gli altri hanno il permesso di scrittura.\\
4273     \const{S\_IXOTH} & 00001 & Gli altri hanno il permesso di esecuzione.\\
4274     \hline
4275   \end{tabular}
4276   \caption{Valori delle costanti usate per indicare i vari bit di
4277     \param{mode} utilizzato per impostare i permessi dei file.}
4278   \label{tab:file_permission_const}
4279 \end{table}
4280
4281 Le costanti con cui specificare i singoli bit di \param{mode} sono riportate
4282 in tab.~\ref{tab:file_permission_const}. Il valore di \param{mode} può essere
4283 ottenuto combinando fra loro con un OR binario le costanti simboliche relative
4284 ai vari bit, o specificato direttamente, come per l'omonimo comando di shell,
4285 con un valore numerico (la shell lo vuole in ottale, dato che i bit dei
4286 permessi sono divisibili in gruppi di tre), che si può calcolare direttamente
4287 usando lo schema si utilizzo dei bit illustrato in
4288 fig.~\ref{fig:file_perm_bit}.
4289
4290 Ad esempio i permessi standard assegnati ai nuovi file (lettura e scrittura
4291 per il proprietario, sola lettura per il gruppo e gli altri) sono
4292 corrispondenti al valore ottale $0644$, un programma invece avrebbe anche il
4293 bit di esecuzione attivo, con un valore di $0755$, se si volesse attivare il
4294 bit \itindex{suid~bit} \acr{suid} il valore da fornire sarebbe $4755$.
4295
4296 Il cambiamento dei permessi di un file eseguito attraverso queste funzioni ha
4297 comunque alcune limitazioni, previste per motivi di sicurezza. L'uso delle
4298 funzioni infatti è possibile solo se l'\ids{UID} effettivo del processo
4299 corrisponde a quello del proprietario del file o dell'amministratore,
4300 altrimenti esse falliranno con un errore di \errcode{EPERM}.
4301
4302 Ma oltre a questa regola generale, di immediata comprensione, esistono delle
4303 limitazioni ulteriori. Per questo motivo, anche se si è proprietari del file,
4304 non tutti i valori possibili di \param{mode} sono permessi o hanno effetto;
4305 in particolare accade che:
4306 \begin{enumerate}
4307 \item siccome solo l'amministratore può impostare lo \itindex{sticky~bit}
4308   \textit{sticky bit}, se l'\ids{UID} effettivo del processo non è zero esso
4309   viene automaticamente cancellato (senza notifica di errore) qualora sia
4310   stato indicato in \param{mode}.
4311 \item per quanto detto in sez.~\ref{sec:file_ownership_management} riguardo la
4312   creazione dei nuovi file, si può avere il caso in cui il file creato da un
4313   processo è assegnato ad un gruppo per il quale il processo non ha privilegi.
4314   Per evitare che si possa assegnare il bit \itindex{sgid~bit} \acr{sgid} ad
4315   un file appartenente ad un gruppo per cui non si hanno diritti, questo viene
4316   automaticamente cancellato da \param{mode} (senza notifica di errore)
4317   qualora il gruppo del file non corrisponda a quelli associati al processo
4318   (la cosa non avviene quando l'\ids{UID} effettivo del processo è zero).
4319 \end{enumerate}
4320
4321 Per alcuni filesystem\footnote{i filesystem più comuni (\textsl{ext2},
4322   \textsl{ext3}, \textsl{ext4}, \textsl{ReiserFS}) supportano questa
4323   caratteristica, che è mutuata da BSD.} è inoltre prevista un'ulteriore
4324 misura di sicurezza, volta a scongiurare l'abuso dei \itindex{suid~bit} bit
4325 \acr{suid} e \acr{sgid}; essa consiste nel cancellare automaticamente questi
4326 bit dai permessi di un file qualora un processo che non appartenga
4327 all'amministratore\footnote{per la precisione un processo che non dispone
4328   della \itindex{capabilities} capacità \const{CAP\_FSETID}, vedi
4329   sez.~\ref{sec:proc_capabilities}.} effettui una scrittura. In questo modo
4330 anche se un utente malizioso scopre un file \acr{suid} su cui può scrivere,
4331 un'eventuale modifica comporterà la perdita di questo privilegio.
4332
4333 Le funzioni \func{chmod} e \func{fchmod} ci permettono di modificare i
4334 permessi di un file, resta però il problema di quali sono i permessi assegnati
4335 quando il file viene creato. Le funzioni dell'interfaccia nativa di Unix, come
4336 vedremo in sez.~\ref{sec:file_open}, permettono di indicare esplicitamente i
4337 permessi di creazione di un file, ma questo non è possibile per le funzioni
4338 dell'interfaccia standard ANSI C che non prevede l'esistenza di utenti e
4339 gruppi, ed inoltre il problema si pone anche per l'interfaccia nativa quando i
4340 permessi non vengono indicati esplicitamente. 
4341
4342 \itindbeg{umask} 
4343
4344 Per le funzioni dell'interfaccia standard ANSI C l'unico riferimento possibile
4345 è quello della modalità di apertura del nuovo file (lettura/scrittura o sola
4346 lettura), che però può fornire un valore che è lo stesso per tutti e tre i
4347 permessi di sez.~\ref{sec:file_perm_overview} (cioè $666$ nel primo caso e
4348 $222$ nel secondo). Per questo motivo il sistema associa ad ogni
4349 processo\footnote{è infatti contenuta nel campo \var{umask} della struttura
4350   \kstruct{fs\_struct}, vedi fig.~\ref{fig:proc_task_struct}.}  una maschera
4351 di bit, la cosiddetta \textit{umask}, che viene utilizzata per impedire che
4352 alcuni permessi possano essere assegnati ai nuovi file in sede di creazione. I
4353 bit indicati nella maschera vengono infatti cancellati dai permessi quando un
4354 nuovo file viene creato.\footnote{l'operazione viene fatta sempre: anche
4355   qualora si indichi esplicitamente un valore dei permessi nelle funzioni di
4356   creazione che lo consentono, i permessi contenuti nella \textit{umask}
4357   verranno tolti.}
4358
4359 La funzione che permette di impostare il valore di questa maschera di
4360 controllo è \funcd{umask}, ed il suo prototipo è:
4361 \begin{prototype}{stat.h}
4362 {mode\_t umask(mode\_t mask)}
4363
4364 Imposta la maschera dei permessi dei bit al valore specificato da \param{mask}
4365 (di cui vengono presi solo i 9 bit meno significativi).
4366   
4367   \bodydesc{La funzione ritorna il precedente valore della maschera. È una
4368     delle poche funzioni che non restituisce codici di errore.}
4369 \end{prototype}
4370
4371 In genere si usa questa maschera per impostare un valore predefinito che
4372 escluda preventivamente alcuni permessi (usualmente quello di scrittura per il
4373 gruppo e gli altri, corrispondente ad un valore per \param{mask} pari a
4374 $022$).  In questo modo è possibile cancellare automaticamente i permessi non
4375 voluti.  Di norma questo valore viene impostato una volta per tutte al login a
4376 $022$, e gli utenti non hanno motivi per modificarlo.
4377
4378 \itindend{umask} 
4379
4380
4381 \subsection{La gestione della titolarità dei file}
4382 \label{sec:file_ownership_management}
4383
4384 Vedremo in sez.~\ref{sec:file_base_func} con quali funzioni si possono creare
4385 nuovi file, in tale occasione vedremo che è possibile specificare in sede di
4386 creazione quali permessi applicare ad un file, però non si può indicare a
4387 quale utente e gruppo esso deve appartenere.  Lo stesso problema si presenta
4388 per la creazione di nuove directory (procedimento descritto in
4389 sez.~\ref{sec:file_dir_creat_rem}).
4390
4391 Lo standard POSIX prescrive che l'\ids{UID} del nuovo file corrisponda
4392 all'\ids{UID} effettivo del processo che lo crea; per il \ids{GID} invece
4393 prevede due diverse possibilità:
4394 \begin{itemize*}
4395 \item il \ids{GID} del file corrisponde al \ids{GID} effettivo del processo.
4396 \item il \ids{GID} del file corrisponde al \ids{GID} della directory in cui
4397   esso è creato.
4398 \end{itemize*}
4399 in genere BSD usa sempre la seconda possibilità, che viene per questo chiamata
4400 semantica BSD. Linux invece segue quella che viene chiamata semantica SVr4; di
4401 norma cioè il nuovo file viene creato, seguendo la prima opzione, con il
4402 \ids{GID} del processo, se però la directory in cui viene creato il file ha il
4403 bit \acr{sgid} impostato allora viene usata la seconda opzione.
4404
4405 Usare la semantica BSD ha il vantaggio che il \ids{GID} viene sempre
4406 automaticamente propagato, restando coerente a quello della directory di
4407 partenza, in tutte le sotto-directory. 
4408
4409 La semantica SVr4 offre la possibilità di scegliere, ma per ottenere lo stesso
4410 risultato di coerenza che si ha con BSD necessita che quando si creano nuove
4411 directory venga anche propagato anche il bit \acr{sgid}. Questo è il
4412 comportamento predefinito del comando \cmd{mkdir}, ed è in questo modo ad
4413 esempio che le varie distribuzioni assicurano che le sotto-directory create
4414 nella home di un utente restino sempre con il \ids{GID} del gruppo primario
4415 dello stesso.
4416
4417 La presenza del bit \acr{sgid} è inoltre molto comoda quando si hanno
4418 directory contenenti file condivisi all'intero di un gruppo in cui possono
4419 scrivere tutti i membri dello stesso, dato che assicura che i file che gli
4420 utenti vi creano appartengano sempre allo stesso gruppo. Questo non risolve
4421 però completamente i problemi di accesso da parte di altri utenti dello stesso
4422 gruppo, in quanto i permessi assegnati al gruppo potrebbero non essere
4423 sufficienti; in tal caso si deve aver cura di usare un valore di
4424 \itindex{umask} \textit{umask} che ne lasci di sufficienti.\footnote{in tal
4425   caso si può assegnare agli utenti del gruppo una \textit{umask} di $002$,
4426   anche se la soluzione migliore in questo caso è usare una ACL di default
4427   (vedi sez.~\ref{sec:file_ACL}).}
4428
4429 Come avviene nel caso dei permessi il sistema fornisce anche delle funzioni,
4430 \funcd{chown}, \funcd{fchown} e \funcd{lchown}, che permettono di cambiare sia
4431 l'utente che il gruppo a cui un file appartiene; i rispettivi prototipi sono:
4432 \begin{functions}
4433   \headdecl{sys/types.h} 
4434   \headdecl{sys/stat.h} 
4435   
4436   \funcdecl{int chown(const char *path, uid\_t owner, gid\_t group)}
4437   \funcdecl{int fchown(int fd, uid\_t owner, gid\_t group)}
4438   \funcdecl{int lchown(const char *path, uid\_t owner, gid\_t group)}
4439
4440   Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori
4441   specificati dalle variabili \param{owner} e \param{group}. 
4442   
4443   \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 per un
4444     errore, nel qual caso caso \var{errno} assumerà i valori:
4445   \begin{errlist}
4446   \item[\errcode{EPERM}] l'\ids{UID} effettivo non corrisponde a quello del
4447     proprietario del file o non è zero, o utente e gruppo non sono validi
4448   \end{errlist}
4449   Oltre a questi entrambe restituiscono gli errori \errval{EROFS} e
4450   \errval{EIO}; \func{chown} restituisce anche \errval{EFAULT},
4451   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR},
4452   \errval{EACCES}, \errval{ELOOP}; \func{fchown} anche \errval{EBADF}.}
4453 \end{functions}
4454
4455 Con Linux solo l'amministratore\footnote{o in generale un processo con la
4456   \itindex{capabilities} capacità \const{CAP\_CHOWN}, vedi
4457   sez.~\ref{sec:proc_capabilities}.} può cambiare il proprietario di un file;
4458 in questo viene seguita la semantica usata da BSD che non consente agli utenti
4459 di assegnare i loro file ad altri utenti evitando eventuali aggiramenti delle
4460 quote.  L'amministratore può cambiare sempre il gruppo di un file, il
4461 proprietario può cambiare il gruppo solo dei file che gli appartengono e solo
4462 se il nuovo gruppo è il suo gruppo primario o uno dei gruppi di cui fa parte.
4463
4464 La funzione \func{chown} segue i collegamenti simbolici, per operare
4465 direttamente su un collegamento simbolico si deve usare la funzione
4466 \func{lchown}.\footnote{fino alla versione 2.1.81 in Linux \func{chown} non
4467   seguiva i collegamenti simbolici, da allora questo comportamento è stato
4468   assegnato alla funzione \func{lchown}, introdotta per l'occasione, ed è
4469   stata creata una nuova \textit{system call} per \func{chown} che seguisse i
4470   collegamenti simbolici.} La funzione \func{fchown} opera su un file aperto,
4471 essa è mutuata da BSD, ma non è nello standard POSIX.  Un'altra estensione
4472 rispetto allo standard POSIX è che specificando -1 come valore
4473 per \param{owner} e \param{group} i valori restano immutati.
4474
4475 Quando queste funzioni sono chiamate con successo da un processo senza i
4476 privilegi di root entrambi i bit \itindex{suid~bit} \acr{suid} e
4477 \itindex{sgid~bit} \acr{sgid} vengono cancellati. Questo non avviene per il
4478 bit \acr{sgid} nel caso in cui esso sia usato (in assenza del corrispondente
4479 permesso di esecuzione) per indicare che per il file è attivo il
4480 \itindex{mandatory~locking} \textit{mandatory locking} (vedi
4481 sez.~\ref{sec:file_mand_locking}).
4482
4483
4484 \subsection{Un quadro d'insieme sui permessi}
4485 \label{sec:file_riepilogo}
4486
4487 Avendo affrontato in maniera separata il comportamento delle varie funzioni
4488 che operano sui permessi dei file ed avendo trattato in sezioni diverse il
4489 significato dei singoli bit dei permessi, vale la pena di fare un riepilogo in
4490 cui si riassumano le caratteristiche di ciascuno di essi, in modo da poter
4491 fornire un quadro d'insieme.
4492
4493 \begin{table}[!htb]
4494   \centering
4495   \footnotesize
4496   \begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|l|}
4497     \hline
4498     \multicolumn{3}{|c|}{special}&
4499     \multicolumn{3}{|c|}{user}&
4500     \multicolumn{3}{|c|}{group}&
4501     \multicolumn{3}{|c|}{other}&
4502     \multirow{2}{*}{\textbf{Significato per i file}} \\
4503     \cline{1-12}
4504     \texttt{s}&\texttt{s}&\texttt{t}&
4505     \texttt{r}&\texttt{w}&\texttt{x}&
4506     \texttt{r}&\texttt{w}&\texttt{x}&
4507     \texttt{r}&\texttt{w}&\texttt{x}& \\
4508     \hline
4509     \hline
4510    1&-&-&-&-&1&-&-&-&-&-&-&Eseguito conferisce l'\ids{UID} effettivo dell'utente.\\
4511    -&1&-&-&-&1&-&-&-&-&-&-&Eseguito conferisce il \ids{GID} effettivo del gruppo.\\
4512    -&1&-&-&-&0&-&-&-&-&-&-&Il \itindex{mandatory~locking} 
4513                            \textit{mandatory locking} è abilitato.\\
4514    -&-&1&-&-&-&-&-&-&-&-&-&Non utilizzato.\\
4515    -&-&-&1&-&-&-&-&-&-&-&-&Permesso di lettura per l'utente.\\
4516    -&-&-&-&1&-&-&-&-&-&-&-&Permesso di scrittura per l'utente.\\
4517    -&-&-&-&-&1&-&-&-&-&-&-&Permesso di esecuzione per l'utente.\\
4518    -&-&-&-&-&-&1&-&-&-&-&-&Permesso di lettura per il gruppo.\\
4519    -&-&-&-&-&-&-&1&-&-&-&-&Permesso di scrittura per il gruppo.\\
4520    -&-&-&-&-&-&-&-&1&-&-&-&Permesso di esecuzione per il gruppo.\\
4521    -&-&-&-&-&-&-&-&-&1&-&-&Permesso di lettura per tutti gli altri.\\
4522    -&-&-&-&-&-&-&-&-&-&1&-&Permesso di scrittura per tutti gli altri.\\
4523    -&-&-&-&-&-&-&-&-&-&-&1&Permesso di esecuzione per tutti gli altri.\\
4524     \hline
4525     \hline
4526     \multicolumn{3}{|c|}{special}&
4527     \multicolumn{3}{|c|}{user}&
4528     \multicolumn{3}{|c|}{group}&
4529     \multicolumn{3}{|c|}{other}&
4530     \multirow{2}{*}{\textbf{Significato per le directory}} \\
4531     \cline{1-12}
4532     \texttt{s}&\texttt{s}&\texttt{t}&
4533     \texttt{r}&\texttt{w}&\texttt{x}&
4534     \texttt{r}&\texttt{w}&\texttt{x}&
4535     \texttt{r}&\texttt{w}&\texttt{x}& \\
4536     \hline
4537     \hline
4538     1&-&-&-&-&-&-&-&-&-&-&-&Non utilizzato.\\
4539     -&1&-&-&-&-&-&-&-&-&-&-&Propaga il gruppo ai nuovi file creati.\\
4540     -&-&1&-&-&-&-&-&-&-&-&-&Solo il proprietario di un file può rimuoverlo.\\
4541     -&-&-&1&-&-&-&-&-&-&-&-&Permesso di visualizzazione per l'utente.\\
4542     -&-&-&-&1&-&-&-&-&-&-&-&Permesso di aggiornamento per l'utente.\\
4543     -&-&-&-&-&1&-&-&-&-&-&-&Permesso di attraversamento per l'utente.\\
4544     -&-&-&-&-&-&1&-&-&-&-&-&Permesso di visualizzazione per il gruppo.\\
4545     -&-&-&-&-&-&-&1&-&-&-&-&Permesso di aggiornamento per il gruppo.\\
4546     -&-&-&-&-&-&-&-&1&-&-&-&Permesso di attraversamento per il gruppo.\\
4547     -&-&-&-&-&-&-&-&-&1&-&-&Permesso di visualizzazione per tutti gli altri.\\
4548     -&-&-&-&-&-&-&-&-&-&1&-&Permesso di aggiornamento per tutti gli altri.\\
4549     -&-&-&-&-&-&-&-&-&-&-&1&Permesso di attraversamento per tutti gli altri.\\
4550     \hline
4551   \end{tabular}
4552   \caption{Tabella riassuntiva del significato dei bit dei permessi per un
4553     file e directory.} 
4554   \label{tab:file_fileperm_bits}
4555 \end{table}
4556
4557 Nella parte superiore di tab.~\ref{tab:file_fileperm_bits} si è riassunto il
4558 significato dei vari bit dei permessi per un file ordinario; per quanto
4559 riguarda l'applicazione dei permessi per proprietario, gruppo ed altri si
4560 ricordi quanto illustrato in sez.~\ref{sec:file_perm_overview}.  Per
4561 compattezza, nella tabella si sono specificati i bit di \itindex{suid~bit}
4562 \textit{suid}, \itindex{sgid~bit} \textit{sgid} e \textit{sticky}
4563 \itindex{sticky~bit} con la notazione illustrata anche in
4564 fig.~\ref{fig:file_perm_bit}.  Nella parte inferiore si sono invece riassunti
4565 i significati dei vari bit dei permessi per una directory; anche in questo
4566 caso si è riapplicato ai bit di \itindex{suid~bit} \textit{suid},
4567 \itindex{sgid~bit} \textit{sgid} e \textit{sticky} \itindex{sticky~bit} la
4568 notazione illustrata in fig.~\ref{fig:file_perm_bit}.
4569
4570 Si ricordi infine che i permessi non hanno alcun significato per i
4571 collegamenti simbolici, mentre per i \index{file!di~dispositivo} file di
4572 dispositivo hanno senso soltanto i permessi di lettura e scrittura, che si
4573 riflettono sulla possibilità di compiere dette operazioni sul dispositivo
4574 stesso.
4575
4576 Nella tabella si è indicato con il carattere ``-'' il fatto che il valore del
4577 bit in questione non è influente rispetto a quanto indicato nella riga della
4578 tabella; la descrizione del significato fa riferimento soltanto alla
4579 combinazione di bit per i quali è stato riportato esplicitamente un valore.
4580 Si rammenti infine che il valore dei bit dei permessi non ha alcun effetto
4581 qualora il processo possieda i privilegi di amministratore.
4582
4583
4584 \section{Caratteristiche e funzionalità avanzate}
4585 \label{sec:file_dir_advances}
4586
4587 Tratteremo qui alcune caratteristiche e funzionalità avanzate della gestione
4588 di file e directory, affrontando anche una serie di estensioni
4589 dell'interfaccia classica dei sistemi unix-like, principalmente utilizzate a
4590 scopi di sicurezza, che sono state introdotte nelle versioni più recenti di
4591 Linux.
4592
4593 \subsection{Gli attributi estesi}
4594 \label{sec:file_xattr}
4595
4596 \itindbeg{Extended~Attributes}
4597
4598 Nelle sezioni precedenti abbiamo trattato in dettaglio le varie informazioni
4599 che il sistema mantiene negli \itindex{inode} \textit{inode}, e le varie
4600 funzioni che permettono di modificarle.  Si sarà notato come in realtà queste
4601 informazioni siano estremamente ridotte.  Questo è dovuto al fatto che Unix
4602 origina negli anni '70, quando le risorse di calcolo e di spazio disco erano
4603 minime. Con il venir meno di queste restrizioni è incominciata ad emergere
4604 l'esigenza di poter associare ai file delle ulteriori informazioni astratte
4605 (quelli che vengono chiamati i \textsl{meta-dati}) che però non potevano
4606 trovare spazio nei dati classici mantenuti negli \itindex{inode}
4607 \textit{inode}.
4608
4609 Per risolvere questo problema alcuni sistemi unix-like (e fra questi anche
4610 Linux) hanno introdotto un meccanismo generico, detto \textit{Extended
4611   Attributes} che consenta di associare delle informazioni ai singoli
4612 file.\footnote{l'uso più comune è quello della ACL, che tratteremo nella
4613   prossima sezione.} Gli \textsl{attributi estesi} non sono altro che delle
4614 coppie nome/valore che sono associate permanentemente ad un oggetto sul
4615 filesystem, analoghi di quello che sono le variabili di ambiente (vedi
4616 sez.~\ref{sec:proc_environ}) per un processo.
4617
4618 Altri sistemi (come Solaris, MacOS e Windows) hanno adottato un meccanismo
4619 diverso in cui ad un file sono associati diversi flussi di dati, su cui
4620 possono essere mantenute ulteriori informazioni, che possono essere accedute
4621 con le normali operazioni di lettura e scrittura. Questi non vanno confusi con
4622 gli \textit{Extended Attributes} (anche se su Solaris hanno lo stesso nome),
4623 che sono un meccanismo molto più semplice, che pur essendo limitato (potendo
4624 contenere solo una quantità limitata di informazione) hanno il grande
4625 vantaggio di essere molto più semplici da realizzare, più
4626 efficienti,\footnote{cosa molto importante, specie per le applicazioni che
4627   richiedono una gran numero di accessi, come le ACL.} e di garantire
4628 l'atomicità di tutte le operazioni.
4629
4630 In Linux gli attributi estesi sono sempre associati al singolo \itindex{inode}
4631 \textit{inode} e l'accesso viene sempre eseguito in forma atomica, in lettura
4632 il valore corrente viene scritto su un buffer in memoria, mentre la scrittura
4633 prevede che ogni valore precedente sia sovrascritto.
4634
4635 Si tenga presente che non tutti i filesystem supportano gli \textit{Extended
4636   Attributes}; al momento della scrittura di queste dispense essi sono
4637 presenti solo sui vari \textsl{extN}, \textsl{ReiserFS}, \textsl{JFS},
4638 \textsl{XFS} e \textsl{Btrfs}.\footnote{l'elenco è aggiornato a Luglio 2011.}
4639 Inoltre a seconda della implementazione ci possono essere dei limiti sulla
4640 quantità di attributi che si possono utilizzare.\footnote{ad esempio nel caso
4641   di \textsl{ext2} ed \textsl{ext3} è richiesto che essi siano contenuti
4642   all'interno di un singolo blocco (pertanto con dimensioni massime pari a
4643   1024, 2048 o 4096 byte a seconda delle dimensioni di quest'ultimo impostate
4644   in fase di creazione del filesystem), mentre con \textsl{XFS} non ci sono
4645   limiti ed i dati vengono memorizzati in maniera diversa (nell'\textit{inode}
4646   stesso, in un blocco a parte, o in una struttura ad albero dedicata) per
4647   mantenerne la scalabilità.} Infine lo spazio utilizzato per mantenere gli
4648 attributi estesi viene tenuto in conto per il calcolo delle quote di utente e
4649 gruppo proprietari del file.
4650
4651 Come meccanismo per mantenere informazioni aggiuntive associate al singolo
4652 file, gli \textit{Extended Attributes} possono avere usi anche molto diversi
4653 fra loro.  Per poterli distinguere allora sono stati suddivisi in
4654 \textsl{classi}, a cui poter applicare requisiti diversi per l'accesso e la
4655 gestione. Per questo motivo il nome di un attributo deve essere sempre
4656 specificato nella forma \texttt{namespace.attribute}, dove \texttt{namespace}
4657 fa riferimento alla classe a cui l'attributo appartiene, mentre
4658 \texttt{attribute} è il nome ad esso assegnato. In tale forma il nome di un
4659 attributo esteso deve essere univoco. Al momento\footnote{della scrittura di
4660   questa sezione, kernel 2.6.23, ottobre 2007.} sono state definite le quattro
4661 classi di attributi riportate in tab.~\ref{tab:extended_attribute_class}.
