3 %% Copyright (C) 2000-2012 Simone Piccardi. Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
15 I segnali sono il primo e più semplice meccanismo di comunicazione nei
16 confronti dei processi. Nella loro versione originale essi portano con sé
17 nessuna informazione che non sia il loro tipo; si tratta in sostanza di
18 un'interruzione software portata ad un processo.
20 In genere essi vengono usati dal kernel per riportare ai processi situazioni
21 eccezionali (come errori di accesso, eccezioni aritmetiche, ecc.) ma possono
22 anche essere usati come forma elementare di comunicazione fra processi (ad
23 esempio vengono usati per il controllo di sessione), per notificare eventi
24 (come la terminazione di un processo figlio), ecc.
26 In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
27 partendo da una introduzione relativa ai concetti base con cui essi vengono
28 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
29 di generazione fino ad esaminare in dettaglio le funzioni e le metodologie di
30 gestione avanzate e le estensioni fatte all'interfaccia classica nelle nuovi
31 versioni dello standard POSIX.
34 \section{Introduzione}
37 In questa sezione esamineremo i concetti generali relativi ai segnali, vedremo
38 le loro caratteristiche di base, introdurremo le nozioni di fondo relative
39 all'architettura del funzionamento dei segnali e alle modalità con cui il
40 sistema gestisce l'interazione fra di essi ed i processi.
43 \subsection{I concetti base}
46 Come il nome stesso indica i segnali sono usati per notificare ad un processo
47 l'occorrenza di un qualche evento. Gli eventi che possono generare un segnale
48 sono vari; un breve elenco di possibili cause per l'emissione di un segnale è
52 \item un errore del programma, come una divisione per zero o un tentativo di
53 accesso alla memoria fuori dai limiti validi;
54 \item la terminazione di un processo figlio;
55 \item la scadenza di un timer o di un allarme;
56 \item il tentativo di effettuare un'operazione di input/output che non può
58 \item una richiesta dell'utente dal terminale di terminare o fermare il
60 \item l'invio esplicito da parte del processo stesso o di un altro.
63 Ciascuno di questi eventi, compresi gli ultimi due che pure sono controllati
64 dall'utente o da un altro processo, comporta l'intervento diretto da parte del
65 kernel che causa la generazione di un particolare tipo di segnale.
67 Quando un processo riceve un segnale, invece del normale corso del programma,
68 viene eseguita una azione predefinita o una apposita funzione di gestione che
69 può essere stata specificata dall'utente, nel qual caso si dice che si
70 \textsl{intercetta} il segnale. Riprendendo la terminologia originale da qui
71 in avanti faremo riferimento a questa funzione come al \textsl{gestore} del
72 segnale, traduzione approssimata dell'inglese \textit{signal handler}.
75 \subsection{Le \textsl{semantiche} del funzionamento dei segnali}
76 \label{sec:sig_semantics}
78 Negli anni il comportamento del sistema in risposta ai segnali è stato
79 modificato in vari modi nelle differenti implementazioni di Unix. Si possono
80 individuare due tipologie fondamentali di comportamento dei segnali (dette
81 \textsl{semantiche}) che vengono chiamate rispettivamente \textsl{semantica
82 affidabile} (o \textit{reliable}) e \textsl{semantica inaffidabile} (o
85 Nella \textsl{semantica inaffidabile}, che veniva implementata dalle prime
86 versioni di Unix, la funzione di gestione del segnale specificata dall'utente
87 non restava attiva una volta che era stata eseguita; era perciò compito
88 dell'utente ripetere l'installazione dello stesso all'interno del
89 \textsl{gestore} del segnale in tutti quei casi in cui si voleva che esso
93 \footnotesize \centering
94 \begin{minipage}[c]{\codesamplewidth}
95 \includecodesample{listati/unreliable_sig.c}
98 \caption{Esempio di codice di un gestore di segnale per la semantica
100 \label{fig:sig_old_handler}
103 In questo caso però è possibile una situazione in cui i segnali possono essere
104 perduti. Si consideri il segmento di codice riportato in
105 fig.~\ref{fig:sig_old_handler}: nel programma principale viene installato un
106 gestore (\texttt{\small 5}), la cui prima operazione (\texttt{\small 11}) è
107 quella di reinstallare se stesso. Se nell'esecuzione del gestore fosse
108 arrivato un secondo segnale prima che esso abbia potuto eseguire la
109 reinstallazione di se stesso per questo secondo segnale verrebbe eseguito il
110 comportamento predefinito, il che può comportare, a seconda dei casi, la
111 perdita del segnale (se l'impostazione predefinita è quella di ignorarlo) o la
112 terminazione immediata del processo; in entrambi i casi l'azione prevista dal
113 gestore non verrebbe eseguita.
115 Questa è la ragione per cui l'implementazione dei segnali secondo questa
116 semantica viene chiamata \textsl{inaffidabile}: infatti la ricezione del
117 segnale e la reinstallazione del suo gestore non sono operazioni atomiche, e
118 sono sempre possibili delle \itindex{race~condition} \textit{race condition}
119 (si ricordi sez.~\ref{sec:proc_multi_prog}). Un altro problema è che in
120 questa semantica non esiste un modo per bloccare i segnali quando non si vuole
121 che arrivino; i processi possono ignorare il segnale, ma non è possibile
122 istruire il sistema a non fare nulla in occasione di un segnale, pur
123 mantenendo memoria del fatto che è avvenuto.
125 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
126 moderno) il gestore una volta installato resta attivo e non si hanno tutti i
127 problemi precedenti. In questa semantica i segnali vengono \textsl{generati}
128 dal kernel per un processo all'occorrenza dell'evento che causa il segnale. In
129 genere questo viene fatto dal kernel impostando un apposito campo della
130 \struct{task\_struct} del processo nella \itindex{process~table}
131 \textit{process table} (si veda fig.~\ref{fig:proc_task_struct}).
133 Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
134 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
135 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
136 esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
137 procedura viene effettuata dallo \itindex{scheduler} scheduler quando,
138 riprendendo l'esecuzione del processo in questione, verifica la presenza del
139 segnale nella \struct{task\_struct} e mette in esecuzione il gestore.
141 In questa semantica un processo ha la possibilità di bloccare la consegna dei
142 segnali, in questo caso, se l'azione per il suddetto segnale non è quella di
143 ignorarlo, il segnale resta \textsl{pendente} fintanto che il processo non lo
144 sblocca (nel qual caso viene consegnato) o imposta l'azione corrispondente per
147 Si tenga presente che il kernel stabilisce cosa fare con un segnale che è
148 stato bloccato al momento della consegna, non quando viene generato; questo
149 consente di cambiare l'azione per il segnale prima che esso venga consegnato,
150 e si può usare la funzione \func{sigpending} (vedi sez.~\ref{sec:sig_sigmask})
151 per determinare quali segnali sono bloccati e quali sono pendenti.
153 Infine occorre precisare che i segnali predatano il supporto per i
154 \textit{thread} e vengono sempre inviati al processo come insieme, cosa che
155 può creare incertezza nel caso questo sia multi-\textit{thread}. In tal caso
156 quando è possibile determinare quale è il \textit{thread} specifico che deve
157 ricevere il segnale, come avviene per i segnali di errore, questo sarà inviato
158 solo a lui, altrimenti sarà inviato a discrezione del kernel ad uno qualunque
159 dei \textit{thread} del processo che possa riceverlo (che cioè non blocchi il
160 segnale), torneremo sull'argomento in sez.~\ref{sec:thread_signal}.
162 \subsection{Tipi di segnali}
163 \label{sec:sig_types}
165 In generale si tende a classificare gli eventi che possono generare dei
166 segnali in tre categorie principali: errori, eventi esterni e richieste
169 Un errore significa che un programma ha fatto qualcosa di sbagliato e non può
170 continuare ad essere eseguito. Non tutti gli errori causano dei segnali, in
171 genere le condizioni di errore più comuni comportano la restituzione di un
172 codice di errore da parte di una funzione di libreria. Sono gli errori che
173 possono avvenire nell'esecuzione delle istruzioni di un programma, come le
174 divisioni per zero o l'uso di indirizzi di memoria non validi, che causano
175 l'emissione di un segnale.
177 Un evento esterno ha in genere a che fare con le operazioni di lettura e
178 scrittura su file, o con l'interazione con dispositivi o con altri processi;
179 esempi di segnali di questo tipo sono quelli legati all'arrivo di dati in
180 ingresso, scadenze di un timer, terminazione di processi figli, la pressione
181 dei tasti di stop o di suspend su un terminale.
183 Una richiesta esplicita significa l'uso da parte di un programma delle
184 apposite funzioni di sistema, come \func{kill} ed affini (vedi
185 sez.~\ref{sec:sig_kill_raise}) per la generazione ``\textsl{manuale}'' di un
188 Si dice poi che i segnali possono essere \textsl{asincroni} o
189 \textsl{sincroni}. Un segnale \textsl{sincrono} è legato ad una azione
190 specifica di un programma ed è inviato (a meno che non sia bloccato) durante
191 tale azione. Molti errori generano segnali \textsl{sincroni}, così come la
192 richiesta esplicita da parte del processo tramite le chiamate al sistema.
193 Alcuni errori come la divisione per zero non sono completamente sincroni e
194 possono arrivare dopo qualche istruzione.
196 I segnali \textsl{asincroni} sono generati da eventi fuori dal controllo del
197 processo che li riceve, e arrivano in tempi impredicibili nel corso
198 dell'esecuzione del programma. Eventi esterni come la terminazione di un
199 processo figlio generano segnali \textsl{asincroni}, così come le richieste di
200 generazione di un segnale effettuate da altri processi.
202 In generale un tipo di segnale o è sincrono o è asincrono, salvo il caso in
203 cui esso sia generato attraverso una richiesta esplicita tramite chiamata al
204 sistema, nel qual caso qualunque tipo di segnale (quello scelto nella
205 chiamata) può diventare sincrono o asincrono a seconda che sia generato
206 internamente o esternamente al processo.
209 \subsection{La notifica dei segnali}
210 \label{sec:sig_notification}
212 Come accennato quando un segnale viene generato, se la sua azione predefinita
213 non è quella di essere ignorato, il kernel prende nota del fatto nella
214 \struct{task\_struct} del processo; si dice così che il segnale diventa
215 \textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
216 verrà notificato al processo o verrà specificata come azione quella di
219 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
220 avviene non appena questo viene rimesso in esecuzione dallo
221 \itindex{scheduler} scheduler che esegue l'azione specificata. Questo a meno
222 che il segnale in questione non sia stato bloccato prima della notifica, nel
223 qual caso l'invio non avviene ed il segnale resta \textsl{pendente}
226 Quando lo si sblocca un segnale \textsl{pendente} sarà subito notificato. Si
227 tenga presente però che tradizionalmente i segnali \textsl{pendenti} non si
228 accodano, alla generazione infatti il kernel marca un flag nella
229 \struct{task\_struct} del processo, per cui se prima della notifica ne vengono
230 generati altri il flag è comunque marcato, ed il gestore viene eseguito sempre
231 una sola volta. In realtà questo non vale nel caso dei cosiddetti segnali
232 \textit{real-time}, che vedremo in sez.~\ref{sec:sig_real_time}, ma questa è
233 una funzionalità avanzata che per ora tralasceremo.
235 Si ricordi inoltre che se l'azione specificata per un segnale è quella di
236 essere ignorato questo sarà scartato immediatamente al momento della sua
237 generazione, e questo anche se in quel momento il segnale è bloccato, perché
238 bloccare su un segnale significa bloccarne la notifica. Per questo motivo un
239 segnale, fintanto che viene ignorato, non sarà mai notificato, anche se prima
240 è stato bloccato ed in seguito si è specificata una azione diversa, nel qual
241 caso solo i segnali successivi alla nuova specificazione saranno notificati.
243 Una volta che un segnale viene notificato, che questo avvenga subito o dopo
244 una attesa più o meno lunga, viene eseguita l'azione specificata per il
245 segnale. Per alcuni segnali (per la precisione \signal{SIGKILL} e
246 \signal{SIGSTOP}) questa azione è predeterminata dal kernel e non può essere
247 mai modificata, ma per tutti gli altri si può selezionare una delle tre
248 possibilità seguenti:
251 \item ignorare il segnale;
252 \item intercettare il segnale, ed utilizzare il gestore specificato;
253 \item accettare l'azione predefinita per quel segnale.
256 Un programma può specificare queste scelte usando le due funzioni
257 \func{signal} e \func{sigaction}, che tratteremo rispettivamente in
258 sez.~\ref{sec:sig_signal} e sez.~\ref{sec:sig_sigaction}. Se si è installato
259 un gestore sarà quest'ultimo ad essere eseguito alla notifica del segnale.
260 Inoltre il sistema farà si che mentre viene eseguito il gestore di un segnale,
261 quest'ultimo venga automaticamente bloccato, così si possono evitare alla
262 radice possibili \itindex{race~condition} \textit{race condition}.
264 Nel caso non sia stata specificata un'azione, viene utilizzata la cosiddetta
265 azione predefinita che, come vedremo in sez.~\ref{sec:sig_standard}, è propria
266 di ciascun segnale. Nella maggior parte dei casi questa azione comporta la
267 terminazione immediata del processo, ma per alcuni segnali che rappresentano
268 eventi innocui l'azione predefinita è di essere ignorati. Inoltre esistono
269 alcuni segnali la cui azione è semplicemente quella di fermare l'esecuzione
270 del programma, vale a dire portarlo nello stato di \textit{stopped} (lo stato
271 \texttt{T}, si ricordi tab.~\ref{tab:proc_proc_states} e quanto illustrato in
272 sez.~\ref{sec:proc_sched}).
274 Quando un segnale termina un processo il padre può determinare la causa della
275 terminazione esaminandone lo stato di uscita così come viene riportato dalle
276 funzioni \func{wait} e \func{waitpid} (vedi sez.~\ref{sec:proc_wait}). Questo
277 ad esempio è il modo in cui la shell determina i motivi della terminazione di
278 un programma e scrive un eventuale messaggio di errore.
282 I segnali che rappresentano errori del programma (divisione per zero o
283 violazioni di accesso) hanno come ulteriore caratteristica della loro azione
284 predefinita, oltre a terminare il processo, quella di scrivere nella directory
285 di lavoro corrente del processo di un file \file{core} su cui viene salvata
286 l'immagine della memoria del processo.
288 Questo file costituisce il cosiddetto \textit{core dump}, e contenendo
289 l'immagine della memoria del processo, consente di risalire allo stato dello
290 \itindex{stack} \textit{stack} (vedi sez.~\ref{sec:proc_mem_layout}) prima
291 della terminazione. Questo permette di esaminare il contenuto del file un
292 secondo tempo con un apposito programma (un \textit{debugger} come \cmd{gdb})
293 per investigare sulla causa dell'errore, ed in particolare, grazie appunto ai
294 dati dello \itindex{stack} \textit{stack}, consente di identificare quale
295 funzione ha causato l'errore.
297 Si tenga presente che il \textit{core dump} viene creato non solo in caso di
298 errore effettivo, ma anche se il segnale per cui la sua creazione è prevista
299 nell'azione dell'azione predefinita viene inviato al programma con una delle
300 funzioni \func{kill}, \func{raise}, ecc.
305 \section{La classificazione dei segnali}
306 \label{sec:sig_classification}
308 Esamineremo in questa sezione quali sono i vari segnali definiti nel sistema,
309 quali sono le loro caratteristiche e la loro tipologia, tratteremo le varie
310 macro e costanti che permettono di identificarli, e illustreremo le funzioni
311 che ne stampano la descrizione.
314 \subsection{I segnali standard}
315 \label{sec:sig_standard}
317 Ciascun segnale è identificato dal kernel con un numero, ma benché per alcuni
318 segnali questi numeri siano sempre gli stessi, tanto da essere usati come
319 sinonimi, l'uso diretto degli identificativi numerici da parte dei programmi è
320 comunque da evitare, in quanto essi non sono mai stati standardizzati e
321 possono variare a seconda dell'implementazione del sistema, e nel caso di
322 Linux anche a seconda della architettura hardware e della versione del kernel.
324 Quelli che invece sono stati, almeno a grandi linee, standardizzati, sono i
325 nomi dei segnali e le costanti di preprocessore che li identificano, che sono
326 tutte nella forma \texttt{SIGnome}, e sono queste che devono essere usate nei
327 programmi. Come tutti gli altri nomi e le funzioni che concernono i segnali,
328 esse sono definite nell'header di sistema \headfile{signal.h}.
333 \begin{tabular}[c]{|l|c|c|l|}
335 \textbf{Segnale} &\textbf{Standard}&\textbf{Azione}&\textbf{Descrizione} \\
338 \signal{SIGHUP} &P & T & Hangup o terminazione del processo di
340 \signal{SIGINT} &PA& T & Interrupt da tastiera (\cmd{C-c}).\\
341 \signal{SIGQUIT} &P & C & Quit da tastiera (\cmd{C-y}).\\
342 \signal{SIGILL} &PA& C & Istruzione illecita.\\
343 \signal{SIGTRAP} &S & C & Trappole per un Trace/breakpoint.\\
344 \signal{SIGABRT} &PA& C & Segnale di abort da \func{abort}.\\
345 \signal{SIGIOT} &B & C & Trappola di I/O. Sinonimo di \signal{SIGABRT}.\\
346 \signal{SIGBUS} &BS& C & Errore sul bus (bad memory access).\\
347 \signal{SIGFPE} &AP& C & Errore aritmetico.\\
348 \signal{SIGKILL} &P & T& Segnale di terminazione forzata.\\
349 \signal{SIGUSR1} &P & T & Segnale utente numero 1.\\
350 \signal{SIGSEGV} &AP& C & Errore di accesso in memoria.\\
351 \signal{SIGUSR2} &P & T & Segnale utente numero 2.\\
352 \signal{SIGPIPE} &P & T & Pipe spezzata.\\
353 \signal{SIGALRM} &P & T & Segnale del timer da \func{alarm}.\\
354 \signal{SIGTERM} &AP& T & Segnale di terminazione (\texttt{C-\bslash}).\\
355 \signal{SIGCHLD} &P & I & Figlio terminato o fermato.\\
356 \signal{SIGCONT} &P &-- & Continua se fermato.\\
357 \signal{SIGSTOP} &P & S & Ferma il processo.\\
358 \signal{SIGTSTP} &P & S & Pressione del tasto di stop sul terminale.\\
359 \signal{SIGTTIN} &P & S & Input sul terminale per un processo
361 \signal{SIGTTOU} &P & S & Output sul terminale per un processo
363 \signal{SIGURG} &BS& I & Ricezione di una \textit{urgent condition} su
365 \signal{SIGXCPU} &BS& C & Ecceduto il limite sul tempo di CPU.\\
366 \signal{SIGXFSZ} &BS& C & Ecceduto il limite sulla dimensione dei file.\\
367 \signal{SIGVTALRM}&BS& T& Timer di esecuzione scaduto.\\
368 \signal{SIGPROF} &BS& T & Timer del \textit{profiling} scaduto.\\
369 \signal{SIGWINCH}&B & I & Finestra ridimensionata (4.3BSD, Sun).\\
370 \signal{SIGIO} &B & T & L'I/O è possibile.\\
371 \signal{SIGPOLL} &VS& T & \textit{Pollable event}, sinonimo di
373 \signal{SIGPWR} &V & T & Fallimento dell'alimentazione.\\
374 \signal{SIGSYS} &VS& C & \textit{system call} sbagliata.\\
376 \signal{SIGSTKFLT}&?& T & Errore sullo stack del coprocessore (inusato).\\
377 \signal{SIGUNUSED}&?& C & Segnale inutilizzato (sinonimo di
380 \signal{SIGCLD} &V & I & Sinonimo di \signal{SIGCHLD}.\\
381 \signal{SIGEMT} &V & C & Trappola di emulatore.\\
382 \signal{SIGINFO} &B & T & Sinonimo di \signal{SIGPWR}.\\
383 \signal{SIGLOST} &? & T & Perso un lock sul file, sinonimo
384 di \signal{SIGIO} (inusato).\\
387 \caption{Lista dei segnali ordinari in Linux.}
388 \label{tab:sig_signal_list}
391 In tab.~\ref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
392 ordinari definiti su Linux per tutte le possibili architetture (tratteremo
393 quelli \textit{real-time} in sez.~\ref{sec:sig_real_time}). Ma si tenga
394 presente che solo quelli elencati nella prima sezione della tabella sono
395 presenti su tutte le architetture. Nelle sezioni successive si sono riportati
396 rispettivamente quelli che esistono solo sull'architettura PC e quelli che non
397 esistono sull'architettura PC, ma sono definiti sulle architetture
398 \textit{alpha} o \textit{mips}.
400 Alcuni segnali erano previsti fin dallo standard ANSI C, ed i segnali sono
401 presenti in tutti i sistemi unix-like, ma l'elenco di quelli disponibili non è
402 uniforme, ed alcuni di essi sono presenti solo su alcune implementazioni o
403 architetture hardware, ed anche il loro significato può variare. Per questo si
404 sono riportati nella seconda colonna della tabella riporta gli standard in cui
405 ciascun segnale è stato definito, indicati con altrettante lettere da
406 interpretare secondo la legenda di tab.~\ref{tab:sig_standard_leg}. Si tenga
407 presente che il significato dei segnali è abbastanza indipendente dalle
408 implementazioni solo per quelli definiti negli standard POSIX.1-1990 e
414 \begin{tabular}[c]{|c|l|}
416 \textbf{Sigla} & \textbf{Standard} \\
420 B & BSD (4.2 BSD e Sun).\\
422 S & SUSv2 (e POSIX.1-2001).\\
427 \caption{Legenda dei valori degli standard riportati nella seconda colonna
428 di tab.~\ref{tab:sig_signal_list}.}
429 \label{tab:sig_standard_leg}
432 Come accennato in sez.~\ref{sec:sig_notification} a ciascun segnale è
433 associata una specifica azione predefinita che viene eseguita quando nessun
434 gestore è installato. Le azioni predefinite possibili, che abbiamo già
435 descritto in sez.~\ref{sec:sig_notification}, sono state riportate in
436 tab.~\ref{tab:sig_signal_list} nella terza colonna, e di nuovo sono state
437 indicate con delle lettere la cui legenda completa è illustrata in
438 tab.~\ref{tab:sig_action_leg}).
443 \begin{tabular}[c]{|c|l|}
445 \textbf{Sigla} & \textbf{Significato} \\
448 T & L'azione predefinita è terminare il processo.\\
449 C & L'azione predefinita è terminare il processo e scrivere un
450 \itindex{core~dump} \textit{core dump}.\\
451 I & L'azione predefinita è ignorare il segnale.\\
452 S & L'azione predefinita è fermare il processo.\\
455 \caption{Legenda delle azioni predefinite dei segnali riportate nella terza
456 colonna di tab.~\ref{tab:sig_signal_list}.}
457 \label{tab:sig_action_leg}
461 Si inoltre noti come \const{SIGCONT} sia l'unico segnale a non avere
462 l'indicazione di una azione predefinita nella terza colonna di
463 tab.~\ref{tab:sig_signal_list}, questo perché il suo effetto è sempre quello
464 di far ripartire un programma in stato \texttt{T} fermato da un segnale di
465 stop. Inoltre i segnali \const{SIGSTOP} e \const{SIGKILL} si distinguono da
466 tutti gli altri per la specifica caratteristica di non potere essere né
467 intercettati, né bloccati, né ignorati.
469 Il numero totale di segnali presenti è dato dalla macro \const{NSIG} (e tiene
470 conto anche di quelli \textit{real-time}) e dato che i numeri dei segnali sono
471 allocati progressivamente, essa corrisponde anche al successivo del valore
472 numerico assegnato all'ultimo segnale definito. La descrizione dettagliata
473 del significato dei precedenti segnali, raggruppati per tipologia, verrà
474 affrontata nei paragrafi successivi.
477 \subsection{I segnali di errore}
478 \label{sec:sig_prog_error}
480 Questi segnali sono generati quando il sistema, o in certi casi direttamente
481 l'hardware (come per i \itindex{page~fault} \textit{page fault} non validi o
482 le eccezioni del processore) rileva un qualche errore insanabile nel programma
483 in esecuzione. In generale la generazione di questi segnali significa che il
484 programma ha dei gravi problemi (ad esempio ha dereferenziato un puntatore non
485 valido o ha eseguito una operazione aritmetica proibita) e l'esecuzione non
486 può essere proseguita.
488 In genere si intercettano questi segnali per permettere al programma di
489 terminare in maniera pulita, ad esempio per ripristinare le impostazioni della
490 console o eliminare i \index{file!di lock} file di lock prima dell'uscita. In
491 questo caso il gestore deve concludersi ripristinando l'azione predefinita e
492 rialzando il segnale, in questo modo il programma si concluderà senza effetti
493 spiacevoli, ma riportando lo stesso stato di uscita che avrebbe avuto se il
494 gestore non ci fosse stato.
496 L'azione predefinita per tutti questi segnali è causare la terminazione del
497 processo che li ha causati. In genere oltre a questo il segnale provoca pure
498 la registrazione su disco di un file di \itindex{core~dump} \textit{core
499 dump}, che un debugger può usare per ricostruire lo stato del programma al
500 momento della terminazione. Questi segnali sono:
501 \begin{basedescript}{\desclabelwidth{2.0cm}}
502 \item[\signal{SIGFPE}] Riporta un errore aritmetico fatale. Benché il nome
503 derivi da \textit{floating point exception} si applica a tutti gli errori
504 aritmetici compresa la divisione per zero e l'overflow. Se il gestore
505 ritorna il comportamento del processo è indefinito, ed ignorare questo
506 segnale può condurre ad un ciclo infinito.
508 % Per questo segnale le cose sono complicate dal fatto che possono esserci
509 % molte diverse eccezioni che \signal{SIGFPE} non distingue, mentre lo
510 % standard IEEE per le operazioni in virgola mobile definisce varie eccezioni
511 % aritmetiche e richiede che esse siano notificate.
