Rimaneggiamenti generali
authorSimone Piccardi <piccardi@gnulinux.it>
Sun, 17 Mar 2002 23:03:49 +0000 (23:03 +0000)
committerSimone Piccardi <piccardi@gnulinux.it>
Sun, 17 Mar 2002 23:03:49 +0000 (23:03 +0000)
signal.tex

index eeefd982d7f2115f4b9c100ac905a4151947e3d1..1375a973649190628d95fe6a4cce2d8f48c9e411 100644 (file)
@@ -22,9 +22,10 @@ gestione.
 \section{Introduzione}
 \label{sec:sig_intro}
 
 \section{Introduzione}
 \label{sec:sig_intro}
 
-In questa sezione esamineremo i concetti base dei segnali, introducendo le
-caratteristiche essenziali con cui il sistema interagisce con i processi
-attraverso di essi.
+In questa sezione esamineremo i concetti generali relativi ai segnali, vedremo
+le loro caratteristiche di base, introdurremo le nozioni di fondo relative
+all'architettura del funzionamento dei segnali e alle modalità con cui il
+sistema gestisce l'interazione fra di essi ed i processi.
 
 
 \subsection{I concetti base}
 
 
 \subsection{I concetti base}
@@ -80,7 +81,7 @@ gestione, in tutti i casi in cui si vuole che il manipolatore esterno resti
 attivo.
 
 In questo caso è possibile una situazione in cui i segnali possono essere
 attivo.
 
 In questo caso è possibile una situazione in cui i segnali possono essere
-perduti; si consideri il seguente segmento di codice in cui la prima
+perduti. Si consideri il seguente segmento di codice, in cui la prima
 operazione del manipolatore è quella di reinstallare se stesso: 
 
 \footnotesize
 operazione del manipolatore è quella di reinstallare se stesso: 
 
 \footnotesize
@@ -103,7 +104,7 @@ causare il comportamento originale assegnato al segnale (in genere la
 terminazione del processo).
 
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
 terminazione del processo).
 
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
-semantica viene chiamata \textsl{inaffidabile}, in quanto la ricezione del
+semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
 atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
 quanto detto in \secref{sec:proc_multi_prog}).
 segnale e la reinstallazione del suo manipolatore non sono operazioni
 atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
 quanto detto in \secref{sec:proc_multi_prog}).
@@ -113,54 +114,54 @@ segnali quando non si vuole che arrivino; i processi possono ignorare il
 segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
 di un segnale, pur mantenendo memoria del fatto che è avvenuto.
 
 segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
 di un segnale, pur mantenendo memoria del fatto che è avvenuto.
 