4662
4663 \begin{table}[htb]
4664   \centering
4665   \footnotesize
4666   \begin{tabular}{|l|p{12cm}|}
4667     \hline
4668     \textbf{Nome} & \textbf{Descrizione} \\
4669     \hline
4670     \hline
4671     \texttt{security}&Gli \textit{extended security attributes}: vengono
4672                       utilizzati dalle estensioni di sicurezza del kernel (i
4673                       \itindex{Linux~Security~Modules} \textit{Linux 
4674                         Security Modules}), per le realizzazione di meccanismi
4675                       evoluti di controllo di accesso come \index{SELinux}
4676                       SELinux o le \textit{capabilities} dei file di
4677                       sez.~\ref{sec:proc_capabilities}.\\ 
4678     \texttt{system} & Gli \textit{extended security attributes}: sono usati
4679                       dal kernel per memorizzare dati di sistema associati ai
4680                       file come le \itindex{Access~Control~List~(ACL)} ACL (vedi
4681                       sez.~\ref{sec:file_ACL}) o le \itindex{capabilities}
4682                       \textit{capabilities} (vedi
4683                       sez.~\ref{sec:proc_capabilities}).\\
4684     \texttt{trusted}& I \textit{trusted extended attributes}: vengono
4685                       utilizzati per poter realizzare in user space 
4686                       meccanismi che consentano di mantenere delle
4687                       informazioni sui file che non devono essere accessibili
4688                       ai processi ordinari.\\
4689     \texttt{user}   & Gli \textit{extended user attributes}: utilizzati per
4690                       mantenere informazioni aggiuntive sui file (come il
4691                       \textit{mime-type}, la codifica dei caratteri o del
4692                       file) accessibili dagli utenti.\\
4693     \hline
4694   \end{tabular}
4695   \caption{I nomi utilizzati valore di \texttt{namespace} per distinguere le
4696     varie classi di \textit{Extended Attributes}.}
4697   \label{tab:extended_attribute_class}
4698 \end{table}
4699
4700
4701 Dato che uno degli usi degli \textit{Extended Attributes} è quello che li
4702 impiega per realizzare delle estensioni (come le
4703 \itindex{Access~Control~List~(ACL)} ACL, \index{SELinux} SELinux, ecc.) al
4704 tradizionale meccanismo dei controlli di accesso di Unix, l'accesso ai loro
4705 valori viene regolato in maniera diversa a seconda sia della loro classe sia
4706 di quali, fra le estensioni che li utilizzano, sono poste in uso. In
4707 particolare, per ciascuna delle classi riportate in
4708 tab.~\ref{tab:extended_attribute_class}, si hanno i seguenti casi:
4709 \begin{basedescript}{\desclabelwidth{1.7cm}\desclabelstyle{\nextlinelabel}}
4710 \item[\texttt{security}] L'accesso agli \textit{extended security attributes}
4711   dipende dalle politiche di sicurezza stabilite da loro stessi tramite
4712   l'utilizzo di un sistema di controllo basato sui
4713   \itindex{Linux~Security~Modules} \textit{Linux Security Modules} (ad esempio
4714   \index{SELinux} SELinux). Pertanto l'accesso in lettura o scrittura dipende
4715   dalle politiche di sicurezza implementate all'interno dal modulo di
4716   sicurezza che si sta utilizzando al momento (ciascuno avrà le sue). Se non è
4717   stato caricato nessun modulo di sicurezza l'accesso in lettura sarà
4718   consentito a tutti i processi, mentre quello in scrittura solo ai processi
4719   con privilegi amministrativi dotati della \itindex{capabilities}
4720   \textit{capability} \const{CAP\_SYS\_ADMIN}.
4721
4722 \item[\texttt{system}] Anche l'accesso agli \textit{extended system
4723     attributes} dipende dalle politiche di accesso che il kernel realizza
4724   anche utilizzando gli stessi valori in essi contenuti. Ad esempio nel caso
4725   delle \itindex{Access~Control~List~(ACL)} ACL l'accesso è consentito in
4726   lettura ai processi che hanno la capacità di eseguire una ricerca sul file
4727   (cioè hanno il permesso di lettura sulla directory che contiene il file) ed
4728   in scrittura al proprietario del file o ai processi dotati della
4729   \textit{capability} \itindex{capabilities}
4730   \const{CAP\_FOWNER}.\footnote{vale a dire una politica di accesso analoga a
4731     quella impiegata per gli ordinari permessi dei file.}
4732
4733 \item[\texttt{trusted}] L'accesso ai \textit{trusted extended attributes}, sia
4734   per la lettura che per la scrittura, è consentito soltanto ai processi con
4735   privilegi amministrativi dotati della \itindex{capabilities}
4736   \textit{capability} \const{CAP\_SYS\_ADMIN}. In questo modo si possono
4737   utilizzare questi attributi per realizzare in user space dei meccanismi di
4738   controllo che accedono ad informazioni non disponibili ai processi ordinari.
4739
4740 \item[\texttt{user}] L'accesso agli \textit{extended user attributes} è
4741   regolato dai normali permessi dei file: occorre avere il permesso di lettura
4742   per leggerli e quello di scrittura per scriverli o modificarli. Dato l'uso
4743   di questi attributi si è scelto di applicare al loro accesso gli stessi
4744   criteri che si usano per l'accesso al contenuto dei file (o delle directory)
4745   cui essi fanno riferimento. Questa scelta vale però soltanto per i file e le
4746   directory ordinarie, se valesse in generale infatti si avrebbe un serio
4747   problema di sicurezza dato che esistono diversi oggetti sul filesystem per i
4748   quali è normale avere avere il permesso di scrittura consentito a tutti gli
4749   utenti, come i collegamenti simbolici, o alcuni \index{file!di~dispositivo}
4750   file di dispositivo come \texttt{/dev/null}. Se fosse possibile usare su di
4751   essi gli \textit{extended user attributes} un utente qualunque potrebbe
4752   inserirvi dati a piacere.\footnote{la cosa è stata notata su XFS, dove
4753     questo comportamento permetteva, non essendovi limiti sullo spazio
4754     occupabile dagli \textit{Extended Attributes}, di bloccare il sistema
4755     riempiendo il disco.}
4756
4757   La semantica del controllo di accesso indicata inoltre non avrebbe alcun
4758   senso al di fuori di file e directory: i permessi di lettura e scrittura per
4759   un \index{file!di~dispositivo} file di dispositivo attengono alle capacità
4760   di accesso al dispositivo sottostante,\footnote{motivo per cui si può
4761     formattare un disco anche se \texttt{/dev} è su un filesystem in sola
4762     lettura.} mentre per i collegamenti simbolici questi vengono semplicemente
4763   ignorati: in nessuno dei due casi hanno a che fare con il contenuto del
4764   file, e nella discussione relativa all'uso degli \textit{extended user
4765     attributes} nessuno è mai stato capace di indicare una qualche forma
4766   sensata di utilizzo degli stessi per collegamenti simbolici o
4767   \index{file!di~dispositivo} file di dispositivo, e neanche per le fifo o i
4768   socket.  Per questo motivo essi sono stati completamente disabilitati per
4769   tutto ciò che non sia un file regolare o una directory.\footnote{si può
4770     verificare la semantica adottata consultando il file \texttt{fs/xattr.c}
4771     dei sorgenti del kernel.} Inoltre per le directory è stata introdotta una
4772   ulteriore restrizione, dovuta di nuovo alla presenza ordinaria di permessi
4773   di scrittura completi su directory come \texttt{/tmp}. Per questo motivo,
4774   per evitare eventuali abusi, se una directory ha lo \itindex{sticky~bit}
4775   \textit{sticky bit} attivo sarà consentito scrivere i suoi \textit{extended
4776     user attributes} soltanto se si è proprietari della stessa, o si hanno i
4777   privilegi amministrativi della capability \itindex{capabilities}
4778   \const{CAP\_FOWNER}.
4779 \end{basedescript}
4780
4781 Le funzioni per la gestione degli attributi estesi, come altre funzioni di
4782 gestione avanzate specifiche di Linux, non fanno parte della \acr{glibc}, e
4783 sono fornite da una apposita libreria, \texttt{libattr}, che deve essere
4784 installata a parte;\footnote{la versione corrente della libreria è
4785   \texttt{libattr1}.}  pertanto se un programma le utilizza si dovrà indicare
4786 esplicitamente l'uso della suddetta libreria invocando il compilatore con
4787 l'opzione \texttt{-lattr}.  
4788
4789 Per poter leggere gli attributi estesi sono disponibili tre diverse funzioni,
4790 \funcd{getxattr}, \funcd{lgetxattr} e \funcd{fgetxattr}, che consentono
4791 rispettivamente di richiedere gli attributi relativi a un file, a un
4792 collegamento simbolico e ad un file descriptor; i rispettivi prototipi sono:
4793 \begin{functions}
4794   \headdecl{sys/types.h} 
4795   \headdecl{attr/xattr.h} 
4796   
4797   \funcdecl{ssize\_t getxattr(const char *path, const char *name, void
4798     *value, size\_t size)} 
4799
4800   \funcdecl{ssize\_t lgetxattr(const char *path, const char *name, void
4801     *value, size\_t size)} 
4802
4803   \funcdecl{ssize\_t fgetxattr(int filedes, const char *name, void *value,
4804     size\_t size)}
4805
4806   Le funzioni leggono il valore di un attributo esteso.
4807   
4808   \bodydesc{Le funzioni restituiscono un intero positivo che indica la
4809     dimensione dell'attributo richiesto in caso di successo, e $-1$ in caso di
4810     errore, nel qual caso \var{errno} assumerà i valori:
4811   \begin{errlist}
4812   \item[\errcode{ENOATTR}] l'attributo richiesto non esiste.
4813   \item[\errcode{ERANGE}] la dimensione \param{size} del buffer \param{value}
4814     non è sufficiente per contenere il risultato.
4815   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4816     filesystem o sono disabilitati.
4817   \end{errlist}
4818   e tutti gli errori di \func{stat}, come \errcode{EPERM} se non si hanno i
4819   permessi di accesso all'attributo. }
4820 \end{functions}
4821
4822 Le funzioni \func{getxattr} e \func{lgetxattr} prendono come primo argomento
4823 un \textit{pathname} che indica il file di cui si vuole richiedere un
4824 attributo, la sola differenza è che la seconda, se il \textit{pathname} indica
4825 un collegamento simbolico, restituisce gli attributi di quest'ultimo e non
4826 quelli del file a cui esso fa riferimento. La funzione \func{fgetxattr} prende
4827 invece come primo argomento un numero di file descriptor, e richiede gli
4828 attributi del file ad esso associato.
4829
4830 Tutte e tre le funzioni richiedono di specificare nell'argomento \param{name}
4831 il nome dell'attributo di cui si vuole ottenere il valore. Il nome deve essere
4832 indicato comprensivo di prefisso del \textit{namespace} cui appartiene (uno
4833 dei valori di tab.~\ref{tab:extended_attribute_class}) nella forma
4834 \texttt{namespace.attributename}, come stringa terminata da un carattere NUL.
4835 Il suo valore verrà restituito nel buffer puntato dall'argomento \param{value}
4836 per una dimensione massima di \param{size} byte;\footnote{gli attributi estesi
4837   possono essere costituiti arbitrariamente da dati testuali o binari.}  se
4838 quest'ultima non è sufficiente si avrà un errore di \errcode{ERANGE}.
4839
4840 Per evitare di dover indovinare la dimensione di un attributo per tentativi si
4841 può eseguire una interrogazione utilizzando un valore nullo per \param{size};
4842 in questo caso non verrà letto nessun dato, ma verrà restituito come valore di
4843 ritorno della funzione chiamata la dimensione totale dell'attributo esteso
4844 richiesto, che si potrà usare come stima per allocare un buffer di dimensioni
4845 sufficienti.\footnote{si parla di stima perché anche se le funzioni
4846   restituiscono la dimensione esatta dell'attributo al momento in cui sono
4847   eseguite, questa potrebbe essere modificata in qualunque momento da un
4848   successivo accesso eseguito da un altro processo.}
4849
4850 Un secondo gruppo di funzioni è quello che consente di impostare il valore di
4851 un attributo esteso, queste sono \funcd{setxattr}, \funcd{lsetxattr} e
4852 \funcd{fsetxattr}, e consentono di operare rispettivamente su un file, su un
4853 collegamento simbolico o specificando un file descriptor; i loro prototipi sono:
4854 \begin{functions}
4855   \headdecl{sys/types.h} 
4856   \headdecl{attr/xattr.h} 
4857   
4858   \funcdecl{int setxattr(const char *path, const char *name, const void
4859     *value, size\_t size, int flags)}
4860
4861   \funcdecl{int lsetxattr(const char *path, const char *name, const void
4862     *value, size\_t size, int flags)}
4863
4864   \funcdecl{int fsetxattr(int filedes, const char *name, const void *value,
4865     size\_t size, int flags)}
4866
4867   Impostano il valore di un attributo esteso.
4868   
4869   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e $-1$ in caso di
4870     errore, nel qual caso \var{errno} assumerà i valori:
4871   \begin{errlist}
4872   \item[\errcode{ENOATTR}] si è usato il flag \const{XATTR\_REPLACE} e
4873     l'attributo richiesto non esiste.
4874   \item[\errcode{EEXIST}] si è usato il flag \const{XATTR\_CREATE} ma
4875     l'attributo esiste già.
4876   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4877     filesystem o sono disabilitati.
4878   \end{errlist}
4879   Oltre a questi potranno essere restituiti tutti gli errori di \func{stat},
4880   ed in particolare \errcode{EPERM} se non si hanno i permessi di accesso
4881   all'attributo.  
4882 }
4883 \end{functions}
4884
4885 Le tre funzioni prendono come primo argomento un valore adeguato al loro
4886 scopo, usato in maniera del tutto identica a quanto visto in precedenza per le
4887 analoghe che leggono gli attributi estesi. Il secondo argomento \param{name}
4888 deve indicare, anche in questo caso con gli stessi criteri appena visti per le
4889 analoghe \func{getxattr}, \func{lgetxattr} e \func{fgetxattr}, il nome
4890 (completo di suffisso) dell'attributo su cui si vuole operare. 
4891
4892 Il valore che verrà assegnato all'attributo dovrà essere preparato nel buffer
4893 puntato da \param{value}, e la sua dimensione totale (in byte) sarà indicata
4894 dall'argomento \param{size}. Infine l'argomento \param{flag} consente di
4895 controllare le modalità di sovrascrittura dell'attributo esteso, esso può
4896 prendere due valori: con \const{XATTR\_REPLACE} si richiede che l'attributo
4897 esista, nel qual caso verrà sovrascritto, altrimenti si avrà errore, mentre
4898 con \const{XATTR\_CREATE} si richiede che l'attributo non esista, nel qual
4899 caso verrà creato, altrimenti si avrà errore ed il valore attuale non sarà
4900 modificato.  Utilizzando per \param{flag} un valore nullo l'attributo verrà
4901 modificato se è già presente, o creato se non c'è.
4902
4903 Le funzioni finora illustrate permettono di leggere o scrivere gli attributi
4904 estesi, ma sarebbe altrettanto utile poter vedere quali sono gli attributi
4905 presenti; a questo provvedono le funzioni \funcd{listxattr},
4906 \funcd{llistxattr} e \funcd{flistxattr} i cui prototipi sono:
4907 \begin{functions}
4908   \headdecl{sys/types.h} 
4909   \headdecl{attr/xattr.h} 
4910   
4911   \funcdecl{ssize\_t listxattr(const char *path, char *list, size\_t size)}
4912
4913   \funcdecl{ssize\_t llistxattr(const char *path, char *list, size\_t size)}
4914
4915   \funcdecl{ssize\_t flistxattr(int filedes, char *list, size\_t size)}
4916
4917   Leggono la lista degli attributi estesi di un file.
4918   
4919   \bodydesc{Le funzioni restituiscono un intero positivo che indica la
4920     dimensione della lista in caso di successo, e $-1$ in caso di errore, nel
4921     qual caso \var{errno} assumerà i valori:
4922   \begin{errlist}
4923   \item[\errcode{ERANGE}] la dimensione \param{size} del buffer \param{value}
4924     non è sufficiente per contenere il risultato.
4925   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4926     filesystem o sono disabilitati.
4927   \end{errlist}
4928   Oltre a questi potranno essere restituiti tutti gli errori di \func{stat},
4929   ed in particolare \errcode{EPERM} se non si hanno i permessi di accesso
4930   all'attributo.  
4931 }
4932 \end{functions}
4933
4934 Come per le precedenti le tre funzioni leggono gli attributi rispettivamente
4935 di un file, un collegamento simbolico o specificando un file descriptor, da
4936 specificare con il loro primo argomento. Gli altri due argomenti, identici per
4937 tutte e tre, indicano rispettivamente il puntatore \param{list} al buffer dove
4938 deve essere letta la lista e la dimensione \param{size} di quest'ultimo.
4939
4940 La lista viene fornita come sequenza non ordinata dei nomi dei singoli
4941 attributi estesi (sempre comprensivi del prefisso della loro classe) ciascuno
4942 dei quali è terminato da un carattere nullo. I nomi sono inseriti nel buffer
4943 uno di seguito all'altro. Il valore di ritorno della funzione indica la
4944 dimensione totale della lista in byte.
4945
4946 Come per le funzioni di lettura dei singoli attributi se le dimensioni del
4947 buffer non sono sufficienti si avrà un errore, ma è possibile ottenere dal
4948 valore di ritorno della funzione una stima della dimensione totale della lista
4949 usando per \param{size} un valore nullo. 
4950
4951 Infine per rimuovere semplicemente un attributo esteso, si ha a disposizione
4952 un ultimo gruppo di funzioni: \funcd{removexattr}, \funcd{lremovexattr} e
4953 \funcd{fremovexattr}; i rispettivi prototipi sono:
4954 \begin{functions}
4955   \headdecl{sys/types.h} 
4956   \headdecl{attr/xattr.h} 
4957   
4958   \funcdecl{int removexattr(const char *path, const char *name)}
4959
4960   \funcdecl{int lremovexattr(const char *path, const char *name)}
4961
4962   \funcdecl{int fremovexattr(int filedes, const char *name)}
4963
4964
4965   Rimuovono un attributo esteso di un file.
4966   
4967   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e $-1$ in caso di
4968     errore, nel qual caso \var{errno} assumerà i valori:
4969   \begin{errlist}
4970   \item[\errcode{ENOATTR}] l'attributo richiesto non esiste.
4971   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4972     filesystem o sono disabilitati.
4973   \end{errlist}
4974   ed inoltre tutti gli errori di \func{stat}.  
4975 }
4976 \end{functions}
4977
4978 Le tre funzioni rimuovono l'attributo esteso indicato dall'argomento
4979 \param{name} rispettivamente di un file, un collegamento simbolico o
4980 specificando un file descriptor, da specificare con il loro primo argomento.
4981 Anche in questo caso l'argomento \param{name} deve essere specificato con le
4982 modalità già illustrate in precedenza per le altre funzioni relative agli
4983 attributi estesi.
4984
4985 \itindend{Extended~Attributes}
4986
4987
4988 \subsection{Le \textit{Access  Control List}}
4989 \label{sec:file_ACL}
4990
4991 % la documentazione di sistema è nei pacchetti libacl1-dev e acl 
4992 % vedi anche http://www.suse.de/~agruen/acl/linux-acls/online/
4993
4994 \itindbeg{Access~Control~List~(ACL)}
4995
4996 Il modello classico dei permessi di Unix, per quanto funzionale ed efficiente,
4997 è comunque piuttosto limitato e per quanto possa aver coperto per lunghi anni
4998 le esigenze più comuni con un meccanismo semplice e potente, non è in grado di
4999 rispondere in maniera adeguata a situazioni che richiedono una gestione
5000 complessa dei permessi di accesso.\footnote{già un requisito come quello di
5001   dare accesso in scrittura ad alcune persone ed in sola lettura ad altre non
5002   si può soddisfare in maniera semplice.}
5003
5004 Per questo motivo erano state progressivamente introdotte nelle varie versioni
5005 di Unix dei meccanismi di gestione dei permessi dei file più flessibili, nella
5006 forma delle cosiddette \textit{Access Control List} (indicate usualmente con
5007 la sigla ACL).  Nello sforzo di standardizzare queste funzionalità era stato
5008 creato un gruppo di lavoro il cui scopo era estendere lo standard POSIX 1003
5009 attraverso due nuovi insiemi di specifiche, la POSIX 1003.1e per l'interfaccia
5010 di programmazione e la POSIX 1003.2c per i comandi di shell.
5011
5012 Gli obiettivi erano però forse troppo ambizioni, e nel gennaio del 1998 i
5013 finanziamenti vennero ritirati senza che si fosse arrivati alla definizione di
5014 uno standard, dato però che una parte della documentazione prodotta era di
5015 alta qualità venne deciso di rilasciare al pubblico la diciassettesima bozza
5016 del documento, quella che va sotto il nome di \textit{POSIX 1003.1e Draft 17},
5017 che è divenuta la base sulla quale si definiscono le cosiddette \textit{Posix
5018   ACL}.
5019
5020 A differenza di altri sistemi (ad esempio FreeBSD) nel caso di Linux si è
5021 scelto di realizzare le ACL attraverso l'uso degli
5022 \itindex{Extended~Attributes} \textit{Extended Attributes} (appena trattati in
5023 sez.~\ref{sec:file_xattr}), e fornire tutte le relative funzioni di gestione
5024 tramite una libreria, \texttt{libacl} che nasconde i dettagli implementativi
5025 delle ACL e presenta ai programmi una interfaccia che fa riferimento allo
5026 standard POSIX 1003.1e.
5027
5028 Anche in questo caso le funzioni di questa libreria non fanno parte della
5029 \acr{glibc} e devono essere installate a parte;\footnote{la versione corrente
5030   della libreria è \texttt{libacl1}, e nel caso si usi Debian la si può
5031   installare con il pacchetto omonimo e con il collegato \texttt{libacl1-dev}
5032   per i file di sviluppo.}  pertanto se un programma le utilizza si dovrà
5033 indicare esplicitamente l'uso della libreria \texttt{libacl} invocando il
5034 compilatore con l'opzione \texttt{-lacl}. Si tenga presente inoltre che per
5035 poterle utilizzare le ACL devono essere attivate esplicitamente montando il
5036 filesystem\footnote{che deve supportarle, ma questo è ormai vero per
5037   praticamente tutti i filesystem più comuni, con l'eccezione di NFS per il
5038   quale esiste però un supporto sperimentale.} su cui le si vogliono
5039 utilizzare con l'opzione \texttt{acl} attiva. Dato che si tratta di una
5040 estensione è infatti opportuno utilizzarle soltanto laddove siano necessarie.
5041
5042 Una ACL è composta da un insieme di voci, e ciascuna voce è a sua volta
5043 costituita da un \textsl{tipo}, da un eventuale
5044 \textsl{qualificatore},\footnote{deve essere presente soltanto per le voci di
5045   tipo \const{ACL\_USER} e \const{ACL\_GROUP}.} e da un insieme di permessi.
5046 Ad ogni oggetto sul filesystem si può associare una ACL che ne governa i
5047 permessi di accesso, detta \textit{access ACL}.  Inoltre per le directory si
5048 può impostare una ACL aggiuntiva, detta \textit{default ACL}, che serve ad
5049 indicare quale dovrà essere la ACL assegnata di default nella creazione di un
5050 file all'interno della directory stessa. Come avviene per i permessi le ACL
5051 possono essere impostate solo del proprietario del file, o da un processo con
5052 la capability \itindex{capabilities} \const{CAP\_FOWNER}.
5053
5054 \begin{table}[htb]
5055   \centering
5056   \footnotesize
5057   \begin{tabular}{|l|p{8cm}|}
5058     \hline
5059     \textbf{Tipo} & \textbf{Descrizione} \\
5060     \hline
5061     \hline
5062     \const{ACL\_USER\_OBJ} & voce che contiene i diritti di accesso del
5063                              proprietario del file.\\
5064     \const{ACL\_USER}      & voce che contiene i diritti di accesso per
5065                              l'utente indicato dal rispettivo
5066                              qualificatore.\\  
5067     \const{ACL\_GROUP\_OBJ}& voce che contiene i diritti di accesso del
5068                              gruppo proprietario del file.\\
5069     \const{ACL\_GROUP}     & voce che contiene i diritti di accesso per
5070                              il gruppo indicato dal rispettivo
5071                              qualificatore.\\
5072     \const{ACL\_MASK}      & voce che contiene la maschera dei massimi
5073                              permessi di accesso che possono essere garantiti
5074                              da voci del tipo \const{ACL\_USER},
5075                              \const{ACL\_GROUP} e \const{ACL\_GROUP\_OBJ}.\\
5076     \const{ACL\_OTHER}     & voce che contiene i diritti di accesso di chi
5077                              non corrisponde a nessuna altra voce dell'ACL.\\
5078     \hline
5079   \end{tabular}
5080   \caption{Le costanti che identificano i tipi delle voci di una ACL.}
5081   \label{tab:acl_tag_types}
5082 \end{table}
5083
5084 L'elenco dei vari tipi di voci presenti in una ACL, con una breve descrizione
5085 del relativo significato, è riportato in tab.~\ref{tab:acl_tag_types}. Tre di
5086 questi tipi, \const{ACL\_USER\_OBJ}, \const{ACL\_GROUP\_OBJ} e
5087 \const{ACL\_OTHER}, corrispondono direttamente ai tre permessi ordinari dei
5088 file (proprietario, gruppo proprietario e tutti gli altri) e per questo una
5089 ACL valida deve sempre contenere una ed una sola voce per ciascuno di questi
5090 tipi.