512 % TODO trovare altre info su SIGFPE e trattare la notifica delle eccezioni
514 \item[\signal{SIGILL}] Il nome deriva da \textit{illegal instruction},
515 significa che il programma sta cercando di eseguire una istruzione
516 privilegiata o inesistente, in generale del codice illecito. Poiché il
517 compilatore del C genera del codice valido si ottiene questo segnale se il
518 file eseguibile è corrotto o si stanno cercando di eseguire dei dati.
519 Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
520 posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
521 una variabile locale, andando a corrompere lo \itindex{stack}
522 \textit{stack}. Lo stesso segnale viene generato in caso di overflow dello
523 \itindex{stack} \textit{stack} o di problemi nell'esecuzione di un gestore.
524 Se il gestore ritorna il comportamento del processo è indefinito.
526 \item[\signal{SIGSEGV}] Il nome deriva da \itindex{segment~violation}
527 \textit{segment violation}, e significa che il programma sta cercando di
528 leggere o scrivere in una zona di memoria protetta al di fuori di quella che
529 gli è stata riservata dal sistema. In genere è il meccanismo della
530 protezione della memoria che si accorge dell'errore ed il kernel genera il
531 segnale. È tipico ottenere questo segnale dereferenziando un puntatore
532 nullo o non inizializzato leggendo al di là della fine di un vettore. Se il
533 gestore ritorna il comportamento del processo è indefinito.
535 \item[\signal{SIGBUS}] Il nome deriva da \textit{bus error}. Come
536 \signal{SIGSEGV} questo è un segnale che viene generato di solito quando si
537 dereferenzia un puntatore non inizializzato, la differenza è che
538 \signal{SIGSEGV} indica un accesso non permesso su un indirizzo esistente
539 (al di fuori dallo \itindex{heap} \textit{heap} o dallo \itindex{stack}
540 \textit{stack}), mentre \signal{SIGBUS} indica l'accesso ad un indirizzo non
541 valido, come nel caso di un puntatore non allineato.
543 \item[\signal{SIGABRT}] Il nome deriva da \textit{abort}. Il segnale indica
544 che il programma stesso ha rilevato un errore che viene riportato chiamando
545 la funzione \func{abort}, che genera questo segnale.
547 \item[\signal{SIGTRAP}] È il segnale generato da un'istruzione di breakpoint o
548 dall'attivazione del tracciamento per il processo. È usato dai programmi per
549 il debugging e un programma normale non dovrebbe ricevere questo segnale.
551 \item[\signal{SIGSYS}] Sta ad indicare che si è eseguita una istruzione che
552 richiede l'esecuzione di una \textit{system call}, ma si è fornito un codice
553 sbagliato per quest'ultima.
555 \item[\signal{SIGEMT}] Il nome sta per \textit{emulation trap}. Il segnale non
556 è previsto da nessuno standard ed è definito solo su alcune architetture che
557 come il vecchio PDP11 prevedono questo tipo di interruzione, non è presente
562 \subsection{I segnali di terminazione}
563 \label{sec:sig_termination}
565 Questo tipo di segnali sono usati per terminare un processo; hanno vari nomi a
566 causa del differente uso che se ne può fare, ed i programmi possono
567 trattarli in maniera differente.
569 La ragione per cui può essere necessario intercettare questi segnali è che il
570 programma può dover eseguire una serie di azioni di pulizia prima di
571 terminare, come salvare informazioni sullo stato in cui si trova, cancellare
572 file temporanei, o ripristinare delle condizioni alterate durante il
573 funzionamento (come il modo del terminale o le impostazioni di una qualche
574 periferica). L'azione predefinita di questi segnali è di terminare il
575 processo, questi segnali sono:
576 \begin{basedescript}{\desclabelwidth{2.0cm}}
577 \item[\signal{SIGTERM}] Il nome sta per \textit{terminate}. È un segnale
578 generico usato per causare la conclusione di un programma. È quello che
579 viene generato di default dal comando \cmd{kill}. Al contrario di
580 \signal{SIGKILL} può essere intercettato, ignorato, bloccato. In genere lo
581 si usa per chiedere in maniera ``\textsl{educata}'' ad un processo di
584 \item[\signal{SIGINT}] Il nome sta per \textit{interrupt}. È il segnale di
585 interruzione per il programma. È quello che viene generato di default dal
586 dall'invio sul terminale del carattere di controllo ``\textit{INTR}'',
587 \textit{interrupt} appunto, che viene generato normalmente dalla sequenza
588 \cmd{C-c} sulla tastiera.
590 \item[\signal{SIGQUIT}] È analogo a \signal{SIGINT} con la differenza che è
591 controllato da un altro carattere di controllo, ``\textit{QUIT}'',
592 corrispondente alla sequenza \texttt{C-\bslash} sulla tastiera. A differenza
593 del precedente l'azione predefinita, oltre alla terminazione del processo,
594 comporta anche la creazione di un \itindex{core~dump} \textit{core dump}.
595 In genere lo si può pensare come corrispondente ad una condizione di errore
596 del programma rilevata dall'utente. Per questo motivo non è opportuno fare
597 eseguire al gestore di questo segnale le operazioni di pulizia normalmente
598 previste (tipo la cancellazione di file temporanei), dato che in certi casi
599 esse possono eliminare informazioni utili nell'esame dei \itindex{core~dump}
602 \item[\signal{SIGKILL}] Il nome è utilizzato per terminare in maniera immediata
603 qualunque programma. Questo segnale non può essere né intercettato, né
604 ignorato, né bloccato, per cui causa comunque la terminazione del processo.
605 In genere esso viene generato solo per richiesta esplicita dell'utente dal
606 comando (o tramite la funzione) \cmd{kill}. Dato che non lo si può
607 intercettare è sempre meglio usarlo come ultima risorsa quando metodi meno
608 brutali, come \signal{SIGTERM} o \cmd{C-c} non funzionano.
610 Se un processo non risponde a nessun altro segnale \signal{SIGKILL} ne causa
611 sempre la terminazione (in effetti il fallimento della terminazione di un
612 processo da parte di \signal{SIGKILL} costituirebbe un malfunzionamento del
613 kernel). Talvolta è il sistema stesso che può generare questo segnale quando
614 per condizioni particolari il processo non può più essere eseguito neanche
615 per eseguire un gestore.
617 \item[\signal{SIGHUP}] Il nome sta per \textit{hang-up}. Segnala che il
618 terminale dell'utente si è disconnesso, ad esempio perché si è interrotta la
619 rete. Viene usato anche per riportare la terminazione del processo di
620 controllo di un terminale a tutti i processi della sessione (vedi
621 sez.~\ref{sec:sess_job_control}), in modo che essi possano disconnettersi
622 dal relativo terminale. Viene inoltre usato in genere per segnalare ai
623 programmi di servizio (i cosiddetti \textsl{demoni}, vedi
624 sez.~\ref{sec:sess_daemon}), che non hanno un terminale di controllo, la
625 necessità di reinizializzarsi e rileggere il file (o i file) di
630 \subsection{I segnali di allarme}
631 \label{sec:sig_alarm}
633 Questi segnali sono generati dalla scadenza di un timer (vedi
634 sez.~\ref{sec:sig_alarm_abort}). Il loro comportamento predefinito è quello di
635 causare la terminazione del programma, ma con questi segnali la scelta
636 predefinita è irrilevante, in quanto il loro uso presuppone sempre la
637 necessità di un gestore. Questi segnali sono:
638 \begin{basedescript}{\desclabelwidth{2.0cm}}
639 \item[\signal{SIGALRM}] Il nome sta per \textit{alarm}. Segnale la scadenza di
640 un timer misurato sul tempo reale o sull'orologio di sistema. È normalmente
641 usato dalla funzione \func{alarm}.
643 \item[\const{SIVGTALRM}] Il nome sta per \textit{virtual alarm}. È analogo al
644 precedente ma segnala la scadenza di un timer sul tempo di CPU usato dal
647 \item[\signal{SIGPROF}] Il nome sta per \textit{profiling}. Indica la scadenza
648 di un timer che misura sia il tempo di CPU speso direttamente dal processo
649 che quello che il sistema ha speso per conto di quest'ultimo. In genere
650 viene usato dagli strumenti che servono a fare la profilazione dell'utilizzo
651 del tempo di CPU da parte del processo.
655 \subsection{I segnali di I/O asincrono}
656 \label{sec:sig_asyncio}
658 Questi segnali operano in congiunzione con le funzioni di I/O asincrono. Per
659 questo occorre comunque usare \func{fcntl} per abilitare un file descriptor a
660 generare questi segnali. L'azione predefinita è di essere ignorati. Questi
662 \begin{basedescript}{\desclabelwidth{2.0cm}}
663 \item[\signal{SIGIO}] Questo segnale viene inviato quando un file descriptor è
664 pronto per eseguire dell'input/output. In molti sistemi solo i socket e i
665 terminali possono generare questo segnale, in Linux questo può essere usato
666 anche per i file, posto che la chiamata a \func{fcntl} che lo attiva abbia
669 \item[\signal{SIGURG}] Questo segnale è inviato quando arrivano dei dati
670 urgenti o \itindex{out-of-band} \textit{out-of-band} su di un
671 socket; per maggiori dettagli al proposito si veda
672 sez.~\ref{sec:TCP_urgent_data}.
674 \item[\signal{SIGPOLL}] Questo segnale è definito nella standard POSIX.1-2001,
675 ed è equivalente a \signal{SIGIO} che invece deriva da BSD. Su Linux è
676 definito per compatibilità con i sistemi System V.
680 \subsection{I segnali per il controllo di sessione}
681 \label{sec:sig_job_control}
683 Questi sono i segnali usati dal controllo delle sessioni e dei processi, il
684 loro uso è specializzato e viene trattato in maniera specifica nelle sezioni
685 in cui si trattano gli argomenti relativi. Questi segnali sono:
686 \begin{basedescript}{\desclabelwidth{2.0cm}}
687 \item[\signal{SIGCHLD}] Questo è il segnale mandato al processo padre quando un
688 figlio termina o viene fermato. L'azione predefinita è di ignorare il
689 segnale, la sua gestione è trattata in sez.~\ref{sec:proc_wait}.
691 \item[\signal{SIGCLD}] Per Linux questo è solo un segnale identico al
692 precedente e definito come sinonimo. Il nome è obsoleto, deriva dalla
693 definizione del segnale su System V, ed oggi deve essere evitato.
695 \item[\signal{SIGCONT}] Il nome sta per \textit{continue}. Il segnale viene
696 usato per fare ripartire un programma precedentemente fermato da
697 \signal{SIGSTOP}. Questo segnale ha un comportamento speciale, e fa sempre
698 ripartire il processo prima della sua consegna. Il comportamento predefinito
699 è di fare solo questo; il segnale non può essere bloccato. Si può anche
700 installare un gestore, ma il segnale provoca comunque il riavvio del
703 La maggior pare dei programmi non hanno necessità di intercettare il
704 segnale, in quanto esso è completamente trasparente rispetto all'esecuzione
705 che riparte senza che il programma noti niente. Si possono installare dei
706 gestori per far si che un programma produca una qualche azione speciale
707 se viene fermato e riavviato, come per esempio riscrivere un prompt, o
710 \item[\signal{SIGSTOP}] Il segnale ferma l'esecuzione di un processo, lo porta
711 cioè nello stato \textit{stopped} (vedi sez.~\ref{sec:proc_sched}). Il
712 segnale non può essere né intercettato, né ignorato, né bloccato.
714 \item[\signal{SIGTSTP}] Il nome sta per \textit{interactive stop}. Il segnale
715 ferma il processo interattivamente, ed è generato dal carattere
716 ``\textit{SUSP}'', prodotto dalla combinazione di tasti \cmd{C-z}, ed al
717 contrario di \signal{SIGSTOP} può essere intercettato e ignorato. In genere
718 un programma installa un gestore per questo segnale quando vuole lasciare il
719 sistema o il terminale in uno stato definito prima di fermarsi; se per
720 esempio un programma ha disabilitato l'eco sul terminale può installare un
721 gestore per riabilitarlo prima di fermarsi.
723 \item[\signal{SIGTTIN}] Un processo non può leggere dal terminale se esegue
724 una sessione di lavoro in \textit{background}. Quando un processo in
725 \textit{background} tenta di leggere da un terminale viene inviato questo
726 segnale a tutti i processi della sessione di lavoro. L'azione predefinita è
727 di fermare il processo. L'argomento è trattato in
728 sez.~\ref{sec:sess_job_control_overview}.
730 \item[\signal{SIGTTOU}] Segnale analogo al precedente \signal{SIGTTIN}, ma
731 generato quando si tenta di scrivere sul terminale o modificarne uno dei
732 modi con un processo in \textit{background}. L'azione predefinita è di
733 fermare il processo, l'argomento è trattato in
734 sez.~\ref{sec:sess_job_control_overview}.
738 \subsection{I segnali di operazioni errate}
739 \label{sec:sig_oper_error}
741 Questi segnali sono usati per riportare al programma errori generati da
742 operazioni da lui eseguite; non indicano errori del programma quanto errori
743 che impediscono il completamento dell'esecuzione dovute all'interazione con il
744 resto del sistema. L'azione predefinita di questi segnali è normalmente
745 quella di terminare il processo, questi segnali sono:
746 \begin{basedescript}{\desclabelwidth{2.0cm}}
747 \item[\signal{SIGPIPE}] Sta per \textit{Broken pipe}. Se si usano delle pipe,
748 (o delle FIFO o dei socket) è necessario, prima che un processo inizi a
749 scrivere su una di esse, che un altro l'abbia aperta in lettura (si veda
750 sez.~\ref{sec:ipc_pipes}). Se il processo in lettura non è partito o è
751 terminato inavvertitamente alla scrittura sulla pipe il kernel genera questo
752 segnale. Se il segnale è bloccato, intercettato o ignorato la chiamata che
753 lo ha causato fallisce, restituendo l'errore \errcode{EPIPE}.
755 \item[\signal{SIGXCPU}] Sta per \textit{CPU time limit exceeded}. Questo
756 segnale è generato quando un processo eccede il limite impostato per il
757 tempo di CPU disponibile, vedi sez.~\ref{sec:sys_resource_limit}. Fino al
758 kernel 2.2 terminava semplicemente il processo, a partire dal kernel 2.4,
759 seguendo le indicazioni dello standard POSIX.1-2001 viene anche generato un
760 \itindex{core~dump} \textit{core dump}.
762 \item[\signal{SIGXFSZ}] Sta per \textit{File size limit exceeded}. Questo
763 segnale è generato quando un processo tenta di estendere un file oltre le
764 dimensioni specificate dal limite impostato per le dimensioni massime di un
765 file, vedi sez.~\ref{sec:sys_resource_limit}. Fino al kernel 2.2 terminava
766 semplicemente il processo, a partire dal kernel 2.4, seguendo le indicazioni
767 dello standard POSIX.1-2001 viene anche generato un \itindex{core~dump}
770 \item[\signal{SIGLOST}] Sta per \textit{Resource lost}. Tradizionalmente è il
771 segnale che viene generato quando si perde un advisory lock su un file su
772 NFS perché il server NFS è stato riavviato. Il progetto GNU lo utilizza per
773 indicare ad un client il crollo inaspettato di un server. In Linux è
774 definito come sinonimo di \signal{SIGIO} e non viene più usato.
778 \subsection{Ulteriori segnali}
779 \label{sec:sig_misc_sig}
781 Raccogliamo qui infine una serie di segnali che hanno scopi differenti non
782 classificabili in maniera omogenea. Questi segnali sono:
783 \begin{basedescript}{\desclabelwidth{2.0cm}}
784 \item[\signal{SIGUSR1}] Insieme a \signal{SIGUSR2} è un segnale a disposizione
785 dell'utente che lo può usare per quello che vuole. Viene generato solo
786 attraverso l'invocazione della funzione \func{kill}. Entrambi i segnali
787 possono essere utili per implementare una comunicazione elementare fra
788 processi diversi, o per eseguire a richiesta una operazione utilizzando un
789 gestore. L'azione predefinita è di terminare il processo.
790 \item[\signal{SIGUSR2}] È il secondo segnale a disposizione degli utenti. Per
791 il suo utilizzo vale esattamente quanto appena detto per \signal{SIGUSR1}.
792 \item[\signal{SIGWINCH}] Il nome sta per \textit{window (size) change} e viene
793 generato in molti sistemi (GNU/Linux compreso) quando le dimensioni (in
794 righe e colonne) di un terminale vengono cambiate. Viene usato da alcuni
795 programmi testuali per riformattare l'uscita su schermo quando si cambia
796 dimensione a quest'ultimo. L'azione predefinita è di essere ignorato.
797 \item[\signal{SIGINFO}] Il segnale indica una richiesta di informazioni. È
798 usato con il controllo di sessione, causa la stampa di informazioni da parte
799 del processo leader del gruppo associato al terminale di controllo, gli
800 altri processi lo ignorano. Su Linux però viene utilizzato come sinonimo di
801 \signal{SIGPWR} e l'azione predefinita è di terminare il processo.
802 \item[\signal{SIGPWR}] Il segnale indica un cambio nello stato di
803 alimentazione di un eventuale gruppo di continuità e viene usato
804 principalmente per segnalare l'assenza ed il ritorno della corrente. Viene
805 usato principalmente con \cmd{init} per attivare o fermare le procedure di
806 spegnimento automatico all'esaurimento delle batterie. L'azione predefinita
807 è di terminare il processo.
808 \item[\signal{SIGSTKFLT}] Indica un errore nello stack del coprocessore
809 matematico, è definito solo per le architetture PC, ma è completamente
810 inusato. L'azione predefinita è di terminare il processo.
814 \subsection{Le funzioni \func{strsignal} e \func{psignal}}
815 \label{sec:sig_strsignal}
817 Per la descrizione dei segnali il sistema mette a disposizione due funzioni
818 che stampano un messaggio di descrizione specificando il numero del segnale
819 con una delle costanti di tab.~\ref{tab:sig_signal_list}. In genere si usano
820 quando si vuole notificare all'utente il segnale ricevuto, ad esempio nel caso
821 di terminazione di un processo figlio o di un gestore che gestisce più
824 La prima funzione, \funcd{strsignal}, è una estensione GNU fornita dalla
825 \acr{glibc}, ed è accessibile solo avendo definito la macro
826 \macro{\_GNU\_SOURCE}, il suo comportamento è analogo a quello della funzione
827 \func{strerror} (si veda sez.~\ref{sec:sys_strerror}) usata per notificare gli
832 \fdecl{char *strsignal(int signum)}
833 \fdesc{Ottiene la descrizione di un segnale.}
836 {La funzione ritorna puntatore ad una stringa che descrive il segnale, non
837 sono previste condizioni di errore ed \var{errno} non viene modificata.}
841 La funzione ritorna sempre il puntatore ad una stringa che contiene la
842 descrizione del segnale indicato dall'argomento \param{signum}, se questo non
843 indica un segnale valido viene restituito il puntatore ad una stringa che
844 segnale che il valore indicato non è valido. Dato che la stringa è allocata
845 staticamente non se ne deve modificare il contenuto, che resta valido solo
846 fino alla successiva chiamata di \func{strsignal}. Nel caso si debba mantenere
847 traccia del messaggio sarà necessario copiarlo.
849 La seconda funzione, \funcd{psignal}, deriva da BSD ed è analoga alla funzione
850 \func{perror} descritta in sez.~\ref{sec:sys_strerror}, il suo prototipo è:
854 \fdecl{void psignal(int sig, const char *s)}
855 \fdesc{Stampa un messaggio di descrizione di un segnale.}
857 {La funzione non ritorna nulla e non prevede errori.}
860 La funzione stampa sullo \textit{standard error} un messaggio costituito dalla
861 stringa passata nell'argomento \param{s}, seguita dal carattere di due punti
862 ed una descrizione del segnale indicato dall'argomento \param{sig}.
864 Una modalità alternativa per utilizzare le descrizioni restituite da
865 \func{strsignal} e \func{psignal} è quello di usare la
866 \index{variabili!globali} variabile globale \var{sys\_siglist}, che è definita
867 in \headfile{signal.h} e può essere acceduta con la dichiarazione:
868 \includecodesnip{listati/siglist.c}
870 L'array \var{sys\_siglist} contiene i puntatori alle stringhe di descrizione,
871 indicizzate per numero di segnale, per cui una chiamata del tipo di \code{char
872 *decr = strsignal(SIGINT)} può essere sostituita dall'equivalente \code{char
873 *decr = sys\_siglist[SIGINT]}.
877 \section{La gestione di base dei segnali}
878 \label{sec:sig_management}
880 I segnali sono il primo e più classico esempio di eventi asincroni, cioè di
881 eventi che possono accadere in un qualunque momento durante l'esecuzione di un
882 programma. Per questa loro caratteristica la loro gestione non può essere
883 effettuata all'interno del normale flusso di esecuzione dello stesso, ma è
884 delegata appunto agli eventuali gestori che si sono installati.
886 In questa sezione vedremo come si effettua la gestione dei segnali, a partire
887 dalla loro interazione con le \textit{system call}, passando per le varie
888 funzioni che permettono di installare i gestori e controllare le reazioni di
889 un processo alla loro occorrenza.
892 \subsection{Il comportamento generale del sistema}
893 \label{sec:sig_gen_beha}
895 Abbiamo già trattato in sez.~\ref{sec:sig_intro} le modalità con cui il
896 sistema gestisce l'interazione fra segnali e processi, ci resta da esaminare
897 però il comportamento delle \textit{system call}; in particolare due di esse,
898 \func{fork} ed \func{exec}, dovranno essere prese esplicitamente in
899 considerazione, data la loro stretta relazione con la creazione di nuovi
902 Come accennato in sez.~\ref{sec:proc_fork} quando viene creato un nuovo
903 processo esso eredita dal padre sia le azioni che sono state impostate per i
904 singoli segnali, che la maschera dei segnali bloccati (vedi
905 sez.~\ref{sec:sig_sigmask}). Invece tutti i segnali pendenti e gli allarmi
906 vengono cancellati; essi infatti devono essere recapitati solo al padre, al
907 figlio dovranno arrivare solo i segnali dovuti alle sue azioni.
909 Quando si mette in esecuzione un nuovo programma con \func{exec} (si ricordi
910 quanto detto in sez.~\ref{sec:proc_exec}) tutti i segnali per i quali è stato
911 installato un gestore vengono reimpostati a \const{SIG\_DFL}. Non ha più
912 senso infatti fare riferimento a funzioni definite nel programma originario,
913 che non sono presenti nello spazio di indirizzi del nuovo programma.
915 Si noti che questo vale solo per le azioni per le quali è stato installato un
916 gestore, viene mantenuto invece ogni eventuale impostazione dell'azione a
917 \const{SIG\_IGN}. Questo permette ad esempio alla shell di impostare ad
918 \const{SIG\_IGN} le risposte per \signal{SIGINT} e \signal{SIGQUIT} per i
919 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
920 successiva pressione di \texttt{C-c} o \texttt{C-y}.
922 Per quanto riguarda il comportamento di tutte le altre \textit{system call} si
923 danno sostanzialmente due casi, a seconda che esse siano
924 \index{system~call~lente} \textsl{lente} (\textit{slow}) o \textsl{veloci}
925 (\textit{fast}). La gran parte di esse appartiene a quest'ultima categoria,
926 che non è influenzata dall'arrivo di un segnale. Esse sono dette
927 \textsl{veloci} in quanto la loro esecuzione è sostanzialmente immediata. La
928 risposta al segnale viene sempre data dopo che la \textit{system call} è stata
929 completata, in quanto attendere per eseguire un gestore non comporta nessun
932 In alcuni casi però alcune \textit{system call} possono bloccarsi
933 indefinitamente e per questo motivo vengono chiamate \textsl{lente}
934 \index{system~call~lente} o \textsl{bloccanti}. In questo caso non si può
935 attendere la conclusione della \textit{system call}, perché questo renderebbe
936 impossibile una risposta pronta al segnale, per cui il gestore viene eseguito
937 prima che la \textit{system call} sia ritornata. Un elenco dei casi in cui si
938 presenta questa situazione è il seguente:
940 \item la lettura da file che possono bloccarsi in attesa di dati non ancora
941 presenti (come per certi \index{file!di~dispositivo} file di dispositivo, i
943 \item la scrittura sugli stessi file, nel caso in cui dati non possano essere
944 accettati immediatamente (di nuovo comune per i socket);
945 \item l'apertura di un file di dispositivo che richiede operazioni non
946 immediate per una risposta (ad esempio l'apertura di un nastro che deve
948 \item le operazioni eseguite con \func{ioctl} che non è detto possano essere
949 eseguite immediatamente;
950 \item le funzioni di intercomunicazione fra processi (vedi cap.~\ref{cha:IPC})
951 che si bloccano in attesa di risposte da altri processi;
952 \item la funzione \func{pause} (vedi sez.~\ref{sec:sig_pause_sleep}) e le
953 analoghe \func{sigsuspend}, \func{sigtimedwait}, e \func{sigwaitinfo} (vedi
954 sez.~\ref{sec:sig_real_time}), usate appunto per attendere l'arrivo di un
956 \item le funzioni associate al \textit{file locking} (vedi
957 sez.~\ref{sec:file_locking})
958 \item la funzione \func{wait} e le analoghe funzioni di attesa se nessun
959 processo figlio è ancora terminato.
962 In questo caso si pone il problema di cosa fare una volta che il gestore sia
963 ritornato. La scelta originaria dei primi Unix era quella di far ritornare
964 anche la \textit{system call} restituendo l'errore di \errcode{EINTR}. Questa
965 è a tutt'oggi una scelta corrente, ma comporta che i programmi che usano dei
966 gestori controllino lo stato di uscita delle funzioni che eseguono una system
967 call lenta per ripeterne la chiamata qualora l'errore fosse questo.