-Un caso classico in cui si incontra questo problema, è quello in cui si usa il
-manipolatore per settare un flag che riporta al processo l'occorrenza del
-segnale, così che questo possa prendere provvedimenti al di fuori del
-manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
-quello di fermare il processo fino all'occorrenza di un opportuno segnale:
-
-\footnotesize
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-int signal_flag = 0;
-main()
-{
-    int sig_handler();            /* handler function */
-    ...
-    signal(SIGINT, sig_handler);  /* establish handler */
-    ...
-    while(signal_flag == 0) {     /* while flag is zero */
-        pause();                  /* go to sleep */
-    }
-    ... 
-}
-int sig_handler() 
-{
-    signal(SIGINT, sig_handler);  /* restablish handler */
-    signal_flag = 1;              /* set flag */
-}
-\end{lstlisting}
-\normalsize
-l'idea è che quando il processo trova il flag a zero viene messo in sleep e
-verrà risvegliato solo dalla ricezione di un segnale. Il manipolatore si
-limita in questo caso a settare il flag a uno; all'uscita dal manipolatore la
-chiamata a \func{pause} è interrotta ed il processo viene risvegliato e
-riprende l'esecuzione all'istruzione successiva, ma essendo cambiato il flag
-la condizione non è più soddisfatta e il programma prosegue.
-
-Il problema con l'implementazione inaffidabile è che niente ci garantisce che
-il segnale arrivi fra la valutazione della condizione del \code{while} e la
-chiamata a \func{pause}, nel qual caso, se il segnale non viene più generato,
-il processo resterà in sleep permanentemente.
-
-% Un'altra caratteristica della implementazione inaffidabile è che le chiamate
-% di sistema non sono fatte ripartire automaticamente quando sono interrotte da
-% un segnale, per questo un programma deve controllare lo stato di uscita della
-% chiamata al sistema e ripeterla nel caso l'errore riportato da \texttt{errno}
-% sia \texttt{EINTR}.
-
-Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
-modalità semplice per ottenere una operazione di pausa (cioè mandare in sleep
-un processo fino all'arrivo di un segnale).
+Un caso classico in cui si incontra questo problema, è quello in cui si usa il
+manipolatore per settare un flag che riporta al processo l'occorrenza del
+segnale, così che questo possa prendere provvedimenti al di fuori del
+manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
+quello di fermare il processo fino all'occorrenza di un opportuno segnale:
+
+\footnotesize
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+int signal_flag = 0;
+main()
+{
+    int sig_handler();            /* handler function */
+    ...
+    signal(SIGINT, sig_handler);  /* establish handler */
+    ...
+    while(signal_flag == 0) {     /* while flag is zero */
+        pause();                  /* go to sleep */
+    }
+    ... 
+}
+int sig_handler() 
+{
+    signal(SIGINT, sig_handler);  /* restablish handler */
+    signal_flag = 1;              /* set flag */
+}
+\end{lstlisting}
+\normalsize
+l'idea è che quando il processo trova il flag a zero viene messo in sleep e
+verrà risvegliato solo dalla ricezione di un segnale. Il manipolatore si
+limita in questo caso a settare il flag a uno; all'uscita dal manipolatore la
+chiamata a \func{pause} è interrotta ed il processo viene risvegliato e
+riprende l'esecuzione all'istruzione successiva, ma essendo cambiato il flag
+la condizione non è più soddisfatta e il programma prosegue.
+
+Il problema con l'implementazione inaffidabile è che niente ci garantisce che
+il segnale arrivi fra la valutazione della condizione del \code{while} e la
+chiamata a \func{pause}, nel qual caso, se il segnale non viene più generato,
+il processo resterà in sleep permanentemente.
+
+% Un'altra caratteristica della implementazione inaffidabile è che le chiamate
+% di sistema non sono fatte ripartire automaticamente quando sono interrotte da
+% un segnale, per questo un programma deve controllare lo stato di uscita della
+% chiamata al sistema e ripeterla nel caso l'errore riportato da \texttt{errno}
+% sia \texttt{EINTR}.
+
+Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
+% modalità semplice per ottenere una operazione di attesa mandando in stato di
+% sleep (vedi \ref{sec:proc_sched}) un processo fino all'arrivo di un segnale.
 
 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
 moderno) il manipolatore una volta installato resta attivo e non si hanno
 
 Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
 moderno) il manipolatore una volta installato resta attivo e non si hanno
@@ -274,9 +275,9 @@ una  delle tre possibilit
 
 Un programma può specificare queste scelte usando le due funzioni
 \func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
 
 Un programma può specificare queste scelte usando le due funzioni
 \func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
-\secref{sec:sig_sigaction}); se si è installato un manipolatore sarà
+\secref{sec:sig_sigaction}). Se si è installato un manipolatore sarà
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
-fa si che mentre viene eseguito il manipolatore di un segnale, questo ultimo
+farà si che mentre viene eseguito il manipolatore di un segnale, quest'ultimo
 venga automaticamente bloccato (così si possono evitare race condition).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
 venga automaticamente bloccato (così si possono evitare race condition).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
@@ -298,7 +299,6 @@ in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
 avviene se i suddetti segnale vengono generati con una \func{kill}.
 
 
 avviene se i suddetti segnale vengono generati con una \func{kill}.
 
 
-
 \section{La classificazione dei segnali}
 \label{sec:sig_classification}
 
 \section{La classificazione dei segnali}
 \label{sec:sig_classification}
 
@@ -779,7 +779,7 @@ processo alla loro occorrenza.
 