5091
5092 Una ACL può poi contenere un numero arbitrario di voci di tipo
5093 \const{ACL\_USER} e \const{ACL\_GROUP}, ciascuna delle quali indicherà i
5094 permessi assegnati all'utente e al gruppo indicato dal relativo qualificatore;
5095 ovviamente ciascuna di queste voci dovrà fare riferimento ad un utente o ad un
5096 gruppo diverso, e non corrispondenti a quelli proprietari del file. Inoltre se
5097 in una ACL esiste una voce di uno di questi due tipi è obbligatoria anche la
5098 presenza di una ed una sola voce di tipo \const{ACL\_MASK}, che negli altri
5099 casi è opzionale.
5100
5101 Quest'ultimo tipo di voce contiene la maschera dei permessi che possono essere
5102 assegnati tramite voci di tipo \const{ACL\_USER}, \const{ACL\_GROUP} e
5103 \const{ACL\_GROUP\_OBJ}; se in una di queste voci si fosse specificato un
5104 permesso non presente in \const{ACL\_MASK} questo verrebbe ignorato. L'uso di
5105 una ACL di tipo \const{ACL\_MASK} è di particolare utilità quando essa
5106 associata ad una \textit{default ACL} su una directory, in quanto i permessi
5107 così specificati verranno ereditati da tutti i file creati nella stessa
5108 directory. Si ottiene così una sorta di \itindex{umask} \textit{umask}
5109 associata ad un oggetto sul filesystem piuttosto che a un processo.
5110
5111 Dato che le ACL vengono a costituire una estensione dei permessi ordinari, uno
5112 dei problemi che si erano posti nella loro standardizzazione era appunto
5113 quello della corrispondenza fra questi e le ACL. Come accennato i permessi
5114 ordinari vengono mappati le tre voci di tipo \const{ACL\_USER\_OBJ},
5115 \const{ACL\_GROUP\_OBJ} e \const{ACL\_OTHER} che devono essere presenti in
5116 qualunque ACL; un cambiamento ad una di queste voci viene automaticamente
5117 riflesso sui permessi ordinari dei file\footnote{per permessi ordinari si
5118   intende quelli mantenuti \itindex{inode} nell'\textit{inode}, che devono
5119   restare dato che un filesystem può essere montato senza abilitare le ACL.} e
5120 viceversa. In realtà la mappatura è diretta solo per le voci
5121 \const{ACL\_USER\_OBJ} e \const{ACL\_OTHER}, nel caso di
5122 \const{ACL\_GROUP\_OBJ} questo vale soltanto se non è presente una voce di
5123 tipo \const{ACL\_MASK}, se invece questa è presente verranno tolti dai
5124 permessi di \const{ACL\_GROUP\_OBJ} tutti quelli non presenti in
5125 \const{ACL\_MASK}.\footnote{questo diverso comportamento a seconda delle
5126   condizioni è stato introdotto dalla standardizzazione \textit{POSIX 1003.1e
5127     Draft 17} per mantenere il comportamento invariato sui sistemi dotati di
5128   ACL per tutte quelle applicazioni che sono conformi soltanto all'ordinario
5129   standard \textit{POSIX 1003.1}.}
5130
5131 Un secondo aspetto dell'incidenza delle ACL sul comportamento del sistema è
5132 quello relativo alla creazione di nuovi file,\footnote{o oggetti sul
5133   filesystem, il comportamento discusso vale per le funzioni \func{open} e
5134   \func{creat} (vedi sez.~\ref{sec:file_open}), \func{mkdir} (vedi
5135   sez.~\ref{sec:file_dir_creat_rem}), \func{mknod} e \func{mkfifo} (vedi
5136   sez.~\ref{sec:file_mknod}).} che come accennato può essere modificato dalla
5137 presenza di una \textit{default ACL} sulla directory che contiene quel file.
5138 Se questa non c'è valgono le regole usuali illustrate in
5139 sez.~\ref{sec:file_perm_management}, per cui essi sono determinati dalla
5140 \itindex{umask} \textit{umask} del processo, e la sola differenza è che i
5141 permessi ordinari da esse risultanti vengono automaticamente rimappati anche
5142 su una ACL di accesso assegnata automaticamente al nuovo file, che contiene
5143 soltanto le tre corrispondenti voci di tipo \const{ACL\_USER\_OBJ},
5144 \const{ACL\_GROUP\_OBJ} e \const{ACL\_OTHER}.
5145
5146 Se invece è presente una ACL di default sulla directory che contiene il nuovo
5147 file questa diventerà automaticamente la sua ACL di accesso, a meno di non
5148 aver indicato, nelle funzioni di creazione che lo consentono, uno specifico
5149 valore per i permessi ordinari;\footnote{tutte le funzioni citate in
5150   precedenza supportano un argomento \var{mode} che indichi un insieme di
5151   permessi iniziale.} in tal caso saranno eliminati dalle voci corrispondenti
5152 nella ACL tutti quelli non presenti in tale indicazione.
5153
5154 Dato che questa è la ragione che ha portato alla loro creazione, la principale
5155 modifica introdotta con la presenza della ACL è quella alle regole del
5156 controllo di accesso ai file illustrate in sez.~\ref{sec:file_perm_overview}.
5157 Come nel caso ordinario per il controllo vengono sempre utilizzati gli
5158 identificatori del gruppo \textit{effective} del processo, ma in presenza di
5159 ACL i passi attraverso i quali viene stabilito se esso ha diritto di accesso
5160 sono i seguenti:
5161 \begin{enumerate*}
5162 \item Se l'\ids{UID} del processo è nullo l'accesso è sempre garantito senza
5163   nessun controllo.
5164 \item Se l'\ids{UID} del processo corrisponde al proprietario del file allora:
5165   \begin{itemize*}
5166   \item se la voce \const{ACL\_USER\_OBJ} contiene il permesso richiesto,
5167     l'accesso è consentito;
5168   \item altrimenti l'accesso è negato.
5169   \end{itemize*}
5170 \item Se l'\ids{UID} del processo corrisponde ad un qualunque qualificatore
5171   presente in una voce \const{ACL\_USER} allora:
5172   \begin{itemize*}
5173   \item se la voce \const{ACL\_USER} corrispondente e la voce
5174     \const{ACL\_MASK} contengono entrambe il permesso richiesto, l'accesso è
5175     consentito;
5176   \item altrimenti l'accesso è negato.
5177   \end{itemize*}
5178 \item Se è il \ids{GID} del processo o uno dei \ids{GID} supplementari
5179   corrisponde al gruppo proprietario del file allora: 
5180   \begin{itemize*}
5181   \item se la voce \const{ACL\_GROUP\_OBJ} e una eventuale voce
5182     \const{ACL\_MASK} (se non vi sono voci di tipo \const{ACL\_GROUP} questa
5183     può non essere presente) contengono entrambe il permesso richiesto,
5184     l'accesso è consentito;
5185   \item altrimenti l'accesso è negato.
5186   \end{itemize*}
5187 \item Se è il \ids{GID} del processo o uno dei \ids{GID} supplementari
5188   corrisponde ad un qualunque qualificatore presente in una voce
5189   \const{ACL\_GROUP} allora:
5190   \begin{itemize*}
5191   \item se la voce \const{ACL\_GROUP} corrispondente e la voce
5192     \const{ACL\_MASK} contengono entrambe il permesso richiesto, l'accesso è
5193     consentito;
5194   \item altrimenti l'accesso è negato.
5195   \end{itemize*}
5196 \item Se la voce \const{ACL\_USER\_OBJ} contiene il permesso richiesto,
5197   l'accesso è consentito, altrimenti l'accesso è negato.
5198 \end{enumerate*}
5199
5200 I passi di controllo vengono eseguiti esattamente in questa sequenza, e la
5201 decisione viene presa non appena viene trovata una corrispondenza con gli
5202 identificatori del processo. Questo significa che i permessi presenti in una
5203 voce di tipo \const{ACL\_USER} hanno la precedenza sui permessi ordinari
5204 associati al gruppo proprietario del file (vale a dire su
5205 \const{ACL\_GROUP\_OBJ}).
5206
5207 Per la gestione delle ACL lo standard \textit{POSIX 1003.1e Draft 17} ha
5208 previsto delle apposite funzioni ed tutta una serie di tipi di dati
5209 dedicati;\footnote{fino a definire un tipo di dato e delle costanti apposite
5210   per identificare i permessi standard di lettura, scrittura ed esecuzione.}
5211 tutte le operazioni devono essere effettuate attraverso tramite questi tipi di
5212 dati, che incapsulano tutte le informazioni contenute nelle ACL. La prima di
5213 queste funzioni che prendiamo in esame è \funcd{acl\_init}, il cui prototipo
5214 è:
5215 \begin{functions}
5216   \headdecl{sys/types.h} 
5217   \headdecl{sys/acl.h}
5218   
5219   \funcdecl{acl\_t acl\_init(int count)}
5220
5221   Inizializza un'area di lavoro per una ACL di \param{count} voci.
5222   
5223   \bodydesc{La funzione restituisce un puntatore all'area di lavoro in caso di
5224     successo e \val{NULL} in caso di errore, nel qual caso \var{errno}
5225     assumerà uno dei valori:
5226   \begin{errlist}
5227   \item[\errcode{EINVAL}] il valore di \param{count} è negativo.
5228   \item[\errcode{ENOMEM}] non c'è sufficiente memoria disponibile.
5229   \end{errlist}
5230 }
5231 \end{functions}
5232
5233 La funzione alloca ed inizializza un'area di memoria che verrà usata per
5234 mantenere i dati di una ACL contenente fino ad un massimo di \param{count}
5235 voci. La funzione ritorna un valore di tipo \type{acl\_t}, da usare in tutte
5236 le altre funzioni che operano sulla ACL. La funzione si limita alla
5237 allocazione iniziale e non inserisce nessun valore nella ACL che resta vuota.
5238 Si tenga presente che pur essendo \type{acl\_t} un \index{tipo!opaco} tipo
5239 opaco che identifica ``\textsl{l'oggetto}'' ACL, il valore restituito dalla
5240 funzione non è altro che un puntatore all'area di memoria allocata per i dati
5241 richiesti; pertanto in caso di fallimento verrà restituito un puntatore nullo
5242 e si dovrà confrontare il valore di ritorno della funzione con
5243 ``\code{(acl\_t) NULL}''.
5244
5245 Una volta che si siano completate le operazioni sui dati di una ACL la memoria
5246 allocata dovrà essere liberata esplicitamente attraverso una chiamata alla
5247 funzione \funcd{acl\_free}, il cui prototipo è:
5248 \begin{functions}
5249   \headdecl{sys/types.h} 
5250   \headdecl{sys/acl.h}
5251   
5252   \funcdecl{int acl\_free(void * obj\_p)}
5253
5254   Disalloca la memoria riservata per i dati di una ACL.
5255   
5256   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ se
5257     \param{obj\_p} non è un puntatore valido, nel qual caso \var{errno}
5258     assumerà il valore \errcode{EINVAL} 
5259 }
5260 \end{functions}
5261
5262 Si noti come la funzione richieda come argomento un puntatore di tipo
5263 ``\ctyp{void *}'', essa infatti può essere usata non solo per liberare la
5264 memoria allocata per i dati di una ACL, ma anche per quella usata per creare
5265 le stringhe di descrizione testuale delle ACL o per ottenere i valori dei
5266 qualificatori di una voce; pertanto a seconda dei casi occorrerà eseguire un
5267 \textit{cast} a ``\ctyp{void *}'' del tipo di dato di cui si vuole eseguire la
5268 disallocazione.  Si tenga presente poi che oltre a \func{acl\_init} esistono
5269 molte altre funzioni che possono allocare memoria per i dati delle ACL, è
5270 pertanto opportuno tenere traccia di tutte queste funzioni perché alla fine
5271 delle operazioni tutta la memoria allocata dovrà essere liberata con
5272 \func{acl\_free}.
5273
5274 Una volta che si abbiano a disposizione i dati di una ACL tramite il
5275 riferimento ad oggetto di tipo \type{acl\_t} questi potranno essere copiati
5276 con la funzione \funcd{acl\_dup}, il cui prototipo è:
5277 \begin{functions}
5278   \headdecl{sys/types.h} 
5279   \headdecl{sys/acl.h}
5280   
5281   \funcdecl{acl\_t acl\_dup(acl\_t acl)}
5282
5283   Crea una copia della ACL \param{acl}.
5284   
5285   \bodydesc{La funzione restituisce un oggetto di tipo \type{acl\_t} in caso
5286     di successo e \code{(acl\_t)NULL} in caso di errore, nel qual caso
5287     \var{errno} assumerà uno dei valori:
5288   \begin{errlist}
5289   \item[\errcode{EINVAL}] l'argomento \param{acl} non è un puntatore valido
5290     per una ACL.
5291   \item[\errcode{ENOMEM}] non c'è sufficiente memoria disponibile per eseguire
5292     la copia.
5293   \end{errlist}
5294 }
5295 \end{functions}
5296
5297 La funzione crea una copia dei dati della ACL indicata tramite l'argomento
5298 \param{acl}, allocando autonomamente tutto spazio necessario alla copia e
5299 restituendo un secondo oggetto di tipo \type{acl\_t} come riferimento a
5300 quest'ultima.  Valgono per questo le stesse considerazioni fatte per il valore
5301 di ritorno di \func{acl\_init}, ed in particolare il fatto che occorrerà
5302 prevedere una ulteriore chiamata esplicita a \func{acl\_free} per liberare la
5303 memoria occupata dalla copia.
5304
5305 Se si deve creare una ACL manualmente l'uso di \func{acl\_init} è scomodo,
5306 dato che la funzione restituisce una ACL vuota, una alternativa allora è usare
5307 \funcd{acl\_from\_mode} che consente di creare una ACL a partire da un valore
5308 di permessi ordinari, il prototipo della funzione è:
5309 \begin{functions}
5310   \headdecl{sys/types.h} 
5311   \headdecl{sys/acl.h}
5312   
5313   \funcdecl{acl\_t acl\_from\_mode(mode\_t mode)}
5314
5315   Crea una ACL inizializzata con i permessi di \param{mode}.
5316   
5317   \bodydesc{La funzione restituisce un oggetto di tipo \type{acl\_t} in caso
5318     di successo e \code{(acl\_t)NULL} in caso di errore, nel qual caso
5319     \var{errno} assumerà il valore \errval{ENOMEM}.
5320
5321 }
5322 \end{functions}
5323
5324 La funzione restituisce una ACL inizializzata con le tre voci obbligatorie
5325 \const{ACL\_USER\_OBJ}, \const{ACL\_GROUP\_OBJ} e \const{ACL\_OTHER} già
5326 impostate secondo la corrispondenza ai valori dei permessi ordinari indicati
5327 dalla maschera passata nell'argomento \param{mode}. Questa funzione è una
5328 estensione usata dalle ACL di Linux e non è portabile, ma consente di
5329 semplificare l'inizializzazione in maniera molto comoda. 
5330
5331 Altre due funzioni che consentono di creare una ACL già inizializzata sono
5332 \funcd{acl\_get\_fd} e \funcd{acl\_get\_file}, che però sono per lo più
5333 utilizzate per leggere la ACL corrente di un file; i rispettivi prototipi
5334 sono:
5335 \begin{functions}
5336   \headdecl{sys/types.h} 
5337   \headdecl{sys/acl.h}
5338   
5339   \funcdecl{acl\_t acl\_get\_file(const char *path\_p, acl\_type\_t type)}
5340   \funcdecl{acl\_t acl\_get\_fd(int fd)}
5341
5342   Ottiene i dati delle ACL di un file.
5343   
5344   \bodydesc{La funzione restituisce un oggetto di tipo \type{acl\_t} in caso
5345     di successo e \code{(acl\_t)NULL} in caso di errore, nel qual caso
5346     \var{errno} assumerà uno dei valori:
5347   \begin{errlist}
5348   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5349   \item[\errcode{ENOTSUP}] il filesystem cui fa riferimento il file non
5350     supporta le ACL.
5351   \end{errlist}
5352   ed inoltre \errval{EBADF} per \func{acl\_get\_fd}, ed \errval{EINVAL} per
5353   valori scorretti di \param{type} e tutti i possibili errori per l'accesso ad
5354   un file per \func{acl\_get\_file}.
5355
5356 }
5357 \end{functions}
5358
5359 Le due funzioni ritornano, con un oggetto di tipo \type{acl\_t}, il valore
5360 della ACL correntemente associata ad un file, che può essere identificato
5361 tramite un file descriptor usando \func{acl\_get\_fd} o con un
5362 \textit{pathname} usando \func{acl\_get\_file}. Nel caso di quest'ultima
5363 funzione, che può richiedere anche la ACL relativa ad una directory, il
5364 secondo argomento \param{type} consente di specificare se si vuole ottenere la
5365 ACL di default o quella di accesso. Questo argomento deve essere di tipo
5366 \type{acl\_type\_t} e può assumere solo i due valori riportati in
5367 tab.~\ref{tab:acl_type}.
5368
5369 \begin{table}[htb]
5370   \centering
5371   \footnotesize
5372   \begin{tabular}{|l|l|}
5373     \hline
5374     \textbf{Tipo} & \textbf{Descrizione} \\
5375     \hline
5376     \hline
5377     \const{ACL\_TYPE\_ACCESS} & indica una ACL di accesso.\\
5378     \const{ACL\_TYPE\_DEFAULT}& indica una ACL di default.\\  
5379     \hline
5380   \end{tabular}
5381   \caption{Le costanti che identificano il tipo di ACL.}
5382   \label{tab:acl_type}
5383 \end{table}
5384
5385 Si tenga presente che nel caso di \func{acl\_get\_file} occorrerà che il
5386 processo chiamante abbia privilegi di accesso sufficienti a poter leggere gli
5387 attributi estesi dei file (come illustrati in sez.~\ref{sec:file_xattr});
5388 inoltre una ACL di tipo \const{ACL\_TYPE\_DEFAULT} potrà essere richiesta
5389 soltanto per una directory, e verrà restituita solo se presente, altrimenti
5390 verrà restituita una ACL vuota.
5391
5392 Infine si potrà creare una ACL direttamente dalla sua rappresentazione
5393 testuale con la funzione  \funcd{acl\_from\_text}, il cui prototipo è:
5394 \begin{functions}
5395   \headdecl{sys/types.h} 
5396   \headdecl{sys/acl.h}
5397   
5398   \funcdecl{acl\_t acl\_from\_text(const char *buf\_p)}
5399
5400   Crea una ACL a partire dalla sua rappresentazione testuale.
5401   
5402   \bodydesc{La funzione restituisce un oggetto di tipo \type{acl\_t} in caso
5403     di successo e \code{(acl\_t)NULL} in caso di errore, nel qual caso
5404     \var{errno} assumerà uno dei valori:
5405   \begin{errlist}
5406   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5407   \item[\errcode{EINVAL}] la rappresentazione testuale all'indirizzo
5408     \param{buf\_p} non è valida.
5409   \end{errlist}
5410
5411 }
5412 \end{functions}
5413
5414 La funzione prende come argomento il puntatore ad un buffer dove si è inserita
5415 la rappresentazione testuale della ACL che si vuole creare, la memoria
5416 necessaria viene automaticamente allocata ed in caso di successo viene
5417 restituito come valore di ritorno un oggetto di tipo \type{acl\_t} con il
5418 contenuto della stessa, che come per le precedenti funzioni, dovrà essere
5419 disallocato esplicitamente al termine del suo utilizzo.
5420
5421 La rappresentazione testuale di una ACL è quella usata anche dai comandi
5422 ordinari per la gestione delle ACL (\texttt{getfacl} e \texttt{setfacl}), che
5423 prevede due diverse forme, estesa e breve, entrambe supportate da
5424 \func{acl\_from\_text}. La forma estesa prevede che sia specificata una voce
5425 per riga, nella forma:
5426 \begin{Verbatim}
5427   tipo:qualificatore:permessi
5428 \end{Verbatim}
5429 dove il tipo può essere uno fra \texttt{user}, \texttt{group}, \texttt{other}
5430 e \texttt{mask}. Il qualificatore è presente solo per \texttt{user} e
5431 \texttt{group} e indica l'utente o il gruppo a cui la voce si riferisce; i
5432 permessi sono espressi con una tripletta di lettere analoga a quella usata per
5433 i permessi dei file.\footnote{vale a dire \texttt{r} per il permesso di
5434   lettura, \texttt{w} per il permesso di scrittura, \texttt{x} per il permesso
5435   di esecuzione (scritti in quest'ordine) e \texttt{-} per l'assenza del
5436   permesso.}
5437
5438 Va precisato che i due tipi \texttt{user} e \texttt{group} sono usati
5439 rispettivamente per indicare delle voci relative ad utenti e
5440 gruppi,\footnote{cioè per voci di tipo \const{ACL\_USER\_OBJ} e
5441   \const{ACL\_USER} per \texttt{user} e \const{ACL\_GROUP\_OBJ} e
5442   \const{ACL\_GROUP} per \texttt{group}.} applicate sia a quelli proprietari
5443 del file che a quelli generici; quelle dei proprietari si riconoscono per
5444 l'assenza di un qualificatore, ed in genere si scrivono per prima delle altre.
5445 Il significato delle voci di tipo \texttt{mask} e \texttt{mark} è evidente. In
5446 questa forma si possono anche inserire dei commenti precedendoli con il
5447 carattere ``\texttt{\#}''.
5448
5449 La forma breve prevede invece la scrittura delle singole voci su una riga,
5450 separate da virgole; come specificatori del tipo di voce si possono usare le
5451 iniziali dei valori usati nella forma estesa (cioè ``\texttt{u}'',
5452 ``\texttt{g}'', ``\texttt{o}'' e ``\texttt{m}''), mentre le altri parte della
5453 voce sono le stesse. In questo caso non sono consentiti permessi.
5454
5455 Per la conversione inversa, che consente di ottenere la rappresentazione
5456 testuale di una ACL, sono invece disponibili due funzioni, la prima delle due,
5457 di uso più immediato, è \funcd{acl\_to\_text}, il cui prototipo è:
5458 \begin{functions}
5459   \headdecl{sys/types.h} 
5460   \headdecl{sys/acl.h}
5461   
5462   \funcdecl{char * acl\_to\_text(acl\_t acl, ssize\_t *len\_p)}
5463
5464   Produce la rappresentazione testuale di una ACL.
5465   
5466   \bodydesc{La funzione restituisce il puntatore ad una stringa con la
5467     rappresentazione testuale della ACL in caso di successo e
5468     \code(acl\_t){NULL} in caso di errore, nel qual caso \var{errno} assumerà
5469     uno dei valori:
5470   \begin{errlist}
5471   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5472   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5473   \end{errlist}
5474
5475 }
5476 \end{functions}
5477
5478 La funzione restituisce il puntatore ad una stringa terminata da NUL
5479 contenente la rappresentazione in forma estesa della ACL passata come
5480 argomento, ed alloca automaticamente la memoria necessaria. Questa dovrà poi
5481 essere liberata, quando non più necessaria, con \func{acl\_free}. Se
5482 nell'argomento \param{len\_p} si passa un valore puntatore ad una variabile
5483 intera in questa verrà restituita la dimensione della stringa con la
5484 rappresentazione testuale (non comprendente il carattere nullo finale). 
5485
5486 La seconda funzione, \funcd{acl\_to\_any\_text}, permette di controllare con
5487 dovizia di dettagli la generazione della stringa contenente la
5488 rappresentazione testuale della ACL, il suo prototipo è:
5489 \begin{functions}
5490   \headdecl{sys/types.h} 
5491   \headdecl{sys/acl.h}
5492   
5493   \funcdecl{char * acl\_to\_any\_text(acl\_t acl, const char *prefix, char
5494     separator, int options)}
5495
5496   Produce la rappresentazione testuale di una ACL.
5497
5498   \bodydesc{La funzione restituisce il puntatore ad una stringa con la
5499     rappresentazione testuale della ACL in caso di successo e \val{NULL} in
5500     caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
5501   \begin{errlist}
5502   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5503   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5504   \end{errlist}
5505
5506 }
5507 \end{functions}
5508
5509 La funzione converte in formato testo la ACL indicata dall'argomento
5510 \param{acl}, usando il carattere \param{separator} come separatore delle
5511 singole voci; se l'argomento \param{prefix} non è nullo la stringa da esso
5512 indicata viene utilizzata come prefisso per le singole voci. 
5513
5514 L'ultimo argomento, \param{options}, consente di controllare la modalità con
5515 cui viene generata la rappresentazione testuale. Un valore nullo fa si che
5516 vengano usati gli identificatori standard \texttt{user}, \texttt{group},
5517 \texttt{other} e \texttt{mask} con i nomi di utenti e gruppi risolti rispetto
5518 ai loro valori numerici. Altrimenti si può specificare un valore in forma di
5519 maschera binaria, da ottenere con un OR aritmetico dei valori riportati in
5520 tab.~\ref{tab:acl_to_text_options}.