969 Dimenticarsi di richiamare una \textit{system call} interrotta da un segnale è
970 un errore comune, tanto che le \acr{glibc} provvedono una macro
971 \code{TEMP\_FAILURE\_RETRY(expr)} che esegue l'operazione automaticamente,
972 ripetendo l'esecuzione dell'espressione \var{expr} fintanto che il risultato
973 non è diverso dall'uscita con un errore \errcode{EINTR}.
975 La soluzione è comunque poco elegante e BSD ha scelto un approccio molto
976 diverso, che è quello di fare ripartire automaticamente una \textit{system
977 call} interrotta invece di farla fallire. In questo caso ovviamente non c'è
978 bisogno di preoccuparsi di controllare il codice di errore; si perde però la
979 possibilità di eseguire azioni specifiche all'occorrenza di questa particolare
982 Linux e le \acr{glibc} consentono di utilizzare entrambi gli approcci,
983 attraverso una opportuna opzione di \func{sigaction} (vedi
984 sez.~\ref{sec:sig_sigaction}). È da chiarire comunque che nel caso di
985 interruzione nel mezzo di un trasferimento parziale di dati, le \textit{system
986 call} ritornano sempre indicando i byte trasferiti.
988 Si tenga presente però che alcune \textit{system call} vengono comunque
989 interrotte con un errore di \errcode{EINTR} indipendentemente dal fatto che ne
990 possa essere stato richiesto il riavvio automatico, queste funzioni sono:
993 \item le funzioni di attesa di un segnale, come \func{pause} (vedi
994 sez.~\ref{sec:sig_pause_sleep}), \func{sigsuspend}, \func{sigtimedwait}, e
995 \func{sigwaitinfo} (vedi sez.~\ref{sec:sig_real_time}).
996 \item le funzioni di attesa dell'\textit{I/O multiplexing}, come
997 \func{select}, \func{pselect}, \func{poll}, \func{ppoll}, \func{epoll\_wait}
998 e \func{epoll\_pwait} (vedi sez.~\ref{sec:file_multiplexing}).
999 \item le funzioni del System V IPC che prevedono attese: \func{msgrcv},
1000 \func{msgsnd} (vedi sez.~\ref{sec:ipc_sysv_mq}), \func{semop} e
1001 \func{semtimedop} (vedi sez.~\ref{sec:ipc_sysv_sem}).
1002 \item le funzioni di attesa di un processo: \func{usleep}, \func{nanosleep}
1003 (vedi sez.~\ref{sec:sig_pause_sleep}) e \func{clock\_nanosleep} (vedi
1004 sez.~\ref{sec:sig_timer_adv}).
1005 \item le funzioni che operano sui socket quando è stato impostato un
1006 \textit{timeout} sugli stessi con \func{setsockopt} (vedi
1007 sez.~\ref{sec:sock_generic_options}) ed in particolare \func{accept},
1008 \func{recv}, \func{recvfrom}, \func{recvmsg} per un \textit{timeout} in
1009 ricezione e \func{connect}, \func{send}, \func{sendto} e \func{sendmsg} per
1010 un \textit{timeout} in trasmissione.
1011 %\item la funzione \func{io\_getevents} per l'I/O asincrono (vedi sez.??)
1016 \subsection{L'installazione di un gestore}
1017 \label{sec:sig_signal}
1019 L'interfaccia più semplice per la gestione dei segnali è costituita dalla
1020 funzione di sistema \funcd{signal} che è definita fin dallo standard ANSI C.
1021 Quest'ultimo però non considera sistemi multitasking, per cui la definizione è
1022 tanto vaga da essere del tutto inutile in un sistema Unix. Per questo motivo
1023 ogni implementazione successiva ne ha modificato e ridefinito il
1024 comportamento, pur mantenendone immutato il prototipo\footnote{in realtà in
1025 alcune vecchie implementazioni (SVr4 e 4.3+BSD in particolare) vengono usati
1026 alcuni argomenti aggiuntivi per definire il comportamento della funzione,
1027 vedremo in sez.~\ref{sec:sig_sigaction} che questo è possibile usando la
1028 funzione \func{sigaction}.} che è:
1032 \fdecl{sighandler\_t signal(int signum, sighandler\_t handler)}
1033 \fdesc{Installa un gestore di segnale (\textit{signal handler}).}
1036 {La funzione ritorna il precedente gestore in caso di successo in caso di
1037 successo e \const{SIG\_ERR} per un errore, nel qual caso \var{errno}
1040 \item[\errcode{EINVAL}] il numero di segnale \param{signum} non è valido.
1045 In questa definizione per l'argomento \param{handler} che indica il gestore da
1046 installare si è usato un tipo di dato, \type{sighandler\_t}, che è una
1047 estensione GNU, definita dalle \acr{glibc}, che permette di riscrivere il
1048 prototipo di \func{signal} nella forma appena vista, molto più leggibile di
1049 quanto non sia la versione originaria, che di norma è definita come:
1050 \includecodesnip{listati/signal.c}
1051 questa infatti, per la poca chiarezza della sintassi del C quando si vanno a
1052 trattare puntatori a funzioni, è molto meno comprensibile. Da un confronto
1053 con il precedente prototipo si può dedurre la definizione di
1054 \type{sighandler\_t} che è:
1055 \includecodesnip{listati/sighandler_t.c}
1056 e cioè un puntatore ad una funzione \ctyp{void} (cioè senza valore di ritorno)
1057 e che prende un argomento di tipo \ctyp{int}. Si noti come si devono usare le
1058 parentesi intorno al nome della funzione per via delle precedenze degli
1059 operatori del C, senza di esse si sarebbe definita una funzione che ritorna un
1060 puntatore a \ctyp{void} e non un puntatore ad una funzione \ctyp{void}.
1062 La funzione \func{signal} quindi restituisce e prende come secondo argomento
1063 un puntatore a una funzione di questo tipo, che è appunto la funzione che
1064 verrà usata come gestore del segnale. Il numero di segnale passato
1065 nell'argomento \param{signum} può essere indicato direttamente con una delle
1066 costanti definite in sez.~\ref{sec:sig_standard}.
1068 L'argomento \param{handler} che indica il gestore invece, oltre all'indirizzo
1069 della funzione da chiamare all'occorrenza del segnale, può assumere anche i
1070 due valori costanti \const{SIG\_IGN} e \const{SIG\_DFL}. Il primo indica che
1071 il segnale deve essere ignorato. Il secondo ripristina l'azione predefinita, e
1072 serve a tornare al comportamento di default quando non si intende più gestire
1073 direttamente un segnale. Si ricordi però che i due segnali \signal{SIGKILL} e
1074 \signal{SIGSTOP} non possono essere né ignorati né intercettati e per loro
1075 l'uso di \func{signal} non ha alcun effetto, qualunque cosa si specifichi
1076 per \param{handler}.
1078 La funzione restituisce l'indirizzo dell'azione precedente, che può essere
1079 salvato per poterlo ripristinare (con un'altra chiamata a \func{signal}) in un
1080 secondo tempo. Si ricordi che se si imposta come azione \const{SIG\_IGN} o si
1081 imposta \const{SIG\_DFL} per un segnale la cui azione predefinita è di essere
1082 ignorato, tutti i segnali pendenti saranno scartati, e non verranno mai
1085 L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
1086 si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
1087 questi ultimi infatti la funzione è conforme al comportamento originale dei
1088 primi Unix in cui il gestore viene disinstallato alla sua chiamata, secondo la
1089 semantica inaffidabile; anche Linux seguiva questa convenzione con le vecchie
1090 librerie del C come la \acr{libc4} e la \acr{libc5}.\footnote{nelle
1091 \acr{libc5} esiste però la possibilità di includere \file{bsd/signal.h} al
1092 posto di \headfile{signal.h}, nel qual caso la funzione \func{signal} viene
1093 ridefinita per seguire la semantica affidabile usata da BSD.}
1095 Al contrario BSD segue la semantica affidabile, non disinstallando il gestore
1096 e bloccando il segnale durante l'esecuzione dello stesso. Con l'utilizzo delle
1097 \acr{glibc} dalla versione 2 anche Linux è passato a questo comportamento. Il
1098 comportamento della versione originale della funzione, il cui uso è deprecato
1099 per i motivi visti in sez.~\ref{sec:sig_semantics}, può essere ottenuto
1100 chiamando \funcm{sysv\_signal}, una volta che si sia definita la macro
1101 \macro{\_XOPEN\_SOURCE}. In generale, per evitare questi problemi, l'uso di
1102 \func{signal}, che tra l'altro ha un comportamento indefinito in caso di
1103 processo \itindex{thread} multi-\textit{thread}, è da evitare: tutti i nuovi
1104 programmi devono usare \func{sigaction}.
1106 È da tenere presente che, seguendo lo standard POSIX, il comportamento di un
1107 processo che ignora i segnali \signal{SIGFPE}, \signal{SIGILL}, o
1108 \signal{SIGSEGV}, qualora questi non originino da una chiamata ad una
1109 \func{kill} o altra funzione affine, è indefinito. Un gestore che ritorna da
1110 questi segnali può dare luogo ad un ciclo infinito.
1113 \subsection{Le funzioni per l'invio di segnali}
1114 \label{sec:sig_kill_raise}
1116 Come accennato in sez.~\ref{sec:sig_types} un segnale può anche essere
1117 generato direttamente nell'esecuzione di un programma, attraverso la chiamata
1118 ad una opportuna \textit{system call}. Le funzioni che si utilizzano di solito
1119 per inviare un segnale generico ad un processo sono \func{raise} e
1122 La funzione \funcd{raise}, definita dallo standard ANSI C, serve per inviare
1123 un segnale al processo corrente,\footnote{non prevedendo la presenza di un
1124 sistema multiutente lo standard ANSI C non poteva che definire una funzione
1125 che invia il segnale al programma in esecuzione, nel caso di Linux questa
1126 viene implementata come funzione di compatibilità.} il suo prototipo è:
1130 \fdecl{int raise(int sig)}
1131 \fdesc{Invia un segnale al processo corrente.}
1134 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1135 caso \var{errno} assumerà il valore:
1137 \item[\errcode{EINVAL}] il segnale \param{sig} non è valido.
1142 Il valore di \param{sig} specifica il segnale che si vuole inviare e può
1143 essere specificato con una delle costanti illustrate in
1144 tab.~\ref{tab:sig_signal_list}. In genere questa funzione viene usata per
1145 riprodurre il comportamento predefinito di un segnale che sia stato
1146 intercettato. In questo caso, una volta eseguite le operazioni volute, il
1147 gestore dovrà prima reinstallare l'azione predefinita, per poi attivarla
1148 chiamando \func{raise}.
1150 In realtà \func{raise} è una funzione di libreria, che per i processi ordinari
1151 viene implementata attraverso la funzione di sistema \funcd{kill} che è quella
1152 che consente effettivamente di inviare un segnale generico ad un processo, il
1158 \fdecl{int kill(pid\_t pid, int sig)}
1159 \fdesc{Invia un segnale ad uno o più processi.}
1162 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1163 caso \var{errno} assumerà uno dei valori:
1165 \item[\errcode{EINVAL}] il segnale specificato non esiste.
1166 \item[\errcode{ESRCH}] il processo o il gruppo di processi indicato non
1168 \item[\errcode{EPERM}] non si hanno privilegi sufficienti ad inviare il
1174 La funzione invia il segnale specificato dall'argomento \param{sig} al
1175 processo o ai processi specificati con l'argomento \param{pid}. Lo standard
1176 POSIX prevede che il valore 0 per \param{sig} sia usato per specificare il
1177 segnale nullo. Se la funzione viene chiamata con questo valore non viene
1178 inviato nessun segnale, ma viene eseguito il controllo degli errori, in tal
1179 caso si otterrà un errore \errcode{EPERM} se non si hanno i permessi necessari
1180 ed un errore \errcode{ESRCH} se il processo o i processi specificati
1181 con \param{pid} non esistono.
1186 \begin{tabular}[c]{|r|p{8cm}|}
1188 \textbf{Valore} & \textbf{Significato} \\
1191 $>0$ & Il segnale è mandato al processo con \ids{PID} uguale
1193 0 & Il segnale è mandato ad ogni processo del \itindex{process~group}
1194 \textit{process group} del chiamante.\\
1195 $-1$ & Il segnale è mandato ad ogni processo (eccetto \cmd{init}).\\
1196 $<-1$& Il segnale è mandato ad ogni processo del \textit{process group}
1197 \itindex{process~group} con \ids{PGID} uguale
1198 a $|\param{pid}|$.\\
1201 \caption{Valori dell'argomento \param{pid} per la funzione
1203 \label{tab:sig_kill_values}
1206 A seconda del valore dell'argomento \param{pid} si può inviare il segnale ad
1207 uno specifico processo, ad un \textit{process group} (vedi
1208 sez.~\ref{sec:sess_proc_group}) o a tutti i processi, secondo quanto
1209 illustrato in tab.~\ref{tab:sig_kill_values} che riporta i valori possibili
1210 per questo argomento. Si tenga conto però che il sistema ricicla i \ids{PID}
1211 (come accennato in sez.~\ref{sec:proc_pid}) per cui l'esistenza di un processo
1212 non significa che esso sia realmente quello a cui si intendeva mandare il
1215 Indipendentemente dalla funzione specifica che viene usata solo
1216 l'amministratore può inviare un segnale ad un processo qualunque, in tutti gli
1217 altri casi l'\ids{UID} reale o l'\ids{UID} effettivo del processo chiamante
1218 devono corrispondere all'\ids{UID} reale o all'\ids{UID} salvato della
1219 destinazione. Fa eccezione il caso in cui il segnale inviato sia
1220 \signal{SIGCONT}, nel quale occorre anche che entrambi i processi appartengano
1221 alla stessa sessione.
1223 Si tenga presente che, per il ruolo fondamentale che riveste nel sistema, non
1224 è possibile inviare al processo 1 (cioè a \cmd{init}) segnali per i quali esso
1225 non abbia un gestore installato. Infine, seguendo le specifiche POSIX
1226 1003.1-2001, l'uso della chiamata \code{kill(-1, sig)} comporta che il segnale
1227 sia inviato (con la solita eccezione di \cmd{init}) a tutti i processi per i
1228 quali i permessi lo consentano. Lo standard permette comunque alle varie
1229 implementazioni di escludere alcuni processi specifici: nel caso in questione
1230 Linux non invia il segnale al processo che ha effettuato la chiamata.
1232 Si noti pertanto che la funzione \code{raise(sig)} può essere definita in
1233 termini di \func{kill}, ed è sostanzialmente equivalente ad una
1234 \code{kill(getpid(), sig)}. Siccome \func{raise}, che è definita nello
1235 standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
1236 l'uso di \func{kill} finisce per essere più portabile. Una seconda funzione
1237 che può essere definita in termini di \func{kill} è \funcd{killpg}, il suo
1242 \fdecl{int killpg(pid\_t pidgrp, int signal)}
1243 \fdesc{Invia un segnale ad un \itindex{process~group} \textit{process group}.}
1246 { La funzione ritorna $0$ in caso di successo e $-1$ per un errore, e gli
1247 errori sono gli stessi di \func{kill}.
1252 La funzione invia il segnale \param{signal} al \itindex{process~group}
1253 \textit{process group} il cui \acr{PGID} (vedi sez.~\ref{sec:sess_proc_group})
1254 è indicato dall'argomento \param{pidgrp}, che deve essere un intero
1255 positivo. Il suo utilizzo è sostanzialmente equivalente all'esecuzione di
1256 \code{kill(-pidgrp, signal)}.
1258 Oltre alle precedenti funzioni di base, vedremo più avanti che esistono altre
1259 funzioni per inviare segnali generici, come \func{sigqueue} per i segnali
1260 \textit{real-time} (vedi sez.~\ref{sec:sig_real_time}) e le specifiche
1261 funzioni per i \textit{thread} che tratteremo in sez.~\ref{sec:thread_signal}.
1263 Esiste però un'ultima funzione che permette l'invio diretto di un segnale che
1264 vale la pena di trattare a parte per le sue peculiarità. La funzione in
1265 questione è \funcd{abort} che, come accennato in
1266 sez.~\ref{sec:proc_termination}, permette di abortire l'esecuzione di un
1267 programma tramite l'invio del segnale \signal{SIGABRT}. Il suo prototipo è:
1271 \fdecl{void abort(void)}
1272 \fdesc{Abortisce il processo corrente.}
1275 {La funzione non ritorna, il processo viene terminato.}
1278 La differenza fra questa funzione e l'uso di \func{raise} o di un'altra
1279 funzione per l'invio di \signal{SIGABRT} è che anche se il segnale è bloccato
1280 o ignorato, la funzione ha effetto lo stesso. Il segnale può però essere
1281 intercettato per effettuare eventuali operazioni di chiusura prima della
1282 terminazione del processo.
1284 Lo standard ANSI C richiede inoltre che anche se il gestore ritorna, la
1285 funzione non ritorni comunque. Lo standard POSIX.1 va oltre e richiede che se
1286 il processo non viene terminato direttamente dal gestore sia la stessa
1287 \func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
1288 standard POSIX, prima della terminazione tutti i file aperti e gli stream
1289 saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
1290 eventuali funzioni registrate con \func{atexit} e \func{on\_exit}.
1295 \subsection{Le funzioni di allarme ed i \textit{timer}}
1296 \label{sec:sig_alarm_abort}
1298 Un caso particolare di segnali generati a richiesta è quello che riguarda i
1299 vari segnali usati per la temporizzazione, per ciascuno di essi infatti sono
1300 previste delle funzioni specifiche che ne effettuino l'invio. La più comune, e
1301 la più semplice, delle funzioni usate per la temporizzazione è la funzione di
1302 sistema \funcd{alarm}, il cui prototipo è:
1306 \fdecl{unsigned int alarm(unsigned int seconds)}
1307 \fdesc{Predispone l'invio di un allarme.}
1310 {La funzione ritorna il numero di secondi rimanenti ad un precedente allarme,
1311 o $0$ se non c'erano allarmi pendenti, non sono previste condizioni di
1315 La funzione fornisce un meccanismo che consente ad un processo di predisporre
1316 un'interruzione nel futuro, ad esempio per effettuare una qualche operazione
1317 dopo un certo periodo di tempo, programmando l'emissione di un segnale (nel
1318 caso in questione \signal{SIGALRM}) dopo il numero di secondi specificato
1319 dall'argomento \param{seconds}. Se si specifica per \param{seconds} un valore
1320 nullo non verrà inviato nessun segnale. Siccome alla chiamata viene cancellato
1321 ogni precedente allarme, questo valore può essere usato per cancellare una
1322 programmazione precedente.
1324 La funzione inoltre ritorna il numero di secondi rimanenti all'invio
1325 dell'allarme programmato in precedenza. In questo modo è possibile controllare
1326 se non si è cancellato un precedente allarme e predisporre eventuali misure
1327 che permettano di gestire il caso in cui servono più interruzioni.
1329 In sez.~\ref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
1330 associati tre tempi diversi: il \textit{clock time}, l'\textit{user time} ed
1331 il \textit{system time}. Per poterli calcolare il kernel mantiene per ciascun
1332 processo tre diversi timer:
1334 \item un \textit{real-time timer} che calcola il tempo reale trascorso (che
1335 corrisponde al \textit{clock time}). La scadenza di questo timer provoca
1336 l'emissione di \signal{SIGALRM};
1337 \item un \textit{virtual timer} che calcola il tempo di processore usato dal
1338 processo in user space (che corrisponde all'\textit{user time}). La scadenza
1339 di questo timer provoca l'emissione di \signal{SIGVTALRM};
1340 \item un \textit{profiling timer} che calcola la somma dei tempi di processore
1341 utilizzati direttamente dal processo in user space, e dal kernel nelle
1342 \textit{system call} ad esso relative (che corrisponde a quello che in
1343 sez.~\ref{sec:sys_unix_time} abbiamo chiamato \textit{processor time}). La
1344 scadenza di questo timer provoca l'emissione di \signal{SIGPROF}.
1347 Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
1348 tempo reale. La funzione come abbiamo visto è molto semplice, ma proprio per
1349 questo presenta numerosi limiti: non consente di usare gli altri timer, non
1350 può specificare intervalli di tempo con precisione maggiore del secondo e
1351 genera il segnale una sola volta.
1353 Per ovviare a questi limiti Linux deriva da BSD la funzione \funcd{setitimer}
1354 che permette di usare un timer qualunque e l'invio di segnali periodici, al
1355 costo però di una maggiore complessità d'uso e di una minore portabilità. Il
1360 \fdecl{int setitimer(int which, const struct itimerval *value, struct
1363 \fdesc{Predispone l'invio di un segnale di allarme.}
1366 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1367 caso \var{errno} assumerà uno dei valori \errval{EINVAL} o \errval{EFAULT}
1368 nel loro significato generico.}
1372 La funzione predispone l'invio di un segnale di allarme alla scadenza
1373 dell'intervallo indicato dall'argomento \param{value}. Il valore
1374 dell'argomento \param{which} permette di specificare quale dei tre timer
1375 illustrati in precedenza usare; i possibili valori sono riportati in
1376 tab.~\ref{tab:sig_setitimer_values}.
1380 \begin{tabular}[c]{|l|l|}
1382 \textbf{Valore} & \textbf{Timer} \\
1385 \const{ITIMER\_REAL} & \textit{real-time timer}\\
1386 \const{ITIMER\_VIRTUAL} & \textit{virtual timer}\\
1387 \const{ITIMER\_PROF} & \textit{profiling timer}\\
1390 \caption{Valori dell'argomento \param{which} per la funzione
1392 \label{tab:sig_setitimer_values}
1395 Il valore della struttura specificata \param{value} viene usato per impostare
1396 il timer, se il puntatore \param{ovalue} non è nullo il precedente valore
1397 viene salvato qui. I valori dei timer devono essere indicati attraverso una
1398 struttura \struct{itimerval}, definita in fig.~\ref{fig:file_stat_struct}.
1400 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
1401 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
1402 scadenza. Entrambi esprimono i tempi tramite una struttura \struct{timeval} che
1403 permette una precisione fino al microsecondo.
1405 Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
1406 il segnale e reimposta \var{it\_value} al valore di \var{it\_interval}, in
1407 questo modo il ciclo verrà ripetuto; se invece il valore di \var{it\_interval}
1408 è nullo il timer si ferma.
1410 \begin{figure}[!htb]
1411 \footnotesize \centering
1412 \begin{minipage}[c]{0.8\textwidth}
1413 \includestruct{listati/itimerval.h}
1416 \caption{La struttura \structd{itimerval}, che definisce i valori dei timer
1418 \label{fig:sig_itimerval}
1421 L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
1422 caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
1423 definita direttamente nello standard POSIX.1, può a sua volta essere espressa
1424 in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
1425 \cite{GlibcMan} che ne riporta la definizione mostrata in
1426 fig.~\ref{fig:sig_alarm_def}.\footnote{questo comporta anche che non è il caso
1427 di mescolare chiamate ad \func{abort} e a \func{setitimer}.}
1429 \begin{figure}[!htb]
1430 \footnotesize \centering
1431 \begin{minipage}[c]{0.8\textwidth}
1432 \includestruct{listati/alarm_def.c}
1435 \caption{Definizione di \func{alarm} in termini di \func{setitimer}.}
1436 \label{fig:sig_alarm_def}
1439 Si deve comunque tenere presente che fino al kernel 2.6.16 la precisione di
1440 queste funzioni era limitata dalla frequenza del timer di sistema, determinato
1441 dal valore della costante \texttt{HZ} di cui abbiamo già parlato in
1442 sez.~\ref{sec:proc_hierarchy}, in quanto le temporizzazioni erano calcolate in
1443 numero di interruzioni del timer (i cosiddetti \itindex{jiffies}
1444 ``\textit{jiffies}''), ed era assicurato soltanto che il segnale non sarebbe
1445 stato mai generato prima della scadenza programmata (l'arrotondamento cioè era
1446 effettuato per eccesso).\footnote{questo in realtà non è del tutto vero a
1447 causa di un bug, presente fino al kernel 2.6.12, che in certe circostanze
1448 causava l'emissione del segnale con un arrotondamento per difetto.}
1450 L'uso del contatore dei \itindex{jiffies} \textit{jiffies}, un intero a 32 bit
1451 nella maggior parte dei casi, comportava inoltre l'impossibilità di
1452 specificare tempi molto lunghi. superiori al valore della costante
1453 \const{MAX\_SEC\_IN\_JIFFIES}, pari, nel caso di default di un valore di
1454 \const{HZ} di 250, a circa 99 giorni e mezzo. Con il cambiamento della
1455 rappresentazione effettuato nel kernel 2.6.16 questo problema è scomparso e
1456 con l'introduzione dei timer ad alta risoluzione (vedi
1457 sez.~\ref{sec:sig_timer_adv}) nel kernel 2.6.21 la precisione è diventata
1458 quella fornita dall'hardware disponibile.
1460 Una seconda causa di potenziali ritardi è che il segnale viene generato alla
1461 scadenza del timer, ma poi deve essere consegnato al processo; se quest'ultimo
1462 è attivo (questo è sempre vero per \const{ITIMER\_VIRT}) la consegna è
1463 immediata, altrimenti può esserci un ulteriore ritardo che può variare a
1464 seconda del carico del sistema.
1466 Questo ha una conseguenza che può indurre ad errori molto subdoli, si tenga
1467 conto poi che in caso di sistema molto carico, si può avere il caso patologico
1468 in cui un timer scade prima che il segnale di una precedente scadenza sia
1469 stato consegnato. In questo caso, per il comportamento dei segnali descritto
1470 in sez.~\ref{sec:sig_sigchld}, un solo segnale sarà consegnato. Per questo
1471 oggi l'uso di questa funzione è deprecato a favore degli
1472 \index{High~Resolution~Timer~(HRT)} \textit{high-resolution timer} e della
1473 cosiddetta \itindex{POSIX~Timer~API} \textit{POSIX Timer API}, che tratteremo
1474 in sez.~\ref{sec:sig_timer_adv}.