 
 \subsection{Il comportamento generale del sistema.}
 
 
 \subsection{Il comportamento generale del sistema.}
-\label{sec:sig_gen_beha}
+  \label{sec:sig_gen_beha}
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
@@ -820,8 +820,8 @@ eseguire un manipolatore non comporta nessun inconveniente.
 Esistono però dei casi in cui questo non è possibile perché renderebbe
 impossibile una risposta pronta al segnale. In generale questo avviene tutte
 le volte che si ha a che fare con system call che possono bloccarsi
 Esistono però dei casi in cui questo non è possibile perché renderebbe
 impossibile una risposta pronta al segnale. In generale questo avviene tutte
 le volte che si ha a che fare con system call che possono bloccarsi
-indefinitamente, che per questo vengono chiamate \textsl{lente}. Un elenco
-dei casi in cui si presenta questa situazione è il seguente:
+indefinitamente, (quelle che, per questo, vengono chiamate \textsl{lente}). Un
+elenco dei casi in cui si presenta questa situazione è il seguente:
 \begin{itemize*}
 \item lettura da file che possono bloccarsi in attesa di dati non ancora
   presenti (come per certi file di dispositivo, la rete o le pipe).
 \begin{itemize*}
 \item lettura da file che possono bloccarsi in attesa di dati non ancora
   presenti (come per certi file di dispositivo, la rete o le pipe).
@@ -925,7 +925,7 @@ tutti i segnali pendenti saranno scartati, e non verranno mai notificati.
 L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
 si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
 questi ultimi infatti la funzione è conforme al comportamento originale dei
 L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
 si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
 questi ultimi infatti la funzione è conforme al comportamento originale dei
-primi Unix in cui il manipolatore viene disinstallato alla sua chiamata
+primi Unix in cui il manipolatore viene disinstallato alla sua chiamata,
 secondo la semantica inaffidabile; Linux seguiva questa convenzione fino alle
 \acr{libc5}. Al contrario BSD segue la semantica affidabile, non resettando il
 manipolatore e bloccando il segnale durante l'esecuzione dello stesso. Con
 secondo la semantica inaffidabile; Linux seguiva questa convenzione fino alle
 \acr{libc5}. Al contrario BSD segue la semantica affidabile, non resettando il
 manipolatore e bloccando il segnale durante l'esecuzione dello stesso. Con
@@ -1045,7 +1045,7 @@ segnale al processo che ha effettuato la chiamata.
 \label{sec:sig_alarm_abort}
 
 Un caso particolare di segnali generati a richiesta è quello che riguarda i
 \label{sec:sig_alarm_abort}
 
 Un caso particolare di segnali generati a richiesta è quello che riguarda i
-segnali di temporizzazione e \macro{SIGABORT}, per i quali sono previste
+segnali di temporizzazione e \macro{SIGABORT}, per i quali sono previste
 funzioni specifiche che ne effettuino l'invio. La prima di queste è
 \func{alarm} il cui prototipo è:
 \begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
 funzioni specifiche che ne effettuino l'invio. La prima di queste è
 \func{alarm} il cui prototipo è:
 \begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
@@ -1057,8 +1057,9 @@ funzioni specifiche che ne effettuino l'invio. La prima di queste 
 
 La funzione provvede un meccanismo che consente ad un processo di predisporre
 un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
 
 La funzione provvede un meccanismo che consente ad un processo di predisporre
 un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
-dopo un certo periodo di tempo), programmando l'emissione si un segnale di
-\macro{SIGALARM} dopo il numero di secondi specificato da \param{seconds}.
+dopo un certo periodo di tempo), programmando l'emissione di un segnale (in
+genere \macro{SIGALARM}) dopo il numero di secondi specificato da
+\param{seconds}.
 
 Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
 segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
 
 Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
 segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
@@ -1086,9 +1087,10 @@ processo tre diversi timer:
 \end{itemize}
 
 Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
 \end{itemize}
 
 Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
-tempo reale. La funzione, pur essendo molto semplice, presenta numerosi
-limiti: non consente di usare gli altri timer, non può specificare intervalli
-con precisione maggiore del secondo e genera il segnale una sola volta.
+tempo reale. La funzione come abbiamo visto è molto semplice, ma proprio per
+questo presenta numerosi limiti: non consente di usare gli altri timer, non
+può specificare intervalli di tempo con precisione maggiore del secondo e
+genera il segnale una sola volta.
 
 Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
 che permette di usare un timer qualunque e l'invio di segnali periodici, al
 
 Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
 che permette di usare un timer qualunque e l'invio di segnali periodici, al
@@ -1391,7 +1393,8 @@ terminazione in modo da evitare la formazione di zombie.
 % In questo caso si è tratterà di illustrare un esempio relativo ad un
 % manipolatore per che è previsto ritornare,
 
 % In questo caso si è tratterà di illustrare un esempio relativo ad un
 % manipolatore per che è previsto ritornare,
 
-In 
+In realtà nel caso di \macro{SIGCHLD} occorre tenere conto anche di un altro
+aspetto del comportamento dei segnali e cioè del fatto