5521
5522 \begin{table}[htb]
5523   \centering
5524   \footnotesize
5525   \begin{tabular}{|l|p{8cm}|}
5526     \hline
5527     \textbf{Tipo} & \textbf{Descrizione} \\
5528     \hline
5529     \hline
5530     \const{TEXT\_ABBREVIATE}     & stampa le voci in forma abbreviata.\\
5531     \const{TEXT\_NUMERIC\_IDS}   & non effettua la risoluzione numerica di
5532                                    \ids{UID} e \ids{GID}.\\
5533     \const{TEXT\_SOME\_EFFECTIVE}& per ciascuna voce che contiene permessi che
5534                                    vengono eliminati dalla \const{ACL\_MASK}
5535                                    viene generato un commento con i permessi 
5536                                    effettivamente risultanti; il commento è
5537                                    separato con un tabulatore.\\
5538     \const{TEXT\_ALL\_EFFECTIVE} & viene generato un commento con i permessi
5539                                    effettivi per ciascuna voce che contiene
5540                                    permessi citati nella \const{ACL\_MASK},
5541                                    anche quando questi non vengono modificati
5542                                    da essa; il commento è separato con un
5543                                    tabulatore.\\
5544     \const{TEXT\_SMART\_INDENT}  & da usare in combinazione con le precedenti
5545                                    \const{TEXT\_SOME\_EFFECTIVE} e
5546                                    \const{TEXT\_ALL\_EFFECTIVE} aumenta
5547                                    automaticamente il numero di spaziatori
5548                                    prima degli eventuali commenti in modo da
5549                                    mantenerli allineati.\\
5550     \hline
5551   \end{tabular}
5552   \caption{Possibili valori per l'argomento \param{options} di
5553     \func{acl\_to\_any\_text}.} 
5554   \label{tab:acl_to_text_options}
5555 \end{table}
5556
5557 Come per \func{acl\_to\_text} anche in questo caso il buffer contenente la
5558 rappresentazione testuale dell'ACL, di cui la funzione restituisce
5559 l'indirizzo, viene allocato automaticamente, e dovrà essere esplicitamente
5560 disallocato con una chiamata ad \func{acl\_free}. Si tenga presente infine che
5561 questa funzione è una estensione specifica di Linux, e non è presente nella
5562 bozza dello standard POSIX.1e.
5563
5564 Per quanto utile per la visualizzazione o l'impostazione da comando delle ACL,
5565 la forma testuale non è la più efficiente per poter memorizzare i dati
5566 relativi ad una ACL, ad esempio quando si vuole eseguirne una copia a scopo di
5567 archiviazione. Per questo è stata prevista la possibilità di utilizzare una
5568 rappresentazione delle ACL in una apposita forma binaria contigua e
5569 persistente. È così possibile copiare il valore di una ACL in un buffer e da
5570 questa rappresentazione tornare indietro e generare una ACL. 
5571
5572 Lo standard POSIX.1e prevede a tale scopo tre funzioni, la prima e più
5573 semplice è \funcd{acl\_size}, che consente di ottenere la dimensione che avrà
5574 la citata rappresentazione binaria, in modo da poter allocare per essa un
5575 buffer di dimensione sufficiente, il suo prototipo è:
5576 \begin{functions}
5577   \headdecl{sys/types.h} 
5578   \headdecl{sys/acl.h}
5579   
5580   \funcdecl{ssize\_t acl\_size(acl\_t acl)}
5581
5582   Determina la dimensione della rappresentazione binaria di una ACL.
5583
5584   \bodydesc{La funzione restituisce in caso di successo la dimensione in byte
5585     della rappresentazione binaria della ACL indicata da \param{acl} e $-1$ in
5586     caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
5587   \begin{errlist}
5588   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5589   \end{errlist}
5590
5591 }
5592 \end{functions}
5593
5594 Prima di effettuare la lettura della rappresentazione binaria è sempre
5595 necessario allocare un buffer di dimensione sufficiente a contenerla, pertanto
5596 prima si dovrà far ricorso a \funcd{acl\_size} per ottenere tale dimensione e
5597 poi allocare il buffer con una delle funzioni di
5598 sez.~\ref{sec:proc_mem_alloc}. Una volta terminato l'uso della
5599 rappresentazione binaria, il buffer dovrà essere esplicitamente disallocato.
5600
5601 La funzione che consente di leggere la rappresentazione binaria di una ACL è
5602 \funcd{acl\_copy\_ext}, il cui prototipo è:
5603 \begin{functions}
5604   \headdecl{sys/types.h} 
5605   \headdecl{sys/acl.h}
5606   
5607   \funcdecl{ssize\_t acl\_copy\_ext(void *buf\_p, acl\_t acl, ssize\_t size)}
5608
5609   Ottiene la rappresentazione binaria di una ACL.
5610
5611   \bodydesc{La funzione restituisce in caso di successo la dimensione in byte
5612     della rappresentazione binaria della ACL indicata da \param{acl} e $-1$ in
5613     caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
5614   \begin{errlist}
5615   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida o
5616     \param{size} è negativo o nullo.
5617   \item[\errcode{ERANGE}] il valore di \param{size} è più piccolo della
5618     dimensione della rappresentazione della ACL.
5619   \end{errlist}
5620
5621 }
5622 \end{functions}
5623
5624 La funzione salverà la rappresentazione binaria della ACL indicata da
5625 \param{acl} sul buffer posto all'indirizzo \param{buf\_p} e lungo \param{size}
5626 byte, restituendo la dimensione della stessa come valore di ritorno. Qualora
5627 la dimensione della rappresentazione ecceda il valore di \param{size} la
5628 funzione fallirà con un errore di \errcode{ERANGE}. La funzione non ha nessun
5629 effetto sulla ACL indicata da \param{acl}.
5630
5631 Viceversa se si vuole ripristinare una ACL a partire dalla rappresentazione
5632 binaria della stessa disponibile in un buffer si potrà usare la funzione 
5633 \funcd{acl\_copy\_int}, il cui prototipo è:
5634 \begin{functions}
5635   \headdecl{sys/types.h} 
5636   \headdecl{sys/acl.h}
5637   
5638   \funcdecl{ssize\_t acl\_copy\_int(const void *buf\_p)}
5639
5640   Ripristina la rappresentazione binaria di una ACL.
5641
5642   \bodydesc{La funzione restituisce un oggetto di tipo \type{acl\_t} in caso
5643     di successo e \code{(acl\_t)NULL} in caso di errore, nel qual caso
5644     \var{errno} assumerà uno dei valori:
5645   \begin{errlist}
5646   \item[\errcode{EINVAL}] il buffer all'indirizzo \param{buf\_p} non contiene
5647     una rappresentazione corretta di una ACL.
5648   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare un oggetto
5649     \type{acl\_t} per la ACL richiesta.
5650   \end{errlist}
5651
5652 }
5653 \end{functions}
5654
5655 La funzione in caso di successo alloca autonomamente un oggetto di tipo
5656 \type{acl\_t} che viene restituito come valore di ritorno con il contenuto
5657 della ACL rappresentata dai dati contenuti nel buffer puntato da
5658 \param{buf\_p}. Si ricordi che come per le precedenti funzioni l'oggetto
5659 \type{acl\_t} dovrà essere disallocato esplicitamente al termine del suo
5660 utilizzo.
5661
5662 Una volta che si disponga della ACL desiderata, questa potrà essere impostata
5663 su un file o una directory. Per impostare una ACL sono disponibili due
5664 funzioni; la prima è \funcd{acl\_set\_file}, che opera sia su file che su
5665 directory, ed il cui prototipo è:
5666 \begin{functions}
5667   \headdecl{sys/types.h} 
5668   \headdecl{sys/acl.h}
5669   
5670   \funcdecl{int acl\_set\_file(const char *path, acl\_type\_t type, acl\_t
5671     acl)}
5672
5673   Imposta una ACL su un file o una directory.
5674
5675   \bodydesc{La funzione restituisce $0$ in caso di successo e $-1$ in caso di
5676     errore, nel qual caso \var{errno} assumerà uno dei valori:
5677   \begin{errlist}
5678   \item[\errcode{EACCES}] o un generico errore di accesso a \param{path} o il
5679     valore di \param{type} specifica una ACL il cui tipo non può essere
5680     assegnato a \param{path}.
5681   \item[\errcode{EINVAL}] o \param{acl} non è una ACL valida, o \param{type}
5682     ha in valore non corretto.
5683   \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per contenere i
5684     dati aggiuntivi della ACL.
5685   \item[\errcode{ENOTSUP}] si è cercato di impostare una ACL su un file
5686     contenuto in un filesystem che non supporta le ACL.
5687   \end{errlist}
5688   ed inoltre \errval{ENOENT}, \errval{ENOTDIR}, \errval{ENAMETOOLONG},
5689   \errval{EROFS}, \errval{EPERM}.
5690 }
5691 \end{functions}
5692
5693 La funzione consente di assegnare la ACL contenuta in \param{acl} al file o
5694 alla directory indicate dal \textit{pathname} \param{path}, mentre
5695 con \param{type} si indica il tipo di ACL utilizzando le costanti di
5696 tab.~\ref{tab:acl_type}, ma si tenga presente che le ACL di default possono
5697 essere solo impostate qualora \param{path} indichi una directory. Inoltre
5698 perché la funzione abbia successo la ACL dovrà essere valida, e contenere
5699 tutti le voci necessarie, unica eccezione è quella in cui si specifica una ACL
5700 vuota per cancellare la ACL di default associata a
5701 \param{path}.\footnote{questo però è una estensione della implementazione delle
5702   ACL di Linux, la bozza di standard POSIX.1e prevedeva l'uso della apposita
5703   funzione \funcd{acl\_delete\_def\_file}, che prende come unico argomento il
5704   \textit{pathname} della directory di cui si vuole cancellare l'ACL di
5705   default, per i dettagli si ricorra alla pagina di manuale.}  La seconda
5706 funzione che consente di impostare una ACL è \funcd{acl\_set\_fd}, ed il suo
5707 prototipo è:
5708 \begin{functions}
5709   \headdecl{sys/types.h} 
5710   \headdecl{sys/acl.h}
5711   
5712   \funcdecl{int acl\_set\_fd(int fd, acl\_t acl)}
5713
5714   Imposta una ACL su un file descriptor.
5715
5716   \bodydesc{La funzione restituisce $0$ in caso di successo e $-1$ in caso di
5717     errore, nel qual caso \var{errno} assumerà uno dei valori:
5718   \begin{errlist}
5719   \item[\errcode{EINVAL}] o \param{acl} non è una ACL valida, o \param{type}
5720     ha in valore non corretto.
5721   \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per contenere i
5722     dati aggiuntivi della ACL.
5723   \item[\errcode{ENOTSUP}] si è cercato di impostare una ACL su un file
5724     contenuto in un filesystem che non supporta le ACL.
5725   \end{errlist}
5726   ed inoltre \errval{EBADF}, \errval{EROFS}, \errval{EPERM}.
5727 }
5728 \end{functions}
5729
5730 La funzione è del tutto è analoga a \funcd{acl\_set\_file} ma opera
5731 esclusivamente sui file identificati tramite un file descriptor. Non dovendo
5732 avere a che fare con directory (e con la conseguente possibilità di avere una
5733 ACL di default) la funzione non necessita che si specifichi il tipo di ACL,
5734 che sarà sempre di accesso, e prende come unico argomento, a parte il file
5735 descriptor, la ACL da impostare.
5736
5737 Le funzioni viste finora operano a livello di una intera ACL, eseguendo in una
5738 sola volta tutte le operazioni relative a tutte le voci in essa contenuta. In
5739 generale è possibile modificare un singolo valore all'interno di una singola
5740 voce direttamente con le funzioni previste dallo standard POSIX.1e.  Queste
5741 funzioni però sono alquanto macchinose da utilizzare per cui è molto più
5742 semplice operare direttamente sulla rappresentazione testuale. Questo è il
5743 motivo per non tratteremo nei dettagli dette funzioni, fornendone solo una
5744 descrizione sommaria; chi fosse interessato potrà ricorrere alle pagina di
5745 manuale.
5746
5747 Se si vuole operare direttamente sui contenuti di un oggetto di tipo
5748 \type{acl\_t} infatti occorre fare riferimento alle singole voci tramite gli
5749 opportuni puntatori di tipo \type{acl\_entry\_t}, che possono essere ottenuti
5750 dalla funzione \funcd{acl\_get\_entry} (per una voce esistente) o dalla
5751 funzione \funcd{acl\_create\_entry} per una voce da aggiungere. Nel caso della
5752 prima funzione si potrà poi ripetere la lettura per ottenere i puntatori alle
5753 singole voci successive alla prima.
5754
5755 Una volta ottenuti detti puntatori si potrà operare sui contenuti delle singole
5756 voci; con le funzioni \funcd{acl\_get\_tag\_type}, \funcd{acl\_get\_qualifier},
5757 \funcd{acl\_get\_permset} si potranno leggere rispettivamente tipo,
5758 qualificatore e permessi mentre con le corrispondente funzioni
5759 \funcd{acl\_set\_tag\_type}, \funcd{acl\_set\_qualifier},
5760 \funcd{acl\_set\_permset} si possono impostare i valori; in entrambi i casi
5761 vengono utilizzati tipi di dato ad hoc.\footnote{descritti nelle singole
5762   pagine di manuale.} Si possono poi copiare i valori di una voce da una ACL
5763 ad un altra con \funcd{acl\_copy\_entry} o eliminare una voce da una ACL con
5764 \funcd{acl\_delete\_entry}.
5765
5766 \itindend{Access~Control~List~(ACL)}
5767
5768
5769 \subsection{La gestione delle quote disco}
5770 \label{sec:disk_quota}
5771
5772 Quella delle quote disco è una funzionalità introdotta inizialmente da BSD, e
5773 presente in Linux fino dai kernel dalla serie 2.0, che consente di porre dei
5774 tetti massimi al consumo delle risorse di un filesystem (spazio disco e
5775 \itindex{inode} \textit{inode}) da parte di utenti e gruppi. Dato che la
5776 funzionalità ha senso solo per i filesystem su cui si mantengono i dati degli
5777 utenti\footnote{in genere la si attiva sul filesystem che contiene le
5778   \textit{home} degli utenti, dato che non avrebbe senso per i file di sistema
5779   che in genere appartengono all'amministratore.} essa deve essere
5780 esplicitamente richiesta; questo si fa tramite due distinte opzioni di
5781 montaggio, \texttt{usrquota} e \texttt{grpquota} che abilitano le quote
5782 rispettivamente per gli utenti e per i gruppi. Grazie a questo è possibile
5783 usare le limitazioni sulle quote solo sugli utenti o solo sui gruppi.
5784
5785 Il meccanismo prevede che per ciascun filesystem che supporta le quote disco
5786 (i vari \textit{extN}, \textit{btrfs}, \textit{XFS}, \textit{JFS},
5787 \textit{ReiserFS}) il kernel provveda sia a mantenere aggiornati i dati
5788 relativi al consumo delle risorse da parte di utenti e/o gruppi che a far
5789 rispettare i limiti imposti dal sistema, con la generazione di un errore di
5790 \errval{EDQUOT} per tutte le operazioni sui file che porterebbero ad un
5791 superamento degli stessi. Si tenga presente che questi due compiti sono
5792 separati, il primo si attiva al montaggio del filesystem con le quote
5793 attivate, il secondo deve essere abilitato esplicitamente.
5794
5795 Per il mantenimento dei dati di consumo delle risorse vengono usati due file
5796 riservati (uno per le quote utente e l'altro per le quote gruppo) nella
5797 directory radice del filesystem su cui si sono attivate le quote;\footnote{la
5798   cosa vale per tutti i filesystem tranne \textit{XFS} che mantiene i dati
5799   internamente.} con la versione 2 del supporto delle quote, l'unica rimasta
5800 in uso, questi file sono \texttt{aquota.user} e \texttt{aquota.group}, in
5801 precedenza erano \texttt{quota.user} e \texttt{quota.group}. Dato che i file
5802 vengono aggiornati soltanto se il filesystem è stato montato con il supporto
5803 delle quote, se si abilita questo in un secondo tempo (o se si eseguono
5804 operazioni sul filesystem senza averlo abilitato) i dati contenuti possono non
5805 corrispondere esattamente allo stato corrente del consumo delle risorse; per
5806 questo in genere prima di montare in scrittura un filesystem su cui sono
5807 abilitate le quote in genere viene utilizzato il comando \cmd{quotacheck} per
5808 verificare e aggiornare i dati.
5809
5810 Le restrizioni sul consumo delle risorse prevedono due limiti, il primo viene
5811 detto \textit{soft limit} e può essere superato per brevi periodi di tempo, il
5812 secondo viene detto \textit{hard limit} non può mai essere superato. Il
5813 periodo di tempo per cui è possibile superare il \textit{soft limit} è detto
5814 ``\textsl{periodo di grazia}'' (\textit{grace period}), passato questo tempo
5815 il passaggio del \textit{soft limit} viene trattato allo stesso modo
5816 dell'\textit{hard limit}.  Questi limiti riguardano separatamente sia lo
5817 spazio disco (i blocchi) che il numero di file (gli \itindex{inode}
5818 \textit{inode}) e devono pertanto essere specificati per entrambe le risorse.
5819
5820 La funzione che consente di controllare tutti i vari aspetti della gestione
5821 delle quote è \funcd{quotactl}, ed il suo prototipo è:
5822 \begin{functions}
5823   \headdecl{sys/types.h} 
5824   \headdecl{sys/quota.h}
5825   
5826   \funcdecl{quotactl(int cmd, const char *dev, int id, caddr\_t addr)}
5827
5828   Esegue una operazione di controllo sulle quote disco.
5829
5830   \bodydesc{La funzione restituisce $0$ in caso di successo e $-1$ in caso di
5831     errore, nel qual caso \var{errno} assumerà uno dei valori:
5832   \begin{errlist}
5833   \item[\errcode{EACCES}] il file delle quote non è un file ordinario.
5834   \item[\errcode{EBUSY}] si è richiesto \const{Q\_QUOTAON} ma le quote sono
5835     già attive.
5836   \item[\errcode{EFAULT}] l'indirizzo \param{addr} non è valido.
5837   \item[\errcode{EIO}] errore di lettura/scrittura sul file delle quote.
5838   \item[\errcode{EMFILE}] non si può aprire il file delle quote avendo
5839     superato il limite sul numero di file aperti nel sistema. 
5840   \item[\errcode{EINVAL}] o \param{cmd} non è un comando valido,
5841     o il dispositivo \param{dev} non esiste.
5842   \item[\errcode{ENODEV}] \param{dev} non corrisponde ad un \textit{mount
5843       point} attivo.
5844   \item[\errcode{ENOPKG}] il kernel è stato compilato senza supporto per le
5845     quote. 
5846   \item[\errcode{ENOTBLK}] \param{dev} non è un dispositivo a blocchi.
5847   \item[\errcode{EPERM}] non si hanno i permessi per l'operazione richiesta.
5848   \item[\errcode{ESRCH}] è stato richiesto uno fra \const{Q\_GETQUOTA},
5849     \const{Q\_SETQUOTA}, \const{Q\_SETUSE}, \const{Q\_SETQLIM} per un
5850     filesystem senza quote attivate.
5851   \end{errlist}
5852 }
5853 \end{functions}
5854
5855 La funzione richiede che il filesystem sul quale si vuole operare sia montato
5856 con il supporto delle quote abilitato; esso deve essere specificato con il
5857 nome del file di dispositivo nell'argomento \param{dev}. Per le operazioni che
5858 lo richiedono inoltre si dovrà indicare con l'argomento \param{id} l'utente o
5859 il gruppo (specificati rispettivamente per \ids{UID} e \ids{GID}) su cui si
5860 vuole operare. Alcune operazioni usano l'argomento \param{addr} per indicare
5861 un indirizzo ad un area di memoria il cui utilizzo dipende dall'operazione
5862 stessa.
5863
5864 Il tipo di operazione che si intende effettuare deve essere indicato tramite
5865 il primo argomento \param{cmd}, questo in genere viene specificato con
5866 l'ausilio della macro \macro{QCMD}:
5867 \begin{functions}
5868   \funcdecl{int QCMD(subcmd,type)} Imposta il comando \param{subcmd} per il
5869   tipo di quote (utente o gruppo) \param{type}.
5870 \end{functions}
5871 \noindent che consente di specificare, oltre al tipo di operazione, se questa
5872 deve applicarsi alle quote utente o alle quote gruppo, nel qual
5873 caso \param{type} deve essere rispettivamente \const{USRQUOTA} o
5874 \const{GRPQUOTA}.
5875
5876
5877 \begin{table}[htb]
5878   \centering
5879   \footnotesize
5880   \begin{tabular}{|l|p{10cm}|}
5881     \hline
5882     \textbf{Comando} & \textbf{Descrizione} \\
5883     \hline
5884     \hline
5885     \const{Q\_QUOTAON}  & Attiva l'applicazione delle quote disco per il
5886                           filesystem indicato da \param{dev}, si deve passare
5887                           in \param{addr} il \textit{pathname} al file che
5888                           mantiene le quote, che deve esistere, e \param{id}
5889                           deve indicare la versione del formato con uno dei
5890                           valori di tab.~\ref{tab:quotactl_id_format};
5891                           l'operazione richiede i privilegi di
5892                           amministratore.\\
5893     \const{Q\_QUOTAOFF} & Disattiva l'applicazione delle quote disco per il
5894                           filesystem indicato da \param{dev}, \param{id}
5895                           e \param{addr} vengono ignorati; l'operazione
5896                           richiede i privilegi di amministratore.\\  
5897     \const{Q\_GETQUOTA} & Legge i limiti ed i valori correnti delle quote nel
5898                           filesystem indicato da \param{dev} per l'utente o
5899                           il gruppo specificato da \param{id}; si devono avere
5900                           i privilegi di amministratore per leggere i dati
5901                           relativi ad altri utenti o a gruppi di cui non si fa
5902                           parte, il risultato viene restituito in una struttura
5903                           \struct{dqblk} all'indirizzo indicato
5904                           da \param{addr}.\\
5905     \const{Q\_SETQUOTA} & Imposta i limiti per le quote nel filesystem
5906                           indicato da \param{dev} per l'utente o il gruppo
5907                           specificato da \param{id} secondo i valori ottenuti
5908                           dalla struttura \struct{dqblk} puntata
5909                           da \param{addr}; l'operazione richiede i privilegi
5910                           di amministratore.\\ 
5911     \const{Q\_GETINFO}  & Legge le informazioni (in sostanza i \textit{grace
5912                             time}) delle quote del filesystem indicato
5913                           da \param{dev} sulla struttura \struct{dqinfo} 
5914                           puntata da \param{addr}, \param{id} viene ignorato.\\
5915     \const{Q\_SETINFO}  & Imposta le informazioni delle quote del filesystem
5916                           indicato da \param{dev} come ottenuti dalla
5917                           struttura \struct{dqinfo} puntata
5918                           da \param{addr}, \param{id} viene ignorato;  
5919                           l'operazione richiede i privilegi di amministratore.\\
5920     \const{Q\_GETFMT}   & Richiede il valore identificativo (quello di
5921                           tab.~\ref{tab:quotactl_id_format}) per il formato
5922                           delle quote attualmente in uso sul filesystem
5923                           indicato da \param{dev}, che sarà memorizzato
5924                           sul buffer di 4 byte puntato da \param{addr}.\\
5925     \const{Q\_SYNC}     & Aggiorna la copia su disco dei dati delle quote del
5926                           filesystem indicato da \param{dev}; in questo
5927                           caso \param{dev} può anche essere \val{NULL} nel
5928                           qual caso verranno aggiornati i dati per tutti i
5929                           filesystem con quote attive, \param{id}
5930                           e \param{addr} vengono comunque ignorati.\\ 
5931     \const{Q\_GETSTATS} & Ottiene statistiche ed altre informazioni generali 
5932                           relative al sistema delle quote per il filesystem
5933                           indicato da \param{dev}, richiede che si
5934                           passi come argomento \param{addr} l'indirizzo di una
5935                           struttura \struct{dqstats}, mentre i valori
5936                           di \param{id} e \param{dev} vengono ignorati;
5937                           l'operazione è obsoleta e non supportata nei kernel
5938                           più recenti, che espongono la stessa informazione
5939                           nei file sotto \procfile{/proc/self/fs/quota/}.\\
5940 %    \const{} & .\\
5941     \hline
5942   \end{tabular}
5943   \caption{Possibili valori per l'argomento \param{subcmd} di
5944     \macro{QCMD}.} 
5945   \label{tab:quotactl_commands}
5946 \end{table}
5947
5948
5949 Le diverse operazioni supportate da \func{quotactl}, da indicare con
5950 l'argomento \param{subcmd} di \macro{QCMD}, sono riportate in
5951 tab.~\ref{tab:quotactl_commands}. In generale le operazione di attivazione,
5952 disattivazione e di modifica dei limiti delle quote sono riservate e
5953 richiedono i privilegi di amministratore.\footnote{per essere precisi tutte le
5954   operazioni indicate come privilegiate in tab.~\ref{tab:quotactl_commands}
5955   richiedono la \textit{capability} \const{CAP\_SYS\_ADMIN}.} Inoltre gli
5956 utenti possono soltanto richiedere i dati relativi alle proprie quote, solo
5957 l'amministratore può ottenere i dati di tutti.
5958
5959 \begin{table}[htb]
5960   \centering
5961   \footnotesize
5962   \begin{tabular}{|l|p{10cm}|}
5963     \hline
5964     \textbf{Identificatore} & \textbf{Descrizione} \\
5965     \hline
5966     \hline
5967     \const{QFMT\_VFS\_OLD}& il vecchio (ed obsoleto) formato delle quote.\\
5968     \const{QFMT\_VFS\_V0} & la versione 0 usata dal VFS di Linux (supporta
5969                             \ids{UID} e \ids{GID} a 32 bit e limiti fino a
5970                             $2^{42}$ byte e $2^{32}$ file.\\
5971     \const{QFMT\_VFS\_V1} & la versione 1 usata dal VFS di Linux (supporta
5972                             \ids{UID} e \ids{GID} a 32 bit e limiti fino a
5973                             $2^{64}$ byte e $2^{64}$ file.\\
5974     \hline
5975   \end{tabular}
5976   \caption{Valori di identificazione del formato delle quote.} 
5977   \label{tab:quotactl_id_format}
5978 \end{table}
5979
5980 Alcuni dei comandi di tab.~\ref{tab:quotactl_commands} sono alquanto complessi
5981 e richiedono un approfondimento maggiore, in particolare \const{Q\_GETQUOTA} e
5982 \const{Q\_SETQUOTA} fanno riferimento ad una specifica struttura
5983 \struct{dqblk}, la cui definizione è riportata in
5984 fig.~\ref{fig:dqblk_struct},\footnote{la definizione mostrata è quella usata
5985   fino dal kernel 2.4.22, non prenderemo in considerazione le versioni
5986   obsolete.} nella quale vengono inseriti i dati relativi alle quote di un
5987 singolo utente.