1476 Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
1477 valore corrente di un timer senza modificarlo, è possibile usare la funzione
1478 \funcd{getitimer}, il cui prototipo è:
1482 \fdecl{int getitimer(int which, struct itimerval *value)}
1483 \fdesc{Legge il valore di un timer.}
1486 { La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1487 caso \var{errno} assumerà gli stessi valori di \func{getitimer}. }
1490 La funzione legge nella struttura \struct{itimerval} puntata da \param{value}
1491 il valore del timer specificato da \param{which} ed i suoi argomenti hanno lo
1492 stesso significato e formato di quelli di \func{setitimer}.
1495 \subsection{Le funzioni di pausa e attesa}
1496 \label{sec:sig_pause_sleep}
1498 Sono parecchie le occasioni in cui si può avere necessità di sospendere
1499 temporaneamente l'esecuzione di un processo. Nei sistemi più elementari in
1500 genere questo veniva fatto con un ciclo di attesa in cui il programma ripete
1501 una operazione un numero sufficiente di volte per far passare il tempo
1504 Ma in un sistema multitasking un ciclo di attesa è solo un inutile spreco di
1505 tempo di processore, dato che altri programmi possono essere eseguiti nel
1506 frattempo, per questo ci sono delle apposite funzioni che permettono di
1507 mantenere un processo in attesa per il tempo voluto, senza impegnare il
1508 processore. In pratica si tratta di funzioni che permettono di portare
1509 esplicitamente il processo nello stato di \textit{sleep} (si ricordi quanto
1510 illustrato in tab.~\ref{tab:proc_proc_states}) per un certo periodo di tempo.
1512 La prima di queste è la funzione di sistema \funcd{pause}, che viene usata per
1513 mettere un processo in attesa per un periodo di tempo indefinito, fino
1514 all'arrivo di un segnale, il suo prototipo è:
1518 \fdecl{int pause(void)}
1519 \fdesc{Pone il processo in pausa fino al ricevimento di un segnale.}
1522 {La funzione ritorna solo dopo che un segnale è stato ricevuto ed il relativo
1523 gestore è ritornato, nel qual caso restituisce $-1$ e \var{errno} assume il
1524 valore \errval{EINTR}.}
1527 La funzione ritorna sempre con una condizione di errore, dato che il successo
1528 sarebbe quello di continuare ad aspettare indefinitamente. In genere si usa
1529 questa funzione quando si vuole mettere un processo in attesa di un qualche
1530 evento specifico che non è sotto il suo diretto controllo, ad esempio la si
1531 può usare per interrompere l'esecuzione del processo fino all'arrivo di un
1532 segnale inviato da un altro processo.
1534 Quando invece si vuole fare attendere un processo per un intervallo di tempo
1535 già noto in partenza, lo standard POSIX.1 prevede una funzione di attesa
1536 specifica, \funcd{sleep}, il cui prototipo è:
1541 \fdecl{unsigned int sleep(unsigned int seconds)}
1542 \fdesc{Pone il processo in pausa per un tempo in secondi.}
1545 {La funzione ritorna $0$ se l'attesa viene completata o il
1546 numero di secondi restanti se viene interrotta da un segnale, non sono
1547 previsti codici di errore.}
1550 La funzione pone il processo in stato di \textit{sleep} per il numero di
1551 secondi specificato dall'argomento \param{seconds}, a meno di non essere
1552 interrotta da un segnale. Alla terminazione del periodo di tempo indicato la
1553 funzione ritorna riportando il processo in stato \textit{runnable} così che
1554 questo possa riprendere l'esecuzione.
1556 In caso di interruzione della funzione non è una buona idea ripetere la
1557 chiamata per il tempo rimanente restituito dalla stessa, in quanto la
1558 riattivazione del processo può avvenire in un qualunque momento, ma il valore
1559 restituito sarà sempre arrotondato al secondo. Questo può avere la conseguenza
1560 che se la successione dei segnali è particolarmente sfortunata e le differenze
1561 si accumulano, si possono avere ritardi anche di parecchi secondi rispetto a
1562 quanto programmato inizialmente. In genere la scelta più sicura in questo caso
1563 è quella di stabilire un termine per l'attesa, e ricalcolare tutte le volte il
1564 numero di secondi che restano da aspettare.
1566 Si tenga presente che alcune implementazioni l'uso di \func{sleep} può avere
1567 conflitti con quello di \signal{SIGALRM}, dato che la funzione può essere
1568 realizzata con l'uso di \func{pause} e \func{alarm}, in una maniera analoga a
1569 quella dell'esempio che vedremo in sez.~\ref{sec:sig_example}. In tal caso
1570 mescolare chiamate di \func{alarm} e \func{sleep} o modificare l'azione
1571 associata \signal{SIGALRM}, può portare a dei risultati indefiniti. Nel caso
1572 delle \acr{glibc} è stata usata una implementazione completamente indipendente
1573 e questi problemi non ci sono, ma un programma portabile non può fare questa
1576 La granularità di \func{sleep} permette di specificare attese soltanto in
1577 secondi, per questo sia sotto BSD4.3 che in SUSv2 è stata definita un'altra
1578 funzione con una precisione teorica del microsecondo. I due standard hanno
1579 delle definizioni diverse, ma le \acr{glibc} seguono (secondo la pagina di
1580 manuale almeno dalla versione 2.2.2) seguono quella di SUSv2 per cui la
1581 funzione \funcd{usleep} (dove la \texttt{u} è intesa come sostituzione di
1582 $\mu$), ha il seguente prototipo:
1586 \fdecl{int usleep(unsigned long usec)}
1587 \fdesc{Pone il processo in pausa per un tempo in microsecondi.}
1590 {La funzione ritorna $0$ se l'attesa viene completata e $-1$ per un errore,
1591 nel qual caso \var{errno} assumerà uno dei valori:
1593 \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1594 \item[\errcode{EINVAL}] si è indicato un valore di \param{usec} maggiore di
1600 Anche questa funzione, a seconda delle implementazioni, può presentare
1601 problemi nell'interazione con \func{alarm} e \signal{SIGALRM}, per questo
1602 motivo, pur essendovi citata, nello standard POSIX.1-2001 viene deprecata in
1603 favore della nuova funzione di sistema \funcd{nanosleep}, il cui prototipo è:
1607 \fdecl{int nanosleep(const struct timespec *req, struct timespec *rem)}
1608 \fdesc{Pone il processo in pausa per un periodo di tempo.}
1611 {La funzione ritorna $0$ se l'attesa viene completata e $-1$ per un errore,
1612 nel qual caso \var{errno} assumerà uno dei valori:
1614 \item[\errcode{EINVAL}] si è specificato un numero di secondi negativo o un
1615 numero di nanosecondi maggiore di 999.999.999.
1616 \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1621 La funzione pone il processo in pausa portandolo nello stato di \textit{sleep}
1622 per il tempo specificato dall'argomento \param{req}, ed in caso di
1623 interruzione restituisce il tempo restante nell'argomento \param{rem}. Lo
1624 standard richiede che la funzione sia implementata in maniera del tutto
1625 indipendente da \func{alarm}, e nel caso di Linux questo è fatto utilizzando
1626 direttamente il timer del kernel. Lo standard richiede inoltre che la funzione
1627 sia utilizzabile senza interferenze con l'uso di \signal{SIGALRM}. La funzione
1628 prende come argomenti delle strutture di tipo \struct{timespec}, la cui
1629 definizione è riportata in fig.~\ref{fig:sys_timespec_struct}, il che permette
1630 di specificare un tempo con una precisione teorica fino al nanosecondo.
1632 La funzione risolve anche il problema di proseguire l'attesa dopo
1633 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
1634 restituito il tempo rimanente rispetto a quanto richiesto
1635 inizialmente,\footnote{con l'eccezione, valida solo nei kernel della serie
1636 2.4, in cui, per i processi riavviati dopo essere stati fermati da un
1637 segnale, il tempo passato in stato \texttt{T} non viene considerato nel
1638 calcolo della rimanenza.} e basta richiamare la funzione per completare
1641 Anche qui però occorre tenere presente che i tempi sono arrotondati, per cui
1642 la precisione, per quanto migliore di quella ottenibile con \func{sleep}, è
1643 relativa e in caso di molte interruzioni si può avere una deriva, per questo
1644 esiste la funzione \func{clock\_nanosleep} (vedi sez.~\ref{sec:sig_timer_adv})
1645 che permette di specificare un tempo assoluto anziché un tempo relativo.
1647 Chiaramente, anche se il tempo può essere specificato con risoluzioni fino al
1648 nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
1649 temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
1650 specificato, ma prima che il processo possa tornare ad essere eseguito
1651 occorrerà almeno attendere la successiva interruzione del timer di sistema,
1652 cioè un tempo che a seconda dei casi può arrivare fino a 1/\const{HZ}, (sempre
1653 che il sistema sia scarico ed il processa venga immediatamente rimesso in
1654 esecuzione); per questo motivo il valore restituito in \param{rem} è sempre
1655 arrotondato al multiplo successivo di 1/\const{HZ}.
1657 Con i kernel della serie 2.4 in realtà era possibile ottenere anche pause più
1658 precise del centesimo di secondo usando politiche di \itindex{scheduler}
1659 scheduling \textit{real-time} come \const{SCHED\_FIFO} o \const{SCHED\_RR}; in
1660 tal caso infatti il calcolo sul numero di interruzioni del timer veniva
1661 evitato utilizzando direttamente un ciclo di attesa con cui si raggiungevano
1662 pause fino ai 2~ms con precisioni del $\mu$s. Questa estensione è stata
1663 rimossa con i kernel della serie 2.6, che consentono una risoluzione più alta
1664 del timer di sistema; inoltre a partire dal kernel 2.6.21, \func{nanosleep}
1665 può avvalersi del supporto dei timer ad alta risoluzione, ottenendo la massima
1666 precisione disponibile sull'hardware della propria macchina.
1669 \subsection{Un esempio elementare}
1670 \label{sec:sig_sigchld}
1672 Un semplice esempio per illustrare il funzionamento di un gestore di segnale è
1673 quello della gestione di \signal{SIGCHLD}. Abbiamo visto in
1674 sez.~\ref{sec:proc_termination} che una delle azioni eseguite dal kernel alla
1675 conclusione di un processo è quella di inviare questo segnale al padre. In
1676 generale dunque, quando non interessa elaborare lo stato di uscita di un
1677 processo, si può completare la gestione della terminazione installando un
1678 gestore per \signal{SIGCHLD} il cui unico compito sia quello di chiamare
1679 \func{waitpid} per completare la procedura di terminazione in modo da evitare
1680 la formazione di \itindex{zombie} \textit{zombie}.\footnote{si ricordi
1681 comunque che dal kernel 2.6 seguendo lo standard POSIX.1-2001 per evitare di
1682 dover ricevere gli stati di uscita che non interessano basta impostare come
1683 azione predefinita quella di ignorare \signal{SIGCHLD}, nel qual caso viene
1684 assunta la semantica di System V, in cui il segnale non viene inviato, il
1685 sistema non genera \itindex{zombie} \textit{zombie} e lo stato di
1686 terminazione viene scartato senza dover chiamare una \func{wait}.}
1688 In fig.~\ref{fig:sig_sigchld_handl} è mostrato il codice contenente una
1689 implementazione generica di una funzione di gestione per \signal{SIGCHLD},
1690 (che si trova nei sorgenti allegati nel file \file{SigHand.c}); se ripetiamo i
1691 test di sez.~\ref{sec:proc_termination}, invocando \cmd{forktest} con
1692 l'opzione \cmd{-s} (che si limita ad effettuare l'installazione di questa
1693 funzione come gestore di \signal{SIGCHLD}) potremo verificare che non si ha
1694 più la creazione di \itindex{zombie} \textit{zombie}.
1696 \begin{figure}[!htbp]
1697 \footnotesize \centering
1698 \begin{minipage}[c]{\codesamplewidth}
1699 \includecodesample{listati/hand_sigchild.c}
1702 \caption{Codice di una funzione generica di gestione per il segnale
1704 \label{fig:sig_sigchld_handl}
1707 Il codice del gestore è di lettura immediata, come buona norma di
1708 programmazione (si ricordi quanto accennato sez.~\ref{sec:sys_errno}) si
1709 comincia (\texttt{\small 6--7}) con il salvare lo stato corrente di
1710 \var{errno}, in modo da poterlo ripristinare prima del ritorno del gestore
1711 (\texttt{\small 16--17}). In questo modo si preserva il valore della variabile
1712 visto dal corso di esecuzione principale del processo, che altrimenti sarebbe
1713 sovrascritto dal valore restituito nella successiva chiamata di
1716 Il compito principale del gestore è quello di ricevere lo stato di
1717 terminazione del processo, cosa che viene eseguita nel ciclo in
1718 (\texttt{\small 9--15}). Il ciclo è necessario a causa di una caratteristica
1719 fondamentale della gestione dei segnali: abbiamo già accennato come fra la
1720 generazione di un segnale e l'esecuzione del gestore possa passare un certo
1721 lasso di tempo e niente ci assicura che il gestore venga eseguito prima della
1722 generazione di ulteriori segnali dello stesso tipo. In questo caso normalmente
1723 i segnali successivi vengono ``\textsl{fusi}'' col primo ed al processo ne
1724 viene recapitato soltanto uno.
1726 Questo può essere un caso comune proprio con \signal{SIGCHLD}, qualora capiti
1727 che molti processi figli terminino in rapida successione. Esso inoltre si
1728 presenta tutte le volte che un segnale viene bloccato: per quanti siano i
1729 segnali emessi durante il periodo di blocco, una volta che quest'ultimo sarà
1730 rimosso verrà recapitato un solo segnale.
1732 Allora, nel caso della terminazione dei processi figli, se si chiamasse
1733 \func{waitpid} una sola volta, essa leggerebbe lo stato di terminazione per un
1734 solo processo, anche se i processi terminati sono più di uno, e gli altri
1735 resterebbero in stato di \itindex{zombie} \textit{zombie} per un tempo
1738 Per questo occorre ripetere la chiamata di \func{waitpid} fino a che essa non
1739 ritorni un valore nullo, segno che non resta nessun processo di cui si debba
1740 ancora ricevere lo stato di terminazione (si veda sez.~\ref{sec:proc_wait} per
1741 la sintassi della funzione). Si noti anche come la funzione venga invocata con
1742 il parametro \const{WNOHANG} che permette di evitare il suo blocco quando
1743 tutti gli stati di terminazione sono stati ricevuti.
1747 \section{La gestione avanzata dei segnali}
1748 \label{sec:sig_adv_control}
1750 Le funzioni esaminate finora fanno riferimento alle modalità più elementari
1751 della gestione dei segnali; non si sono pertanto ancora prese in
1752 considerazione le tematiche più complesse, collegate alle varie
1753 \itindex{race~condition} \textit{race condition} che i segnali possono
1754 generare e alla natura asincrona degli stessi.
1756 Affronteremo queste problematiche in questa sezione, partendo da un esempio
1757 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
1758 risolvere i problemi più complessi connessi alla programmazione con i segnali,
1759 fino a trattare le caratteristiche generali della gestione dei medesimi nella
1760 casistica ordinaria.
1763 \subsection{Alcune problematiche aperte}
1764 \label{sec:sig_example}
1766 Come accennato in sez.~\ref{sec:sig_pause_sleep} è possibile implementare
1767 \func{sleep} a partire dall'uso di \func{pause} e \func{alarm}. A prima vista
1768 questo può sembrare di implementazione immediata; ad esempio una semplice
1769 versione di \func{sleep} potrebbe essere quella illustrata in
1770 fig.~\ref{fig:sig_sleep_wrong}.
1772 \begin{figure}[!htb]
1773 \footnotesize \centering
1774 \begin{minipage}[c]{\codesamplewidth}
1775 \includecodesample{listati/sleep_danger.c}
1778 \caption{Una implementazione pericolosa di \func{sleep}.}
1779 \label{fig:sig_sleep_wrong}
1782 Dato che è nostra intenzione utilizzare \signal{SIGALRM} il primo passo della
1783 nostra implementazione sarà quello di installare il relativo gestore salvando
1784 il precedente (\texttt{\small 14-17}). Si effettuerà poi una chiamata ad
1785 \func{alarm} per specificare il tempo d'attesa per l'invio del segnale a cui
1786 segue la chiamata a \func{pause} per fermare il programma (\texttt{\small
1787 18-20}) fino alla sua ricezione. Al ritorno di \func{pause}, causato dal
1788 ritorno del gestore (\texttt{\small 1-9}), si ripristina il gestore originario
1789 (\texttt{\small 21-22}) restituendo l'eventuale tempo rimanente
1790 (\texttt{\small 23-24}) che potrà essere diverso da zero qualora
1791 l'interruzione di \func{pause} venisse causata da un altro segnale.
1793 Questo codice però, a parte il non gestire il caso in cui si è avuta una
1794 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
1795 presenta una pericolosa \itindex{race~condition} \textit{race condition}.
1796 Infatti, se il processo viene interrotto fra la chiamata di \func{alarm} e
1797 \func{pause}, può capitare (ad esempio se il sistema è molto carico) che il
1798 tempo di attesa scada prima dell'esecuzione di quest'ultima, cosicché essa
1799 sarebbe eseguita dopo l'arrivo di \signal{SIGALRM}. In questo caso ci si
1800 troverebbe di fronte ad un \itindex{deadlock} deadlock, in quanto \func{pause}
1801 non verrebbe mai più interrotta (se non in caso di un altro segnale).
1803 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
1804 SVr2) usando la funzione \func{longjmp} (vedi sez.~\ref{sec:proc_longjmp}) per
1805 uscire dal gestore. In questo modo, con una condizione sullo stato di
1806 uscita di quest'ultima, si può evitare la chiamata a \func{pause}, usando un
1807 codice del tipo di quello riportato in fig.~\ref{fig:sig_sleep_incomplete}.
1809 \begin{figure}[!htb]
1810 \footnotesize \centering
1811 \begin{minipage}[c]{\codesamplewidth}
1812 \includecodesample{listati/sleep_defect.c}
1815 \caption{Una implementazione ancora malfunzionante di \func{sleep}.}
1816 \label{fig:sig_sleep_incomplete}
1819 In questo caso il gestore (\texttt{\small 18-27}) non ritorna come in
1820 fig.~\ref{fig:sig_sleep_wrong}, ma usa la funzione \func{longjmp}
1821 (\texttt{\small 25}) per rientrare direttamente nel corpo principale del
1822 programma. Dato che in questo caso il valore di uscita che verrà restituito da
1823 \func{setjmp} è 1, grazie alla condizione impostata in (\texttt{\small 9-12})
1824 si potrà evitare comunque che \func{pause} sia chiamata a vuoto.
1826 Ma anche questa implementazione comporta dei problemi, in questo caso infatti
1827 non viene gestita correttamente l'interazione con gli altri segnali. Se
1828 infatti il segnale di allarme interrompe un altro gestore, l'esecuzione non
1829 riprenderà nel gestore in questione, ma nel ciclo principale, interrompendone
1830 inopportunamente l'esecuzione. Lo stesso tipo di problemi si presenterebbero
1831 se si volesse usare questa implementazione di \func{alarm} per stabilire un
1832 timeout su una qualunque \textit{system call} bloccante.
1834 Un secondo esempio dei problemi a cui si può andare incontro è quello in cui
1835 si usa un segnale per notificare una qualche forma di evento. In genere quello
1836 che si fa in questo caso è impostare all'interno del gestore un opportuno flag
1837 da controllare nel corpo principale del programma, con un codice del tipo di
1838 quello riportato in fig.~\ref{fig:sig_event_wrong}.
1840 La logica del programma è quella di far impostare al gestore (\texttt{\small
1841 14-19}) una \index{variabili!globali} variabile globale, preventivamente
1842 inizializzata nel programma principale, ad un diverso valore. In questo modo
1843 dal corpo principale del programma si potrà determinare, osservandone il
1844 contenuto di detta variabile, l'occorrenza o meno del segnale, ed eseguire le
1845 azioni conseguenti (\texttt{\small 6-11}) relative.
1847 \begin{figure}[!htbp]
1848 \footnotesize\centering
1849 \begin{minipage}[c]{\codesamplewidth}
1850 \includecodesample{listati/sig_alarm.c}
1853 \caption{Un esempio non funzionante del codice per il controllo di un
1854 evento generato da un segnale.}
1855 \label{fig:sig_event_wrong}
1858 Questo è il tipico esempio di caso, già citato in
1859 sez.~\ref{sec:proc_race_cond}, in cui si genera una \itindex{race~condition}
1860 \textit{race condition}. Infatti, in una situazione in cui un segnale è già
1861 arrivato (e quindi \var{flag} è già stata impostata ad 1 nel gestre) se un
1862 altro segnale arriva immediatamente dopo l'esecuzione del controllo
1863 (\texttt{\small 6}) ma prima della cancellazione di \var{flag} fatta subito
1864 dopo (\texttt{\small 7}), la sua occorrenza sarà perduta.
1866 Questi esempi ci mostrano come per poter eseguire una gestione effettiva dei
1867 segnali occorrono delle funzioni più sofisticate di quelle finora
1868 illustrate. La fuzione \func{signal} infatti ha la sua origine nella
1869 interfaccia alquanto primitiva che venne adottata nei primi sistemi Unix, ma
1870 con questa funzione è sostanzilmente impossibile gestire in maniera adeguata
1871 di tutti i possibili aspetti con cui un processo deve reagire alla ricezione
1876 \subsection{Gli \textsl{insiemi di segnali} o \textit{signal set}}
1877 \label{sec:sig_sigset}
1879 \itindbeg{signal~set}
1881 Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
1882 originarie, nate con la semantica inaffidabile, hanno dei limiti non
1883 superabili; in particolare non è prevista nessuna funzione che permetta di
1884 gestire il blocco dei segnali o di verificare lo stato dei segnali pendenti.
1886 Per questo motivo lo standard POSIX.1, insieme alla nuova semantica dei
1887 segnali ha introdotto una interfaccia di gestione completamente nuova, che
1888 permette di ottenere un controllo molto più dettagliato. In particolare lo
1889 standard ha introdotto un nuovo tipo di dato \type{sigset\_t}, che permette di
1890 rappresentare un \textsl{insieme di segnali} (un \textit{signal set}, come
1891 viene usualmente chiamato), tale tipo di dato viene usato per gestire il
1894 Inizialmente un \textsl{insieme di segnali} veniva rappresentato da un intero
1895 di dimensione opportuna, di solito pari al numero di bit dell'architettura
1896 della macchina, ciascun bit del quale era associato ad uno specifico
1897 segnale. Nel caso di architetture a 32 bit questo comporta un massimo di 32
1898 segnali distinti e dato che a lungo questi sono stati sufficienti non c'era
1899 necessità di nessuna struttura più complicata, in questo modo era possibile
1900 implementare le operazioni direttamente con istruzioni elementari del
1903 Oggi questo non è più vero, in particolare con l'introduzione dei segnali
1904 \textit{real-rime} (che vedremo in sez.~\ref{sec:sig_real_time}). Dato che in
1905 generale non si può fare conto sulle caratteristiche di una implementazione,
1906 perché non è detto che si disponga di un numero di bit sufficienti per mettere
1907 tutti i segnali in un intero, o perché in \type{sigset\_t} possono essere
1908 immagazzinate ulteriori informazioni, tutte le operazioni devono essere
1909 effettuate tramite le opportune funzioni di libreria che si curano di
1910 mascherare i dettagli di basso livello.
1912 Lo standard POSIX.1 definisce cinque funzioni per la manipolazione degli
1913 insiemi di segnali. Le prime quattro, che consentono di manipolare i contenuti
1914 di un \textit{signal set}, sono \funcd{sigemptyset}, \funcd{sigfillset},
1915 \funcd{sigaddset} e \funcd{sigdelset}; i rispettivi prototipi sono:
1919 \fdecl{int sigemptyset(sigset\_t *set)}
1920 \fdesc{Inizializza un insieme di segnali vuoto.}
1921 \fdecl{int sigfillset(sigset\_t *set)}
1922 \fdesc{Inizializza un insieme di segnali pieno.}
1923 \fdecl{int sigaddset(sigset\_t *set, int signum)}
1924 \fdesc{Aggiunge un segnale ad un insieme di segnali.}
1925 \fdecl{int sigdelset(sigset\_t *set, int signum)}
1926 \fdesc{Rimuove un segnale da un insieme di segnali.}
1929 {Le funzioni ritornano $0$ in caso di successo, e $-1$ per un errore, nel qual
1930 caso \var{errno} assumerà il valore:
1932 \item[\errcode{EINVAL}] \param{signum} non è un segnale valido.
1937 Le prime due funzioni inizializzano l'insieme di segnali indicato
1938 dall'argomento \param{set} rispettivamente ad un contenuto vuoto (in cui cioè
1939 non c'è nessun segnale) e pieno (in cui cioè ci sono tutti i segnali). Le
1940 altre due funzioni consentono di inserire o rimuovere uno specifico segnale
1941 indicato con l'argomento \param{signum} in un insieme.
1943 A queste funzioni si aggiunge l'ulteriore \funcd{sigismember}, che consente di
1944 verificare la presenza di un segnale in un insieme, il suo prototipo è:
1948 \fdecl{int sigismember(const sigset\_t *set, int signum)}
1949 \fdesc{Controlla se un segnale è in un insieme di segnali.}
1952 {La funzione ritorna $1$ il segnale è nell'insieme e $0$ altrimenti, e $-1$
1953 per un errore, nel qual caso \var{errno} assumerà il valore \errval{EINVAL}
1954 se si è specificato un puntatore \var{NULL}.}
1957 La \acr{glibc} prevede inoltre altre funzioni non standardizzate, accessibili
1958 definendo la macro \macro{\_GNU\_SOURCE}. La prima di queste è
1959 \funcd{sigisemptyset}, che consente di verificare un insieme è vuoto, il suo
1964 \fdecl{int sigisemptyset(sigset\_t *set)}
1965 \fdesc{Controlla se un insieme di segnali è vuoto.}
1968 {La funzione ritorna $1$ l'insieme è vuoto e $0$ altrimenti, non sono previste
1969 condizioni di errore.}
1972 Alla precedente si aggiungono altre due funzioni consentono di effettuare
1973 delle operazioni logiche con gli insiemi di segnali, esse sono
1974 \funcd{sigorset} e \funcd{sigandset}, ed i rispettivi prototipi sono:
1978 \fdecl{sigorset(sigset\_t *dest, sigset\_t *left, sigset\_t *right)}
1979 \fdesc{Crea l'unione di due insieme di segnali.}
1980 \fdecl{sigandset(sigset\_t *dest, sigset\_t *left, sigset\_t *right)}
1981 \fdesc{Crea l'intersezione di due insieme di segnali.}
1984 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
1985 caso \var{errno} assumerà il valore \errcode{EINVAL}.}
1989 In genere si usa un insieme di segnali per specificare quali segnali si vuole
1990 bloccare, o per riottenere dalle varie funzioni di gestione la maschera dei
1991 segnali attivi (vedi sez.~\ref{sec:sig_sigmask}). La modalità più comune, che
1992 è anche quella più portabile, prevede che possano essere definiti aggiungendo
1993 i segnali voluti ad un insieme vuoto ottenuto con \func{sigemptyset} o
1994 togliendo quelli che non servono da un insieme completo ottenuto con
1997 \itindend{signal~set}
2000 \subsection{La funzione \func{sigaction}}
2001 \label{sec:sig_sigaction}
2003 Abbiamo già accennato in sez.~\ref{sec:sig_signal} i problemi di compatibilità
2004 relativi all'uso di \func{signal}. Per ovviare a tutto questo lo standard
2005 POSIX.1 ha ridefinito completamente l'interfaccia per la gestione dei segnali,
2006 rendendola molto più flessibile e robusta, anche se leggermente più complessa.
2008 La funzione di sistema principale prevista dall'interfaccia POSIX.1 per i
2009 segnali è \funcd{sigaction}. Essa ha sostanzialmente lo stesso uso di
2010 \func{signal}, permette cioè di specificare le modalità con cui un segnale può
2011 essere gestito da un processo. Il suo prototipo è:
2015 \fdecl{int sigaction(int signum, const struct sigaction *act, struct sigaction
2017 \fdesc{Installa una nuova azione pr un segnale.}
2020 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2021 caso \var{errno} assumerà uno dei valori:
2023 \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido o si è
2024 cercato di installare il gestore per \signal{SIGKILL} o
2026 \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
2031 La funzione serve ad installare una nuova \textsl{azione} per il segnale
2032 indicato dall'argomento \param{signum}. Si parla di \textsl{azione} e non di
2033 \textsl{gestore} come nel caso di \func{signal}, in quanto la funzione
2034 consente di specificare le varie caratteristiche della risposta al segnale,
2035 non solo la funzione che verrà eseguita alla sua occorrenza.
2037 Per questo motivo lo standard POSIX.1 raccomanda di usare sempre questa
2038 funzione al posto della precedente \func{signal}, che in genere viene
2039 ridefinita in termini di \func{sigaction}, in quanto la nuova interfaccia
2040 permette un controllo completo su tutti gli aspetti della gestione di un
2041 segnale, sia pure al prezzo di una maggiore complessità d'uso.
2043 Se il puntatore \param{act} non è nullo, la funzione installa la nuova azione
2044 da esso specificata, se \param{oldact} non è nullo il valore dell'azione
2045 corrente viene restituito indietro. Questo permette (specificando \param{act}
2046 nullo e \param{oldact} non nullo) di superare uno dei limiti di \func{signal},
2047 che non consente di ottenere l'azione corrente senza installarne una nuova. Se
2048 sia \param{act} che \param{oldact} la funzione può essere utilizzata per
2049 verificare, se da luogo ad un errore, se il segnale indicato è valido per la
2050 piattaforma che si sta usando.
2052 Entrambi i puntatori fanno riferimento alla struttura \struct{sigaction},
2053 tramite la quale si specificano tutte le caratteristiche dell'azione associata
2054 ad un segnale. Anch'essa è descritta dallo standard POSIX.1 ed in Linux è
2055 definita secondo quanto riportato in fig.~\ref{fig:sig_sigaction}. Il campo
2056 \var{sa\_restorer}, non previsto dallo standard, è obsoleto e non deve essere
2059 \begin{figure}[!htb]
2060 \footnotesize \centering
2061 \begin{minipage}[c]{0.8\textwidth}
2062 \includestruct{listati/sigaction.h}
2065 \caption{La struttura \structd{sigaction}.}
2066 \label{fig:sig_sigaction}
2069 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
2070 essere bloccati durante l'esecuzione del gestore, ad essi viene comunque
2071 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
2072 sia specificato con \var{sa\_flag} un comportamento diverso. Quando il
2073 gestore ritorna comunque la maschera dei segnali bloccati (vedi
2074 sez.~\ref{sec:sig_sigmask}) viene ripristinata al valore precedente
2077 L'uso di questo campo permette ad esempio di risolvere il problema residuo
2078 dell'implementazione di \code{sleep} mostrata in
2079 fig.~\ref{fig:sig_sleep_incomplete}. In quel caso infatti se il segnale di
2080 allarme avesse interrotto un altro gestore questo non sarebbe stato eseguito
2081 correttamente, la cosa poteva essere prevenuta installando gli altri gestori
2082 usando \var{sa\_mask} per bloccare \signal{SIGALRM} durante la loro
2083 esecuzione. Il valore di \var{sa\_flag} permette di specificare vari aspetti
2084 del comportamento di \func{sigaction}, e della reazione del processo ai vari
2085 segnali; i valori possibili ed il relativo significato sono riportati in
2086 tab.~\ref{tab:sig_sa_flag}.
2091 \begin{tabular}[c]{|l|p{8cm}|}
2093 \textbf{Valore} & \textbf{Significato} \\
2096 \const{SA\_NOCLDSTOP}& Se il segnale è \signal{SIGCHLD} allora non deve
2097 essere notificato quando il processo figlio viene
2098 fermato da uno dei segnali \signal{SIGSTOP},
2099 \signal{SIGTSTP}, \signal{SIGTTIN} o
2100 \signal{SIGTTOU}, questo flag ha significato solo
2101 quando si imposta un gestore per \signal{SIGCHLD}.\\
2102 \const{SA\_NOCLDWAIT}& Se il segnale è \signal{SIGCHLD} e si richiede di
2103 ignorare il segnale con \const{SIG\_IGN} allora i
2104 processi figli non diventano \itindex{zombie}
2105 \textit{zombie} quando terminano; questa
2106 funzionalità è stata introdotta nel kernel 2.6 e va
2107 a modificare il comportamento di \func{waitpid}
2108 come illustrato in sez.~\ref{sec:proc_wait}, se si
2109 installa un gestore con questo flag attivo il
2110 segnale \signal{SIGCHLD} viene comunque generato.\\
2111 \const{SA\_NODEFER} & Evita che il segnale corrente sia bloccato durante
2112 l'esecuzione del gestore.\\
2113 \const{SA\_NOMASK} & Nome obsoleto e sinonimo non standard di
2114 \const{SA\_NODEFER}, non deve essere più
2116 \const{SA\_ONESHOT} & Nome obsoleto e sinonimo non standard di
2117 \const{SA\_RESETHAND}, non deve essere più
2119 \const{SA\_ONSTACK} & Stabilisce l'uso di uno \itindex{stack}
2120 \textit{stack} alternativo per l'esecuzione del
2122 sez.~\ref{sec:sig_specific_features}).\\
2123 \const{SA\_RESETHAND}& Ristabilisce l'azione per il segnale al valore
2124 predefinito una volta che il gestore è stato
2125 lanciato, riproduce cioè il comportamento della
2126 semantica inaffidabile.\\
2127 \const{SA\_RESTART} & Riavvia automaticamente le \textit{slow system
2128 call} quando vengono interrotte dal suddetto
2129 segnale, riproduce cioè il comportamento standard
2130 di BSD.\index{system~call~lente}\\
2131 \const{SA\_SIGINFO} & Deve essere specificato quando si vuole usare un
2132 gestore in forma estesa usando
2133 \var{sa\_sigaction} al posto di
2134 \var{sa\_handler}.\\
2137 \caption{Valori del campo \var{sa\_flag} della struttura \struct{sigaction}.}
2138 \label{tab:sig_sa_flag}
2141 Come si può notare in fig.~\ref{fig:sig_sigaction} \func{sigaction} permette
2142 di utilizzare due forme diverse di gestore,\footnote{la possibilità è prevista
2143 dallo standard POSIX.1b, ed è stata aggiunta nei kernel della serie 2.1.x
2144 con l'introduzione dei segnali \textit{real-time} (vedi
2145 sez.~\ref{sec:sig_real_time}); in precedenza era possibile ottenere alcune
2146 informazioni addizionali usando \var{sa\_handler} con un secondo parametro
2147 addizionale di tipo \var{sigcontext}, che adesso è deprecato.} da
2148 specificare, a seconda dell'uso o meno del flag \const{SA\_SIGINFO},
2149 rispettivamente attraverso i campi \var{sa\_sigaction} o \var{sa\_handler}.
2150 Quest'ultima è quella classica usata anche con \func{signal}, mentre la prima
2151 permette di usare un gestore più complesso, in grado di ricevere informazioni
2152 più dettagliate dal sistema, attraverso la struttura \struct{siginfo\_t},
2153 riportata in fig.~\ref{fig:sig_siginfo_t}. I due campi devono essere usati in
2154 maniera alternativa, in certe implementazioni questi campi vengono addirittura
2155 definiti come una \direct{union}.
2157 Installando un gestore di tipo \var{sa\_sigaction} diventa allora possibile
2158 accedere alle informazioni restituite attraverso il puntatore a questa
2159 struttura. Tutti i segnali impostano i campi \var{si\_signo}, che riporta il
2160 numero del segnale ricevuto, \var{si\_errno}, che riporta, quando diverso da
2161 zero, il codice dell'errore associato al segnale, e \var{si\_code}, che viene
2162 usato dal kernel per specificare maggiori dettagli riguardo l'evento che ha
2163 causato l'emissione del segnale.
2165 \begin{figure}[!htb]
2166 \footnotesize \centering
2167 \begin{minipage}[c]{0.9\textwidth}
2168 \includestruct{listati/siginfo_t.h}
2171 \caption{La struttura \structd{siginfo\_t}.}
2172 \label{fig:sig_siginfo_t}
2175 In generale \var{si\_code} contiene, per i segnali generici, per quelli
2176 \textit{real-time} e per tutti quelli inviati tramite da un processo con
2177 \func{kill} o affini, le informazioni circa l'origine del segnale stesso, ad
2178 esempio se generato dal kernel, da un timer, da \func{kill}, ecc. Il valore
2179 viene sempre espresso come una costante,\footnote{le definizioni di tutti i
2180 valori possibili si trovano in \file{bits/siginfo.h}.} ed i valori possibili
2181 in questo caso sono riportati in tab.~\ref{tab:sig_si_code_generic}.
2183 Nel caso di alcuni segnali però il valore di \var{si\_code} viene usato per
2184 fornire una informazione specifica relativa alle motivazioni della ricezione
2185 dello stesso; ad esempio i vari segnali di errore (\signal{SIGILL},
2186 \signal{SIGFPE}, \signal{SIGSEGV} e \signal{SIGBUS}) lo usano per fornire
2187 maggiori dettagli riguardo l'errore, come il tipo di errore aritmetico, di
2188 istruzione illecita o di violazione di memoria; mentre alcuni segnali di
2189 controllo (\signal{SIGCHLD}, \signal{SIGTRAP} e \signal{SIGPOLL}) forniscono
2190 altre informazioni specifiche.
2195 \begin{tabular}[c]{|l|p{8cm}|}
2197 \textbf{Valore} & \textbf{Significato} \\
2200 \const{SI\_USER} & Generato da \func{kill} o \func{raise} o affini.\\
2201 \const{SI\_KERNEL} & Inviato direttamente dal kernel.\\
2202 \const{SI\_QUEUE} & Inviato con \func{sigqueue} (vedi
2203 sez.~\ref{sec:sig_real_time}).\\
2204 \const{SI\_TIMER} & Scadenza di un\itindex{POSIX~Timer~API} \textit{POSIX
2205 timer} (vedi sez.~\ref{sec:sig_timer_adv}).\\
2206 \const{SI\_MESGQ} & Inviato al cambiamento di stato di una coda di
2207 messaggi POSIX (vedi sez.~\ref{sec:ipc_posix_mq}),
2208 introdotto con il kernel 2.6.6.\\
2209 \const{SI\_ASYNCIO}& Una operazione di I/O asincrono (vedi
2210 sez.~\ref{sec:file_asyncronous_io}) è stata
2212 \const{SI\_SIGIO} & Segnale di \signal{SIGIO} da una coda (vedi
2213 sez.~\ref{sec:file_asyncronous_operation}).\\
2214 \const{SI\_TKILL} & Inviato da \func{tkill} o \func{tgkill} (vedi
2215 sez.~\ref{cha:threads_xxx}), introdotto con il kernel
2219 \caption{Valori del campo \var{si\_code} della struttura \struct{sigaction}
2220 per i segnali generici.}
2221 \label{tab:sig_si_code_generic}
2225 In questo caso il valore del campo \var{si\_code} deve essere verificato nei
2226 confronti delle diverse costanti previste per ciascuno di detti segnali; dato
2227 che si tratta di costanti, e non di una maschera binaria, i valori numerici
2228 vengono riutilizzati e ciascuno di essi avrà un significato diverso a seconda
2229 del segnale a cui è associato.
2231 L'elenco dettagliato dei nomi di queste costanti è riportato nelle diverse
2232 sezioni di tab.~\ref{tab:sig_si_code_special} che sono state ordinate nella
2233 sequenza in cui si sono appena citati i rispettivi segnali, il prefisso del
2234 nome indica comunque in maniera diretta il segnale a cui le costanti fanno
2240 \begin{tabular}[c]{|l|p{8cm}|}
2242 \textbf{Valore} & \textbf{Significato} \\
2245 \const{ILL\_ILLOPC} & Codice di operazione illegale.\\
2246 \const{ILL\_ILLOPN} & Operando illegale.\\
2247 \const{ILL\_ILLADR} & Modo di indirizzamento illegale.\\
2248 \const{ILL\_ILLTRP} & Trappola di processore illegale.\\
2249 \const{ILL\_PRVOPC} & Codice di operazione privilegiato.\\
2250 \const{ILL\_PRVREG} & Registro privilegiato.\\
2251 \const{ILL\_COPROC} & Errore del coprocessore.\\
2252 \const{ILL\_BADSTK} & Errore nello stack interno.\\
2254 \const{FPE\_INTDIV} & Divisione per zero intera.\\
2255 \const{FPE\_INTOVF} & Overflow intero.\\
2256 \const{FPE\_FLTDIV} & Divisione per zero in virgola mobile.\\
2257 \const{FPE\_FLTOVF} & Overflow in virgola mobile.\\
2258 \const{FPE\_FLTUND} & Underflow in virgola mobile.\\
2259 \const{FPE\_FLTRES} & Risultato in virgola mobile non esatto.\\
2260 \const{FPE\_FLTINV} & Operazione in virgola mobile non valida.\\
2261 \const{FPE\_FLTSUB} & Mantissa? fuori intervallo.\\
2263 \const{SEGV\_MAPERR} & Indirizzo non mappato.\\
2264 \const{SEGV\_ACCERR} & Permessi non validi per l'indirizzo.\\
2266 \const{BUS\_ADRALN} & Allineamento dell'indirizzo non valido.\\
2267 \const{BUS\_ADRERR} & Indirizzo fisico inesistente.\\
2268 \const{BUS\_OBJERR} & Errore hardware sull'indirizzo.\\
2270 \const{TRAP\_BRKPT} & Breakpoint sul processo.\\
2271 \const{TRAP\_TRACE} & Trappola di tracciamento del processo.\\
2273 \const{CLD\_EXITED} & Il figlio è uscito.\\
2274 \const{CLD\_KILLED} & Il figlio è stato terminato.\\
2275 \const{CLD\_DUMPED} & Il figlio è terminato in modo anormale.\\
2276 \const{CLD\_TRAPPED} & Un figlio tracciato ha raggiunto una trappola.\\
2277 \const{CLD\_STOPPED} & Il figlio è stato fermato.\\
2278 \const{CLD\_CONTINUED}& Il figlio è ripartito.\\
2280 \const{POLL\_IN} & Disponibili dati in ingresso.\\
2281 \const{POLL\_OUT} & Spazio disponibile sul buffer di uscita.\\
2282 \const{POLL\_MSG} & Disponibili messaggi in ingresso.\\
2283 \const{POLL\_ERR} & Errore di I/O.\\
2284 \const{POLL\_PRI} & Disponibili dati di alta priorità in ingresso.\\
2285 \const{POLL\_HUP} & Il dispositivo è stato disconnesso.\\
2288 \caption{Valori del campo \var{si\_code} della struttura \struct{sigaction}
2289 impostati rispettivamente dai segnali \signal{SIGILL}, \signal{SIGFPE},
2290 \signal{SIGSEGV}, \signal{SIGBUS}, \signal{SIGCHLD}, \signal{SIGTRAP} e
2291 \signal{SIGPOLL}/\signal{SIGIO}.}
2292 \label{tab:sig_si_code_special}
2295 Il resto della struttura \struct{siginfo\_t} è definito come una
2296 \direct{union} ed i valori eventualmente presenti dipendono dal segnale
2297 ricevuto, così \signal{SIGCHLD} ed i segnali \textit{real-time} (vedi
2298 sez.~\ref{sec:sig_real_time}) inviati tramite \func{kill} avvalorano
2299 \var{si\_pid} e \var{si\_uid} coi valori corrispondenti al processo che ha
2300 emesso il segnale, \signal{SIGCHLD} avvalora anche i campi \var{si\_status},
2301 \var{si\_utime} e \var{si\_stime} che indicano rispettivamente lo stato di
2302 uscita, l'\textit{user time} e il \textit{system time} (vedi
2303 sez.~\ref{sec:sys_cpu_times}) usati dal processo; \signal{SIGILL},
2304 \signal{SIGFPE}, \signal{SIGSEGV} e \signal{SIGBUS} avvalorano \var{si\_addr}
2305 con l'indirizzo in cui è avvenuto l'errore, \signal{SIGIO} (vedi
2306 sez.~\ref{sec:file_asyncronous_io}) avvalora \var{si\_fd} con il numero del
2307 file descriptor e \var{si\_band} per i \itindex{out-of-band} dati urgenti
2308 (vedi sez.~\ref{sec:TCP_urgent_data}) su un socket, il segnale inviato alla
2309 scadenza di un \itindex{POSIX~Timer~API} POSIX timer (vedi
2310 sez.~\ref{sec:sig_timer_adv}) avvalora i campi \var{si\_timerid} e
2313 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
2314 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
2315 interagire in maniera anomala. Infatti l'azione specificata con
2316 \struct{sigaction} contiene un maggior numero di informazioni rispetto al
2317 semplice indirizzo del gestore restituito da \func{signal}. Per questo motivo
2318 se si usa quest'ultima per installare un gestore sostituendone uno
2319 precedentemente installato con \func{sigaction}, non sarà possibile effettuare
2320 un ripristino corretto dello stesso.
2322 Per questo è sempre opportuno usare \func{sigaction}, che è in grado di
2323 ripristinare correttamente un gestore precedente, anche se questo è stato
2324 installato con \func{signal}. In generale poi non è il caso di usare il valore
2325 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
2326 che in certi sistemi questi possono essere diversi. In definitiva dunque, a
2327 meno che non si sia vincolati all'aderenza stretta allo standard ISO C, è
2328 sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
2330 \begin{figure}[!htbp]
2331 \footnotesize \centering
2332 \begin{minipage}[c]{\codesamplewidth}
2333 \includecodesample{listati/Signal.c}
2336 \caption{La funzione \func{Signal}, equivalente a \func{signal}, definita
2337 attraverso \func{sigaction}.}
2338 \label{fig:sig_Signal_code}
2341 Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
2342 che abbia le stesse caratteristiche di \func{signal}, a definire attraverso
2343 \func{sigaction} una funzione equivalente \func{Signal}, il cui codice è
2344 riportato in fig.~\ref{fig:sig_Signal_code} (il codice completo si trova nel
2345 file \file{SigHand.c} nei sorgenti allegati). Anche in questo caso, per
2346 semplificare la definizione si è poi definito un apposito tipo
2347 \texttt{SigFunc} per esprimere in forma più comprensibile la forma di un
2350 Si noti come, essendo la funzione estremamente semplice, essa è definita come
2351 \direct{inline}. Questa direttiva viene usata per dire al compilatore di
2352 trattare la funzione cui essa fa riferimento in maniera speciale inserendo il
2353 codice direttamente nel testo del programma. Anche se i compilatori più
2354 moderni sono in grado di effettuare da soli queste manipolazioni (impostando
2355 le opportune ottimizzazioni) questa è una tecnica usata per migliorare le
2356 prestazioni per le funzioni piccole ed usate di frequente (in particolare nel
2357 kernel, dove in certi casi le ottimizzazioni dal compilatore, tarate per l'uso
2358 in user space, non sono sempre adatte).
2360 In tal caso infatti le istruzioni per creare un nuovo frame nello
2361 \itindex{stack} \textit{stack} per chiamare la funzione costituirebbero una
2362 parte rilevante del codice, appesantendo inutilmente il programma.
2363 Originariamente questo comportamento veniva ottenuto con delle macro, ma
2364 queste hanno tutta una serie di problemi di sintassi nel passaggio degli
2365 argomenti (si veda ad esempio \cite{PratC}) che in questo modo possono essere
2370 \subsection{La gestione della \textsl{maschera dei segnali} o
2371 \textit{signal mask}}
2372 \label{sec:sig_sigmask}
2374 \index{maschera dei segnali|(}
2375 Come spiegato in sez.~\ref{sec:sig_semantics} tutti i moderni sistemi unix-like
2376 permettono di bloccare temporaneamente (o di eliminare completamente,
2377 impostando \const{SIG\_IGN} come azione) la consegna dei segnali ad un
2378 processo. Questo è fatto specificando la cosiddetta \textsl{maschera dei
2379 segnali} (o \textit{signal mask}) del processo\footnote{nel caso di Linux
2380 essa è mantenuta dal campo \var{blocked} della \struct{task\_struct} del
2381 processo.} cioè l'insieme dei segnali la cui consegna è bloccata.
2383 Abbiamo accennato in sez.~\ref{sec:proc_fork} che la maschera dei segnali
2384 viene ereditata dal padre alla creazione di un processo figlio, e abbiamo
2385 visto al paragrafo precedente che essa può essere modificata durante
2386 l'esecuzione di un gestore ed automaticamente ripristinata quando questo
2387 ritorna, attraverso l'uso dal campo \var{sa\_mask} di \struct{sigaction}.
2389 Uno dei problemi evidenziatisi con l'esempio di fig.~\ref{fig:sig_event_wrong}
2390 è che in molti casi è necessario proteggere delle sezioni di codice, in modo
2391 da essere sicuri che essi siano eseguite senza interruzioni da parte di un
2392 segnale. Nel caso in questione si trattava della sezione di codice fra il
2393 controllo e la eventuale cancellazione del flag impostato dal gestore di un
2394 segnale che testimoniava l'avvenuta occorrenza dello stesso.
2396 Come illustrato in sez.~\ref{sec:proc_atom_oper} le operazioni più semplici,
2397 come l'assegnazione o il controllo di una variabile, di norma sono atomiche, e
2398 qualora si voglia essere sicuri si può usare il tipo \type{sig\_atomic\_t}. Ma
2399 quando si devono eseguire più operazioni su delle variabili (nell'esempio
2400 citato un controllo ed una assegnazione) o comunque eseguire una serie di
2401 istruzioni, l'atomicità non è più possibile.
2403 In questo caso, se si vuole essere sicuri di non poter essere interrotti da un
2404 segnale durante l'esecuzione di una sezione di codice, lo si può bloccare
2405 esplicitamente modificando la maschera dei segnali del processo con la
2406 funzione di sistema \funcd{sigprocmask}, il cui prototipo è:
2410 \fdecl{int sigprocmask(int how, const sigset\_t *set, sigset\_t *oldset)}
2411 \fdesc{Imposta la maschera dei segnali del processo corrente.}
2414 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2415 caso \var{errno} assumerà uno dei valori:
2417 \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido.