5988
5989 \begin{figure}[!htb]
5990   \footnotesize \centering
5991   \begin{minipage}[c]{\textwidth}
5992     \includestruct{listati/dqblk.h}
5993   \end{minipage} 
5994   \normalsize 
5995   \caption{La struttura \structd{dqblk} per i dati delle quote disco.}
5996   \label{fig:dqblk_struct}
5997 \end{figure}
5998
5999 La struttura viene usata sia con \const{Q\_GETQUOTA} per ottenere i valori
6000 correnti dei limiti e dell'occupazione delle risorse, che con
6001 \const{Q\_SETQUOTA} per effettuare modifiche ai limiti; come si può notare ci
6002 sono alcuni campi (in sostanza \val{dqb\_curspace}, \val{dqb\_curinodes},
6003 \val{dqb\_btime}, \val{dqb\_itime}) che hanno senso solo in lettura in quanto
6004 riportano uno stato non modificabile da \func{quotactl}, come l'uso corrente
6005 di spazio e \itindex{inode} \textit{inode} o il tempo che resta nel caso si
6006 sia superato un \textit{soft limit}.
6007
6008 \begin{table}[htb]
6009   \centering
6010   \footnotesize
6011   \begin{tabular}{|l|p{10cm}|}
6012     \hline
6013     \textbf{Costante} & \textbf{Descrizione} \\
6014     \hline
6015     \hline
6016     \const{QIF\_BLIMITS}& Limiti sui blocchi di 
6017                           spazio disco (\val{dqb\_bhardlimit} e
6018                           \val{dqb\_bsoftlimit}).\\
6019     \const{QIF\_SPACE}  & Uso corrente
6020                           dello spazio disco (\val{dqb\_curspace}).\\
6021     \const{QIF\_ILIMITS}& Limiti sugli \itindex{inode}  \textit{inode}
6022                           (\val{dqb\_ihardlimit} e \val{dqb\_isoftlimit}).\\
6023     \const{QIF\_INODES} & Uso corrente
6024                           degli \textit{inode} (\val{dqb\_curinodes}).\\
6025     \const{QIF\_BTIME}  & Tempo di
6026                           sforamento del \textit{soft limit} sul numero di
6027                           blocchi (\val{dqb\_btime}).\\
6028     \const{QIF\_ITIME}  & Tempo di
6029                           sforamento del \textit{soft limit} sul numero di
6030                           \itindex{inode} \textit{inode} (\val{dqb\_itime}).\\ 
6031     \const{QIF\_LIMITS} & L'insieme di \const{QIF\_BLIMITS} e
6032                           \const{QIF\_ILIMITS}.\\
6033     \const{QIF\_USAGE}  & L'insieme di \const{QIF\_SPACE} e
6034                           \const{QIF\_INODES}.\\
6035     \const{QIF\_TIMES}  & L'insieme di \const{QIF\_BTIME} e
6036                           \const{QIF\_ITIME}.\\ 
6037     \const{QIF\_ALL}    & Tutti i precedenti.\\
6038     \hline
6039   \end{tabular}
6040   \caption{Costanti per il campo \val{dqb\_valid} di \struct{dqblk}.} 
6041   \label{tab:quotactl_qif_const}
6042 \end{table}
6043
6044
6045 Inoltre in caso di modifica di un limite si può voler operare solo su una
6046 delle risorse (blocchi o \itindex{inode} \textit{inode});\footnote{non è
6047   possibile modificare soltanto uno dei limiti (\textit{hard} o \textit{soft})
6048   occorre sempre rispecificarli entrambi.} per questo la struttura prevede un
6049 campo apposito, \val{dqb\_valid}, il cui scopo è quello di indicare quali sono
6050 gli altri campi che devono essere considerati validi. Questo campo è una
6051 maschera binaria che deve essere espressa nei termini di OR aritmetico delle
6052 apposite costanti di tab.~\ref{tab:quotactl_qif_const}, dove si è riportato il
6053 significato di ciascuna di esse ed i campi a cui fanno riferimento.
6054
6055 In lettura con \const{Q\_SETQUOTA} eventuali valori presenti in \struct{dqblk}
6056 vengono comunque ignorati, al momento la funzione sovrascrive tutti i campi e
6057 li marca come validi in \val{dqb\_valid}. Si possono invece usare
6058 \const{QIF\_BLIMITS} o \const{QIF\_ILIMITS} per richiedere di impostare solo
6059 la rispettiva tipologia di limiti con \const{Q\_SETQUOTA}. Si tenga presente
6060 che il sistema delle quote richiede che l'occupazione di spazio disco sia
6061 indicata in termini di blocchi e non di byte; dato che questo dipende da come
6062 si è creato il filesystem potrà essere necessario effettuare qualche
6063 controllo.\footnote{in genere viene usato un default di 1024 byte per blocco,
6064   ma quando si hanno file di dimensioni medie maggiori può convenire usare
6065   valori più alti per ottenere prestazioni migliori in conseguenza di un
6066   minore frazionamento dei dati e di indici più corti.}
6067
6068 Altre due operazioni che necessitano di un approfondimento sono
6069 \const{Q\_GETINFO} e \const{Q\_SETINFO}, che sostanzialmente consentono di
6070 ottenere i dati relativi alle impostazioni delle altre proprietà delle quote,
6071 che si riducono poi alla durata del \textit{grace time} per i due tipi di
6072 limiti. In questo caso queste si proprietà generali sono identiche per tutti
6073 gli utenti, per cui viene usata una operazione distinta dalle
6074 precedenti. Anche in questo caso le due operazioni richiedono l'uso di una
6075 apposita struttura \struct{dqinfo}, la cui definizione è riportata in
6076 fig.~\ref{fig:dqinfo_struct}.
6077
6078 \begin{figure}[!htb]
6079   \footnotesize \centering
6080   \begin{minipage}[c]{\textwidth}
6081     \includestruct{listati/dqinfo.h}
6082   \end{minipage} 
6083   \normalsize 
6084   \caption{La struttura \structd{dqinfo} per i dati delle quote disco.}
6085   \label{fig:dqinfo_struct}
6086 \end{figure}
6087
6088 Come per \struct{dqblk} anche in questo caso viene usato un campo della
6089 struttura, \val{dqi\_valid} come maschera binaria per dichiarare quale degli
6090 altri campi sono validi; le costanti usate per comporre questo valore sono
6091 riportate in tab.~\ref{tab:quotactl_iif_const} dove si è riportato il
6092 significato di ciascuna di esse ed i campi a cui fanno riferimento.
6093
6094 \begin{table}[htb]
6095   \centering
6096   \footnotesize
6097   \begin{tabular}{|l|l|}
6098     \hline
6099     \textbf{Costante} & \textbf{Descrizione} \\
6100     \hline
6101     \hline
6102     \const{IIF\_BGRACE}& Il \textit{grace period} per i blocchi
6103                          (\val{dqi\_bgrace}).\\
6104     \const{IIF\_IGRACE}& Il \textit{grace period} per gli \textit{inode} 
6105                          \itindex{inode} (\val{dqi\_igrace}).\\ 
6106     \const{IIF\_FLAGS} & I flag delle quote (\val{dqi\_flags}) (inusato ?).\\
6107     \const{IIF\_ALL}   & Tutti i precedenti.\\
6108     \hline
6109   \end{tabular}
6110   \caption{Costanti per il campo \val{dqi\_valid} di \struct{dqinfo}.} 
6111   \label{tab:quotactl_iif_const}
6112 \end{table}
6113
6114 Come in precedenza con \const{Q\_GETINFO} tutti i valori vengono letti
6115 sovrascrivendo il contenuto di \struct{dqinfo} e marcati come validi in
6116 \val{dqi\_valid}. In scrittura con \const{Q\_SETINFO} si può scegliere quali
6117 impostare, si tenga presente che i tempi dei campi \val{dqi\_bgrace} e
6118 \val{dqi\_igrace} devono essere specificati in secondi.
6119
6120 Come esempi dell'uso di \func{quotactl} utilizzeremo estratti del codice di un
6121 modulo Python usato per fornire una interfaccia diretta a \func{quotactl}
6122 senza dover passare dalla scansione dei risultati di un comando. Il modulo si
6123 trova fra i pacchetti Debian messi a disposizione da Truelite Srl,
6124 all'indirizzo \url{http://labs.truelite.it/projects/packages}.\footnote{in
6125   particolare il codice C del modulo è nel file \texttt{quotamodule.c}
6126   visionabile a partire dall'indirizzo indicato nella sezione
6127   \textit{Repository}.}
6128
6129 \begin{figure}[!htbp]
6130   \footnotesize \centering
6131   \begin{minipage}[c]{\codesamplewidth}
6132     \includecodesample{listati/get_quota.c}
6133   \end{minipage}
6134   \caption{Esempio di codice per ottenere i dati delle quote.} 
6135   \label{fig:get_quota}
6136 \end{figure}
6137
6138 Il primo esempio, riportato in fig.~\ref{fig:get_quota}, riporta il codice
6139 della funzione che consente di leggere le quote. La funzione fa uso
6140 dell'interfaccia dal C verso Python, che definisce i vari simboli \texttt{Py*}
6141 (tipi di dato e funzioni). Non staremo ad approfondire i dettagli di questa
6142 interfaccia, per la quale esistono numerose trattazioni dettagliate, ci
6143 interessa solo esaminare l'uso di \func{quotactl}. 
6144
6145 In questo caso la funzione prende come argomenti (\texttt{\small 1}) l'intero
6146 \texttt{who} che indica se si vuole operare sulle quote utente o gruppo,
6147 l'identificatore \texttt{id} dell'utente o del gruppo scelto, ed il nome del
6148 file di dispositivo del filesystem su cui si sono attivate le
6149 quote.\footnote{questi vengono passati come argomenti dalle funzioni mappate
6150   come interfaccia pubblica del modulo (una per gruppi ed una per gli utenti)
6151   che si incaricano di decodificare i dati passati da una chiamata nel codice
6152   Python.} Questi argomenti vengono passati direttamente alla chiamata a
6153 \func{quotactl} (\texttt{\small 5}), a parte \texttt{who} che viene abbinato
6154 con \macro{QCMD} al comando \const{Q\_GETQUOTA} per ottenere i dati.
6155
6156 La funzione viene eseguita all'interno di un condizionale (\texttt{\small
6157   5--16}) che in caso di successo provvede a costruire (\texttt{\small 6--12})
6158 opportunamente una risposta restituendo tramite la opportuna funzione di
6159 interfaccia un oggetto Python contenente i dati della struttura \struct{dqblk}
6160 relativi a uso corrente e limiti sia per i blocchi che per gli \itindex{inode} 
6161 \textit{inode}. In caso di errore (\texttt{\small 13--15}) si usa un'altra
6162 funzione dell'interfaccia per passare il valore di \var{errno} come eccezione.
6163
6164 \begin{figure}[!htbp]
6165   \footnotesize \centering
6166   \begin{minipage}[c]{\codesamplewidth}
6167     \includecodesample{listati/set_block_quota.c}
6168   \end{minipage}
6169   \caption{Esempio di codice per impostare i limiti sullo spazio disco.}
6170   \label{fig:set_block_quota}
6171 \end{figure}
6172
6173 Per impostare i limiti sullo spazio disco si potrà usare una seconda funzione,
6174 riportata in fig.~\ref{fig:set_block_quota}, che prende gli stessi argomenti
6175 della precedente, con lo stesso significato, a cui si aggiungono i valori per
6176 il \textit{soft limit} e l'\textit{hard limit}. In questo caso occorrerà,
6177 prima di chiamare \func{quotactl}, inizializzare opportunamente
6178 (\texttt{\small 5--7}) i campi della struttura \struct{dqblk} che si vogliono
6179 utilizzare (quelli relativi ai limiti sui blocchi) e specificare gli stessi
6180 con \const{QIF\_BLIMITS} in \var{dq.dqb\_valid}. 
6181
6182 Fatto questo la chiamata a \func{quotactl}, stavolta con il comando
6183 \const{Q\_SETQUOTA}, viene eseguita come in precedenza all'interno di un
6184 condizionale (\texttt{\small 9--14}). In questo caso non essendovi da
6185 restituire nessun dato in caso di successo si usa (\texttt{\small 10}) una
6186 apposita funzione di uscita, mentre si restituisce come prima una eccezione
6187 con il valore di \var{errno} in caso di errore (\texttt{\small 12--13}).
6188
6189
6190 \subsection{La gestione delle \textit{capabilities}}
6191 \label{sec:proc_capabilities}
6192
6193 \itindbeg{capabilities} 
6194
6195 Come accennato in sez.~\ref{sec:proc_access_id} l'architettura classica della
6196 gestione dei privilegi in un sistema unix-like ha il sostanziale problema di
6197 fornire all'amministratore dei poteri troppo ampi, questo comporta che anche
6198 quando si siano predisposte delle misure di protezione per in essere in grado
6199 di difendersi dagli effetti di una eventuale compromissione del
6200 sistema,\footnote{come montare un filesystem in sola lettura per impedirne
6201   modifiche, o marcare un file come immutabile.} una volta che questa sia
6202 stata effettuata e si siano ottenuti i privilegi di amministratore, queste
6203 potranno essere comunque rimosse.\footnote{nei casi elencati nella precedente
6204   nota si potrà sempre rimontare il sistema in lettura-scrittura, o togliere
6205   la marcatura di immutabilità.}
6206
6207 Il problema consiste nel fatto che nell'architettura tradizionale di un
6208 sistema unix-like i controlli di accesso sono basati su un solo livello di
6209 separazione: per i processi normali essi sono posti in atto, mentre per i
6210 processi con i privilegi di amministratore essi non vengono neppure eseguiti;
6211 per questo motivo non era previsto alcun modo per evitare che un processo con
6212 diritti di amministratore non potesse eseguire certe operazioni, o per cedere
6213 definitivamente alcuni privilegi da un certo momento in poi.
6214
6215 Per ovviare a tutto ciò, a partire dai kernel della serie 2.2, è stato
6216 introdotto un meccanismo, detto \textit{capabilities}, che consentisse di
6217 suddividere i vari privilegi tradizionalmente associati all'amministratore in
6218 un insieme di \textsl{capacità} distinte.  L'idea era che queste capacità
6219 potessero essere abilitate e disabilitate in maniera indipendente per ciascun
6220 processo con privilegi di amministratore, permettendo così una granularità
6221 molto più fine nella distribuzione degli stessi che evitasse la originaria
6222 situazione di ``\textsl{tutto o nulla}''.
6223
6224 Il meccanismo completo delle \textit{capabilities}\footnote{l'implementazione
6225   si rifà ad una bozza di quello che doveva diventare lo standard POSIX.1e,
6226   poi abbandonato.} prevede inoltre la possibilità di associare le stesse ai
6227 singoli file eseguibili, in modo da poter stabilire quali capacità possono
6228 essere utilizzate quando viene messo in esecuzione uno specifico programma; ma
6229 il supporto per questa funzionalità, chiamata \textit{file capabilities}, è
6230 stato introdotto soltanto a partire dal kernel 2.6.24. Fino ad allora doveva
6231 essere il programma stesso ad eseguire una riduzione esplicita delle sue
6232 capacità, cosa che ha reso l'uso di questa funzionalità poco diffuso, vista la
6233 presenza di meccanismi alternativi per ottenere limitazioni delle capacità
6234 dell'amministratore a livello di sistema operativo, come \index{SELinux}
6235 SELinux.
6236
6237 Con questo supporto e con le ulteriori modifiche introdotte con il kernel
6238 2.6.25 il meccanismo delle \textit{capabilities} è stato totalmente
6239 rivoluzionato, rendendolo più aderente alle intenzioni originali dello
6240 standard POSIX, rimuovendo il significato che fino ad allora aveva avuto la
6241 capacità \const{CAP\_SETPCAP} e cambiando le modalità di funzionamento del
6242 cosiddetto \itindex{capabilities~bounding~set} \textit{capabilities bounding
6243   set}. Ulteriori modifiche sono state apportate con il kernel 2.6.26 per
6244 consentire la rimozione non ripristinabile dei privilegi di
6245 amministratore. Questo fa sì che il significato ed il comportamento del kernel
6246 finisca per dipendere dalla versione dello stesso e dal fatto che le nuove
6247 \textit{file capabilities} siano abilitate o meno. Per capire meglio la
6248 situazione e cosa è cambiato conviene allora spiegare con maggiori dettagli
6249 come funziona il meccanismo delle \textit{capabilities}.
6250
6251 Il primo passo per frazionare i privilegi garantiti all'amministratore,
6252 supportato fin dalla introduzione iniziale del kernel 2.2, è stato quello in
6253 cui a ciascun processo sono stati associati tre distinti insiemi di
6254 \textit{capabilities}, denominati rispettivamente \textit{permitted},
6255 \textit{inheritable} ed \textit{effective}. Questi insiemi vengono mantenuti
6256 in forma di tre diverse maschere binarie,\footnote{il kernel li mantiene, come
6257   i vari identificatori di sez.~\ref{sec:proc_setuid}, all'interno della
6258   \struct{task\_struct} di ciascun processo (vedi
6259   fig.~\ref{fig:proc_task_struct}), nei tre campi \texttt{cap\_effective},
6260   \texttt{cap\_inheritable}, \texttt{cap\_permitted} del tipo
6261   \texttt{kernel\_cap\_t}; questo era, fino al kernel 2.6.25 definito come
6262   intero a 32 bit per un massimo di 32 \textit{capabilities} distinte,
6263   attualmente è stato aggiornato ad un vettore in grado di mantenerne fino a
6264   64.}  in cui ciascun bit corrisponde ad una capacità diversa. 
6265
6266 L'utilizzo di tre distinti insiemi serve a fornire una interfaccia flessibile
6267 per l'uso delle \textit{capabilities}, con scopi analoghi a quelli per cui
6268 sono mantenuti i diversi insiemi di identificatori di
6269 sez.~\ref{sec:proc_setuid}; il loro significato, che è rimasto sostanzialmente
6270 lo stesso anche dopo le modifiche seguite alla introduzione delle
6271 \textit{file capabilities} è il seguente:
6272 \begin{basedescript}{\desclabelwidth{2.1cm}\desclabelstyle{\nextlinelabel}}
6273 \item[\textit{permitted}] l'insieme delle \textit{capabilities}
6274   ``\textsl{permesse}'', cioè l'insieme di quelle capacità che un processo
6275   \textsl{può} impostare come \textsl{effettive} o come
6276   \textsl{ereditabili}. Se un processo cancella una capacità da questo insieme
6277   non potrà più riassumerla.\footnote{questo nei casi ordinari, sono
6278     previste però una serie di eccezioni, dipendenti anche dal tipo di
6279     supporto, che vedremo meglio in seguito dato il notevole intreccio nella
6280     casistica.}
6281 \item[\textit{inheritable}] l'insieme delle \textit{capabilities}
6282   ``\textsl{ereditabili}'', cioè di quelle che verranno trasmesse come insieme
6283   delle \textsl{permesse} ad un nuovo programma eseguito attraverso una
6284   chiamata ad \func{exec}.
6285 \item[\textit{effective}] l'insieme delle \textit{capabilities}
6286   ``\textsl{effettive}'', cioè di quelle che vengono effettivamente usate dal
6287   kernel quando deve eseguire il controllo di accesso per le varie operazioni
6288   compiute dal processo.
6289 \label{sec:capabilities_set}
6290 \end{basedescript}
6291
6292 Con l'introduzione delle \textit{file capabilities} sono stati introdotti
6293 altri tre insiemi associabili a ciascun file.\footnote{la realizzazione viene
6294   eseguita con l'uso di uno specifico attributo esteso,
6295   \texttt{security.capability}, la cui modifica è riservata, (come illustrato
6296   in sez.~\ref{sec:file_xattr}) ai processi dotato della capacità
6297   \const{CAP\_SYS\_ADMIN}.} Le \textit{file capabilities} hanno effetto
6298 soltanto quando il file che le porta viene eseguito come programma con una
6299 \func{exec}, e forniscono un meccanismo che consente l'esecuzione dello stesso
6300 con maggiori privilegi; in sostanza sono una sorta di estensione del
6301 \acr{suid} bit limitato ai privilegi di amministratore. Anche questi tre
6302 insiemi sono identificati con gli stessi nomi di quello dei processi, ma il
6303 loro significato è diverso:
6304 \begin{basedescript}{\desclabelwidth{2.1cm}\desclabelstyle{\nextlinelabel}}
6305 \item[\textit{permitted}] (chiamato originariamente \textit{forced}) l'insieme
6306   delle capacità che con l'esecuzione del programma verranno aggiunte alle
6307   capacità \textsl{permesse} del processo.
6308 \item[\textit{inheritable}] (chiamato originariamente \textit{allowed})
6309   l'insieme delle capacità che con l'esecuzione del programma possono essere
6310   ereditate dal processo originario (che cioè non vengono tolte
6311   dall'\textit{inheritable set} del processo originale all'esecuzione di
6312   \func{exec}).
6313 \item[\textit{effective}] in questo caso non si tratta di un insieme ma di un
6314   unico valore logico; se attivo all'esecuzione del programma tutte le
6315   capacità che risulterebbero \textsl{permesse} verranno pure attivate,
6316   inserendole automaticamente nelle \textsl{effettive}, se disattivato nessuna
6317   capacità verrà attivata (cioè l'\textit{effective set} resterà vuoto).
6318 \end{basedescript}
6319
6320 \itindbeg{capabilities~bounding~set}
6321
6322 Infine come accennato, esiste un ulteriore insieme, chiamato
6323 \textit{capabilities bounding set}, il cui scopo è quello di costituire un
6324 limite alle capacità che possono essere attivate per un programma. Il suo
6325 funzionamento però è stato notevolmente modificato con l'introduzione delle
6326 \textit{file capabilities} e si deve pertanto prendere in considerazione una
6327 casistica assai complessa.
6328
6329 Per i kernel fino al 2.6.25, o se non si attiva il supporto per le
6330 \textit{file capabilities}, il \textit{capabilities bounding set} è un
6331 parametro generale di sistema, il cui valore viene riportato nel file
6332 \sysctlfile{kernel/cap-bound}. Il suo valore iniziale è definito in
6333 sede di compilazione del kernel, e da sempre ha previsto come default la
6334 presenza di tutte le \textit{capabilities} eccetto \const{CAP\_SETPCAP}. In
6335 questa situazione solo il primo processo eseguito nel sistema (quello con
6336 \textsl{pid} 1, di norma \texttt{/sbin/init}) ha la possibilità di
6337 modificarlo; ogni processo eseguito successivamente, se dotato dei privilegi
6338 di amministratore, è in grado soltanto di rimuovere una delle
6339 \textit{capabilities} già presenti dell'insieme.\footnote{per essere precisi
6340   occorreva la capacità \const{CAP\_SYS\_MODULE}.}
6341
6342 In questo caso l'effetto complessivo del \textit{capabilities bounding set} è
6343 che solo le capacità in esso presenti possono essere trasmesse ad un altro
6344 programma attraverso una \func{exec}. Questo in sostanza significa che se un
6345 qualunque programma elimina da esso una capacità, considerato che
6346 \texttt{init} (almeno nelle versioni ordinarie) non supporta la reimpostazione
6347 del \textit{bounding set}, questa non sarà più disponibile per nessun processo
6348 a meno di un riavvio, eliminando così in forma definitiva quella capacità per
6349 tutti, compreso l'amministratore.\footnote{la qual cosa, visto il default
6350   usato per il \textit{capabilities bounding set}, significa anche che
6351   \const{CAP\_SETPCAP} non è stata praticamente mai usata nella sua forma
6352   originale.}
6353
6354 Con il kernel 2.6.25 e le \textit{file capabilities} il \textit{bounding set}
6355 è diventato una proprietà di ciascun processo, che viene propagata invariata
6356 sia attraverso una \func{fork} che una \func{exec}. In questo caso il file
6357 \sysctlfile{kernel/cap-bound} non esiste e \texttt{init} non ha nessun
6358 ruolo speciale, inoltre in questo caso all'avvio il valore iniziale prevede la
6359 presenza di tutte le capacità (compresa \const{CAP\_SETPCAP}). 
6360
6361 Con questo nuovo meccanismo il \textit{bounding set} continua a ricoprire un
6362 ruolo analogo al precedente nel passaggio attraverso una \func{exec}, come
6363 limite alle capacità che possono essere aggiunte al processo in quanto
6364 presenti nel \textit{permitted set} del programma messo in esecuzione, in
6365 sostanza il nuovo programma eseguito potrà ricevere una capacità presente nel
6366 suo \textit{permitted set} (quello del file) solo se questa è anche nel
6367 \textit{bounding set} (del processo). In questo modo si possono rimuovere
6368 definitivamente certe capacità da un processo, anche qualora questo dovesse
6369 eseguire un programma privilegiato che prevede di riassegnarle.
6370
6371 Si tenga presente però che in questo caso il \textit{bounding set} blocca
6372 esclusivamente le capacità indicate nel \textit{permitted set} del programma
6373 che verrebbero attivate in caso di esecuzione, e non quelle eventualmente già
6374 presenti nell'\textit{inheritable set} del processo (ad esempio perché
6375 presenti prima di averle rimosse dal \textit{bounding set}). In questo caso
6376 eseguendo un programma che abbia anche lui dette capacità nel suo
6377 \textit{inheritable set} queste verrebbero assegnate.
6378
6379 In questa seconda versione inoltre il \textit{bounding set} costituisce anche
6380 un limite per le capacità che possono essere aggiunte all'\textit{inheritable
6381   set} del processo stesso con \func{capset}, sempre nel senso che queste
6382 devono essere presenti nel \textit{bounding set} oltre che nel
6383 \textit{permitted set} del processo. Questo limite vale anche per processi con
6384 i privilegi di amministratore,\footnote{si tratta sempre di avere la
6385   \textit{capability} \const{CAP\_SETPCAP}.} per i quali invece non vale la
6386 condizione che le \textit{capabilities} da aggiungere nell'\textit{inheritable
6387   set} debbano essere presenti nel proprio \textit{permitted set}.\footnote{lo
6388   scopo anche in questo caso è ottenere una rimozione definitiva della
6389   possibilità di passare una capacità rimossa dal \textit{bounding set}.}
6390
6391 Come si può notare per fare ricorso alle \textit{capabilities} occorre
6392 comunque farsi carico di una notevole complessità di gestione, aggravata dalla
6393 presenza di una radicale modifica del loro funzionamento con l'introduzione
6394 delle \textit{file capabilities}. Considerato che il meccanismo originale era
6395 incompleto e decisamente problematico nel caso di programmi che non ne
6396 sapessero tener conto,\footnote{c'è stato un grosso problema di sicurezza con
6397   \texttt{sendmail}, riuscendo a rimuovere \const{CAP\_SETGID}
6398   dall'\textit{inheritable set} di un processo si ottenne di far fallire
6399   \func{setuid} in maniera inaspettata per il programma (che aspettandosi
6400   sempre il successo della funzione non ne controllava lo stato di uscita) con
6401   la conseguenza di effettuare come amministratore operazioni che altrimenti
6402   sarebbero state eseguite, senza poter apportare danni, da utente normale.}
6403 ci soffermeremo solo sulla implementazione completa presente a partire dal
6404 kernel 2.6.25, tralasciando ulteriori dettagli riguardo la versione
6405 precedente.
6406
6407 Riassumendo le regole finora illustrate tutte le \textit{capabilities} vengono
6408 ereditate senza modifiche attraverso una \func{fork} mentre, indicati con
6409 \texttt{orig\_*} i valori degli insiemi del processo chiamante, con
6410 \texttt{file\_*} quelli del file eseguito e con \texttt{bound\_set} il
6411 \textit{capabilities bounding set}, dopo l'invocazione di \func{exec} il
6412 processo otterrà dei nuovi insiemi di capacità \texttt{new\_*} secondo la
6413 formula (espressa in pseudo-codice C) di fig.~\ref{fig:cap_across_exec}; si
6414 noti come in particolare il \textit{capabilities bounding set} non viene
6415 comunque modificato e resta lo stesso sia attraverso una \func{fork} che
6416 attraverso una \func{exec}.
6417
6418 \begin{figure}[!htbp]
6419   \footnotesize \centering
6420   \begin{minipage}[c]{12cm}
6421     \includecodesnip{listati/cap-results.c}
6422   \end{minipage}
6423   \caption{Espressione della modifica delle \textit{capabilities} attraverso
6424     una \func{exec}.}
6425   \label{fig:cap_across_exec}
6426 \end{figure}
6427
6428 \itindend{capabilities~bounding~set}
6429
6430 A queste regole se ne aggiungono delle altre che servono a riprodurre il
6431 comportamento tradizionale di un sistema unix-like in tutta una serie di
6432 circostanze. La prima di queste è relativa a quello che avviene quando si
6433 esegue un file senza \textit{capabilities}; se infatti si considerasse questo
6434 equivalente al non averne assegnata alcuna, non essendo presenti capacità né
6435 nel \textit{permitted set} né nell'\textit{inheritable set} del file,
6436 nell'esecuzione di un qualunque programma l'amministratore perderebbe tutti i
6437 privilegi originali dal processo.
6438
6439 Per questo motivo se un programma senza \textit{capabilities} assegnate viene
6440 eseguito da un processo con \ids{UID} reale 0, esso verrà trattato come
6441 se tanto il \textit{permitted set} che l'\textit{inheritable set} fossero con
6442 tutte le \textit{capabilities} abilitate, con l'\textit{effective set} attivo,
6443 col risultato di fornire comunque al processo tutte le capacità presenti nel
6444 proprio \textit{bounding set}. Lo stesso avviene quando l'eseguibile ha attivo
6445 il \acr{suid} bit ed appartiene all'amministratore, in entrambi i casi si
6446 riesce così a riottenere il comportamento classico di un sistema unix-like.
6447
6448 Una seconda circostanza è quella relativa a cosa succede alle
6449 \textit{capabilities} di un processo nelle possibili transizioni da \ids{UID}
6450 nullo a \ids{UID} non nullo o viceversa (corrispondenti rispettivamente a
6451 cedere o riottenere i i privilegi di amministratore) che si possono effettuare
6452 con le varie funzioni viste in sez.~\ref{sec:proc_setuid}. In questo caso la
6453 casistica è di nuovo alquanto complessa, considerata anche la presenza dei
6454 diversi gruppi di identificatori illustrati in tab.~\ref{tab:proc_uid_gid}, si
6455 avrà allora che:
6456 \begin{enumerate*}
6457 \item se si passa da \ids{UID} effettivo nullo a non nullo
6458   l'\textit{effective set} del processo viene totalmente azzerato, se
6459   viceversa si passa da \ids{UID} effettivo non nullo a nullo il
6460   \textit{permitted set} viene copiato nell'\textit{effective set};
6461 \item se si passa da \textit{file system} \ids{UID} nullo a non nullo verranno
6462   cancellate dall'\textit{effective set} del processo tutte le capacità
6463   attinenti i file, e cioè \const{CAP\_LINUX\_IMMUTABLE}, \const{CAP\_MKNOD},
6464   \const{CAP\_DAC\_OVERRIDE}, \const{CAP\_DAC\_READ\_SEARCH},
6465   \const{CAP\_MAC\_OVERRIDE}, \const{CAP\_CHOWN}, \const{CAP\_FSETID} e
6466   \const{CAP\_FOWNER} (le prime due a partire dal kernel 2.2.30), nella
6467   transizione inversa verranno invece inserite nell'\textit{effective set}
6468   quelle capacità della precedente lista che sono presenti nel suo
6469   \textit{permitted set}.
6470 \item se come risultato di una transizione riguardante gli identificativi dei
6471   gruppi \textit{real}, \textit{saved} ed \textit{effective} in cui si passa
6472   da una situazione in cui uno di questi era nullo ad una in cui sono tutti
6473   non nulli,\footnote{in sostanza questo è il caso di quando si chiama
6474     \func{setuid} per rimuovere definitivamente i privilegi di amministratore
6475     da un processo.} verranno azzerati completamente sia il \textit{permitted
6476     set} che l'\textit{effective set}.
6477 \end{enumerate*}
6478 \label{sec:capability-uid-transition}
6479
6480 La combinazione di tutte queste regole consente di riprodurre il comportamento
6481 ordinario di un sistema di tipo Unix tradizionale, ma può risultare
6482 problematica qualora si voglia passare ad una configurazione di sistema
6483 totalmente basata sull'applicazione delle \textit{capabilities}; in tal caso
6484 infatti basta ad esempio eseguire un programma con \acr{suid} bit di proprietà
6485 dell'amministratore per far riottenere ad un processo tutte le capacità
6486 presenti nel suo \textit{bounding set}, anche se si era avuta la cura di
6487 cancellarle dal \textit{permitted set}.
6488
6489 \itindbeg{securebits}
6490
6491 Per questo motivo a partire dal kernel 2.6.26, se le \textit{file
6492   capabilities} sono abilitate, ad ogni processo viene stata associata una
6493 ulteriore maschera binaria, chiamata \textit{securebits flags}, su cui sono
6494 mantenuti una serie di flag (vedi tab.~\ref{tab:securebits_values}) il cui
6495 valore consente di modificare queste regole speciali che si applicano ai
6496 processi con \ids{UID} nullo. La maschera viene sempre mantenuta
6497 attraverso una \func{fork}, mentre attraverso una \func{exec} viene sempre
6498 cancellato il flag \const{SECURE\_KEEP\_CAPS}.
6499
6500 \begin{table}[htb]
6501   \centering
6502   \footnotesize
6503   \begin{tabular}{|l|p{10cm}|}
6504     \hline
6505     \textbf{Flag} & \textbf{Descrizione} \\
6506     \hline
6507     \hline
6508     \const{SECURE\_KEEP\_CAPS}& Il processo non subisce la cancellazione delle
6509                                 sue \textit{capabilities} quando tutti i suoi
6510                                 \ids{UID} passano ad un valore non
6511                                 nullo (regola di compatibilità per il cambio
6512                                 di \ids{UID} n.~3 del precedente
6513                                 elenco), sostituisce il precedente uso
6514                                 dell'operazione \const{PR\_SET\_KEEPCAPS} di
6515                                 \func{prctl}.\\
6516     \const{SECURE\_NO\_SETUID\_FIXUP}&Il processo non subisce le modifiche
6517                                 delle sue \textit{capabilities} nel passaggio
6518                                 da nullo a non nullo degli \ids{UID}
6519                                 dei gruppi \textit{effective} e
6520                                 \textit{file system} (regole di compatibilità
6521                                 per il cambio di \ids{UID} nn.~1 e 2 del
6522                                 precedente elenco).\\
6523     \const{SECURE\_NOROOT}    & Il processo non assume nessuna capacità
6524                                 aggiuntiva quando esegue un programma, anche
6525                                 se ha \ids{UID} nullo o il programma ha
6526                                 il \acr{suid} bit attivo ed appartiene
6527                                 all'amministratore (regola di compatibilità
6528                                 per l'esecuzione di programmi senza
6529                                 \textit{capabilities}).\\
6530     \hline
6531   \end{tabular}
6532   \caption{Costanti identificative dei flag che compongono la maschera dei
6533     \textit{securebits}.}  
6534   \label{tab:securebits_values}
6535 \end{table}
6536
6537 A ciascuno dei flag di tab.~\ref{tab:securebits_values} è inoltre abbinato un
6538 corrispondente flag di blocco, identificato da una costante omonima con
6539 l'estensione \texttt{\_LOCKED}, la cui attivazione è irreversibile ed ha
6540 l'effetto di rendere permanente l'impostazione corrente del corrispondente
6541 flag ordinario; in sostanza con \const{SECURE\_KEEP\_CAPS\_LOCKED} si rende
6542 non più modificabile \const{SECURE\_KEEP\_CAPS}, ed analogamente avviene con
6543 \const{SECURE\_NO\_SETUID\_FIXUP\_LOCKED} per
6544 \const{SECURE\_NO\_SETUID\_FIXUP} e con \const{SECURE\_NOROOT\_LOCKED} per
6545 \const{SECURE\_NOROOT}.
6546
6547 Per l'impostazione di questi flag sono stata predisposte due specifiche
6548 operazioni di \func{prctl} (vedi sez.~\ref{sec:process_prctl}),
6549 \const{PR\_GET\_SECUREBITS}, che consente di ottenerne il valore, e
6550 \const{PR\_SET\_SECUREBITS}, che consente di modificarne il valore; per
6551 quest'ultima sono comunque necessari i privilegi di amministratore ed in
6552 particolare la capacità \const{CAP\_SETPCAP}. Prima dell'introduzione dei
6553 \textit{securebits} era comunque possibile ottenere lo stesso effetto di
6554 \const{SECURE\_KEEP\_CAPS} attraverso l'uso di un'altra operazione di
6555 \func{prctl}, \const{PR\_SET\_KEEPCAPS}.
6556
6557 \itindend{securebits}
6558
6559 Oltre alla gestione dei \textit{securebits} la nuova versione delle
6560 \textit{file capabilities} prevede l'uso di \func{prctl} anche per la gestione
6561 del \textit{capabilities bounding set}, attraverso altre due operazioni
6562 dedicate, \const{PR\_CAPBSET\_READ} per controllarne il valore e
6563 \const{PR\_CAPBSET\_DROP} per modificarlo; quest'ultima di nuovo è una
6564 operazione privilegiata che richiede la capacità \const{CAP\_SETPCAP} e che,
6565 come indica chiaramente il nome, permette solo la rimozione di una
6566 \textit{capability} dall'insieme; per i dettagli sull'uso di tutte queste
6567 operazioni si rimanda alla rilettura di sez.~\ref{sec:process_prctl}.
6568
6569 % TODO verificare per process capability bounding set, vedi:
6570 %  http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=3b7391de67da515c91f48aa371de77cb6cc5c07e
6571
6572 % TODO capire cosa cambia con i patch vari, vedi
6573 % http://lwn.net/Articles/280279/  
6574 % http://lwn.net/Articles/256519/
6575 % http://lwn.net/Articles/211883/
6576
6577
6578 Un elenco delle delle \textit{capabilities} disponibili su Linux, con una
6579 breve descrizione ed il nome delle costanti che le identificano, è riportato
6580 in tab.~\ref{tab:proc_capabilities};\footnote{l'elenco presentato questa
6581   tabella, ripreso dalla pagina di manuale (accessibile con \texttt{man
6582     capabilities}) e dalle definizioni in
6583   \texttt{include/linux/capabilities.h}, è aggiornato al kernel 2.6.26.} la
6584 tabella è divisa in due parti, la prima riporta le \textit{capabilities}
6585 previste anche nella bozza dello standard POSIX1.e, la seconda quelle
6586 specifiche di Linux.  Come si può notare dalla tabella alcune
6587 \textit{capabilities} attengono a singole funzionalità e sono molto
6588 specializzate, mentre altre hanno un campo di applicazione molto vasto, che è
6589 opportuno dettagliare maggiormente.
6590
6591 \begin{table}[!h!btp]
6592   \centering
6593   \footnotesize
6594   \begin{tabular}{|l|p{10.5cm}|}
6595     \hline
6596     \textbf{Capacità}&\textbf{Descrizione}\\
6597     \hline
6598     \hline
6599 %
6600 % POSIX-draft defined capabilities.
6601 %
6602     \const{CAP\_AUDIT\_CONTROL}& La capacità di abilitare e disabilitare il
6603                               controllo dell'auditing (dal kernel 2.6.11).\\ 
6604     \const{CAP\_AUDIT\_WRITE}&La capacità di scrivere dati nel giornale di
6605                               auditing del kernel (dal kernel 2.6.11).\\ 
6606     % TODO verificare questa roba dell'auditing
6607     \const{CAP\_CHOWN}      & La capacità di cambiare proprietario e gruppo
6608                               proprietario di un file (vedi
6609                               sez.~\ref{sec:file_ownership_management}).\\
6610     \const{CAP\_DAC\_OVERRIDE}& La capacità di evitare il controllo dei
6611                               permessi di lettura, scrittura ed esecuzione dei
6612                               file,\footnotemark (vedi
6613                               sez.~\ref{sec:file_access_control}).\\
6614     \const{CAP\_DAC\_READ\_SEARCH}& La capacità di evitare il controllo dei
6615                               permessi di lettura ed esecuzione per
6616                               le directory (vedi
6617                               sez.~\ref{sec:file_access_control}).\\
6618     \const{CAP\_FOWNER}     & La capacità di evitare il controllo della
6619                               proprietà di un file per tutte
6620                               le operazioni privilegiate non coperte dalle
6621                               precedenti \const{CAP\_DAC\_OVERRIDE} e
6622                               \const{CAP\_DAC\_READ\_SEARCH}.\\
6623     \const{CAP\_FSETID}     & La capacità di evitare la cancellazione
6624                               automatica dei bit \itindex{suid~bit} \acr{suid}
6625                               e \itindex{sgid~bit} \acr{sgid} quando un file
6626                               per i quali sono impostati viene modificato da
6627                               un processo senza questa capacità e la capacità
6628                               di impostare il bit \acr{sgid} su un file anche
6629                               quando questo è relativo ad un gruppo cui non si
6630                               appartiene (vedi
6631                               sez.~\ref{sec:file_perm_management}).\\ 
6632     \const{CAP\_KILL}       & La capacità di mandare segnali a qualunque
6633                               processo (vedi sez.~\ref{sec:sig_kill_raise}).\\
6634     \const{CAP\_SETFCAP}    & La capacità di impostare le
6635                               \textit{capabilities} di un file (dal kernel
6636                               2.6.24).\\  
6637     \const{CAP\_SETGID}     & La capacità di manipolare i group ID dei
6638                               processi, sia il principale che i supplementari,
6639                               (vedi sez.~\ref{sec:proc_setgroups}) che quelli
6640                               trasmessi tramite i socket \textit{unix domain}
6641                               (vedi sez.~\ref{sec:unix_socket}).\\
6642     \const{CAP\_SETUID}     & La capacità di manipolare gli user ID del
6643                               processo (vedi sez.~\ref{sec:proc_setuid}) e di
6644                               trasmettere un user ID arbitrario nel passaggio
6645                               delle credenziali coi socket \textit{unix
6646                                 domain} (vedi sez.~\ref{sec:unix_socket}).\\ 
6647 %
6648 % Linux specific capabilities
6649 %
6650 \hline
6651     \const{CAP\_IPC\_LOCK}  & La capacità di effettuare il \textit{memory
6652                               locking} \itindex{memory~locking} con le
6653                               funzioni \func{mlock}, \func{mlockall},
6654                               \func{shmctl}, \func{mmap} (vedi
6655                               sez.~\ref{sec:proc_mem_lock} e 
6656                               sez.~\ref{sec:file_memory_map}). \\  
6657     \const{CAP\_IPC\_OWNER} & La capacità di evitare il controllo dei permessi
6658                               per le operazioni sugli oggetti di
6659                               intercomunicazione fra processi (vedi
6660                               sez.~\ref{sec:ipc_sysv}).\\  
6661     \const{CAP\_LEASE}      & La capacità di creare dei \textit{file lease}
6662                               \itindex{file~lease} (vedi
6663                               sez.~\ref{sec:file_asyncronous_lease})
6664                               pur non essendo proprietari del file (dal kernel
6665                               2.4).\\ 
6666     \const{CAP\_LINUX\_IMMUTABLE}& La capacità di impostare sui file gli
6667                               attributi \textit{immutable} e
6668                               \itindex{append~mode} \textit{append only} (se
6669                               supportati).\\
6670     \const{CAP\_MKNOD}      & La capacità di creare
6671                               \index{file!di~dispositivo} file di dispositivo
6672                               con \func{mknod} (vedi
6673                               sez.~\ref{sec:file_mknod}) (dal kernel 2.4).\\ 
6674     \const{CAP\_NET\_ADMIN} & La capacità di eseguire alcune operazioni
6675                               privilegiate sulla rete.\\
6676     \const{CAP\_NET\_BIND\_SERVICE}& La capacità di porsi in ascolto
6677                               su porte riservate (vedi
6678                               sez.~\ref{sec:TCP_func_bind}).\\ 
6679     \const{CAP\_NET\_BROADCAST}& La capacità di consentire l'uso di socket in
6680                               \itindex{broadcast} \textit{broadcast} e
6681                               \itindex{multicast} \textit{multicast}.\\ 
6682     \const{CAP\_NET\_RAW}   & La capacità di usare socket \texttt{RAW} e
6683                               \texttt{PACKET} (vedi sez.~\ref{sec:sock_type}).\\
6684     \const{CAP\_SETPCAP}    & La capacità di modifiche privilegiate alle
6685                               \textit{capabilities}.\\   
6686     \const{CAP\_SYS\_ADMIN} & La capacità di eseguire una serie di compiti
6687                               amministrativi.\\
6688     \const{CAP\_SYS\_BOOT}  & La capacità di fare eseguire un riavvio del
6689                               sistema (vedi sez.~\ref{sec:sys_reboot}).\\
6690     \const{CAP\_SYS\_CHROOT}& La capacità di eseguire la funzione
6691                               \func{chroot} (vedi sez.~\ref{sec:file_chroot}).\\
6692     \const{CAP\_MAC\_ADMIN} & La capacità amministrare il \textit{Mandatory
6693                                Access Control} di Smack (dal kernel 2.6.25).\\  
6694     \const{CAP\_MAC\_OVERRIDE}& La capacità evitare il  \textit{Mandatory
6695                                Access Control} di Smack (dal kernel 2.6.25).\\  
6696     \const{CAP\_SYS\_MODULE}& La capacità di caricare e rimuovere moduli del
6697                               kernel.\\ 
6698     \const{CAP\_SYS\_NICE}  & La capacità di modificare le varie priorità dei
6699                               processi (vedi sez.~\ref{sec:proc_priority}).\\
6700     \const{CAP\_SYS\_PACCT} & La capacità di usare le funzioni di
6701                               \textit{accounting} dei processi (vedi
6702                               sez.~\ref{sec:sys_bsd_accounting}).\\ 
6703     \const{CAP\_SYS\_PTRACE}& La capacità di tracciare qualunque processo con
6704                               \func{ptrace} (vedi 
6705                               sez.~\ref{sec:process_ptrace}).\\
6706     \const{CAP\_SYS\_RAWIO} & La capacità di operare sulle porte
6707                               di I/O con \func{ioperm} e \func{iopl} (vedi
6708                               sez.~\ref{sec:process_io_port}).\\
6709     \const{CAP\_SYS\_RESOURCE}& La capacità di superare le varie limitazioni
6710                               sulle risorse.\\ 
6711     \const{CAP\_SYS\_TIME}  & La capacità di modificare il tempo di sistema
6712                               (vedi sez.~\ref{sec:sys_time}).\\ 
6713     \const{CAP\_SYS\_TTY\_CONFIG}& La capacità di simulare un \textit{hangup}
6714                               della console, con la funzione
6715                               \func{vhangup}.\\
6716     \const{CAP\_SYSLOG}     & La capacità di gestire il buffer dei messaggi
6717                               del kernel, (vedi sez.~\ref{sec:sess_daemon}),
6718                               introdotta dal kernel 2.6.38 come capacità
6719                               separata da \const{CAP\_SYS\_ADMIN}.\\
6720     \const{CAP\_WAKE\_ALARM}& La capacità di usare i timer di tipo
6721                               \const{CLOCK\_BOOTTIME\_ALARM} e
6722                               \const{CLOCK\_REALTIME\_ALARM}, vedi
6723                               sez.~\ref{sec:sig_timer_adv} (dal kernel 3.0).\\  
6724     \hline
6725   \end{tabular}
6726   \caption{Le costanti che identificano le \textit{capabilities} presenti nel
6727     kernel.}
6728 \label{tab:proc_capabilities}
6729 \end{table}
6730
6731 \footnotetext{vale a dire i permessi caratteristici del modello classico del
6732   controllo di accesso chiamato \itindex{Discrectionary~Access~Control~(DAC)}
6733   \textit{Discrectionary Access Control} (da cui il nome DAC).}
6734
6735
6736 Prima di dettagliare il significato della capacità più generiche, conviene
6737 però dedicare un discorso a parte a \const{CAP\_SETPCAP}, il cui significato è
6738 stato completamente cambiato con l'introduzione delle \textit{file
6739   capabilities} nel kernel 2.6.24. In precedenza questa capacità era quella
6740 che permetteva al processo che la possedeva di impostare o rimuovere le
6741 \textit{capabilities} che fossero presenti nel \textit{permitted set} del
6742 chiamante di un qualunque altro processo. In realtà questo non è mai stato
6743 l'uso inteso nelle bozze dallo standard POSIX, ed inoltre, come si è già
6744 accennato, dato che questa capacità è assente nel \textit{capabilities
6745   bounding set} usato di default, essa non è neanche mai stata realmente
6746 disponibile.
6747
6748 Con l'introduzione \textit{file capabilities} e il cambiamento del significato
6749 del \textit{capabilities bounding set} la possibilità di modificare le
6750 capacità di altri processi è stata completamente rimossa, e
6751 \const{CAP\_SETPCAP} ha acquisito quello che avrebbe dovuto essere il suo
6752 significato originario, e cioè la capacità del processo di poter inserire nel
6753 suo \textit{inheritable set} qualunque capacità presente nel \textit{bounding
6754   set}. Oltre a questo la disponibilità di \const{CAP\_SETPCAP} consente ad un
6755 processo di eliminare una capacità dal proprio \textit{bounding set} (con la
6756 conseguente impossibilità successiva di eseguire programmi con quella
6757 capacità), o di impostare i \textit{securebits} delle \textit{capabilities}.
6758
6759 La prima fra le capacità ``\textsl{ampie}'' che occorre dettagliare
6760 maggiormente è \const{CAP\_FOWNER}, che rimuove le restrizioni poste ad un
6761 processo che non ha la proprietà di un file in un vasto campo di
6762 operazioni;\footnote{vale a dire la richiesta che l'\ids{UID} effettivo del
6763   processo (o meglio l'\ids{UID} di filesystem, vedi
6764   sez.~\ref{sec:proc_setuid}) coincida con quello del proprietario.}  queste
6765 comprendono i cambiamenti dei permessi e dei tempi del file (vedi
6766 sez.~\ref{sec:file_perm_management} e sez.~\ref{sec:file_file_times}), le
6767 impostazioni degli attributi dei file (vedi sez.~\ref{sec:file_ioctl}) e delle
6768 ACL (vedi sez.~\ref{sec:file_xattr} e \ref{sec:file_ACL}), poter ignorare lo
6769 \itindex{sticky~bit} \textit{sticky bit} nella cancellazione dei file (vedi
6770 sez.~\ref{sec:file_special_perm}), la possibilità di impostare il flag di
6771 \const{O\_NOATIME} con \func{open} e \func{fcntl} (vedi
6772 sez.~\ref{sec:file_open} e sez.~\ref{sec:file_fcntl}) senza restrizioni.