2418 \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
2423 La funzione usa l'insieme di segnali posto all'indirizzo passanto
2424 nell'argomento \param{set} per modificare la maschera dei segnali del processo
2425 corrente. La modifica viene effettuata a seconda del valore
2426 dell'argomento \param{how}, secondo le modalità specificate in
2427 tab.~\ref{tab:sig_procmask_how}. Qualora si specifichi un valore non nullo
2428 per \param{oldset} la maschera dei segnali corrente viene salvata a
2434 \begin{tabular}[c]{|l|p{8cm}|}
2436 \textbf{Valore} & \textbf{Significato} \\
2439 \const{SIG\_BLOCK} & L'insieme dei segnali bloccati è l'unione fra
2440 quello specificato e quello corrente.\\
2441 \const{SIG\_UNBLOCK} & I segnali specificati in \param{set} sono rimossi
2442 dalla maschera dei segnali, specificare la
2443 cancellazione di un segnale non bloccato è legale.\\
2444 \const{SIG\_SETMASK} & La maschera dei segnali è impostata al valore
2445 specificato da \param{set}.\\
2448 \caption{Valori e significato dell'argomento \param{how} della funzione
2449 \func{sigprocmask}.}
2450 \label{tab:sig_procmask_how}
2453 In questo modo diventa possibile proteggere delle sezioni di codice bloccando
2454 l'insieme di segnali voluto per poi riabilitarli alla fine della
2455 \index{sezione~critica} sezione critica. La funzione permette di risolvere
2456 problemi come quelli mostrati in fig.~\ref{fig:sig_event_wrong}, proteggendo
2457 la sezione fra il controllo del flag e la sua cancellazione. La funzione può
2458 essere usata anche all'interno di un gestore, ad esempio per riabilitare la
2459 consegna del segnale che l'ha invocato, in questo caso però occorre ricordare
2460 che qualunque modifica alla maschera dei segnali viene perduta al ritorno
2463 Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
2464 dei casi di \itindex{race~condition} \textit{race condition} restano aperte
2465 alcune possibilità legate all'uso di \func{pause}. Il caso è simile a quello
2466 del problema illustrato nell'esempio di fig.~\ref{fig:sig_sleep_incomplete}, e
2467 cioè la possibilità che il processo riceva il segnale che si intende usare per
2468 uscire dallo stato di attesa invocato con \func{pause} immediatamente prima
2469 dell'esecuzione di quest'ultima. Per poter effettuare atomicamente la modifica
2470 della maschera dei segnali (di solito attivandone uno specifico) insieme alla
2471 sospensione del processo lo standard POSIX ha previsto la funzione di sistema
2472 \funcd{sigsuspend}, il cui prototipo è:
2476 \fdecl{int sigsuspend(const sigset\_t *mask)}
2477 \fdesc{Imposta la maschera dei segnali mettendo in attesa il processo.}
2480 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2481 caso \var{errno} assumerà uno dei valori:
2483 \item[\errcode{EINVAL}] si è specificato un numero di segnale invalido.
2484 \item[\errcode{EFAULT}] si sono specificati indirizzi non validi.
2489 Come esempio dell'uso di queste funzioni proviamo a riscrivere un'altra volta
2490 l'esempio di implementazione di \code{sleep}. Abbiamo accennato in
2491 sez.~\ref{sec:sig_sigaction} come con \func{sigaction} sia possibile bloccare
2492 \signal{SIGALRM} nell'installazione dei gestori degli altri segnali, per poter
2493 usare l'implementazione vista in fig.~\ref{fig:sig_sleep_incomplete} senza
2494 interferenze. Questo però comporta una precauzione ulteriore al semplice uso
2495 della funzione, vediamo allora come usando la nuova interfaccia è possibile
2496 ottenere un'implementazione, riportata in fig.~\ref{fig:sig_sleep_ok} che non
2497 presenta neanche questa necessità.
2499 \begin{figure}[!htbp]
2500 \footnotesize \centering
2501 \begin{minipage}[c]{\codesamplewidth}
2502 \includecodesample{listati/sleep.c}
2505 \caption{Una implementazione completa di \func{sleep}.}
2506 \label{fig:sig_sleep_ok}
2509 Per evitare i problemi di interferenza con gli altri segnali in questo caso
2510 non si è usato l'approccio di fig.~\ref{fig:sig_sleep_incomplete} evitando
2511 l'uso di \func{longjmp}. Come in precedenza il gestore (\texttt{\small 27-30})
2512 non esegue nessuna operazione, limitandosi a ritornare per interrompere il
2513 programma messo in attesa.
2515 La prima parte della funzione (\texttt{\small 6-10}) provvede ad installare
2516 l'opportuno gestore per \signal{SIGALRM}, salvando quello originario, che
2517 sarà ripristinato alla conclusione della stessa (\texttt{\small 23}); il passo
2518 successivo è quello di bloccare \signal{SIGALRM} (\texttt{\small 11-14}) per
2519 evitare che esso possa essere ricevuto dal processo fra l'esecuzione di
2520 \func{alarm} (\texttt{\small 16}) e la sospensione dello stesso. Nel fare
2521 questo si salva la maschera corrente dei segnali, che sarà ripristinata alla
2522 fine (\texttt{\small 22}), e al contempo si prepara la maschera dei segnali
2523 \var{sleep\_mask} per riattivare \signal{SIGALRM} all'esecuzione di
2526 In questo modo non sono più possibili \itindex{race~condition} \textit{race
2527 condition} dato che \signal{SIGALRM} viene disabilitato con
2528 \func{sigprocmask} fino alla chiamata di \func{sigsuspend}. Questo metodo è
2529 assolutamente generale e può essere applicato a qualunque altra situazione in
2530 cui si deve attendere per un segnale, i passi sono sempre i seguenti:
2532 \item leggere la maschera dei segnali corrente e bloccare il segnale voluto
2533 con \func{sigprocmask};
2534 \item mandare il processo in attesa con \func{sigsuspend} abilitando la
2535 ricezione del segnale voluto;
2536 \item ripristinare la maschera dei segnali originaria.
2538 Per quanto possa sembrare strano bloccare la ricezione di un segnale per poi
2539 riabilitarla immediatamente dopo, in questo modo si evita il
2540 \itindex{deadlock} deadlock dovuto all'arrivo del segnale prima
2541 dell'esecuzione di \func{sigsuspend}.
2543 \index{maschera dei segnali|)}
2546 \subsection{Criteri di programmazione per i gestori dei segnali}
2547 \label{sec:sig_signal_handler}
2549 Abbiamo finora parlato dei gestori dei segnali come funzioni chiamate in
2550 corrispondenza della consegna di un segnale. In realtà un gestore non può
2551 essere una funzione qualunque, in quanto esso può essere eseguito in
2552 corrispondenza all'interruzione in un punto qualunque del programma
2553 principale, cosa che ad esempio può rendere problematico chiamare all'interno
2554 di un gestore di segnali la stessa funzione che dal segnale è stata
2557 \index{funzioni!sicure|(}
2559 Il concetto è comunque più generale e porta ad una distinzione fra quelle che
2560 POSIX chiama \textsl{funzioni insicure} (\textit{signal unsafe function}) e
2561 \textsl{funzioni sicure} (o più precisamente \textit{signal safe function});
2562 quando un segnale interrompe una funzione insicura ed il gestore chiama al suo
2563 interno una funzione insicura il sistema può dare luogo ad un comportamento
2564 indefinito, la cosa non avviene invece per le funzioni sicure.
2566 Tutto questo significa che la funzione che si usa come gestore di segnale deve
2567 essere programmata con molta cura per evirare questa evenienza e che non è
2568 possibile utilizzare al suo interno una qualunque funzione di sistema, se si
2569 vogliono evitare questi problemi si può ricorrere soltanto all'uso delle
2570 funzioni considerate sicure.
2572 L'elenco delle funzioni considerate sicure varia a seconda della
2573 implementazione utilizzata e dello standard a cui si fa
2574 riferimento;\footnote{non è riportata una lista specifica delle funzioni
2575 sicure per Linux, si suppone pertanto che siano quelle richieste dallo
2576 standard.} secondo quanto riportato dallo standard POSIX 1003.1 nella
2577 revisione del 2003, le ``\textit{signal safe function}'' che possono essere
2578 chiamate anche all'interno di un gestore di segnali sono tutte quelle della
2579 lista riportata in fig.~\ref{fig:sig_safe_functions}.
2581 \begin{figure}[!htb]
2582 \footnotesize \centering
2583 \begin{minipage}[c]{14cm}
2584 \func{\_exit}, \func{abort}, \func{accept}, \func{access},
2585 \func{aio\_error} \func{aio\_return}, \func{aio\_suspend}, \func{alarm},
2586 \func{bind}, \func{cfgetispeed}, \func{cfgetospeed}, \func{cfsetispeed},
2587 \func{cfsetospeed}, \func{chdir}, \func{chmod}, \func{chown},
2588 \func{clock\_gettime}, \func{close}, \func{connect}, \func{creat},
2589 \func{dup}, \func{dup2}, \func{execle}, \func{execve}, \func{fchmod},
2590 \func{fchown}, \func{fcntl}, \func{fdatasync}, \func{fork},
2591 \func{fpathconf}, \func{fstat}, \func{fsync}, \func{ftruncate},
2592 \func{getegid}, \func{geteuid}, \func{getgid}, \func{getgroups},
2593 \func{getpeername}, \func{getpgrp}, \func{getpid}, \func{getppid},
2594 \func{getsockname}, \func{getsockopt}, \func{getuid}, \func{kill},
2595 \func{link}, \func{listen}, \func{lseek}, \func{lstat}, \func{mkdir},
2596 \func{mkfifo}, \func{open}, \func{pathconf}, \func{pause}, \func{pipe},
2597 \func{poll}, \funcm{posix\_trace\_event}, \func{pselect}, \func{raise},
2598 \func{read}, \func{readlink}, \func{recv}, \func{recvfrom},
2599 \func{recvmsg}, \func{rename}, \func{rmdir}, \func{select},
2600 \func{sem\_post}, \func{send}, \func{sendmsg}, \func{sendto},
2601 \func{setgid}, \func{setpgid}, \func{setsid}, \func{setsockopt},
2602 \func{setuid}, \func{shutdown}, \func{sigaction}, \func{sigaddset},
2603 \func{sigdelset}, \func{sigemptyset}, \func{sigfillset},
2604 \func{sigismember}, \func{signal}, \func{sigpause}, \func{sigpending},
2605 \func{sigprocmask}, \func{sigqueue}, \funcm{sigset}, \func{sigsuspend},
2606 \func{sleep}, \func{socket}, \func{socketpair}, \func{stat},
2607 \func{symlink}, \func{sysconf}, \func{tcdrain}, \func{tcflow},
2608 \func{tcflush}, \func{tcgetattr}, \func{tcgetgrp}, \func{tcsendbreak},
2609 \func{tcsetattr}, \func{tcsetpgrp}, \func{time}, \func{timer\_getoverrun},
2610 \func{timer\_gettime}, \func{timer\_settime}, \func{times}, \func{umask},
2611 \func{uname}, \func{unlink}, \func{utime}, \func{wait}, \func{waitpid},
2615 \caption{Elenco delle funzioni sicure secondo lo standard POSIX
2617 \label{fig:sig_safe_functions}
2620 \index{funzioni!sicure|)}
2622 Lo standard POSIX.1-2004 modifica la lista di
2623 fig.~\ref{fig:sig_safe_functions} aggiungendo le funzioni \func{\_Exit} e
2624 \func{sockatmark}, mentre lo standard POSIX.1-2008 rimuove della lista le tre
2625 funzioni \func{fpathconf}, \func{pathconf}, \func{sysconf} e vi aggiunge le
2626 ulteriori funzioni in fig.~\ref{fig:sig_safe_functions_posix_2008}.
2628 \begin{figure}[!htb]
2629 \footnotesize \centering
2630 \begin{minipage}[c]{14cm}
2631 \func{execl}, \func{execv}, \func{faccessat}, \func{fchmodat},
2632 \func{fchownat}, \func{fexecve}, \func{fstatat}, \func{futimens},
2633 \func{linkat}, \func{mkdirat}, \func{mkfifoat}, \func{mknod},
2634 \func{mknodat}, \func{openat}, \func{readlinkat}, \func{renameat},
2635 \func{symlinkat}, \func{unlinkat}, \func{utimensat}, \func{utimes}.
2638 \caption{Ulteriori funzioni sicure secondo lo standard POSIX.1-2008.}
2639 \label{fig:sig_safe_functions_posix_2008}
2643 Per questo motivo è opportuno mantenere al minimo indispensabile le operazioni
2644 effettuate all'interno di un gestore di segnali, qualora si debbano compiere
2645 operazioni complesse è sempre preferibile utilizzare la tecnica in cui si usa
2646 il gestore per impostare il valore di una qualche \index{variabili!globali}
2647 variabile globale, e poi si eseguono le operazioni complesse nel programma
2648 verificando (con tutti gli accorgimenti visti in precedenza) il valore di
2649 questa variabile tutte le volte che si è rilevata una interruzione dovuta ad
2653 \section{Funzionalità avanzate}
2654 \label{sec:sig_advanced_signal}
2656 Tratteremo in questa ultima sezione alcune funzionalità avanzate relativa ai
2657 segnali ed in generale ai meccanismi di notifica, a partire dalla funzioni
2658 introdotte per la gestione dei cosiddetti ``\textsl{segnali real-time}'', alla
2659 gestione avanzata delle temporizzazioni e le nuove interfacce per la gestione
2660 di segnali ed eventi attraverso l'uso di file descriptor.
2662 \subsection{I segnali \textit{real-time}}
2663 \label{sec:sig_real_time}
2665 Lo standard POSIX.1b, nel definire una serie di nuove interfacce per i servizi
2666 \textit{real-time}, ha introdotto una estensione del modello classico dei
2667 segnali che presenta dei significativi miglioramenti,\footnote{questa
2668 estensione è stata introdotta in Linux a partire dal kernel 2.1.43, e dalle
2669 \acr{glibc} 2.1.} in particolare sono stati superati tre limiti fondamentali
2670 dei segnali classici:
2671 \begin{basedescript}{\desclabelwidth{1cm}\desclabelstyle{\nextlinelabel}}
2672 \item[I segnali non sono accumulati]
2673 se più segnali vengono generati prima dell'esecuzione di un gestore
2674 questo sarà eseguito una sola volta, ed il processo non sarà in grado di
2675 accorgersi di quante volte l'evento che ha generato il segnale è accaduto;
2676 \item[I segnali non trasportano informazione]
2677 i segnali classici non prevedono altra informazione sull'evento
2678 che li ha generati se non il fatto che sono stati emessi (tutta
2679 l'informazione che il kernel associa ad un segnale è il suo numero);
2680 \item[I segnali non hanno un ordine di consegna]
2681 l'ordine in cui diversi segnali vengono consegnati è casuale e non
2682 prevedibile. Non è possibile stabilire una priorità per cui la reazione a
2683 certi segnali ha la precedenza rispetto ad altri.
2686 Per poter superare queste limitazioni lo standard POSIX.1b ha introdotto delle
2687 nuove caratteristiche, che sono state associate ad una nuova classe di
2688 segnali, che vengono chiamati \textsl{segnali real-time}, in particolare le
2689 funzionalità aggiunte sono:
2692 \item i segnali sono inseriti in una coda che permette di consegnare istanze
2693 multiple dello stesso segnale qualora esso venga inviato più volte prima
2694 dell'esecuzione del gestore; si assicura così che il processo riceva un
2695 segnale per ogni occorrenza dell'evento che lo genera.
2696 \item è stata introdotta una priorità nella consegna dei segnali: i segnali
2697 vengono consegnati in ordine a seconda del loro valore, partendo da quelli
2698 con un numero minore, che pertanto hanno una priorità maggiore.
2699 \item è stata introdotta la possibilità di restituire dei dati al gestore,
2700 attraverso l'uso di un apposito campo \var{si\_value} nella struttura
2701 \struct{siginfo\_t}, accessibile tramite gestori di tipo
2702 \var{sa\_sigaction}.
2705 Tutte queste nuove funzionalità eccetto l'ultima, che, come illustrato in
2706 sez.~\ref{sec:sig_sigaction}, è disponibile anche con i segnali ordinari, si
2707 applicano solo ai nuovi segnali \textit{real-time}; questi ultimi sono
2708 accessibili in un intervallo di valori specificati dalle due costanti
2709 \const{SIGRTMIN} e \const{SIGRTMAX}, che specificano il numero minimo e
2710 massimo associato ad un segnale \textit{real-time}.
2712 Su Linux di solito il primo valore è 33, mentre il secondo è \code{\_NSIG-1},
2713 che di norma (vale a dire sulla piattaforma i386) è 64. Questo dà un totale di
2714 32 segnali disponibili, contro gli almeno 8 richiesti da POSIX.1b. Si tenga
2715 presente però che i primi segnali \textit{real-time} disponibili vendono usati
2716 dalle \acr{glibc} per l'implementazione dei \textit{thread} POSIX (vedi
2717 sez.~\ref{sec:thread_posix_intro}), ed il valore di \const{SIGRTMIN} viene
2718 modificato di conseguenza.\footnote{vengono usati i primi tre per la vecchia
2719 implementazione dei \textit{LinuxThread} ed i primi due per la nuova NTPL
2720 (\textit{New Thread Posix Library}), il che comporta che \const{SIGRTMIN} a
2721 seconda dei casi può essere 34 o 35.}
2723 Per questo motivo nei programmi che usano i segnali \textit{real-time} non si
2724 deve mai usare un valore assoluto dato che si correrebbe il rischio di
2725 utilizzare un segnale in uso alle librerie, ed il numero del segnale deve
2726 invece essere sempre specificato in forma relativa a \const{SIGRTMIN} (come
2727 \code{SIGRTMIN + n}) avendo inoltre cura di controllare di non aver mai
2728 superato \const{SIGRTMAX}.
2730 I segnali con un numero più basso hanno una priorità maggiore e vengono
2731 consegnati per primi, inoltre i segnali \textit{real-time} non possono
2732 interrompere l'esecuzione di un gestore di un segnale a priorità più alta; la
2733 loro azione predefinita è quella di terminare il programma. I segnali
2734 ordinari hanno tutti la stessa priorità, che è più alta di quella di qualunque
2735 segnale \textit{real-time}.\footnote{lo standard non definisce niente al
2736 riguardo ma Linux, come molte altre implementazioni, adotta questa
2739 Si tenga presente che questi nuovi segnali non sono associati a nessun evento
2740 specifico, a meno di non richiedere specificamente il loro utilizzo in
2741 meccanismi di notifica come quelli per l'I/O asincrono (vedi
2742 sez.~\ref{sec:file_asyncronous_io}) o per le code di messaggi POSIX (vedi
2743 sez.~\ref{sec:ipc_posix_mq}); pertanto devono essere inviati esplicitamente.
2745 Inoltre, per poter usufruire della capacità di restituire dei dati, i relativi
2746 gestori devono essere installati con \func{sigaction}, specificando per
2747 \var{sa\_flags} la modalità \const{SA\_SIGINFO} che permette di utilizzare la
2748 forma estesa \var{sa\_sigaction} (vedi sez.~\ref{sec:sig_sigaction}). In
2749 questo modo tutti i segnali \textit{real-time} possono restituire al gestore
2750 una serie di informazioni aggiuntive attraverso l'argomento
2751 \struct{siginfo\_t}, la cui definizione è stata già vista in
2752 fig.~\ref{fig:sig_siginfo_t}, nella trattazione dei gestori in forma estesa.
2754 In particolare i campi utilizzati dai segnali \textit{real-time} sono
2755 \var{si\_pid} e \var{si\_uid} in cui vengono memorizzati rispettivamente il
2756 \ids{PID} e l'\ids{UID} effettivo del processo che ha inviato il segnale, mentre
2757 per la restituzione dei dati viene usato il campo \var{si\_value}.
2759 \begin{figure}[!htb]
2760 \footnotesize \centering
2761 \begin{minipage}[c]{\textwidth}
2762 \includestruct{listati/sigval_t.h}
2765 \caption{La definizione dell'unione \structd{sigval}, definita anche come
2766 tipo \type{sigval\_t}.}
2767 \label{fig:sig_sigval}
2770 Questo è una \direct{union} di tipo \struct{sigval} (la sua definizione è in
2771 fig.~\ref{fig:sig_sigval}) in cui può essere memorizzato o un valore numerico,
2772 se usata nella forma \var{sival\_int}, o un indirizzo, se usata nella forma
2773 \var{sival\_ptr}. L'unione viene usata dai segnali \textit{real-time} e da
2774 vari meccanismi di notifica\footnote{un campo di tipo \type{sigval\_t} è
2775 presente anche nella struttura \struct{sigevent} (definita in
2776 fig.~\ref{fig:struct_sigevent}) che viene usata dai meccanismi di notifica
2777 come quelli per \itindex{POSIX~Timer~API} i timer POSIX (vedi
2778 sez.~\ref{sec:sig_timer_adv}), l'I/O asincrono (vedi
2779 sez.~\ref{sec:file_asyncronous_io}) o le code di messaggi POSIX (vedi
2780 sez.~\ref{sec:ipc_posix_mq}).} per restituire dati al gestore del segnale;
2781 in alcune definizioni essa viene identificata anche con l'abbreviazione
2784 A causa delle loro caratteristiche, la funzione \func{kill} non è adatta ad
2785 inviare segnali \textit{real-time}, poiché non è in grado di fornire alcun
2786 valore per \struct{sigval}; per questo motivo lo standard ha previsto una
2787 nuova funzione, \funcd{sigqueue}, il cui prototipo è:
2788 \begin{prototype}{signal.h}
2789 {int sigqueue(pid\_t pid, int signo, const union sigval value)}
2791 Invia il segnale \param{signo} al processo \param{pid}, restituendo al
2792 gestore il valore \param{value}.
2794 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
2795 errore, nel qual caso \var{errno} assumerà uno dei valori:
2797 \item[\errcode{EAGAIN}] la coda è esaurita, ci sono già
2798 \const{SIGQUEUE\_MAX} segnali in attesa si consegna.
2799 \item[\errcode{EPERM}] non si hanno privilegi appropriati per inviare il
2800 segnale al processo specificato.
2801 \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
2802 \item[\errcode{EINVAL}] si è specificato un valore non valido per
2805 ed inoltre \errval{ENOMEM}.}
2808 Il comportamento della funzione è analogo a quello di \func{kill}, ed i
2809 privilegi occorrenti ad inviare il segnale ad un determinato processo sono gli
2810 stessi; un valore nullo di \param{signo} permette di verificare le condizioni
2811 di errore senza inviare nessun segnale.
2813 Se il segnale è bloccato la funzione ritorna immediatamente, se si è
2814 installato un gestore con \const{SA\_SIGINFO} e ci sono risorse disponibili,
2815 (vale a dire che c'è posto nella coda dei segnali \textit{real-time}) esso
2816 viene inserito e diventa pendente; una volta consegnato riporterà nel campo
2817 \var{si\_code} di \struct{siginfo\_t} il valore \const{SI\_QUEUE} e il campo
2818 \var{si\_value} riceverà quanto inviato con \param{value}. Se invece si è
2819 installato un gestore nella forma classica il segnale sarà generato, ma tutte
2820 le caratteristiche tipiche dei segnali \textit{real-time} (priorità e coda)
2823 Secondo lo standard POSIX la profondità della coda è indicata dalla costante
2824 \const{SIGQUEUE\_MAX},\footnote{una della tante costanti di sistema definite
2825 dallo standard POSIX che non abbiamo riportato esplicitamente in
2826 sez.~\ref{sec:sys_limits}.} il suo valore minimo secondo lo standard,
2827 \const{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32. Nel caso di Linux la coda ha una
2828 dimensione variabile; fino alla versione 2.6.7 c'era un limite massimo globale
2829 che poteva essere impostato come parametro del kernel in
2830 \sysctlfile{kernel/rtsig-max};\footnote{ed il valore predefinito era
2831 pari a 1024.} a partire dal kernel 2.6.8 il valore globale è stato rimosso e
2832 sostituito dalla risorsa \const{RLIMIT\_SIGPENDING} associata al singolo
2833 utente, che può essere modificata con \func{setrlimit} come illustrato in
2834 sez.~\ref{sec:sys_resource_limit}.
2836 Lo standard POSIX.1b definisce inoltre delle nuove funzioni che permettono di
2837 gestire l'attesa di segnali specifici su una coda, esse servono in particolar
2838 modo nel caso dei \itindex{thread} \textit{thread}, in cui si possono usare i
2839 segnali \textit{real-time} come meccanismi di comunicazione elementare; la
2840 prima di queste funzioni è \funcd{sigwait}, il cui prototipo è:
2841 \begin{prototype}{signal.h}
2842 {int sigwait(const sigset\_t *set, int *sig)}
2844 Attende che uno dei segnali specificati in \param{set} sia pendente.
2846 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
2847 errore, nel qual caso \var{errno} assumerà uno dei valori:
2849 \item[\errcode{EINTR}] la funzione è stata interrotta.
2850 \item[\errcode{EINVAL}] si è specificato un valore non valido per
2853 ed inoltre \errval{EFAULT}.}
2856 La funzione estrae dall'insieme dei segnali pendenti uno qualunque dei segnali
2857 specificati da \param{set}, il cui valore viene restituito in \param{sig}. Se
2858 sono pendenti più segnali, viene estratto quello a priorità più alta (cioè con
2859 il numero più basso). Se, nel caso di segnali \textit{real-time}, c'è più di
2860 un segnale pendente, ne verrà estratto solo uno. Una volta estratto il segnale
2861 non verrà più consegnato, e se era in una coda il suo posto sarà liberato. Se
2862 non c'è nessun segnale pendente il processo viene bloccato fintanto che non ne
2865 Per un funzionamento corretto la funzione richiede che alla sua chiamata i
2866 segnali di \param{set} siano bloccati. In caso contrario si avrebbe un
2867 conflitto con gli eventuali gestori: pertanto non si deve utilizzare per
2868 lo stesso segnale questa funzione e \func{sigaction}. Se questo non avviene il
2869 comportamento del sistema è indeterminato: il segnale può sia essere
2870 consegnato che essere ricevuto da \func{sigwait}, il tutto in maniera non
2873 Lo standard POSIX.1b definisce altre due funzioni, anch'esse usate
2874 prevalentemente con i \itindex{thread} \textit{thread}; \funcd{sigwaitinfo} e
2875 \funcd{sigtimedwait}, i relativi prototipi sono:
2879 \funcdecl{int sigwaitinfo(const sigset\_t *set, siginfo\_t *info)}
2881 Analoga a \func{sigwait}, ma riceve anche le informazioni associate al
2882 segnale in \param{info}.
2884 \funcdecl{int sigtimedwait(const sigset\_t *set, siginfo\_t *info, const
2885 struct timespec *timeout)}
2887 Analoga a \func{sigwaitinfo}, con un la possibilità di specificare un
2888 timeout in \param{timeout}.
2891 \bodydesc{Le funzioni restituiscono 0 in caso di successo e $-1$ in caso di
2892 errore, nel qual caso \var{errno} assumerà uno dei valori già visti per
2893 \func{sigwait}, ai quali si aggiunge, per \func{sigtimedwait}:
2895 \item[\errcode{EAGAIN}] si è superato il timeout senza che un segnale atteso
2901 Entrambe le funzioni sono estensioni di \func{sigwait}. La prima permette di
2902 ricevere, oltre al numero del segnale, anche le informazioni ad esso associate
2903 tramite \param{info}; in particolare viene restituito il numero del segnale
2904 nel campo \var{si\_signo}, la sua causa in \var{si\_code}, e se il segnale è
2905 stato immesso sulla coda con \func{sigqueue}, il valore di ritorno ad esso
2906 associato viene riportato in \var{si\_value}, che altrimenti è indefinito.
2908 La seconda è identica alla prima ma in più permette di specificare un timeout,
2909 scaduto il quale ritornerà con un errore. Se si specifica un puntatore nullo
2910 il comportamento sarà identico a \func{sigwaitinfo}, se si specifica un tempo
2911 di timeout nullo, e non ci sono segnali pendenti la funzione ritornerà
2912 immediatamente; in questo modo si può eliminare un segnale dalla coda senza
2913 dover essere bloccati qualora esso non sia presente.
2917 L'uso di queste funzioni è principalmente associato alla gestione dei segnali
2918 con i \textit{thread}. In genere esse vengono chiamate dal \textit{thread}
2919 incaricato della gestione, che al ritorno della funzione esegue il codice che
2920 usualmente sarebbe messo nel gestore, per poi ripetere la chiamata per
2921 mettersi in attesa del segnale successivo. Questo ovviamente comporta che non
2922 devono essere installati gestori, che solo il \textit{thread} di gestione deve
2923 usare \func{sigwait} e che i segnali gestiti in questa maniera, per evitare
2924 che venga eseguita l'azione predefinita, devono essere mascherati per tutti i
2925 \textit{thread}, compreso quello dedicato alla gestione, che potrebbe
2926 riceverlo fra due chiamate successive.
2931 \subsection{La gestione avanzata delle temporizzazioni}
2932 \label{sec:sig_timer_adv}
2934 % TODO: indicizzare i termini \itindex{POSIX~Timer~API} e HRT
2937 Sia le funzioni per la gestione dei tempi viste in
2938 sez.~\ref{sec:sys_cpu_times} che quelle per la gestione dei timer di
2939 sez.~\ref{sec:sig_alarm_abort} sono state a lungo limitate dalla risoluzione
2940 massima dei tempi dell'orologio interno del kernel, che era quella ottenibile
2941 dal timer di sistema che governa lo \textit{scheduler},\footnote{e quindi
2942 limitate dalla frequenza dello stesso che si ricordi, come già illustrato in
2943 sez.~\ref{sec:proc_hierarchy}, è data dal valore della costante
2944 \texttt{HZ}.} i contatori usati per il calcolo dei tempi infatti erano
2945 basati sul numero di \itindex{jiffies} \textit{jiffies} che vengono
2946 incrementati ad ogni \textit{clock tick} del timer di sistema.\footnote{il che
2947 comportava anche, come accennato in sez.~\ref{sec:sig_alarm_abort} per
2948 \func{setitimer}, problemi per il massimo periodo di tempo copribile da
2949 alcuni di questi orologi, come quelli associati al \textit{process time}
2950 almeno fino a quando, con il kernel 2.6.16, non è stato rimosso il limite di
2951 un valore a 32 bit per i \textit{jiffies}.}
2953 Nelle architetture moderne però tutti i computer sono dotati di temporizzatori
2954 hardware che possono supportare risoluzioni molto elevate, ed in maniera del
2955 tutto indipendente dalla frequenza scelta per il timer di sistema che governa
2956 lo \textit{scheduler};\footnote{normalmente si possono ottenere precisioni
2957 fino al microsecondo, andando molto oltre in caso di hardware dedicato.} per
2958 questo lo standard POSIX.1-2001 ha previsto una serie di nuove funzioni
2959 relative a quelli che vengono chiamati ``\textsl{orologi}
2960 \textit{real-time}'', in grado di supportare risoluzioni fino al
2961 nanosecondo. Inoltre le CPU più moderne sono dotate a loro volta di contatori
2962 ad alta definizione che consentono una grande accuratezza nella misura del
2963 tempo da esse dedicato all'esecuzione di un processo.
2965 Per usare queste funzionalità ed ottenere risoluzioni temporali più accurate,
2966 occorre però un opportuno supporto da parte del kernel, ed i cosiddetti
2967 \itindex{High~Resolution~Timer~(HRT)} \textit{high resolution timer} che
2968 consentono di fare ciò sono stati introdotti nel kernel ufficiale solo a
2969 partire dalla versione 2.6.21.\footnote{deve essere stata abilitata l'opzione
2970 di compilazione \texttt{CONFIG\_HIGH\_RES\_TIMERS}, erano però disponibili
2971 anche in precedenza come patch facenti parte dello sviluppo delle estensioni
2972 \textit{real-time} del kernel, per cui alcune distribuzioni possono avere
2973 questo supporto anche con versioni precedenti del kernel.} Le funzioni
2974 definite dallo standard POSIX per gestire orologi ad alta definizione però
2975 erano già presenti, essendo stata introdotte insieme ad altre funzioni per il
2976 supporto delle estensioni \textit{real-time} con il rilascio del kernel 2.6,
2977 ma la risoluzione effettiva era nominale.
2979 A tutte le implementazioni che si rifanno a queste estensioni è richiesto di
2980 disporre di una versione \textit{real-time} almeno per l'orologio generale di
2981 sistema, quello che mantiene il \textit{calendar time} (vedi
2982 sez.~\ref{sec:sys_time_base}), che in questa forma deve indicare il numero di
2983 secondi e nanosecondi passati a partire dal primo gennaio 1970 (\textit{The
2984 Epoch}).\footnote{si ricordi che l'orologio ordinario usato dal
2985 \textit{calendar time} riporta solo un numero di secondi, e che la
2986 risoluzione effettiva normalmente non raggiunge il nanosecondo (a meno di
2987 hardware specializzato).} Oltre all'orologio generale di sistema possono
2988 essere presenti altri tipi di orologi \textit{real-time}, ciascuno dei quali
2989 viene identificato da un opportuno valore di una variabile di tipo
2990 \type{clockid\_t}; un elenco di quelli disponibili su Linux è riportato in
2991 tab.~\ref{tab:sig_timer_clockid_types}.
2996 \begin{tabular}[c]{|l|p{8cm}|}
2998 \textbf{Valore} & \textbf{Significato} \\
3001 \const{CLOCK\_REALTIME} & Orologio \textit{real-time} di sistema, può
3002 essere impostato solo con privilegi
3004 \const{CLOCK\_MONOTONIC} & Orologio che indica un tempo monotono
3005 crescente (a partire da un tempo iniziale non
3006 specificato) che non può essere modificato e
3007 non cambia neanche in caso di reimpostazione
3008 dell'orologio di sistema.\\
3009 \const{CLOCK\_MONOTONIC\_RAW}&Simile al precedente, ma non subisce gli
3010 aggiustamenti dovuti all'uso di NTP (viene
3011 usato per fare riferimento ad una fonte
3012 hardware).\footnotemark\\
3013 \const{CLOCK\_PROCESS\_CPUTIME\_ID}& contatore del tempo di CPU usato
3014 da un processo (il \textit{process time} di
3015 sez.~\ref{sec:sys_cpu_times}, nel totale di
3016 \textit{system time} e \textit{user time})
3017 comprensivo di tutto il tempo di CPU usato
3018 da eventuali \itindex{thread}
3020 \const{CLOCK\_THREAD\_CPUTIME\_ID}& contatore del tempo di CPU
3021 (\textit{user time} e \textit{system time})
3022 usato da un singolo \itindex{thread}
3027 \caption{Valori possibili per una variabile di tipo \type{clockid\_t}
3028 usata per indicare a quale tipo di orologio si vuole fare riferimento.}
3029 \label{tab:sig_timer_clockid_types}
3032 \footnotetext{specifico di Linux, introdotto a partire dal kernel 2.6.28, non
3033 previsto da POSIX e non presente in altri sistemi unix-like.}
3035 % TODO: aggiungere le estensioni introdotte con il 2.6.38, verificandone il
3036 % funzionamento, vedi http://lwn.net/Articles/429595/
3037 % TODO: dal 2.6.39 anche CLOCK_BOOTTIME_ALARM e CLOCK_BOOTTIME, vedi
3038 % http://lwn.net/Articles/429925/
3039 % TODP: dal 3.0 anche i cosiddetti Posix Alarm Timers, con
3040 % CLOCK_REALTIME_ALARM vedi http://lwn.net/Articles/429925/
3042 Per poter utilizzare queste funzionalità le \acr{glibc} richiedono che la
3043 macro \macro{\_POSIX\_C\_SOURCE} sia definita ad un valore maggiore o uguale
3044 di \texttt{199309L} (vedi sez.~\ref{sec:intro_gcc_glibc_std}), inoltre i
3045 programmi che le usano devono essere collegati con la libreria delle
3046 estensioni \textit{real-time} usando esplicitamente l'opzione
3047 \texttt{-lrt}. Si tenga presente inoltre che la disponibilità di queste
3048 funzionalità avanzate può essere controllato dalla definizione della macro
3049 \macro{\_POSIX\_TIMERS} ad un valore maggiore di 0, e che le ulteriori macro
3050 \macro{\_POSIX\_MONOTONIC\_CLOCK}, \macro{\_POSIX\_CPUTIME} e
3051 \macro{\_POSIX\_THREAD\_CPUTIME} indicano la presenza dei rispettivi orologi
3052 di tipo \const{CLOCK\_MONOTONIC}, \const{CLOCK\_PROCESS\_CPUTIME\_ID} e
3053 \const{CLOCK\_PROCESS\_CPUTIME\_ID}.\footnote{tutte queste macro sono definite
3054 in \headfile{unistd.h}, che pertanto deve essere incluso per poterle
3055 controllarle.} Infine se il kernel ha il supporto per gli \textit{high
3056 resolution timer} un elenco degli orologi e dei timer può essere ottenuto
3057 tramite il file \procfile{/proc/timer\_list}.
3059 Le due funzioni che ci consentono rispettivamente di modificare o leggere il
3060 valore per uno degli orologi \textit{real-time} sono \funcd{clock\_settime} e
3061 \funcd{clock\_gettime}; i rispettivi prototipi sono:
3065 \funcdecl{int clock\_settime(clockid\_t clockid, const struct timespec *tp)}
3066 \funcdecl{int clock\_gettime(clockid\_t clockid, struct timespec *tp)}
3068 Imposta o legge un orologio \textit{real-time}.
3070 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3071 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3073 \item[\errcode{EINVAL}] il valore specificato per \param{clockid} non è
3074 valido o il relativo orologio \textit{real-time} non è supportato dal
3076 \item[\errcode{EPERM}] non si ha il permesso di impostare l'orologio
3077 indicato (solo per \func{clock\_settime}).
3078 \item[\errcode{EFAULT}] l'indirizzo \param{tp} non è valido.
3083 Entrambe le funzioni richiedono che si specifichi come primo argomento il tipo
3084 di orologio su cui si vuole operare con uno dei valori di
3085 tab.~\ref{tab:sig_timer_clockid_types} o con il risultato di una chiamata a
3086 \func{clock\_getcpuclockid} (che tratteremo a breve), il secondo argomento
3087 invece è sempre il puntatore \param{tp} ad una struttura \struct{timespec}
3088 (vedi fig.~\ref{fig:sys_timespec_struct}) che deve essere stata
3089 precedentemente allocata; nel primo caso questa dovrà anche essere stata
3090 inizializzata con il valore che si vuole impostare sull'orologio, mentre nel
3091 secondo verrà restituito al suo interno il valore corrente dello stesso.
3093 Si tenga presente inoltre che per eseguire un cambiamento sull'orologio
3094 generale di sistema \const{CLOCK\_REALTIME} occorrono i privilegi
3095 amministrativi;\footnote{ed in particolare la \textit{capability}
3096 \const{CAP\_SYS\_TIME}.} inoltre ogni cambiamento ad esso apportato non avrà
3097 nessun effetto sulle temporizzazioni effettuate in forma relativa, come quelle
3098 impostate sulle quantità di \textit{process time} o per un intervallo di tempo
3099 da trascorrere, ma solo su quelle che hanno richiesto una temporizzazione ad
3100 un istante preciso (in termini di \textit{calendar time}). Si tenga inoltre
3101 presente che nel caso di Linux \const{CLOCK\_REALTIME} è l'unico orologio per
3102 cui si può effettuare una modifica, infatti nonostante lo standard preveda la
3103 possibilità di modifiche anche per \const{CLOCK\_PROCESS\_CPUTIME\_ID} e
3104 \const{CLOCK\_THREAD\_CPUTIME\_ID}, il kernel non le consente.
3106 Oltre alle due funzioni precedenti, lo standard POSIX prevede una terza
3107 funzione che consenta di ottenere la risoluzione effettiva fornita da un certo
3108 orologio, la funzione è \funcd{clock\_getres} ed il suo prototipo è:
3112 \funcdecl{int clock\_getres(clockid\_t clockid, struct timespec *res)}
3114 Legge la risoluzione di un orologio \textit{real-time}.
3116 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3117 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3119 \item[\errcode{EINVAL}] il valore specificato per \param{clockid} non è
3121 \item[\errcode{EFAULT}] l'indirizzo di \param{res} non è valido.
3126 La funzione richiede come primo argomento l'indicazione dell'orologio di cui
3127 si vuole conoscere la risoluzione (effettuata allo stesso modo delle due
3128 precedenti) e questa verrà restituita in una struttura \struct{timespec}
3129 all'indirizzo puntato dall'argomento \param{res}.
3131 Come accennato il valore di questa risoluzione dipende sia dall'hardware
3132 disponibile che dalla implementazione delle funzioni, e costituisce il limite
3133 minimo di un intervallo di tempo che si può indicare. Qualunque valore si
3134 voglia utilizzare nelle funzioni di impostazione che non corrisponda ad un
3135 multiplo intero di questa risoluzione, sarà troncato in maniera automatica.
3137 Si tenga presente inoltre che con l'introduzione degli \textit{high resolution
3138 timer} i due orologi \const{CLOCK\_PROCESS\_CPUTIME\_ID} e
3139 \const{CLOCK\_THREAD\_CPUTIME\_ID} fanno riferimento ai contatori presenti in
3140 opportuni registri interni del processore; questo sui sistemi multiprocessore
3141 può avere delle ripercussioni sulla precisione delle misure di tempo che vanno
3142 al di là della risoluzione teorica ottenibile con \func{clock\_getres}, che
3143 può essere ottenuta soltanto quando si è sicuri che un processo (o un
3144 \textit{thread}) sia sempre stato eseguito sullo stesso processore.
3146 Con i sistemi multiprocessore infatti ogni singola CPU ha i suoi registri
3147 interni, e se ciascuna di esse utilizza una base di tempo diversa (se cioè il
3148 segnale di temporizzazione inviato ai processori non ha una sola provenienza)
3149 in genere ciascuna di queste potrà avere delle frequenze leggermente diverse,
3150 e si otterranno pertanto dei valori dei contatori scorrelati fra loro, senza
3151 nessuna possibilità di sincronizzazione.
3153 Il problema si presenta, in forma più lieve, anche se la base di tempo è la
3154 stessa, dato che un sistema multiprocessore non avvia mai tutte le CPU allo
3155 stesso istante, si potrà così avere di nuovo una differenza fra i contatori,
3156 soggetta però soltanto ad uno sfasamento costante. Per questo caso il kernel
3157 per alcune architetture ha del codice che consente di ridurre al minimo la
3158 differenza, ma non può essere comunque garantito che questa si annulli (anche
3159 se in genere risulta molto piccola e trascurabile nella gran parte dei casi).
3161 Per poter gestire questo tipo di problematiche lo standard ha previsto una
3162 apposita funzione che sia in grado di ottenere l'identificativo dell'orologio
3163 associato al \textit{process time} di un processo, la funzione è
3164 \funcd{clock\_getcpuclockid} ed il suo prototipo è:
3168 \funcdecl{int clock\_getcpuclockid(pid\_t pid, clockid\_t *clockid)}
3170 Ottiene l'identificatore dell'orologio di CPU usato da un processo.
3172 \bodydesc{La funzione restituisce 0 in caso di successo o un numero positivo
3173 in caso di errore, nel qual caso \var{errno} assumerà uno dei seguenti
3176 \item[\errcode{ENOSYS}] non c'è il supporto per ottenere l'orologio relativo
3177 al \textit{process time} di un altro processo, e \param{pid} non
3178 corrisponde al processo corrente.
3179 \item[\errcode{EPERM}] il chiamante non ha il permesso di accedere alle
3180 informazioni relative al processo \param{pid}.
3181 \item[\errcode{ESRCH}] non esiste il processo \param{pid}.
3187 La funzione ritorna l'identificativo di un orologio di sistema associato ad un
3188 processo indicato tramite l'argomento \param{pid}. Un utente normale, posto
3189 che il kernel sia sufficientemente recente da supportare questa funzionalità,
3190 può accedere soltanto ai dati relativi ai propri processi.
3192 Del tutto analoga a \func{clock\_getcpuclockid}, ma da utilizzare per ottenere
3193 l'orologio associato ad un \textit{thread} invece che a un processo, è
3194 \funcd{pthread\_getcpuclockid},\footnote{per poter usare la funzione, come per
3195 qualunque funzione che faccia riferimento ai \textit{thread}, occorre
3196 effettuare il collegamento alla relativa libreria di gestione compilando il
3197 programma con \texttt{-lpthread}.} il cui prototipo è:
3199 \headdecl{pthread.h}
3202 \funcdecl{int pthread\_getcpuclockid(pthread\_t thread, clockid\_t *clockid)}
3204 Ottiene l'identificatore dell'orologio di CPU associato ad un
3207 \bodydesc{La funzione restituisce 0 in caso di successo o un numero positivo
3208 in caso di errore, nel qual caso \var{errno} assumerà uno dei seguenti
3211 \item[\errcode{ENOENT}] la funzione non è supportata dal sistema.
3212 \item[\errcode{ESRCH}] non esiste il \textit{thread} identificato
3218 % TODO, dal 2.6.39 aggiunta clock_adjtime
3220 % TODO manca clock_nanosleep, referenziata in sez.~\ref{sec:sig_gen_beha}
3222 Con l'introduzione degli orologi ad alta risoluzione è divenuto possibile
3223 ottenere anche una gestione più avanzata degli allarmi; abbiamo già visto in
3224 sez.~\ref{sec:sig_alarm_abort} come l'interfaccia di \func{setitimer} derivata
3225 da BSD presenti delle serie limitazioni,\footnote{in particolare la
3226 possibilità di perdere un segnale sotto carico.} tanto che nello standard
3227 POSIX.1-2008 questa viene marcata come obsoleta, e ne viene fortemente
3228 consigliata la sostituzione con nuova interfaccia definita dallo standard
3229 POSIX.1-2001 che va sotto il nome di \textit{POSIX Timer API}. Questa
3230 interfaccia è stata introdotta a partire dal kernel 2.6, anche se il supporto
3231 di varie funzionalità è stato aggiunto solo in un secondo tempo.
3233 Una delle principali differenze della nuova interfaccia è che un processo può
3234 utilizzare un numero arbitrario di timer; questi vengono creati (ma non
3235 avviati) tramite la funzione \funcd{timer\_create}, il cui prototipo è:
3240 \funcdecl{int timer\_create(clockid\_t clockid, struct sigevent *evp,
3243 Crea un nuovo timer Posix.
3245 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3246 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3248 \item[\errcode{EAGAIN}] fallimento nel tentativo di allocare le strutture
3250 \item[\errcode{EINVAL}] uno dei valori specificati per \param{clockid} o per
3251 i campi \var{sigev\_notify}, \var{sigev\_signo} o
3252 \var{sigev\_notify\_thread\_id} di \param{evp} non è valido.
3253 \item[\errcode{ENOMEM}] errore di allocazione della memoria.
3258 La funzione richiede tre argomenti: il primo argomento serve ad indicare quale
3259 tipo di orologio si vuole utilizzare e prende uno dei valori di
3260 tab.~\ref{tab:sig_timer_clockid_types},\footnote{di detti valori però non è
3261 previsto l'uso di \const{CLOCK\_MONOTONIC\_RAW} mentre
3262 \const{CLOCK\_PROCESS\_CPUTIME\_ID} e \const{CLOCK\_THREAD\_CPUTIME\_ID}
3263 sono disponibili solo a partire dal kernel 2.6.12.} si può così fare
3264 riferimento sia ad un tempo assoluto che al tempo utilizzato dal processo (o
3265 \textit{thread}) stesso.
3267 Il secondo argomento richiede una trattazione più dettagliata, in quanto
3268 introduce una struttura di uso generale, \struct{sigevent}, che viene
3269 utilizzata anche da altre funzioni, come quelle per l'I/O asincrono (vedi
3270 sez.~\ref{sec:file_asyncronous_io}) o le code di messaggi POSIX (vedi
3271 sez.~\ref{sec:ipc_posix_mq})) e che serve ad indicare in maniera generica un
3272 meccanismo di notifica.
3274 \begin{figure}[!htb]
3275 \footnotesize \centering
3276 \begin{minipage}[c]{\textwidth}
3277 \includestruct{listati/sigevent.h}
3280 \caption{La struttura \structd{sigevent}, usata per specificare in maniera
3281 generica diverse modalità di notifica degli eventi.}
3282 \label{fig:struct_sigevent}
3285 La struttura \struct{sigevent} (accessibile includendo \headfile{time.h}) è
3286 riportata in fig.~\ref{fig:struct_sigevent};\footnote{la definizione effettiva
3287 dipende dall'implementazione, quella mostrata è la versione descritta nella
3288 pagina di manuale di \func{timer\_create}.} il campo \var{sigev\_notify} è
3289 il più importante essendo quello che indica le modalità della notifica, gli
3290 altri dipendono dal valore che si è specificato per \var{sigev\_notify}, si
3291 sono riportati in tab.~\ref{tab:sigevent_sigev_notify}. La scelta del
3292 meccanismo di notifica viene fatta impostando uno dei valori di
3293 tab.~\ref{tab:sigevent_sigev_notify} per \var{sigev\_notify}, e fornendo gli
3294 eventuali ulteriori argomenti necessari a secondo della scelta
3295 effettuata. Diventa così possibile indicare l'uso di un segnale o l'esecuzione
3296 (nel caso di uso dei \textit{thread}) di una funzione di modifica in un
3297 \textit{thread} dedicato.
3302 \begin{tabular}[c]{|l|p{10cm}|}
3304 \textbf{Valore} & \textbf{Significato} \\
3307 \const{SIGEV\_NONE} & Non viene inviata nessuna notifica.\\
3308 \const{SIGEV\_SIGNAL} & La notifica viene effettuata inviando al processo
3309 chiamante il segnale specificato dal campo
3310 \var{sigev\_signo}; se il gestore di questo
3311 segnale è stato installato con
3312 \const{SA\_SIGINFO} gli verrà restituito il
3313 valore specificato con \var{sigev\_value} (una
3314 \direct{union} \texttt{sigval}, la cui definizione
3315 è in fig.~\ref{fig:sig_sigval}) come valore del
3316 campo \var{si\_value} di \struct{siginfo\_t}.\\
3317 \const{SIGEV\_THREAD} & La notifica viene effettuata creando un nuovo
3318 \itindex{thread} \textit{thread} che esegue la
3319 funzione di notifica specificata da
3320 \var{sigev\_notify\_function} con argomento
3321 \var{sigev\_value}. Se questo è diverso da
3322 \val{NULL}, il \textit{thread} viene creato con
3323 gli attributi specificati da
3324 \var{sigev\_notify\_attribute}.\footnotemark\\
3325 \const{SIGEV\_THREAD\_ID}& Invia la notifica come segnale (con le stesse
3326 modalità di \const{SIGEV\_SIGNAL}) che però viene
3327 recapitato al \textit{thread} indicato dal campo
3328 \var{sigev\_notify\_thread\_id}. Questa modalità
3329 è una estensione specifica di Linux, creata come
3330 supporto per le librerie di gestione dei
3331 \textit{thread}, pertanto non deve essere usata
3332 da codice normale.\\
3335 \caption{Valori possibili per il campo \var{sigev\_notify} in una struttura
3337 \label{tab:sigevent_sigev_notify}
3340 \footnotetext{nel caso dei \textit{timer} questa funzionalità è considerata un
3341 esempio di pessima implementazione di una interfaccia, richiesta dallo
3342 standard POSIX, ma da evitare totalmente, a causa della possibilità di
3343 creare disservizi generando una gran quantità di processi, tanto che ne è
3344 stata richiesta addirittura la rimozione.}
3346 Nel caso di \func{timer\_create} occorrerà passare alla funzione come secondo
3347 argomento l'indirizzo di una di queste strutture per indicare le modalità con
3348 cui si vuole essere notificati della scadenza del timer, se non si specifica
3349 nulla (passando un valore \val{NULL}) verrà inviato il segnale
3350 \signal{SIGALRM} al processo corrente, o per essere più precisi verrà
3351 utilizzato un valore equivalente all'aver specificato \const{SIGEV\_SIGNAL}
3352 per \var{sigev\_notify}, \signal{SIGALRM} per \var{sigev\_signo} e
3353 l'identificatore del timer come valore per \var{sigev\_value.sival\_int}.
3355 Il terzo argomento deve essere l'indirizzo di una variabile di tipo
3356 \type{timer\_t} dove sarà scritto l'identificativo associato al timer appena
3357 creato, da usare in tutte le successive funzioni di gestione. Una volta creato
3358 questo identificativo resterà univoco all'interno del processo stesso fintanto
3359 che il timer non viene cancellato.