6773
6774 Una seconda capacità che copre diverse operazioni, in questo caso riguardanti
6775 la rete, è \const{CAP\_NET\_ADMIN}, che consente di impostare le opzioni
6776 privilegiate dei socket (vedi sez.~\ref{sec:sock_generic_options}), abilitare
6777 il \itindex{multicast} \textit{multicasting}, eseguire la configurazione delle
6778 interfacce di rete (vedi sez.~\ref{sec:sock_ioctl_netdevice}) ed impostare la
6779 tabella di instradamento.
6780
6781 Una terza \textit{capability} con vasto campo di applicazione è
6782 \const{CAP\_SYS\_ADMIN}, che copre una serie di operazioni amministrative,
6783 come impostare le quote disco (vedi sez.\ref{sec:disk_quota}), attivare e
6784 disattivare la swap, montare, rimontare e smontare filesystem (vedi
6785 sez.~\ref{sec:filesystem_mounting}), effettuare operazioni di controllo su
6786 qualunque oggetto dell'IPC di SysV (vedi sez.~\ref{sec:ipc_sysv}), operare
6787 sugli attributi estesi dei file di classe \texttt{security} o \texttt{trusted}
6788 (vedi sez.~\ref{sec:file_xattr}), specificare un \ids{UID} arbitrario nella
6789 trasmissione delle credenziali dei socket (vedi
6790 sez.~\ref{sec:socket_credential_xxx}), assegnare classi privilegiate
6791 (\const{IOPRIO\_CLASS\_RT} e prima del kernel 2.6.25 anche
6792 \const{IOPRIO\_CLASS\_IDLE}) per lo scheduling dell'I/O (vedi
6793 sez.~\ref{sec:io_priority}), superare il limite di sistema sul numero massimo
6794 di file aperti,\footnote{quello indicato da \sysctlfile{fs/file-max}.}
6795 effettuare operazioni privilegiate sulle chiavi mantenute dal kernel (vedi
6796 sez.~\ref{sec:keyctl_management}), usare la funzione \func{lookup\_dcookie},
6797 usare \const{CLONE\_NEWNS} con \func{unshare} e \func{clone}, (vedi
6798 sez.~\ref{sec:process_clone}).
6799
6800 Originariamente \const{CAP\_SYS\_NICE} riguardava soltanto la capacità di
6801 aumentare le priorità di esecuzione dei processi, come la diminuzione del
6802 valore di \textit{nice} (vedi sez.~\ref{sec:proc_sched_stand}), l'uso delle
6803 priorità \textit{real-time} (vedi sez.~\ref{sec:proc_real_time}), o
6804 l'impostazione delle affinità di processore (vedi
6805 sez.~\ref{sec:proc_sched_multiprocess}); ma con l'introduzione di priorità
6806 anche riguardo le operazioni di accesso al disco, e, nel caso di sistemi NUMA,
6807 alla memoria, essa viene a coprire anche la possibilità di assegnare priorità
6808 arbitrarie nell'accesso a disco (vedi sez.~\ref{sec:io_priority}) e nelle
6809 politiche di allocazione delle pagine di memoria ai nodi di un sistema NUMA.
6810
6811 Infine la \textit{capability} \const{CAP\_SYS\_RESOURCE} attiene alla
6812 possibilità di superare i limiti imposti sulle risorse di sistema, come usare
6813 lo spazio disco riservato all'amministratore sui filesystem che lo supportano,
6814 usare la funzione \func{ioctl} per controllare il \textit{journaling} sul
6815 filesystem \acr{ext3}, non subire le quote disco, aumentare i limiti sulle
6816 risorse di un processo (vedi sez.~\ref{sec:sys_resource_limit}) e quelle sul
6817 numero di processi, ed i limiti sulle dimensioni dei messaggi delle code del
6818 SysV IPC (vedi sez.~\ref{sec:ipc_sysv_mq}).
6819
6820 Per la gestione delle \textit{capabilities} il kernel mette a disposizione due
6821 funzioni che permettono rispettivamente di leggere ed impostare i valori dei
6822 tre insiemi illustrati in precedenza. Queste due funzioni sono \funcd{capget}
6823 e \funcd{capset} e costituiscono l'interfaccia di gestione basso livello; i
6824 loro rispettivi prototipi sono:
6825 \begin{functions}
6826   \headdecl{sys/capability.h}
6827
6828   \funcdecl{int capget(cap\_user\_header\_t hdrp, cap\_user\_data\_t datap)}
6829   Legge le \textit{capabilities}.
6830
6831   \funcdecl{int capset(cap\_user\_header\_t hdrp, const cap\_user\_data\_t
6832     datap)} 
6833   Imposta le \textit{capabilities}.
6834
6835   
6836   \bodydesc{Entrambe le funzioni ritornano 0 in caso di successo e -1 in caso
6837     di errore, nel qual caso \var{errno} può assumere i valori:
6838     \begin{errlist}
6839     \item[\errcode{ESRCH}] si è fatto riferimento ad un processo inesistente.
6840     \item[\errcode{EPERM}] si è tentato di aggiungere una capacità
6841       nell'insieme delle \textit{capabilities} permesse, o di impostare una
6842       capacità non presente nell'insieme di quelle permesse negli insieme
6843       delle effettive o ereditate, o si è cercato di impostare una
6844       \textit{capability} di un altro processo senza avare
6845       \const{CAP\_SETPCAP}. 
6846   \end{errlist}
6847   ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
6848 }
6849 \end{functions}
6850
6851 Queste due funzioni prendono come argomenti due tipi di dati dedicati,
6852 definiti come puntatori a due strutture specifiche di Linux, illustrate in
6853 fig.~\ref{fig:cap_kernel_struct}.  Per un certo periodo di tempo era anche
6854 indicato che per poterle utilizzare fosse necessario che la macro
6855 \macro{\_POSIX\_SOURCE} risultasse non definita (ed era richiesto di inserire
6856 una istruzione \texttt{\#undef \_POSIX\_SOURCE} prima di includere
6857 \headfile{sys/capability.h}) requisito che non risulta più
6858 presente.\footnote{e non è chiaro neanche quanto sia mai stato davvero
6859   necessario.}
6860
6861 Si tenga presente che le strutture di fig.~\ref{fig:cap_kernel_struct}, come i
6862 prototipi delle due funzioni \func{capget} e \func{capset}, sono soggette ad
6863 essere modificate con il cambiamento del kernel (in particolare i tipi di dati
6864 delle strutture) ed anche se finora l'interfaccia è risultata stabile, non c'è
6865 nessuna assicurazione che questa venga mantenuta,\footnote{viene però
6866   garantito che le vecchie funzioni continuino a funzionare.} Pertanto se si
6867 vogliono scrivere programmi portabili che possano essere eseguiti senza
6868 modifiche o adeguamenti su qualunque versione del kernel è opportuno
6869 utilizzare le interfacce di alto livello che vedremo più avanti.
6870
6871 \begin{figure}[!htb]
6872   \footnotesize
6873   \centering
6874   \begin{minipage}[c]{\textwidth}
6875     \includestruct{listati/cap_user_header_t.h}
6876   \end{minipage} 
6877   \normalsize 
6878   \caption{Definizione delle strutture a cui fanno riferimento i puntatori
6879     \structd{cap\_user\_header\_t} e \structd{cap\_user\_data\_t} usati per
6880     l'interfaccia di gestione di basso livello delle \textit{capabilities}.}
6881   \label{fig:cap_kernel_struct}
6882 \end{figure}
6883
6884 La struttura a cui deve puntare l'argomento \param{hdrp} serve ad indicare,
6885 tramite il campo \var{pid}, il PID del processo del quale si vogliono leggere
6886 o modificare le \textit{capabilities}. Con \func{capset} questo, se si usano
6887 le \textit{file capabilities}, può essere solo 0 o PID del processo chiamante,
6888 che sono equivalenti. Il campo \var{version} deve essere impostato al valore
6889 della versione delle stesse usata dal kernel (quello indicato da una delle
6890 costanti \texttt{\_LINUX\_CAPABILITY\_VERSION\_n} di
6891 fig.~\ref{fig:cap_kernel_struct}) altrimenti le funzioni ritorneranno con un
6892 errore di \errcode{EINVAL}, restituendo nel campo stesso il valore corretto
6893 della versione in uso. La versione due è comunque deprecata e non deve essere
6894 usata (il kernel stamperà un avviso). I valori delle \textit{capabilities}
6895 devono essere passati come maschere binarie;\footnote{e si tenga presente che
6896   i valori di tab.~\ref{tab:proc_capabilities} non possono essere combinati
6897   direttamente, indicando il numero progressivo del bit associato alla
6898   relativa capacità.} con l'introduzione delle \textit{capabilities} a 64 bit
6899 inoltre il puntatore \param{datap} non può essere più considerato come
6900 relativo ad una singola struttura, ma ad un vettore di due
6901 strutture.\footnote{è questo cambio di significato che ha portato a deprecare
6902   la versione 2, che con \func{capget} poteva portare ad un buffer overflow
6903   per vecchie applicazioni che continuavano a considerare \param{datap} come
6904   puntatore ad una singola struttura.}
6905
6906 Dato che le precedenti funzioni, oltre ad essere specifiche di Linux, non
6907 garantiscono la stabilità nell'interfaccia, è sempre opportuno effettuare la
6908 gestione delle \textit{capabilities} utilizzando le funzioni di libreria a
6909 questo dedicate. Queste funzioni, che seguono quanto previsto nelle bozze
6910 dello standard POSIX.1e, non fanno parte della \acr{glibc} e sono fornite in
6911 una libreria a parte,\footnote{la libreria è \texttt{libcap2}, nel caso di
6912   Debian può essere installata con il pacchetto omonimo.} pertanto se un
6913 programma le utilizza si dovrà indicare esplicitamente l'uso della suddetta
6914 libreria attraverso l'opzione \texttt{-lcap} del compilatore.
6915
6916 Le funzioni dell'interfaccia delle bozze di POSIX.1e prevedono l'uso di un
6917 \index{tipo!opaco} tipo di dato opaco, \type{cap\_t}, come puntatore ai dati
6918 mantenuti nel cosiddetto \textit{capability state},\footnote{si tratta in
6919   sostanza di un puntatore ad una struttura interna utilizzata dalle librerie,
6920   i cui campi non devono mai essere acceduti direttamente.} in sono
6921 memorizzati tutti i dati delle \textit{capabilities}. In questo modo è
6922 possibile mascherare i dettagli della gestione di basso livello, che potranno
6923 essere modificati senza dover cambiare le funzioni dell'interfaccia, che
6924 faranno riferimento soltanto ad oggetti di questo tipo.  L'interfaccia
6925 pertanto non soltanto fornisce le funzioni per modificare e leggere le
6926 \textit{capabilities}, ma anche quelle per gestire i dati attraverso
6927 \type{cap\_t}.
6928
6929 La prima funzione dell'interfaccia è quella che permette di inizializzare un
6930 \textit{capability state}, allocando al contempo la memoria necessaria per i
6931 relativi dati. La funzione è \funcd{cap\_init} ed il suo prototipo è:
6932 \begin{functions}
6933   \headdecl{sys/capability.h}
6934
6935   \funcdecl{cap\_t cap\_init(void)} 
6936   Crea ed inizializza un \textit{capability state}.
6937   
6938   \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
6939     \val{NULL} in caso di errore, nel qual caso \var{errno} assumerà il
6940     valore \errval{ENOMEM}.
6941   }
6942 \end{functions}
6943
6944 La funzione restituisce il puntatore \type{cap\_t} ad uno stato inizializzato
6945 con tutte le \textit{capabilities} azzerate. In caso di errore (cioè quando
6946 non c'è memoria sufficiente ad allocare i dati) viene restituito \val{NULL}
6947 ed \var{errno} viene impostata a \errval{ENOMEM}.  La memoria necessaria a
6948 mantenere i dati viene automaticamente allocata da \func{cap\_init}, ma dovrà
6949 essere disallocata esplicitamente quando non è più necessaria utilizzando, per
6950 questo l'interfaccia fornisce una apposita funzione, \funcd{cap\_free}, il cui
6951 prototipo è:
6952 \begin{functions}
6953   \headdecl{sys/capability.h}
6954
6955   \funcdecl{int cap\_free(void *obj\_d)} 
6956   Disalloca la memoria allocata per i dati delle \textit{capabilities}.
6957   
6958   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
6959     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
6960   }
6961 \end{functions}
6962
6963 La funzione permette di liberare la memoria allocata dalle altre funzioni
6964 della libreria sia per un \textit{capability state}, nel qual caso l'argomento
6965 dovrà essere un dato di tipo \type{cap\_t}, che per una descrizione testuale
6966 dello stesso,\footnote{cioè quanto ottenuto tramite la funzione
6967   \func{cap\_to\_text}.} nel qual caso l'argomento dovrà essere un dato di
6968 tipo \texttt{char *}. Per questo motivo l'argomento \param{obj\_d} è
6969 dichiarato come \texttt{void *} e deve sempre corrispondere ad un puntatore
6970 ottenuto tramite le altre funzioni della libreria, altrimenti la funzione
6971 fallirà con un errore di \errval{EINVAL}.
6972
6973 Infine si può creare una copia di un \textit{capability state} ottenuto in
6974 precedenza tramite la funzione \funcd{cap\_dup}, il cui prototipo è:
6975 \begin{functions}
6976   \headdecl{sys/capability.h}
6977
6978   \funcdecl{cap\_t cap\_dup(cap\_t cap\_p)} 
6979   Duplica un \textit{capability state} restituendone una copia.
6980   
6981   \bodydesc{La funzione ritorna un valore non nullo in caso di successo e
6982     \val{NULL} in caso di errore, nel qual caso \var{errno} potrà assumere i
6983     valori \errval{ENOMEM} o \errval{EINVAL}.  
6984   }
6985 \end{functions}
6986
6987 La funzione crea una copia del \textit{capability state} posto all'indirizzo
6988 \param{cap\_p} che si è passato come argomento, restituendo il puntatore alla
6989 copia, che conterrà gli stessi valori delle \textit{capabilities} presenti
6990 nell'originale. La memoria necessaria viene allocata automaticamente dalla
6991 funzione. Una volta effettuata la copia i due \textit{capability state}
6992 potranno essere modificati in maniera completamente
6993 indipendente.\footnote{alla fine delle operazioni si ricordi però di
6994   disallocare anche la copia, oltre all'originale. }
6995
6996 Una seconda classe di funzioni di servizio previste dall'interfaccia sono
6997 quelle per la gestione dei dati contenuti all'interno di un \textit{capability
6998   state}; la prima di queste è \funcd{cap\_clear}, il cui prototipo è:
6999 \begin{functions}
7000   \headdecl{sys/capability.h}
7001
7002   \funcdecl{int cap\_clear(cap\_t cap\_p)} 
7003   Inizializza un \textit{capability state} cancellando tutte le
7004   \textit{capabilities}.
7005   
7006   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
7007     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
7008   }
7009 \end{functions}
7010
7011 La funzione si limita ad azzerare tutte le \textit{capabilities} presenti nel
7012 \textit{capability state} all'indirizzo \param{cap\_p} passato come argomento,
7013 restituendo uno stato \textsl{vuoto}, analogo a quello che si ottiene nella
7014 creazione con \func{cap\_init}.
7015
7016 \begin{table}[htb]
7017   \centering
7018   \footnotesize
7019   \begin{tabular}[c]{|l|l|}
7020     \hline
7021     \textbf{Valore} & \textbf{Significato} \\
7022     \hline
7023     \hline
7024     \const{CAP\_EFFECTIVE}  & Capacità dell'insieme \textsl{effettivo}.\\
7025     \const{CAP\_PERMITTED}  & Capacità dell'insieme \textsl{permesso}.\\ 
7026     \const{CAP\_INHERITABLE}& Capacità dell'insieme \textsl{ereditabile}.\\
7027     \hline
7028   \end{tabular}
7029   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_t} che
7030     identifica gli insiemi delle \textit{capabilities}.}
7031   \label{tab:cap_set_identifier}
7032 \end{table}
7033
7034 Una variante di \func{cap\_clear} è \funcd{cap\_clear\_flag} che cancella da
7035 un \textit{capability state} tutte le \textit{capabilities} di un certo
7036 insieme fra quelli di pag.~\pageref{sec:capabilities_set}, il suo prototipo
7037 è:
7038 \begin{functions}
7039   \headdecl{sys/capability.h}
7040
7041   \funcdecl{int cap\_clear\_flag(cap\_t cap\_p, cap\_flag\_t flag)} 
7042
7043   Cancella dal \textit{capability state} \param{cap\_p} tutte le
7044   \textit{capabilities} dell'insieme \param{flag}.
7045   
7046   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
7047     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.  }
7048 \end{functions}
7049
7050 La funzione richiede che si indichi quale degli insiemi si intente cancellare
7051 con l'argomento \param{flag}. Questo deve essere specificato con una variabile
7052 di tipo \type{cap\_flag\_t} che può assumere esclusivamente\footnote{si tratta
7053   in effetti di un tipo enumerato, come si può verificare dalla sua
7054   definizione che si trova in \headfile{sys/capability.h}.} uno dei valori
7055 illustrati in tab.~\ref{tab:cap_set_identifier}.
7056
7057 Si possono inoltre confrontare in maniera diretta due diversi
7058 \textit{capability state} con la funzione \funcd{cap\_compare}; il suo
7059 prototipo è:
7060 \begin{functions}
7061   \headdecl{sys/capability.h}
7062   \funcdecl{int cap\_compare(cap\_t cap\_a, cap\_t cap\_b)}
7063
7064   Confronta due \textit{capability state}.
7065   
7066   \bodydesc{La funzione ritorna 0 se i \textit{capability state} sono identici
7067     ed un valore positivo se differiscono, non sono previsti errori.}
7068 \end{functions}
7069
7070 La funzione esegue un confronto fra i due \textit{capability state} passati
7071 come argomenti e ritorna in un valore intero il risultato, questo è nullo se
7072 sono identici o positivo se vi sono delle differenze. Il valore di ritorno
7073 della funzione consente inoltre di per ottenere ulteriori informazioni su
7074 quali sono gli insiemi di \textit{capabilities} che risultano differenti.  Per
7075 questo si può infatti usare la apposita macro \macro{CAP\_DIFFERS}:
7076 \begin{functions}
7077   \funcdecl{int CAP\_DIFFERS(value, flag)} Controlla lo stato di eventuali
7078   differenze delle \textit{capabilities} nell'insieme \texttt{flag}.
7079 \end{functions}
7080
7081 La macro che richiede si passi nell'argomento \texttt{value} il risultato
7082 della funzione \func{cap\_compare} e in \texttt{flag} l'indicazione (coi
7083 valori di tab.~\ref{tab:cap_set_identifier}) dell'insieme che si intende
7084 controllare; restituirà un valore diverso da zero se le differenze rilevate da
7085 \func{cap\_compare} sono presenti nell'insieme indicato.
7086
7087 Per la gestione dei singoli valori delle \textit{capabilities} presenti in un
7088 \textit{capability state} l'interfaccia prevede due funzioni specifiche,
7089 \funcd{cap\_get\_flag} e \funcd{cap\_set\_flag}, che permettono
7090 rispettivamente di leggere o impostare il valore di una capacità all'interno
7091 in uno dei tre insiemi già citati; i rispettivi prototipi sono:
7092 \begin{functions}
7093   \headdecl{sys/capability.h}
7094
7095   \funcdecl{int cap\_get\_flag(cap\_t cap\_p, cap\_value\_t cap, cap\_flag\_t
7096     flag, cap\_flag\_value\_t *value\_p)}
7097   Legge il valore di una \textit{capability}.
7098
7099   \funcdecl{int cap\_set\_flag(cap\_t cap\_p, cap\_flag\_t flag, int ncap,
7100     cap\_value\_t *caps, cap\_flag\_value\_t value)} 
7101   Imposta il valore di una \textit{capability}.
7102   
7103   \bodydesc{Le funzioni ritornano 0 in caso di successo e $-1$ in caso di
7104     errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}.
7105 }
7106 \end{functions}
7107
7108 In entrambe le funzioni l'argomento \param{cap\_p} indica il puntatore al
7109 \textit{capability state} su cui operare, mentre l'argomento \param{flag}
7110 indica su quale dei tre insiemi si intende operare, sempre con i valori di
7111 tab.~\ref{tab:cap_set_identifier}.
7112
7113 La capacità che si intende controllare o impostare invece deve essere
7114 specificata attraverso una variabile di tipo \type{cap\_value\_t}, che può
7115 prendere come valore uno qualunque di quelli riportati in
7116 tab.~\ref{tab:proc_capabilities}, in questo caso però non è possibile
7117 combinare diversi valori in una maschera binaria, una variabile di tipo
7118 \type{cap\_value\_t} può indicare una sola capacità.\footnote{in
7119   \headfile{sys/capability.h} il tipo \type{cap\_value\_t} è definito come
7120   \ctyp{int}, ma i valori validi sono soltanto quelli di
7121   tab.~\ref{tab:proc_capabilities}.}
7122
7123 Infine lo stato di una capacità è descritto ad una variabile di tipo
7124 \type{cap\_flag\_value\_t}, che a sua volta può assumere soltanto
7125 uno\footnote{anche questo è un tipo enumerato.} dei valori di
7126 tab.~\ref{tab:cap_value_type}.
7127
7128 \begin{table}[htb]
7129   \centering
7130   \footnotesize
7131   \begin{tabular}[c]{|l|l|}
7132     \hline
7133     \textbf{Valore} & \textbf{Significato} \\
7134     \hline
7135     \hline
7136     \const{CAP\_CLEAR}& La capacità non è impostata.\\ 
7137     \const{CAP\_SET}  & La capacità è impostata.\\
7138     \hline
7139   \end{tabular}
7140   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_value\_t} che
7141     indica lo stato di una capacità.}
7142   \label{tab:cap_value_type}
7143 \end{table}
7144
7145 La funzione \func{cap\_get\_flag} legge lo stato della capacità indicata
7146 dall'argomento \param{cap} all'interno dell'insieme indicato dall'argomento
7147 \param{flag} lo restituisce nella variabile puntata
7148 dall'argomento \param{value\_p}. Questa deve essere di tipo
7149 \type{cap\_flag\_value\_t} ed assumerà uno dei valori di
7150 tab.~\ref{tab:cap_value_type}. La funzione consente pertanto di leggere solo
7151 lo stato di una capacità alla volta.
7152
7153 La funzione \func{cap\_set\_flag} può invece impostare in una sola chiamata
7154 più \textit{capabilities}, anche se solo all'interno dello stesso insieme ed
7155 allo stesso valore. Per questo motivo essa prende un vettore di valori di tipo
7156 \type{cap\_value\_t} nell'argomento \param{caps}, la cui dimensione viene
7157 specificata dall'argomento \param{ncap}. Il tipo di impostazione da eseguire
7158 (cancellazione o impostazione) per le capacità elencate in \param{caps} viene
7159 indicato dall'argomento \param{value} sempre con i valori di
7160 tab.~\ref{tab:cap_value_type}.
7161
7162 Per semplificare la gestione delle \textit{capabilities} l'interfaccia prevede
7163 che sia possibile utilizzare anche una rappresentazione testuale del contenuto
7164 di un \textit{capability state} e fornisce le opportune funzioni di
7165 gestione;\footnote{entrambe erano previste dalla bozza dello standard
7166   POSIX.1e.} la prima di queste, che consente di ottenere la rappresentazione
7167 testuale, è \funcd{cap\_to\_text}, il cui prototipo è:
7168 \begin{functions}
7169   \headdecl{sys/capability.h}
7170
7171   \funcdecl{char * cap\_to\_text(cap\_t caps, ssize\_t * length\_p)}
7172
7173   Genera una visualizzazione testuale delle \textit{capabilities}.
7174   
7175   \bodydesc{La funzione ritorna un puntatore alla stringa con la descrizione
7176     delle \textit{capabilities} in caso di successo e \val{NULL} in caso di
7177     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL} o
7178     \errval{ENOMEM}.
7179   }
7180 \end{functions}
7181
7182 La funzione ritorna l'indirizzo di una stringa contente la descrizione
7183 testuale del contenuto del \textit{capability state} \param{caps} passato come
7184 argomento, e, qualora l'argomento \param{length\_p} sia diverso da \val{NULL},
7185 restituisce nella variabile intera da questo puntata la lunghezza della
7186 stringa. La stringa restituita viene allocata automaticamente dalla funzione e
7187 pertanto dovrà essere liberata con \func{cap\_free}.
7188
7189 La rappresentazione testuale, che viene usata anche di programmi di gestione a
7190 riga di comando, prevede che lo stato venga rappresentato con una stringa di
7191 testo composta da una serie di proposizioni separate da spazi, ciascuna delle
7192 quali specifica una operazione da eseguire per creare lo stato finale. Nella
7193 rappresentazione si fa sempre conto di partire da uno stato in cui tutti gli
7194 insiemi sono vuoti e si provvede a impostarne i contenuti.
7195
7196 Ciascuna proposizione è nella forma di un elenco di capacità, espresso con i
7197 nomi di tab.~\ref{tab:proc_capabilities} separati da virgole, seguito da un
7198 operatore, e dall'indicazione degli insiemi a cui l'operazione si applica. I
7199 nomi delle capacità possono essere scritti sia maiuscoli che minuscoli, viene
7200 inoltre riconosciuto il nome speciale \texttt{all} che è equivalente a
7201 scrivere la lista completa. Gli insiemi sono identificati dalle tre lettere
7202 iniziali: ``\texttt{p}'' per il \textit{permitted}, ``\texttt{i}'' per
7203 l'\textit{inheritable} ed ``\texttt{e}'' per l'\textit{effective} che devono
7204 essere sempre minuscole e se ne può indicare più di uno.