3361 Si tenga presente che eventuali POSIX timer creati da un processo non vengono
3362 ereditati dai processi figli creati con \func{fork} e che vengono cancellati
3363 nella esecuzione di un programma diverso attraverso una delle funzioni
3364 \func{exec}. Si tenga presente inoltre che il kernel prealloca l'uso di un
3365 segnale \textit{real-time} per ciascun timer che viene creato con
3366 \func{timer\_create}; dato che ciascuno di essi richiede un posto nella coda
3367 dei segnali \textit{real-time}, il numero massimo di timer utilizzabili da un
3368 processo è limitato dalle dimensioni di detta coda, ed anche, qualora questo
3369 sia stato impostato, dal limite \const{RLIMIT\_SIGPENDING}.
3371 Una volta creato il timer \func{timer\_create} ed ottenuto il relativo
3372 identificatore, si può attivare o disattivare un allarme (in gergo
3373 \textsl{armare} o \textsl{disarmare} il timer) con la funzione
3374 \funcd{timer\_settime}, il cui prototipo è:
3379 \funcdecl{int timer\_settime(timer\_t timerid, int flags, const struct
3380 itimerspec *new\_value, struct itimerspec *old\_value)}
3382 Arma o disarma il timer POSIX.
3384 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3385 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3387 \item[\errcode{EINVAL}] all'interno di \param{new\_value.value} si è
3388 specificato un tempo negativo o un numero di nanosecondi maggiore di
3390 \item[\errcode{EFAULT}] si è specificato un indirizzo non valido
3391 per \param{new\_value} o \param{old\_value}.
3396 La funzione richiede che si indichi la scadenza del timer con
3397 l'argomento \param{new\_value}, che deve essere specificato come puntatore ad
3398 una struttura di tipo \struct{itimerspec}, la cui definizione è riportata in
3399 fig.~\ref{fig:struct_itimerspec}; se il puntatore \param{old\_value} è diverso
3400 da \val{NULL} il valore corrente della scadenza verrà restituito in una
3401 analoga struttura, ovviamente in entrambi i casi le strutture devono essere
3404 \begin{figure}[!htb]
3405 \footnotesize \centering
3406 \begin{minipage}[c]{\textwidth}
3407 \includestruct{listati/itimerspec.h}
3410 \caption{La struttura \structd{itimerspec}, usata per specificare la
3411 scadenza di un allarme.}
3412 \label{fig:struct_itimerspec}
3415 Ciascuno dei due campi di \struct{itimerspec} indica un tempo, da specificare
3416 con una precisione fino al nanosecondo tramite una struttura \struct{timespec}
3417 (la cui definizione è riportata fig.~\ref{fig:sys_timespec_struct}). Il campo
3418 \var{it\_value} indica la prima scadenza dell'allarme. Di default, quando il
3419 valore di \param{flags} è nullo, questo valore viene considerato come un
3420 intervallo relativo al tempo corrente, il primo allarme scatterà cioè dopo il
3421 numero di secondi e nanosecondi indicati da questo campo. Se invece si usa
3422 per \param{flags} il valore \const{TIMER\_ABSTIME}, che al momento è l'unico
3423 valore valido per \param{flags}, allora \var{it\_value} viene considerato come
3424 un valore assoluto rispetto al valore usato dall'orologio a cui è associato il
3425 timer.\footnote{quindi a seconda dei casi lo si potrà indicare o come un tempo
3426 assoluto, quando si opera rispetto all'orologio di sistema (nel qual caso il
3427 valore deve essere in secondi e nanosecondi dalla \textit{epoch}) o come
3428 numero di secondi o nanosecondi rispetto alla partenza di un orologio di
3429 CPU, quando si opera su uno di questi.} Infine un valore nullo di
3430 \var{it\_value}, dover per nullo si intende con valori nulli per entrambi i
3431 campi \var{tv\_sec} e \var{tv\_nsec}, può essere utilizzato, indipendentemente
3432 dal tipo di orologio utilizzato, per disarmare l'allarme.
3434 Il campo \var{it\_interval} di \struct{itimerspec} viene invece utilizzato per
3435 impostare un allarme periodico. Se il suo valore è nullo, se cioè sono nulli
3436 tutti e due i due campi \var{tv\_sec} e \var{tv\_nsec} di detta struttura
3437 \struct{timespec}, l'allarme scatterà una sola volta secondo quando indicato
3438 con \var{it\_value}, altrimenti il valore specificato nella struttura verrà
3439 preso come l'estensione del periodo di ripetizione della generazione
3440 dell'allarme, che proseguirà indefinitamente fintanto che non si disarmi il
3443 Se il timer era già stato armato la funzione sovrascrive la precedente
3444 impostazione, se invece si indica come prima scadenza un tempo già passato,
3445 l'allarme verrà notificato immediatamente e al contempo verrà incrementato il
3446 contatore dei superamenti. Questo contatore serve a fornire una indicazione al
3447 programma che riceve l'allarme su un eventuale numero di scadenze che sono
3448 passate prima della ricezione della notifica dell'allarme.
3450 É infatti possibile, qualunque sia il meccanismo di notifica scelto, che
3451 quest'ultima venga ricevuta dopo che il timer è scaduto più di una
3452 volta.\footnote{specialmente se si imposta un timer con una ripetizione a
3453 frequenza elevata.} Nel caso dell'uso di un segnale infatti il sistema mette
3454 in coda un solo segnale per timer,\footnote{questo indipendentemente che si
3455 tratti di un segnale ordinario o \textit{real-time}; per questi ultimi
3456 sarebbe anche possibile inviare un segnale per ogni scadenza, questo però
3457 non viene fatto per evitare il rischio, tutt'altro che remoto, di riempire
3458 la coda.} e se il sistema è sotto carico o se il segnale è bloccato, prima
3459 della sua ricezione può passare un intervallo di tempo sufficientemente lungo
3460 ad avere scadenze multiple, e lo stesso può accadere anche se si usa un
3461 \textit{thread} di notifica.
3463 Per questo motivo il gestore del segnale o il \textit{thread} di notifica può
3464 ottenere una indicazione di quante volte il timer è scaduto dall'invio della
3465 notifica utilizzando la funzione \funcd{timer\_getoverrun}, il cui prototipo è:
3469 \funcdecl{int timer\_getoverrun(timer\_t timerid)}
3471 Ottiene il numero di scadenze di un timer POSIX.
3473 \bodydesc{La funzione restituisce il numero di scadenze di un timer in caso
3474 di successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà
3477 \item[\errcode{EINVAL}] \param{timerid} non indica un timer valido.
3482 La funzione ritorna il numero delle scadenze avvenute, che può anche essere
3483 nullo se non ve ne sono state. Come estensione specifica di Linux,\footnote{in
3484 realtà lo standard POSIX.1-2001 prevede gli \textit{overrun} solo per i
3485 segnali e non ne parla affatto in riferimento ai \textit{thread}.} quando
3486 si usa un segnale come meccanismo di notifica, si può ottenere direttamente
3487 questo valore nel campo \var{si\_overrun} della struttura \struct{siginfo\_t}
3488 (illustrata in fig.~\ref{fig:sig_siginfo_t}) restituita al gestore del segnale
3489 installato con \func{sigaction}; in questo modo non è più necessario eseguire
3490 successivamente una chiamata a questa funzione per ottenere il numero delle
3491 scadenze. Al gestore del segnale viene anche restituito, come ulteriore
3492 informazione, l'identificativo del timer, in questo caso nel campo
3495 Qualora si voglia rileggere lo stato corrente di un timer, ed ottenere il
3496 tempo mancante ad una sua eventuale scadenza, si deve utilizzare la funzione
3497 \funcd{timer\_gettime}, il cui prototipo è:
3501 \funcdecl{int timer\_gettime(timer\_t timerid, int flags, struct
3502 itimerspec *curr\_value)}
3504 Legge lo stato di un timer POSIX.
3506 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3507 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3509 \item[\errcode{EINVAL}] \param{timerid} non indica un timer valido.
3510 \item[\errcode{EFAULT}] si è specificato un indirizzo non valido
3511 per \param{curr\_value}.
3516 La funzione restituisce nella struttura \struct{itimerspec} puntata
3517 da \param{curr\_value} il tempo restante alla prossima scadenza nel campo
3518 \var{it\_value}. Questo tempo viene sempre indicato in forma relativa, anche
3519 nei casi in cui il timer era stato precedentemente impostato con
3520 \const{TIMER\_ABSTIME} indicando un tempo assoluto. Il ritorno di un valore
3521 nullo nel campo \var{it\_value} significa che il timer è disarmato o è
3522 definitivamente scaduto.
3524 Nel campo \var{it\_interval} di \param{curr\_value} viene invece restituito,
3525 se questo era stato impostato, il periodo di ripetizione del timer. Anche in
3526 questo caso il ritorno di un valore nullo significa che il timer non era stato
3527 impostato per una ripetizione e doveva operare, come suol dirsi, a colpo
3528 singolo (in gergo \textit{one shot}).
3530 Infine, quando un timer non viene più utilizzato, lo si può cancellare,
3531 rimuovendolo dal sistema e recuperando le relative risorse, effettuando in
3532 sostanza l'operazione inversa rispetto a \funcd{timer\_create}. Per questo
3533 compito lo standard prevede una apposita funzione \funcd{timer\_delete}, il
3538 \funcdecl{int timer\_delete(timer\_t timerid)}
3540 Cancella un timer POSIX.
3542 \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3543 errore, nel qual caso \var{errno} assumerà uno dei seguenti valori:
3545 \item[\errcode{EINVAL}] \param{timerid} non indica un timer valido.
3550 La funzione elimina il timer identificato da \param{timerid}, disarmandolo se
3551 questo era stato attivato. Nel caso, poco probabile ma comunque possibile, che
3552 un timer venga cancellato prima della ricezione del segnale pendente per la
3553 notifica di una scadenza, il comportamento del sistema è indefinito.
3555 \subsection{Ulteriori funzioni di gestione}
3556 \label{sec:sig_specific_features}
3558 In questo ultimo paragrafo esamineremo le rimanenti funzioni di gestione dei
3559 segnali non descritte finora, relative agli aspetti meno utilizzati e più
3560 ``\textsl{esoterici}'' della interfaccia.
3562 La prima di queste funzioni è \funcd{sigpending}, anch'essa introdotta dallo
3563 standard POSIX.1; il suo prototipo è:
3564 \begin{prototype}{signal.h}
3565 {int sigpending(sigset\_t *set)}
3567 Scrive in \param{set} l'insieme dei segnali pendenti.
3569 \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
3573 La funzione permette di ricavare quali sono i segnali pendenti per il processo
3574 in corso, cioè i segnali che sono stati inviati dal kernel ma non sono stati
3575 ancora ricevuti dal processo in quanto bloccati. Non esiste una funzione
3576 equivalente nella vecchia interfaccia, ma essa è tutto sommato poco utile,
3577 dato che essa può solo assicurare che un segnale è stato inviato, dato che
3578 escluderne l'avvenuto invio al momento della chiamata non significa nulla
3579 rispetto a quanto potrebbe essere in un qualunque momento successivo.
3581 Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
3582 di usare uno \itindex{stack} \textit{stack} alternativo per i segnali; è cioè
3583 possibile fare usare al sistema un altro \itindex{stack} \textit{stack}
3584 (invece di quello relativo al processo, vedi sez.~\ref{sec:proc_mem_layout})
3585 solo durante l'esecuzione di un gestore. L'uso di uno \textit{stack}
3586 alternativo è del tutto trasparente ai gestori, occorre però seguire una certa
3589 \item allocare un'area di memoria di dimensione sufficiente da usare come
3590 \textit{stack} alternativo;
3591 \item usare la funzione \func{sigaltstack} per rendere noto al sistema
3592 l'esistenza e la locazione dello \textit{stack} alternativo;
3593 \item quando si installa un gestore occorre usare \func{sigaction}
3594 specificando il flag \const{SA\_ONSTACK} (vedi tab.~\ref{tab:sig_sa_flag})
3595 per dire al sistema di usare lo \textit{stack} alternativo durante
3596 l'esecuzione del gestore.
3599 In genere il primo passo viene effettuato allocando un'opportuna area di
3600 memoria con \code{malloc}; in \headfile{signal.h} sono definite due costanti,
3601 \const{SIGSTKSZ} e \const{MINSIGSTKSZ}, che possono essere utilizzate per
3602 allocare una quantità di spazio opportuna, in modo da evitare overflow. La
3603 prima delle due è la dimensione canonica per uno \itindex{stack}
3604 \textit{stack} di segnali e di norma è sufficiente per tutti gli usi normali.
3606 La seconda è lo spazio che occorre al sistema per essere in grado di lanciare
3607 il gestore e la dimensione di uno \textit{stack} alternativo deve essere
3608 sempre maggiore di questo valore. Quando si conosce esattamente quanto è lo
3609 spazio necessario al gestore gli si può aggiungere questo valore per allocare
3610 uno \itindex{stack} \textit{stack} di dimensione sufficiente.
3612 Come accennato, per poter essere usato, lo \itindex{stack} \textit{stack} per
3613 i segnali deve essere indicato al sistema attraverso la funzione
3614 \funcd{sigaltstack}; il suo prototipo è:
3615 \begin{prototype}{signal.h}
3616 {int sigaltstack(const stack\_t *ss, stack\_t *oss)}
3618 Installa un nuovo \textit{stack} per i segnali.
3620 \bodydesc{La funzione restituisce zero in caso di successo e $-1$ per un
3621 errore, nel qual caso \var{errno} assumerà i valori:
3624 \item[\errcode{ENOMEM}] la dimensione specificata per il nuovo
3625 \textit{stack} è minore di \const{MINSIGSTKSZ}.
3626 \item[\errcode{EPERM}] uno degli indirizzi non è valido.
3627 \item[\errcode{EFAULT}] si è cercato di cambiare lo \textit{stack}
3628 alternativo mentre questo è attivo (cioè il processo è in esecuzione su di
3630 \item[\errcode{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
3631 valore diverso da zero che non è \const{SS\_DISABLE}.
3635 La funzione prende come argomenti puntatori ad una struttura di tipo
3636 \var{stack\_t}, definita in fig.~\ref{fig:sig_stack_t}. I due valori
3637 \param{ss} e \param{oss}, se non nulli, indicano rispettivamente il nuovo
3638 \itindex{stack} \textit{stack} da installare e quello corrente (che viene
3639 restituito dalla funzione per un successivo ripristino).
3641 \begin{figure}[!htb]
3642 \footnotesize \centering
3643 \begin{minipage}[c]{\textwidth}
3644 \includestruct{listati/stack_t.h}
3647 \caption{La struttura \structd{stack\_t}.}
3648 \label{fig:sig_stack_t}
3651 Il campo \var{ss\_sp} di \struct{stack\_t} indica l'indirizzo base dello
3652 \itindex{stack} \textit{stack}, mentre \var{ss\_size} ne indica la dimensione;
3653 il campo \var{ss\_flags} invece indica lo stato dello \textit{stack}.
3654 Nell'indicare un nuovo \textit{stack} occorre inizializzare \var{ss\_sp} e
3655 \var{ss\_size} rispettivamente al puntatore e alla dimensione della memoria
3656 allocata, mentre \var{ss\_flags} deve essere nullo. Se invece si vuole
3657 disabilitare uno \textit{stack} occorre indicare \const{SS\_DISABLE} come
3658 valore di \var{ss\_flags} e gli altri valori saranno ignorati.
3660 Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
3661 dimensione dello \itindex{stack} \textit{stack} corrente nei relativi campi,
3662 mentre \var{ss\_flags} potrà assumere il valore \const{SS\_ONSTACK} se il
3663 processo è in esecuzione sullo \textit{stack} alternativo (nel qual caso non è
3664 possibile cambiarlo) e \const{SS\_DISABLE} se questo non è abilitato.
3666 In genere si installa uno \itindex{stack} \textit{stack} alternativo per i
3667 segnali quando si teme di avere problemi di esaurimento dello \textit{stack}
3668 standard o di superamento di un limite (vedi
3669 sez.~\ref{sec:sys_resource_limit}) imposto con chiamate del tipo
3670 \code{setrlimit(RLIMIT\_STACK, \&rlim)}. In tal caso infatti si avrebbe un
3671 segnale di \signal{SIGSEGV}, che potrebbe essere gestito soltanto avendo
3672 abilitato uno \itindex{stack} \textit{stack} alternativo.
3674 Si tenga presente che le funzioni chiamate durante l'esecuzione sullo
3675 \textit{stack} alternativo continueranno ad usare quest'ultimo, che, al
3676 contrario di quanto avviene per lo \itindex{stack} \textit{stack} ordinario
3677 dei processi, non si accresce automaticamente (ed infatti eccederne le
3678 dimensioni può portare a conseguenze imprevedibili). Si ricordi infine che
3679 una chiamata ad una funzione della famiglia \func{exec} cancella ogni
3680 \textit{stack} alternativo.
3682 Abbiamo visto in fig.~\ref{fig:sig_sleep_incomplete} come si possa usare
3683 \func{longjmp} per uscire da un gestore rientrando direttamente nel corpo
3684 del programma; sappiamo però che nell'esecuzione di un gestore il segnale
3685 che l'ha invocato viene bloccato, e abbiamo detto che possiamo ulteriormente
3686 modificarlo con \func{sigprocmask}.
3688 Resta quindi il problema di cosa succede alla maschera dei segnali quando si
3689 esce da un gestore usando questa funzione. Il comportamento dipende
3690 dall'implementazione; in particolare la semantica usata da BSD prevede che sia
3691 ripristinata la maschera dei segnali precedente l'invocazione, come per un
3692 normale ritorno, mentre quella usata da System V no.
3694 Lo standard POSIX.1 non specifica questo comportamento per \func{setjmp} e
3695 \func{longjmp}, ed il comportamento delle \acr{glibc} dipende da quale delle
3696 caratteristiche si sono abilitate con le macro viste in
3697 sez.~\ref{sec:intro_gcc_glibc_std}.
3699 Lo standard POSIX però prevede anche la presenza di altre due funzioni
3700 \funcd{sigsetjmp} e \funcd{siglongjmp}, che permettono di decidere quale dei
3701 due comportamenti il programma deve assumere; i loro prototipi sono:
3705 \funcdecl{int sigsetjmp(sigjmp\_buf env, int savesigs)} Salva il contesto
3706 dello \textit{stack} per un \index{salto~non-locale} salto non-locale.
3708 \funcdecl{void siglongjmp(sigjmp\_buf env, int val)} Esegue un salto
3709 non-locale su un precedente contesto.
3711 \bodydesc{Le due funzioni sono identiche alle analoghe \func{setjmp} e
3712 \func{longjmp} di sez.~\ref{sec:proc_longjmp}, ma consentono di specificare
3713 il comportamento sul ripristino o meno della maschera dei segnali.}
3716 Le due funzioni prendono come primo argomento la variabile su cui viene
3717 salvato il contesto dello \itindex{stack} \textit{stack} per permettere il
3718 \index{salto~non-locale} salto non-locale; nel caso specifico essa è di tipo
3719 \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le analoghe di
3720 sez.~\ref{sec:proc_longjmp} in quanto in questo caso viene salvata anche la
3721 maschera dei segnali.
3723 Nel caso di \func{sigsetjmp}, se si specifica un valore di \param{savesigs}
3724 diverso da zero la maschera dei valori sarà salvata in \param{env} e
3725 ripristinata in un successivo \func{siglongjmp}; quest'ultima funzione, a
3726 parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
3730 % TODO: se e quando si troverà un argomento adeguato inserire altre funzioni
3731 % sparse attinenti ai segnali, al momento sono note solo:
3732 % * sigreturn (funzione interna, scarsamente interessante)
3733 % argomento a priorità IDLE (fare quando non resta niente altro da trattare)
3736 % LocalWords: kernel POSIX timer shell control ctrl kill raise signal handler
3737 % LocalWords: reliable unreliable fig race condition sez struct process table
3738 % LocalWords: delivered pending scheduler sigpending l'I suspend SIGKILL wait
3739 % LocalWords: SIGSTOP sigaction waitpid dump stack debugger nell'header NSIG
3740 % LocalWords: tab BSD SUSv SIGHUP PL Hangup SIGINT Interrupt SIGQUIT Quit AEF
3741 % LocalWords: SIGILL SIGABRT abort SIGFPE SIGSEGV SIGPIPE SIGALRM alarm SIGUSR
3742 % LocalWords: SIGTERM SIGCHLD SIGCONT SIGTSTP SIGTTIN SIGTTOU SIGBUS bad SL of
3743 % LocalWords: memory access SIGPOLL Pollable event Sys SIGIO SIGPROF profiling
3744 % LocalWords: SIGSYS SVID SIGTRAP breakpoint SIGURG urgent socket Virtual IOT
3745 % LocalWords: clock SIGXCPU SIGXFSZ SIGIOT trap SIGEMT SIGSTKFLT SIGCLD SIGPWR
3746 % LocalWords: SIGINFO SIGLOST lock NFS SIGWINCH Sun SIGUNUSED fault point heap
3747 % LocalWords: exception l'overflow illegal instruction overflow segment error
3748 % LocalWords: violation system call interrupt INTR hang SIGVTALRM virtual SUSP
3749 % LocalWords: profilazione fcntl descriptor sleep interactive Broken FIFO lost
3750 % LocalWords: EPIPE Resource advisory client limit exceeded size window change
3751 % LocalWords: strsignal psignal SOURCE strerror string char int signum perror
3752 % LocalWords: void sig const sys siglist L'array decr fork exec DFL IGN ioctl
3753 % LocalWords: EINTR glibc TEMP FAILURE RETRY expr multitasking SVr sighandler
3754 % LocalWords: ERR libc bsd sysv XOPEN EINVAL pid errno ESRCH EPERM getpid init
3755 % LocalWords: killpg pidgrp group unistd unsigned seconds all' setitimer which
3756 % LocalWords: itimerval value ovalue EFAULT ITIMER it interval timeval ms VIRT
3757 % LocalWords: getitimer stdlib stream atexit exit usleep long usec nanosleep
3758 % LocalWords: timespec req rem HZ scheduling SCHED RR SigHand forktest WNOHANG
3759 % LocalWords: deadlock longjmp setjmp sigset sigemptyset sigfillset sigaddset
3760 % LocalWords: sigdelset sigismember act oldact restorer mask NOCLDSTOP ONESHOT
3761 % LocalWords: RESETHAND RESTART NOMASK NODEFER ONSTACK sigcontext union signo
3762 % LocalWords: siginfo bits uid addr fd inline like blocked atomic sigprocmask
3763 % LocalWords: how oldset BLOCK UNBLOCK SETMASK sigsuspend sigaltstack malloc
3764 % LocalWords: SIGSTKSZ MINSIGSTKSZ ss oss ENOMEM flags DISABLE sp setrlimit LB
3765 % LocalWords: RLIMIT rlim sigsetjmp siglongjmp sigjmp buf env savesigs jmp ptr
3766 % LocalWords: SIGRTMIN SIGRTMAX sigval sigevent sigqueue EAGAIN sysctl safe tp
3767 % LocalWords: QUEUE thread sigwait sigwaitinfo sigtimedwait info DEF SLB bind
3768 % LocalWords: function accept return cfgetispeed cfgetospeed cfsetispeed chdir
3769 % LocalWords: cfsetospeed chmod chown gettime close connect creat dup execle
3770 % LocalWords: execve fchmod fchown fdatasync fpathconf fstat fsync ftruncate
3771 % LocalWords: getegid geteuid getgid getgroups getpeername getpgrp getppid sem
3772 % LocalWords: getsockname getsockopt getuid listen lseek lstat mkdir mkfifo tv
3773 % LocalWords: pathconf poll posix pselect read readlink recv recvfrom recvmsg
3774 % LocalWords: rename rmdir select send sendmsg sendto setgid setpgid setsid
3775 % LocalWords: setsockopt setuid shutdown sigpause socketpair stat symlink page
3776 % LocalWords: sysconf tcdrain tcflow tcflush tcgetattr tcgetgrp tcsendbreak
3777 % LocalWords: tcsetattr tcsetpgrp getoverrun times umask uname unlink utime
3778 % LocalWords: write sival SIVGTALRM NOCLDWAIT MESGQ ASYNCIO TKILL tkill tgkill
3779 % LocalWords: ILL ILLOPC ILLOPN ILLADR ILLTRP PRVOPC PRVREG COPROC BADSTK FPE
3780 % LocalWords: INTDIV INTOVF FLTDIV FLTOVF FLTUND underflow FLTRES FLTINV SEGV
3781 % LocalWords: FLTSUB MAPERR ACCERR ADRALN ADRERR OBJERR BRKPT CLD EXITED MSG
3782 % LocalWords: KILLED DUMPED TRAPPED STOPPED CONTINUED PRI HUP SigFunc jiffies
3783 % LocalWords: SEC unsafe sockatmark execl execv faccessat fchmodat fchownat
3784 % LocalWords: fexecve fstatat futimens linkat mkdirat mkfifoat mknod mknodat
3785 % LocalWords: openat readlinkat renameat symlinkat unlinkat utimensat utimes
3786 % LocalWords: LinuxThread NTPL Library clockid evp timerid sigev notify high
3787 % LocalWords: resolution CONFIG RES patch REALTIME MONOTONIC RAW NTP CPUTIME
3788 % LocalWords: tick calendar The Epoch list getcpuclockid capability CAP getres
3789 % LocalWords: ENOSYS pthread ENOENT NULL attribute itimerspec new old ABSTIME
3790 % LocalWords: epoch multiplexing overrun res lpthread sec nsec curr one shot
3791 % LocalWords: delete stopped gdb alpha mips emulation locking ppoll epoll PGID
3794 %%% Local Variables:
3796 %%% TeX-master: "gapil"
3798 % LocalWords: pwait msgrcv msgsnd semop semtimedop runnable