7205
7206 Gli operatori possibili sono solo tre: ``\texttt{+}'' che aggiunge le capacità
7207 elencate agli insiemi indicati, ``\texttt{-}'' che le toglie e ``\texttt{=}''
7208 che le assegna esattamente. I primi due richiedono che sia sempre indicato sia
7209 un elenco di capacità che gli insiemi a cui esse devono applicarsi, e
7210 rispettivamente attiveranno o disattiveranno le capacità elencate nell'insieme
7211 o negli insiemi specificati, ignorando tutto il resto. I due operatori possono
7212 anche essere combinati nella stessa proposizione, per aggiungere e togliere le
7213 capacità dell'elenco da insiemi diversi.
7214
7215 L'assegnazione si applica invece su tutti gli insiemi allo stesso tempo,
7216 pertanto l'uso di ``\texttt{=}'' è equivalente alla cancellazione preventiva
7217 di tutte le capacità ed alla impostazione di quelle elencate negli insiemi
7218 specificati, questo significa che in genere lo si usa una sola volta
7219 all'inizio della stringa. In tal caso l'elenco delle capacità può non essere
7220 indicato e viene assunto che si stia facendo riferimento a tutte quante senza
7221 doverlo scrivere esplicitamente.
7222
7223 Come esempi avremo allora che un processo non privilegiato di un utente, che
7224 non ha nessuna capacità attiva, avrà una rappresentazione nella forma
7225 ``\texttt{=}'' che corrisponde al fatto che nessuna capacità viene assegnata a
7226 nessun insieme (vale la cancellazione preventiva), mentre un processo con
7227 privilegi di amministratore avrà una rappresentazione nella forma
7228 ``\texttt{=ep}'' in cui tutte le capacità vengono assegnate agli insiemi
7229 \textit{permitted} ed \textit{effective} (e l'\textit{inheritable} è ignorato
7230 in quanto per le regole viste a pag.~\ref{sec:capability-uid-transition} le
7231 capacità verranno comunque attivate attraverso una \func{exec}). Infine, come
7232 esempio meno banale dei precedenti, otterremo per \texttt{init} una
7233 rappresentazione nella forma ``\texttt{=ep cap\_setpcap-e}'' dato che come
7234 accennato tradizionalmente \const{CAP\_SETPCAP} è sempre stata rimossa da
7235 detto processo.
7236
7237 Viceversa per passare ottenere un \textit{capability state} dalla sua
7238 rappresentazione testuale si può usare \funcd{cap\_from\_text}, il cui
7239 prototipo è:
7240 \begin{functions}
7241   \headdecl{sys/capability.h}
7242
7243   \funcdecl{cap\_t cap\_from\_text(const char *string)}
7244
7245   Crea un \textit{capability state} dalla sua rappresentazione testuale.
7246
7247   \bodydesc{La funzione ritorna un puntatore valido in caso di successo e
7248     \val{NULL} in caso di errore, nel qual caso \var{errno} può assumere i
7249     valori \errval{EINVAL} o \errval{ENOMEM}.}
7250 \end{functions}
7251
7252 La funzione restituisce il puntatore ad un \textit{capability state}
7253 inizializzato con i valori indicati nella stringa \param{string} che ne
7254 contiene la rappresentazione testuale. La memoria per il \textit{capability
7255   state} viene allocata automaticamente dalla funzione e dovrà essere liberata
7256 con \func{cap\_free}.
7257
7258 Alle due funzioni citate se ne aggiungono altre due che consentono di
7259 convertire i valori delle costanti di tab.~\ref{tab:proc_capabilities} nelle
7260 stringhe usate nelle rispettive rappresentazioni e viceversa. Le due funzioni,
7261 \funcd{cap\_to\_name} e \funcd{cap\_from\_name}, sono estensioni specifiche di
7262 Linux ed i rispettivi prototipi sono:
7263 \begin{functions}
7264   \headdecl{sys/capability.h}
7265
7266   \funcdecl{char * cap\_to\_name(cap\_value\_t cap)}
7267   \funcdecl{int cap\_from\_name(const char *name, cap\_value\_t *cap\_p)}
7268   Convertono le \textit{capabilities} dalle costanti alla rappresentazione
7269   testuale e viceversa.
7270   
7271   \bodydesc{La funzione \func{cap\_to\_name} ritorna un valore diverso da
7272     \val{NULL} in caso di successo e \val{NULL} in caso di errore, mentre
7273     \func{cap\_to\_name} ritorna rispettivamente 0 e $-1$; per entrambe in
7274     caso di errore \var{errno} può assumere i valori \errval{EINVAL} o
7275     \errval{ENOMEM}.  }
7276 \end{functions}
7277
7278 La prima funzione restituisce la stringa (allocata automaticamente e che dovrà
7279 essere liberata con \func{cap\_free}) che corrisponde al valore della
7280 capacità \param{cap}, mentre la seconda restituisce nella variabile puntata
7281 da \param{cap\_p} il valore della capacità rappresentata dalla
7282 stringa \param{name}.
7283
7284 Fin quei abbiamo trattato solo le funzioni di servizio relative alla
7285 manipolazione dei \textit{capability state} come strutture di dati;
7286 l'interfaccia di gestione prevede però anche le funzioni per trattare le
7287 \textit{capabilities} presenti nei processi. La prima di queste funzioni è
7288 \funcd{cap\_get\_proc} che consente la lettura delle \textit{capabilities} del
7289 processo corrente, il suo prototipo è:
7290 \begin{functions}
7291   \headdecl{sys/capability.h}
7292
7293   \funcdecl{cap\_t cap\_get\_proc(void)}
7294   Legge le \textit{capabilities} del processo corrente.
7295   
7296   \bodydesc{La funzione ritorna un valore diverso da \val{NULL} in caso di
7297     successo e \val{NULL} in caso di errore, nel qual caso \var{errno} può
7298     assumere i valori \errval{EINVAL}, \errval{EPERM} o \errval{ENOMEM}.  }
7299 \end{functions}
7300
7301 La funzione legge il valore delle \textit{capabilities} associate al processo
7302 da cui viene invocata, restituendo il risultato tramite il puntatore ad un
7303 \textit{capability state} contenente tutti i dati che provvede ad allocare
7304 autonomamente e che di nuovo occorrerà liberare con \func{cap\_free} quando
7305 non sarà più utilizzato.
7306
7307 Se invece si vogliono leggere le \textit{capabilities} di un processo
7308 specifico occorre usare la funzione \funcd{capgetp}, il cui
7309 prototipo\footnote{su alcune pagine di manuale la funzione è descritta con un
7310   prototipo sbagliato, che prevede un valore di ritorno di tipo \type{cap\_t},
7311   ma il valore di ritorno è intero, come si può verificare anche dalla
7312   dichiarazione della stessa in \headfile{sys/capability.h}.} è:
7313 \begin{functions}
7314   \headdecl{sys/capability.h}
7315
7316   \funcdecl{int capgetp(pid\_t pid, cap\_t cap\_d)}
7317   Legge le \textit{capabilities} del processo indicato da \param{pid}.
7318   
7319   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
7320     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
7321     \errval{EPERM} o \errval{ENOMEM}.  
7322   }
7323 \end{functions}
7324 %TODO controllare e correggere i codici di errore!!!
7325
7326 La funzione legge il valore delle \textit{capabilities} del processo indicato
7327 con l'argomento \param{pid}, e restituisce il risultato nel \textit{capability
7328   state} posto all'indirizzo indicato con l'argomento
7329 \param{cap\_d}; a differenza della precedente in questo caso il
7330 \textit{capability state} deve essere stato creato in precedenza. Qualora il
7331 processo indicato non esista si avrà un errore di \errval{ESRCH}. Gli stessi
7332 valori possono essere letti direttamente nel filesystem \textit{proc}, nei
7333 file \texttt{/proc/<pid>/status}; ad esempio per \texttt{init} si otterrà
7334 qualcosa del tipo:
7335 \begin{Verbatim}
7336 ...
7337 CapInh: 0000000000000000
7338 CapPrm: 00000000fffffeff
7339 CapEff: 00000000fffffeff  
7340 ...
7341 \end{Verbatim}
7342
7343 Infine per impostare le \textit{capabilities} del processo corrente (non
7344 esiste una funzione che permetta di cambiare le \textit{capabilities} di un
7345 altro processo) si deve usare la funzione \funcd{cap\_set\_proc}, il cui
7346 prototipo è:
7347 \begin{functions}
7348   \headdecl{sys/capability.h}
7349
7350   \funcdecl{int cap\_set\_proc(cap\_t cap\_p)}
7351   Imposta le \textit{capabilities} del processo corrente.
7352   
7353   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di
7354     errore, nel qual caso \var{errno} può assumere i valori \errval{EINVAL},
7355     \errval{EPERM} o \errval{ENOMEM}.  
7356   }
7357 \end{functions}
7358
7359 La funzione modifica le \textit{capabilities} del processo corrente secondo
7360 quanto specificato con l'argomento \param{cap\_p}, posto che questo sia
7361 possibile nei termini spiegati in precedenza (non sarà ad esempio possibile
7362 impostare capacità non presenti nell'insieme di quelle permesse). In caso di
7363 successo i nuovi valori saranno effettivi al ritorno della funzione, in caso
7364 di fallimento invece lo stato delle capacità resterà invariato. Si tenga
7365 presente che \textsl{tutte} le capacità specificate tramite \param{cap\_p}
7366 devono essere permesse; se anche una sola non lo è la funzione fallirà, e per
7367 quanto appena detto, lo stato delle \textit{capabilities} non verrà modificato
7368 (neanche per le parti eventualmente permesse).
7369
7370 Come esempio di utilizzo di queste funzioni nei sorgenti allegati alla guida
7371 si è distribuito il programma \texttt{getcap.c}, che consente di leggere le
7372 \textit{capabilities} del processo corrente\footnote{vale a dire di sé stesso,
7373   quando lo si lancia, il che può sembrare inutile, ma serve a mostrarci quali
7374   sono le \textit{capabilities} standard che ottiene un processo lanciato
7375   dalla riga di comando.} o tramite l'opzione \texttt{-p}, quelle di un
7376 processo qualunque il cui pid viene passato come parametro dell'opzione.
7377
7378 \begin{figure}[!htbp]
7379   \footnotesize \centering
7380   \begin{minipage}[c]{\codesamplewidth}
7381     \includecodesample{listati/getcap.c}
7382   \end{minipage} 
7383   \normalsize
7384   \caption{Corpo principale del programma \texttt{getcap.c}.}
7385   \label{fig:proc_getcap}
7386 \end{figure}
7387
7388 La sezione principale del programma è riportata in fig.~\ref{fig:proc_getcap},
7389 e si basa su una condizione sulla variabile \var{pid} che se si è usato
7390 l'opzione \texttt{-p} è impostata (nella sezione di gestione delle opzioni,
7391 che si è tralasciata) al valore del \textsl{pid} del processo di cui si vuole
7392 leggere le \textit{capabilities} e nulla altrimenti. Nel primo caso
7393 (\texttt{\small 1--6}) si utilizza direttamente (\texttt{\small 2})
7394 \func{cap\_get\_proc} per ottenere lo stato delle capacità del processo, nel
7395 secondo (\texttt{\small 7--14}) prima si inizializza (\texttt{\small 8}) uno
7396 stato vuoto e poi (\texttt{\small 9}) si legge il valore delle capacità del
7397 processo indicato.
7398
7399 Il passo successivo è utilizzare (\texttt{\small 16}) \func{cap\_to\_text} per
7400 tradurre in una stringa lo stato, e poi (\texttt{\small 17}) stamparlo; infine
7401 (\texttt{\small 19--20}) si libera la memoria allocata dalle precedenti
7402 funzioni con \func{cap\_free} per poi ritornare dal ciclo principale della
7403 funzione.
7404
7405 \itindend{capabilities}
7406
7407 % TODO vedi http://lwn.net/Articles/198557/ e 
7408 % http://www.madore.org/~david/linux/newcaps/
7409
7410
7411
7412 \subsection{La gestione dei {chroot}}
7413 \label{sec:file_chroot}
7414
7415 % TODO introdurre nuova sezione sulle funzionalità di sicurezza avanzate, con
7416 % dentro chroot SELinux e AppArmor, Tomoyo, Smack, cgroup o che altro ???
7417
7418 % inserire setns (introdotta con il 3.0, vedi http://lwn.net/Articles/407495/)
7419 % e le funzionalità di isolamento dei container
7420
7421 Benché non abbia niente a che fare con permessi, utenti e gruppi, la funzione
7422 \func{chroot} viene usata spesso per restringere le capacità di accesso di un
7423 programma ad una sezione limitata del filesystem, per cui ne parleremo in
7424 questa sezione.
7425
7426 % TODO riferimenti ai bind mount, link simbolici ecc.
7427
7428 Come accennato in sez.~\ref{sec:proc_fork} ogni processo oltre ad una
7429 \index{directory~di~lavoro} directory di lavoro, ha anche una directory
7430 \textsl{radice}\footnote{entrambe sono contenute in due campi (rispettivamente
7431   \var{pwd} e \var{root}) di \kstruct{fs\_struct}; vedi
7432   fig.~\ref{fig:proc_task_struct}.} che, pur essendo di norma corrispondente
7433 alla radice dell'albero di file e directory come visto dal kernel (ed
7434 illustrato in sez.~\ref{sec:file_pathname}), ha per il processo il significato
7435 specifico di directory rispetto alla quale vengono risolti i
7436 \itindsub{pathname}{assoluto}\textit{pathname} assoluti.\footnote{cioè quando
7437   un processo chiede la risoluzione di un \textit{pathname}, il kernel usa
7438   sempre questa directory come punto di partenza.} Il fatto che questo valore
7439 sia specificato per ogni processo apre allora la possibilità di modificare le
7440 modalità di risoluzione dei \textit{pathname} assoluti da parte di un processo
7441 cambiando questa directory, così come si fa coi
7442 \itindsub{pathname}{relativo}\textit{pathname} relativi cambiando la
7443 \index{directory~di~lavoro} directory di lavoro.
7444
7445 Normalmente la directory radice di un processo coincide anche con la radice
7446 del filesystem usata dal kernel, e dato che il suo valore viene ereditato dal
7447 padre da ogni processo figlio, in generale i processi risolvono i
7448 \itindsub{pathname}{assoluto} \textit{pathname} assoluti a partire sempre
7449 dalla stessa directory, che corrisponde alla radice del sistema.
7450
7451 In certe situazioni però è utile poter impedire che un processo possa accedere
7452 a tutto il filesystem; per far questo si può cambiare la sua directory radice
7453 con la funzione \funcd{chroot}, il cui prototipo è:
7454 \begin{prototype}{unistd.h}{int chroot(const char *path)}
7455   Cambia la directory radice del processo a quella specificata da
7456   \param{path}.
7457   
7458 \bodydesc{La funzione restituisce zero in caso di successo e -1 per
7459     un errore, in caso di errore \var{errno} può assumere i valori:
7460   \begin{errlist}
7461   \item[\errcode{EPERM}] l'\ids{UID} effettivo del processo non è zero.
7462   \end{errlist}
7463   ed inoltre \errval{EFAULT}, \errval{ENAMETOOLONG}, \errval{ENOENT},
7464   \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EACCES}, \errval{ELOOP};
7465   \errval{EROFS} e \errval{EIO}.}
7466 \end{prototype}
7467 \noindent in questo modo la directory radice del processo diventerà
7468 \param{path} (che ovviamente deve esistere) ed ogni
7469 \itindsub{pathname}{assoluto}\textit{pathname} assoluto usato dalle funzioni
7470 chiamate nel processo sarà risolto a partire da essa, rendendo impossibile
7471 accedere alla parte di albero sovrastante.  Si ha così quella che viene
7472 chiamata una \textit{chroot jail}, in quanto il processo non può più accedere
7473 a file al di fuori della sezione di albero in cui è stato
7474 \textsl{imprigionato}. 
7475
7476 Solo un processo con i privilegi di amministratore può usare questa funzione,
7477 e la nuova radice, per quanto detto in sez.~\ref{sec:proc_fork}, sarà ereditata
7478 da tutti i suoi processi figli. Si tenga presente però che la funzione non
7479 cambia la directory di lavoro, che potrebbe restare fuori dalla \textit{chroot
7480   jail}.
7481
7482 Questo è il motivo per cui la funzione è efficace solo se dopo averla eseguita
7483 si cedono i privilegi di root. Infatti se per un qualche motivo il processo
7484 resta con \index{directory~di~lavoro} la directory di lavoro fuori dalla
7485 \textit{chroot jail}, potrà comunque accedere a tutto il resto del filesystem
7486 usando \itindsub{pathname}{relativo}\textit{pathname} relativi, i quali,
7487 partendo dalla directory di lavoro che è fuori della \textit{chroot jail},
7488 potranno (con l'uso di ``\texttt{..}'') risalire fino alla radice effettiva
7489 del filesystem.
7490
7491 Ma se ad un processo restano i privilegi di amministratore esso potrà comunque
7492 portare la sua \index{directory~di~lavoro} directory di lavoro fuori dalla
7493 \textit{chroot jail} in cui si trova. Basta infatti creare una nuova
7494 \textit{chroot jail} con l'uso di \func{chroot} su una qualunque directory
7495 contenuta nell'attuale directory di lavoro.  Per questo motivo l'uso di questa
7496 funzione non ha molto senso quando un processo necessita dei privilegi di root
7497 per le sue normali operazioni.
7498
7499 Un caso tipico di uso di \func{chroot} è quello di un server FTP anonimo, in
7500 questo caso infatti si vuole che il server veda solo i file che deve
7501 trasferire, per cui in genere si esegue una \func{chroot} sulla directory che
7502 contiene i file.  Si tenga presente però che in questo caso occorrerà
7503 replicare all'interno della \textit{chroot jail} tutti i file (in genere
7504 programmi e librerie) di cui il server potrebbe avere bisogno.
7505
7506
7507
7508
7509 % TODO: trattare la funzione setns e i namespace file descriptors (vedi
7510 % http://lwn.net/Articles/407495/) introdotti con il kernel 3.0
7511
7512 % TODO: spostare chroot e le funzioni affini relative ai container da qualche
7513 % parte diversa se è il caso. 
7514
7515 % LocalWords:  sez like filesystem unlink MacOS Windows VMS inode kernel unistd
7516 % LocalWords:  int const char oldpath newpath errno EXDEV EPERM st Smack SysV
7517 % LocalWords:  EEXIST EMLINK EACCES ENAMETOOLONG ENOTDIR EFAULT ENOMEM EROFS ls
7518 % LocalWords:  ELOOP ENOSPC EIO pathname nlink stat vfat fsck EISDIR ENOENT cap
7519 % LocalWords:  POSIX socket fifo sticky root system call count crash init linux
7520 % LocalWords:  descriptor remove rename rmdir stdio glibc libc NFS DT obj dup
7521 % LocalWords:  ENOTEMPTY EBUSY mount point EINVAL soft symbolic tab symlink fig
7522 % LocalWords:  dangling access chdir chmod chown creat exec lchown lstat mkdir
7523 % LocalWords:  mkfifo mknod opendir pathconf readlink truncate path buff size
7524 % LocalWords:  grub bootloader grep MAXSYMLINKS cat VFS sys dirname fcntl tv Py
7525 % LocalWords:  dev umask IFREG IFBLK IFCHR IFIFO SVr sgid BSD SVID NULL from to
7526 % LocalWords:  stream dirent EMFILE ENFILE dirfd SOURCE fchdir readdir struct
7527 % LocalWords:  EBADF namlen HAVE thread entry result value argument fileno ext
7528 % LocalWords:  name TYPE OFF RECLEN UNKNOWN REG SOCK CHR BLK type IFTODT DTTOIF
7529 % LocalWords:  DTYPE off reclen seekdir telldir void rewinddir closedir select
7530 % LocalWords:  namelist compar malloc qsort alphasort versionsort strcoll myls
7531 % LocalWords:  strcmp direntry while current working home shell pwd get stddef
7532 % LocalWords:  getcwd ERANGE getwd change fd race condition tmpnam getfacl mark
7533 % LocalWords:  string tmpdir TMP tempnam pfx TMPNAME suid tmp EXCL tmpfile pid
7534 % LocalWords:  EINTR mktemp mkstemp stlib template filename XXXXXX OpenBSD buf
7535 % LocalWords:  mkdtemp fstat filedes nell'header padding ISREG ISDIR ISCHR IFMT
7536 % LocalWords:  ISBLK ISFIFO ISLNK ISSOCK IFSOCK IFLNK IFDIR ISUID UID ISGID GID
7537 % LocalWords:  ISVTX IRUSR IWUSR IXUSR IRGRP IWGRP IXGRP IROTH IWOTH IXOTH  OLD
7538 % LocalWords:  blocks blksize holes lseek TRUNC ftruncate ETXTBSY length QCMD
7539 % LocalWords:  hole atime read utime mtime write ctime modification leafnode cp
7540 % LocalWords:  make fchmod fchown utimbuf times actime modtime Mac owner uid fs
7541 % LocalWords:  gid Control List patch mandatory control execute group other all
7542 % LocalWords:  effective passwd IGID locking swap saved text IRWXU IRWXG subcmd
7543 % LocalWords:  IRWXO capability FSETID mask capabilities chroot jail QUOTAOFF
7544 % LocalWords:  FTP filter Attributes Solaris FreeBSD libacl hash at dqblk SYNC
7545 % LocalWords:  XFS SELinux namespace attribute security trusted Draft Modules
7546 % LocalWords:  attributes mime ADMIN FOWNER libattr lattr getxattr lgetxattr of
7547 % LocalWords:  fgetxattr attr ssize ENOATTR ENOTSUP NUL setxattr lsetxattr list
7548 % LocalWords:  fsetxattr flags XATTR REPLACE listxattr llistxattr flistxattr by
7549 % LocalWords:  removexattr lremovexattr fremovexattr attributename acl GETINFO
7550 % LocalWords:  OBJ setfacl len any prefix separator options NUMERIC IDS SMART
7551 % LocalWords:  INDENT major number IDE Documentation makedev proc copy LNK long
7552 % LocalWords:  euidaccess eaccess delete def tag qualifier permset calendar NOW
7553 % LocalWords:  mutt noatime relatime strictatime atim nsec mtim ctim atimensec
7554 % LocalWords:  mtimensec utimes timeval futimes lutimes ENOSYS futimens OMIT PR
7555 % LocalWords:  utimensat timespec sec futimesat LIDS DAC OVERRIDE SEARCH chattr
7556 % LocalWords:  Discrectionary KILL SETGID domain SETUID setuid setreuid SETPCAP
7557 % LocalWords:  setresuid setfsuid IMMUTABLE immutable append only BIND SERVICE
7558 % LocalWords:  BROADCAST broadcast multicast multicasting RAW PACKET IPC LOCK
7559 % LocalWords:  memory mlock mlockall shmctl mmap MODULE RAWIO ioperm iopl PACCT
7560 % LocalWords:  ptrace accounting NICE RESOURCE TTY CONFIG hangup vhangup dell'
7561 % LocalWords:  LEASE lease SETFCAP AUDIT permitted inherited inheritable AND nn
7562 % LocalWords:  bounding execve fork capget capset header hdrp datap ESRCH undef
7563 % LocalWords:  version libcap lcap clear ncap caps pag capgetp CapInh CapPrm RT
7564 % LocalWords:  fffffeff CapEff getcap scheduling lookup  dqinfo SETINFO GETFMT
7565 % LocalWords:  NEWNS unshare nice NUMA ioctl journaling close XOPEN fdopendir
7566 % LocalWords:  btrfs mkostemp extN ReiserFS JFS Posix usrquota grpquota EDQUOT
7567 % LocalWords:  aquota quotacheck limit grace period quotactl cmd caddr addr dqb
7568 % LocalWords:  QUOTAON ENODEV ENOPKG ENOTBLK GETQUOTA SETQUOTA SETUSE SETQLIM
7569 % LocalWords:  forced allowed sendmail SYSLOG WAKE ALARM CLOCK BOOTTIME dqstats
7570 % LocalWords:  REALTIME securebits GETSTATS QFMT curspace curinodes btime itime
7571 % LocalWords:  QIF BLIMITS bhardlimit bsoftlimit ILIMITS ihardlimit isoftlimit
7572 % LocalWords:  INODES LIMITS USAGE valid dqi IIF BGRACE bgrace IGRACE igrace is
7573 % LocalWords:  Python Truelite Srl quotamodule Repository who nell' dall' KEEP
7574 % LocalWords:  SECURE KEEPCAPS prctl FIXUP NOROOT LOCKED dell'IPC dell'I IOPRIO
7575 % LocalWords:  CAPBSET CLASS IDLE dcookie overflow DIFFERS Virtual everything
7576 % LocalWords:  dentry register resolution cache dcache operation llseek poll ln
7577 % LocalWords:  multiplexing fsync fasync seek block superblock gapil tex img du
7578 % LocalWords:  second linked journaled source filesystemtype unsigned device
7579 % LocalWords:  mountflags NODEV ENXIO dummy devfs magic MGC RDONLY NOSUID MOVE
7580 % LocalWords:  NOEXEC SYNCHRONOUS REMOUNT MANDLOCK NODIRATIME umount MNT statfs
7581 % LocalWords:  fstatfs fstab mntent ino bound orig new setpcap metadati sysfs
7582 % LocalWords:  bind DIRSYNC lsattr Hierarchy FHS SHARED UNBINDABLE shared REC
7583 % LocalWords:  subtree SILENT log unbindable BUSY EAGAIN EXPIRE DETACH NOFOLLOW
7584 % LocalWords:  lazy encfs sshfs setfsent getfsent getfsfile getfsspec endfsent
7585 % LocalWords:  setmntent getmntent addmntent endmntent hasmntopt such offsetof
7586
7587 %%% Local Variables: 
7588 %%% mode: latex
7589 %%% TeX-master: "gapil"
7590 %%% End: 
7591 % LocalWords:  member scan attack EOVERFLOW BITS blkcnt rdev